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A
TREATISE ON GEOMETRY,

AND ITS

APPLICATION IN THE ARTS.

CHAPTER 1.

OF STRAIGHT LINES AND PLANE SURFACES,

(1.) Tae science which in the present advanced state of
knowledge under the title of Geometry comprehends
so vast and important a field of human inquiry, was
at its origin confined in its application to the art of
measuring small portions of the earth’s surface, and
probably had no higher object than to determine the
magnitude and fix the limits of property. The annual
overflowings of the river Nile obliterated the ordinary
boundaries by which the land was subdivided and ap-
propriated, covering the surface with mud. It was
therefore necessary to possess some means by which
these artificial limits could be from time to time re-
newed, so that a map of the land being preserved, the
property of each person could be re-established. This
exigency is said to have directed the attention of the
Egyptians to the general properties of geometrical
figures ; and that as their beautiful relations were
gradually developed, the art rose to more noble objects,
and was regarded as a subject of higher speculation.

When, however, we consider the multitude of in-
stances of the inevitable application of geometrical
principles in the arts of life, even in the first stages
of civilisation, it is impossible to conceive that the
] B
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2 GEOMETRY. CHAF, I.

discovery or opservation of the most simple and obvious
properties of geometrical figures could be confined to
one country, or could be postponed beyond a very early
date in the history of the human race. The natural
forms presented by the animal, vegetable, and mineral
worlds, the diversified appearance of the surface of
the earth, as varied by hill and valley and intersected
by seas and rivers, not to mention the equally ob-
vious appearances of the firmament, could not fail to
have suggested to the mind the relations of lines and
angles, of surfaces flat and curved, and, in short, to
have furnished a family of ideas which could not have
been long contemplated, without producing some con-
ceptions of general geometrical relations. It may, how-
ever, be admitted that such notions may have existed for
a period of time, more or less considerable, in a separate
and unconnected form, and that the peculiar physical
circumstances, incidental to the country of the Nile,
united with the early epoch of its civilisation, afford
probable grounds for conjecture that these scattered
‘principles, which the constant experience of life must
have forced upon every mind, there first received a high
degree of generality, and coalesced into a body under
the badge of a distinet science. It was, however, after
its importation into Greece, that geometry was brought
to that state of perfection in which it has been handed
down to modern times, having, fortunately, in the works
of Euclid and others survived the dark ages.,

This science, considered as a part of publie instruction,
has two distinct objects.  First, it may be regarded as
an exercise by which the faculty of thinking and reason-
ing may be strengthened and sharpened. It is pe-
culiarly fitted for this purpose by the accuracy and
clearness of which its investigations are susceptible, and
the very high certitude which attends its conclusions.
Secondly, it is the immediate and only instrument by
which almost the whole range of physical investigation
can be conducted ; without it we could not advance a step
beyond the surface of the earth in our knowledge of the
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universe ; without it we could obtain no knowledge of
the ficure or dimensions of the earth itself, nor of the
mutual mechanical operation, or influence of bodies upon
it. In fact there is scarcely a part of natural science in
which geometry is not an indispensable instrument of in-
quiry. According as one or other of these objects have
been kept in view, writers on geometry have imparted
more or less rigour to their reasonings, and limited
their inquiries to topics having more or less immediate
application to the arts of life. In the course of in-
struction followed by the great mass of students in our
universities, geometry has been regarded almost ex-
clusively as a system of intellectual gymnasties ; while, on
the other hand, owing to the very stinted portion of
instruction attainable by those who are engaged in the
useful arts, the science is with them almost degraded to
a mass of rules, without reasons, and dicta, the truth of
which is expected to be received on the authority of the
writer, and of which the reader is not put in a con-
dition to judge. Such are the extremes of exclusively
practical and exclusively theoretical works.

Treatises on this subject, holding an intermediate
position, and combining to a considerable extent that
rigour of.reasoning which has conferred so much beauty
and celebrity on the science, with a portion of its useful
applications, are less common in this country than in
other parts of Europe, where the business of educa-
tion is conducted with less confined objects. It is our
present purpose to endeavour to supply such views
of this science as will be found wuseful to those classes,
who while they do not pursue geometry as a mere in-
tellectual exercise, are capable, nevertheless, of appre-
ciating its clearness and certainty, and are unwilling to
receive a proposition as true without a proof of it, where
a proof may be obtained ; and who, on the other hand,
also delight to contemplate some of the most important
useful purposes to which the abstract principles of the
science have been applied.

There is no part of geometry which has given rise

B2



4 GEOMETRY. CHAP. I.

to so much and so unprofitable discussion as the formal
explanation of those terms which express the primary
notions involved in geometrical investigations. Ac-
cording to the rigorous method of treating of the
science, it has been thought indispensable to lay down
in the first instance certain formal definitions of the
objects or notions which constitute the subjects of
investigation, and from those and certain propositions
oalled axioms to deduce all the conclusions of the
science.

The meaning of a term may be made known in either
of three ways :— First, by another term synonymous
with it, the import of which may happen to be better
understood ; Secondly, by shewing the object or thing
signified by the term to be explained ; Thirdly, by a
sentence composed of several terms not synonymous
with each other, but signifying collectively the meaning
of the term to be explained.

It is the last alone which can be properly called a
definition. A synonymous term may not be better
understood than the term to be explained, and will itself
stand equally in need of definition. To show the
object will be effectual, when an object can be found
which is a strict representative of the term in question.
This, however, is not always the case. The explanation
of a term by several other terms not synonymous with
each other, is applicable only to terms expressing com-
pounded notions, and cannot have any application to
terms of simple and uncompounded meaning, because
the several terms of which such a definition is com-
posed, signifying many different conceptions of the
mind, cannot represent a term which signifies one un-
compounded conception.*

It is obvious that definition must stop somewhere.
Since onme term can only be defined by other térms,
these others themselves must be defined ; and it is clear
that we must ultimately come to a term, the meaning of
which must be obtained by some means independent of
mere language. Now it so happens, that all these

# See Locke on the Human Understanding, Book 111
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difficulties attending the process of definition, are espe-
cially involved in the explanation of the terms which
form the basis of geometrical reasonings. Many of them
are names of conceptions so abstract, that no actual object
existing presents a precise representation of them ; and
they are conceptions so uncompounded that they do not
admit of being explained by a combination of other
terms.

A point, a line, a surface, a solid, a straight line, a
curved line, are among the terms the meaning of which
is necessary to be understood in the very commence-
ment of geometrical inquiry ; yet there is searcely one
of them which admits of being explained by other terms.
The object of a definition is to make the meaning of
a word understood which was before unknown ; and it
will scarcely be denied, that a definition which fails to
accomplish this is useless. It is evident that the terms
of a definition should be better understood than the
terms which they define ; and that their combination,
when rightly understood, should precisely and clearly
signify that which the term they define is designed to
express. Let these tests be applied to the following
definitions : —

A point - - a monad having position. — Pythagoras.
Ditto - - that which has no parts.— Euclid.
A line - - length without breadth. — FEuclid.
A surface - - length and breadth only. — Euclid.

A straight line

that whieh lies even]}r be-
tween its ends - - — Euclid.

In fact, these and many other terms of current use in
the elements of mathematical science, neither admit nor
require strictly logical definitions. If the accomplished
geometer retraces the steps by which he has himself
acquired clear and distinct notions of them, he will
find that such conceptions have been the result, first,
of observation of material objects ; and. secondly, of
those processes of mental reflection upon them by which
the first rude notions derived from sensible objects are
modified and corrected.
B 3
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(2.) The common popular notion of a point is de-
rived from the sharpened extremity of any long and
narrow body, such as the end of a fine pin or needle.
This, supposing it to be the smallest magnitude percep-
tible by the senses, is called a physical point : if this point
were indivisible, even in imagination, it would be a
mathematical point : but this is not the case. No ma-
terial substance can assume a magnitude so small that a
smaller may not be conceived. The point of the finest
needle, the extremities of the thinnest hair, the ends of
the most delicate fibres of cotton, silk, or spider’s web,
are extremely minute magnitudes, and in the loose
application of language in ordinary topics of investig-
ation, such magnitudes may not improperly be called
points. But it is easily demonstrated, that even the
smallest of these has definite magnitude, so that it
is divisible ; and, therefore, a still smaller magnitude
may be contemplated. Now, a mathematical point
utterly precludes the possibility of subdivision ; length,
breadth and thickness, are attributes altogether inappli-
cable to it: it possesses no quality of magnitude, and
nothing can be stated respecting it per se, except that it
has a certain assignable position in space. These con-
siderations will throw some light on the Pythagorean
definition by which a mathematical point is declared to
be ““a monad* which has position.”

The rigour of the ancient geometry excluded the idea
of motion ; and the elements of the science were thus
deprived of one of the most useful instruments of illus-
tration and reasoning., In a treatise such as the pre-
sent, it is not necessary to restrict our method by rules
so severe, and we shall freely use such illustrations and
such modes of reasoning, as may appear best suited to
convey to the minds of ordinary readers clear concep-
tions of the objects with which the science is convers-

% From the Greek word peviz, which signifies unity, singleness, or indi-
visibility. This definition, therefore, ounly adds the positive quality of
having position to the negative quality of t{m absence of parts expressed
in Euclid’s definition,
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ant, and as will best render manifest the truth of its
most important conclusions:

(3.) 1f a mathematical point be conceived to move
through space, and to mark its course by leaving behind
it a trace or track, that trace or track will be a mathe-
matical line,

In like manner, if a physical point be conceived to
move, its trace or track will represent a physical line.

As a physical point is only an extremely minute
magnitude having some dimensions, however small, its
trace or track will evidently have corresponding dimen-
sions. A physical line, therefore, has breadth and
thickness corresponding to the magnitude of the physical
point by the motion of which it is conceived to be pro-
duced.

An extremely fine thread or fibre may be considered
as affording an example of a physical line.

But, as a mathematical point has, strictly speaking,
no dimensions, even in idea, its trace or track can have
no dimension but that of length. To suppose that its
track has breadth or depth, would involve the supposi-
tion that the point itself has dimensions corresponding
to this breadth and depth, which is contrary to what
has been stated, respecting such a point.

It is clear, therefore, that whatever qualities may
belong to a mathematical line, it has neither breadth,
depth nor thickness, nor any other dimensions except
length.

If a mathematical point move continually in the same
direction, its track is called a straight line or a right
line ; if, on the other hand, it continually change its
direction as it moves, its track is called a curved line
or a curve.

Much controversy has been maintained among geome-
ters respecting the definition of a straight line. To the
explanation just given, that it is produced by the motion
of a point proceeding in the same direction, it is'objected,
first, that the idea of motion is not necessarily connected
with that of a line; and, secondly, that the words

B 4
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“same direction” have no other meaning than the
words straight line, and that, therefore, they stand as
much in need of definition as the terms which they are
used to define,

To Euclid’s definition, that a straight line lies evenly
between its extremities, it is objected that the term
‘¢ gvenness” can have no other import than straightness,
and that, therefore, the definition is merely the substi-
tution of one term for another, the term substituted
standing as much in need of definition as the term
defined.

Plato defined a straight line by a certain optical
property which characterises it, and which belongs to
no other line, If the eye be placed in such a position
beyond its extremities that one end of the line shall
conceal from the sight the other end, then every part
of the line between the Jfig-1
extremities will also be :ﬂf
hidden. Fig. 1.

It is obvious, that a curved line would not possess this
property ; and that, on the contrary, if one of the ex-
tremities of such a line were placed between the eye
and the other extre- fig. @
mity, more or less of ¥
the intermediate part
of the line would be in view. Fig. 2.

The definition of a straight line given by Archi-
medes, and subsequently by many later geometers, is,
that it is the shortest way between its two extremities.

If a light and flexible string be extended by drawing
its extremities from one another, it will assume, between
the points of tension, a certain position. Speaking
without the rigorous exactitude of geometry, it might
be called a straight line ; but since it is evident that
the string has weight, that weight must be admitted
to produce some flexure, the convexity of which will
be presented downwards ; and to whatever extent this
flexure exists there will be a corresponding deviation

S e i —
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from the quality which essentially characterises a straight
line. If the thread, however, be imagined to be alto-
gether deprived of weight, which it would be if the
earth were removed from it, then it would take a posi-
tion between the two points of tension free from all
flexure, and would be accurately a straight line.

It is evident that this view involves the quality in-
cluded in the definition of Archimedes, that it is the
shortest distance between two points.

(4.) If a curved line, such as A B, fig. 3., be con-
ceived to turn round its extremities, as fixed points or
pivots, and, as it turns, to m
leave hehmd it a trace or a 3
track, that trace or track would include a certain por-
tion of space. This space would be round in its form,
taken in a transverse direction, and would be such as ig
represented in fig. 4.

This is a circumstance which P o
is common to every curved line A€~
which can pass between two e
points: every such line by its revolution :mund its points,
must enclose more or less space,

A straight line is the only line which can never be
attended with this effect. If it be conceived to turn
round its ends considered as fixed, it will not, as it
revolves, include any space.

It will much contribute to the clearness of the notions
of a student, if a piece of wire bent into the form of a
curve be made to revolve round its ends, so that it will
enclose space; but if the same wire be straightened,
and submitted to the same operation, the same effect
will not be produced.

This property of a straight line is the subject of one
of the axioms prefixed to the first book of Euclid’s
Elements, and is expressed thus: “Two straight lines
cannot enclose a space.”

The same character of straight lines may also be ex-
pressed, by stating that two straight lines cannot meet
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in more than one point : for if they met in two points,
and did not coincide in all the intermediate points, they
must evidently enclose a space. On the other hand,
if they did meet in all the intermediate points they
would be one and the same straight line, and not two
different lines.

It is evident that when a flexible string is stretched
tight between two points it takes a definite position
between them ; and that two different strings stretched
between the same points, would not take different
positions, and therefore could not enclose space.

This property belongs to straight lines exclusively,
and is not shared by curves. If two flexible threads
hang loosely between two points, they may be very far
asunder, and may, consequently, enclose space.

When the moon is new its edges form two curved
lines between its horns, inclosing the enlightened part
of the moon.

(5.) Perhaps the clearest notion of a surface will
result from the consideration of the external limits of a
solid body. A surface is defined in geometry to be
that which has the positive attributes of length and
breadth, and the negative quality implied by the absence
of depth or thickness. If the external limits of a solid
be taken as the meaning of the term surface, it is evi-
dent that it excludes the notion of depth, since any
portion of depth, however small, which might be
assigned to it, would necessarily penetrate within the ex-
ternal limits of the solid.

But the geometer requires that a clear conception of
a solid should be formed, independently of the pre-
sence of a body : thus, a surface may be conceived to
exist in space, from which all matter may be excluded.
The earth moves round the sun in a certain path, and
within that path is included a certain surface between
it and the sun. Now, this surface must be contem-
plated and reasoned upon, even though it should be
denied that any material substance exists on either side
of it.
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The notion of a mathematical surface may be formed
by imagining a mathematical line to move in any man-
ner in space, leaving behind it, as it moves, a trace or
track. This trace or track will be a mathematical sur-
face ; and, as the line by whose motion it was pro-
duced, has no thickness, it is clear that the surface can
have no depth.

It is also evident that the limits or edges of the
surface will be mathematical lines, for its extreme
boundaries will be the initial and final positions of the
mathematical line, by whose motion it is generated,
and the other edges will be the lines traced by the ex-
tremities of that line as it moves.

The definition of a plane surface has been attended
with difficulties similar to those which we have de-
scribed, in reference to the definition of a straight
line,

Euclid’s definition of a plane surface is, ¢ that which
lies evenly between its extremities.”” This is subject to
the same objection as that which is advanced against
the corresponding definition of a straight line.

A plane surface has also been defined by a method
analogous to Archimedes’ definition of a straight line,
to be the smallest surface that can be included between
given extremities.

Plato defined a plane surface by a process analogous
to that which he adopted as the basis of his definition
of a straight line. He explained it by stating it to be
a surface, one of whose extremities will hide every part
of it, the eye being placed in its continuation. This is
an optical property which characterises a plane surface,
and helongs to no other.

If any two points be taken in a plane surface, and
a straight line be drawn joining them, every point
of that straight line will be in the plane surface ; and if
the same straight line be continued beyond the points
which it unites until it meets the extremities of-the sux-
face, every part of its continuation will likewise be in
the plane surface. This will be the case with every
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straight line whatever, which can be drawn joining any
two points in a plane surface. This is a property which
belongs exclusively to plane surfaces, and which does
not appertain to curved ones.

There are certain curved surfaces in which it is
possible so to select two points, that every part of a
straight line joining them shall be in the curved sur-
face. The difference, however, between these and a plane
surface is that in the curved surface, the points which
possess this property must be selected in a particular
manner upon the surface, whereas, in a plane surface,
it belongs indifferently to every two points which it is
possible to assume.

This property is used in the arts as the test by which
a surface is determined to be plane, and the analogous
property of a straight line is similarly adopted as a
test of straightness. If two straight lines are made to
coincide in any two points we have shewn that they
will coincide in every point, as well as in those be-
tween the two points as in those beyond them. Hence
the perfect straightness of a line, is determined in the
arts by taking a ruler having a straight edge, and
placing any two points of that edge upon two points of
a line whose straightness it is designed to examine., If
every other point of the line is found to coincide with
the edge of the ruler the line will be straight, but other-
wise not.

If it be desired to determine whether any proposed
surface be plane, let any two points of the edge of the
same ruler be placed upon two points of the proposed
surface, and observe whether every part of the edge of
the ruler in that case touches the surface. If it do not,
the surface cannot be plane. If it do, then change the
position of the ruler so as to give it another direction
upon the surface, and make the same observation. If
i1t be found that in every position which can be given
to the ruler its edge will coincide with the surface in
every point, then it may be concluded that the surface
in question is a plane surface.
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That a straight edge may in certain positions coincide
with a surface which is not plane, will be readily un-
derstood. If such an edge be applied to the surface of
the shaft of a round pillar, it will coincide with the sur-
face, provided it be applied to it in the direction of the
length of the pillar ; but if the edge be applied to the
same surface in any transverse direction, it can only
touch the surface in one point.

If the same edge be applied to the inner or concave
surface of the arch of a bridge, it will coincide with it
in every point, provided it be applied in the direction
of the length of the arch ; but such a coincidence cannot
take place, if it be applied in any transverse direction.

The Platonic definitions of a straight line and plane,
founded upon their optical properties, are tests of
straightness and evenness, which are also commonly used
in the arts. To apply the tests just adverted to, it is
necessary that we should possess an edge which is itself
perfectly straight, and some independent test of the
straightness of such an edge is therefore necessarily
supposed.  Such straightness is usually determined by
holding the edge before the eye, and looking along it in
such a manner that the nearer extremity shall be pre-
cisely between the eye and the remote extremity. If
any intermediate part of the edge be above or below, or
to the right or to the left of the direction of sight, it
will be immediately perceived.

The test of straightness adopted as the definition of
a straight line by Archimedes, is also used extensively
in the arts. In ornamental horticulture straight lines
forming the edges of paths and roads, or rows of plants
and shrubs, are determined by stretching a flexible cord
between their extremities. In architecture, the straight-
ness of the upright faces and corners of buildings is de-
termined by the direction of a flexible cord stretched by
a weight. In carpentry and other arts, straight lines
are described upon plane surfaces by stretching between
two points upon the line sought to be described, a flexi-
ble cord previously rubbed over with chalk ; when a
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sufficient tension is given to it, it is raised with the
hand, and is allowed to recoil upon the surface by its
elasticity, leaving a chalked mark indicating the direction

of the required line.
A plane surface is often produced in the arts by the

motion of a straight line. The action of a carpenter’s

plane is founded upon this principle. That instrument
consists of a cutter with a perfectly straight edge, which

projects slightly from a slit in the frame in which it is

fixed. The edge of this cutter being moved over the

surface which is required to be rendered plane, shaves

off all its projecting asperities, and if there be any parts

more hollow than the rest, it continually reduces the

general surface, until the edge of the cutter in every part

of its motion is in contact with the surface.

The more refined is any art which involves the prin-
ciples of design and the greater the accuracy required
in its productions, the more nearly do the practical
lines and surfaces approximate to the perfect precision
of the abstract geometrical conceptions; and nothing
can more conduce to the advancement of practical skill
in the higher departments of the useful arts, than the
early cultivation of pure geometrical principles by the
artisan. The edges and surfaces produced in house-
carpentry are rude attempts to imitate the perfection of
the mathematical conceptions of straight lines and plane
surfaces. Between one artisan and another however,
even of this class, there are comparative degrees of
skill, and the better workman always approaches more
near to geometrical precision: his edges are more truly
straight, and his surfaces more truly plane. Nor is
the end attained by such skill merely the production of
external beauty. Stability of structure depends as
much as external grace on such precision; but the
higher we ascend in the arts, the more nearly do we
approximate to geometrical perfection. The designs of
the engineer and the machinist are often attended with
an exactitude truly admirable, and subject to deviations
from geometrical accuracy scarcely more than micro-
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CHAP. IL

OF ANGULAR MAGNITUDE.

(6.) Waex two or more straight lines are drawn
from the same point, they will have different directions,
and any two of them may differ more or less in this
respect ; lines thus emanating or radiating from a
common point are said to diverge from that point, and
the quantity of the divergence of any two of them is
expressed by the word angle.

Angles may not improperly be considered as a species
of magnitude, since they are as capable of being ex-
pressed by number as the other modes of magnitude.

To illustrate the nature of angular magnitude, let
C be supposed to be the ex- A fig.

tremity of a straight line ex- A 3/‘3
4

tending indefinitely in the
direction C A. Through the
same point C, let another in- 4
definite straight line C A, be
conceived to be drawn, and 4
suppose this latter line to re- A
volve round its extremity C, being supposed at the
beginning of its motion to coincide with the fixed
line C A. As the line C A revolves, it will take sue-
cessively the positions marked by CA,, CA,, CA,,
CA,, &c. and will in this manner make a complete
revolution round the point C. When it has made half
its complete revolution, it will take a position C A,
precisely opposite to its first position C A, so that the
two lines CA, and C A, shall form one continued
straight line.

When it has performed one fourth of its complete
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revolution, it will have a position C A,, at equal an-
gular distances between C A, and C A,.

(7.) The angle which the line thus revolving forms
in any one of its positions, with the fixed line C A, is
not affected by either the length of C A or the length of
the revolving line. These lines are called the sides of
the angle, and the point C where the sides unite, is
called its vertea.

(8.) The equality or inequality of two angles is de-
termined by a process called super-position, which is
of extensive use in elementary geometrical reasoning.
Thus, if it be wished to determine whether the angle
ABC (fig.7.) is equal %r)unequal fig. 6.
to the angle A"B"C’ (fig. 0.), it will o
only be necessary tn{place the point ﬁ..:::'_"_'____: N
B’ upon the point B, and side B’ A'
upon the side BA, and to let the side
B’C’ fall upon the plane of the angle
A BC. Ifunder these circumstances o
the line B' C’ shali be found to lie upon the line B C,
then the angle A’ B” C” will be equal to the angle A B C;
but if the line B' C’ should fall below the line B C, then
the angle A' B' C' will be less than the angle A B C.
If, on the other hand, the line B” C” should fall above the
line B C, then the angle A’ B" C” will-be greater than
the angle A B C.

(9.) It is usual in geometry to express an angle by
three letters, one of which is at its vertex, and the
other two at any points upon its sides. As the mag-
nitude of an angle does not depend upon the length of
its sides, it is immaterial what position upon the sides
the latter letters may have. In expressing the angle,
however, the letter at its vertex is always placed in the
middle. When the same vertex belongs only to one
angle, the angle may be expressed by the vertical letter
alone without the lateral ones. Thus in fig. 6. the
angle which we have called A’ B” ¢’ might also be
called the angle B.’ '

But where two or more angles have a common vertex,
it is necessary to express each of them by three letters ;

d
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thus, in fig. 5., there are several angles, of which the
point C is the common vertex ; and, in this case, each
angle must be expressed by the two letters which mark
its sides with the letter C which marks its vertex be-
tween them,

(10.) In fig. 5., if we suppose the paper to be folded
over, so that the line C A shall be precisely doubled
down upon the opposite line C A, which is its con-
tinuation, the fold of the paper will evidently take the
direction which the revolving line would have after it
has completed one fourth and three fourths of its com-
plete revolution ; for the angle between this fold and
C A, will be superposed upon the angle between the
same fold and C A, and will therefore be equal to it;
and in the same manner the angle included between C A
and the lower part of the fold, will be superposed upon
the angle between C A, and the lower part of the fold,
and will therefore be equal to it. The fold of the paper
will therefore divide each half revolution into two equal
parts, and will therefore divide one entire revolution into
four equal parts.

(11.) The angle A, C A, which forms the fourth
part of a complete revolution, is called a right angle, and
it is manifest that the four right angles formed round
the point C by the lines CA,,CA,, CA;,and C A,
are equal to each other.

It is also evident that the line C A. is only the con-
tinuation downwards of the line C A ,, since both coin-
cide with the fold of the paper.

(12.) All the angles which can be formed by diverg-
ing lines, however numerous, round a common centre
C, will always make up, when added together, a sum of
four right angles ; this must be manifest, since the an-
gular space which they fill, is the same as that filled by
the four right angles which surround the point C.

(13.) Angular magnitude is expressed numerically
by dividing the space surrounding the point C into a
number of equal angles by diverging lines, and giving
these angles some common denomination. The an-
cients, and, for the most part, also the moderns, suppose
360 lines to diverge from the common centre C, forming
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with each other equal angles. Each of these angles is
called @ degree. Thus 360 degrees make up four right
angles, and therefore 90 degrees make one right angle.
It is usual to express degrees by placing an © over the
number. Thus, 860° signifies 300 degrees, and 90°
signifies Q0 degrees., A different division of angular
magnitude has been introduced and partially adopted in
France. French mathematicians conceive the angular
space surrounding the centre C to be divided into 400
equal angles : each of these angles is called a degree, and
a right angle, therefore, consists of 100 degrees.

The decimal or centesimal division of angular mag-
nitude is attended with some convenience in numerical
calculations which the sexagesimal does not possess ;
but, on the other hand, the sexagesimal division is at-
tended with other advantages which the decimal wants,
There are several angles of particular magnitudes, to
which frequent reference is necessary in geometrical and
physical inquiries, and there is great convenience in
being enabled to express such angles by whole numbers.
The sexagesimal division allows this by the great variety
of whole numbers which are exact divisors of 360. The
integral divisors of this number are the following: —
180. 120. 90. 72. 60. 45. 40. 36. 30. 24. 20. 18. 15.
12, 10. 9. 8: 6. 5. 4./8. 2,

On the other hand, the integral numbers which ex-
actly divide 400 are only the following : — 200. 100.
80. 50. 40. 25. 20. 16. 10. 8. 5. 4. 2.

(14.) As we shall, in accordance with the universal
practice of English writers, use the sexagesimal notation
for angles, it will be convenient that the student should
be familiar with the numerical denominations for certain
angles to which we shall have frequent occasion to refer,
among which the following may be mentioned : —

A right angle - - - 90°
Two right angles, or two lines in continuity 180°
Three right angles - - 270°
Half a right angle - - < 452
Two thirds of a right angle - - 60°
One third of a right angle ’ . L

c 2
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15.) When an angle is less than 180°, the quantity
by which it falls short of that amount is called its sup-
plement. Thus the supplement of 45° is 135°, the
supplement of 60° is 120°, the supplement of 30° is
150°, and the supplement of 90° is 90°.

(16.) When an angle is less than a right angle, the
quantity by which it falls short of a right angle is called

‘its complement. Thus the complement of 45° is 45°.
The complement of 30° is 60°.

(17.) An angle which is less than a right angle is
said to be acute, and an angle which is greater than a
right angle is said to be obtuse. In other words, all angles
between 0° and Q0° are acute, and all angles between 90°
and 180° areobtuse.

The supplement of an acute angle is obtuse, and the
supplement of an obtuse angle is acute,

The nature and properties of angular magnitude, and
the terms and numbers by which it is expressed, are of
the most extensive use in the sciences and in the arts.
In some cases, as in astronomy and geography, it is by
angular position almost exclusively that the actual dis-
tances and local arrangement of the objects of enquiry
are determined. The real distances of the numerous
luminaries which so richly furnish the firmament can
be discovered by no other means than an elaborate and
accurate determination of their apparent positions.

The apparent position of an object is a term used in
science to express the position of the object so far as it
can be determined by the sight. It is angular position
only of which the sight can form an estimate. Two dis-
tant objects may be seen in juxtaposition : their angu-
lar separation may be perceived by the sight ; and if the
sight be assisted by proper metrical instruments, their
exact angular separation may be numerically deter-
mined. But this is obviously a result altogether inde-
pendent of their actual position in space. Their angular
or apparent distance apart may be exceedingly small, or
may even be nothing, while their actual distance may
extend to any degree of magnitude. The sun and moon
are frequently seen in the heavens separated from each
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other by but a small apparent distance: that apparent
distance is measured by the angle contained by two
straight lines drawn from the eye of the observer to the
centres of those objects, without any regard to the length
of those two lines. It sometimes happens that these
two lines are confounded together, and include no angle,
the line from the eye of the observer, which passes
through the centre of the one luminary, also passing
through the centre of the other, and the two luminaries
having the same apparent position. But it will be evi-
dent that in all these cases the real position of those
bodies in the universe is exceedingly different ; the dis-
tance of the centre of the moon from the eye of the ob-
server being about 240,000 miles, while the distance of
the centre of the sun is not less than 96,000,000 of miles.

It is by the observation of the visual angles under
which distant objects are seen, that surveys of - the
earth’s surface are executed. It is likewise by similar
means that the navigator coasting along a known country,
determines from place to place the position of his vessel
on the trackless surface of the waters, by observing the
bearings of various landmarks. It is by such means that
the dangerous position of sunken rocks is made known
to him. It is by such means that the boundaries of
shoals and sand banks are as clearly delineated upon the
fluid surface of the deep, as the geographical boundaries
of the divisions of land are marked upon the soil by
permanent and visible natural or artificial limits.

In the useful arts, cutting tools of every description
have their edges formed into angles of various magni-
tudes, according to the materials on which they are in-
tended to act. In general, the softer the material to be
divided, and the more accurately the separation is to be
effected, the smaller will be the angle of the tool.
Chisels for cutting wood, are formed at angles of about
30%; those for iron, at from 50° to 60°; and those for
brass, at from 80° to 90°. 1In general, chisels intended
to act by pressure, may be constructed with angles more
acute than those which act by percussion ; the edge in

¢ 3



Q2 GEOMETRY. CHAP. II.

the one case requiring more strength to resist fracture
than in the other. Knives intended for the division of
soft substances in domestic economy, are constructed with
extremely acute edges, since they are intended to act by
pressure, and are not usually submitted to any violent
action,

An extreme example of an acute edge is that of the
razor. 'This instrument, according as it is used, may
act either as a chisel or a saw : if it be made to remove
the beard by a motion perpendicular to the direction of
its own edge, its action will be that of a chisel ; but if
its edge be oblique to the direction of its motion, or,
what is the same thing, if while it is advanced perpen-
dicular to its edge, it is likewise drawn from heel 10
point, it then acts as a saw.

The same observations may be applied to all the
sharper classes of cutting instruments.

(18.) The angle which is by far the most extensively
used in the arts, is the right angle, chiefly because it is
the angle of mechanical equilibrium, between the di-
rection of any impact or pressure, and the surface resist-
ing it. A force cannot be entirely counteracted by any
surface, unless that surface be exactly perpendicular to
the direction of the force.

On the other hand, if it be desired to produce an
effect by a force upon a surface, either by compressing,
breaking, or penetrating it, the force cannot be perfectly
efficient for such a purpose, if its direction be not per-
pendicular to the surface.

It is this principle which fixes the relation between
the direction of gravity, and all surfaces destined to
sustain weights ; it is this principle, which determines
the erect position of the natural structures of animals
and plants ; it is this which confers majesty and beauty
upon the forest and the mountain ; and it is by follow-
ing out the architecture of nature, that artificial struc-
tures raised by the hand of man acquire stability and
beauty. Buildings are erect, because the direction of
their weight must be perpendicular to its support ; and
the violation of this law in_particular cases, as in the
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If therefore, upon applying the square to the angle
A B D, it should be found exactly to correspond with
it, the square will be correct ; but if the angle of the
square be less than the angle ABD, it will be less
than a right angle, and if it be greater than the angle
A B D, it will be greater than a right angle.

By this process we can not only determine whether
the square be exactly formed, but if it be not so formed, we
can determine the amount of its error, or the magnitude
of the angle by which it exceeds or falls short of 90°.

Let us suppose that, upon applying one edge of the
square to the line B D, the other edge, instead of coin-
ciding with the line B A, is found to take the direction
B E. It is evident that the three angles CB A, D B E,
and E B A, make up together 180°; but the angles
ABC and DBE are each equal to the angle of the
square. If, therefore, the angle E B A be taken from
180°, the remainder will be twice the angle of the
square ; and if half of EB A be taken from 90°, the
remainder will be the angle of the square. The angle,
therefore, by which the square falls short of 90°, will
be half the angle E B A.

In the same manner it may be shown, that if the
line B E fell within the angle A B C, the angle of the
square would be too great by half the angle included be-
tween B A and B E.

(20.) When two straight lines cross Jig. 11.
each other, as in fig. 11. the angle E
B A D is said to be vertically opposite B /

to the angle EAC, and, in like _~A  ©
manner, the angle BAE is vertically D~
opposite to D A C.

When two straight lines thus intersect each other, the
angles which are vertically opposite are equal, for if the
angle B A E be added to the angle E A C, the sum will
be 180 (14.) ; and if the same angle be added to the

the reference will be made by merely annexing the number of the article
from which the inference is made, as in this case it follows from (I5.)
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angle B A D, the sum will likewise be 180°. Hence the
angle E A C must be equal to the angle B A D.

In the same manner, if the angle BA D be added
either to DA C or BAE, it will give a sum of 180°,
and, consequently, the angles DAC and BAE are
equal.

(21.) If from any proposed point P ( fig.12.), several
straight lines be drawn to a given straight line A B, and
if one, P M, of these straight lines be perpendicular to A B,
it will be shorter than any of the others. Let P C be any
one of the others, and suppose P M continued below
A B until M p shall be equal to M P, then let a straight
line be drawn from C to p; now if we suppose the
paper folded over so that the line M p shall lie upon the
line M P, the fold of the paper will correspond with the
line A B, because the angle P M B is equal to the angle
p» M B ; and since the line M P is equal to the line M p,
it is evident that the line Cp will precisely cover the
line C P, and therefore must be equa! to it. Now since
a straight line is the shortest distance between two points,
P Mp will be less than P Cp, and consequently P M
which is half the former will be less than P C which
is half the latter ; and in like manner the line P M may
be proved to be less than any other line which can be
drawn from P to the line A B.

(22.) That only one perpendicular can be drawn from
a given point P, to a straight line A B, is a proposition
so nearly self evident that it fig. 12.
admits of no other kind of
proof but that which consists
in showing that any thing
contrary to it must be absurd.
If it be admitted, for a mo- ,
ment, to be possible that a
second perpendicular could
be drawn, let the line P C,
Jig. 12., represent that per-
pendicular, and, as before,
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draw Cp; by the same process of folding back the
figure, it may be shown that the angle p C M is equal
to P CM, because the one exactly covers the other.
But since P C is here supposed to be perpendicular to
A B, the angle P C M is a right angle, therefore p C M
must also be a right angle ; and this being the case,
P C p must be one continued straight line: but PMp
is also one continued straight line. Thus there would
be two different straight lines joining the same points,
P p, which is contrary to what has been already ex-
plained (4). Hence, the supposition of the possibility
of drawing from a point to a straight line more than
one perpendicular, involves an absurdity.

(23.) From this reasoning it immediately foliows,
that if from any two points in a straight line two lines
be drawn both perpendicular to that straight line, these
lines can never meet, for, if they did, then they would,
in fact, be two perpendiculars drawn from the point
where they would meet to the same line, which is con-
trary to what has been just demonstrated.

(24.) If several lines be drawn from the same point,
P (fig. 13.), to the same straight line, A B, one of which

is perpendicular to it, those Sig. 18.
lines will be equal which 4
meet A B at points equally \
distant on different sides of / :

the perpendicular, and the
more distant from the per-
pendicular the points are
at which such lines meet
the line A B, the longer
will such lines be.

Let P M, as before, be the perpendicular, and take M C
equal to M C’, the lines P C and P C’ will be equal ; for
if the paper be folded over along the line P M, the line
M C’will fall upon the line M C, because the angle P M C”
will be equal to the angle P M C, and the point C'will fall
upon the point C, because the line M C’is equal to the

\
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line M C ; since then the point C” falls upon the point C,
the line P C” must coincide with the line P C, and there-
fore they must be equal.

Let D be a point on A B more distant from M than
C:is. We are then to prove that the line P D must be
greater than P C. Suppose a line C E, drawn from C
at right angles to C P ; since P C is perpendicular to
C E it will be less than P E (21.), but P’ E is less than
P D, therefore P C is less than P D, and in the same
manner it may be proved that the more distant any line
is from the perpendicular P M, the greater it is.

(25.) The same process of investigation will easily
show, that the lines drawn from P to points equally dis-
tant from the perpendicular are inclined at equal angles
to the line A B, and that they are also inclined at equal
angles to the perpendicular P M. It will also follow,
that the more remote the lines are from the perpendicu-
lar, the less will be the angles at which they are inclined
to A B, and the greater will be the angles at which they
are inclined to the perpendicular,

(26.) 1t is obvious that the lines more distant from
the perpendicular will make greater angles with it ; but
it is not, at first view, so apparent that they will make
less angles with the line AB. In fig.14. let the lines

1/

AD CCC . B
C P and D P be continued beyond the point P, and let
the angle M C P be imagined to be moved towards the
point D, C M still remaining upon the line A B. It
is evident that as the angle is thus moved, the point
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CHAP. IIL.

OF PARALLEL LINES,

(28.) It was shown in the last Chapter (23.) that if
two straight lines be drawn from any two points upon a
given straight line, both perpendicular to it, they can
never meet, to whatever distance they may be drawn.
Two such lines are said to be parallel.

The doctrine and properties of parallel lines have
always held a conspicuous place in geometry, and have
been the more remarkable, in that no geometrical skill
has ever succeeded in reducing their investigation to the
same simple and fundamental principles, which have
always been considered as conferring the last degree
of precision and clearness on the investigations of
elementary geometry. Even the most remote and
difficult propositions in other parts of the science, are
deduced by rigorous demonstration from certain general
axioms admitted to be so clear in their nature, that
their demonstration, or their deduction from other more
simple and evident truths, is equally unnecessary and
impossible. But it has been the reproach of geometry,
that the theory of parallel lines has never been esta-
blished, without either introducing among the axioms
some proposition whose truth is less evident than that
of many other propositions of geometry already ad-
mitted to be capable of, and to require proof; or by
introducing methods of investigation, deficient in the
rigour and foreign to the spirit which characterises
every other part of elemetary geometry.

Probably the origin of this difficulty may be traced
to the very nature of parallels, and the hopelessness of
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surmounting it may be thereby made manifest. Itis
found that in every case where the notion of infinity
finds its way into mathematical inquiries, artifices of
reasoning of a peculiar kind must be resorted to. Those
who are conversant with the higher analysis, are familiar
with this fact. Now parallels cannot be defined or under-
stood so as to exclude the notion of infinity. Euclid
defines them to be lines which, being continually pro-
duced in both directions, can never meet ; the meaning
of which is, that though they be infinitely prolonged,
they cannot cross each other.

(29.) The fact already established, that straight lines
which are perpendicular to the same straight line can
never meet (23.), leads to the solution of the problem
to draw through a given point a straight line which
shall be parallel to a given straight line. Let P
(fig. 15.) be the point through which it is required to
draw a straight line parallel to A B.

fig. 15,
L TR
%
A M &

From P suppose P M drawn at right angles to A B,
and then let a straight line L N be drawn through P
perpendicular to P M. Since LN and A B are both
perpendicular to P M, they are parallel to one another
by what has been already proved (23.), therefore LN
is a parallel to A B, through the point P.

(80.) The several properties of parallel lines which
now remain to be established, cannot be deduced from
what has been proved without assuming some one of
them without demonstratiecn. That which we shall as-
sume is, that through the same point only one parallel
to the same straight line can be drawn. This appears
to be on the whole the principle connected with paral-
lels, which the mind admits most readily without proof,
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and its admission will enable us to prove the other pro-
perties of parallel lines with sufficient clearness.

This principle in fact, is that having drawn through
the point P (fig. 15.) the line L N parallel to A B,
another straight line, such as Q O, through the same
point P cannot be parallel to A B ; that is to say, that
if such a line be continued to a sufficient distance, it
must ultimately meet the line A B.

We shall presently show that perpendiculars drawn
from every point of the line L N to the line A B are
- equal, and that therefore every point of the line L N is
at the same distance from the line A B. Now it will
be evident that no other line through P can enjoy this
property. The line ) O, on the right of the point P,
will have its points at a less distance from A B than
P M, and on the left of the point P it will have its
points at a greater distance than P M ; indeed it is suf-
ficiently apparent, that P O continually approeaches the
line A B, and P Q continually recedes from it, and that
if the line Q O be continued to a sufficient distance to
the right, it must at length meet the line A B, if the
latter be also continued in the same direction.

(81.) It will now be easy to show that if two paral-
lel lines, AB and L N, be drawn, any line whatever,
such as P M, which is perpendicular to one of those
parallel lines, must be also perpendicular to the other.
Let us suppose that P M is perpendicular to A B, it
must then be also perpendicular to L N ; for if it were
not, let another line Q O be drawn through P at right
angles to P M. That line Q O would then, according to
what has been already proved (29.), bealso parallel to A B,
and we should thus have two different lines passing
through the point P, both parallel to A B. This has
been assumed to be impossible, and therefore the line
P M must be perpendicular to L N, as well as to A B ;
and in general every line which is perpendicular to
one of two parallel lines must be also perpendicular to
the other,
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(82.) It is evident that all Jig- 16.
the angles marked a in fig. ala
16. will be right angles, sup- @)@
posing the transverse line to
cross either of the parallels per- ol a
pendicularly. ol @
(88.) It is evident, also,
thatif a straightline be perpen-
dicular to any one of several

parallels, as in fig. 17., it will fig. 17.
be perpendicular to all of
them.

(84.) Two parallel lines
are every where equally dis-
tant, or, in other words, per-
pendiculars drawn from every
point in either to the other are equal.

Let AB and L N, (fig. 18.) be two parallel lines.

L P N | w

fig. 18.

