M0011244: Table of Atomic weights determined by Berzelius, 19th century

Publication/Creation

1950

Persistent URL

https://wellcomecollection.org/works/my5h4qk9

License and attribution

Conditions of use: it is possible this item is protected by copyright and/or related rights. You are free to use this item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

Wellcome Collection 183 Euston Road London NW1 2BE UK T +44 (0)20 7611 8722 E library@wellcomecollection.org https://wellcomecollection.org

BERZELIUS'S ATOMIC WEIGHT TABLES

1	2	3	4	.5	6	7	8
Ť1	1814		1818		1826		
Element						-6	
O S P	cos cos	16	CO2 CO3	16	CO2 CO3	16.03	60 60
5	SO ² , SO ³	32.16	SO ² , SO ³	32.19	SO ² , SO ³	32.24	SO ₂ , SO ₃
P	P^2O^3 , P^2O^5	26.80	PO³, PO⁵	62.77	P ² O ³ , P ² O ⁵	31.43	P_2O_3 , P_2O_5
Cl C N	00 000	(35.16)	CO CO2	(35.41)	Cl ² O ⁵	35.47	60.60
C	CO, CO ²	11.986	CO, CO ²	12.05	CO, CO ²	12.25	CO, CO,
N	****	(14.36)	7700	(14.05)	N ² O, NO	14.19	N ₂ O, NO
H	H ² O	1.062	H ² O	0.9948	H ² O	I	H_2O
As	AsO ³ , AsO ⁵	134.38	AsO3, AsO5	150.52	As^2O^3 , As^2O^5	75.33	As_2O_3 , As_2O_5
Cr	CrO3, CrO6	113.29	CrO3, CrO6	112.58	Cr ² O ³ , CrO ³	56.38	Cr_2O_3 , CrO_3
Si	SiO ³	48.696	SiO ³	47.43	SiO ³	44.44	SiO ₂
$_{\mathrm{Hg}}$	HgO, HgO ²	405.06	HgO, HgO ²	405.06	Hg²O, HgO	202.86	Hg ₂ O, HgO
Ag	AgO ²	430.107	AgO^2	432.51	AgO	216.6	Ag ₂ O
Cu	CuO, CuO ²	129.03	CuO, CuO ²	126.62	Cu ² O, CuO	63.42	Cu ₂ O, CuO
Bi	BiO ²	283.84	BiO^2	283.81	Bi ² O ³	213.22	Bi_2O_3
Pb	PbO ² , PbO ³	415.58	PbO ² , PbO ³	414.24	PbO, Pb ² O ³	207.46	PbO, Pb ₂ O ₃
Sn	SnO2, SnO4	235.29	SnO2, SnO4	235.3	SnO, SnO ²	117.84	SnO, SnO,
Fe	FeO ² , FeO ³	110.98	FeO ² , FeO ³	108.55	FeO, Fe ² O ³	54.36	FeO, Fe ₂ O ₃
Zn	ZnO ²	129.03	ZnO ²	129.03	ZnO	64.62	ZnO
Mn	MnO ² , MnO ³	113.85	MnO ² , MnO ³	113.85	MnO, Mn2O3	55.43	MnO, Mn ₂ O ₃
Al	AlO ³	54.88	AlO ³	54.77	Al ² O ³	27.43	Al_2O_3
Mg	MgO ²	50.47	MgO ²	50.68	MgO	25.38	MgO
Ca	CaO ²	81.63	CaO ²	81.93	CaO	41.03	CaO
Na	NaO ²	92.69	NaO ²	93.09	NaO	46.62	Na ₂ O
K	KO ²	156.48	KO ²	156.77.	KO	78.51	K_2O

In this table, columns 2, 4 and 6 give the formulae of the oxides assumed by Berzelius, column 8 the modern formulae of the oxides; columns 3 and 5 give the atomic weights recalculated from Berzelius's values, referred to oxygen=100, to oxygen=16; column 7 gives Berzelius's values on his alternative scale of hydrogen=1.