' A M & 4 M7 B

If from any two points P P’, perpendiculars, P M and
P’ M’, be drawn to the other, they will be equal. It has
been already proved (81.) that P M and P’ M’ must be
perpendicular to L. N, as well as to A B, and therefore
the angles at the four points P M P" M’ are all right
angles, and are therefore equal. Now let the point X be
taken midway between P and P! and let the line X Y be
drawn perpendicular to both parallels ; let the paper on
the left of X Y be conceived to be folded over so as to
cover the paper to the right, the fold being made to cor-
respond with the line X Y. The line X P must in this
case coincide with the line X P’, because of the equality
of the two right angles at X ; and the point P must fall
upon the point P’, because of the equality of the dis-
tances X P and X P, also the line P M must fall upon
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the line P” M’, because of the equality of the right angles
at P and P’; also the line Y A must fall upon the
line Y B, because of the equality of the right angles
at Y. Since then Y A falls upon Y B, and P M upon
P’ M’, the point M must fall upon the point M'. The
perpendicular P M must therefore precisely cover the
perpendicular P° M’, and therefore these perpendiculars
must be equal; and in the same manner it may be
shown that all lines drawn from one of two parallels
perpendicular to the other must be equal.

(35.) Lines which are perpendicular to parallel
lines will themselves be parallel ; for it has been already
proved that lines which form right angles with the same
line must be parallel.

(36.) Hence it follows, also, that the parts of parallel
lines included between perpendiculars to them must be
equal. Thus in fig. 18. the distance P P’ is equal to
the*distance M M.

(57.) If two systems, each consisting of several pa-
rallel lines, cross each other at right angles, all the parts
of one system included between any two lines of the
other system will be equal.

The ordinary framing of a window consists of two
systems of lines of this kind ; also the shelves and up-
right standards of bookcases, the panelling of doors and
presses, and various other structures produced in car-
pentry, afford similar examples.

All fabrics produced in the loom, consist of two
systems of parallel threads, crossing each other at right
angles ; so interlaced, however, as to give strength and
consistency to the cloth.

A railway consists of two or more parallel lines of
iron bars, called rails, which are supported upon props.
The wheels of the carriages are fixed upon axles, so
that their distance asunder shall correspond precisely
with the length of perpendicular lines drawn between
the parallel rails. As the axle of the wheel moves with
the carriage in a direction parallel to the rails, it will
always remain perpendicular to them. Since, there-

D
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fore, it takes successively positions of this kind, similar
to the positions of P M and P’ M” with reference to the
parallels A B and L N (fig. 18.), it follows that the
wheels must always move over equal lengths of the rails
in the same time.

(88.) The parallelism of lines which are perpendicular
to the same line, is the principle on which the appli-
cation of the instrument called the T square depends.
This is an instrument which consists of two straight
and flat rulers fixed at right angles to each other, as
represented in fig. 19. A
straight line being drawn in
a direction perpendicular to
that in which it is required
to draw the parallels, the cross
piece of the T ruler is laid
upon this line, and the piece Jig. 19.
at right angles to this gives
the direction of one of the
parallels ; the ruler being
moved along the paper, keep-
ing the cross-piece coincident with the line first de-
scribed, any number of parallel lines may be drawn.

The uniformity of distance which characterises
parallel lines, is the principle upon which numerous
instruments and processes in the arts are founded.

(89.) The rolling parallel ruler is an instrument by
which any number of lines may be drawn parallel to a
given line, and at any required distances from each
other. This ruler consists of a flat piece of wood
with a straight edge, usually divided into inches and
parts of an inch. In the ruler, near its extremities at
A and B (fig. 20.), are inserted two rollérs, by which

A B

——F -

tne ruler is capable of moving at right angles to the
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direction of its edge. These rollers are fixed upon the
same axis which extends along the ruler parallel to its
edge. If the circumferences of these rollers measure
an inch, they may be divided into parts of an inch, so
that the space through which the ruler is moved as
they turn may be accurately observed. This space
will be the distance between lines whose directions are
determined by the edge of the ruler in different po-
sitions.

The characters in music consist of dots placed upon
or between a system of five parallel lines at equal dis-
tances from each other. 'T'hese lines are sometimes
drawn upon paper by an instrument called a music pen,
consisting of five points at distances corresponding to
the distances between the lines; such an instrument is
merely a contrivance for drawing one particular system
of equidistant lines.

The same principle is more extensively applied in
the mechanism used in ruling paper, where a number
of points supplied with ink are maintained at fixed dis-
tances from each other, and are either moved over the
paper on which the lines are required to be traced, or
held in contact with the paper while the latter is moved
under them,

The uniformity and precision with which thread is
produced in the modern spinning frames, depends upon
the same principle. 'Two frames, one of which is
fixed and the other moveable, are placed parallel to
each other, one supporting as many bobbins as there are
threads to be simultaneously spun, and the other sup-
porting a cnrrespﬂnding number of spindles. While
the threads receive the rotatory motion which twists
them, the one frame is moved from the other on a
railway by which its parallelism to the latter is pre-
served ; during the motion the threads are extended
between the moving and the fixed frames in directions
at right angles to these. Under such circumstances,
it must be evident that the threads will be all equally
stretched ; and as the same number of revolutions are at

D 2
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the same time imparted to all the spindies, all the
threads will be equally twisted.

(40:) It has been already shown, that if two straight
lines form right angles with a third line, they will be
parallel ; but it may also be shown that this principle
is still more general, inasmueh as two straight lines
which are inclined at equal angles to a third, whether
those angles be right or not, will be parallel. Let
A Band L N (fig. 21.) be crossed by the line P M, and

K
L P N
Jig. 21.

A /M . B

let the angle K PN be equal to the angle P M B,
then the lines A B and L N must be parallel; for if
they were not parallel, they would meet at some point
more or less remote. And the lines P N and M B, being
at different distances from the perpendicular drawn.
from the point where these lines would meet to the
line M P K, must necessarily make unequal angles with
the line M P K, that which is more remote from the
perpendicular being more inclined than that which is
nearer to it. (24). Therefore the lines L N and A B
cannot meet, and therefore must be parallel.

(41.) From what has been just proved, combined

with the fact that angles ver- Jig. 2%,
th
6

tically opposite will be equal
(20.), it follows, that when

two parallel lines are crossed @f-
obliquely by a third line, as /

in fig. 22., the angles which @
are marked by the same 745

letters in this figure will be
equal ; and it is also obvi-
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ous that the angles marked b are the supplements of the
angles marked a.

(42.) When a line joins two parallel lines, angles
placed on contrary sides of it, such as the angles marked
a and b (fig. 23.) are called alternate angles ; and from
what has been already shown, it appears, that when a
line joins parallel lines the alternate angles will be equal.

(43.) By this property of parallels, a line may be
drawn parallel to a given line if we are furnished with
the pattern or model of any angle whatever, Let it be
required to draw through fig. 28.

the point Q (fig.23.) aline o o -

parallel to A B; from Q y?
draw a line Q P, making
with the line A Ban angle a,

of which we possess a mo- A R
del or pattern; with the

same model draw a line Q D, making the angle b equal
to the angle ¢. The line Q D will then be parallel to
A B, since the alternate angles are equal.

The property by which parallel lines are equidistant,
and have equal parts included between perpendiculars
to them, is of extensive use in mechanics. It is by
virtue of this property that when a progressive motion
is imparted to a body all its parts move in parallel
lines, preserving the same relative position amongst
each other., This motion is sometimes, in the arts,
called a parallel motion; and it is frequently of im-
portance to produce such a motion with the last de-
gree of mechanical precision. The piston of a steam-
engine, and the rod which it drives, receive such a
motion ; and any deviation from it would be attended
with consequences injurious to the machinery, The
whole mass of the piston and its rod must be moved,
so that every point of it shall describe lines exactly
parallel to the direction of the cylinder,
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CHAP. IV,

ON TRIANGLES.

(44.) Ir three points, which are not in the direction of
the same straight line, be joined by three straight lines,
these three straight lines will include a space, and a
geometrical figure will be formed, called a triangle
from the circumstance of its having three angles: the
three straight lines which enclose the figure are called
the sides of the triangle.

(45.) When a triangle is drawn with one of its
sides horizontal, it is customary to distinguish that side
from the others by calling it the base.

The triangle is a figure of great importance in
geometrical inquiries, because all figures bounded by
straight lines are capable of being resolved into tri-
angles, and of having their properties investigated by,
and derived from, the properties of triangles.

(46.) In investigating and comparing trlangles there
are seven quantities or magnitudes which will demand
attention in each triangle, viz. the three sides, the three
angles, and the quantity of superficial space included
within the sides.

(47.) Among the various relations which subsist
between these several quantities connected with tri.
angles, the most important and remarkable is one, which
respects the three angles. In every triangle, whatever
be its magnitude or form, the three angles, when added
together, always amount to precisely 180°. We shall
hereafter show that this is only a particular case of a
much more general geometrical principle; but, mean-
while, we shall present it in its restricted form.

Through the vertex of any angle a of a triangle,
fig. 24, let a line M N be drawn parallel to the opposite
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side A. By what has been'already N fig. 24. N
proved of the properties of par-

rallel lines, the sides of the tri- 2Lk

angle will be inclined to M N

at the same angles as those at \
which they are ineclined to its /§ c
parallel A ; that is to say, the A

angle m is equal to the angle b, and the angle n is
equal to the angle ¢ (42.). Thus the three angles, m,
a, n, are equal to the three angles of the triangle ; but
since M N is a straight line, these three angles, m, a, n,
must make up 180°; therefore the angles of the triangle,
if added together, would likewise make up 180°.

(48.) If by any change in the position or magnitude
of the sides two angles of a triangle are varied in mag-
nitude while the remaining angle remains unchanged,
one of the varying angles must increase and the other
decrease by exactly the same amount : this immediately
follows from the principle just established that the sum
of the three angles is unalterable.

In fig. 25. let the angle 5 fig. 25.

A B Cbe supposed to be gradually
increased by moving the side
B C on the point B, as a pivot,
the successive positions which e P :
the side B C would take, as the & ¢ € ¢ £
angle A B Cis increased by this motion, are represented
in the figure. It is evident then that as C recedes
from A, the angle at C gradually diminishes, and its
decrements from one position to another must be equal
to the corresponding increments of the angle A B C.

(49.) Hence it follows, that the angle A C B exceeds
the angle A C” B by the magnitude of the angle C B C".
This is generally enounced as a distinet proposition, in
the following terms, considering C B C” as an inde-
pendent triangle, and A C B its external angle: —

In any triangle, if one of the sides be produced™

¥ Taproduce”is the techinal term used in geometry, to signify extending
or prolonging a straight line.
D 4
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the external angle which will be formed will be equal to
the two remote internal angles taken together.

(50.) In general, by the external angle of any figure
is meant an angle which is formed by producing one
of the sides through the vertex of one of the angles.
In fig. 26. all the sides of the figure are  fig. 26.
thus produced ; and adjacent to every in-
ternal angle there is a corresponding ex-
ternal angle ; and it is evident that each
external angle is the supplement of the
adjacent internal angle.

(51.) The following consequences flow obviously
from the principle, that the sum of the three angles of
a triangle is equal to 180° : —

(52.) If one angle of a triangle is right, the sum of
the other two is equal to a right angle.

(53.) If one angle of a triangle be equal to the sum
of the other two angles, that angle is a right angle

{54.) An obtuse angle of a triangle is greater, and
an acute angle less, than the sum of the other two
angles.

(55.) If one angle of a triangle be greater than
the sum of the other two, it must be obtuse; and if
it be less than the sum of the other two, it must be
acute.

(56.) If two angles of a triangle be known, the re-
maining angle may be found by subtracting the sum of
the two known angles from 180°.

(57.) If two triangles have two angles in the one
equal to two angles in the other, the remaining angles
must be equal,

(58.) A triangle cannot have more than one angle
right or obtuse, and consequently every triangle must
have at least two acute angles. Jig. 27,

(59.) In fig. 27. is represented a tri-
angle, whose sides are expressed by the
letters A, B and C, and whose angles
are expressed by the letters a, b and e.

In fig. 28. is represented another tri-

C
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angle, whose sides are expressed by the let-
ters A, B and C', and whose angles are
expressed by the letters ¢’, b” and c'.

If the sides B and C, in fig. 27., be re-
spectively equal to the sides B’ and C', in
fig. 28., and the angle a be equal to the
angle a’, then the remaining side A will be
equal to the remaining side A’, and the
angles b and ¢ will be respectively equal to the angles
b and ¢/. The superficial dimensions of the triangles
will also be equal, and the figures will be so precisely
alike, that the one may be placed upon the ather, so as
exactly to cover it. To prove this, let us imagine that
a pattern of the triangle in fig. 28. is executed in card ;
let the vertex of the angle @’ in the pattern be placed
upon the vertex of the angle a, and let the side C” be laid
upon the side C, and finally, let the pattern of fig. 28.
be turned down upon fig. 27. ; since the side C” coincides
with the side C, and the angle a” is equal to the angle a,
the side B of the pattern must be upon the side B.
Also, since the sides C and C' are equal, and also the sides
B and B’, the ends of these sides must coincide respect-
ively ; that is, the vertex of the angle b' of the pattern
must lie upon the vertex of the angle b, and the vertex
of the angle ¢’ of the pattern must lie upon the vertex
of the angle ¢; the ends of the side A’ of the pattern
will therefore coincide with the ends of the side A, and
consequently these sides must lie one upon the other.
The pattern, therefore, of fig. 28. will precisely cover
fig. 27., and the angle " will be equal to the angle b, the
angle ¢ will be equal to the angle ¢, and the superficial
dimensions of the triangles will be the same.

In fact, the triangles are in this case in all respects
equal and similar.

This important truth is usually enounced in geo-
metry, in the following terms: —

Two triangles, having two sides in the one equal to twe
sides in the other each to each, and the angles included
between these sides equal, will have the remaining sides




42 GEOMETRY. CHAP. IV.

equal — the remaining angles equal each to each, and
their areas equal. :

(60.) The term area is used in geometry to express
the superficial dimensions of any figure.

(61.) In the two triangles, expressed in figs. 29, 30.,
let it be granted that the sides
marked C and C’ are equal, gt e
that the angle b is equal to R o
the angle 4°, and the angle a
equal to the angle a'; under A/ \B ' ’
these circumstances it may
be proved, that the remaining ¢ e ;
sides and angles of the tri- e
angles will be equal each to each, and that their superficial
dimensions will be equal.

As before, let a pattern of fig. 30. be executed in
card, and let the vertex of the angle ' be placed upon the
vertex of the angle b, and the side C’ be placed upon
the side C ; then, because of the equality of these sides,
the vertex of the angle &' will fall upon the vertex
of the angle . Let the pattern be laid over the triangle,
fig. 29. ; and since the angle 5" is equal to the angle
b, the side A’ must fall upon the side A ; and, in like
manner, since the angle «' is equal to the angle a, the side
B’ must fall upon the side B. And since the sides A" and
B’ fall respectively upon the sides A and B, the vertex
of the angle ¢” must fall upon the vertex of the angle ¢ ;
and therefore the angle ¢/ must be equal to the angle ¢,
and the triangles must in all respects be mutually coin-
cident and equal: the side A" being equal to the side
A, the side B’ to the side B, and the superficial dimen-
sions being the same.

This proposition is usually enounced in geometry, in
the following manner : —

If two triangles have a side in the one equal to a side
in the other, and the angles between which that side is
placed equal each to each, then the remaining sides and
angles will be equal each to each, and the areas of the
iriangles will be equal,
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By a process similar to the above, it may be demon-
strated that if the angles ¢ and b be equal to the angles
¢' and b’ respectively, the sides C and C' being at the
same time equal, the triangles will admit of superpo-
sition ; and will be therefore in all respects equal.

This proposition is usually enounced in geometry as
follows : —

If two triangles have a side in the one equal to a
side in the other, and two angles similarly placed with
regard to these two sides equal, the triangles will be in ale
respects equal.

The proposition, thus enounced, also comprehends
the former one.

(62.) A triangle differs from all other rectilinear
figures in this, that if its sides be united at the angles
by pivots or hinges, it will nevertheless be incapable of
having its form altered, and the pivots or hinges can
have no play.

This would evidently not be the case with figures
having a greater number of sides, If the four-sided
figure represented, in fig. 31., had its fig. 81.
sides united at the angles by pivots, C
it might be obviously converted by e

merely turning the sides upon their 4 B
joints into the figure represented in '

fig. 32., and it might receive an un- D
limited variety of other forms, all »  Jfig. 82.
compatible with the unaltered lengths Y ,
of the sides — and the same would be m
true of any other figure having more D

than three sides; but in a triangle,

any attempt to cause one of the sides to move upon the
pivot at one of the angles, is resisted by its connection
with the other sides, with which connection any such
motion is incompatible.

It is evident from this fact, that if two triangles have
their three sides respectively equal, their angles must also
be equal, and they must admit of superposition so as
exactly to cover one another, otherwise it would follow
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that with the same sides a triangle would admit of two
different forms.

This proposition is usually enounced thus: —

If two triangles have the three sides of one equal to
the three sides of the other each to each, then the three
angles will be equal each to each, and their areas wilt
be equal.

(63.) When two sides of a triangle ¢ fig. 33.
are equal to each other, it is called an
isosceles triangle, and in that case the
remaining side is usually called the :
base. Tn fig. 33., if the sides A and B
be equal, the angles @ and b opposite these sides will also
be equal ; and, on the other hand, if the angles ¢ and b be
equal, the sides A and B opposite them will also be equal.

For if a line be drawn from the vertex of the angle ¢
to the middle point of the base, it will divide the whole
triangle into two triangles, whose sides will be respectively
equal, and therefore whose angles will be equal : hence
the angle a will be equal to the angle b.

If, on the other hand, it be granted that the angle a
is equal to the angle b, let a line be conceived to be
drawn from the vertex of the angle ¢, dividing that
angle into two equal parts; this line will thus resolve the
proposed triangle into two, having a side common, and
two angles respectively equal: therefore the side A will
be equal to the side B.

(64.) The line ¢ C, which joins the vertex of an isos-
celes triangle with the middle point of the base, is per-
pendicular to the base, since the angles at each side of it
have been proved equal ; and it also bisects the vertical
angle ¢, or divides it into two equal angles.

For if the triangle be conceived to be folded over, so
that the part of it on the right of the line ¢ C shall fall
upon the part on the left of that line, these parts will
exactly cover each other.

(65.) A line which divides any figure in this manner
is said to divide it symmetrically.

(66.) If a perpendicular ¢ C, drawn from the vertex of

B

C a
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a triangle to the base bisect either the base or the verti-
cal angle, the triangle will be isosceles.

For if it bisect the base, let the part of the triangle
to the left of ¢ C be folded over that part to the right,
since the angles at C are equal, the part of the base to
the left of C will fall upon the part to the right; and
since these parts are equal, the vertex of the angle b
will fall upon the vertex of the angle ¢, and the side A
will coincide with the side B, and will therefore be equal
to it.

If the perpendicular to the base bisect the angle ¢ ;
then doubling over the part to the left of ¢ C upon the
part to the right, the side A will fall upon the side B,
because the angle at C is bisected by the perpendicular,
and the part of the base to the left of C will fall upon
the part of the base to the right of C, because the angles
at C are equal ; therefore the vertex of the angle b will
fall upon the vertex of the angle a, and the side A will
fall upon the side B, and will be equal to it.

(67.) These properties furnish the means of solving the
problem to bisect an angle.

If ¢ be the angle to be bisected, take equal parts A
and B upon its sides, and draw a base C, so as to form
an isosceles triangle ; from the vertex of the angle ¢ draw
a line at right angles to this base, which may be done
by a square; this line will, by what has already been
proved, bisect the given angle.

(68.) The same principles furnish a solution of the
problem to bisect a given straight line.

If the base C ( fig. 33.) be the proposed straight line
which is to be bisected, draw at its extremities any two
equal acute angles, which may be done by the pattern
of one acute angle, the sides of these acute angles will
form an isosceles triangle (63); and if the perpendicular
be drawn from the vertex ¢ to the base of this isosceles
triangle, that perpendicular will bisect the base (65.).

(69.) If the vertical angle, ¢, of an isosceles triangle
were right, the base angles, a, b, would be each 4.5°, since
all the three angles must be equal to 180° (47.).



46 GEOMETRY. CHAP, 1IV.

(70.) The angles at the base of an isosceles triangle
must always be acute, since they are equal, and since
more than one right or obtuse angle cannot exist in the
same triangle (58.).

(71.) A triangle having three equal sides  fig. 34.
is called an equilateral triangle ( fig. 34.).

An equilateral triangle may be re-
garded as an isosceles triangle, any one of
the three sides being taken as base; and
as it has been proved that the angles at the base of an
isosceles triangle are equal (63.), it follows that the three
angles of an equilateral triangle are equal.

(72.) Also, if the three angles of any triangle are
equal, the three sides must be equal, because it will be
an isosceles triangle, according to what has already been
proved, in whatever position it may be placed (63.).

Thus an equilateral triangle is equiangular, and an
equiangular triangle is equilateral. _

Since the three angles are together equal to 180°,
each angle of an equilateral triangle must be 60°, or two
thirds of a right angle.

The equilateral triangle presents the first example in
geometry of a symmetrical figure.

Since a perpendicular from the vertex of an isosceles
triangle upon the base divides it symmetrically (64.),
an equilateral triangle will be divided symmetrically by
a perpendicular from the vertex of any angle on the op-
posite side,

The isosceles triangle is extensively used in archi-
tecture and in carpentry. It is the form usually given
to the roofs of buildings, and to the pediment which
surmounts and adorns porticos, doors, and windows. In
the Greek architecture, the character of the isosceles is
obtuse ; in the Gothic, acute.
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CHAP, V.
OF CIRCLES.

(78.) Ir a straight line have one of its extremities
placed at a fixed point, C ( fig. 35.), D fig. 35.
and be made to revolve round that
point as a pivot, the other extremity
will trace a line, every point of which
will be equally distant from the point 4
C. Such aline is called a circle, the
point C is called its centre, and the
line C B its radius; the space in- E

closed within the curve is called the area of the circle,
and the curved line itself is called the circumference of
the circle.

(74.) A straight line extending across the circle,
through its centre, and terminated in its circumference,
is called a diameter. :

A diameter consists evidently of two radii placed in
the same straight line, and it is therefore equal to twice
the radius of the circle ; all diameters are therefore equal
to each other.

The art of turning consists in the production of this
figure by mechanical means. The substance on which
the cireular form is required to be conferred is placed in
a machine called a lathe, which gives it a motion of ro-
tation round a certain point as a centre; the edge or
point of a cutting tool is placed at a distance from this
centre, equal to the radius of the circle which it is desired
to form ; as the substance revolves, the edge or point
removes every part of it which is more distant frem the
centre than the proposed radius, and consequently the
circular form is given to what remains.
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(75.) The circle is a perfectly symmetrical figure ; for
if it be made to revolve round its own centre no change
whatever will take place consequent on the change of
position of the parts: every part of its circumference
being at the same distance from the centre, each point
as it revolves takes the place of the preceding point,
and no new portion of space is either vacated or oceu-
pied during this motion. The circle is unique in this
property, which is possessed by no other figure what-
ever.

It is in virtue of this property that the axles of wheels,
shafts, and other solids which are required to revolve
within a hollow mould or casing of their own form, must
be circular. If they were of any other form, when placed
in the mould or casing they would be incapable of re-
volving without carrying the mould or casing round
with them.

Wheels, which are intended to maintain a carriage
supported by them always at the same height above the
road on which they roll, must necessarily be circles, with
the axle of the wheel in their centre. The distance of
the centre of the axle from the road will be equal to the
distance of the centre of the wheel from its edge. In
the circle, this distance is always the same, and it is the
only figure which has a point within it possessing this
property.

(76.) The instruments by which circles are most
commonly described are called compasses, and eonsist of
two straight and equal legs connected together at one
end by a joint, on which they are capable of moving,
and terminating at the other ends in points, one of which
carries a pen or pencil ; the point of one leg is placed at
the centre of the circle which it is intended to describe,
while the other leg, carrying the pen or pencil, is made
to revolve round, pressing the pen or pencil on the
paper intended to receive the trace of the circumference.

When it is required to describe a circle with a radius
too great for the space of the compasses, it may be
done by attaching a piece of string with a pin to the
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proposed centre, and looping into the string a pen or
pencil at the proper distance for the required circle.
(77.) An instrument called a beam compass is also
intended for describing circles of greater radius than
those to which ordinary compasses can be conveniently
applied. The beam compass consists of a straight bar
A B (fig. 36.) usually divided into inches and parts of

fig. 86. 5
< : " T

an inch. At the commencement of the divisions there
is a steel point C fixed projecting from the lower face
of the bar. This point is intended to mark the centre
of the circle to be described. A brass slider S is placed
upon the bar, furnished with a clamping screw to fix
its position at any required distance from the point C,
which slider carries a point or pencil P, projecting
downwards from the lower side of the slider.

In the application of the instrument to deseribe
circles, the slider is moved along the bar until the
distance of the describing point P, from the central
point C, shall be equal to the radius of the required
circle. The sliding piece is then fixed in its posi-
tion by the clamping screw, and the central point C
being placed at the centre of the proposed circle, the
bar is moved round, the describing point P being
pressed upon the paper so as to leave the trace of the
circumference of the required circle,

(78.) If two circles have equal radii they will be
equal in every other respect ; for if the centre of the one
be imagined to be placed on the centre of the other, the
circumference of the one must coincide in every point
with the circumference of the other, since every part of
the circumference of each will be at the same distance
from their common centre.

(79.) If two circles with different radii, be drawn
round the same centre, every part of the circumference
of one will be at the same distance from the circum-

E
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ference of the other ; that distance being measured in the
direction of their common centre. It is evident that this
distance will be the difference between the radii of the
two circles, and will be the least distance between their
circumferences.

(80.) If two circles with unequal radii be described
round the same centre (fig. 87.), any distance between
them, such as A B, drawn in such a Jig. 87.
direction that if it be produced in-
wards it will pass through the centre,
will be less than any other distance,
such as BD. To prove this, it is
only necessary to observe, that the
distance from B to C round the angle
D is greater than the direct distance
B AC, If from these two distances the equal lines
C D and C A be taken away, the remainder B D in the
one case will continue to be greater than the remainder
B A in the other case.

(81.) If a straight line be drawn joining any two
points A and B (fig. 88.) in the cir- fig. 88.

cumference of a circle, every part of
that straight line must be within the D
circle; and if the same straight line 5

be continued beyond the points A and * & 73
B on either side, every other part of it must fall outside
the circle.

For if D be the centre of the circle, let the perpen-
dicular D G to the line A B be drawn, and also let a
line D F be drawn to any other point between A and B,
and a line DE to any point beyond A and B. The
line D G, being perpendicular to A B, is shorter than
D A the radius of the circle, and therefore the point G
is within the circle. Also the line D F, being nearer to
the perpendicular than D A, will be less than D A (24.),
and being less than the radius, the point F must be
within the circle; and the same observation may be
applied to every point of the line between A and B.
On the other hand, theline D E, being more distant from
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the perpendicular than D A, is greater than the radius
(24.),and therefore the point E is outside the circle ; and
_the same observations may be applied to every point of
the line beyond A and B.

(82.) Hence it follows, that a straight line cannot
meet the circumference of a circle in more than two
points, because every potnt of the line between these
points will be within the circumference, and every other
point will be without it.

(83.) If a straight line be drawn through any point
B, fig. 89., on the circumference of a B P
circle in a direction perpendicular to the

radius B C, every point of that straight 1
line on either side of the point B will lie B
outside the circle ; for let a line be drawn I

from the centre C to any point, such as I,
on the straight line at either side of B, this iz 39. 3
line C I will be longer than the perpendicular C B {21.),
and therefore the distance of I from the centre of the
circle will be greater than the radius, and therefore
the point I will be outside the circle; and the same
observations will be applicable to every point upon the
line F B F, except the point B.

(84.) A straight line, such as F B F, which meets a
circle at one point B, and lies altogether outside the
cirele, is said to touch the circle at B, and is called
a langent.

(85.) Any straight line drawn from B, such as B E,
if it be not perpendicular to B C, must pass within
the circle on that side at which it makes an acute
angle with BC. For if the line C G be drawn per-
pendicular to BE, C G will be less than C B (21), and
the distance of the point G from the centre, being less
than the radius of the circle, the point G must be within
the circle. ,

(86.) A straight line, which lies partly within and
partly without a circle, is said to intersect or cut the
circle, and is called a secant.

B 2
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(87.) If the distance between the centres A and B
(fig. 40.) of two circles be equal fie. 40
to the sum of their radii, the cir- 15 e
cumferences of these circles will
meet at one, and only one point C,
and will be altogether outside each
other.

For if a part A C be taken upon A B equal to the
radius of the circle A, the remainder B C must be
equal to the radius of the other circle. Since the
point C therefore is, at distances from the two centres,
equal to the radii of the circles respectively, it must be
on the circumference of both circles ; that is to say, the
circumferences of both circles must pass through the
point C. But if any other point, such as D, be taken
on the circumference of the circle A, the distance of
that point D from the centre of the other circle B will
be greater than B C. This may be easily shown, for
the distance of B from A, measured round the angle D,
will be greater than the direct distance of B from A
by C. If, then, from both of these the distances of
D and C from A be taken away, the remainder B D
will be greater than the remainder B C. The distance
therefore of D from B is greater than the radius of
the circle B, and therefore the point D must be outside
the circle B ; and the same will be true of any point
in the circumference of the circle A.

In the same manner it may be shown, that every
point of the circumference of the circle B, except the
point C, lies outside the circle A.

Two circles, situate with respect to each other in
in this way, are said to fouch exfernally. The condition
therefore of the external contact of circles is, that the
distance between their centres should be equal to the
sum of their radii ; and it follows obviously, from what
has been just explained, that the straight line joining the
centres of circles which touch externally, must pass
through their point of contact.

(88.) If the distance between the centres A and B,
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fig. 41., of two circles be equal to the difference between
their radii, the circumferences of these  fig. 41.

- circles will meet each other in one and
only one point D, and every other
point of the lesser circle will be with-
in the, circumference of the greater
circle.

For if the line AB be continued until A D be equal to
the radius of the greater circle, then B D must be equal
to the radius of the lesser, since A B is the difference of
the radii. Therefore, since the point D is at distances
from the two centres respectively equal to the radii, the
two circumferences must pass through that point. But
if from B a line B C be drawn to any point in the cir-
cumference of the lesser circle, and another line from A
to the same point C, the distance A C will be less than
the distance A B C, and therefore less than the distance
A B D; therefore the distance of C, on the circum-
ference of the lesser circle from the centre of the
greater circle, will be less than the radius of the latter,
and consequently the point C must be within the circum-
ference of the greater circle ; and in the same manner it
may be shown that every point of the eircumference
of the lesser circle, except the point D, will be within the
greater circle.

(89.) Two circles, placed in the manner here de-
scribed, are said to fouch internally.

(90.) The condition of internal contact is, therefore,
that the line joining the centres shall be equal to the
difference of the radii.

(91.) Itis evident from what has been explained,
that if the distance between the centres of two circles
be equal to the difference of their radii, the straight
line joining their centres, will, if produced, pass through
their point of contact.

(92.) It also follows (83.), that if a straight line be |
drawn through the point of contact of two circles which
touch each other, whether internally or externally, per-
pendicular to the line joining their centres, that straight

E 3
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line will be a tangent to both cir-
cles (fig. 42.).

The properties of circles touch-
ing each other, and touching
straight lines, are of extensive use
in the arts ; the circles which form
wheels in machinery, are made
to act upon one another by their
surfaces being brought into con-
tact. The distance between the .fig- 42
centres or axles of the wheels in this case, if the wheels be
outside each other, must be equal to the sum of the radii
of the wheels. When one circle is made to revolve round
its axle, it must either slide upon the other circle, or com-
pel the other to turn with it. The sliding is sometimes
resisted by the roughness produced on the edges of the
circles of the two wheels which are thus in close contact
with each other. This roughness is produced by form-
ing the edges of the wheels of wood with its grain
placed in contrary directions, or by facing the edges of
the wheels with leather ; but the action of the wheels
upon each other is most commonly effected by forming
teeth on the edges of each wheel, of the same magnitude
~ and with the same intervals between them : the teeth of
one wheel inserting themselves between the teeth of the
other, one cannot revolve without causing the other to
revolve at the same time.

The contact of a straight line with a circle is also
frequently used in the arts. The most common ex-
ample of this is, when a strap or band is carried round
a part of the circamference of a wheel, and extending
to a distance is carried round the circumference of
another wheel, sufficient tension being given to it to
preduce such a degree of friction or adhesion between it
and the wheel, that the wheel cannot revolve without
moving the strap with it,

In this manner the motion of one wheel may be con-
veyed to another at a distance from it. If both wheels
are intended to revolve in the same direction, the strap
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cumstances, the axle and the nave are eircles which touch
each other internally, the point of contact being the
point where the axle rests upon the nave.

When rollers are applied to shift the position of heavy
weights, the platform which the rollers support and
the road on which they rest are both tangents to the
circles of the rollers.

(938.) If two equal angles be formed by radii diverg-
ing from the centre of the same circle, the arcs included
between such radii will be equal; for if the sides of one
angle be conceived to be applied to the sides of the other,
they will coincide in consequence of the equality of the
angles ; and every part of the arcs must coincide, since
they will be at the same distances from the centre.

(94.) Hence if the space round the centre of a circle
be divided into any number of equal angles, the circum-
ference will be divided into a corresponding number of
equal arcs.

(95.) Two diameters of a circle, which cross each
other at right angles, will divide the circumference into
four equal parts called quadrants, and any two radii at
right angles to each other will include between them a
fourth part of the circumference. ,

(96.) In general it will be perceived that angles and
circular arcs may be taken as the measures of each
other, and the subdivision of angles into degrees, already
explained, will be equally applicable to arce. The cir-
cumference of a circle therefore will consist of 360° and |
the quadrant of 90°,

(97.) The subdivision of the circle is carried further,
each degree, whether of angles or ares, being supposed to
be divided into sixty equal parts called minufes, and
each minute again into sixty equal parts called seconds.

This system of division is sometimes carried even
further, a second being divided into sixty equal parts
called thirds ; but it is more usual to express small
angles or arcs in decimal parts of a second.

(98.) The circumference of the earth, considered as a
circle, is subdivided in this way ; one degree measuring
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60 geographical miles, and the circumference of the
earth therefore consisting of 860°, and measuring 21,600
miles. One minute of the earth’s surface will therefore
correspond to one geographical mile.

Instruments for measuring angles are founded upon
the principle that arcs are proportional to angles. Such
instruments usually consist of either a part of a circle,
or an entire circle of brass or metal, on the surface of
which is accurately engraven its divisions, in conformity
with the system of degrees, minutes, and seconds already
explained. Such instruments are usually furnished with
a moveable radius ; and in the measurement of angles
the fixed radius, which passes through the first division
of the scale, is directed along one side of the angle to be
measured, and the moveable radius is shifted in its po-
sition until it is directed along the other side. The angle
between the two radii is then indicated by the magni-
tude of the graduated arc of the circular limb of the
instrument between them.

An instrument called a protractor is used in mecha-
nical and geometrical drawing for measuring angles, and
for laying down on paper angles of any required mag-
nitude. This instrument consists of a brass semicircle
A BD, fig.46., the circumference of which is divided

E Jig. 46.

into degrees and parts of a degree. The ends of the semi-
circle are connected by a flat plate of brass A D, the
sides of which are perfectly straight and parallel: the
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inner side being the diameter of the semicircle, the
metal is cut from the space between the graduated arch
and the diameter. The points of the angular incisions,
marked m,C, p, correspond precisely to the extremities of
the diameter and the centre of the semicircular arc.

In the application of this instrument, let us suppose,
for example, that it is required to draw from the point
a a straight line, making an angle of any required mag-
nitude with a given straightline(E F). Let the centre C
of the protractor be placed any where upon the line E F,
and taking the point B on the protractor, so that the
distancefromA to B on the graduated semicircle shall
correspond with the magnitude of the required angle,
let the protractor be placed so that the point B shall
also lie upon the straight line E F: let the protractor
be now moved towards the point a, keeping the points
B and C on the straight line E F until the edge M N
of the diametral bar of the protractor shall pass through
@ ; let a line (X Y) then be drawn, using that edge as a
ruler : such a line will form with the line E F the re-
quired angle ; for since the edge M N is parallel to the
diameter, the line X Y must make with E F the same
angle as the diameter forms with it, and the latter
angle is obviously measured by the arch A B, and is
therefore the required angle.

(99.) The division of the circumference of a circle into
any required number of equal parts, by the strict geo-
metrical principles, is one of the few problems of ele-
mentary geometry which has never been solved. From
what has been explained, it will be apparent that this
problem is equivalent to that of the equisection of
angles ; since the subdivision of the angular space sur-
rounding the centre of a circle necessarily infers the
corresponding subdivision of the circle itself. Although
the problem, in its general form, has not been solved,
particular cases of it, however, admit of easy and
obvious solution ; thus it is evident that the circum-
ference of a circle may be divided into four equal parts,
by drawing two diameters at right angles to each other.
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The four right angles thus formed, being bisected, will
divide the circumference into arcs of 45° and these
being again bisected will give ares of 221°; and by
continuing the process of bisection, we shall obtain arcs
of the following magnitudes :—

13715,

SEN LAl

2° 48! 45",

1° 24° 221~

0%:42° 113"

&e. &e.

By such a process, however, it is manifest that we
can never obtain an arc of the precise value of any one
of the usual denominations of angular magnitude.

(100.) The most simple case of the multisection of
an angle after its bisection is its trisection, or its
division into three equal parts. This problem accord-
ingly exercised, at an early epoch in the progress of
geometrical science, the ingenuity of mathematicians,
and has become memorable in the history of geometrical
discovery, for having baffled the skill of the most illus-
trious geometers.

Although this celebrated problem may have lost its
importance by the vast improvements made in analytical
science, it may not be uninteresting to the geometrical
student to be informed of the real nature of its condi-
tions. Its object was to determine means of dividing
any given angle into three equal parts by the aid of
the postulates and axioms prefixed to Euclid’s Elements,
without any other instruments than the rule and com-
passes permitted by the former, and without the assump-
tion of any other geometrical truths than those deduced
by the strictest geometrical reasoning from the latter.
Simple as the problem appears to be, it never has been
solved, and probably never will be solved, under the
above conditions.

(101.) The bisection of an angle involves other cases
of the general problem of the multisection of angles.
An angle being bisected, each of its parts may be again
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bisected, by which it will be divided into four equal
parts ; and these parts being again bisected, it will be
divided into eight equal parts ; and by a continuation of
this process of continual bisection, an angle may be
divided into 16, 82, 64, &c. equal parts. In fact, it
may be divided into any number of parts which can be
obtained by the continual multiplication of 2. The
same extent of multisection will of course be applicable
to a circular are.

(102.) In practical geometry, the problem of the
multisection of an angle is attended with no difficulty.
By the researches of analysis, the length of the circum-
ference of a circle of known radius can be determined
with any required degree of precision ; and this being
done, the length of any arc of that circle becomes a
matter of easy arithmetical caleulation. It is found
that if the diameter of a circle were divided into a hun-
dred equal parts, 314 such parts would be less than the
circumference ; and 315 of these would be greater than
it. By such means the length of the circumference
may be obtained to within less than one hundredth part
of the diameter ; but, if greater -precision be required,
the following table will give the means of obtaining it.

No. of Partsin the § No.of these Parts Iess | No. oftheseParts greater
Diameter, than Circumterence. than Circumference.

100%, - 314 315
1,000 3,141 3,142
10,000 31,415 31,416
100,000 314,159 314,160
1,000,000 3,141,592 3,141,593
10,000,000 31,415,926 31,415,927
100,000,000 314,159,265 314,159,266
1,000,000,000 3,141,592,653 3,141,592,654
10,000,000,000 31,415,926,535 31,415,926,556
100,000,000,000 314,159,265,358 314,159,265,359
1,000,000,000,000 |3,141,592,653,589 |3,141,592,653,590
10,000,000,000,000 31,415,926,535,39?i31,415,926,535,393

Thus it appears that if the diameter of a circle be
conceived to be divided into ten billions of equal parts,
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the length of its entire circumference may be deter-
mined numerically, subject to an error of less amount
than one of these parts ; and if this degree of accuracy
were not considered sufficient, a much greater degree of
precision has been attained. The diameter of the circle
being taken as the unit, the number expressing the cir-
cumference of the circle has been determined to 140
decimal places, If the diameter be conceived to be
divided into as many equal parts as would be expressed
by 1 followed by 140 ciphers, the circumference could
therefore be computed, subject to an error less in amount
than one of these parts. It isneedless to say that such
precision greatly exceeds the exigencies of practice, and
that we may consider that we are in a condition always
to determine the circumference of a circle when the
length of its diameter is known.

(103.) It is obvious that the same principles lead to
the solution of the converse problem, to determine the
diameter when the circumference is given, and the
same table of numbers will suffice for this purpose.
Thus, if the given circumference be conceived to con-
sist of 314 equal parts, the diameter will be less than
100 of these parts ; and if the circumference be con-
ceived to consist of 315 equal parts, the diameter will
be greater than 100 of these parts, and the same obser-
vations may be applied to the higher scales of division.

(104.) Since the whole circumference may be deter-
mined when the diameter is given, any required frac-
tional part of it may be found; thus the 360th part of
it, or the length of one degree, may be determined ; and
thence the fractional parts of a degree, such as minutes
and seconds, may be found.

(105.) If any two points A and D, fig. 47., be taken
in the circumference of a circle, and from fig. 47.
those two points two straight lines be drawn
to the same point B in the circumference,
and other two straight lines to the centre
C, the angle C, at the centre, will be twice
the angle B at the circumference.
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To prove this, let the line B C E be drawn, the ex-
ternal angle A C E of the triangle A C B will be equal
to the two remote internal angles taken together (49.) :
but these angles are equal to each other, because the
triangle B C A is isosceles (68.). Hence the angle
A C E is twice the angle A B C.

In the same manner it may be proved that the angle
E C D is twice the angle C B D ; therefore the whole
angle A C D is twice the angle A B D.

In this case, it happens that the centre C of the circle
lies between the sides of the angle AB D ; but it may
either lie upon one of those sides or outside them, If
it lie upon one of the sides, asin fig. 48., fiz. 48
the angle A C D is proved to be double
the angle B, in the same manner as ACE
was proved to be double A B C in the
last case.

It the centre C lie outside the angle A B D, as in
fig. 49., then the angle A CD is shown to fig. 49.
be the difference between the angles E C A
and E C D, which are respectively double
the angles C B A and C B D. K

It may happen that the central angle is
greater than 180° as in fig. 50., where the arc of the
circle B E D included between the sides of .fig-50- |
the angle A is greater than a semicirele. In 2,
this case, however, the proof is in all re-
spects the same as in the first case.

(106) A straight line, joining any two ;
points in a mrc]e, fig. 51., is called the chord of the
are of the circle between these points; and Ji 51.
the figure included by the chord and the
arc is called a segment of the circle. y

(107.) A figure included by two radii,
fig. 52., of a circle and the arc between iz 32
them, is called a secfor of the circle ; and the O
angle included by the radii is called the
angle of the sector.

(108.) It is evident, fsom rhiat -has tbeen explained,

B

A D

A
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that sectors having equal radii and equal angles, must
be in every respect equal, because by superposition they
would cover one another.

(109.) If the ends of the radii of a sector be joined
by a chord, fig. 58., the sector will - fig. 53,
be resolved into a segment and an
isosceles triangle, the latter being
formed by the radii and the chord.

(110.) If lines be drawn from the
ends of the chord of a segment to va-
rious points in the arc of the segment, ~—___  _—
each pair of these lines will in-
clude an angle of the same mag-
nitude. Thus, in fig. 54., there l
are several angles formed in the _
segment, whose chord is A B, if
which angles will be all of the |
same magnitude ; and the same ,
would be true of any angle formed
by lines drawn to any points in the same segment.

This, which is one of the most remarkable and beau-
tiful properties of the circle, follows as an immediate and
obvious consequence from what has been already shown
respecting the relations between corresponding angles at
the centre and at the circumference.

In fig. 55. the angles A and E are each fig. 55.

fie.54, B

of them half the central angle C, and con- -2 "
sequently they are equal to each other;

and the same would be true of angles formed i

by any other lines drawn from B and D to D

other points in the arc B A D.

(111.) It appears, therefore, that all the angles thus
formed in the same segment of a circle are equal ; but
it remains to be determined how this common mag-
nitude is affected by the magnitude of the segment
itself.

(112.) Tt is manifest that if the segment be a.semi-
circle, fig. 50., the central angle, bounded by the radii,
will be 180°; consequently the angle in the segment,
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JSig. 56,

—

A B

being half this, must be a right angle. Hence all
angles drawn in a semicircle are right angles.

(118.) If the segment be greater than a semicircle,
as in fig. 55., the central angle will be less than 180°,
therefore the angle in the segment will be - fig. 57.
acute ; but if the segment be less than a se- '
micircle, as is the case with B A D, fig. 57.,
the central angle B C D will be greater than
180° and therefore the angle in the seg-
ment will be obtuse.

(114.) In fact, the number of degrees in the angle
in a segment will be half the number of degrees in the
arc of the opposite segment. Thus, in fig. 55., the
number of degrees in the angle B A D will be half the
number of degrees in the arc of the lower segment.

(115.) It has been shown, that in the same or equal

circles, equal angles at the centre include equal ares.
The same will evidently be true of equal angles at the
circumnference, since the latter are the halves of the
former.

(116.) If several parallel chords be drawn ix a circle,
they will be all bisected by the diameter A B, fig. 58.

which is perpendicular to them. Let A Jig- 58.
radii C D and C E be drawn to the ~ —7T—_
extremities of any one of these / X
chords, the triangle D C E, being

isosceles, is divided symmetrically o

by the perpendicular C F (64.); con- {7\ /

sequently F is the middle point of \ 7~ |y N/

DE: and in the same manner it D%F/ 2

may be proved that the diameter
passes through the middle points of the ather chords.
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(117.) Hence it appears, that if the semicircle ADB
be doubled over on the semicircle A E B, the one will
precisely cover the other, since each half chord of the
one semicircle will cover the corresponding half chord of
the other. The diameter A B therefore divides the circle
symmetrically.

(118.) Hence it appears, that if two parallel chords
be drawn in a circle, the straight line passing through
their middle points will be a diameter.

(119.) When the circumference of a circle is given,
the centre may be found thus:— Draw two parallel
chords, and through their middle points draw a straight
line, terminated in the circumference: the middle point
of that line will be the centre of the circle.

(120.) But if a part only of the circumference of
a circle be given, its centre may still be found. Let it be
required to find the centre of a circle a part of whose
circumference is the are G B E (fig. 59.); draw two
parallel chords A B and G D, and fig. 59.
finding their middle points H and I,
through these points draw a stralght
line M N ; draw other two parallel "
chords D F and C E, and finding
theirmiddle points K and L, through
K and L draw another strazghl: line
O P : the point X, where M N crosses O P, is the centre
of the circle. E‘:-lmze M N and O P both bisect parallel
chords, each must be a diameter of the circle ; and there-
fore the point X, where they cross each other, must be
the centre.

(121.) But if only three points in the circumference
of a circle be given, the centre may be found, and the
eircle may be described.

Jig. 60.

&

Let A, B, and C, fig. 60., be the three points , draw

¥
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straight lines joining them, and bisecting the lines A B
and A C, let their middle points be D and E ; if a per-
pendicular to A B bedrawn from D), it must pass through
the centre, by what has been already proved ; and in the
same manner a perpendicular to A C drawn through E
must likewise pass through the centre. If these two
perpendiculars be drawn through D and E, the centre of
the required circle will be the point F, where these per-
pendiculars meet. This follows from what has been
already proved ; but it is easy to verify it.

Since the perpendicular D F bisects the base of the
triangle A F B, that triangle will be isosceles ; and in the
same manner the triangle A F C may be proved to be
isosceles ; thus B F and F C are respectively equal to
A F, and the three lines therefore from F to the points
A, B, and C, are equal. A circle, therefore, drawn with
centre F and radius F A, will pass likewise through the
points B and C.
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CHAP. VI

OF QUADRILATERAL FIGURES.

(122.) In a quadrilateral figure, such  fig. 61.

as A B CD (fig.61.), thé angles which B C
immediately succeed each other in going
round the figure are called adjacent an- / /

[ e

gles ; and the angles which do not im-
mediately succeed each other are called 4
opposite angles.

Thus, A and B are adjacent angles ; also B and C are
adjacent angles. But A and C, or B and D, are oppo-
site angles.

(123.) A line drawn in any right lined figure, join-
ing any two angles which are not adjacent, is called a
diagonal of the figure,

Thus in the quadrilateral ( fig. 61.) BD is a diagonal.

(124.) A quadrilateral being resolved into two tri-
angles by its diagonal, the sum of its four angles, being
equal to the sum of the six angles of the two triangles,
will be equal to four right angles.

(125.) It appears, therefore, that in four-sided as
well as in three-sided figures, the aggregate amount of
the angles is independent of either the length or position
of the sides. In triangles this amount is always 180° ;
and, from what has been just proved, it follows that in
quadrilaterals it is 360°.

If a quadrilateral be formed of rods connected by
joints or pivots at the angles, so that the shape of the
figure may be varied at pleasure by changing the mag-
nitudes of the angles, some of the angles must increase
while others diminish; and the increments of those
which increase must be exactly equal to the decrements
of those which diminish, since, however they may
vary, the gross amount of the angles must still be 360°;
and the same will be true, even though the length of the
rods which form the sides of the figure be altered.

F 2

b
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(126.) If two adjacent angles of a quadrilateral figure
be supplemental, the remaining angles must be also
supplemental.

For, since the sum of all the angles is 360°, if two
adjacent angles taken together be 180°, the remaining
two must be also 180°.

(127.) If two adjacent angles of a quadrilateral be
supplemental, one pair of opposite sides must be parallel.

Forif the angles A and C ( fig.62.) fig. 62.
be supplemental, the lines A B and ¢

C D must be parallel. -
(128.) Such a quadrilateral is \
called a trapezium; the parallel sides A B

are called its bases ; and the sides not parallel, A C and
B D, are called its sides.

(129.) A trapezium may be considered as produced
by cutting off the upper fig. 63.
part of a triangle by a line |
parallel to its base.

Thus in fig. 63., if the
line C D be drawn parallel ¢
to the base AB, ACDB W
« will be a trapezium.,

(130,) When a portion **
is cut from the upper part
of a figure in this manner, the figure is said to be
truncated.

Thus a trapezium is a truncated triangle.

(131.) If the angles adjacent to one base of a tra-
pezium be equal, those adjacent to the other base must
also be equal.

For if A and B (fig. 62.) be equal, their supple-
ments (126.) C and D must also be equal.

(152.) A quadrilateral figure in

$i]

which both pairs of opposite sides are s 3
parallel, is called a parallelogram. 1‘: -
Thus in fig. 64., if A B be parallel ’ J
to D C, and A D parallel to B C, the / /
figure will be a parallelogram. b %

(183.) In a parallelogram the ad-
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jacent angles are supplemental, and the opposite angles
are equal. :

Since A D ( fig. 64.) is parallel to B C, A is the sup-
plement of B, and D is the supplement of C ; and since
A B is parallel to D C, A is the supplement of D, and
B is the supplement of C.

The angles A and C are equal, because each of them
is supplemental to the angle B ; and the angles B and D
are equal, because each of them is supplemental to the
angle C.

(134.) The triangles into which a parallelogram is
resolved by either of its diagonals, are in all respects
equal. ‘

For the angle A B D (fig. 64.) is equal to the angle
C D B, since they are alternate angles (42.); and,
for the same reason, the angle A D B is equal to the
angle C BD. In the two triangles, therefore, the side
B D is common, and the angles between which it lies
are respectively equal ; therefore, the side A B is equal
to the side C D, and A D to C B, and the triangles are
in all respects equal (61.)

(185.) In a parallelogram the opposite sides are
equal.

This has been proved in the last case.

(186.) If each pair of opposite angles of a quadri-
lateral be equal, the figure must-be a parallelogram.

For if the angles A and B (fig. 64.) be respectively
equal to the angles C and D, they will be half the sum
of the angles of the figure, and will therefore be equal
to 180° (125.); and, therefore, the sides AD and
B C will be parallel (40.). In the same manner
it may be shown that the angles B and C are together
equal to 180%; and therefore the sides AB and DC
are parallel.

(187.) If each pair of opposite sides of a quadrila-
teral be equal, the quadrilateral will be a parallelogram.

For if AB be equal to C D (fig. 64.), and B C to
A D, the two triangles into which the figure is resolved

F 3
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by the diagonal, will have the three sides in the one re-
spectively equal to the three sides in the other, and
therefore their angles will be equal each to each : since
the angle C B D is equal to the angle A D B, the side
A D is parallel to B C; and since the angle AB D is
equal to the angle C D B, the side A B is parallel to the
side C D.

(188.) Upon this principle are constructed instruments
used in geometrical and mechanical drawing, called
parallel rulers.

In fig.65. AB and CD fig. 65.
are two rulers; EF and A = H B
G H are two pieces of brass
equal in length, fastened on
pins at equal distances, G F © F G D
and H E, on each of the rulers, and capable of turning
on those pins. The two rulers may be moved to dif-
ferent distances from each other, but will always be
parallel. Thus, if the edge of one ruler be placed along
a straight line, a pen drawn along the edge of the other
will trace a parallel straight line. The accuracy of this
instrument depends on the circumstance of the distance
between the pins on each of the rulers being exactly
equal, and on the exact equality of the bars E F and
G H.

(139.) Althnugh the triangles into which a paral-
lelogram is resolved by its diagonal be equal in all
respects, yet the diagonal does not divide the figure sym-
metrically, because the position of the triangles on either
side of the diagonal is reversed. If the triangle B A D
(fig. 64.) be folded over along the diagonal upon the tri-
angle BC D, the point A would not fall upon the point C.

(140.) The diagonals of a parallelogram bisect each
other.

For since the sides AC and B D (fig.60.) are equal,
and also the angles CAE and BD Eas wellas ACE
and D B E, the sides (61.) C E and B E and also AE
and E D are equal,
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(141.) If the diagonals of a quadrila-  fig. 66.

teral bisect each other, it will be a paral- 4 1

lelogram. \
Forsince A E and E C (fig. 66.) are 24

respectively equalto D E and EB,and the ° 2

angles A EC and D E B are also equal (20.), the
angles A CE and D BE are equal (59.); and there-
fore the lines AC and BD are parallel (43.); and
in like manner it may be proved that A B and C D are
parallel.

(142.) If one angle of a parallelogram be right, all
the angles must be right.

For if one angle be right, the angle opposite must
also be right, since they must be equal (133.); and
the angles adjacent must be right, since they must be
supplemental to the former (133.). Sy, 67.

(143.) A right-angled parallelogram is called

a rectangle. ( fig. 67.)
(144.) The diagonals of a rectangle are
equal.

For theadjacentangles Aand B ( fig.68.) areequal, being
right, and the opposite sides A C and BD are

equal (135.); and the side A B is common . Jig. 68-

to the two triangles C AB and A B D, and * B
therefore (59.) the diagonals A D and

C B are equal. ¢ D

(145.) A parallelogram of which all the sides are
equal (fig. 69.) is called a lozenge.

(146.) The diagonals of a lozenge bisect its angles.

For since A B C is an isosceles triangle ; the angles
BACand BC A are equal (63.); and since BC 1is
parallel to A D, the angle B C A is equal to the alter-
nate angle D A C (42.); therefore the angle B AC
is equal to the angle D A C ; and therefore the diagonal
A C bisects the angle B A D,

In the same manner it may be proved that A C bi-
sects the angle B C D, and that B D bisects the angles
ABCand AD C.

F 4
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(147.) The diagonals of a lozenge  fig. 69.
intersect each other at right angles.

For since BD ( fig. 69.) bisects the
angles A B C and A D C (146.),if the
triangle B A D be doubled over along
the lme B D upon the triangle B C D,
the side B A will fallupon B C,and DA
upon D C ; therefore the point A will
fall upon the point C, and the line O A
upon the line O C. The angle B O A,
therefore, exactly covers the angle B OC,
and is therefore equal to it; and the angle AOD covers
the angle C O D, and is thevefore equal to it; the
angles at O are therefore right angles.

(148.) Each of the diagonals of a lozenge divide the
figure symmetrically.

For it appears by what has been already proved (147.)
that the triangles into which the lozenge is divided are
precisely equal, and admit of superposition.

(149.) If the sides of a trapezium be equal, they
will form equal angles with its bases, fig. 70.

For let A E ( fig. 70.) be drawn,
parallel to B D ; then the figu \
ABDE will be a para]lelﬂgram,
and therefore A E will be equal
to BD. But BD is equal to © 5
A C; therefore AE is equal to AC. The triangle
C A E is therefore isosceles, and the angle A EC is
equal to the angle C; but since A E is parallel to B D,
the angle AEC is equal to the angle D ; therefore the
angle C must be equal to the angle D, which are the
angles that the sides make with the base C D. Again
since A B is parallel to C D, the angles B A C and C, as
well as B and D, are supplemental (41.) ; but the angle
C has been proved to be equal to the angle D ; there-
fore the angle C A B is equal to the angle B, which are
the angles that the sides make with the base A B.

(150.) If the angles at the base of a trapezium be
equal, its sides will be equal.

n v
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For, let AE ( fig.70.) be drawn parallel to B D ;
then, as in (140.), A E will be equal to B D ; but since
the angle AE C is equal to the angle D, it is also
equal to the angle C, and therefore the triangle CAE
is isosceles, and the side C A is equal to the side AE ;
but A E has been proved equal to B D, and therefore
A C is equal to BD.

(151.) A trapezium of this kind is called a symme-
trical trapezium.

(152.) The line joining the middle points of the
bases of a symmetrical trapezium divides the figure
symmetrically.

Let E ( fig. T1.) be the middle point of the base AB,
and let E F be drawn perpendicular to A B ; if the figure
be now folded along the line E F, so that that part to the

rightof E F shall be turned over Sig. T1.

upon that part to the left, the g 5 G

line EB will fall upon the line  / \
E A, because of the equality /

of the right angles at E. The N

point B will fall upon the point © F D

A, because E B is equal to EA. The side BD will
fall upon the side A C, because of the equality of the
angles B and A (151.) The point D will fall upon the
point C, because B D is equal to A C; and since the
point D) falls upon the point C, the line F D) must co-
incide with the line F C, and must therefore be equal to
it. The angles at F will also lie one upon the other,
and are therefore equal, and being equal are right
angles. ;

It is evident, therefore, that the figure is symmetri-
cally divided by the line E F.

(153.) A rectangle is divided symmetrically by lines
joining the middle points of its opposite sides.

This may be proved in the same manner as the cor-
responding property of the symmetrical trapezium was
established (152.)

(154.) A square is symmetrically divided by each of
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its diagonals, and also by lines joining the middle points
of its opposite sides.

For -a square being a lozenge, and also a rectangle,
what was proved in (147.) and in (153.) are applicable
to it,

(155.) If a quadrilateral have the sides containing
two opposite angles equal, the diagonal drawn between
those angles will divide the figure symmetrically.

For since AD is equal to AB Jig. 72,

(fig. 72.), and CD to C B, the tri- A

angles into which the quadrilateral is |

resolved, having their sides respect-
ively equal, will have their correspond-
ing angles also equal ; therefore the \
angles at A and C will be each bi- '
sected by the diagonal. If the triangle
A BC be folded along the diagonal
over AD C, the side A B will fall
upon the side A D, because the angle C

C A B is equal to the angle C AD ; and the side CB
will fall upon the side C D, because the angle A C B
is equal to the angle A C D ; therefore the triangles will
exactly cover one another, and therefore the figure is
divided symmetrically by the diagonal A C.




CHAP. VII. GEOMETRY. i

CHAP. VII.
OF INSCRIPTION AND CIRCUMSCRIPTION OF FIGURES.

(156.) A ricure which has the vertices of its several
angles in the circumference of the same circle is said
to be inseribed in that circle ; and the circle is said to
be circumseribed about such a figure.

(157.) A figure each of whose sides is a tangent to
the same circle is said to be circumseribed about that
circle ; and the circle is said to be .inseribed in such a
figure.

(158.) A circle may be circumscribed round any
given triangle ; for, it has been shown (121.) that a
circle may always be described passing through three
given points, provided these three points do not lie on
the same straight line.

(159.) A triangle having its three angles given, may
be inscribed in a circle.

As the three angles of the triangle must, taken
together, be equal to 180°, angles Jig- 73.
of twice their magnitude must be
equal, taken together, to 360°. Let
the space round the centre C ( fig.73.)
of the proposed circle be divided by
three radii, C A, C D, and C B, into /
three angles, which shall respectively a' B
be double the three angles of the
triangle, and let lines be drawn
Joining the points A, B, and D. These lines will form
the required triangle. For the angle at A is half the
angle BC D (105.), and is therefore equal to one of
the angles of the proposed triangle ; and, in the same
manner, the angles at B and D are respectively halves of
the angles ACD and AC B, and are therefore the
other angles of the required triangle,
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(160.) It is evident that this problem is equivalent to
the division of the circumference of a circle into three
parts of given magnitudes, inasmuch as the three ares
of the circle, of which the three sides of the triangle are
chords, consist of twice as many degrees respectively as
are contained in the angles of the triangle.

(161.) To inseribe an equilateral triangle in a circle, it
is only necessary to draw three radii from the centre,
making with each other angles of 120°, the angles of an
equilateral triangle being 60° (72.).

(162.) To construct an equilateral triangle, whose
side shall be of a given length.

Let the line A B ( fig. 74.) be fig. 74,

the length of the side of the pro- —
posed triangle ; and with B as centre ﬂ A\H
and B A as radius, and with A as © - - B e

centre and A B as radius, let two
circles be described ; lines drawn
from A and B to exther of the points C or F where
these circles intersect, will form with the line A B an
equilateral triangle.

It is evident that the triangles thus constructed are
equilateral, since their sides are the radii of equal
cireles.

(163.) To draw a tangent to a circle from a point
outside it.

Let P (fig. 75.) be the point from which the tangent
is to be drawn; draw a line from P to the centre C
of the given circle, and on P C as a diameter deseribe
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a semicircle. To the point A, where this semicircle
crosses the given circle, draw P A. This line P A will
be the required tangent. For if C A be drawn, the
angle C A P, being an angle in a semicircle, will be a
right angle (112.); and therefore P A must be a tan-
gent (83.).

Since a semicircle may be described either above or
below the line P C, it follows that two tangents may
be drawn to the circle from the point P.

(164.) The angle A C A” included between the two
radii drawn from C ( fig. 75.) to the points of contact
of thetangents, will bethesupplement of the angle AP A’
included by the tangents themselves.

For in the quadrilateral C A P A’, formed by the.
tangents and the radii, the four angles taken together
are equal to four right angles (125.); but the angles at
A and A’ being right angles, the angles at P and C, taken
together, must be equal to two right angles, and must
therefore be supplemental.

(165.) When two tangents are drawn from the same
point P (fig. 75.) to the same cirele they will be equal,
and the line drawn to the centre will bisect the angle
formed by them.

For if the triangle C A’ P below the line P C be
folded over upon the triangle C A P above it, the right
angle of the one must fall upon the right angle of the
other, and the triangles must coincide in every respect ;
and therefore the sides and angles must be respectively
equal.

(166.) To inscribe a circle in a triangle.

Let ABC be the proposed triangle ; fig. 76.
since BA and B C must be tangents to

the inscribed circle (157.), the line B D

bisecting the angle ABC must pass E/F 7N
through the centreof the circle (163.) ; and, . ""f}\
for the same reason, the line C D bisecting >\

L -
i F [

the angle A C B must pass through the
same centre. Hence, if these lines be drawn bisecting
the two angles A B C and AC B, the point D where
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these two bisectors meet will be the centre of the in-
seribed circle; if perpendiculars be drawn from D to the
three sides, these perpendiculars will be radii of the in-
scribed cirele.

(167.) To circumseribe about a given circle a triangle
whose angles shall have given magnitudes.

From the centre D (fig. 76.) let three radii, D E,
D F, and D G, be drawn, dividing the space round the
centre into angles which shall be respectively the sup-
plements of the angles of the required triangle. Through
the extremities G, E and F, of these radii let tangents
be drawn ; these tangents will form the required tri-
angle. For the angles included by the tangents respect-
ively being the supplements of the angles contained by
the corresponding radii (164.), will be the angles of the
required triangle.

(168.) To circumscribe an equilateral triangle about
a circle, it will only be necessary to draw three radii at
angles of 120° with each other. Tangents through their
extremities will form a triangle whose angles will be
60° (164.), which will therefore be equilateral (72.).

(169.) If a quadrilateral figure be inscribed in a
circle, its opposite angles will be supplemental. :

For each such angle will consist of half the number
of degrees contained in the opposite arc of the circle
(114). Therefore the two opposite angles, taken toge-
ther, must be equal to half the number of degrees con-
tained in the whole circumference, and must therefore be
equal to 180°.

- (170.) Henceif one angle, A (fig. Jig. 8.

78.), ofa quadrilateral inscribed in a

circle be right, the opposite angle B /
must also be right. a9

(171.) If two adjacent angles |
of a quadrilateral inscribed in a \
circle be right, all the angles must \\
be right, since the others must be @~ =&
their supplements.
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(172.) No parallelogram can be inscribed in a circle
except a rectangle.

For the opposite angles of every quadrilateral in-
seribed in a circle must be supplemental (169.), and
the opposite angles of a parallelogram must be equal
(133.). To be at the same time equal and supple-
mental, the angles must therefore be right, and the
figure must be a rectangle.

(173.) The diagonals of any rectangle inscribed in a
circle must be diameters of the circle.

For the angles contained in the segments of which
these diagonals are chords being right angles, the seg-
ments must be semicircles (112.).

(174.) If any two diameters in a circle be drawn,
the lines joining their extremities will fig. 79,
forman inscribed rectangle ( fig. 79.) :

(175.) If two diameters be drawn /\
at right angles, the lines joining their
extremities will form an inseribed C
square.

By what has been already proved,
it will be evident that the figure will \\_/
be a rectangle ; and, since the central
angles are right angles, the arcs of the circle are equal,

and therefore their chords are equal, fig. 80
and the figure is therefore a square, . 1

(fig- 80.) / \
(176.) If tangents to a circle be \
drawn through the ends of the same
diameter, they will be parallel.
For they will be both perpendicular
to the diameters,

(177.) If two diameters of a circle
be drawn at right angles, tangents through their ex-
tremities will form a cirecumscribed square.

For the figure will be a parallelogram, since its oppo-
site sides will be parallel (182.); and it will be rectan-
gular, since itssides are parallel to the rectangular dia-
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meters C'A and BD (fig. 81.); finally, its sides will
be equal, since they are opposite sides in the fig. 81.
the same parallelograms with the dia- ¢__¢__H

meters of the circle. 7-}
(178.) The sides of the circumscribed » D

square are therefore equal to the diameters \ //

of the circle. F A K

(179.) If two diameters of a circle be drawn at any
proposed angle, tangents through their extremities will
form a circumscribed parallelogram, whose angles shall
be equal to the angles contained by the diameters.

For let G F and H I ( fig.82.) Jig- 82.
be the two diameters. The angle e I
A is the supplement of the angle /

G C H, and therefore equal to ©

the angle H C F ; and the angle  / \ﬁ

E is the supplement of the /! A
angle H C F (164.), and/

therefore equal to the angle /
HC G.

(180.) Hence a parallelogram having any required
angles may always be circumscribed round a circle by
drawing two diameters making with each other the angles
of the proposed parallelogram, and through their ex-
tremities drawing tangents.

(181.) Right-lined figures consisting of more than
four sides are usually called polygons.

A right-lined figure having all its sides and angles
equal is called a regular polygon.

(182.) If a point F ( fig. 83.) be Jig- 83.
taken within a polygon, and lines be ¢
drawn from it to the several angles
A, B,C, D, E, the figure will be resolved
into as many triangles as there are D
sides. The angles of these triangles,
taken together, will be equal to twice
as many right angles as there are
sides. But, with the exception of the angles round the
point F, these angles compose the angles of the polygon.

I

E
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The angles round the point F are together equal to four
right angles ; hence it follows, that if to the sum of all
the angles of any polygon, four right angles be added,
we shall obtain twice as many right angles as the figure

has sides,

(183.) Hence the sum of all the angles of any right-
lined figure, whose number of sides is given, will be
found by taking twice as many right angles as the figure
has sides, and deducting four.

This general proposition includes the two which have

been already proved, respecting the angles of triangles

and quadrilaterals (47.) (124.).

If the number of

sides of a triangle be doubled, and four be substracted,
the remainder will be two ; and if the number of sides
of a quadrilateral be doubled, and four be substracted,

the remainder will be four.

Thus it would follow, that

the angles of a triangle will be equal to two right angles,
and those of a quadrilateral to four.
(184.) In general, if the number of sides of the

figu

re be expressed by the number in the first line

of the following table, the number of right angles, to
which the sum of its angles will be equal, will be ex-
pressed by the number in the second ; and the sum of its
angles in degrees, in the third.

Number
of sides

3

'q'.-"l

319

10

11‘12

13 | 12

Number
of right
angles

}

21 4] 6 10 | 12

14 | 16

18 | 20

24

22

Sum of

angles

{
180°[360° 540° 726°

900°

i

1260° 1440°

1620° 1800°

1980° 2160°

(185.) The remarkable property which has been already
noticed in figures with three and four sides, in virtue
of which the sum of their angles continues the same,
however they may change as to the length and position
of their sides, is therefore a general property of all right-

lined figures.

So long as the number of sides remains

unaltered, so long will the sum of the angles remaiu the

G
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same, however the sides or angles individually may be
varied in their magnitudes. It may not be uninterest-
ing to trace this very remarkable property more im-
mediately to its origin, than is done by the method of

investigation which we have pursued in its demon-
stration.

fig. 84.
d-.

Let us take, for example, any figure, such as A B
C D E F (fig.84.) ; and suppose, at the angle A, a
line A L placed, capable of revolving on A as a pivot
or centre ; if A L then be supposed to turn round the
point A until it take a position A C’ parallel to B C,
it will revolve through an angle B A C’, equal to the ex-
ternal angle b B C. If it be again supposed to turn
from the position A C', until it take the position A D’
parallel to C D, it will revolve through the angle ¢’ A D'
equal to ¢ CD. Again, if it turn from the position
A D' till it take the position A E' parallel to D E, it will
revolve through another angle D' A E” equal to d D E.
If it again revolve till it take the position A F’ parallel
to E I, it will turn through the angle E” A F' equal to
the external angle ¢ E F. 1f it move from the position |
A F' till it take the direction A A’ of the side F A, it
will have moved through an angle F* A A’ equal to the
external angle £ F A ; and finally if it revolve from |
the position A A’ till it coincide with A B it will turn
through the angle A”AB ; and it will thus have made
one complete revolution rqund the point A, moving, as it |
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revolves successively, through angles equal to the several
external angles of the figure. It is obvious, therefore,
since all the angles round the point A, taken together,
are equal to four right angles, that all the external angles
of the polygon must also be equal to four right angles.

(186.) Itis evident that each angle of the figure
being the supplement of its adjacent external angle,
the internal and external angles, taken together, will be
equal to twice as many right angles as the figure has
sides ; but, from what has been already shown, the ex-
ternal angles alone are equal to four right angles.

(187.) Thus, the number four, which is deducted
from double the number of sides, in computing the ag-
gregate value of the angles of the figure, may be con-
sidered as representing the gross amount of the external
angles.

(188.) To this reasoning there is, however, an ex-
ception. In fig. 84. the case fig. 85.
contemplated is the case of ;
what is called a convex figure. i ﬁr
To make the import of this 7 '
term intelligible, it must be re-
membered that two lines may
be considered as forming an
angle greater than two right a
angles ; and such may be the-internal angle of any
right-lined figure which has more than three sides.
Thus in fig. 85. the angle B C D within the figure is
greater than 180° by the magnitude of the angle ¢ C D.
In this case the internal angles of the figure are com-
puted in the same manner as has been already explained,
and the demonstration given in (182.) will still be
applicable. But the sum of the external angles will be
greater than four right angles by the magnitude of the
angle ¢ C D. This will be evident if we draw the line
BD. The figure A BDE, having no angle greater
than 180° will have the sum of its external angles equal
to four right angles. But in the figure A B C D E, the
external angles are greater than those of A B D E, by

¢ 2
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the two angles @ Dd or BD C and D B C, taken toge-
ther. But these two latter angles CD B and D BC
are together equal to the angle ¢ CD. The exterior
angles, therefore, of the figure A B C D E exceed four
right angles by the magnitude of the angle by which
the convex angle B C D exceeds two right angles.

(189.) If a right-lined figure have one or more con-
vex angles, these angles have no adjacent external angle,
and each of them exceeds two right angles by a certain
excess, while each concave angle, with its adjacent ex-
ternal angle, is equal to two right angles. From this
way of considering figures which have convex angles we
may also deduce the amount of the sum of the external
angles ; for, the sum of all the angles internal and ex-
ternal including the convex angles, is equal to twice as
many right angles as the figure has sides, together with
the excess of every convex angle above two right angles.
But the sum of the internal angles alone falls short of
twice as many right angles as the figure has sides by
four. Hence the sum of the external angles must be
equal to those four right angles, together with the ex-
cess of every convex angle above two right angles.




CHAP. VIIL GEOMETRY. 85

CHAP. VIIIL

OF REGULAR POLYGONS.

(190.) Amone the innumerable varieties of form
which polygons present to the contemplation of the
geometer, those which deserve most attention, as well
on account of their connection with other parts of geo-
metry, as on account of their intrinsic beauty and their
application in the arts, are the regular and symmetrical
polygons.

(191.) A regular or symmetrical right-lined figure is
one of which all the angles and all the sides are equal.

The equilateral triangle and the square, are the sym-
metrical figures of three and four sides.

(192.) If straight lines be drawn bisecting the several
angles of a regular polygon, these lines will meet at a
common point within the polygon; and that peint will
be equally distant from all its angles ; and will therefore
be the centre of a circle, which may be circumscribed
around it. And it will also be equally distant from the
several sides ; and will therefore be the centre of a circle
which may be inscribed in the polygon.

To prove this,let A B C D E (fig. 86.) be a regular
polygon ; and let lines be drawn bisecting the angles A
and B, and let these lines meet at O. If from the point O,
a straight line be drawn to the vertex of the angle C, that
line will bisect the angle C ; and the lines O C, O B, and
O A, will be equal to each other. For, since the angles
A and B are equal (191.), their halves are equal; there-
fore, the angle O A Bis equal to the angle O B A, and
therefore the side O A is equal to the side O B. Also,
since the angle O B C is equal to the angle O B A, the

¢ 3



86 GEOMETRY. CHAP. VIII.

side B C equal to the side B A,
and the side B O common, the
triangles C BO and A B O are
in all respects equal (59.);
therefore O C is equal to O A,
and therefore, also, to O B. But
the angle O A B is half the angle
E A B, therefore the angle OCB
is also half the angle E A B; but
the angle E A B is equal to the
angle B C D ; therefore the angle
O C B is half the angle BC D, and therefore O C bi-
sects the angle B CD. In the same manner it may be
proved that O D is equal to O A and O B, and that it
bisects the angle C D E; and, in like manner, every line
drawn from O to the vertex of any angle of the polygon,
may be proved to be equal to O A or O B, and to bisect
the angle of the polygon.

Since the lines from O to the vertices of the angles
severally are equal, a circle described with the point O
as centre, and any oune of these lines as radius, must pass
through the vertices of all the angles of the polygon, an
will be a circumscribed circle. -

If from the same point O perpendiculars be drawn to
the several sides of the polygon, these perpendiculars
will be equal.

Let O A” and O B’ be two such perpendiculars, drawn
from O to the sides AB and B C, these perpen-
diculars will be equal ; because the triangles A O B and
B O C having been already proved to be equal, so as to
admit of superposition, the perpendiculars O A' and
O B’ will bisect the sides AB and BC ; and there-
fore if B A be conceived to be turned over on B C, the
point A" will fall upon the point B’, and the perpen-
dicular A” O will fall upon the perpendicular B” O, and
will therefore be equal to it; and, in the same manner, it
may be proved that all the other perpendiculars from
the point O, upon the sides, severally are equal.

If the point O be taken as a centre, a circle described
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with any one of the perpendiculars as radius will pass
through the point where the perpendiculars severally
meet the sides; and, since the sides are perpendicular to
the radii of the circle, they will be tangents to it: the
~ circle is therefore inscribed in the polygon, and the poly-
gon is circumscribed around the circle.

(1938.) It has been proved that the magnitude of all
the angles of a polygon, taken together, is found by mul-
tiplying two right angles, or 180°, by a number which
is two less than the number of sides of the figure (183.) ;
or if n be the number of sides, then the gross magnitude
of the angles, taken together, would be found by mul-
tiplying 180° by n—2.

But since the angles of a regular polygon are equal
to each other, the magnitude of each of them will be
found by dividing the total magnitude of the angles
by the number, or, what is the same, by the number
of sides. Hence, if n, as before, be the number of sides,
the magnitude of each angle will be found by mul-
tiplying 180° by n — 2, and dividing the product by = ;
or, what is the same, divide 860° by the number of
sides, and subtract the quotient from 180°, the re-
mainder will then be the magnitude of the angles.

Hence the magnitude of the angles of the regular
figures, from the equilateral triangle upwards, may be
computed as in the following table : —

3|4|5/|6 7|
|
I
|

Number of sides g9 | 10 12

|
|
|
|

Magnitude of angle J 60° | 90° li}ﬂﬂilﬁﬂﬂ 19.849 134‘3' 140°144° I{Fﬁ 1500

(194.) It is evident that no regular polygons can
have angles consisting of a whole number of degrees,
except when the number of sides is an exact divisor
of 360. It appears, therefore, from what has been al-
ready shown respecting the divisors of 360 (138), that
there are only twenty-one regular figures, whose angles
are expressed by a whole number of degrees.

¢ 4
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(195.) In ornamental architecture polygons are used
in the formation of surfaces produced by the juxta-
position of solid blocks, as in flooring, paving, or by
their superposition as in masonry. The polygons, used in
such cases, must always be such as will admit of being
put together without leaving open spaces between them.
If they be laid together, as is sometimes the case, leaving
the vertices of their angles coincident, then no regular
figures can be used, except those whose angles are of
such a magnitude, as will exactly fill the space sur-
rounding a point. It is evident that the equilateral
triangle and the square will fulfil this condition ; since
six angles of an equilateral triangle, and four of a square,
make up exactly 860°; thus the point O in fig 87.
is surrounded by six equilateral triangles, and in fig. §8.
it is surrounded by four squares.

fig. 87. fig. 88.

In general, the condition necessary to be fulfilled is,
that 180°—-="° ghould divide 360° without a re-
mainder ; or, if we divide both of these by 180°, the
condition will be that 1 — 2 shall divide 2 without
a remainder. The only whole numbers which will
fulfil this condition are 3, 4, and 6 ; and it follows
that a surface cannot be completely covered by any
regular figures except by the equilateral triangle, the
square, and the hexagon.

The angles of the hexagon being 120°, three of them
will fill the space round a point. This arrangement is
represented in fig. 89.
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ponent figures are intended to be invariably combined,
the hexagonal arrangement will therefore have greater
strength and stability for pavement than the others ; but
for upright masonry the square or rectangular division
is preferable, since the surfaces of contact take the
position best adapted to sustain the incumbent weight
of the structure,

(1906.) Six equilateral triangles placed so as to sur-
round the same point, fig. 87., will evidently form a
regular hexagon ; for the sides of the figure being the
six bases of the equilateral triangles opposite the point O,
at which they are united, are equal ; and the angles of
the figure being each twice the angle of an equilateral
triangle, are likewise equal. Hence the figure is a
regular hexagon ; and, in this way, the construction of
the regular hexagon depends on that of the equilateral
triangle.

Any regular figure having been constructed and cir-
cumscribed by a circle, another regular figure with twice
the number of sides, may be drawn.

For let AB C D E fig. 91. be the former figure cir-

Jig. 91.
C

/\:

K

cumscribed by a circle ; and let perpendiculars from the
eentre O be drawn to the several sides and produced
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to meet the circle ; these perpendiculars will bisect the
angles, formed by lines drawn from the centre O to the
angles of the polygon, as is obvious from what has been
already proved in (192.). They will therefore bisect the
arcs of the circle, of which the sides of the polygon are
chords ; and the circle will, therefore, be divided into
twice as many equal ares as before ; the chords of which,
being drawn, will be equal, and will include equal angles ;
and will, therefore, form a regular polygon with twice as
many sides as those of the first polygon.

(197.) Hence the construction of the square leads to
that of the octagon ; the construction of the pentagon
leads to that of the decagon ; and so on.

(198.) Each diagonal of a regular pentagon cuts
off' an isosceles triangle, the ver-
tical angle of which is triple its Jig. 92.
base angle: for, let ABCD E -

(fig. 92.) be a regular pentagon m
circumscribed by a cirele; and let £

the diagonals BD, A C, and CE, P
be drawn ; the angles BC A,
ACE, and E CD, are equal,
since they stand on equal arcs
(115.): therefore the angle BCD

is three times the angle B C A. But the angles B C A
and C B D stand on equal arcs, and are therefore equal ;
therefore the angle B CD is three times the angle
CBD.

(199.) The other diagonals of the figure being drawn,
it is evident that the angles B D A and C B D are equal,
since they stand on equal arcs (115.) ; therefore the
diagonal A D is parallel to the side B C (40.) ; and, in
like manner, it may be proved that each diagonal of the
pentagon is parallel to the side not contiguous to it ; thus
B D is parallel to AE, CEto BA, ACtoDE, and
B E to CD. .

(200.) In a regular pentagon each pair of diagonals
which do not cross each other, form an isosceles triangle,
whose base angle is twice its vertical angle.
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CHAP. IX.

OF THE AREAS OF FIGURES.

(203.) Tue magnitude or extent of space included
within the linear boundaries of any figure is called its
area,

(204.) It is usual to express the area of a figure
numerically by resolving it into equal squares, the sides
of the squares being the linear unit; thus, if the linear
unit be an inch, the area of the figure will be expressed
by stating the number of square inches of which it con-
sists ; if the linear unit be a foot, the area will be ex-
pressed in square feet ; and so on.

(205.) It is apparent that the square of the linear
unit is the superficial unit.

(206.) If the sides of a rectangle be divided into
linear units, the number of superficial units in its area
will be found by multiplying the number of linear
units in its base by the number of linear units in its
height.

From the points where the base is divided into linear
units, let parallels be drawn to the height. These paral-
lels will resolve the area into as many oblong rectangles as
there are units in the base ; and these oblong rectangles
will be equal to each other, since their sides are equal.
Let parallels to the base A B (fig. 94.) be  fig. 94.
now drawn from the points where the height

D
A D is divided into linear units. These K2l 15
parallels will divide each of the former ob. |4|9 /¥
long rectangles into as many squares of the gl 81"
linear unit as there are linear units in the gl> h e
height A D. For, each of the oblong rect- AR

angles corresponding to the units of the & B F B
base, there are therefore as many squares as there are
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units in the height; therefore the number of squares will
be found by multiplying the number of units in the
base by the number of units in the height.

T'hus the hase AB consists of three units; and the paral-
lels to A D, from E and F, resolve the figure into three
oblong rectangles standing on the bases A E, E F, and
FB. Each of these rectangles is resolved into five
squares by the parallels to A B from the points of divi-
sion of A D. Thus the number of units in A B being
three, and in A D five, the number of squares composing
the area of the rectangle, is 15.

In general, therefore, when the sides of a rectangle
are given in numbers, its area is expressed by the pro-
duct of the numbers representing its sides.

Thus, if a rectangular room be 20 feet long and 15
feet wide, its floor will consist of 20 X 15, or 300 square
feet.

(207.) Hence, if the area of a rectangle be given in
numbers, and one side of it be known, the other side
may be found by dividing the area by the known side.

Thus, if it be given that the area of a rectangle is
300 square feet, and that one side of it be 20 feet, the
other side must evidently be that number which, multi-
plied by 20, would produce 300 ; and that number is
found by dividing 300 by 20, and is 15.

(208.) If the base and height of an oblique parallel-
ogram be equal respectively to the sides of a rectangle,
the area of the parallelogram will be equal to that of the
rectangle.

Let EFGH (fig. 96.) be the oblique parallelogram,
and ABCD (fig. 95.) be the rectangle; the base EF

ﬁg- 95. ﬁgt 6.

D 0O ¢
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being equal to AB, and the height of the parallelogram
equal to A D, then the area of EFGH will be equal to
ABCD.

For, from F draw F1 perpendicular to EF, and take
BM equal to F I, and draw AM. Since EF and FI are
equal respectively to AB and BM, and the included
angles are right, the triangle EF I will exactly cover the
triangle ABM. Take FK equal to II1, and therefore
to AM; and draw KL parallel to FI, and therefore
perpendicular to EF, and therefore also to HG; it is
evident that a line joining I and K would be parallel to
EF, since FK and EI are equal and parallel. Hence
the height of the parallelogram EF GH is equal to F1I
and KL taken together. Take AN equal to FI, and
draw NO parallel to AM: since AD is equal to the
height of the parallelogram EFGH, and F1I is equal to
AN or BM, L K must be equal to DN or C M. The
angle KL G being right is equal to the angle D ; and
the angle G will be equal to the angle E (133.), and
therefore to the angle M A B, and therefore to the angle
DON, since NO is parallel to AM. In the triangles
KLG and NDO the angles L and G are equal respect-
ively to D and O, and the side LK is equal to the side
DN ; therefore the triangles, being placed one upon the
other, would exactly cover each other.

We shall now show that the figure FIHLK would
exactly cover ANOCM. It has been proved that the
angle EIF is equal to the angle AMB ; but the angle
EIF is equal to the angle IFK, and the angle AMB
is equal to the angle MAN (42.); therefore the angle
KFI is equal to the angle MAN ; and since FK is
equal to AM, and FI equal to AN, if the line FK be
laid upon A M, FI will fall upon AN. But since the
angle EIF is equal to the angle M AN, it is equal to the
angle DN O ; therefore the angle FIH, which is the
supplement of EIF, is equal to the angle AN O, which
is the supplement of DNO; and therefore IH will
fall upon N O ; but the angle G has been proved to be
equal to the angle NO D ; therefore the angle H, which
is the supplement of G, is equal to the angle NOC,
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which is the supplement of NOD ; and therefore H L
will lie upon OC ; but since HG and DC are respect-
ively equal to E F and A B, they are equal to each other;
and since L G has been proved equal to DO, H L will be
equal to O C; and therefore the point L will fall upon the
point C ; and since the angle H L K and the angle C are
both right angles, the line LK must fall upon the line
CM; and LK being equal to CM, K must fall upon
M; thus figure FIHLK will exactly cover the figure
ANOCM.

In fact, it will be apparent, when the pieces, marked
1, 2, and 3., in fig. 96., are considered, that it is only
necessary to shift their position from right to left, so as
to place FK upon EI, and KG upon HI, to transform
the oblique parallelogram into a rectangle, identical with
Jig. 95.; the pieces marked 1, 2, and 3., taking the
position assigned to them in fig. 95.

If the parallelogram be more oblique than that repre-
sented in fig. 96., it may be necessary to dissect it into
smaller pieces, in order to convert it into a rectangle ;
the process, however, will, in principle, be the same. In
Jig. 97. is represented a more oblique rectangle, which

Jig. 97.

is divided into five pieces; it will be easily perceived
that, by shifting the position of these pieces, the parallel-
ogram may be transformed into a rectangle, as repre-
sented in fig. 98.; and in the same  fig. 98,

manner every parallelogram, however p w C
oblique, may be transformed into a rect- v~ H,,JU
angle without changing its area; the x| g 18
base and height of such rectangle being g | ”g i
equal to the base and height of the pa- = et 3

‘rallelogram.
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- This important proposition, that the area of a paral-
lelogram is dependent only on that of the rectangle
under its base and altitude, and altogether independent
of its shape, is one which would, upon attentive consi-
deration, suggest itself to the understanding, almost
without demonstration ; in fact, the oblique parallel-
ogram may be regarded merely as the surface of a
rectangle, of the same height, thrown into a leaning
position. If a rectangle be conceived to be formed
by piling a number of thin plates one above another,
it is evident that the extent of its area will not be
altered if, by shifting the position of the plates, their
edges are made to form an oblique parallelogram.

Let fig. 00. be conceived to represent the side view

Sig. 99. fig. 100.

of a pack of cards, so piled as to form a rectangle ; if
the position of the cards be changed, the rectangle may
be converted into an oblique parallelogram, as repre-
sented in fig. 100. So long as the height and base re-
main the same, the parallelogram will be formed by the
edges of the same cards, and must, therefore, haue the
same magnitude. If the height were less the number of
cards must be less, and therefore the extent of area less
in the same proportion. If the base were less the
length of each card would be less, and, for that reason,
the extent of area would be proportionally diminished.*

(209.) If the base and altitude of any parallelogram
be expressed by numbers, its superficial magnitude, or
area, will be expressed by the product of these numbers.

(210.) If two parallelograms have the same or equal
bases, and the altitude of one be twice or thrice the
altitude of the other, the area of the one will be twice or
thrice the area of the other.

* In gpirit this mode of demonstration is identical w1l‘.h that used for
problems of quadrature in the higher geometry.

H
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In general, when two rectangles, or parallelograms,
have the same or equal bases, their areas will have the
same numerical relation as their altitudes.

(211.) We shall call the relative magnitude of two
lines, or surfaces, expressed numerieally, their ratio ;
thus, if one line be 8 inches long, and another 10, their
ratio is § to 10, or 4 to 5.

(212.) If two rectangles, or parallelograms, have the
same or equal altitudes, their areas will have the
same ratio as their bases ; thus, if the base of one be
twice or thrice the base of the other, the area of one
will be also twice or thrice that of the other ; or, if the

base of the one be two thirds, or three fourths, of the

base of the other, the area of the one will likewise be

two thirds, or three fourths, of the area of the other.
(218.) A triangle may always be completed into a

parallelogram by adding to it another equal triangle.
Let A B D, fig. 101.; be the given triangle, and draw

B C and D C, making the angle fig. 101.

C B D equal to A D B, and the angle B c

C D B equal to the angle A B D, the /
triangle C BD will then be, in all }
respects, equal to the triangle AB D ; |

and since the angle C B D is equal to 4 %
ADB, BC is parallel to AD; and since the angle
CDB is equal to ABD, CD is parallel to AB;
therefore the figure is a parallelogram.

It is evident, that the base and altitude of the paral-
lelogram thus formed, is equal to the base and altitude
of the given triangle.

(214.) Hence it follows, that the area of a triangle
is always equal to half the area of a parallelogram hav-
ing the same base and altitude.

(215.) Hence, if the base and altitude of a triangle
be expressed in numbers, its area will be also expressed
numerically by half the product of these numbers (209.).
The area of a triangle will therefore be formed by
multiplying its base by its height, and taking half the
preduct.
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(216.) When triangles have the same or equal bases,
their areas are in the same ratio as their heights,

(217.) When triangles have the same or equal
heights, their areas are in the same ratio as their bases.

(218.) In general, the areas of triangles are to each
other in the same ratio as the products of their bases
and altitudes.

(219.) All right-lined figures may be resolved into
triangles by drawing diagonal lines ; and, therefore, their
areas may be determined by measuring the bases and
altitudes of their component triangles, and thereby de-
termining the areas of these several triangles.

(220.) If a polygon be such as to allow a circle to
be inscribed in it, so that all the sides of the polygon
shall be tangents to the circle, the area of the polygon
will be equal to half the rectangle under the radius of
the circle so inscribed, and the perimeter®* of the po-
Iygon. Forlet ABCDE (fig. 102.) be the polygon:
from the centre of the inseribed fig. 102
circle let lines be drawn to its G
several angles: these lines will
resolve the area of the polygon I
into as many triangles as it has
sides ; and, considering the sides
of the polygon as the bases of
these triangles, respectively, .
their altitudes will be the radii
of the inscribed circle O A/, A
OB, O0C, &c. (192). There-
fore the area of such triangle will be equal to half the
rectangle under the radius of the circle and the side
of the polygon; and the sum of all the areas of these
triangles, or the area of the polygon, will be equal to
half the rectangle under the radius of the circle, and
the sum of all the sides, or the perimeter.

. (221.) Since all regular polygons admit of having a
circle inscribed in them (192.), their areas will be

" * The perimeter of a figure is the sum of all its sides, and corresponds to
what is expressed by the word circumference in reference to the circle.

H 2
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equal to half the rectangle under the radius of such
circle and their perimeters.

(222.) The area of a regular polygon will be equal
to the rectangle under the radius of the inscribed circle,
and the length of one of its sides multiplied by half the

number of sides.
*  For since the sides are equal, the length of one side,
~multiplied by half their number, will be equal to half
the perimeter.

(223.) The area of a circle is equal to half the
rectangle under the radius and its eircumference.

For if lines be drawn from the centre of the circle
(fig. 103.), dividing the space round the centre into any
number of equal angles, the area of o, 102.
the circle will be resolved into a T
corresponding number of equal sec-
tors; and, if the chords of the arcs
of these sectors be drawn, an in-
scribed polygon will be formed
having these chords for its sides, If
a circle be inscribed in this polygon,
its radius will be a perpendicular =
from the centre on any of the chords. The area of the
polygon will be equal to half the rectangle under the
radius of the inscribed circle, and the perimeter of the
polygon ; but if the number of sectors into which the
circle is divided be continually doubled by bisecting the
angles (1906.), the number of sides of the polygon will
be continually increased, while their magnitude is di-
minished. The perimeter of the polygon will continually
approach to coincidence with the circumference of the
circle in which it is inscribed ; and the radius of the
circle inscribed in it will continually approach to equality
with the radius of the circle circumseribed round it.
As the two circles, and the polygon between them, ap-
proach without limit to absolute coincidence, the area of
the polygon is continually equal to half the rectangle
under the radius of the inseribed ecirele and its perimeter.

A

h
o~

Since this equality, therefore, is not disturbed by the
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varying state of the circles and polygon, it will still be
maintained when that variation is carried to its limit,
and these figures are brought to actual coincidence. In
this case, however, the radius of the inscribed circle will
be the radius of the circumscribed circle, and the pe-
rimeter of the polygon will be the circumference of the
latter ; therefore, the area of the circle is equal to half the
rectangle under its radius and circumference.

This may be made still more evident, if we actually
cut two equal circles, like fig. 103., into the same num-
ber of small triangular gores ; and, instead of arranging
them round centres, we arrange them, as here ( figs.
104, 105.), with their bases placed in two straight

fig. 104,

T,

AL /\/\/\/\/\/\/\ AL

fig. 105,

lines parallel to one another, so as to present the
appearance of the teeth of a saw. If they be moved
towards one another, as here represented, so that the
teeth of one may be inserted in the spaces between the
teeth of the other, a parallelogram will be formed ; and
if the arcs into which the circles are divided be ex-
ceedingly small, this parallelogram will be a rectangle,
whose height will be the radius of the circle, and the
base its circumference. It is plain, then, that the two
added together, form a rectangle under the radius and
circumference ; and, therefore, one of them alone will
be equal to the rectangle under the radius, and half the
circumference.

(224.) It has been already shown (102.) that the
ratio of the circumference of a circle to its dia-

H 3



102 GEOMETRY. CHAP. IX.

meter may be expressed with any degree of numerical
precision which can be required. Hence, if the length
of the radius of a circle be known, the length of its cir-
cumference can be immediately found : thus, twice the
radius multiplied by 3-14 will be less than the circum-
ference ; and twice the radius multiplied by 3-15 will be
greater than it. In the same manner, twice the radius
multiplied by 3°141 will be less than the circumference ;
and twice the radius multiplied by 8142 will be greater
than it. Thus, to find the circumference, a number may
be selected from the table, page 60., such as will give the
circumference within the required limit of accuracy.
This number, whatever it may be, which, being multi-
plied by the diameter, will give the circumference with
the necessary precision, being frequently referred to in
mathematics, is usually expressed by the Greek letter .
If », then, be the radius of a circle, » X 7 will be its
semi-circumference.

Since the area is equal to half the rectangle under the
radius and circumference, it will be found by multi-
plying the radius by » X =. But if we multiply » by »
we obtain the square of the radius. Hence, when the
radius of a circle is expressed by a number, its area
will be immediately found by multiplying the square
of that number by the number expressed by =.

Thus, for example, if the radius of a circle be 3
feet, its square will be 9 ; and if we require the area, we
have only to multiply by 3-14, which gives 28:20 square
feet for the area. If we multiply it by 3:15, we should
get 28:35 snquare feet. The area, therefore, being be-
tween these, is obtained within a tenth of a square foot
by this method.

If greater precision be required, the second numbers
in the tables, page 60., may be taken. We should then
multiply 9 by 3:141, and we should find 28-269 square

feet ; and by multiplying it by 3:142, which would ;

give 28°'278 square feet, we should thus obtain the true

area within the hundredth part of a square foot, and

30 On.
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~ (225.) The following method, which is, in fact,
equivalent to the principle of the table in page 60., and
which will give the area within a very minute fraction
of the square of the radius, may be used with con-
venience.

Multiply the square of the radius by 355, and divide
the product by 113. Thus, with a radius of 3 feet, as be-
fore, we multiply 355 by 9, by which we obtain 3195,
which, divided by 113, will give 28:274 square feet ;
and still greater accuracy might be obtained, if the
division by 113 were continued farther,

(226.) It appears, therefore, that the area of the
circle has to the square of its radius the ratio of 355
to 113, very nearly.

- (227.) A square circumsecribed round a circle is
four times the square of its radius; the area of the
circle will have to such a square the ratio of 355 to
four times 113, or of 355 to 452, very nearly.

(228.) The area of a circle may therefore always be
obtained by multiplying the square of its diameter by
355, and dividing the product by 452.

(229.) Since the area of all circles have the same
ratio to the squares of their diameters, the areas of
different circles are to each other in the same ratio as
the squares of their diameters.

(230.) Also, since the circumferences of different
circles have the same ratio to their diameters, the cir-
cumference of different circles will be in the ratio of
their diameters.

(231.) Hence, if a series of circles have diameters
expressed by the successive whole numbers, 1,2,3,4,5,
&ec., their circumferences will be proportional to the
same numbers ; the circumference of the second, third,
fourth, fifth, &c. being twice, three times, four times, &e.
that of the first: their areas, being as the squares of
their diameters, will be expressed by the numbers. 1, 4,
810,25, &e,

(232.) In a right-angled triangle —if squares be
constructed upon the three sides, that whichis constructed

H 4
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on the side opposite to the right angle will be equal
to the other two added together.

On the sides A B, A C, and BC, (fig. 106.) describe
the squares AX, AF, and BI, and Jig. 106.
draw BE parallel to either CF or ‘

AD, and join BF and A1 X /\

Because the angles ICB and
A CF are equal, if B C A be added
to both, the angles ICA and BCF
are equal, and the sides IC, CA, are
equal to the sides BC, CF ; there- . 5
fore the triangles ICA and BCF —
are equal (59). But AZ is parallel to CI therefore
the parallelogram CZ is double of the trlangle ICA,
as they are upon the same base CI, and between the
same parallels (214.); and the parallelogram C E is
double of the triangle BCF, as they are upon the same
base CF, and between the same parallels (214.) ; there-
fore, the parallelograms CZ and CE being double of the
equal triangles ICA and B CF, are equal to one another.
In the same manner it can be demonstrated, that A X
and AE are equal; therefore the whole DAC F isequal
to the sum of CZ and AX,

(233.) 1t may not be uninteresting, in a proposition

of such extreme importance as the preceding, and so
conspicuous for its beauty, to show how, by actual
dissection, the square on the side opposite to the right
angle, may be made to cover the squares of the two
sides which form it.

From D and G (fig. 107.) draw DE and GH
parallel to AB, and produce NA and RB to meet these
parallels at F and I; take CM equal to AN or BR,
and draw MN and MR, which will be parallel to CA
and C B ; produce DA and GB, asin the figure ; take
GK equal to BH and draw KL parallel to AB, and
take R S equal to KL, and draw SQ parallel to BG.

The square on the side opposite the right angle, is |

now divided into seven pieces ; and the squares on the
sides which form it are likewise divided into seven

'-.—\. s .
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and B D (282.), or to the squares of AB and B C,
B C being equal to B D. But the squares of A Band BC
are together equal to the square of A C; therefore the
squares of A D and A C are equal, and therefore the
lines themselves are equal ; but also D B and B C are
equal, and the side A B is common to both triangles ;
therefore the triangles A B C and ABD are in all re-
spects equal, and therefore the angle A B C is equal to
the angle A BD. But A BD is a right angle, therefore
A B C is also a right angle.

(235.) Hence this peculiar relation among the
squares of the sides is a distinguishing character of a
right-angled triangle. That it is a property of a right-
angled triangle, appears by (232.), and that it is a
property of no other triangle is established by (234.).

(236.) This principle furnishes a method of adding
together two or more squares, so as to obtain a square
equal to their sum.’

Let several lines be given to find a line whose square
is equal to the sum of their several squares.

Draw two lines A B and BC ( fig. 111.) at fig. 111.
right angles,; and equal to the first two of the L
given lines, and draw A C. Draw CD equalto D2
the third of the given lines, and perpendicular , / ‘
to AC, and draw AD. Draw DE equal to \l\r
the fourth, and perpendicular to A D, and draw :
A E, and so on; the square of the line AE " %
will be equal to the sum of the squares of A B, BC,
C D, D E,"which are respectively equal to the given
lines,

For the sum of the squares of A B and B C is equal
to the square of A C. The sum of the squares of AC
and C D, or the sum of the squares of AB, BC, CD,
is equal to the square of A D, and so on. The sum of
the squares of all the lines is equal to the square
of A E. :

(237.) A square may also be formed which shall be
equal to the difference between the squares of two
given lines.
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Through one extremity A (fig.112.)of the fig. 112.
lesser line A B, draw an indefinite perpen- E &
dicular A C ; from the other extremity B in- -
flect on A C with the compasses, a line equal
to the greater of the two given lines, which is
always possible since the line so inflected is
greater than B A, which is the shortest line
which can be drawn from B to AC. The square of
A D will be equal to the difference of the squares of
B D and B A, or of the given lines.

(238.) If the two sides which form the right angle
of a right-angled triangle be expressed by numbers, the
aumber which will express the square of the third side
will be found by adding together the numbers expressing
the squares of the other sides.

Hence the number expressing the side opposite the
right angle may be found by adding together the
squares of the sides which form it, and taking the square
root of their sum.

(239.) In the same manner, if the side opposite the
right angle be given in numbers, the third side may be
found ; for, if from the square of the side opposite the
right angle, the square of the given side be substracted,
the remainder will be the square of the third side, and
its square root will be the third side itself. ~Therefore,
to find the third side of a right-angled triangle, when
the side opposite the right angle and another side are
given in numbers, it is only necessary to take the square
of the lesser given side from the square of the greater,
and the square root of the remainder will be the third
side.

(240.) If the three sides of a triangle be expressed
by numbers, it may be known whether it be a right-
angled triangle or not, by comparing the square of the
greatest of the three sides with the sum of the squares
of the other two: if the latter be equal to the former
the triangle will be right-angled, otherwise not.

(241.) If a line be divided into several parts, the
square of the line will be equal to the several rectangles

A B
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under the line, and each of the parts into which it is
divided.

Let theline AB ( fig. 113.) bedivided g 113.
into three parts, at C and D,and leta [ |
square be described upon it; and, from
the points of division C and D let per-
pendiculars be drawn: these perpen-
dicularswillevidently divide the square
into three rectangles under the line ™ D7el B
A B, and its three several parts.

In the same manner it may be shown that whatever
be the number of parts into which the line is divided,
the square of the line is equal to the several rectangles
under the line and each of its parts.

(242.) If a line be divided into two or more parts,
the square of the whole line is equal to the squares of
the several parts together with twice the rectangles under
every pair of parts.

Lettheline A B (fig.114.) bedivided Jig. 114,

into three partsat D and E, and let a B/ oRr_O
square be constructed upon it, and di- E i‘q |
vide the side A B” at D’ and E” into p- : Hesp

similar parts; from D and E let per-
pendiculars be drawn to A B, and from
t?} in];iib let perpendiculars be t_lra;wu S ST

Since A D’ is equal to A D, A DM D is the square
of A D; and since D E is equal to D" E’, the parallelo-
gram M N is the square of D E, its sides being respect-
ively equal to D E and D’ E’; and in like manner the
parallelogram N O may be proved to be the square of
. EB.

The rectangles EM and E'M are rectangles under
AD and DE ; the rectangles EP and E'Q are rect-
angles under AD and EB ; and the rectangles N P and
NQ are the rectangles under DE and EB: thus the
whole square of A B is resolved into the squares of the
three parts, and twice the rectangles under eacn pair
of these parts ; and in the same manner, if the line were
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CHAP. X.
L OF SIMILAR FIGURES.

(244.) Two geometrical figures which have the same
shape or form, but are constructed on a different scale,
are said to be similar figures.

The sides and all the corresponding dimensions of
such figures must have the same proportion one to the
other, and their corresponding angles must be equal;
thus, if any one side of one of the figures be double or
triple the corresponding side in the other figure, then
every side in the one must be double or triple the cor-
responding side in the other ; and the angle formed by
each pair of sides in the one must be equal to the angle
formed by the corresponding sides in the other.

This important relation, constituting the similarity of
geometrical figures, though it may not be perceived with
clearness or facility when expressed in an abstracted
and general form, is the relation of magnitudes with
which, perhaps, we are most familiar in the arts and in
the ordinary business of life. The delineation of maps
and plans consists in expressing on a small scale, but
without disturbing their proportions, the shape of tracts
of country: in other words, it consists in drawing a
similar figure with shorter sides.

In like manner, the representation of all objects in
painting, whether they be landscapes, portraits, or, in
fine, representations of any natural or artificial objects,
consists, only, in drawing figures similar to the outlines
of these objects on a reduced scale. :

(245.) The precise conditions under which two geo-
metrical figures will be similar are the following: 1st.,
that they shall have the same number of angles; 2d.,
that these angles shall be respectively equal, each to



112 GEOMETRY. CHAP. X.

each ; 3d., that the sides containing the angles which
are equal, shall have to each other the same proportion.

Thus, if ABCDEF ( fig. 115.) be said to be similar to
AIBIC!DFEFF!J

fig, 115.

C D
¥

it is meant that the number of angles being the same in
both, the angle A shall be equal to A", B to B, C to C’,
Dto D/, E to E’, and F to F’; also, that whatever
ratio the side A B shall have to the side A’B’, the same
ratio shall BC have to B'C’, CD to C'D/, DE to D'E’,
EF to E'F/, and FA to F'A".

Thus, if AB be twice A’B’, then BC will be twice
B’C’, and so on.

(246.) In triangles the equality of the angles neces-
sarily infers the other condition of similitude, viz.the pro-
portionality of the sides ; and, vice versd, the proportion-
ality of the sides infers the equality of the angles. Thus,
if in two triangles, either of the conditions of similarity
be fulfilled, the other conditionmustalso be fulfilled. This
is a peculiarity of triangles ; it belongs to no other right
line figure, as will be evident upon the slightest consider-
ation ; since, if it did, the proportion of the sides being
given, the angles would be unalterable. Now it has been
already proved, that in a figure of four or more sides,
jointed with pivots at the angles, the angles may be
altered in an infinite variety of ways., In fact, the

RS RN o i e e

e

i

L 3 -
T



CHAP. X. GEOMETRY. 113

characteristic property of triangles here noticed is de-
pendent upon, and is an extension of, the property
already proved (62.), in virtue of which two triangles
are equal in all respects, if their sides be mutually equal.

To derive from first principles this property of
triangles in its most general form has been attended
with some difficulty, as has indeed been the case with
every general proposition arising out of our ideas of
ratio or proportion.  Mathematicians have differed
much as to the definition of these terms themselves,
owing to the difficulty of including those particular
cases which, like the diameter and circumference of a
eircle, cannot be precisely expressed by definite num-
bers, and which have therefore been called incommen-
surable quantities.

However useful disquisitions of this kind may be
to those who prosecute the study of geometry chiefly as
an intellectual exercise, they are attended with little
benefit either to those who on the one hand cultivate
the science merely with a view to its application in the
arts, or to those who on the other hand intend to penetrate
to the more abstruse departments of mathematics: —
for the one class of students more simple and less
abstract views will be sufficient, and the latter will
find their views of this question satisfactorily cleared
up as they ascend to the higher branches of analysis.

(247.) If in the triangle A B C (fig. 116.), parts
B D and B E be taken on the sides
BA and B C which shall be propor-
tional to those sides, the line DE will
be parallel to the base A C,

For let the lines D C and EA be
drawn, the two triangles B D C and
B A C having for their bases the
lines B D and B A, and having their
common vertex at C, have the same
height, and therefore their areas will
be in the same ratio as their bases ¢
(217.) ; that is, their areas will be as B D to B A.

i

2. 116.




114 GEOMETRY. CHAP. X.

In the same manner the triangles BA E and B A C,
considering the lines B E and B C as their bases, have
a common vertex at A, and therefore have the same
altitude. Their areas are therefore as their bases, that
is, as BE to B C (217). Thus it appears that the
areas of the triangles B D C and B E A have respectively,
to the area of the given triangle A B C, the ratio of the
parts B D and B E cut off from the sides to the whole
sides B A and B C. But these parts cut off are pro-
portional to the sides, that is, each of them has the
same ratio to the side from which it is cut ; and there=-
fore the areas of each of the triangles BDC and BEA
have the same ratio to the area of the whole triangle,
and are therefore equal.

This conclusion will be apprehended more easily and
clearly if it be stated in a less general form : thus if
B D and B E be respectively half of BA and BC, then
the triangles B A E and B C D will be respectively half
of the whole triangle, and will therefore be equal. In
the same manner if BD and B E were respectively
a third or a fourth, or two thirds or three fourths of
B A and B C, the areas of the triangles B D C and
B E A would be respectively a third or a fourth, or two
thirds or three fourths of the whole triangle, and would
therefore be equal.

Since then the areas B.D C and B E A are equal, if
we take away the area B D E from both, the re-
mainders A D E and C ED will be equal: now these
two triangles have D E as a common base ; and since
their areas are equal, the perpendicular from their ver-
tices A and C to this common base D E must be equal ;
therefore the points A and C are equally distant from
the line D E, and consequently the line D E must be
parallel to A C.

Hence any line which, like D E, cuts off' parts from
the sides of a triangle proportional to these sides will
be parallel to the base.

el
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(248.) On the other hand, if a
line DE (fig.117.) be drawn parallel
to the base of a triangle, it will cut
off parts B D and B E of the sides
which are proportional to the whole
sides.

This may be demonstrated by a
process similar in all respects to the
last.

The lines DC and E A being
drawn, the triangles which have D E A C
as their common base, and their vertices at A and C, will
have equal areas; because they have the same base,
and having their vertices in a parallel to that base,
they have equal altitudes.

To these equal areas let the area B D E be added,
and then the areas of the triangles BAE and BC D
will be equal ; these equal areas, therefore, will bear the
same ratio to the area of the whole triangle. But the tri-
angles B D C and B A C having a common vertex C,
have the same altitude ; there areas will therefore be as
their bases BD and B A (217.); and for a like reason
the areas of B EA and BC A will be as their bases
B E and B C. Since, therefore, the equal areas BD C
and B E A have the same proportion to the whole area,
the parts B D and B E will have the same proportion
to the sides B A and B C.

(249.) We are now prepared to demonstrate the
property of triangles in virtue of which either of the
two conditions of similitude infers the other.

If two triangles, ABC and A“B"C” (fig. 118.), be
respectively equiangular, the angles marked by the same
letters being equal, their corresponding sides will have
the same proportion each to each ; for let the vertex of
the angle B’ be placed upon the vertex of the angle B;
and let the sides of the angle B’ lie upon those of the
angle B, which is equal to it, so that the point A" shall
fall at m upon the side A B, and the point C” at n upon
the side CB : since the angle A’ is equal to the angle A,

I 2
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T fig. 118,

the line m n will be parallel to the side AC ; and there-
fore (248.) the line Bm, or the side B’A’, shall
have to the side BA the same ratio as the line B n, or
the side B’C’, has to the side BC.

In the same manner, by placing the angle A” upon
the angle A, it may be shown that the side A“C” has to
the side AC the same ratio as the side A"B” has to the
side A B,

(250.) A peculiar notation is used in Arithmetic to
express ratios, which is transferred also to Geometry.
In Arithmetic, the sign : between two numbers expresses
their ratio; and, in like manner, in Geometry the same
sign between the letters expressing two lines expresses
their ratio.

Thus, if the letters a, b, ¢ express respectively the
sides of the triangle opposite to the angles A, B, C,
and also a’, b’, ¢’ express the sides of the other triangle

opposite to the angles A”, B’, C” respectively, then the

ratios of the corresponding sides will be expressed by
a:a, b:b, and ¢ : ¢

(251.) In Arithmetic, also, the equality of two quan-
tities is expressed by the sign = placed between them ;
and the same sign is transferred to Geometry. Thus,
the angle A being equal to the angle A’, their equality
is expressed thus, A=A,

The same sign of equality is extended, both in Arith-
metic and Geometry, to ratios. Thus it was proved

that the ratios of each pair of corresponding sides in the

ol o s o
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two triangles were equal. This would be expressed, by
the notation just explained, thus:—
&= b=,
And the proposition demonstrated in (250.) would be
expressed thus : —
A=A B=F B mdlC=C,
then a:a' =b: b =c¢;e.
In other words, the equality of the angles infers the
proportionality of the sides.

(252.) Onthe otherhand, the proportionality of thesides
may be proved to infer the equality of the angles: i. e.

Ifa:a"  =b: =c:¢,
fhey, A=A, B =8B sl =,

For on the sides @ and e, thatis, on BC and BA,
take parts Bn and B m equal to B'C” and B"A” respect-
ively ; now, since a:a” = ¢: ¢/, the line mn cuts
proportional parts from the sides of the triangle ABC,
and therefore m n is parallel to AC_(247.); and there-
fore the angle B mn is equal to the angle A, and the
angle B n m is equal to the angle C. The angles there-
fore of the triangle B m n being respectively equal to
those of the triangle BA C, the sides of these triangles
will be proportional (249.); therefore AC: mn=AB:
Bm=c¢:c¢.

But also AC: A’C’ = ¢ : ¢, therefore AC : A’C’
= AC : mn. In other words, the side AC has the
- same ratio to A°C” as it has to m n, and therefore A’C’

must be equal to m n. :

The three sides of the triangle therefore, B m n, are
respectively equal to those of B’A’C’, and therefore the
angles are equal (62.); that is, the angle A’ is equal
to the angle Bm n, the angle C” is equal to the angle
Bnm, and the angle B"is equal to the angle B:
but it has been proved that the angle B m n is equal to
the angle A, and that the angle B nm is equal to the
angle C; therefore the angle A’ is equal to the angle A,
and the angle C’ is equal to the angle C. So that the

1 3
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two triangles ABC and A"B’C’, which have their sides
proportional, have their angles respectively equal.

(253.) If two triangles have an angle in one equal
to an angle in the other, and the sides which include
that angle proportional each to each, the triangles will
be similar.

That is, if B=B' and a¢: ¢'=c¢: ¢’, then will A=A"
and C=0C".

For on the sides of the angle B take parts B m and
Bn equal to B’A” and B’C’; it may be proved as
before, that in this case m n must be parallel to AC,
that the triangle B m n will be similar to BAC, and that
it will be in all respects equal to B’A’C’. Therefore
the triangle B’A”C’ will be similar to the triangle B A C.

(254.) If twotrianglesbe similar, perpendiculars drawn
from angles on the opposite sides will divide them into
similar right-angled triangles, and these perpendiculars
will, themselvee be proportional to any two correspond-
ing S]dEE of the triangles.

Let ABC and A'B’C’ (fig. 119.) be the two tri-

B Jig, 118,
A i C
Aﬁ\
A Y C

angles ; and let BP and B“P’ be the two perpendiculars
drawn from the equal angles B and B” on the opposite
sides. The triangles BAP and BA’P’ will then be
similar, as will also be the triangles BPC and B'P/C".

For since the given triangles are similar, the angles
A and A’ are equal; and the angles BPA and B’ 1"A"
are equal, being right ; therefore the triangles B P A
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and B’P”A” are mutually equiangular, and are therefore
similar, And in the same manner it may be shown
that the triangles B P C and B'P'C’ are similar.

The perpendicular BP has to B'P” the same ratio as
B A has to B'A’, being corresponding sides of the simi-
lar right-angled triangles ; that is, the perpendicuiars
are proportional to the corresponding sides of the given
triangles.

(255.) The areas of similar triangles are proportional
to the squares of their corresponding sides.

Let ABC and A"B’C” (fig. 120.) be similar tri-

fig. 120,
D E F
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angles, and let squares be constructed upon the sides
AC and A’C’; and through B and B’ let lines be
drawn perpendicular to AC and A“C’, and therefore
parallel to the sides of the squares. Through B and B’
also draw GH and G"H” parallel to AC and A”C",
The areas of the triangles being the halves of the
rectangles under their bases and altitudes are propor-
tional to these rectangles; that is, to the rectangles
AGHC and A’G’"H”C’. But the rectangle AG HC has
to the square AD F C the ratio of their heights PB and
PE, since they have the same base AC ; therefore the
square constructed on A C has to the rectangle 'under
the base and altitude of the triangle the ratio of the base
to the altitude; and in the same manner it may be
shown that the square constructed on the base A’C’ has
to the rectangle under the base and altitude of the
14
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other triangle the same ratio as the base to the alti-
tude.

But it has been already shown (254.) that, in similar
triangles, corresponding altitudes or perpendiculars are
-proportional to corresponding sides ; therefore the squares
of the corresponding sides have the same ratio to twice
the areas of the triangles, and therefore have the same
ratio to the areas themselves, and therefore the areas are
as the squares of the corresponding sides.

Thus, if in two similar triangles the sides of one are
twice, three times, or four times the corresponding sides
of the other, the area of the one will be four times,
nine times, or sixteen times the area of the other ; the
areas being always proportional to the squares of the
numbers which express the corresponding sides.

(256.) If two right-lined figures be similar, diagonals
drawn from corresponding angles will resolve them into
systems of triangles which will be similar each to each.

Let ABCDEF (fig. 121.) and A’B'C’'D’E’F’ be

fig. 121.
C D

A oy

similar figures, the angles expressed by the same letters
being equal. “From the angles A and A” draw in each
three diagonals to the angles C,D,E, in the one, and
C’,D’,E’, in the other.

Since AB : BC=A"B’: B’C’,and the angle B is equal
to the angle B’, which is an immediate consequence
of the similarity of the figures, the triangle ABC
must be similar to the triangle A” B’ C” (253.), there-
fore the angle B C A must be_equal to the angle B'C”A’;
and if these be taken away from the angles B CD and
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B'C’D’, the remaining angles ACD and A'C’D’ must
be equal. Also in consequence of the similarity of the
triangles ABC and A’B’C, AC: A’C'=BC: B’C’; but
in consequence of the similarity of the given figures
BC:B C'=CD: C' D therefore AC: A’C'=CD:
C’D7’; and since the angle ACD is equal to the angle
A’C’D’, the triangles ACD and A" C D’ will be similar
(253.) ; and inthe same way every pair of triangles formed
by corresponding diagonals may be proved to be similar.

(257.) It is evident that any two corresponding
diagonals in such figures will be proportional to two
corresponding sides,

(258.) The areas of any two corresponding compo-
nent triangles will be as the squares of corresponding
sides of the figures, since such sides are always corre-
sponding sides of such triangles. Thus, the areas of
every pair of corresponding triangles will be in the same
ratio, since every pair of corresponding sides in the
figures are in the same ratio.

(259.) Since the areas of every pair of corresponding
triangles are as the squares of corresponding sides of the
figures, the areas of all the triangles taken together, that
is, the areas of the figures themselves, are in the same
ratio; and thus we arrive at the conclusion that all simi-
lar figures, as well as similar triangles, have their areas
proportional to the squares of their corresponding sides.

It will therefore be apparent that in varying the
scale of a figure preserving its form, its superficial di-
mensions change much more considerably than its linear
dimensions.

If we double its linear dimensions, we quadruple its
superficial dimensions ; if we increase its linear dimen-
sions in a three-fold or four-fold ratio, we increase its
superficial dimensions in a nine-fold or sixteen-fold
proportion, and so on.

From what has been proved respectmg circles (229 )
(230.) it will be perceived that they, in all respects,
participate the qualities of similar figures.

The perimeters of similar polygons being composed
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of sides which are each to each in the same ratio, will
be themselves in that ratio ; thus it is evident that if
each side in the one be twice the corresponding side in
the other, the perimeter of the one, or the sum of all
its sides, will be double the perimeter of the other, or
the sum of all its sides.

The perimeters of similar polygons, therefore, have the
same property as the circumferences of circles ; they are
proportional to any two corresponding lines in the
figure. Thus as the circumferences of circles are in the
same proportion as their diameters, the perimeters of
similar polygons are in the same ratio as any two cor-
responding diagonals.

Also as the areas of circles are proportional to the
squares of their diameters, so the areas of similar po-
lygons are proportional to the squares of their corre-
sponding diagonals.

(260.) It has been proved that, if squares be con-
structed on the three sides of a right-angled triangle,
those which are constructed on the sides forming the
right angle are equal, taken together, to the square con-

structed on the side opposite the right angle. But since -

any similar figures whatever constructed on three sides
of the right-angled triangle, in which those three sides
shall have corresponding positions, will be proportional
to the squares of those sides, it follows that the above
property extends to all *similar figures; and therefore
that, if any three similar figures shall have the three
sides of a right-angled triangle for their corresponding
sides, the areas of the two figures on the sides forming
the right angle will be equal, taken together, to the
figure constructed on the side opposite to it.

Since circles are as the squares of their diameters,
this property may also be extended to circles ; so that, if
three circles be described having for their diameters the
three sides of a right-angled triangle, the areas of those
whose diameters form the right angle will, taken

together, be equal to the area of a circle whose diameter

is opposite the right angle.
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(261.) Let A B C (fig. 122.) be a right-angled tri-
angle, the angle B beingthe right angle. Let semicircles be

Jig. 122,

described on B C and B A, and let a semicircle also be
described on A C : this last semicircle must pass through
the vertex of the right angle B ; since the area of the
semicircle A F G C is equal to the areas of the semi-
circles AD B and B E C, taken together, if the segments
A F B and B G C be taken from both, the remainders
will be equal ; therefore the areas of the crescents D F
and E G, taken together, will be equal to the area of the
triangle A B C.

(262.) It has been proved in arithmetic, that if four
numbers be proportional, the first to the second as the
third to the fourth, the product of the means will be
equal to the product of the extremes ; the means being
the second and third, and the extremes the first and
fourth.*

Since the area of a rectangle is expressed by the pro-
duct of the numbers which express its sides, we may at
once transfer the above principle to geometry, announc-
ing it as follows: —

If four lines be proportional, the first to the second,
as the third to the fourth, then the rectangle under
the means will be equal to the rectangle under the ex-
tremes.

Thus let a, b, ¢, d, be four lines, and let

g:li=c¢; d.
Then the rectangle under @ and 4 will be equal to the
rectangle under b and ec.

* Arithmetic (Cab. Cyc.), p. 375.
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of the mean isin fact the rectangle under the two equal
means of the three continued proportionals regarded as
four proportionals with equal means.

(266.) If two chords intersect each other in a circle,
the rectangle under the segments of the ome will be
equal to the rectangle under the segments of the other.

Let AB and CD be two such chords intersecting
at O ; draw the lines BC and Jig. 124,
D A; the angles ADC and
ABC standing on the same arc
of the circle are equal (110.), e

B
and the angles at O in the two 0
triangles are also equal (20.) ; 5
therefore the triangles ADO A ;

and CB O are mutually equian-
gular (57.), and are therefore
similar. Hence (249.)

AO: DO=CO:BO.
The rectangle under the means will then be equal to the
rectangle- under the extremes; that is, the rectangle
under A O and B O is equal to the rectangle under
DO and CO.

It is evident that the same will be true for any
number of chords intersecting in the same point; the
rectangle under the segments of each of them will have
the same magnitude.

(207.) If AB (fig. 125.) be the diameter of a

circle, a perpendicular to it fig. 125.

from any point C, meeting 1

the circle at D, will be a mean

proportional between the seg-

ments AC and CB of the C

: A B
diameter.

For it has been already
proved (116.) that if D E be
perpendicular to the diameter B
AB, it will be bisected by the
diameter ; but since the rectangle under AC and CB
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is equal to the rectangle under D C and C E, and DC
is equal to C E, the rectangle under AC and C B will
be equal to the square of D C; therefore D C will be
a mean proportional between A C and C B. (265.)

- (268.) If from the same point P ( fig. 126.) on the

A
1
[

!

Hal
™
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fig. 126.
A
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circumference of a circle, a tangent PT, and a chord

PC, be drawn, the angle CPT, formed by these lines,

will be equal to an angle contained in the segment of
the circle PAC which lies on the other side of the-
chord.

For from P, through the centre O, draw the diameter
PO A, and draw A C ; the angle P A C is equal to all
the other angles, such as P B C, in the same segment;
and it is therefore mnecessary only to prove that the
angle C P T is equal to the angle PAC,

The angle A P T is a right angle (83.), and there-
fore APC and CPT are together equal to 00° ; also
the angle A CP is a right angle (112.), and there~
fore the angles CAP and CPA are together equal to
a right angle (52.). Since the angle CAP, together
with CP A, makes up 90°, and also CPT, together
with the same angle C P A, is 90°; the angle CPT
is equal to the angle C A P, and therefore equal to any
angle in the same segment (110).

(269.) If from the same point P (fig. 127.) outside
a circle a tangent P T' and a secant P AS be drawn, the

R A S S i
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fig. 127.

square of the tangent PT will be equal to the rectan-
gle under PA and P S.

For let TA and TS be drawn: the angle PT A will
be equal to the angle S (2068.), and the angle P is
common to the two triangles PAT and PTS; there-
fore the triangles are equiangular (57.), and are there-
fore similar; therefore their corresponding sides are
proportional (249.): hence

PAPT=PT s
That is, PT is a mean proportional between PA and
PS8, and therefore the square of PT is equal to the
rectangle under P A and P8,

(270.) Since this will be equally true of all secants
drawn from the same point P, it follows that the rect-
angle under the corresponding lines for each secant are
equal. Thus, if PA’S” be drawn, the rectangle under
PA”and P 8" may in the same manner be proved to be
equal to the square of PT, and is therefore equal to the
rectangle under PA and P8, and the same will be true
of all secants drawn from the same point P.

(271.) To find by geometrical construction a fourth
proportional to three lines, is equivalent to the problem
to construct upon a given right line a rectangle equal
to a given rectangle ; for the fourth proportional will be
the height of a rectangle formed on the first of the
three given lines whose area is equal to the rectangle
under the second and third. Or the question may be
stated thus, — The means and one extreme of four
proportionals are given, and the other extreme is sought.
Since the rectangle under the means is equal to the
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rectangle under the extremes, the problem is to con-
struct upon the given extreme a rectangle whose area
shall be equal to the rectangle under the means.

The principles of geometry which have been already
explained present many methods of doing this.

I. Let a (fig.128.) be the given extreme, and b and ¢

fig. 128.

a
b
c

M
N:

the given means. Draw two lines M N and MO equal
respectively to @ and b, and draw N O so as to form a tri-
angle ; also draw M’N” equal to ¢, and on M“N” con-
struct a triangle having its angles equal to those of
MN O; the two triangles being respectively equiangular, -
will be similar, and therefore their sides will be pro-
portional: hence
LMN MO = MN: MO,

argch—c: MO
M’O’ is therefore the fourth proportional which is
sought, and the rectangle under M’O” and a will be
equal to the rectangle under b and e.

It will be perceived that the spirit of this solution
consists in making the given extreme and one of the
means two sides of a triangle, and in constructing a si-
milar triangle of which the other mean and the sought
extreme shall be corresponding sides. Although the
other varieties of solution for this problem are appa-
rently different from the present, yet if carefully con-
sidered they will be found to be identical with it; the
only difference being in the method by which the two
slmJIar triangles are constructed.
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II. The same problem may be solved otherwise,
thus : —

Let the given means or lines equal to them be placed
S0 as to form one straight line, so that A B (fig. 129.)

fig. 129,

shall be equal to b, and B C to ¢; from B draw BD
equal to a, and making any angle with AC; through the
points A, D, C, describe a circle (121.); produce the
line D B until it meet the circle at the opposite side E ;
B E will then be the fourth proportional sought.

For the rectangle under A B and B C is equal to the
rectangle under D B and B E (266.). Hence (262.)

DB:AB=BC :BE;
that is, @ :b=¢ : BE.

II1. The problem may also be solved thus : — Draw
‘any two lines AX (fig. 130.) and AY forming any
angle with each other; take upon AX from A two parts
AB and A C, equal to the given extreme @ and to one
of the means b ; on the other line A Y take a part A D
from A equal to the other mean ¢ ; draw a line joining
B and D, and from C draw another line parallel to
BD which will meet AY at E; AE will then be the
fourth proportional sought.

K
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A Sig. 180,

E
Y

For since BD is parallel to CE, we shall have (248.)
AR AC=AD " AR:
that is, g * b= ¢ = AL

(272.) The proportional compasses are an instru-
ment by which the problem for the fig. 131.
determination of proportional lines
may be always solved.

This instrument (fig.131.) consistsof
twosimilarand equal piecesof brass, A B
and A’B’, terminated at each end with
steel points, C Dand C" D’. Ois a pi-
vot which may be adjusted so as to di-
vide the length of the legs from point
to point in any required proportion.
In whatever proportion the pivot O
divides the legs, in the same propor-
tion will be the distances between the
points, to whatever extent the compasses
may be opened.

Thus suppose the pivot O is so adjusted that DO
shall be twice CO and D’O twice C’O, then the dis-
tance DD’ will be twice the distance CC".

For in the triangles DOD” and COC’ the sides in-
cluding the angles O are proportional to each other, and

q
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the angles O are equal ; therefore the triangles are

similar, and therefore the sides are proportional. Hence
CO+ DO =00\ : DD,

If then D O be twice CO, DD’ will be twice CC’; and

in general whatever be the ratio of CO to DO, the

same will be the ratio of CC” to DD".

The legs of the proportional compasses are usually
graduated, and the moveable pivot furnished with an
index, so that the instrument may be so adjusted as to
give any required proportion.

To illustrate the use of this instrument, let us sup-
pose that it is required to draw a line from a certain point
which shall be #; of a givenline: let the pivot O be so
adjusted that the legs of the compasses be in the pro-
portion of 3 to 10, and let the longer legs be then
opened until their points correspond with the extre-
mities of the given line ; the distance between the points
of the shorter legs will then be i; of the given line, and
this distance may be taken from the given point by
means of the compasses.

(273.) Every method by which a fourth proportional
to three lines may be found will also be sufficient to
find a third proportional to two lines ; since the question
of a third proportional is reduced to that of a fourth
- proportional by repeating the mean, and considering it
as the case in which the means b and ¢ in the preceding
solutions are equal.

(274.) When of three continued proportionals the
first and third are given, it is sometimes required to
find the second ; in other words, it is required to find
a mean proportional between two given extremes.

Of the solutions which may be given to this pro-
blem the following is the most simple : — Let the given
extremes A B (fig.132.) and B C be placed in the same
straight line, and on this line A C let a semicircle.be de-
scribed ; from the point B draw a perpendicular to A C,
meeting the semicircle; B D will then be the mean
required. |

% 3
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fig. 132.
- "‘MD

A B C

It is evident from what has been already proved (267.)
that BD is a mean proportional between AB and BC.

(275.) Hence a line may be found whose square is
equal to a given rectangle; for it is only necessary to
find a line which shall be a mean proportional between
the sides of the rectangle (265.).

(276.) The principles which have been established
are sufficient for the geometrical solution of the quadra-
ture of any figure formed by right lines; that is, for
finding a line whose square shall be equal to the area of
such a figure.

It has been shown in (275.) that a line may be
found whose square is equal to a given rectangle.

It has been shown in (214.) that a rectangle whose |

area is equal to that of a given triangle, may be found
by constructing one with the same base as the triangle
and half its altitude.

It has been shown in (256.) that every right-lined
figure may be resolved into triangles : since, then, rect-
angles may be found whose areas are equal to these tri-
angles severally, and since squares may be found equal
to these rectangles severally, and since one square may
be found which shall be equal to all these squares taken
together (236.), it follows that a square may be found

whose area shall be equal to that of the proposed
figure.

¥
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CHAP. XI.

GF THE CONSTRUCTION OF EQUAL AND SIMILAR FIGURES.

Tue construction of figures equal or similar one to
another, or, in other words, the changing of the position
- or scale of figures, is of extensive use in the arts; and
the various methods by which it is accomplished have
an immediate dependence on geometrical principles.
(277.) Let it be required to draw a figure precisely

equal and similar, and similarly placed, to the figure
ABCDE (fig.133.).

fig. 138,
C c
/ it .
7
B ¢ ! I/;
5 \ EE
1la_..----"""_'-.-'--.--_
A X

From the several angles A, B, C, D, E, draw parallel
lines to the place where the equal figure is intended to
be constructed ; and supposing the point A” to be that
at which it is required to place the angle of the figure
which corresponds to A ; from A"draw A” B parallel to
A B, and meeting the parallel from B at B”; from B’
draw B"C’ parallel to B C, and meeting the parallel from
C at C’; from C” draw C” D’ parallel to C D, and meet-
ing the parallel from D at D”; from D’ diaiy D’ E’
parallel to D E, and meeting’ the parallel from E at
E’; lastl}r, join A’ “: then the figure A’B’ C'D’E
w111 be in all respects equal and similar to thc. figure
ABCDE.

For AB B"A’is, by the construction, a parallelo-
gram : therefore A" B"is equal to A B ;in the same
manner B” C” may be proved to be equal to B C. The
two angles into which the angle A" B* (! is divided by

K 3
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the continuation of the parallel B B, are respectively
equal to ‘the two angles'into which A B C is divided by
the parallel B B’; for they are the external angles formed
by thé parallels and the lines which cross them (41.) ;
therefore the angle A" B’ C” will be equal to the angle
A B €. 'In the same manner it may shown that the
line'C“ D" is equal to the line C D, and the angle B'C'D’
equal to 'the angle B C D ; also, that the line D" E is
equal to the line D'E, and that  the angle C" D’ E’ is
equal to the angle C D E.

But since A B B’“A’ is a parallelogram, A A” is equal
to B B’; and in the same manner we have the following
equalities : —

BB =@ 0
gBe' =D D
DiD)' = EE
Hence it follows that
' e D
Therefore A A”E’E is a parallelogram, and there-

fore A”E" is equal and parallel to A E ; and it may
be shown, that the angles B°"A"E’ and A’E’' D’ are

respectively equal to the angles B A E and A E D.

Therefore the figure A”B”C” D’ E” is in all respects
equal and similarto A BC D E,

(278.) By a process analogous to the preceding, a
figure may be constructed similar to a given figure, and
having its sides in any proposed ratio to those of the
given figure.

Let ABCDE (fig. 134.) be the given figure, and

ﬁl'-h;' LA
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let it be required to construct another whose sides shall
have to the sides of this a given ratio, and shall have
the angle corresponding to A at A’.
Draw A A’, and produce it to O, so that the ratio of
A O to A” O shall be that of the sides of the two figures ;
from O draw O B, 0C, O D, and O E ; now draw A’B’
parallel to AB, B'C'to BC, C' D" to CD, and D" E’
to D E, and join the points A" and E’. The figure
A’B'C’D’E” will then be similar to the figure
A B C D E, and their corresponding sides will have the
required ratio of A”O to A O.
For since A”B” and B’ C’ are parallel to A B and
B C, the angle A" B C” may be proved to be equal to
the angle A B C, in the same manner as the correspond-
ing angles were proved to be equal in (277.).
And in the same manner the angles C" and D" may be
proved to be equal to the angles C and D.
Since A’ B” is parallel to A B, the triangle A O B’
is similar to the triangle A O B ; and therefore
AR AR = AQAB;
that is, the corresponding sides A" B” and A B of the
two figures are in the required ratio. But, for the same
reason, we have also
AO:A0=B0:B0O;
and since B” C” is parallel to B-C, we have
B O yBC=B0:BO,
and therefore
BCrBL=A0:A0;
that is, the correspﬂndmg sides B C” antl B C are in
the required ratio; and in the same manner it may be
shown that the sides C’ D’ and C D, and also D" E” and
D E are in the required ratio.
But in consequence of the succession of parallels to
the sides of the figure A B C D E, we have

AO:A0=8B0880
B0 B0 = 0= 0.0
CCO:C0=00:D0

PDO:PO=E0:EO0,
K 4
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Therefore it follows that
A0 A0 =FE0:BO;

and therefore (247.) A’ E’ is parallel to A E ; and it
may be shown, as with the other sides, that the angles
A’ and E are respectively equal to the angles A and E,
and that the sides A”E’ and A E are in the required
ratio ; therefore the figure A’ B’ C’ D’ E’ is similar to
the figure A B C D E, and has its sides in the required
ratio to those of A BC D E.

(279.) When, in the arts, it is required to make a
figure equal and similar to a given one, it is frequently
done by the process which forms the fundamental test
of equality in geometry,— the process of super-position.

Thin transparent paper, called tracing paper, is laid
over the figure to be copied ; and the sides of the figure
being seen through the paper, corresponding marks are
made with a pencil on the tracing paper, and the figure is
delineated upon it. This process is applicable to all
figures, whether bounded by right lines or curves.

The figure thus made on the tracing paper may be
transferred again to drawing paper, or to any other sur-

face, by stretching the tracing paper over such surface -

and marking the outline of the figure by a pencil or
pen, penetrating the tracing paper; or a pattern may
be cutin card or wood from the figure taken upon the
tracing paper, and this pattern being laid upon the sur-
face to which it is required to transfer the figure will
give the means of tracing the figure, its sides affording
so many rulers by which the chalk, pen, or pencil may
be guided.

This process is so common in all the arts, that it is
needless to multiply examples of its application ; the
method pursued by tailors and dress-makers in cutting
out clothes, by carpenters, workers in metal and iron,
will occur to every mind.

In every species of printing, including letter-press
printing, and the printing of engraving in all its forms,
the process of super-position is applied ; but owing to
the surfaces brought together being turned in different
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directions, one being presented upwards and the other
downwards, the design, when viewed upon them, will
be laterally reversed, the points to the right of one cor-
responding with those to the left of the other. Thus, in
letter-press printing, the types which form the words
composing a line are put together by the compositor
with their faces upwards, but, in impressing the paper,
are turned downwards, so that the letters which were on
the left when turned upwards will be on the right when
turned downwards ; but since they leave their impres-
sions on the paper in the order in which they stand when
turned downwards, it follows that in order that the
printed lines should be read from left to right, the types
which produce them must be set from right to left.
The same observation will be applicable to every
design printed from types, or from engraving of any
kind ; and accordingly the plate on which an engraving
of a picture or other design is made, must be engraved
in a position laterally opposite to that of the picture or
design itself. '
(280.) A geometrical figure may be laterally reversed
by such a geometrical construction as the following : —
Let ABCDE ( fig. 185.) be the figure, and let A” be

Jig. L35,

the point to which it is required that A should be trans-
ferred ; draw the line AA’, and bisect it. ~“Let M be
the point of bisection ; through M draw the indefiuite
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line X Y perpendicular to A A”; from the points B, C,
D, E, draw the lines BO, CQ, DP, EN, perpendicular
to XY ; and produce each of these lines to the points
B’,C,D’, E’, until the parts of each of them on the
right of X Y shall be equal to the parts on the left, that
is, so that O B'shall equal OB, Q C’ shall equal QC, P D’
equal P D, and NE equal N E. Let the points A", B,
C’, D', E’ then be connected by straight lines ; the figure
thus formed will be the figure A BCDE reversed.

For if we conceive the figure ABCDE to be doubled
over to the right by a fold along the line XY, the
several perpendiculars from the points M,N,0,P,Q on
the left of XY will fall upon those on the right of it ;
and since M A is equal to M A’ the point A will fall upon
the point A’; and since OB is equal to OB’, the point B
will fall upon the point B’; and since QC is equal to
QC’, the point C will fall upon the point C’; and since
PD is equal to PD’, the point D will fall upon the
point D’; and since NE is equal to N E’, the point E
will fall upon the point E’.

Since then the vertices of each of the angles of the
one figure will fall upon the vertices of each of the
angles of the other, the one figure when turned over so
as to be laterally reversed will exactly cover the other.

If it were required to produce an engraved plate,
which, by printing, would give an impression of the
figure A"B"C’D’E’, it would therefore be necessary to
engrave upon it the figure ABCDE.

In the same manner, if it were required to produce
an impression by printing of the figure represented in

fig.187., it would be necessary to engrave the plate in
the manner represented in fig. 136.
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In the same manner, if it were required to print the
word

GLEOMETRY,

it would be necessary to form and arrange the types
thus,

ATATRAILORD

(281.) It frequently happens that it is necessary to
copy figures either in their proper position or in a re-
versed one, under circumstances in which the geometri-
cal methods above explained would be inapplicable :
the copy may always be executed by resolving the
space occupied by the figure to be copied into a system
of squares, by drawing two systems of parallel lines at
equal distances, and at right angles to each other, and
by drawing a similar system of squares on the surface
which is destined to receive the copy. These systems of
squares respectively may be removed or ubhterated after
the copy has been executed.

Torender this intelligible, let ABCD E F G( fig.138.)
be the figure to be copied : from a point O draw two in-
definite lines O X and OY at right angles, so as to include
the figure between them. On OX take O1, equal to the
magnitude of the sides of the squares into which it is
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third parallel from O Y : its position on the surface on
which the copy is to be made is determined, and is at A’
( fig. 189.).

We find the point B on the second parallel from OY
at a certain distanée above the fifth parallel from OX ; let
that distance be taken in the compasses, and a similar
distance be taken on the second parallel from O Y, in
fig. 139., above the fifth parallel from OX.

Again, we find the point C to the right of the third

parallel from OY, and above the sixth parallel from O X.
Taking in the compasses its distances from these two
parallels, the position of the corresponding point in fig.
139. will be determined ; and in the same manner the
position of each angle or other point may be found ; and
by connecting the several points thus determined an
equal and similar figure will be formed.
- (282.) If it be required to construct a figure late-
rally reversed, the system of squares must likewise be
reversed, and the points of the required reversed copy
may be determined in the same manner ( fig. 140.).

Jig. 140,
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By a slight modification of this process, copies may
be made on an increased or diminished scale in any re-
quired proportion ; it is only necessary that the squares
used with the figures respectively shall have their sides
in the required proportion, and that the distances of the
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points between the parallels shall be taken in the same
proportion. Let us suppose that a painting or drawing
on a large scale is required to be copied on a small scale :
a frame consisting of threads of silk or wire stretched
parallel to each other at equal distances, and at right
angles, is placed before the picture to be copied ; let a
frame consisting of an equal number of squares, whose
sides shall be less in the required proportion, be placed
over the paper or canvass on which the reduced copy
is intended to be made ; the proportion of the points of

the drawing corresponding to those of the original will
be determined according to the position of the square -

in which they are found, and by their position in that
square,

The proportional compasses (fig. 131.) furnish an
easy and accurate means of determining the position
of the points in their respective squares. Let the legs
of this instrument be so adjusted by the moveable centre,
that the ratio of their lengths shall ecorrespond to the
proportion in which the picture is to be reduced; and
when the distance of any point of the original from an
adjacent parallel is taken by the longer legs, the opening
of the shorter legs will give the distance of the corre-
sponding point of the copy from its adjacent parallel.

(283.) In ornamental needle-work, the same system
of copying is practised : the figures to be executed are
usually required to be wrought on coarse canvass, the
threads of which form a system of squares, such as have
been just described. The original object from which the
copy is made is delineated in proper colours on paper
on which a similar system of squares is printed, the
colour occupying each square being there distinetly ex-
pressed. The square printed on the paper correspond-
ing with the squares formed by the threads of the
canvass, the colour occupying each square on the paper
directs the needle-worker in the choice of the colour of
the silk or worsted with which the corresponding square
on the canvass should be filled,

It is evident that the state of the work in this case
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will be regulated by the coarseness or fineness of the
canvass ; the coarser canvass giving figures on a larger
scale.

If the figures are required to be wrought upon a
cloth, of which the threads do not form the neces-
sary system of squares, the work may be executed by
stretching over the cloth on which the figures are to be
wrought, canvass of that degree of coarseness which
will give the required degree of magnitude to the pat-
tern. The needle is then passed through both the canvass
and the cloth on which the pattern is intended to be
worked, so that in the first instance the effect of the
work is to stitch together the canvass and the cloth.
The threads of the canvass are, however, subsequently
drawn out one by one, and the pattern is exhibited
wrought in its proper form and colours upon the cloth.

The reduction and the reversing of designs is much
used in the art of engraving. When it is required to
produce an engraving from a picture upon a large scale,
a copy of the painting must, in the first instance, be
made on the scale on which it is intended to be engraved.
This copy should represent the original in its true pro-
portions. By habit the eye of an engraver acquires
extraordinary skill and quickness in the detection even
of very slight deviations from the just proportions
in such reduced copies. We have known a case in
which an artist, who executed a celebrated picture, on
examining the copy which had been made for the en-
graver, was satisfied with its accuracy, yet the moment
the copy was submitted to the inspection of the engraver,
small inaccuracies of proportion were apparent to his eye
which could not be discerned by the original artist, but
which were rendered evident by the application of the
proportional compasses. Such copies should therefore
always be tested by this instrument, :

(284.) Among the properties of geometrical figures
some of the most striking, by their beauty and generality,
and by their application in the arts, do not admit of de-
monstration by any principles of mathematical reasoning
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sufficiently simple and elementary to be introduced with
propriety into this volume. As examples of such pro-
perties, the following may be mentioned : —

A regular polygon contains a greater area than any
other figure of the same perimeter and the same number
of sides.

If two regular polygons have equal perimeters, that
which has the greater number of sides contains the greater
ared.

Of all figures having the same perimeter, whether the
sides be straight or curved, that which contains the greatest
area is the circle.

The following examples will illustrate the application
of these properties in the useful arts: —

When a Gothic window of a given magnitude consists
of panes of glass having the form of a regular polygon,
a less amount of metallic framing will be required than
if the frames had any other figure ; and the more nume-
rous the sides of the polygonal frame, the less will be the
quantity of framing. As the enly regular figures by
which a space can be covered are the triangle, square,

and hexagon (195.), it follows that the form of pane

requiring the least quantity of framing is the hexagon.

In the construction of pipes for the conveyance of
gas, water, or other fluid, the object is to convey the
greatest quantity of the fluid with the least expense of

pipes. Although there are other reasons which render

the use of circular pipes expedient, they have the further
advantage of containing, in a given length and with a
given quantity of material, a greater quantity of fluid
than pipes of any other form.
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CHAP. XII.

OF STRAIGHT LINES AND PLANES.

(285.) Tae relations and properties of geometrical
figures which have been explained in the preceding
chapters are those which belong to straight lines and
circles, supposed to be described on the same plane
surface. Thus, when several straight lines have been
considered, or when straight lines have been viewed in
relation to circles, or circles regarded in relation one to
another, each line or circle has been understood to be
so placed, that the plane surface on which it is formed
is the same as that on which the other lines or circles
under inquiry are also formed.

It is, however, frequently necessary to investigate
the geometrical relations of lines which do not lie in the
same plane.

It has been stated (5.), that one of the properties of
a plane. surface is, that any two points imnr it being
united by a straight line, every part of that straight
line, whether between the two points or beyond them,
however far the line be continued, will lie in the
plane surface. From this property another immediately
flows. If two plane surfaces intersect each other, their
line of intersection will be straight. For, let a straight
line be imagined to be drawn from any one common
point of the two planes to any other ; every part of
that straight line must, in virtue of the property just
referred to, lie at the same time in both planes, and
must, therefore, be their common line of intersection.

That the intersection of two plane surfaces is g
straight line, is a proposition which, when applied to
any particular case, becomes so evident, that it can
hardly be considered to require proof. The walls of

L



o el
)

146 GEOMETRY. CHAP, XIL

room being plane surfaces, the corners formed by their
intersection are straight lines. In like manner, the
lines formed by the junction of the floor with the walls |
are straight. 'The surfaces which form the sides of an
obelisk are plane, and its corners are straight lines.

On the other hand, if a plane surface intersect a
curved surface, the line of intersectiou will be generally
curved. Thus the surface forming the side of a bridge
intersecting the curved surface forming the arch of the
bridge, the line of intersection forming the corners of
the arch is curved, and the species of curve depends on
the form of the arch. (o2

The line of intersection of a plane and curved sur-
face, however, may be straight. Thus, if a, circular
pillar be eut by a plane along its centre, the lines.of
intersection of the curved surface of the pillar, and the |
plane surface formed by the section, will be straights -

Thus, the intersection of curved surfaces may be;a
straight line ; but the intersection of plane surfaces miust
be a straight line. |

(286.) If a point P (fig. 141.) beassumed any where -
above a plane, there will be a cer- figi 141,

‘tain point F upon the plane which iy

is nearer to P than any other point
on the plane. The line P F will in ;
that case be perpendicular to every L
line, such as A F B, drawn through |
the point F upon the plane. 3

For since PF is the shortest ;
line which ean be drawn from P’
to the plane, and since every point Mrotia B
of the line AB is in the plane, i oo ad §

P F must be the shortest line which can be drawn from
~the point P to the line A B, and must therefore be per-
pendicular to the line AB. (risz adt avad

. (287.) A line, such as PF, which is thus' perpen-
_dicular -to every line that can be drawn in a plane
. through the point where it meets the plane, is said. tobe
v{perpentﬁcﬂar to;the plane itself:o oz odt slidw HaxB
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The point F, where the perpendicular meets the
plane, is called the foot of the perpendicular. |

(288.) All lines, such as P A, P B, drawn to a plane
from a point P above it, which are equally inclined to
the perpendicular to the plane, are equal. -

For in the triangle PF A and PF B, the side PF is
common, the angles at F, being right, are equal, and
the angles at P are supposed equal. Therefore by
(61.) the triangles must be in all respects equal, and
therefore PA must be equal to PB. f

(289.) It follows, also, that the points A, B, where
such lines meet the plane, are equidistant from F, the
foot of the perpendicular. '

In facet, if a straight line P A revolve round the per-
‘pendicular PF, always making with it the same angle,
the part of that straight line between the point P and
the plane will continue of the same length, and it will,
“as it revolves, describe a circle, on the plane of which F

“will be the centre.

(290.) The greater the angle is which the line P A
“makes with the perpendicular, the greater the line P A
will be, and the greater also will be the distance of: the
point A where it meets the plane from F, the foot of
the pe¥pendicular. This may be shown in a manner
similar to the proof of the analogous property in (24.).

(291.) The perpendicular to a plane is called the
axis of all circles deseribed on that plane, round the
foot of the perpendicular as a centre.

When a circle revolves round its axis, the figure
undergoes no real change of position, each point of the
circumference taking successively the position deserted
by another point.

“ 'On this geometrical principle is founded the operation
of millstones. Two circular stones are placed so as to
have the same axis, to which their faces are perpendi-

“cular, being therefore parallel to each other and regu-

“lated in their distance according to the fineness of the
flour intended to be ground. The inferior stone is

fixed, while the superior stone is made to revolve by

L 2
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the power which drives the mill, The relative posi-
tion of the circular faces of the millstones undergoes no
real change during the revolution, and their distance
being properly regulated, all the corn which passes be-
tween them will be ground with the same fineness.

The advantage, and even the necessity of great pre-
cision in the construction of machinery is strikingly
illustrated by the effects of any want of exactitude in
the position of millstones. If the parallelism of the
faces of the stones be not perfect, — if the axis of the
moving stone be not truly at right angles to its circular
face, — the two grinding surfaces will not be at one
uniform distance, and the relative position of the two
stones, instead of being uniform, will constantly vary.
The grain will be, therefore, differently affected by
them, one part not being ground at all, or not suffi-
ciently so, and another part being too much broken, and
perhaps heated and spoiled.

In the lathe, the axis round which the body to be
turned is made to revolve, is the axis of the circles,
which the cutting instrument forms by removing the
matter which projects beyond the proper distance from
that axis. The process of turning, therefore, consists
in the formation of a surface, the cross seetion ¥f every
part of which is a circle, all the circles having the
same axis.

(292.) Since two perpendiculars to” the same plane
are both perpendicular to the same straight line, in that
plane joining their feet, they must be parallel to each
other (28.), and hence all perpendiculars to the same
plane are parallel to each other.

(298.) The plane which the surface of a liquid in a
state of quiescence forms is an horizontal plane, and if
indefinitely continued in all directions around, is called
the plane of the horizon.

If a weight be suspended by a flexible string so as to
form a plumb line, such string, when the weight is at
rest, will have a direction perpendicular to a horizontal
plane. The line of direction of such a string is called a
vertical line. ;
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Since all vertical lines are perpendicular to the same
horizontal plane, they will be parallel to each other, pro-
vided the distance between them be not so great as to
cause a sensible effect to be produced by the curvature
of the earth’s surface.

(294.) When two planes intersect they may be more
or less inclined one to the other. The angle which
they form with one another, is the angle formed by two
straight lines drawn from anty one point in their line of
intersection perpendicular to that line, one being drawn
on the one plane, and the other on the other.

Thus, if the straight line A B (fig. 142.) be the line
formed by the intersection of the two planes, take P
any point on that line, and draw P M in the one plane
and P N in the other, both perpendicular to A B. The
angle M P N is the angle formed by the planes.

It is easy to shew that wherever the point P be taken

Jig. 142,

upon the line A B, the angle M P N will be the same,
From any other point P, let P M” and P’ N* be drawn
also perpendicular to A B. The angle M’ P’ N” will be
equal to MPN. For take PM equal to P” M’ and
P N equal to P’ N”, and draw M M/, N N’, M N, M" N,
Sinee P M and P’ M’ are equal and parallel, M' M” and
P P’ will be equal and parallel, and for a similar reason
NN"and PP’ are equal and parallel, and therefore
N N”and M M’ are equal and parallel, and therefore M'N
and M"N” are equal and parallel.” The triangle M PN
has therefore its three sides respectively equal to those
L 3 MTH RIS
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be parallel to B”A”. All perpendiculars drawn from
C’ D’, or from its continuation in either direction, will be
equal to the perpendiculars C”B” and D" A”; and they
will be perpendicular to the plane A B C, and will there-
fore be the distances of the points in C” D7, or its con-
tinuation from the plane A B C.

(299.) A line is said to be parallel to a plane when
all its points are thus equally distant from the plane.

(300.) Ifaplane A"B"C’ D’ ( fig.146.) pass through
a line, such as C” D, parallel to another plane A BC D,
then the intersection A’ B’ of these two planes will be
parallel to C” D’, whatever be the angle the two planes
make with each other. _

For, since C“ D’ is parallel to the plane A B C D,
it can never meet that fig. 146.
plane, howeverit may be

prolonged ; and there- = s i

fore cannot meet any
line drawn in that plane. /\
It ecannot, therefore,
meet the line A’ B/,

formed by the inter- 4 ; i -

section of the two planes.
The two lines A” B” and
C” D’ can never, there-
fore, meet; and since they are both in the same plane,
they must be parallel.

(301.) It may be here observed, that the conditions
under which two straight lines are parallel are twofold :
first, they must be both in the same plane ; and, secondly,
their directions must be such, that, however they may
be prolonged in either direction, they can never meet.
It is easy to conceive two lines differing very much in
direction, and therefore not parallel, but which never-
theless can never meet, however they may be prolonged:
thus, if from any point in a horizontal plane a vertieal
line be drawn, and from another point in the same
plane, lying north of the former point, a line be drawn
east and west; these two lines will evidently not be

H --'-_'.l-i'ﬁ'!"ﬁ
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parallel, and yet however prolonged, they can never
meet.

(302.) Three points, hnwev&r they may be placed,
must always lie in the same plane. = For if a straight
line be drawn, uniting two of them, and a plane be
drawn through that line, and be made to revolve upon
it as an axis, it must, at some point of its revolution,
pass thmugh the third poeint ; in that position therefune
of the plane, the third point will be in it.

(808.) If more than three points be considered, they
may or may not be in the same plane, since the fourth
may be above or below the plane through the other
three.

(%04) It is on this geometrical principle that stab1-
lity in practice is more readily obtained by three sup-
ports than by a greater number. A three-legged stool
must be steady if placed on a plane surface, sinee the
ends of its legs, being in the same plane, will always
accommodate themselves to the surface which supponts
it; but if the stool have four legs, the end of one of
these may not be in the same plane with the ends of
the other three, in which case it will be unstable, since
the ends of the four legs cannot possibly at the same
time rest on the surface which supports the stool. Inwell
constructed furniture, the ends of the legs are formed
in the same plane, and therefore four or more legs are
used ; but in rudely constructed stools and tables it is
not unusual to form them with three legs, the inequality
of length being then not a cause of instability.

(805.) The use of three rectangular planes, such as
those described in (297.), is very frequent in the arts,
and especially in architecture, carpentering, and the other
departments of art relating to buildings. The floor and
walls of a room present an obvious example of a system
of such planes ; beams of wood, bricks, blocks of stone,
and almost all the materials used in building, afford like
examples.

In architectural and mechanical drawing, it is usual
to represent buildings and machines by views taken of
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them in the direction of three rectangular planes: the
view taken in the horizontal plane, is called the ground
plan; in addition to which a view is taken in two: verti-
¢al planes at right angles to each other: if these views
exhibit the exterior of the object, they are called eleva-
tions ; if they show its interior, they are called sections.

(306.) = 1f three points be taken at equal distances
above a'plane, the plane which passes through these
three points will be parallel to the former plane.

Let the three points be A", B", C’, taken at equal dis-
tances above the plane ABC (fig. 147.); and from

them let three perpendicu- fig. 147,
lars AA, BB and CC/,be =
drawn to the plane, these 5

three perpendiculars will be
equal and parallel, and there-
fore A B will be parallel to &’
A’ B’, B C will be parallel to
B’C’,and A C will be parallel
to A” C°. These three lines,
however prolonged in the one
plane, can never therefore
meet the other plane, and therefore the planes them-
selves can never meet; for if they did, one or otheriof
the three lines joining the three given points must meet
the line of intersection of the planes, since all the
three lines could mot be parallel to that line, and
therefore one of them would meet the other plane, con-
trary to what has been proved.

(307.) If two planes be parallel one to the other, they
will be every where equally distant from one another.

For if any two points in the one be at unequal dis-
tances from the other, let perpendiculars be drawn from
these points to the other plane. The line joining the
tops of these perpendiculars in the one plane, will there-
fore not be parallel to the line joining their feet in the
other plane ; these two lines would therefore meet if
continued, and therefore the planes in which they are

drawn would meet, and could not be parallel ; all points,
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therefore, in a plane parallel to another, will be uﬂ:qmall::;r
distant from that other.

(808.) If two parallel planes be both mt&rsected by
a third plane, their lines of intersection with that third
plane will be parallel. ' For since the parallel planes on
which these lines are drawn do not meet, the lines them-
selves can never meet, and since they are both in the
third, or intersecting plane, they must be parallel.

(809.) If from a point in a plane, any straight line
be drawn, not lying in that plane, another plane may be
drawn passing through that line, which shall be -per-
pendicular to the former plane.

Let F ( fig. 148.) be the pmnt inithe plane ABC,
and let F E be the line
through which it is re-
quired todraw thesecond
plane ; let F P be per-
pendicular to the plane
A BC. A plane drawn
through P F E will then
be perpendicular to the
plane A B C (295.). If
the line F E, through
which it is required to ft
draw a plane perpendi-
cular to the plane A B C, he itself perpendicular  to
the plane A B C, it will then be identical with F' P, and
any plane whatever drawn through it will be perpen-
dicular to A B C; but if it form any angle with F P,
then only one such plane can be drawn.

If the line F E be perpendicular to F P, it will then
be in the given plane A B C, but the solution of the
question will be the same.

(810.) The angle which a line such as F E makes
with a plane A B C, which it meets at F, is the angle
formed by the line F E, and the line F E’ formed by the
intersection of the plane through F E perpendicular to
the plane A B C.

(811.) The aungle under a straight line and a plane

fig. 148,
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is, therefore, the complement of the angle under t]mt
line, and a perpendmular to the plane.

(812.) If two planes be parallel, all lines drawn
from the one to the other equally inclined to them are
equal.

For all such lines will be equally inclined to :the
perpendicular to these planes, and will therefore he

equal.

(313.) Parallel lines intercepted between parallel
planes are equal.

For they must be equally inclined to the parallel
planes.

(814.) If from a point P (fig. 149.) two straight
lines PA and PB be drawn, forming fig. 149.
any angle A P B, and from the same
point a third line PC be drawn, ly- ¢
ing above the plane of the angle
A P B, this third line will form angles B
with PB and P A, whose planes will
be different from each other, and from
the plane of the angle A P B. In fact,
the three angles of which the point P L£--
is the common vertex, will have their
planes mutually inclined to each other, The inter-
sections of these planes, one with another, being the
lines P A, PB, and P C, which form the sides of the
three angles

(815.) The figure thus formed, with its vertex at
P, is called a solid angle.

The lines PA, PB, and P C, are called the edges of
the angle.

The plane angles APB, APC, and BPC, of which
the solid angle is formed, are called the fuces of the
solid angle.

(816.) Any two angles, AP C and B P C, forming
the faces of a solid angle, must be greater together than
the third AP B, for if they were not, the line PC
could not lie above the plane of the angle A P B.

(817.) It is evident that three rectangular planes

i
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ends are squares, and whose height is equal to the side
of its end, is called a cube.

Dice used in games of chance have the form of cubes.

(826.) Every prism may be resolved into as many tri-
angular prisms as the figures forming its ends or bases
can be resolved into triangles.

If from any angle of one of the bases diagonals be
drawn so as to resolve the base into triangles, and from
the corresponding angle of the other base similar dia-
gonals be drawn ; the several diagonals of the one base
will be parallel and equal to the diagonals of the other
base.  If planes be drawn through every pair of cor-
responding diagonals, these planes will resolve the prism

_into as many triangular prisms as there are triangles in
its bases.

(827.) The rectangular parallelopiped is the form of
prism most frequently presented in the arts. In ma-
sonry, it is the form given to bricks and to hewn stone ;
in carpentry, it is the form given to beams of timber ;
in buildings, an oblong rectangular parallelopiped is the
most common form for rooms ; and since the walls of a

building, whatever its plan may be, must be perpen-:

dicular to its base, the form of the building must always
be that of a right prism.

(828.) If any rectilinear figure, A BC D E (fig. 154.)
be traced upon a plane, and from
any point P above that plane
straight lines be drawn to the se-
veral angles of the figure ; a solid
will be formed having the figure
ABCD E traced upon the plane
for its base, and having as many
triangular faces as the base has
sides, these triangular faces ter-
minating in the common vertex
P, which forms the summit of the
figure. Such a solid is called a
pyramid, the point P being called
its vertea. :
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(829.) Pyramids are denominated triangular, quad-
rangular, &c. &c., according to the figures which form
their bases.

(330.) Obelisks are pyramids having square bases,
and equal and similar triangular sides, the heights being
very great in proportion to the magnitudes of their
bases.

The Pyramids of Egypt are pyramids having square
bases, and similar and equal triangular sides.

(881.) A regular pyramid is one which has a regular
figure for its base, and its vertex perpendicularly over
the centre of the circle which ecircumseribes its base ;
thus, a regular triangular prism has an equilateral tri-
angle for its base, and a line drawn from its vertex to
the centre of its base will be perpendicular to its base.

(332.) As all plane rectilinear figures admit of
having their areas resolved into as many triangles as
they have sides, by taking any point within them as the
common vertex of the component triangles ; so all solids
whatever admit of having their volumes resolved into as
many pyramids as they have faces, by taking within
their volumes any point as the common vertex of the
component pyramids, and drawing lines from that point
to their several angles, which lines will form the edges
of the triangular faces of the component pyramids.

The species of pyramids into which the solid is thus
resolved will depend on the kind of figures formed by
the faces of the solid figure; but since all pyramids
whatever can be resolved into triangular pyramids by
drawing planes through their vertices and the diagonals
of their bases, it follows that all solids whatever having
plane faces bounded by straight edges admit of being
ultimately resolved into triangular pyramids.

M
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CHAP. XIV.

OF THE VOLUMES OF SOLID FIGURES.

(383.) Tur perpendicular drawn between the planes of
the bases of a prism is called the altitude of the prism.
(834.) 1f two prisms have equal bases and equal alti-
tudes, they will have equal volumes, whatever may be
the form of their bases, or whatever may be the inclina-
tion of their bases to their sides.
For the volume of the prism may be considered to

be composed of a mumber of plates indefinitely thin

piled one upon the other. The number of plates
composing prisms of equal altitudes will be evidently

the same, provided the component plates of each have 3
the same thickness. Prisms of equal altitudes being
therefore composed of the same number of plates, their -
volumes will be the same when the component plates

have the same superficial magnitude. :
This form of demonstration, which is in the spirit

of the higher geometry, may be more clearly compre- =
hended by the following illustration : — A pack of cards
placed in a perpendicular heap forms a rectangular

prism, as represented in fig. 155. Vs
If they be piled so as to lean W
towards the end of the pack, as

in fig. 156., they will still form e

a prism, having the same base =
and the same altitude as before.

In this case, two of the sides of the prism will be per- ;
fig. 156. fiz. 157, 1

In fig. 157., the same cards are represented in such a_ |

?
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position as to form a prism in which all the sides are
oblique to the base.

(835.) The volume of a prism depends, therefore,
conjointly on its altitude and the area of its base. With
the same magnitude of base, the volume will increase
or diminish in the same proportion as the altitude is
increased or diminished ; and with the same altitude,
the volume will increase or diminish in the same pro-
portion as the base is increased or diminished.

(836.) A pyramid, whatever be the form of its base,
may be conceived to be formed of a number of thin
plates of matter piled one upon another, gradually
diminishing in magnitude upwards until they are re-
duced to a point at the vertex of the pyramid. The
plates thus composing a pyramid will have figures
similar to each other and to the base of the pyramid.
Thus, a triangular pyramid will be a pile of similar
triangles gradually diminishing in magnitude upwards.
That this is the case will be made evident by showing
that any section of a pyramid made by a plane parallel
to its base will be a figure similar to its base. Let the
pyramid, fig. 154., be cut by a plane passing through
the point A’ parallel to its base, and let the section
made by this plane and the side of the pyramid be
A’B’C’D’E’ ; since A’B’ is parallel to A B, the ratio
of A” B” to A B will be that of P B” to P B, and for the
same reason the same will be the ratio of B"C” to BC.
Thus each of the sides of A’B"C’D’E” will bear the
same ratio to the corresponding side of ABCDE; and
the corresponding angles of the figures being also equal
each to each, the figures will be similar. This section,
A’ B’ C’ D’ E’, may be considered as the surface of one
of the plates of which the prism is composed.

From what has just been proved, it is evident that the
area of any section of a pyramid parallel to the base
will have to the area of the base, the same ratio as the
square of its distance from the vertex to the square of
the distance of the base from the vertex, these dis-
tances being measured along the edges of the pyramid.

M 2
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For these distances being proportional to the corre-
sponding sides of the similar figures, their squares will be
proportional to the squares of those sides ; but the area
being as the squares of the sides, it follows that they will
be as the squares of their distances from the vertex.

If a perpendicular P O be drawn from the vertex to

i

i

the base of a pyramid, it will be divided at O by a

plane parallel to the base, in the same proportion as that
plane divides other lines drawn from the vertex to the
base. For, let BO and B” O’ be the intersections of
the plane of the angle B P O with the plane of the base
and the plane of the parallel section; the lines B O and
B O’ will then be parallel, and therefore P B will be
divided at B’ proportionally to PO at O".

It follows, therefore, that the area of the section of a

pyramid made by a plane parallel to the base, will be

in the proportion of the square of the distance of that =

plane from the vertex.

(387.) If two pyramids have equal bases and equal

altitudes, sections of them made by planes parallel to

their bases will be equal, if they are at equal distances

from their vertices.

For the areas of these sections will have to the areas =
of their bases, the same ratio as the squares of their
distances from the vertices to the squares of their alti-
tudes : these ratios being equal, and their bases being

equal, the sections will be equal.

(338.) Two pyramids having equal bases and equal
altitudes will have equal volumes ; for since they have |
equal altitudes, they will be composed of the same num-
ber of plates; and since the bases are equal, the plates,
which are equally distant from the vertices, will be
equal. The component plates, therefore, being equal

in number, and equal each to each in magnitude, the

volumes of the pyramids composed of them will be

equal.

conjointly on the magnitude of its base and its altitude.

If its altitude remain the same, its volume will increase

(339.) The volume of a pyramid depends, therefore,
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or diminish in the same proportion as its base is in=
creased or diminished; for, in that case, it will consist
of the same number of plates, all the plates being in-
ereased or diminished in the same proportion as its base
Is increased or diminished. If it have the same base,
its volume will increase or diminish in the same pro-
portion as its altitude is increased or diminished ; for,
in that case, while the magnitude of the corresponding
plates remains unaltered, their numbers will be in-
creased or diminished in the same proportion as the
altitude is increased or diminished.

(340.) The volume of a triangular prism is equal to
three times the volume of a pyramid, which has the same
base and altitude as the prism.

Let A B C and A" B’ € (fig. 158.) be the two bases

fig. 158,

or ends of the prism, and let a plane be supposed to be
drawn through the edge AC and the angle B’; a py-
ramid will thus be cut off' from the prism whose base
1s A B C, and whose vertex is at B, If another plane
be drawn through the edge B’ C” and the angle A, a
second pyramid will be cut from the prism, having for
its base A° B” C’, and for its vertex A. The altitude
of each of these two pyramids will be the same, being
the distance between the bases of the prism ; and their
bases will be equal, being the ends of the prism. The
a 3
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remainder of the prism after removing these two pyra-
mids will be the pyramid whose base is ACC/, and
whose vertex is B’; but the volume of this pyramid will
be equal to the volume of the pyramid whose base is
A A7 (%, and whose vertex is B’, because these two
pyramids have the equal triangles into which the paral-
lelogram A A” C’C is divided by its diagonal A C” for
their bases, and have a common vertex B’. It fol-
lows, therefore, that the three pyramids into which the
prism is divided by the planes A B° C” and A B’ C
have equal volumes; and since one of these has the
base of the prism for its base, fio. 159.

and the altitude of the prism for 5

: ¢ B!
its altitude, the volume of the

prism must be equal to three A ?*"“\ g
times the volume of the pyra-
mid having the same base and
altitude. o
(841.) The volume of any T

prism whatever is equal to three
times the volume of a pyramid
having the same altitude, and
having a base of equal area;
for, whatever be the form of
the base of the prism, its vo-
lume will be equal to that of
a triangular prism having an
equal base and altitude. '

(342.) A figure formed by \
the section of a prism by a plane !

not parallel to its base is called TN
a truncated prism.

L"::"t- A A.-'j B B}, C C"‘ (ﬁg- \\ﬁﬁ'
159.), be the three parallel edges * . c
of a triangular prism, and let

M N O be the section of that prism by any plane

<,
£

whatever ; and let M”"N"O" be its section by another

plane not parallel to the former. The figure whose ends
or bases are M N O and M"N”" O’ is a truncated prism.

4, 0
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(343.) The volume of a truncated triangular prism
is equal to the sum of volumes of three pyramids
whose base is one of the bases of the truncated prism,
and whose vertices are at the three angles of the other
base.

Draw a plane through the edge M O of the base
MN O, and through the angle N”; this plane will
cut off' from the truncated prism a pyramid having for
its base the base M N O, and for its vertex the angle N”,
Draw another plane through the edge M’ N/, and
through the angle O; this will cut off another pyramid
having M” N’ 0’ for its base, and O for its vertex.
The remainder of the truncated prism will be the py-
ramid whose base is M M’ N’, and whose vertex is Q.
But this will be equal to the pyramid which has the
same base and its vertex at O"; because O and O are
equally distant from the plane M M”N’. Hence it
follows that the volume of the truncated prism is equal
to the two pyramids which have M"N"0’ for their com-
mon base and their vertices at M and O, together with
the volume of the pyramid which has MN O for its base
and its vertex at N°. But if the line N O be drawn,
the pyramids whose common base is M N N” and whose
vertices are O and O” are equal; and if N M” be drawn,
the pyramids whose common base is N N” O” and whose
vertices are at M and M’ will have equal volames. It
follows, therefore, that the pyramid which has M N O
for its base and its vertex at N, will be equal to that
which has M”N” O’ for its base and ite vertex at N.
Hence it appears that the whole volume of the truncated
triangular prism is equal to the sum of the volumes of
three pyramids which have M”N” O’ for their base,
and their vertices at the points M, N, and O, which form

the angles of the other base.
~ (344.) Since pyramids having equal bases and al-
titudes have equal volumes, it follows that the volume
of a triangular truncated prism is equal to the sum of
the volumes of three pyramids having one of the bases
of the prism for their base, and having their altitudes
M 4
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equal to perpendiculars drawn upon the one base of the
prism from the three angles of the other base.

(845.) Let M” N” O” be a section of the prism by
a plane perpendicular to its edges. The volume of the
truncated prism whose base is M” N O”, and whose
superior base is M N O, will then be equal to the sum of
the volumes of three pyramids upon the base M~ N” O
whose vertices shall be M, N, and O ; or, since the edges
of the prism are perpendicular to M” N7 O”, it will
be equal to the sum of the volumes of three pyramids
upon the base M” N O” with the altitudes M M,
N N, and O” O.

For the same reasons the volume of the prism on
the base M” N” O”, and having for its superior base

M’ N’ 0O, will be equal to the sum of the volumes of

three pyramids whose common base is M N O, and
whose altitudes are respectively M” M’, N N’, and
07 O’. The difference between the volumes, therefore,
which is in fact the volume of the truncated prism
whose bases are M N O and M” N” O, is equal to the
difference between the sum of the volumes of the three

former pyramids having M” N7 O” as their common
base, and the sum of the volumes of the three latter

pyramids having the same common base, which dif-
ference will be equal to the sum of the volumes of three
pyramids having the same common base M N O”, and
the difference of the altitudes respectively of the two
systems of pyramids as their altitudes, which differences
will be M M”%, N N’, and O 0",

It follows, therefore, that the volume of any triangular
truncated prism whatever will be equal to the sum of
the volumes of three pyramids whose common base is
a rectangular section of the prism, and whose altitudes
respectively are equal to the three edges of the truncated

prism.
(346.) Since the volumes of prisms and pyramids
having equal bases are proportional to their altitudes,

it follows that the sum of the volumes of any number ,
of prisms or pyramids having equal bases will be equal
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to the volume of one prism or pyramid having the same
base, and whose altitude shall be equal to the sum of
their several altitudes.

(347.) Since the volumes of prisms and pyramids
having equal altitudes are proportional to their bases,
it follows that the sum of the volumes of several prisms
or pyramids having equal altitudes, is equal to the
volume of one prism or pyramid with the same altitude,
and whose base is equal to the sum of their several
bases.

(848.) Since the volume of a truncated triangular
prism is equal to the sum of the volumes of three py-
ramids whose common base is the rectangular section of
the prism, and whose altitudes respectively are its three
edges, it is equal to the volume of one pyramid whose
base is the same rectangular section of the prism, and
whose altitude is the sum of the three edges.

(849.) Let ABCD and A”B’C"D” (fig-160.) be
the bases of a quadrangular trun- fig. 160.
cated prism whose faces are per-
pendicular to each other, and let B
A”B”C”D” be a rectangular sec- A’{g>“
tion of it ; let its volume be divided "”
by two diagonal planes, one passing
through the edges A A”,C C’, and the
other through the edges BB, DD": g
the volume of the truncated tri- <> X
angular prism whose bases are B
ABD and A"B'D’”is equal to the
volume of a pyramid whose base

is A B” D", and whose altitude w

is the sum of the edges AA", B B/, ,,{,f"f "y 2
and DD". In like manner the vo- *[™~_ || 7 |
lume of the truncated triangular o

prism whose bases are B C D and
B”C’ D’ is equal to the volume of
a pyramid whose base is B”C” D", and whose altitude
is the sum of the edges BB’, CC’, and DD’ ; there-
fore the volume of the quadrangular truncated prism
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is equal to that of a pyramid whose base is half the rec-
tangular section A” B C” D", and whose altitude is the
sum of the edges A”A” and CC’, together with twice
the sum of the edges BB and DD".

In like manner it may be shown that the volume of
the truncated quadrangular prism is equal to the volume
of a pyramid whose base is half the rectangular section,
and whose altitude is equal to the sum of the edges
BB and DD, together with twice the sum of the edges
A A’ and CC’; therefore twice the volume of the quad-
rangular prism will be equal to a pyramid whose base is
half its rectangular section, and whose altitude is three
times the sum of its four edges. The volume, therefore,
of the quadrangular truncated prism will be equal to that
of a pyramid whose base is a fourth part of its rectangu-
lar section, and whose altitude is three times the sum of
its four edges. It is evident, therefore, that the volume
of any truncated quadrangular prism of this kind, is equal
to the volume of a rectangular parallelo-
piped whose base is the rectangular section  fig. 161.
of the prism, and whose altitude is the <>
fourth part of the sum of its four edges.

(850.) As the areas of all surfaces are ex-
pressed and calculated numerically by re-
solving theminto thesquaresof the line taken
as the linear unit, which square is therefore

thesuperficialunit; so the volumesofall solids .\
1

are expressed and investigated numerically
by resolving them into cubes whose side
is the linear unit, which cube is therefore
the unit of volume, or the solid unit.
(551.) If the base of a rectangular paral-

lelopiped ( fig. 161.) be the square of the li- \/
near unit, its volume will consist of as many | .- ~
cubes of the linear unit as there are linear \)
units in its height. In fact, it will be 2| b 4

square pillar, composed of a number of
cubes of the linear unit placed one above \/
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the other, and its volume will be expressed numerically
by the number which expresses its height. Thus, if
the base of the column be a square inch, and its height
be ten inches, its volume will be ten cubic inches.

(352.) If the sides of the base of any rectangular
parallelopiped be resolved into linear units, and the base
itself by drawing parallels to its sides be resolved into
squares of thelinear unit, the number of suchsquarescom-
posing the base will be found, as has been already shown,
by multiplying together the numbers expressing the sides
of the base. From the angles of each of the squares into
which the base is thus resolved, perpendiculars may be
raised and continued till they meet the superior base of
the parallelopiped. These perpendiculars will be the
edges of columns of cubes of the linear unit of which
the volume of the parallelopiped is composed, and there
will be as many such columns as there are squares of
the linear unit in the base of the parallelopiped : each
column will contain as many cubes of the linear unit as
there are units in the height of the parallelopiped. The
volume of the parallelopiped will therefore be obtained
numerically by multiplying the number of squares in
its base by the number of units in its height ; and since
the number of squares in its base is obtained by multi-
plying together the numbers expressing the sides of the
base, it follows that the number of cubical units com-
posing the volume of the parallelopiped will be found by
multiplying together the three numbers expressing the
lengths of its three edges.

Thus, if the sides of the base of a rectangular paral-
lelopiped be eight inches and nine inches, the area of its
base will be 72 square inches ; and if its height be ten
inches, its volume will be 720 cubic inches.

(853.) Sirce the volume of any prism, whether right
or oblique, and whatever be its base, is equal to that of
a rectangular parallelopiped having an equal base and
altitude, it follows that the volume of a prism is ob-
tained numerically by multiplying the number ex-
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pressing its altitude by the number expressing the area
of its base.

(854.) Since the velume of a pyramid, whatever be
the form of its base, is equal to one third of the volume
of a prism with an equal base and altitude, it follows
that the volume of a pyramid is found numerically by
multiplying the number expressing one third of its
altitude by the number which expresses the area of its
base ; or, what is the same, by multiplying the area of
its base by one third of its altitude.

(855.) From what has been proved in (349.), it
follows that the area of a truncated quadrangular prism
whose perpendicular section is a rectangle, may be
calculated numerically by multiplying the area of such
section by the fourth part of the sum of its four edges.

(856.) This geometrical principle is applied in the
calculation of the tonnage of ships.

The vessel, considered as a geometrical solid, is
divided by horizontal planes at equal distances one
above the other, and also by vertical planes equally
distant in the horizontal direction. The whole capacity

of the vessel is thus resolved into truncated prisms -

having equal rectangular sections, and whose bases will
be determined by the form of the vessel. If the rec-
tangular section of such prisms be expressed numerically
by taking the square of the distances between the planes
by which the vessel is divided, and such section be
multiplied by the fourth part of the sum of the four
edges of each prism, the number of cubical units cor-
responding to each prism will be found, and the ad-
dition of these will give the whole tonnage of the
vessel.

(357.) The volume of solids of every form may be
calculated numerically by resolving them into pyramids.
 If a point be taken within the solid, and from it per-
pendiculars be drawn upon the several faces, the number
expressing the area of each face multiplied by one third
of the number expressing the length of the perpendi-
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cular upon that face will give the volume of the pyra-
mid whose base is that face and whose vertex is at
the assumed point, and the sum of the numbers express-
ing the volumes of the several pyramids thus obtained
will express the volume of the solid.

(858.) The preceding method of calculating nume-
rically the volumes of solids is sometimes attended with
difficulties in practice ; and the method of truncated
prisms, shown by its application to the determination of
the tonnage of vessels, offers generally greater facility.
Every solid may be resolved into truncated prisms by
being supposed to be cut by two systems of parallel
planes at right angles to each other, and the measure-
ment and calculation of such prisms supplies an easy
method of determining the volume of the solid.

(359.) If a triangular pyramid be cut by a plane
parallel to its base, another pyramid will be formed
whose edges will be proportional to the corresponding
edges of the given pyramid, and the triangular faces of
the two pyramids will be similar each to each.

Let O (fig.162.) be thevertex of the  fig. 162.
pyramid, and let A" B” C” be the sec- 0
tion parallel to the base ; it is evident
that the triangle A" O B’ will be si-
milar to the triangle A O B, since
A" B’ is parallel to A B ; and in like
manner the other faces of the one
pyramid will be similar to those of
the other. The sides of the triangle
A’ B’ C” will be respectively propor-
tional to those of the triangle A B C, being in the com-
mon ratio of the edges of the two pyramids; there-
fore the triangles A” B" C” and A B C will be similar.

(360.) Two pyramids, such as here described, are
said to be similar one to the other,

(361.) Inlike manner it may be proved that a plane
parallel to the base of any pyramid, suchas ABCDEFG
(fig. 163.), will cut off a similar pyramid.
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(862.) The volumes of similar pyramids are pro-
portional to the cubes of their cor- fig. 163.
responding edges. o

For their bases being similar
figures are proportional to the
squares of their corresponding edges,
and their altitudes being equally
inclined to their edges are pro-
portional to them ; therefore their
bases multiplied by their altitudes,
which are three times their vo-
lumes, are proportional to the cubes
of their corresponding edges. Their
volumes, therefore, are proportional to the cubes of their
corresponding edges.

(863.) Similar solids in general are those which con-
sist of the same number of edges inclined at equal
angles, and proportional each to each in length ; the
solids having the same number of faces, and these faces
being similar each to each.

(864.) If two points be taken in corresponding po-

sitions within similar solids, these solids will be resolved

into the same number of pyramids, which shall be simi-
lar each to each, by lines drawn from the assumed points
to the several angles of the solids. The volumes of
each pair of these similar pyramids will be proportional
to the cubes of the corresponding edges of the solids, and
therefore the solids themselves will be proportional to
the cubes of their corresponding edges.

(865.) It is evident, then, that if the magnitude of
any body be increased or diminished by the increase of
its linear dimensions, the increase of its solid capacity
will be much greater than that of its linear dimensions.
Thus, if the height be doubled, all the other dimen-
sions being likewise doubled, the solid dimensions will
be increased in an eight-fold proportion; if the height
and all the other dimensions be trebled, the solid dimen-
sions will be increased twenty-seven-fold, and so on.
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CHAP. XV.
OF CYLINDRICAL SURFACES,

(866.) Ler ABCDE (fig. 164.) be a plane curve,
and XY be a straight line passing through any point A in
it, and inclined at any angle to
its plane: if this line be sup-
posed to move round the curve
so as to be constantly parallel to
itself, the surface which it de-
scribes as it moves is called a
eylindrical surface; and the curve
A BCD E, which governs the
motion of the line XY, is called
the generatriz of the cylinder.
The line XY, by the motion of
which the cylinder is thus pro-
duced, taken in any given position, is called the side of
the cylinder.

(867.) If the moving line be perpendicular to the
plane of the generatrix, the cylinder is called a right
cylinder ; and if it be oblique to that plane, it is called
an oblique cylinder.

(868.) It is evident that a plane surface, in a gene-
ral sense, belongs to the family of cylindrical surfaces ;
for if the generatrix A B C be a straight line, the sur-
face produced by XY will be a plane,

(369.) If the generatrix be a right-lined figure, it is
evident that the line XY will produce a prism. The
prism and cylinder, therefore, belong to the same class.

(870.) Cylindrical surfaces may likewise be produced
by the motion of any plane figure, ABC D E, parallel to
itself along a fixed straight line XY. Asin the former
case all the points of the moving line X Y described
figures in parallel planes equal and similar to the gene-
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ratrix ; so, in the present case, all the points of the ge-
neratrix describe straight lines equal and parallel to that
along which the point A is moved.

(871.) From either mode of generating a cylindrical
surface, it is evident that all sections parallel to the ge-
neratrix are figures equal and similar to the generatrix,
and all sections by planes through the sides are straight
lines.

(372.) There is no form of body so constantly re-
quired in the arts as the various family of cylindrical
surfaces, and the methods resorted to for their pro-
duction are based on one or other of the principles above
described. Let us call, for distinction, the right line
which measures the length of the cylindrical surface its
directrix ; it is evident that a straight edge applied to
such a surface parallel to the directrix will touch it in
every part, while its section by a plane parallel to the
generatrix will always be a figure equal and similar to
the generatrix itself.

There are then in practice four processes by which a
cylindrical surface may be formed.

1. A straight edge representing the directrix may be
moved over a figure representing the generatrix, and as
it moves it may reduce the surface of the body to the
required cylindrical form by cutting, pressing, or by the
production of any other mechanical effect capable of
changing the form of the body.

, 9. A straight edge representing the directrix may
be maintained in a fixed position, and the body to which
the cylindrical form is to be imparted may be moved
in contact with it in accordance with the figure of the
generatrix. As it moves, the straight edge will, as be-
fore, give it the required form.

8. An edge being constructed in the form of the
generatix may be moved along another edge represent-
ing the directrix, and as it moves against the body to

which the cylindrical form is to be imparted it will
give the desired form to that body. :

4. The same edge or surface having the form of the



CHAP. XV. GEOMETRY. 177

generatrix may be fixed, and the body to which the
cylindrical form is to be imparted may be moved in con-
tact with it along a straight edge representing the di-
rectrix, and as it moves it will receive the required cylin-
drical form.

(873.) The process of wire-drawing is one in which a
cylindrical form, with a circle for its generatix, is required
to be imparted to the metal of which the wire is made.
A hole corresponding in magnitude is formed in a
plate of hardened steel ; and the metal of which the wire
is to be formed, being at first a little thicker than this
hole, is forcibly drawn through it, and is thus reduced
by pressure to the required magnitude. When the
thickness of the metal is to be considerably reduced, a
succession of these holes, gradually diminishing in mag-
nitude, are made in the same steel plate, and the wire is
drawn successively through them, being thus gradually
reduced to the proper dimensions. This process cor-
responds to the production of a cylindrical surface, by
the motion of the generatrix parallel to itself along the
directrix,

(874.) In general this method of producing cylin-
drical surfaces is resorted to in cases where, like that of
wire, the length of the cylinder is very considerable in
proportion to its thickness ; but the same process is
sometimes resorted to where a great number of cylinders
precisely equal and similar are required to be produced,
having their length extremely small in proportion to
their diameter or breadth. An example of this is pre-
~sented in the manufacture of the wheels and pinions
used in watchwork. The external form of these is
that of a circle serrated at its edges, with projecting teeth
formed with great precision and equality throughout the
circumference. The wheel is a cylinder whose gene.
ratrix is such a serrated circle, but whose height or
thickness is exceedingly small in proportion to its di-
ameter. If each wheel were fabricated by a separate
process, the expense of the manufacture would be exees-
sive. Instead of this, an aperture is formed in a plate

N
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of hardened steel, to which the exact form of the gene-
ratrix of the wheel is imparted. A rod formed of the
metal of which the wheels are to be made, being very
nearly equal to the aperture, is then forced through it ; and
the eylindrical surface is produced, of which the contour
of the aperture in the steel plateis the generatrix. This
surface is fluted with ridges corresponding exactly in form
and magnitude to the teeth of the wheel. Itis then cut in
slices perpendicular to its length, corresponding to the
thickness of the wheel ; and a vast number of wheels
are produced precisely identical in form and magnitude.
(875.) By a process nearly similar to the preceding,
cylindrical or prismatical forms of various kinds are
imparted to iron for various purposes in the arts: the
bars, for example, which form iron railways, are thus
produced. Two rollers of hardened steel are firmly
fixed in axles or bearings parallel to each other, and so
that the surfaces of the rollers are nearly in contact.
The faces of these rollers are so formed that an aper-
ture is left between them as they turn, corresponding in
form and magnitude to the generatrix of the cylinder
or prism which it is desired to produce. A lump of
iron rendered white hot in a furnace, and therefore in
a soft state, is then taken, and being submitted to the
blows of a heavy hammer is reduced to the form of a
rod of sufficient length, and of dimensions correspond-
ing nearly to the aperture between the rollers. The
rollers being kept in a state of revolution by a steam
engine or other moving power, one end of the bar of
iron, still in its red and soft state, is presented to the
aperture between the rollers, and being pinched by them
is drawn in between them as they revolve, and is dis-
charged at the other side, having received the form
corresponding to the aperture in the rollers. A sue-
cession of apertures gradually diminishing in magnitude,
but similar in form, is usually provided between the
same pair of rollers ; and the bar of iron, while still red
and soft, is transferred successively from side to side
through these apertures till it is reduced to the proper
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magnitude. The rude lump of red iron is thus re-
duced to a finished bar or rail in a space less than a
minute, and without requiring to be reheated.

In the same manner iron rods of every form, and of
all dimensions, are constructed by the process of rolling.
Sheet iron is similarly produced by rollers whose sur-
faces are perfectly flat; the metal being passed suc-
cessively between different pairs of rollers, gradually
decreasing in their distance one from the other.

(876.) When the material of which the cylindrical
surface is to be formed is wood, the process of cutting
must generally be substituted for that of drawing or
rolling. A cutter is usually formed into the figure of
the generatrix of the cylinder, and being fixed in a
frame by which it can be guided in its motion along
the directrix, it is passed over the surface of the wood
to which the cylindrical or prismatical form is to be
imparted. Such an instrument is called a plane. It is
by such a tool that all mouldings are formed in car-
pentry. It has been already stated that in a general
sense a plane surface belongs to the family of cylinders.
We accordingly find that such a surface is produced in
carpentry by the same class of tools as is used for the
production of mouldings, the cutting edge being straight
when a plane is required to be produced.

(877.) When the cylindrical surface required is of
great magnitude, the application of this class of tools
sometimes becomes impracticable. In that case, if great
accuracy in the section of the cylinder perpendicular to
its directrix be not required, it may be approximately
formed by the motion of a plane-cutting tool parallel to
its directrix, the position of the tool being constantly
shifted according to the form of the generatrix : it is in
this manner that the masts of ships are formed,

(378.) When the last degree of precision is required
in the cross section of the cylinder as well as in the
direction of its length, the lathe is the instrument re-
sorted to. The substance to which the eylindrical form
1s to be imparted is placed between the centres of the

N 2
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lathe, and a motion of revolution is given to it; the
point of the cutting tool, being fixed in its position, is
then presented to it, and as the body revolves, it cuts
off from it all those parts which project beyond the
proper distance from its centre ; and this process is con-
tinued until that part of the body acted on by the tool
is reduced to the proper form. The tool being fixed
upon a guide, by which it can be moved parallel to the
directrix of the cylinder, is then shifted in its position,
and another part of the cylinder is formed ; and this
process is continued until the cylinder is completed.

(879.) A circular cylinder of wood is sometimes
formed by forcing the wood through a circular cutter or
plane.

(880.) When the body to which the cylindrical
form is to be given is too massive to be made to revolve
with convenience, the motion of revolution is given to
the cutter, the body remaining fixed. In this manner
the interior surfaces of great steam cylinders are formed.
Being reduced by casting to nearly the proper form, a
cutter is made to revolve within them in close contact
with their surfaces ; and while it revolves a slow pro-
gressive motion is given to it, so that it is made to pass
gradually from end to end of the cylinder.

(881.) When the last degree of precision is not re-
quired to be given to the surface, and when the mate-
rial is capable of fusion, the process of casting is the
most expeditious and cheap method of forming cylin-
ders. A pattern of the cylinder is accurately formed in
wood, and from that a mould is taken in sand, plaster,
or other convenient material. The molten metal is
poured into such mould; and being allowed to harden
by becoming cold, the sand or plaster is removed, and
the cylinder is obtained.

(382.) When the material is soft and capable of
fusion at low temperatures, a permanent mould of
metal is used, from which the cylinder, after being cast,
is drawn ; the same mould constantly serving for the re-
production of other cylinders. In this manner the ma-
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- nufacture of candles is conducted. A mould of metal
is constructed, having the exact form of the candle, the
inner surface of which is reduced to a high polish; and
the wick is stretched along its axis, leaving a loop at
one end, across which a rod of wood or metal is ex-
tended. The liquid grease or wax is then poured into
the mould, and when it has hardened by cooling it is
drawn out by means of the rod of wood or metal.

(883.) From the method in which a cylindrical sur-
face has been described to be produced, it is evident
that a plane surface may be reduced by flexure to the
form of any cylindrical surface whatever. On this
principle cylinders are formed in the arts by bending
thin plates of metal, and sometimes even of wood, into
the proper form : plates of tin or sheet iron, being bent
into the circular form, and united at their edges by
soldering, form the chimneys of stoves, the gutters of
houses, &e.

Various vessels used in domestic economy, especially
for culinary purposes, receive the cylindrical form by
the same means. The boilers of steam engines are
usually in the cylindrical form, the generatrix varying
very much in figure, according to the circumstances
under which the boiler is to be used.

(384.) In the application of the arts to the pur-
poses of science a combination of minuteness and accu-
racy of construction is sometimes required, the attain-
ment of which demands peculiar methods. In the con-
struction of astronomical telescopes, the space formed by
what is called the field of view is partitioned out by a
system of parallel threads or wires extended across it :
these wires must be of such accurate construction, and
80 minute in size, that when seen with the high magni-
fying power used in these instruments they shall still
appear to be lines accurately straight, and so small in
breadth that they shall appear to the eye like a fine hair.
Such wires, when presented to the naked eye, would be
scarcely if at all visible. Yet they require to be con-
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structed truly cylindrical. The process of constructing
these wires, invented by the late Dr. Wollaston, was as
follows : — A cylindrical mould being formed, a thread

of gold or platinum wire is extended along its axis in

the same manner as the wick is extended along the mould
of a candle; another ductile metal which melts at a
lower temperature being fused, is then poured into the
mould, and a small cylinder of metal is thus produced,
having the thread of gold wire in its axis. This cylin-
der is then submitted to the process of wire-drawing,
until it is reduced to a great degree of tenuity. Through-
out this process the thread of gold wire is still extended
through its axis, being itself wire-drawn with the cylinder
in which it is enclosed, and its thickness still maintaining
the same proportion to that of the cylinder. When the
process of wire-drawing has been completed, the com-
pound wire is exposed to the action of an acid, by which
the external metal is dissolved, but which eannot attack
the thread of gold wire extended along its axis. The
fine gold wire is thus stripped of its coating; and being
extended across the field of view of the telescope, serves
the purposes above mentioned.

By this process threads of gold wire may be formed,
10,000 of which, placed side by side, would not cover
more than an inch.

(885.) The species of cylinder of most common oc-
currence in the arts is that whose generatrix is a circle ;
and the most common of this species is the right cy-

linder: the use of this is so frequent, compared with any

other form of cylinder, that the term eylinder, except in
the higher mathematies, is always understood to express
the right circular cylinder ; and it will be here so used,
unless otherwise expressed.

(386.) The generatrix limiting the length of a cy-
linder, and forming its plane circular ends, is called
its base. A straight line joining the centres of the bases
of a cylinder is called the awis of a cylinder.

(887.) All sections of a cylinder by planes perpen-
dicular to its axis are circles equal to its bases.
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(388.) All sections of a cylinder by planes parallel
to its axis are parallelograms.

(389.) As the surface of a cylinder may be formed
by bending a plane surface according to the form of the
generatrix of the cylinder, it is evident that the surface
of a right cylinder, whatever be the nature of its gene-
ratrix, will, if unbent or unfolded so as to be spread out
into a plane, be a rectangle, whose height is the height
of a cylinder, and whose base is the perimeter, or
circumference of its base: the area of the convex surface,
therefore, of a right cylinder will be found by multiply-
ing its height by the circumference of its base ; and this
will be equally true whatever be the generatrix.

(390.) The area of the sides of a right prism is, for
the same reason, found by multiplying its height by the
perimeter of its ends or bases.

(391.) If a cylinder be oblique, its convex surface,
if spread out into a plane, will form an oblique pa-
rallelogram; and the same will be true of an oblique
prism or a cylindrical surface, whatever be its genera-
trix.

(392.) The area of the curve surface of a cylinder,
or the sides of a prism, whether right or oblique, will,
therefore, be found by multiplying the perimeter or cir-
cumference of its base by the perpendicular distance
between the parallel planes that form its ends.

(393.) The above calculation of cylindrical surfaces
does not include the areas of their bases. Since the
area of a circle is equal to half the rectangle under the
radius and circumference, the areas of the circular ends
of a cylinder will be equal to the rectangle under the
radius and the circumference of the base; therefore, the
area of the whole surface of a circular cylinder, includ-
ing its ends, will be equal to the rectangle under a line,
equal to the sum of its altitude and the radius of its
base, and the circumference of its base ; or, what is the
same, its total surface will be found numerically by add-
ing to its height the radius of its base, and multiplying
the sum by the circumference of its base.
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(894.) If the volume of a cylinder be considered, like
that of a prism, to be composed of a number of equal
plates laid one over another, it is evident that it will be
equal to the volume of a prism whose base is of equal
area, and which has the same altitude ; for the volumes
of such solids will be composed of the same number of
plates of equal magnitudes. A prism and cylinder,
therefore, having equal bases and equal altitudes, have
equal volumes.

(895.) The volume of a cylinder will be found numeri-
cally by multiplying the area of its base by its altitude.

(896.) While the base of a cylinder remains the
same, its volume will increase or diminish in the same
proportion as its altitude is increased or diminished ; and
while its altitude remains the same, its volume will in-
crease or diminish in the same ratio as its base increases
or diminishes, |

(897.) The preceding properties of the volumes of
cylinders equally belong to every cylinder, whatever be
its generatrix, and whether it be right or oblique.

(898.) The volumes of circular cylinders are propor-
tional to their heights multiplied by the squares of’
their diameters, because the areas of their bases are pro-
portional to the squares of their diameters.

(899.) The determination of the shadows produced
by the light of the sun falling upon opaque objects
involves the properties of cylindrical surfaces. The
rays of solar light proceeding in parallel lines, a part is
intercepted by the opaque body ; but those rays which
pass immediately beyond its edges proceed in parallel
lines till they reach the surface on which the shadow is
projected, where they mark the boundary between the
illuminated part of the surface and the shadow, or that
part which is deprived of light by the interposition of the
opaque body. The rays of light, therefore, which thus
touch the edges of the body, form a cylindrical surface, of
which one base is a section of the body which projects
the shadow made by a plane perpendicular to the rays
of light, and the other base is the shadow itself. The
- determination of shadows thus depending essentially on
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the properties of cylindrical surfaces, this part of geo=
metry is necessary to the right understanding and prac-
tice of architecture, painting, and those arts of design in
which the effects of lights and shadows are to be inves-
tigated or represented.

(400.) The position and form of lines in space are
expressed, in the higher geometry, by determining the
projection of these lines on planes placed at right angles
to each other. Two such projections being given, the
line in question will be perfectly known.

From every point of the line whose form and position

are to be determined let perpendiculars be supposed to
be drawn to a horizontal plane, such as the floor of a
room ; these perpendiculars will form a cylindrical sur-
face, of which the line in question is the generatrix
or base. The points of the horizontal plane where the
perpendiculars meet it will form the horizontal projec-
tion of the line, and will be the other base of the cylin-
der. If perpendiculars be in like manner drawn from
the line to a vertical plane, such as one of the walls
of a room, they will form another cylindrical surface, of
which the line is also the base or generatrix ; and another
projection of it, forming the other base of the cylinder,
will be formed on the vertical plane,
- If these two projections, one on the horizontal and
the other on the vertical plane, were given, the line of
which they are the projections would be found by con-
structing two cylindrical surfaces, having these two pro-
Jections as their bases, and perpendicular respectively to
the two planes on which the projections are given, The
line formed by the intersection of these two cylindrical
surfaces would be the line sought.

(401.) If a cylinder be laid with its side upon a
plane, the points at which it will meet the plane will lie
in a straight line, forming the side or one of the posi-
tions of the directrix of the cylinder. All other points
of the plane will lie outside the eylinder. The plane is
in this case a tangent plane to the cylindrical surface.
If the cylinder be rolled upon the plane, each line of
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contact which it assumes with the plane will be parallel
to all former lines of contact. In fact, the line of contact
of the cylinder with the plane will move parallel to itself,
and will be parallel to the axis of the cylinder, which
likewise moves parallel to itself.

If the cylinder be a right circular cylinder, its axis
will, during such motion, move in a plane parallel to
that on which the cylinder rolls, and at a distance above
it equal to the radius of the cylinder.

(402.) The form of a plane is imparted to soft sub-
stances by virtue of this property of the right circular
cylinder. 1In agriculture, when the surface of 2 tilled
field is required to be made plane by breaking or press-
ing down the rough mould which the plough or harrow
has left upon it, and in gardening, when the rough
surface of loose gravel forming a walk or road is
required to be rendered even and plane, a heavy cy-
lindrical roller of iron or stone is passed over it, which,
forcing itself into contact by its weight with the surface
on which it rolls, reduces that surface to the plane form,
without which continued contact with it would be im-
possible. Since, however, a cylindrical roller passing
in one direction only will not produce a level surface,
in the formation of a plane where great precision is re-
quired the roller should be passed over frequently and
in various directions.

(403.) If two right circular cylinders be placed with
their axes parallel one to the other, and so that the
distance A A" ( fig. 165.) between the T
axes shall be equal to the sum of their 7195,
radii; then the surfaces of these cy- ™
linders will touch each other, and their -4
line of contact will be a straight line
parallel to their axes, being, in fact, a
side of the eylinder.

If two cylindrical surfaces thus
placed be intersected by a plane at right
angles to their axes, their- section by
that plane will be two cireles equal to
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the bases of the cylinders, which will touch each other
externally, as represented in fig. 165.

(404.) If one of the cylinders, A, thus placed be
rolled upon the other, their line of contact will move
parallel to itself, being always a common side of the two
cylinders ; and the axis A of one cylinder will move
parallel to itself round the axis of the other, describing
the surface of a right circular cylinder, whose radius
A A’ is equal to the sum of the radii of the two given
cylinders, and whose axis is the axis A" of the fixed
eylinder.

(405.) If the surfaces of two cylinders thus placed
in contact and pressed together be so rough that one
cannot move without moving the other with it, and that
both be capable of revolving upon their axes, then any
motion of revolution which is given to one cylinder will
be imparted to the other, the surfaces of the two cy-
linders moving at the same rate.

(406.) It is on this principle that wheel work in
machinery acts. The moving power, whatever it may
be, gives motion to one wheel or cylinder, the edge of
which, pressing on another, imparts motion to it, and
that again acts on another, and so on. As the actual
velocity of the edges of the wheels in contact will be the
same, the velocities of revolution are varied by varying
the magnitudes of the wheels, If the diameter of the
wheel A (fig. 165.) be half the diameter of the wheel
A’, then it will require two revolutions of the former to
produce one of the latter, and the velocity of revolution
of the former wheel will be double that of the latter.
In fact, the velocities of revolution of each pair of con-
tiguous wheels will be in the inverse proportion of their
diameters.

(407.) If the surfaces of the cylinders thus in con-
tact were perfectly smooth, the revolution of one upon
its axis would not impart motion to the other, but the
surface of the one would slide on that of the other. In
proportion to the roughness of the surfaces, friction will
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be produced between them ; and the resistance attending
this friction will cause the surface of the second cylinder
to be pushed round, and that the one cylinder, instead
of sliding, shall roll upon the other. If so great a re-
sistance, however, be opposed to the motion of the second
cylinder as to exceed that produced by the friction of
the surfaces, then, notwithstanding the friction, the sur-
face of the one will still slide upon the surface of the
other without imparting motion to it. 1In this case the
resistance due to friction is increased either by coating
the surfaces of the cylinders with leather, or some other
rough material ; or if they be wood, by cutting them
with their grains in contrary directions. But where the
resistance is considerable, or where the inaccuracies of
motion produced by the occasional and accidental slip-
ping of one surface on another must be avoided, as in
the case of watchwork, then the surfaces are formed
into teeth, of equal and uniform magnitude and form,
which insert themselves between one another, and render
any inequality of motion impossible, unless by the frac-
ture of a tooth.

(408.) Whatever be the surface in contact with
which a right circular cylinder is rolled, its axis will
move in a parallel surface; and the same will be true of
whatever may be supported by such an axis. A wheel
carriage moving along a road is therefore carried in
lines parallel to the road ; since: the wheels are right
circular cylinders in contact with the road. Hence
it is that all inequalities of the road produce cor-
responding inequalities of motion in every part of the
carriage,

(409.) If a cylinder be in contact with any surface
on which it is prevented from sliding by the resistance
attending its friction with it, and if at the same time
the surface on which it is placed be fixed and incapable
of moving under it; then any motion of revolution
which may be imparted to the cylinder must, at the
same time, give to the cylinder a progressive motion
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along that surface. For as the surface of the cylinder
is prevented from rubbing or slipping on the surface on
which it rests, it cannot turn round except by rolling on
that surface ; and it cannot roll on that surface without
advancing along it with a progressive motion,

Thus, if any force be applied to the spokes of the
wheels of a carriage, so as to compel the wheel to turn
round, and if by the pressure of the wheel upon the-
road it is prevented from slipping as it revolves;” then
the carriage must roll onwards by the revolution of the
wheels, in the same manner as if it were drawn forwards
in the common way by horses or any other tractive power.

(410.) It is on this principle that the steam engine
is applied to produce the progressive motion of carriages
upon railways. The wheels of the engine are fixed
upon their axle, so as to turn with it, and not upon -
it, as in common carriages. On the axle of these
wheels is formed a crank or arm like the handle of a
winch or windlass. The piston-rod of the steam en-
gine lays hold of this arm, and as the piston is driven
backwards and forwards in the cylinder causes the arm
to revolve. As the arm revolves the axle on which it
revolves also revolves, and with this axle the wheels
fixed upon it are made to revolve. Now, these wheels
resting upon the rails, with the incumbent weight of the
engine upon them, must, as they revolve, either slip on
the rails or roll forward, causing the engine to roll with
them ; and as the resistance produced by their pressure
upon the rails is so great as to prevent their slipping,
the engine is compelled to roll forwards, and to draw
after it the train of carriages or waggons,

(411.) In the modern printing presses the properties
of a cylinder moving in contact with a plane is brought
into frequent operation. In letterpress printing the
- stereotype plates, having upon their faces in relief the
letters to be printed on the paper, are bent so as to cor.
respond to the form of a large cylinder or roller to
which they are attached. Another cylinder or roller is
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placed in external contact with this, as represented in
fig. 166.  Let A be the cylinder on the surface of
which the letters to be
printed are placed, and
let D E be a plane in con-
A tact with it, on which the
( ] paper is extended : as the
o cylinder turns in the di-
& \ 2 rection of the arrows, the
surface K D advances under it in the same direction,
and the types thus brought into successive contact with
the paper leave their impressions upon it. The roller A”
contains on its surface a quantity of ink, which is
spread upon it evenly and uniformly by the roller A”,
with which it is likewise in contact, and which latter
roller is supplied from a reservoir of ink with which it
communicates. As the types pass the point of contact
P of the rollers A and A, they receive the ink from the
surface of the roller A”; and as they pass the point of
contact P” of the roller A with the paper, they leave the
ink in the form of the letters upon the paper, and they
are carried round again to the point P to receive a fresh
supply of ink for the next impression.

(412.) This method of cylindrical printing is sub-
ject to defects which are inadmissible in the better class
of presswork, and indeed has been discontinued even
in the cheaper description of printing in England. The
cylinders in newspaper printing are still used, but they
carry the paper and not the types. The types are set or |
laid in a plane surface, and are moved under the cylinder
on which the paper is rolled, and by which it is brought
into contact with, and pressed upon, the type. Where
great expedition is required, the paper is made to pass
by means of cords or tapes successively over two or more
eylinders, so as to be reversed in its position, and to have
its opposite sides brought into successive contact with
the types from which it is to receive the impression ;
each sheet is thus printed on both sides by the same
operation.

fig. 166.
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(418.) With hand-presses, before the improvement
of printing machinery and the application of steam to
that branch of the useful arts, two hundred and fifty
copies were obtained per hour from the same types,
which required the work and superintendence of two
men,—a cylindrical press worked by steam is now capa-
ble of printing two thousand sheets per hour on both
sides, and requires only the attendance of two children.

(414.) The application of cylinders to calico print-
ing forms one of the most important modern improve-
ments in that branch of manufacture. Accurately formed
cylinders of copper have their surfaces engraved with
the pattern required to be impressed on the cloth, These
cylinders or rollers revolve in contact with others,
which are evenly smeared with a dye of the colour
corresponding to that required for the pattern: as the
copper cylinder passes that which contains the dye, it
receives from it a coating of the colouring matter ; it
then passes in contact with a straight edge or scraper
placed parallel to its axis. By this the colouring matter
is wiped clean from the cylinder, except from the inei-
sions upon it which mark the pattern to be printed, It
is then rolled in close contact with the cloth, which is
pressed against it by another eylinder, and which, as it
passes, takes the colouring matter from the pattern en-
graved on the copper roller. In this manner a piece
of calico of any length is printed by merely causing it
to pass with a continuous motion between the rollers.

' (415.) By the process here described the pattern
would be printed only in one colour ; but by a further
improvement, the same principle has been applied for
the production of patterns of two or more colours.

That part of the pattern which corresponds to each
colour is engraved on a separate copper roller, and each
roller is put in contact with another, from which ‘it re-
ceives the proper colouring matter. The rollers are
fixed in the same frame with their axes, parallel to and
at such distances from each other, that, as the cloth
passes under them successively, that part of the pattern
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engravéd on each roller falls in its proper place upon
the cloth, so that the united effects of the several rollers
is the production of a figure on the cloth, in which as
many different colours are introduced as there are dif-
ferent rollers.

By such means it is not uncommon to witness the
completion of the printing a piece of calico in three or
four colours, in the space of thirty seconds.

(416.) It is not difficult to conceive the application
of the same principle to the production of printed paper
in several colours for the walls of rooms.

(417.) The application of cylinders to the manufac-
ture of paper has produced a great improvement in that
branch of art. Two cylinders having their axes pa-
rallel are placed nearly in contact, the distance between
their surfaces corresponding to the thickness of the
paper to be produced. As they revolve the matter of
which the paper is fabricated passes between them, and
sheets of any required length can be produced by a con-
tinuous motion of the eylinders.

) P:"'J

(418.) In lithographic printing, the surface of a |

stone of very fine grain is reduced to an accurate plane
by the process of grinding. On this surface the design
to be printed is drawn ; and being properly inked, the
paper is pressed upon it by a cylinder rolled over the
stone with great pressure.

(419.) Engravings on copper and steel are printed
by passing the plate with the paper upon it between

two cylinders placed with their axes parallel, and their

sides in such near contact as to give the necessary
pressure to the paper upon the engraved plate.

(420.) In every part of the art of spinning cotton
numerous applications of the properties of cylinders are
found.

The fibres of the raw wool are cleansed and arranged
in parallel directions by the process of carding, which
is conducted in the following manner:—A number of
small wires are fastened in leather in a manner similar

to the hairs which form a common brush. This leather |
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(428.) If a cone and pyramid have equal bases and
equal altitudes, their sections at equal distances from their
vertices will have equal areas ; for the linear dimensions
of these sections and the bases being proportional to
their distances from the vertices, the squares of these
dimensions will bear the same ratio to the squares of the
areas of the bases. The areas, therefore, of equidistant
sections will be proportional to the areas of the bases ;
and the latter being equal, the former will be equal.

(429.) A pyramid and cone, therefore, having equal
bases and equal altitudes, will have equal volumes ; for,
since all corresponding sections parallel to the bases are
equal, the cone will be composed of a series of plates
equal respectively to those which compose the pyramid,

(480.) The volume of a cone will be found, there-
fore, by multiplying the area of its base by one third of
its altitude.

(431.) If a cone and cylinder have equal bases and
equal altitudes, the volume of the cone will be one third
of the volume of the cylinder. : '

(432.) The volumes of cones being proportional to
the products of their bases and altitudes, and the bases
being proportional to the squares of their diameters, the
volumes will be proportional to their altitudes multiplied
by the squares of the diameters of their bases.

(488.) Similar cones and cylinders are those whose
altitudes are proportional to the diameters of their bases,
and which, if oblique, have their axes equally inclined
to their bases.

(484.) The volumes of similar cylinders and cones
are proportional to the cubes of the diameters of their
bases ; for the areas of their bases are as the squares of
their diameters, and the altitudes are as the diameters s
therefore the altitudes multiplied by the squares_of the
diameters are as the cubes of the diameters.

(4385.) If the base of a right pyramid be a regular
polygon, its faces will all be equal isosceles triangles, whose
bases are the sides of the polygonal base, and whose
common vertex will be the vertex of the pyramid. If a

0o 2
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perpendicular be drawn from the vertex of the pyramid
to one of the sides of the base, the area of the correspond-
ing triangle will be equal to the rectangle under such
perpendicular and half such side ; and’ as the same will
be true for each of the triangular faces, and as all the
perpendiculars from the vertex on the sides of the base
will be equal, the total area of the surface of the pyramid
will be equal to the rectangle under such perpendicuiar
and half the perimeter of the base.

(486.) If the polygon forming the base of a pyramid
have its sides successively both increased in number and
diminished in magnitude, it will approximate to a circle,
and the pyramid will approximate to a cone. Through-
out such changes the area of the surface will still be equal
to the rectangle under the perpendicular and half the
perimeter of the base. If the sides then be conceived
to be both indefinitely increased in number and dimi-
nished in magnitude, the base will become a circle, and
the pyramid will become a cone; and the surface of the
cone will accordingly be equal to the rectangle under the
length of its side and half the circumference of its base.

(487.) The area of the surface of a right cone is
therefore found by multiplying the length of its side
by haif the circumference of its base.

(488.) The area of the surface of a right cone is
equal to that of a triangle whose base is equal to the
cireumference of the base of the cone, and whose alti-
tude is equal to the side of the cone.

(430.) If a cone be cut bya plane A’ B’ (fig. 168.)
parallel to its base, the figure having parallel circular

bases thus cut off is called a éruncated gy 168.
cone ; and the area of its surface and its ﬂ
volume will be found by taking the differ-
ences of the surfaces and of the volumes
of the whole cone A O B, and of the cone
A’ O B’, which is cut off.

(440.) As the area of the whole conical
surface A O B is that of a.triangle whose
height is A O, and whose base is the cir-

2o Sl
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cumference of the circle A B, and the conical surface
A’O B’ is equal to a triangle whose height is A" O,
and whose base is the circumference A” B, it follows
that the surface®of the truncated cone will be equal to
the difference between the areas of these triangles.

Let A B (fig. 169.) be equal to the cireumference of
the circle A B (fig. 168.), and fig. 169.
from its middle point C draw a 0
perpendicular C O equal to the /
side of the cone A B O, and join /
A O, BO; the area of the triangle !.{.:'_’” E_\g
AOB will then be equal to the s
surface of the cone AO B AT F ¢ £
(fig. 168.). Draw A’ B’ parallel to A B, and at the
same distance from O as A" (fig. 163} is from O ;
the area of the triangle A” O B’ (fig. 169.) will then
be equal to the surface of the cone A”O B’ (fig. 168.).
Hence it follows that the area of the surface of the
truncated cone A A” B’ B ( fig. 168.) will be equal to
the area of the trapezium A A" B’ B (fig. 160.). Let
A A" be bisected at M, and through M let L N be
drawn parallel to B B”; the triangle A M N will then
be equal to the triangle L M A’, for in these two
triangles the sides A M and A’ M are equal, and the
angles are respectively equal. The areas of the tri-
angles will, therefore, be equal (61.). The parallelo-
gram B N L B’ will then be equal to the trapezium
A A"B"B; because the parallelogram is formed by
taking from the trapezium the triangle A M N, and
adding to it the equal triangle A” M L. But the area
of the parallelogram is equal to its altitude ¢ K mul-
tiplied by its base BN. Now the base BN is half
the sum of the bases A B and A" B’ of the trapezium,
because B N is equal to B” L, and the latter is equal
to B’ A’, together with A" L, or with A N, which is
equal to A" L ; therefore, BN being equal to B’ A’,
together with A N, must be equal to half the sum of
A B and A" B’. The area of the trapezium is, there-
fore, equal to its altitude C K multiplied by half the

o 3
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sum of its bases; and therefore the area of the sur-
‘face of the truncated cone is equal to its side A A’
(fig. 168.) multiplied by half the sum of the circum-
ferences of its bases. :

(441.) The most accurate method of producing the
form of a circular cone in the arts is by the lathe.
While the body to which the conical form is to be
given is kept in a state of constant revolution, the
cutting tool is moved along the directrix or side of the
cone. As it advances the circular form is given to the
section of the body by its own motion, and the recti-
linear form given to its side by the motion of the tool.

(442.) Of all the applications of the properties of
cones in the sciences and arts, the most important and
striking are those which have reference to the pheno-
mena of light and vision. If rays of light proceed from
a luminous point, diverging as they do in every direction,
they always form a cone whose vertex is the luminous
point, and whose base is the object they illuminate. If
they fall on an opaque object, and a shadow of it be
projected on any more distant surface, the shadow and
the object will be the bases of a truncated cone, the
vertex of which will be the luminous point. The
shadow will in this case be greater than the object, and
their linear dimensions will be proportional to their
distances from the luminous point: thus, if the surface
receiving a shadow be as far from the object which
projects the shadow as the object itself is from the lu-
minous point, the shadow will have twice the linear
dimensions of the object. The surface on which the
shadow is projected is here supposed to be parallel to
the object. If it be not, the form and dimensions of
the shadow will still be determined by the properties
of the cone ; for the shadow will still be the intersection
of the cone of rays, whose vertex is the luminous point,
and the object by which the shadow is projected, a sec-
tion of the cone.

(448.) The Lithouette machine for taking profiles is
constructed on these principles, being nothing more than

S
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base, and whose vertex is at the centre of the lens O,
falls on a surface beyond the lens, and produces an
inverted picture A” B of the object A B. The picture
and the ohject form thus parallel bases of opposite cones.

(446.) The camera obscura is one of the feeble at-
tempts of art to imitate nature. The eye is a camera
obscura of exquisite perfection and sensibility. In front
of the sphere which forms the eyeball is the circular
opening called the pupil, which produces the black cir-
cular spot seen in the centre of the éris, or coloured
membrane of the eye. Immediately behind this open-
ing is suspended a double convex lens, formed of a per-
fectly transparent fluid called the erystalline humour..
This lens, in the phenomena of vision, plays the part of
the lens of glass O in the camera obscura. The cones
of rays coming from visible objects to the eye, having
their vertex in this lens, are continued to the posterior
surface of the inner chamber of the eyeball, on which
is depicted, with its proper form and colours, but in an
inverted position, a luminous representation of all the
objects of vision; and it is such luminous pictures acting
on the optic nerve that produce the effect on the brain
which is the immediate cause of vision.,

(447.) The whole art of perspective, and therefore a
considerable part of the art of the painter, depends upon
the properties of conical surfaces. A picture delineated
on a plane surface, being intended to produce upon the
eye the same effect as visible objects seen at certain dis-
tances behind that surface, the relative positions, forms,
and magnitudes of the objects on the canvass must be
determined by the intersection of the plane of the can-
vass with the conical surfaces formed by visual rays
drawn from the eye of the spectator to the real positions
which the objects represented on the canvass are sup-
posed to have. Thus, if we suppose a distant land-
scape viewed through a rectangular frame placed at a
certain distance from the eye of the spectator, a cone, or
rather a pyramid, having a rectangular base, must be
imagined, the vertex of which shall be at the eye of the
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spectator. The frame bounding the landscape, and
through which it is viewed, is a section or generatrix of
this pyramid; and the diverging faces of the pyramid
being continued indefinitely in the direction of the
landscape, the actual objects comprehended in it will
be included within the four triangular surfaces extend-
ing from the eye of the spectator, passing through the
four sides of the rectangular frame, and continued inde-
finitely beyond them. If a line be drawn from the
vertex of the pyramid to any point within the limits of
the landscape, the place where that line would pene-
trate the canvass, if canvass were extended in the frame,
would be the place of such a point in the painting. 1If
the surface of any object in the view be parallel to the
canvass, the section of the cone of which the object is
the base made by the canvass will be similar to the ob-
ject; but if the plane of the object be not parallel to the
canvass, then the form of the section of the cone by
the canvass will be different from that of the object,
and nothing but the application of exact geometrical
principles can determine the form of such section.
This effect, which, in particular applications of it, is
called fore-shortening, is one, therefore, which an artist
cannot expect to produce with correctness if he be not
conversant with the principles of geometry which are re-
quired in the solution of such problems. There is, ac-
cordingly, no department of the arts of design in which
errors so glaring are committed even by the most emi-
nent artists,

The collection of general theorems relating to the in-
tersection of conical and pyramidal surfaces by a plane,
which is necessary for the solution of such problems,
constitutes the theory of perspective. As an example
of such theorems, the following, which are of very uni-
versal application and general utility, may be given.

(448.) Parallel lines which are parallel to the plane
of the picture will be represented by parallel lines upon
the canvass; for if a plane be drawn through any
one of these parallels, and through the point of sight

i
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the intersection of such plane with the plane of the
canvass will be a line parallel to that through which
the plane is drawn, and this line will be that which re-
presents the parallel upon the canvass. Since, therefore,
the representations of the parallel lines on the canvass
are parallel to the lines themselves, and since the latter
are parallel to each other, the lines on the canvass re-
presenting them will also be parallel to each other.

(449.) If a system of parallel lines be not parallel
to the plane of the drawing, then the lines which repre-
sent them on the drawing will be lines which all con-
verge to a point, so placed on the plane of the drawing
that a straight line drawn from it to the point of sight
will be parallel to the lines thus delineated. For, take
any two of the parallels to be delineated, and suppose
planes drawn through them, and through the point of
sight ; these planes will intersect in a certain line pa-
rallel to the lines to be delineated, and this line will
therefore not be parallel to the plane of the drawing,
and will therefore meet it at some determinate point.
The intersections of the two planes drawn through the
point of sight, and through the two parallels, with the
plane of the drawing must meet at the same point, that
being in fact the point where all the three planes inter-
sect. That point will therefore be the point to which
the representations of the two parallel lines on the can-
vass must converge, and it may in like manner be shown
that all the lines representing the parallels will converge
to that point.

This, in fact, amounts to little more than the state-
ment that all planes which are drawn through a number
of parallel lines must have a common line of intersection.
For their line of intersection must be parallel to the
parallels ; and since only one such parallel can pass
through the given point, that one must be their com-
mon line of intersection.

(450.) These general principles are brought into
frequent application in architectural and mechanical
drawing, where the forms of the objects represented are
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generally determined by systems of parallel lines, as in
the case of a building which is composed principally of
vertical lines and of horizontal lines at right angles to
each other.

(451.) The eye is an organ incapable of estimating
actual magnitude. All visible objects appear to the eye of
equal magnitudes, provided the angle of the cone formed
by the visual rays which bound them is the same.
Let E (fig. 173.) be the eye, and let AB be an object

fiz. 173, »

A
E
(3 :1
1

placed at any distance from it, and A” B’ be another
object at a greater distance ; if the visual ray from the
upper extremity A” coincide with the visual ray from the
upper extremity of the other, and the visual rays from
the lower extremities B, B” also coincide, then the objects
will have the same apparent magnitude. In fact the
one will entirely cover and intercept the other. In this
case, the real magnitudes of the objects will be propor-
tional to their distances from the eye ; for they are the
bases of similar triangles of which those distances are
the sides.

(452.) In general, similar objects will have the same
apparent magnitude when their linear dimensions are
proportional to their distances from the eye ; for in that
case their sections are the bases of similar cones of
which the altitudes are the distances of the objects
from the eye.

(458.) A remarkable example of this is presented by
the sun and moon, whose apparent magnitudes are very
nearly the same, although the actual diameter. of the
sun is about 400 times greater than that of the moon.
The reason of the equality of their apparent magnitudes
is, that while the distance of the moon from the earth is
only 240,000 miles, that of the sun is 96,000,000 miles,
the one distance being 400 times greater than the other.
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to the axis of the sphere, and whose centres are in the
axis at the points where their planes meet the axis.

(461.) The line L L” perpendicular to P P will be
the intersection of a plane through L perpendicular to
the plane of the generating meridian with the plane of
the latter ; the line L L” will therefore be the diameter
of the circle described by the point L as the meridian
revolves, and C will be the centre of that circle. These
circles are sections of the spherical surface made by planes
perpendicular to the axis, and are called parallel circles,
or simply parallels.

(462.) The nearer a parallel is to the centre the
greater will be its diameter, and the greatest parallel will
therefore be the circle whose diameter is E E’ passing
through the centre of the sphere : this circle is ealled the
equator.

(463.) The diameter of the equator E K being a dia-
meter of the sphere, the equator will be a circle equal to
the meridian.

(464.) If the equator itself be taken as a meridian,
and one of its diameters as an axis, a sphere would be
generated by its motion having the same centre, and the
radius equal to that of the original sphere. Every part
of the surface of the one sphere being at the same dis-
tance from their common centre as every part of the
surface of the other sphere, the two spherical surfaces
will every where coincide, and they will, in fact, be the
same sphere ; hence it appears that whatever diameter
of the sphere be taken as an axis, the meridians whose
planes pass through it will be equal circles, and will by
their revolution produce the same spherical surface.

(465.) Hence all sections of a sphere made by planes
passing through its centre will be equal circles, whose
diameters are equal to that of the sphere: such circles
are called great circles of the sphere. '

(466.) Let a plane intersect the sphere without pass-
ing through its centre, and let a diameter of the sphere be
conceived to be drawn perpendicular to it ; if such dia-
meter be considered as an axis, the plane intersecting the
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sphere at right angles to it will form one of a system of
parallels, such as L L’, with reference to that axis. The
section of the spherical surface by such a plane will be
a circle having a diameter, such as L L, less than the
diameter of a sphere : such circles are called lesser circles
of the sphere.

(467.) Since the radius LC of a lesser circle, the
distance of its centre CO from the centre of the sphere,
and the radius L O of the sphere form a right-angled
triangle, the sum of the squares of LC and CO will al-
ways be equal to the square of the radius of the sphere.

(468.) Hence lesser circles whose planes are equi-
distant from the centre of the sphere are equal.

(469.) The nearer the plane of a lesser circle is to the
centre of a sphere, the greater the circle will be.

(470.) If a sphere be rolled in any manner on a
plane surface, its centre will move in a plane parallel
to that surface, and at a distance from it equal to the
radius of the sphere; for the line drawn from the
centre to the point where the sphere touches the plane
will be the shortest line which can be drawn from the
centre of the sphere to the plane, since any other lineé
drawn to the plane must pass beyond the spherical sur-
face before 1t can meet the plane. The line from the
centre of the sphere to the point where the sphere
touches the plane is therefore perpendicular to the
plane in every position which the sphere can assume :
this will, therefore, be the distance between the plane
in which the centre of the sphere moves and the plane
on which it rolls.

(471.) It is owing to this property that a body of
uniform density formed into a perfect sphere will rest
indifferently in any position, and roll indifferently in
any direction on a horizontal plane; for its centre of
gravity, coinciding as it must with its centre of mag-
nitude, moves in a horizontal plane; and as it never,
therefore, has a tendency either to ascend or descend, the
body will indifferently rest or move in any direction in
virtue of a well-known property of the centre of gravity.
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(472.) The sphere is unique in the possession of
this property, and all the effects produced by the
skill of the billiard-player are connected with it. The
~ billiard-table is, or ought to be, an exact horizontal
plane surface, and the billiard-ball should be a sphere
of uniform density, a property which ivory possesses
in a very high degree. The centre of the ball through-
out all its motions on the table is therefore at the
same absolute height above the surface of the earth ;
and its motions consequently, being free from any effect
of gravity, are governed exclusively by the impulses
given to it by the player,

(473.) The earth has very nearly the form of a
sphere ; the highest mountain and the lowest depths of
the sea do not amount to Togs part of its diameter,
and form relatively to its magnitude inequalities much
less considerable than the roughness on the rind of an
orange. There is another slight departure from the
exact spherical form which gives to the earth a figure
slightly approaching that of a turnip ; but this is so ex-
tremely minute in degree, that a billiard-ball having the
same want of perfect sphericity would not be known
by mere inspection to be imperfect in its form.

(474.) Considering the earth then as a sphere, it
has a motion of rotation on one of its diameters pre-
cisely similar to that by which we have shown that a
spherical surface is produced; this diameter is called
the axis of the earth, and its extremities are called the
poles. 'The points of the earth’s surface as they revolve
move in planes at right angles to the axis.

(475.) The sections of the earth at right angles to
the axis are called parallels of latitude ; and, according
to what has been already proved, these parallels are less
as they approach the poles.

(476.) The great circle at right angles to the axis is
the equator, which divides the globe into the northern
and southern hemispheres. The great circles whose

common intersections are the poles are called terrestrial
meridians,
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(477.) The distance of any place from the equator
measured upon a meridian passing through that place,
and expressed in degrees, minutes, and seconds, is called
the latitude of the place.

(478.) All parts of the same parallel of latitude,
being at the same distance from the equator, have the
same latitude. |

(479.) If three hundred and sixty meridians be
drawn whose planes shall divide the space around the
axis of the earth into three hundred and sixty equal
angles, these meridians will- divide the equator and
every parallel of latitude into three hundred and sixty
equal parts or degrees : these are called degrees of longi-
tude ; and the difference of the longitudes of any two
places on the earth will accordingly be measured by
the angle formed by the planes of the meridians which
pass through them, or, what is the same, it will be mea-
sured by the arc of the equator infercepted between
such meridians.

(480.) Different nations have adopted different points
of departure from which the longitudes of places are
measured. The English measure all longitudes from
the meridian which passes through the Observatory at
Greenwich, and the French adopt as their zero of longi-
tude the meridian which passes through the Observatory
at Paris,

(481.) If the surface of a sphere be divided into a

number of parallel bands by the planes L L” (fig. 175.)

of parallel circles, the sur- fig. 175.

faces of these bands may be . o
= = . #

considered as equivalent to e e e T

those of truncated cones, when e R

the planes of the circles L L” / \
are so near each other that |
the curvature of the spherical o
surface L L between them is
inconsiderable. It is evident
that if L L be considered as a
straight line, the revolution of
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the figure round the axis CC would produce a truncated
cone whose bases are the circles LL’. The conical
surface included between these bases may then be re-
garded as a part of the surface of the sphere,

(482.) The area of the surface of a truncated cone
being equal to its side multiplied by half the sum of its
bases, it follows, that when the parallels L L” ( fig. 175.)
are very close together, the area of the spherical surface,
included between them, will be equal to the distance
L L between the parallels multiplied by half the sum
of the circumferences of the two parallels, or, what is the
same, by the circumference of a parallel mm’ taken
midway between them,

(483.) Round the circle (fig.175.), let a square
D F’ be circumscribed. By the revolution of the figure
on the axis P P’, as the circle describes a sphere, the
square will describe a cylinder circumseribing that
sphere, and the planes of the parallels will intercept be-
tween them a cylindrical surface, which shall be equal
to the part of the spherical surface intercepted between
the same planes. For, by what has been already proved,
the cylindrical surface intercepted between these planes
is equal to the rectangle under the distance C C between
the planes and the circumference of a circle whose dia-
meter is EE’, while the spherical surface has just
been proved to be equal to the rectangle under the line
LL and the circle whose diameter is mm’; but we
shall now prove that these rectangles are equal; and
hence it will follow, that two parallel planes at right

angles to the axis PP’, when fig. 176.
very close together, will inter- “
cept equal magnitudes of the o
surface of the sphere and the N

circumscribed cylinder.  To VL
prove the equalityof the above- /
mentioned rectangles, let A B o
(fig. 176.) represent the arc
LL (fig. 175.), the arc AB
being considered so small that

P
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it may be regarded as a straight line; let C be its mid-
dle point, and let CN be drawn perpendicular to OP ;
draw B M perpendicular to CN : the triangle AM B will
then be similar to the triangle CN O, the sides of each
being perpendicular to those of the other. We shall
have, therefore, the following proportion : —

CN:CO=BM: BA
or 2CN:2CO=BM: BA.

Hence,: the rectangle under BA and twice CN, or,
what is the same thing, the rectangle under L L and
mm’, will be equal to the rectangle under B M and
twice CO, or, what is the same, under CC and EE’ ;
but, since these rectangles are equal, the rectangle under
L L and the circumference of the circle whose diameter
is mm” is equal to the rectangle under C C and the cir-
cumference of the circle whose diameter is E E’, but
these are equal, respectively, to the truncated conical
surface between the planes L L.” and the eylindrical sur-
face between the same planes.

(484.) Since the portions of the eylindrical and .
spherical surfaces intercepted between parallel planes
drawn very close together are equal, the portion of
such surfaces between parallel planes at any distances
whatever are equal ; for such portions will be made up
of a number of narrow bands intercepted by parallel
planes very close together.

(485.) Hence, the surface of the entire sphere is
equal to the surface of the entire eylinder.

(486.) Since the surface of the cylinder is equal to
the rectangle under the circumference of its base and its
height (889.), and since its base is equal to a great
circle of the sphere, and its height is equal to a diame-
ter of the sphere, it follows, that the surface of the
eylinder is equal to the rectangle under the circumfe-
rence of a great circle of the sphere and its diameter.

(487.) Since the area of a great circle is equal to
half the rectangle under its circumference and radius
(228.), four times the area will be equal to the rectangle
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under the circumference and diameter. Hence it fol-
lows, that the cylindrical surface circumseribed round
the sphere will be equal to four times the area of a
great circle.

(488.) Since this cylindrical surface is equal to the
area of the surface of the sphere, it follows, that the
area of the surface of a sphere is equal to four times
the area of one of its great circles.

(489.) The area of the surface of a spherical segment

EP L (ﬁ_{}'. 1?7.), will be equal ﬁg_ 14775,

to the area of the cylindrical sur- s

face, the diameter of whose baseis M T=T 1 Tu,
M M’ and whose height is P C. / ’*;

(490.) Such cylindrical surface & o
is equal to the rectangle under the \ /
circumference of a circle whose di-
ameter is M M” or E E” and P C. B
Hence the surface of the spherical segment is equal to
the height P C of the segment multiplied by the cir-
cuniference of a great circle.

(491.) Hence the surfaces of segments of the same
sphere are proportional to their heights, and those of dif-
ferent spheres are proportional to the rectangles under
their heights and the diameters of the spheres.

(492.) These properties supply the means of caleu-
lating the quantity of matter necessary to coat, cover,
or line a sphere or any part of a sphere ; thus, it is
evident, that the quantity of paint necessary for a sphere
is four times the quantity which would be sufficient for
the surface of a great circle of the same sphere.

The quantity of lead, copper, or zince, necessary to
cover a hemispherical dome, would be twice the quantity
which would cover the base of that dome, and so on.

(493.) If the surface of a sphere be conceived to he
made up of an infinite number of small polygons with
plane faces, the volume of the sphere will, like that of
other solids, be resolved into a corresponding number
of pyramids having the centre of the sphere for their

common vertex ; the volume of the sphere will therefore
P2
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be equal to that of a single pyramid whose base shall
be equal to the sum of thebases of all the component
pyramids—that is, to the surfaceof the sphere, and whose
altitude is equal to their common altitude — that is, to
the radius of the sphere. The volume of the sphere is
therefore equal to the volume of a pyramid or cone,
whose base is equal to the surface of the sphere, and
whose altitude is equal to its radius.

(494.) Hence the volume of a sphere is equal to
four times the volume of a cone whose base is a great
circle of the sphere, and whose altitude is the radius of
the sphere, or to twice the volume of a cone with the
same base, and whose altitude is the diameter of the
sphere.

(495.) The volume of a sphere is also equal to the
volume of a cylinder whose base is equal to the surface
of the sphere, and whose altitude is equal to one third of
the radius of the sphere; for such eylinder is equal
to a cone or pyramid whose base is equal to the sur-
face of the sphere, and whose altitude is equal to®its.
radius. |

(496.) The volume of the sphere is therefore equal
to four times the volume of the cylinder whose base is
a great circle of the sphere, and whose altitude is one .
third of the radius of the sphere; and therefore the
volume of a sphere will bear to the volume of a cylin-
der whose base is a great circle, and whose altitude
is the diameter of the sphere, a ratio of 4 to 6, or of
2 to 8. |

(497.) The volume of a sphere is therefore two
thirds of the volume of a circumseribed cylinder.

(498.) Since the surface of the circumscribed cylin-
der is four times the area of a great circle, and its ends
are equal to great circles, the whole surface of the cy- |
linder, including its ends, is equal to six times the area |
of a great mrcle, it appears therefore that the surface of
a sphere is two thirds of the entire surface of the cir= |
cumscribed cylinder. - .

(499.) The surface and volumes of the sphere and




CHAFP. XVII. GEOMETRY. 213

circumseribed cylinder are therefore both in the ratio of
two to three,

(600.) If a square and equilateral triangle be cir-
cumscribed round the same circle (fig. 178.), and all the

figures revolve together round fig. 178.

the axis H P’, a sphere, cir- -

cumscribed cylinder, and cir-

cumsecribed equilateral cone / \

will be formed, and the vo- -

lumes as well as the entire sur- / l

faces of these three solids will o

be in the continued ratio of 2

to 3. This has been already &< o
proved with respect: to the ©~ % P

sphere and cylinder, and we shall now show that the
proportion of the surface and volume of the cylinder
to those of the cone will be in the ratio of 2 to 3.

It has been shown that the volume of the cylinder
(is equal to the area of a great circle of the sphere mul-
tiplied by twice its radius, We shall now show that
the volume of the cone is equal to three times the area
of such a circle multiplied by twice the radius. The
area of the base of the cone will be to that of the base of
the cylinder, as the squares of their diameters — that is,
as the square of G G’ is to the square of F F”; but the
square of G G’ is four times the square of G P, or
four times the difference between the squares of O G
and O P, or, what isthe same, to four times the difference
between the squares of O H and O P’ ; but we shall
prove that O H is double O P’, and therefore the dif-
ference between the squares of O H and O P’ is three
times the square of O P’. If the line O G” be drawn, it
is evident that the triangles into which the equilateral
triangle is divided by the lines O G, O G’, and O H, are
equal, and therefore the area of Eaﬂh is one th1rd of
the area of the whole. The altitude therefore of the
triankle G O G’ is one third of the altitude of the
triangle G H G”, that is, OP” is one third of HP’, and
therefore H O is double O P,

P 3
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Since, then, the square of G G is four times the dif-
ference between the squares of HO and O P’, it is
twelve times the square of O P, and therefore three
times the square of P P” or of F F’. The square of
the diameter of the base of the cone is therefore three
times the square of the diameter of a great ecircle, and
the area of the base of the cone is therefore three times
the area of a great circle ; but the altitude of the cone
H P’ is equal to three times the radins O P” of a great
circle ; therefore the volume of the cone will be equal to
three times the area of a great circle multiplied by the
radius, while the volume of the circumscribed cylinder
is equal to the area of a great circle multiplied by its
diameter, or to twice the area multiplied by its radius ;
the volume of the cone will therefore be to the volume
of the cylinder in the ratio of 3 to 2.

The surface of the cone, exclusive of its base, will be
equal to half the rectangle under its side G H and the
circumference of its base ; but since G H is equal to
G G, this will be equal to half the rectangle under the
diameter of its base and the circumference of its base ;
therefore the conical surface will be equal to the rect-
angle under the radius and circumference of its base, or
to twice the area of its base ; and therefore the whele
surface of the cone, including its base, is equal to three
times the area of its base, or to nine times the area of
a great circle of the sphere ; but the entire surface of
the cylinder, including its ends, has been proved to be
equal to six times the area of a great circle, and

therefore these areas are in the ratio of §to 6, or of 8

to 2.

(501.) If the firmament be viewed with attention on

a cloudless night, from the deck of a ship, with no land
in view, the spectacle which will be presented to the

eye will be that of an enormous hemispherical surface

glittering with stars, and having the sea for its circular
base. So far as the eye can inform us, all the ohjects
visible in the heavens are equally distant, and the
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boundary of the view in the horizontal direction is a
cirele formed by the intersection of the plane of the
water with the hemispherical celestial vault. The stars,
which are so richly and abundantly scattered over the
firmament, will appear to maintain, with respect to each
other, the same relative position as if each was fastened
immoveably in the surface of the heavens. If, however,
the firmament be attentively watched for some hours,
its entire position with respect to the base of the hemi-
sphere will appear to be changed, not by any disturbance
of the arrangement or relative position of the bodies
upon it, but by a general shifting of the position of the
whole vault,—the stars being carried with it. If, during
these changes, a line be extended from the eye of the
spectator to any individual star, and be kept in the di-
rection of that star, the position of this line will be
observed to change as it follows the motion which the
star has in common with the firmament; and if the
course of the line thus moving be observed, it will be
found to move in the surface of a cone of which the
eye of the spectator, or, what is the same, the centre of
the hemisphere, is the vertex. If such a line be con-
ceived to be continued to the star, the base of this cone
would evidently be a circle described by the motion of
the star on the celestial sphere.

The motion of all the stars being observed in this
way, it is found that they move in parallel circles on
the sphere, and with such motions as are consistent with
the preservation of their relative position. In fact,
their motions are such as would be produced, if the
whole celestial sphere revolved on a diameter as an axis
passing through a certain point in the heavens, which
alone appears to be at rest. This point is called the
celestial pole.

This apparent motion of the heavens, which was
lung supposed to be produced by a real motion of the
universe daily round the earth, is now known to be
merely the effect of the diurnal rotation of the earth

P 4
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upon its axis, the effect of which is to give to all visible
objects round the earth an apparent motion in a contrary
direction, just as the banks of a river, viewed from the
cabin of a boat, appear to move in a direction contrary
to the boat itself.

(502.) The sphere has a remarkable and important
property analogous to one already mentioned as be-
longing to a circle, but which does not admit of de-
monstration on any principles of reasoning sufficiently
simple and elementary to be introduced here. In virtue
of this property, a sphere is the solid figure which,
within a given surface, contains a greater volume than
any other solid figure, or, what amounts to the same, a
given volume has the least surface when it takes the
figure of a sphere.

(508.) The nearer the form of any solid approaches
to that of a sphere, the greater volume it will contain
within a given surface.

(504.) The mutual attraction which the particles of
matter have for one another, always gives them a tend-
ency, when their motion is unobstrueted, to collect
themselves within the smallest possible superficial di-
mensions.

When vapour is condensed in the clouds and con-
verted into liquid by cold or other physical agency, its
molecules, attracting each other, form into spherules,
and descend in drops of rain. If quicksilver be
let fall upon any surface which has no attraction for
it, the mutual attraction of the particles of the li-
quid will cause it to collect in globules. These are
only manifestations of the tendency of matter, by the
reciprocal attraction of its particles, to collect within
the smallest possible dimensions, and are practical de-
monstrations that a sphere contains a greater volume
than another solid of the same surface. The spherical
form affected by the great bodies of the universe,— the
sun, planets and satellites forming our own systém,
besides those which compose the numberless systems
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which the power of the telescope has disclosed to us,—
are examples of the same principle on a greater scale.

(505.) If O (fig- 179.) be the centre fig. 179.
of a circular sector O A B, and O C
be the radius bisecting its angle, and /’
A B be the chord of its are, this figure, * o
by revolving round O C as an axis, will \/
generate the sector of a sphere. ] ‘

(506.) As the sector of a circle consists of a triangle
and segment, the sector of a sphere consists of a cone
and a spherical segment. The chord A B, as the sector
revolves round O C, produces a circle, the area of which
is the common base of the spherical segment, and the
cone of which the spherical sector is formed. |

(507.) The volume of a spherical sector is found
by multiplying the area of its spherical surface by one
third of its radius, being equal to the volume of a cone
whose area is that surface, and whose altitude is the
radius. This is demonstrated by the method already
applied to the determination of the volume of a sphere.

(508.) It has been already proved that the surface
of a spherical segment A C B is equal to the rectangle
under C M, the altitude of the segment, and the circum-
ference of a great circle. The circumference of such a
circle is to the circumference of a circle whose radius is
the chord A C, as the diameter of the sphere is to twice
the chord A C, or, what is the same, as the chord A C
itself is to twice C M. The rectangle, therefore, under
half the chord A C and the circumference of a circle
of which it is the radius, will be equal to the rectangle
under C M, and the circumference of a great circle. Hence
it follows, that the area of the surface of the spherical seg-
ment A C B is equal to the area of a circle whose radius
is AC.

(509.) The volume of a spherical sector is therefore
found by multiplying the area of a circle whose radius
is the chord of half the generating arc of the sector
by one third of the radius.
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(510.) The volume of the cone whose base is A B
being substracted from the volume of the sector, the
volume of the spherical segment will remain; but the
volume of the cone is equal to one third of its altitude
M O multiplied by the area of the circle whose radius
is A M, and the volume of the sector is equal to one
third of the radius A O multiplied by the area of the
circle whose radius is A C; the difference between these
products will therefore be the volume of the spherical
segment.

(511.) Ithasbeen shown that the surfaces of ceylinders
and cones are of such a nature, that if any thin covering
attached to them were separated from them or unrolled,
it would admit of being spread out upon a plane without
wrinkling or being torn ; the surface of a sphere, how-
ever, does not possess this quality. If a thin skin or
covering attached to a sphere were removed from it and
laid upon a plane, it could not be brought in contact
with the plane in every part. Any attempt to produce
such an effect would either tear the substance, or pro-
duce wrinkles or folds in it. .

(512.) Surfaces which, like those of cylinders and
cones, admit of having a plane cloth rolled upon them,
S0 as to cover them in every part without wrinkles or
tears, are distinguished, by being called developable sur-
Jaces, from others which, like the surface of a sphere,
do not possess this property.

(513.) This circumstance produces a difficulty in
lining or coating spherical surfaces in the arts with
cloth, or in plating them with metal, which does not
exist in the case of cylindrical or conical surfaces. If
it be required to cover or line an archway with cloth or
plates of metal, the lining may be laid on in pieces of
any magnitude —being easily curved so as to adapt itself
to the shape of the arch ; but if it be required to line or
cover a hemispherical dome, this cannot be done, and
expedients must be adopted to divide the lining or
covering material into pieces of such magnitude and form
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as, when placed in juxtaposition, will as nearly as pos-
sible cover the spherical surface.

(514.) Two methods are resorted to for accomplishing
this. Let the spherical surface be divided by a number
of parallel circles AB, A’B’ (fig.180.) into parallel
zones of very small breadth, so that the ares of a meri-
dian A A" or B B’, intercepted between them, may be
regarded as straight lines. The surface of such a zone
may then be considered as that of a truncatec cone
whose bases are the parallel circles A B, A"’ B’. Let Z
(fig. 181.) be taken as a centre, and Z’a as a radius

g. 180. fig. 181,
%

i

!/ﬁl\
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equal to Z A (fig. 180.), and let a circular arc ab be
described equal in length to the circumference of the
parallel A B, and taking Z" a’ ( fig. 181.) equal to Z A’
(fig. 180.) and describing the arc o’ ', it will be equal
to the circumference of the parallel A”B’. In fact, if
the surface of the zone be unrolled from the sphere and
spread out, it will form the band aa” 4" b (fig. 181.),
bounded by the two parallel ares.

If, therefore, the radius Z A be known, and the cir-
cumference of the parallel AB at any point of the
sphere, a narrow zone may be formed of any substance,
which shall surround the sphere at that place, and be
every where in contact with it ; such a zone will be ob-
tained by describing on a plane surface the sector of a
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circle whose radius is equal to Z A, and whose arc is
equal to the circumference of the circle A B,

The length of Z A, corresponding to any given point
on the sphere, is easily obtained. The diameter A B
being known, the radius A C is known, the square of
which being taken from the square of A O the radius
of the sphere, the remainder will give the square of
C O, which will therefore be known ; but the ratio of
C O to C A will be the same as that of O A to A Z.
The length of A Z will therefore be determined.

The angle Z’ ( fig. 181.), which, with a radius equal to
ZA ( fig.180.), will give an arc ab equal to the circum-
ference of the parallel A B, may be easily determined ;
for this angle, expressed in degrees, will bear to 360 de-
grees the same proportion as the circumference of the
circle A B bears to the circumference of a circle whose
diameter is twice Z A. The angle Z” (fig. 181.) will
therefore be found by multiplying 360 degrees by C A,
and dividing the product by Z A.

In this manner a series of narrow zones may be
formed, which, when laid upon the sphere, will very

nearly cover it,— the edges uniting without perceptible

folds or wrinkles ; and the more narrow such zones are

formed the more nearly will they cover the sphere.
(515.) Another method: of covering a spherical

surface consists in dividing it bya number of meridians,

as represented in fig. 182., form- v, 189,
ing with each other angles so small >
that the arcs of parallel circles in- 7

tercepted between them may be / [
considered as straight lines. If these ,"'
meridians be themselves divided
into small and equal ares by pa- \{TPK_\'
rallel circles intersecting the axis '
of the sphere at right angles, the 1z
whole spherical surface will be divided into small quadri-
lateral figures bounded by the parts of the meridians
and parallels, which may be considered as plane trape-
ziums : the form and magnitude of each series of these

#‘Eiﬁ_f' .
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will generate an annulus, the centre C of the circle
describing a circle round P P’, which will be the axis of
the annulus.
Such a solid is represented in perspective in fig. 186.
If an arc of a circle such as A B revolve round a
line P P’ drawn on the convex side of it and in its

plane, as an axis, it will generate a figure with concave:

cylindrical sides, such as is represented in fig. 187.
Sig. 186. Jig. 187.

.ﬂ"'mf
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(517.) Almost all the variety of vases of metal and
porcelain used in domestic economy, ancient and mo-
dern, and adopted for ornamental purposes in Siz. 188,
the arts, are surfaces produced by the revolu-
tion of the ares of curves round lines drawn
in their planes, within or without them, in
the manner above described, combined with
cylindrical surfaces, and those of truncated
cones ; all the surfaces of revolution com-
posing the same vessel having a common axis, as re-
presented in fig. 188.

(518.) A circle is not the only line by the revo-
lution of which round a fixed axis a surface may be
generated ; on the contrary, this method of producing
a surface is general, and has given rise to a class of sur-
faces called surfuces of revolution, and which are the
class of geometrical forms of the most frequent occur-
rence both in natural and artificial productions, Any
line whatever, whether straight or curved, may revolve
round another line as an axis, and by such revolution it
will generate a surface of revolution, the form and pro-
perties of which wili depend on the species of line which

=
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revolves, and its position with respect to the axis of re-
volution.

The right circular cylinder and cone, as has been
already observed, belong to the family of surfaces of
revolution. If one of two parallel right lines revolve
round the other as an axis, it will produce the surface
of a right circular eylinder; and if one side of a plane
- rectilinear angle revolve round its other side as an axis,
it will produce the surface of a right circular cone.

(519.) From the mode in which they are generated,
it follows, that the sections of all surfaces of revolution
made by planes at right angles to the axis of revolution,
are circles having their centres in the axis of revolution:
this is a characteristic property of such surfaces ; and,
- as it belongs to none other whatever, it may be, and
sometimes is, taken as the basis of their definition. It
is evident, that, in the production of a surface of revolu-
tion, all the points of the revolving line move in parallel
planes, and, as they preserve their distances from the
axis of revolution, each must describe a circle whose
centre is in that axis.

(520.) Surfaces of revolution are infinitely various,
not only in consequence of the great variety of lines by
the revolution of which they may be produced, but by
reason of the variety of surfaces which may be produced
by the same line revolving under different circumstances.

When a right line is in the same plane with the axis
round which it revolves, it will pro- ﬁy 139
duce, as has been shown, either a cy- i
lindrical or conical surface, according ' ] i i
as it is parallel or not to the axis of re- ||
volution ; but if it be not in the same
plane with the axis of revolution, it will
produce a curved surface (fig. 189.) 1
whose cross section shall be a circle
whose radius is the least distance of
the revolving line from the axis of re- i ”H
volution,
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(521.) Among the productions of nature, the great
bodies of the universe — the sun, planets, and satellites—
are surfaces produced by the revolution
of an oval or ellipse round its lesser axis 1 ' :
( fig. 190.). j |

Fruit of almost every kind are sur-
faces of revolution produced by the
segment of a circle revolving round a
chord.

A lemon affords an example of a surface of revolution
(fig-191.) formed by a segment less than fie. 101
a semicircle revolving on its chord. 2 i

An apple (fig. 184.), of a surface formed by 4 |
a segment greater than a semicircle revolving (@ ||
on its chord.

An orange is an example of a surface of
revolution (fig. 190.) formed by an oval re-
volving on its shorter axis.

A plum (fig. 192.), of a surface of revo-
lution formed by an oval revolving on its longer
axis,

(522.) Every species of dome in archi-
tecture 1s a surface of revolution. A hemi-
spherical dome is formed by a semicircle revelv-
ing round the radius which is perpendicular to
its diameter ( fig. 193.).

. An oblate elliptical dome (fig. 194.) is il
a surface of revolution produced by the i
revolution of a semi-ellipse round its lesser &L
semi-axis.

Jig. 194,
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CHAP. XVIII.

OF THE REGULAR SOLIDS.

(524.) A mrEeunLar solid is a solid all the faces of
which are regular polygons, or, rather, regular plane
figures ; that is, figures which are equiangular and equi-
lateral.

(525.) It is easy to prove that there cannot be more
than five regular solids.

1. If the faces be equilateral triangles, solid angles
may be formed by their combination in different ways.
Three, four, or five angles of 60° may form a solid
angle ; but if six or more such plane angles were united
edge to edge, they would be equal to or greater than
360°, and consequently could not form a solid angle,
since the sum of the plane angles forming a solid angle
must evidently be less than 360°.

The number of regular solids, therefore, whose faces
are equilateral triangles cannot exceed three.

9. If the faces be squares, a solid angle can be formed
by three right angles, but not by four, or any greater
number, since the sum of four right angles is equal to
860 degrees. There cannot, therefore, be more than
one regular solid with square faces.

3. Suppose the faces are regular pentagons. A solid
angle may be formed of three angles of a regular pen-
tagon, for the magnitude of the angle of a regular pen-
tagon is six-fifths of a right angle, and therefore the
aggregate magnitude of three such angles is eighteen-
fifths of a right angle, or three right angles and three-
fifths, which being less than four right angles, a solid
angle may therefore be formed by three angles of a re-
gular pentagon, But four or more such angles, being
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greater than four right angles, cannot form a solid angle.
Hence there cannot be more than one regular solid with
pentagonal faces.

4, Suppose the faces were regular hexagons. The
angles of a regular hexagon are 120 degrees, and three
such angles would therefore be equal to 360 degrees.
Three angles of a regular hexagon combined would
therefore form a plane, and could not form a solid angle ;
and as four or more such angles would be greater than
360 degrees, they could not form a solid angle.

5. The angles of all regular polygons having more
than six sides are greater than one third of four right
angles. Consequently three or more such angles com-
bined, amounting to more than 300 degrees, cannot
form a solid angle.

Hence no regular solid can have faces with more than
five sides. Hence we infer, first, that there cannot be
more than five regular solids; secondly, that of these,
three have triangular faces, one has a square face, and one
a pentagonal face ; thirdly, that the solid angles of the
three regular solids having triangular faces are formed
of three, four, and five plane angles, and that the solid
angles of the others are formed of three plane angles.

(526.) To construct a regular solid having triangular
faces, whose solid angles shall be composed of three
plane angles, let A B C (fig. 196.) be one of the sides of
such a solid, and let O be the centre

of this equilateral triangle, taken Jig. 196
upon the perpendicular from the angle A
A to the side B C, at a distance /TI\

O a from that side equal to one third / ,.fllj-!;"\
/ J{ | \

of the length of A a. From the i
point O draw a perpendicular O P *"1:?:1‘,_::;;?5';;7‘
to the plane of the triangle A B C. EAet
From the three angles A, B, C, let
lines be inflected on this perpendicular equal to the
sides of the equilateral triangle A BC. These lines
will meet the perpendicular at the same point P, and
Q 2
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will form the edges of a triangular pyramid, whose
faces will be equilateral triangles equal to the base
ABC.

To prove that the lines thus inflected will meet the
perpendicular O P at the same point, let A P be one
of those lines. In the right-angled triangle A O P the
square of O P will be equal to the difference between
the squares of A P and A O ; but the point O being at
equal distances from each of the three angles of the tri-
angle A B C, the height of the point at which each of
the inflected lines will meet the perpendicular above the
point O will be the same, its square being equal to the
difference of the squares of the equal inflected lines and
the equal distances of the point O from the three angles.

The inclinations ot the planes of every pair of faces are
equal. Since A« and P @ are both drawn to the middle
point of the common base of the equilateral triangles
B ACand BP C, they will be perpendicular to that
base, consequently, the angle Pa A will be the angle under
the planes of the two triangles. For the same reason,
P ¢ C will be the angle under the planes of the faces
APBand A CB. Bat since the sides of the triangle
A a P, are equal respectively to the sides of the triangle
P ¢ C, the angles of these triangles are equal, and there-
fore the faces PA B and PB C of the pyramid are
equally inclined to the plane of its base.

In the same manner, it may be shown that the planes
of all the faces of the solid are equally inclined to each
other,

(527.) This regular solid, with four equal and si-
milar triangular faces, is called the regular tetra-
edron.

- (528.) To determine numerically the volume of a
regular tetraedron, whose side is the linear unit. Since
A B is the unit, B ¢ will be }, and therefore the square
of B a will be 1 ; but the square of A a is the difference |
between the squares of A B and B a, and is therefore 4.
But A O being % of A a,. its square will be % of the |
square of A a, therefore the square of A O is  of $, or
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centre O, draw a perpendicular to this plane, extending
it both above and below the plane; from the points
A, B, C, D, inflect on this perpendicular, at both sides
of the plane, lines equal to the sides of the square. It
is evident that those four which lie on the same side of
the plane of the square will meet the perpendicular at
the same point ; let these two points be P and P’: two
pyramids will thus be constructed on opposite sides of
the square, the faces of which will be the equilateral
triangles, whose bases are the sides of the square. These
two pyramids, having the square as their common base,
will form a regular solid with eight triangular sides, of
which the square is a diagonal plane.

(581.) This solid, with eight equilateral triangular
faces, is called the regular octaedron.

(532.) The inclinations of the planes of every pair
of adjacent faces of the solid are equal.

From D and B draw lines to the middle points m, n
of the edges P’ C and P” A. These lines will be per-
pendicular to P* C and P” A, and therefore contain angles
D m B and D n B, equal to the inclinations of the planes
DP'C.,BPC, and DP A, BP A. 'But they are
equal, being the altitudes of equal equilateral triangles,
and therefore the isosceles triangles D m B and Dn B
having the common base D B, are equal, and the angles
D m B and D n B, which determine the inclinations of
the planes, are equal ; and in the same manner, the in-
clinations of other pairs of adjacent faces may be proved
to be equal. |

(533.) Hence, the inclination of the faces is equal
to the vertical angle of an isosceles triangle, whose base
DB is to its side Dn as the hypothenuse of a right |
angle isoceles triangle is to the altitude of an equilateral |
triangle constructed on one of its sides.

(534.) If three faces of the octaedron, whose bases
form the edges of the same face, such as ADP, BCP,
AP’B, be continued through those sides until they
form a solid angle, they will form a regular tetraedron
with the face through whose sides they are produced.
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(5385.) Each pair of faces of the octaedron, such as
APB and DP’C, which are constructed on opposite
sides A B, DC of the square, and also on opposite sides
of its plane, are parallel ; for the alternate angles which
their planes form with that of the square, are equal.

(536.) If the planes of three faces, which are termi-
nated in the edges of any one face A B P, be produced
until they form a solid angle, and also until they meet
the plane of the face D C P’, which is parallel to A B P
produced, they will with it form a regular tetraedron
eircumseribing the octaedron. Hach face of this tetra-
edron will be divided into four equilateral triangles by
the edges of the face of the octaedron by whose produc-
tion it is formed. Hence it follows, that the whole sur-
face of this tetraedron is sixteen times one of the faces
of the octaedron, and is, therefore, double the whole sur-
face of the octaedron.

(5387.) It appears, therefore, that if the four corners
be cut from a regular tetraedron by planes through the
points of bisection of every three adjacent edges, the re-
maining figure will be a regular octaedron. Since each
pyramid thus cut off, is similar to the whole, and the
edges are in the proportion of one to two, the volume of
each pyramid cut off will be | of the whole; therefore
the volume of each of the four pyramids removed, will
be 1 of the volume of the remaining octaedron.

(538.) Hence it appears, that the volume of a regu-
lar octaedron, whose edge is the unit, will be half the
volume of a regular tetraedron whose edge is 2. But
by (528.), the volume of a tetraedron, whose edge is 1,

1 - L L L .
is ——— ; and since a similar solid, whose edge is 2, has

6 v 2
8 times the volume (864.), it follows, that the volume

: : .2V
of a tetraedron, whose edge is 2, 1is 6 iﬁ': 32 ;
A 2

3"

Hence the regular octaedron, whose edge 1s 1, is

£
Q4
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adjacent lateral face of the pyramid at the same angle
as any two of the adjacent lateral faces; that is, so that
the angle under the planes A B C” and A B P shall be
equal to the angle under any two adjacent planes contain-
ing the angle P, and so that the same may be true of the
planes BCD’ and BCP, CDE’ and CDP, &e.

Hence it follows, that at each of the vertices A, B, C,
&ec. of the base of the pyramid there are four angles,
each two thirds of a right angle, and whose planes are
‘united at the same inclinations as four of the angles
which form the solid angle P. It follows, therefore,
that the angle C’BD’ included between the contermin-
ous sides (BC’, BD") of two equilateral triangles ABC’,
C BI)’, constructed upon counterminous sides of the pen-
tagonal base, must be an angle of an equilateral triangle,
so placed that if its plane be supposed to be drawn it
will complete the solid angle B, and render it equal to P.
The same conclusion is obviously applicable to each of
the other angular points of the base.

We have thus a figure formed having a solid angle at
P formed of five angles of equilateral triangles, having
ten equilatural triangular faces, and a serrated edge or
boundary AC’BD’ CE’, &e., the planes of the angles
being so disposed that if the gaps C’'B D', D'CE’, &e.
be filled up, solid angles will be formed at A, B, C, &e.
equal to P.

Let another figure in every respect equal and similar
to this be formed, the corresponding points being
marked by the small letters a, b, ¢, ... @, b, ¢, &e.
Let the point ¢’ be placed upon B, and the sides ¢ a,
¢’ b, upon the equal sides B C’, B D’ of the equal angle
C’BD’. It is evident that the points @ and & will co-
incide with C” and D respectively. Thus the angle
a ¢ b inserted in C” B D’ will complete the solid angle
B, which will then be equal to P. s |

The plane of the angle D’BC has been already
proved to be inclined to that of D"BC’ at the same
angle as any two adjacent plane angles of P, and the
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same is true of the planes of the angles a¢” b and ¢’b &',
Since, then, the plane a ¢” b coincides with C’ B D’, and
the planes ¢"bd” and B D’ C are equally inclined to that
plane, the plane ¢"5d” must coincide with B D’C.
Since the line B D’ coincides with ¢’5, and the angles
BD’C and ¢’ bd’ are equal, and in the same plane, the
point 4" must coincide with C. In the same manner we
may prove that the points ¢, ¢/, &e. coincide with E” D,
&ec. ; and we may prove that each of the solid angles at
these points is equal to P, as we have already proved of
the solid angle B.

Hence it appears, that by the union of the two shells
formed of ten equilateral triangles, in the manner already
described, a regular solid with twenty triangular faces is
formed.

This solid is called the regular icosaedron. .

(540.) By the construction it appears, that the
inclinations of the planes of every pair of adjacent
faces are equal. To determine this inclination conceive
lines drawn from any two vertices A, C to the middle
point of the opposite edge B P. These two lines being
perpendicular to B P will contain an angle equal to the
inclination of the planes AP B, C P B. But they are
the sides of an isosceles triangle, whose base is the dia-
gonal AC of the regular pentagon, and they are each
equal to the altitude of an equilateral triangle, whose
side is one of the edges. Hence the inclination of the
planes of the faces of a regular icosaedron is equal to the
vertical angle of an isosceles triangle, whose base is to
its side as the diagonal of a regular pentagon to the al-
titude of an equilateral triangle constructed on one of
its sides,

(541.) To construct a regular solid with square faces.
This is obviously a rectangular parallelopiped, whose
base is a square, and whose altitude is equal to the side
of the base,

The regular hexaedron is therefore the cube.

(542.) To construct a regular solid with pentagonal
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faces. Let ABCDE be a regular pentagon. From the
vertex A draw the line A « Jig- 199.

equal to the side of the pen-
tagon, and inclined to AB
and A E at angles €qual to
the angle of the pentagon.
The solid angle formed by
the three lines which meet at
that point is one of the an-
gles of the required solid,
formed by the three penta-
gonal angles ¢ A B, a AE,
and BA E. In the same manner, let the lines B b, Ce,
&e. be drawn from each of the angles of the pentagon,
forming solid angles of the same kind at the points B, C,
D, &c. Let the pentagon, of which ¢ AB? are three
sides, be completed, and in the same manner let each of
the other pentagons on the sides of the base A B CDE
be completed. We shall thus have a shell with six
regular and equal pentagonal faces, and a serrated edge,
0 C’bD ¢, &e. The adjacent planes, forming several
pentagonal faces, are inclined each to each at the same
angle ; and it may be proved in the same manner as in
(559.), that if a plane be drawn through the angle
C’b 1Y, a solid angle will be formed at b equal to those at
A,B,C, &c. As in (589.), let another shell in every
respect equal and similar to this be constructed, and let
them be united at their serrated edges. It will follow,
by the reasoning used in the former case, that the several
solid angles which will be formed at a, @, 5,108, 8.
will be equal to those at A, B, C, &ec.

Hence, by the union of those two shelis with six
pentagonal faces, a regular solid with twelve pentagonal
faces is formed.

This solid is called the regular dodecaedron.

(548.) To determine the inclination of the planes of
the adjacent faces. Let any edge B A be conceived to
be produced through A, and from @ and E let perpen-
diculars to it be drawn in the planes of the angles B A a
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and B AE. Since the angles BAz and BA E are
equal, those perpendiculars will meet B A produced in
the same point, and will include an angle equal to the
inclination of the faces BA C’and BAD. The dia-
gonal ¢ E will be the base of an isosceles triangle, of
which the perpendiculars are sides. Hence the inclin-
ation of the faces is the vertical angle of an isosceles
triangle, whose base is to its side as the diagonal of a
regular pentagon is to the perpendicular from one of its
angles upon a side terminated at the adjacent angle,

(544.) The volumes of all the regular solids are
found by methods similar in prineiple to those which
have been explained for solids in general. Each of these
bodies admits of being circumseribed by a sphere, whose
surface shall pass through the vertices of all its angles ;
if the centres of its faces be taken, and perpendiculars be
raised from them, these perpendiculars will all pass
through the centre of the circumseribed sphere.  If the
planes of its faces be produced, they will intersect the
sphere, and their sections with it will form lesser circles
of the sphere, and will be the circles circumscribing
the regular polygons that form its faces: the centres of
these latter circles will be the centres of the polygons ;
and it is plain, therefore, that the perpendiculars from
them must all pass through the centre of their sphere,
If lines be drawn from the centre of the sphere to the
angles of the polyedron, these lines will be the edges of
regular triangular pyramids, whose bases will be the
faces of the figure, and the volume of the solid will be
the sum of the volumes of such pyramids ; or since they
are all equal, it will be the volume of one of them mul-
tiplied by the number of faces which the solid has,
Perpendiculars drawn from the centre of the sphere to
the several faces of the solid will be equal, and a sphere
described with the centre of the solid for its centre,
and such a perpendicular for its radius, will touch all the
faces of the solid at their respective centres, and will
therefore be the sphere inscribed in the solid.

(545.) The volume of the solid will then be equal
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CHAPTER XIX.
ON HELICES AND SCREWS.

(547.) Ler A B CD (fig. 200.) be
a rectangular sheet of paper, and
let A D be divided into a number
of equal partsat a, b, c,d, e, f,g, and
let B C be similarly divided at A",
a’, b, ¢, d, e, £/, and let the lines :
AX s, Bb-&o.-be diawi, it g
If the paper be now wrapped round a right cylinder,
the circumference of whose base is equal to A B, the
edge A D of the paper coinciding with the  jfis. 201.
side of the cylinder, will exactly meet the i
edge B C. The point A” will coincide with ¢~
a, the point a” with b, the point " with c, el
and so on. The line A A’ winding round -
the cylinder will meetthe line a o', at a, (fig. . /
201.) and both these lines being equallyin- | ==
clined to a section of the cylinder at ¢ paral- .
lel to its base, they will form one continued al=
line round the cylinder without making any angle.
(548.) The line thus formed on the cylindrical sur-
face, is a curve called a Helix. If the line A B (fig. 200.)
be divided into any number of equal parts, at z, 2, y, &e.
the perpendiculars =2, #a’, yy’, &c. will be pro-
portional to their distances from A, because of the simi-
larity of the right angled triangles of which these lines
are the bases, and of which A is the common vertex.
When these points 27, a°, y°, &c. are transferred to
the cylindrical surface, their distances from the base of
the cylinder will be proportional to that part of the cir-
cumference of the base which lies between the point A
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and the perpendicular itself. The helix therefore may
also be conceived to be traced on the cylindrical sur-
face by a point which, while it moves uniformly round
the eylinder, has also a motion parallel to its axis.
(549.) The helix may also be conceived to be pro-
duced in the following manner : let A B C D, (fig.202.)

Sig. 202.
| LA oy
a A
I P
o G
N / 81
fre
/ﬁ i i
7 A A

be a cylinder, and let A Z be the base of a right-angled
triangle, whose perpendicular A D is made to coincide
with the side of the cylinder. Let the parallel E K
be equal to the circumference of the cylinder, and
supposing the points F, G, H, I, to divide the side of
the cylinder into equal parts, the parallel F L will be
twice the circumference of the cylinder, G M three
times the circumference of the cylinder, and so on.

If the paper forming the right-angled triangle D A Z
be now conceived to be rolled round the cylinder, a spi-
ral curve will be formed upon its surface by the line D Z.
After the paper has made one revolution of the cylinder,
the point K will fall upon E. After the second revolu-
tion, the point L will fall upon F. After the third revo-
lution, the point M will fall upon G, and so on.

(550.) The spiral line thus traced on the cylinder, is
called the thread of the helix, and the distance D E or
E F between the parallels is called the distance between
two contiguous threads.

The angle Z is the angle under the thread of, the
helix and the base of the cylinder.

(551.) It is evident that for the same helix the dis-
tance between the successive revolutions, or between the
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contiguous threads, is the same throughout the whole
length of the cylinder.

(552.) The same helix may be formed on the
cylinder in contrary directions, according to the direc-
tion in which the triangle D A Z is rolled on the cy-
linder.

(553.) If, instead of a point being moved along the
helix on a cylindrical surface, any plane rectilinear
figure be so moved, its plane being preserved so as
constantly to pass through the axis of the cylinder, a
spiral channel or tube will be formed, the section of
which, by a plane through the axis of the cylinder,
shall be equal to the rectilinear figure so moved.
Thus, if a triangle, such as a b ¢ (fig. 203.), be moved,
so that its base a b shall always coincide fig. 208.
with the surface of the eylinder, its plane ;
passing through the axis of the eylinder, ]
and the point ¢ tracing on the cylinder a
helix, the triangle will form on the cy- |r
linder as it moves the thread of a screw, |5 '
and if such a thread be so formed in relief ¢ <| , ‘
on the cylinder, the cylinder will be- 4
come an ordinary screw with a triangular thread. Such
a screw is called a convexr or male serew.

(554.) If the triangle be similarly moved on the con-
cave surface of a hollow cylinder, its base, coinciding
with the side of the cylinder, and its vertex always
pointing through the axis, a similar screw will be
formed, having a triangular thread sunk on its surface.
Such a screw is called a concave or female screw.

(555.) A square might, in like manner, be moved
along the direction of a helix, so as to form a screw
with a thread of a corresponding form.

(556.) If a concave and convex cylinder have the
same diameter, so that one may move within the other,
and a similar and equal screw be formed on each, the
raised thread of the convex screw will be capable of
moving in the sunk thread.of the concave screw, and if
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either be made to revolve round the common axis of the
cylinders, the other being at the same time prevented
from revolving, the one ecylinder will move within or
round the other, and in each revolution will advance
through a space equal to the distance between two con-
tiguous threads of the screw.

(557.) If, in this case, the concave screw be kept in
a fixed position, being prevented from moving either
progressively or round its axis, the convex screw will,
when it revolves, have a progressive motion, the speed
of which will be to the speed with which its surface re-
volves, as the distance between the contiguous threads is
to the circumference of the base of the cylinder.

(558.) If, on the other hand, the convex screw he
kept fixed, being prevented from moving either pro-
gressively or by rotation, the revolution of the concave
screw will impart to it a progressive motion, the speed
of which will be determined in the same manner.

(559.) One of the screws may be capable of a pro-
gressive motion only, while the other is capable only of
a motion of revolution ; in that case the revolution of
the one will impart a progressive motion to the other,
and the rate of such progressive motion will be deter-
mined as above. :

(560.) In virtue of this property, the screw is used
in machinery as a means of converting a rotatory motion
into a progressive motion ; and it is especially applicable
where the velocity of the progressive motion intended to
be produced, is small compared with that of the rotatory
motion which produces it.

(561.) In mechanics, the intensity or energy with
which a force acts, increases as the space in which the
action takes place is diminished. By this mechanical
law, the screw becomes an agent of great power when a
force of great intensity is required to be exerted through
a small space. Screw-presses derive their efficacy from
this principle. To the cylinder of the screw, and at
right angles to it, is attached a handle, bearing com-

R
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monly at its ends heavy spheres of metal, while, under
the lower end of the screw, is placed the body on which
a pressure is to be exerted. The cross handle and
heavy spheres being made to revolve with considerable
velocity, the screw descends with a progressive motion
slower than that of the spheres, in the ratio of the cir-
cumference described by the spheres to the distance
between the threads of the serew, and it acts upon the
body under it with an energy greater in the same pro-
portion.

(562.) Serews constructed with extremely fine threads'
are used as instruments for measuring extremely small
magnitudes, and are thence called Micrometer serews.
These screws are of considerable use in astronomical
instruments, where spaces are required to be mea-
sured so minute that they cannot be seen without the
aid of microscopes. These spaces are usually divided
by a series of fine wires extended parallel to each other
across the field of view of the microscope. One of these
wires is capable of being moved parallel to itself, and
made to approach to, or recede from, the other. If such
a wire is made to coincide successively with two points,
the distance between which it is required to measure,
that measurement will be effected, if by any means the
space through which the wire is moved can be known.

This is accomplished by putting the frame containing
the movable wire in connection with a micrometer
serew, so that the frame and wire shall be moved in the
one direction or the other, by turning the screw. In
this manner, each revolution of the screw moves the
wire through a space equal to the distance between its
threads, and any fractional part of a revolution will
move the wire through the same fractional part of the
distance between the threads. Thus, if the screw be
cut with such a degree of fineness, that there shall be
100 threads in an inch, then each revolution of the
serew will move the wire through the hundredth part of
an inch, and the hundredth part of a revolution of the
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screw will move the wire through the ten-thousandth

- part of an inch. The fractional parts of a revolution

may easily be noted by placing an index or hand on the
head of the screw, which shall play upon a graduated
circle, divided according to the accuracy of the intended
observation.

(563.) The application of screws in the arts as ad-

_ Justing screws is frequent ; in this case less accuracy of

construction is required. If an instrument, for example,
supported on three or more legs, is required to be le-
velled, a screw is fixed in each leg, by turning which
the level of the instrument is gradually adjusted.
(564.) In the art of distillation, the vapour raised
from the liquid to be distilled is conducted through a
worm, which is nothing more than a tube bent into
the form of a helix, and immersed in a cistern of cold
water. The steam, or vapour, passing through this
worm, is deprived of its heat, and reconverted into

- liquid, or condensed, and drops from the lower end inte

a vessel intended to receive it.
(565.) The screw by which corks are drawn from
bottles, is a steel wire bent into the form of a helix, and

- sharpened at the point. This instrument penetrates

the cork, and forms through it a hollow path, likewise
in the form of a helix, and as it revolves advances
downwards, moving through a depth equal to the dis-
tance between the threads or spires in each revolution
of the screw.

(566.) The plaits of straw by which hats are formed
are carried round the circumference of the hat in the
form of a helix ; the distance between the threads being

equal to the breadth of the plait. In proportion as the

- plait is of uniform breadth, and accurately united, edge

to edge, so will the fabric be the more perfect. . This

constitutes the superiority of the Italian bonnets.
(567.) Steel wire bent into the form of a helix, and
rendered highly elastic, is much used in the arts for
springs. The common spring steel-yard is an instru-
R 2
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ment formed of an elastic spring in the form of a helix
confined within a cylinder. The matter to be weighed
is suspended from a hook, so that its weight shall com-
press the spring, and the extent of suech compression
shows the amount of the weight.

(568.) The coaches which form a railway train are

liable, when the train is suddenly stopped or retarded, to:
strike one against the other, with such a force as to be:
attended with injurious consequences to the passengers,
and in the event of one train overtaking another the:
collision is still more dangerous. These effects are:
mitigated by attaching to the ends of the carriages cir-.
cular cushions called buffers, which are fastened to iron|
rods that pass under the carriage, and act against a
system of elastic springs. When one carriage encounters,
another, these buffers come first in contact one with;
another, and the force of the collision is broken by the!
elasticity of the springs. The springs used in some
carriages for this purpose have the form of a helix, that|
being the spring which has most longitudinal play.
- (569.) The form of the helix is sometimes presented |
in natural objeets. The tendrils of creepers and para-
site plants frequently take this form, winding round the
trunk of the larger tree which forms their support. The
tresses of the human hair are sometimes elastic spirals|
or helices, and this form, being admired, is accordingly
imparted to them by artificial means. The fibres con-
stituting threads or ropes are, by the process of spinning
or twisting, thrown into the form of the helix.

(570.) If a vertical line be conceived to be the axis
of a cylinder, and from any point in it a horizontal line
equal to the radius of the cylinder be drawn, and this
horizontal line be supposed to ascend with a uniform
motion along the vertical line, and at the same time to
revolve with a uniform motion round it, the end of the
horizontal line will trace a helix on the cylindrical sur-
face, and the line itself, as it ascends and revolves, will
trace a helical surface round the axis of the cylinder.
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CHAP. XX,

OF THE INTERSECTIONS OF SURFACES.—O0F THE CONIC
SECTIONS. ,

(573.) As all surfaces may be generated by the motion
of lines restricted by an infinite variety of conditions,
so all lines may be produced by the intersection of sur-
faces under circumstances equally various. 1In fact, all
the lines which are produced, or really exist, in natural
or artificial objects, are formed by the intersection of
surfaces forming corners or edges.

(574.) If two plane surfaces intersect, their line of
intersection will, as has been already explained, be a
straight line.  Consequently, all the edges of solid
figures, whose faces are plane, must be straight lines.

(575.) Although the intersection of a plane surface
with a curved surface, or of two curved surfaces with
each other, is not in general a straight line, it must not
therefore be inferred that it is never so. On the con-
trary, the intersections of a cylindrieal surface, with a
plane parallel to its axis, are parallel right lines ; and the
intersection of a conical surface, with a plane passing
through the vertex of the cone, are right lines intersecting
at the vertex. In fact, any surface which can be gene-
rated by the motion of a right line—or, in other words,
any developable surface—will be intersected in a right
line by a plane which passes through it in the direction
of the line by the motion of which it is generated.

(576.) Inlike manner, two cylindrical surfaces whose
axes are parallel, or two conical surfaces which have a
common vertex, will intersect each other in straight lines,
the intersections of the former being straight lines pa-



5

CHAP., XX. GEOMETRY. 247

rallel to the axes of the cylinders, and the intersections
of the latter being straight lines passing through the
common vertex of the two cones.

(577.) And, in general, two developable surfaces will
intersect in a right line, if the right lines, by the motion
of which they are generated, coincide in any one position.

(578.) But these are the exceptions, being the pecu-
liar and the only conditions under which curved surfaces
intersecting each other, or intersecting plane surfaces,
can produce a right line. In general, the line produced
by their intersection will be a curve, the nature and pro-
perties of which will depend on the form and position
of the intersecting surfaces.

(579.) It has been already shown, that all surfaces of
revolution, intersected by a plane perpendicular to their
axis, have circular sections ; and it likewise follows, that
any two surfaces of revolution, intersecting each other,
will have a circle for their common intersection if they
have a common axis.

(580.) The curves formed by the intersection of a
plane with a curved surface, which have been of the
greatest importance by reason of their use in the arts
and sciences, and of the greatest intellectual interest by
reason of the beauty of their forms and properties, are
those which are formed by the intersection of a plane
with the surface of a cone. When in the infancy of
science the investigation of the properties of these
curves was pursued by Plato, and the geometers of bis
school, as matter of pure and sublime intellectual spe-
culation, the reproach of inutility was cast on such
inquiries, as it is now frequently, and with as much
ignorant presumption, advanced against the investiga-
tions of the higher analysis. The possibility was not
then foreseen, that the progress of discovery, after two
thousand vears had rolled away, would ultimately esta-
blish the fact, that these very curves, which were re-
garded by the disciples of Plato in nearly the same light
as abtruse metaphysical speculations are now viewed,
are the paths in which the earth and planets move round

r 4
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the sun ; in which the satellites move round their pri-
maries ; and are even the forms to which these great
bodies of the universe themselves are reduced by the
forces which attend their rotation on their axis.

(5681.) Ifacone AOB (fig.204.) be cut obliquely by
a plane which intersects two sides
of the angle, by the revolution
of which the cone is produced,
at two points M and N, which
are at the same side of the ver-
- tex O of that angle, the section
will be the curve called an ellipse.

This curve may be described
upon a plane in the following
manner. Lettwopinsbe attached #& =
to two points Fand F’( fi9.205.), and to these pins let the

Jig. 205,
B

|

Pr 2

ends of a thread F P F’ be fastened, the length of the
thread being greater than the distance between the pins.
Let a pencil be looped in the thread, by which it shall be
extended so as to form two sides of a triangle, of which
the distance between the pins shail be the base. Thus
placed, let the pencil be moved in the loop of the thread,
keeping the thread constantly stretched. The sides of
the triangle formed by the thread will vary their lengths,
one increasing by as much as the other diminishes. As
the pencil is moved downwards it will trace the curve
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P A, and when itattains the point A, the thread will be
doubled upon the line F A, the single thread only ex-
tending over F/ F, so that the sum of the lines F A
and F A being equal to the length of the thread, will
be equal to the sum of the sides F' P and F P of the
triangle, in every position which the pencil can assume.
As the pencil is moved to the left, it will trace the curve
P B, and will attain its highest position B, when the sides
F.B and F’ B of the triangle formed by the thread shall
become equal ; hence if F F’ be bisected in C, and B C
joined, B C will be at right angles to F F’, If the pencil
be moved to the left of B and carried downwards, the
sides of the triangle will undergo precisely the same
changes of magnitude as they would in moving the pencil
from B to A, only that the lesser side of the triangle
will be terminated at F’, instead of the greater side.
The pencil in two corresponding positions is represented
at P and P, the two triangles FP F” and F P” " being
in all respects equal, but reversed in position. If the
quadrant of the curve B A were doubled over on B A7,
forming a fold along B C, the line C A would fall on
C A’, and the point P would fall on the point P*; and, in

the same manner, it may be shown that every part of the ‘

curve, from Bto A, would coincide with the curve from
Bto A’. The quadrant, therefore, of the ellipse from
B to A is perfectly equal and similar to the quadrant from
B to A7, and the line B C divides the semi-ellipse sym-
metrically.  All lines such as P P’ parallel to A A7, and
therefore perpendicular to B C, will be bisected by B C.

If the thread be now stretched below the line F F’,
and the pencil be moved in it in a similar manner, a
curve will be formed below the line F F’, in all respects
equal and similar to the curve A B A” above it ; the ge-
nerating triangle, as the pencil moves, will undergo the
same changes, the pencil taking successively. positions
below the line F F’, similar to those which it previously
took above that line: thus the points p, p’, below the
line F F’, will correspond in their position to the points
P, P’ above that line, and the lines P p and P’ p” will be
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perpendicular to A A’, and therefore parallel to B B’,
and will be bisected by A A",

(582.) The lines A A” and B B’ are called azes of
the ellipse. The line A A’ is called the transverse axis,
and the line B B the conjugate axis.

(583.) From what has been proved, it is evident that
each of the axes divides the ellipse symmetrically, and
that a system of chords, perpendicular to either axis, are
bisected by that axis.

(584.) When a system of parallel chords are all
bisected by the same straight line in any curve, that
line is called a diameter of the curve, and the halves of
the chords so bisected are called the ordinates to that dia-
meter. /

(585.) When the ordinates of a diameter are at
right angles to it, the diameter is called an awis of the
curve,

(580.) Since every diameter of a circle bisects a sys-
tem of chords perpendicular to it, all diameters of a
circle are axes,

(587.) The point C, where the axes of the ellipse
Intersect, is called the centre of the ellipse. If the line
P C be produced to meet the ellipse in the opposite
quadrant at p’, the point p” will have the same posi-
tion in the quadrant A’ B’ as the point P has in the
quadrant A B, and the triangle F " F will be in all
respects equal to the triangle ' P F, It will be evi-
dent therefore, that the line P p” will be bisected at C;
and in the same manner, all lines drawn through the
point C, and terminating in the ellipse, may be shown
to be bisected at C. It is from this property that the
point C has been called the centre of the ellipse.

(588.) The points where an axis of a curve meets
it, are called vertices of the curve.

(589.) The ellipse has therefore four vertices, A, A’,
B and B”.

(590.) As the points in the circumference of an

~ellipse possess the character of being so placed, that
the sum of their distances from the two points F and F’
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draw P F, the lines P I and P F” will then be equally
inclined to the line M N. For, since the line P T is
perpendicular to F' E and bisects it, the triangle F T P
Is equal in every respect to the triangle E'T P, there-
fore the angles FPT and EP T are equal; but the
angle EP T is equal to the angle F*P M, therefore
the angle FP T is equal to the angle F* P M, that is
to say, the lines FP and F'P are equally inclined to
the line M N.

Let P’ be any other point on the line MN, and
draw P'F, P'F’, and P’E. From the identity of the
triangles F P T and E P T, we have P F equal to P E,
and for a similar reason P’ F is equal to P’ E ; the line
¥’ E will therefore be equal to the sum of the distances
F’Pand F P, and the lines F” P’ and P’ E will be equal
to the sum of the distances F” P’ and P’ F; but since
F” P’ and P’ E are together greater than F’ E, the sum
of the distances of P” from F” and F, which is equal to
the former, will be greater than the sum of the dis-
tances of P from F and F, which is equal to the latter.
The sum of the distances, therefore, of P from F’ and
F, is less than the sum of the distances of any other
point in the line M N from the points F/ and F.

(596.) To draw a tangent at a point P in an ellipse.
From the foci F and F” ( fig. 207.), draw lines to the

fig 207,

I:[‘.I'

_AJ‘
F! F 2

point P, produce F’P to E ( fig. 206.) making PE equal
to PF, then PT drawn perpendicular to E F will make
equal angles with the lines PF and P F“. This line will
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be a tangent to the ellipse at P ; for, by what has been al-
ready proved, the sum of the distances of the point P from
the foci is less than the sum of the distances of any
other point in the line T T from the foci. Therefore,
every point in that line, except the point P, must lie
outside the ellipse, and, therefore, the line T T is a
tangent to the curve.

(597.) As the curve coincides in direction with its
tangent, it appears that right lines from the foci to any
point in the ellipse are equally inclined to the ellipse ;
and if a spheroid be generated by the revolution of the
ellipse round its transverse axis A A’, all lines from the
foci to any point in the surface of this spheroid will be
equally inclined to that surface.

(598.) Hence arise some remarkable and beautiful
physical properties of spheroidal surfaces of this kind.

(599.) It is a well-known property of rays of light,
that when they strike upon any reflecting surface, they
will be reflected from that surface, in directions inclined
to it, at the same angle as that at which the incident
ray is inclined to it. Thus, if F (fig.207.) were a
luminous point, and F P a ray of light proceeding from
it, that ray of light would be reflected from it in the
direction P F’. If, therefore, a luminous object be
placed in one focus of an elliptical spheroid, the rays
diverging from it, after being reflected by the surface
of the spheroid, will converge to the other focus ; any
object, therefore, placed in the other focus, would thus
receive by reflection all the light proceeding from the
luminous point.

(600.) Rays of heat being subject to the same law
would be similarly reflected ; and, therefore, a heated
body placed in one focus, of such an elliptical spheroid,
will have its heat collected by reflection in the other
focus. A red-hot ball, thus placed in the focus of an
elliptical mirror, will set fire to an object placed in the
other focus of the same mirror.

(601.) For the production of these effects, it is not
necessary that the reflecting surface should form a com-
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plete spheroid. If one or more reflecting surfaces be
so placed as to form portions of the same elliptic sphe-
roid, like effects would be produced; the quantity of
rays, collected by reflection at the other focus, being
proportioned to the extent of reflectihg surface, which
occupies the position of the surface of a spheroid.

(602.) Sound, propagated by the air, is reflected
from smooth and even surfaces, according to the law
which governs the reflection of light and heat. If
a sound be produced in one focus of an elliptical
spheroid, it will be heard at the other focus, at the
end of the time which it takes to move through F F,
the distance between the foci ; but, as it also will pro-
ceed from the sounding body in every direction around
F, it will encounter the surface of the spheroid, and be
reflected from it to the other focus F’. As the dis-
tance which each pulsation of sound will have to move
through by reflection will be the same, being equal to
the sum of the distances of the points in the ellipse
from the foci, and as all the pulsations move with the
same speed, all the reflected sounds will arrive at the
same moment at F’, and if the reflecting surfaces are
sufficiently extensive they will produce an effect suffi-
ciently strong to be audible. A listener at F’ will,
therefore, hear any sound produced at F twice; first,
after the time which such sound would take to move
from F to F’, and again, after the time it would take
to move from F to P, and from P to F”. This repe-
tition constitutes what has been called echo.

It is possible to conceive the echo of a sound pro-
duced in this way to be louder than the sound itself, or,
to speak more correctly, that the sound heard by reflec-
tion shall be louder than the sound heard directly. A
sound diminishes in loudness by increase of distance ;
the reflected sound would, on that account alone, be less
loud than the direct sound, because the sum of the dis-
tances of a point in the spheroid from the foci, or, what
is the same, the transverse axis of the spheroid is greater
than the distance between the foci, But this cause of
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diminished intensity may be more than compensated by
the extent of surface from which the echo is reflected.

(603.) If two or more spheroidal surfaces, or parts of
spheroidal surfaces, have the same foci, then any sound
produced in one will be repeated as many times at the
other as there are such surfaces, and the interval between
the echos will be measured by the time that sound takes
to move through a space equal to the difference between
the transverse axes of those surfaces. Hence, the rea-
son is apparent why echoes are so frequently heard
among mountains and never on plains; and also why,
among mountains, the speaker and the hearer must as-
sume particular positions in order that the echo may be
perceived, The faces of the precipices form the reflect-
ing surfaces which are casually placed either exactly or
nearly in an elliptical position, and that the desired
effect may be produced, the speaker and hearer must
occupy positions in the foci of the ellipse.

It is said that cells have been so constructed in pri-
sons, that every sound uttered by the prisoner, even in
a low tone, is reflected by surfaces placed for the pur-
pose, into another apartment invisible to the prisoner,
where it is heard by the jailor or other persons placed
there for the purpose. ‘

(604.) The less the distance between the foci F F’ is
in proportion to the transverse axis A A’, the nearer the
ellipse will approach, in its form, to a circle; the ratio of
this distance to the transverse axis, or, what is the same,
the ratio of FC to FB (fig. 205.), has thence been
called the eccentricity of the ellipse.

(605.) Similar ellipses are those which have equal
eccentricities.

If in two ellipses the distances F C are proportional
to FB (fig. 205.), the distance F B will also be pro-
portional to B C, but the former being equal to half the
transverse axis, it follows, that in similar ellipses the
axes are in the same ratio.

(606.) If the foci F and F” coalesce with the centre
C by the distance between them vanishing, the ellipse
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will become a circle. This change may be traced to
the varying conditions arising out of the method of de-
scribing an ellipse, already explained. While the thread
remains the same, the nearer the pins are brought to
each other the more nearly will the ellipse approach to
a circle in form ; and when the pins are actually brought
together, the pencil will describe a circle, of which half
the length of the thread is the radius.

(607.) The ellipse has been stated to be formed by
the section of a plane with a conical surface, but it may
also be produced by the section of a cylinder with a
plane.  Let a right cylinder A B C D (fig. 208.) be in-
tersected by a plane M N O fig. 208,

oblique to its axis KL, and [ -—~—i~
the section will be an ellipse; %

the transverse axis M N of

which will be produced by
its intersection with a plane
through the axis K L of the
cylinder, perpendicular to the
line ofintersection of the plane
of the ellipse itself with the
plane of the base of the cylinder.

(608.) It is evident that the circular base of the cy-
linder is the orthographical projection of the ellipse on
the plane of the base ; the transverse axis M N of the
ellipse is projected into the diameter A B of the circle,
being diminished by such projection in the ratio of N O
to BO; but the conjugate axis P’ Q of the ellipse, being
parallel to the base of the cylinder, will not be dimi-
nished by projection, and will, therefore, be equal to the
diameter of the base of the cylinder. All lines in the
ellipse at right angles to P Q, such as m n, will be pro-
jected into corresponding lines, such as m’n’, at right
angles to that diameter of the base which is parallel to
PQ. All such lines will be reduced in the same pro-
portion, that is, in the ratio of N O to O B.

(609.) Since the square of the ordinate to the dia-
meter of a circle, is equal to the rectangle under the
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areas of the spaces of the ellipse and circle between
every pair of contiguous ordinates will be proportional
to those ordinates, and as all the ordinates are in the
same ratio, the sum of all the areas between the ellip-
tical ordinates, that is, the area of the ellipse itself, will
be to the sum of all the areas included between the cir-
cular ordinates, that is, to the area of the circle itself,
as any one elliptical ordinate is to the corresponding cir-
cular ordinate, that is, as the conjugate axis of the
ellipse is to the transverse axis. Hence the area of an
ellipse is to the area of a circle, having its tranverse axis
as diameter, as the conjugate axis of the ellipse is to the
transverse axis.

(614.) Since it has been already proved, that a circle
described on the conjugate axis, as diameter (fig. 200.),
divides the ordinates to that axis proportionally, it may
be shown, by reasoning similar to the above, that the
area of the ellipse is to the area of the circle, having its
conjugate axis as diameter, as the transverse axis is to
the conjugate axis. ;

(615.) Hence, the area of the ellipse is a mean pro-
portional between the circles described on its two axes as
diameters,

(616.) The area of an ellipse therefore is equal to the
area of a circle, whose diameter is a mean proportional
between its axes.

(617.) The proportion above established between the
area of an ellipse and the areas of circles, having diameters
equal to its axes, may also be shown by projection. The
ellipse being the orthographical projection of a circle
whose diameter is equal to its transverse axis, and whose
plane is inclined at an angle to the plane of projection,
determined in the manner explained in (611.), and the
circle on its conjugate axis as diameter being the pro-
jection of an ellipse whose conjugate axis is equal to
that diameter, and the position of whose plane is deter-
mined, as explained in (608.), the area of the first cirele
will be to that of the ellipse which is its projection, as the
area of the ellipse is to the area of the second circle, which

g 2
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proportional to the rectangle under the segments of such
diameter ; that is to say, the square of P M will be to
the rectangle under EM and E’M, as the square of
P’ M” is to the rectangle under E M’ and E" M",

(626.) Since the rectangle under the segments of
E E° corresponding to F C is the square of EC, it
follows that the square of any ordinate P M to a dia-
meter is to the rectangle under the segments of that
diameter E M and E” M, as the square of the semi-con-
Jugate diameter F C is to the square of EC the semi-
diameter itself,

(627.) Since the rectangles under any two chords
of a circle intersecting each other are equal, and since
parallel chords in the circle are proportional to their
parallel projections in the ellipse, it follows that if two
‘intersecting chords of an ellipse, such as AC, D E
(fig. 213.), be parallel to two other intersecting chords,

Jiz. 213.

such as A C’, D" E’, then the rectangle under the seg-
ments of A C made by the point B is to the rectangle
under the segments of D E made by the same point, as
the rectangle under the segments of A’ C’, made by the
point B, is to the rectangle under the segments of D’ E’
made by the same point.

(628.) Since in a circle, the rectangles under the parts
of secants drawn from the same point outside it, between
that point and the circumference, are equal, the rect-
angles under the corresponding parts of parallel secants
to an ellipse, which are the projections of the former, will
be proportional: thus, if BE and BC (fig. 214.) be
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E X" be drawn ; aline T T” drawn through E parallel
to PP, will be the tangent required: for the chords
PP’ and pp’, being bisected by E E’, will be ordinates,
and EE” will be their corresponding diameter. The lines
T T", therefore, drawn through the extremities of this
diameter, are the required tangents,

(632.) To find the centre of a given ellipse.

Draw any two parallel chords, such as P P’ and pp
(fig.215.), and bisect them; the line E E’ passing
through their points of bisection, will be a diameter, and
its point of bisection C, will be the centre.

(633.) Given a diameter EE’ ( fig. 216.) in an ellipse;;
to find its conjugate diameter.

Draw any chord of the ellipse ¢ ¢’ parallel to E E’,
and bisect it. Through its point of bisection m, draw
the diameter F F’; this diameter will be conjugate to the
diameter E E’, since its ordinate e ¢ is parallel to E E”.

(634.) All diameters of an ellipse, which are inclined
at equal angles to its axis, are equal.

For if C E and C E’ (fig. 217.) be two such semi-

diameters, they will be terminated at points holding cor-
responding positions in the elliptical quadrants, so that
the ordinates to the transverse axis passing through these
points shall be equal. Since E M is therefore equal to
E” M, and ™ he angles at C are equal, E C will be equal
to E’ C.

(635.) If a circle be described with the centre C as
centre ( fig. 218.) and any line greater than C B and less
than C A as radius, such circle will be included between
the circles described on the two axes as diameters, and
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being equal to C A, it follows that C M, C A, and C T,
are in continued proportion.

(642.) The projection of AA” and P M being a
diameter of an ellipse and its ordinate, and the pro-
Jection of P T being a tangent to the ellipse, and the
projections of CM, C A, and C T, being proportional
to those lines themselves, it follows if from any point,
P, (fig. 221.) in an ellipse, a tangent P T be drawn,
and from the same point an ordinate P M be drawn to
the diameter C T, the lines C M, C A, and C T, will be
in continued proportion. For these lines are the pro-
- Jections of the lines C M, C A, and C T ( fig. 220.).

(643.) Hence a tangent may be drawn to an ellipse,
from a point outside it. Let the given point be T,
(fig. 221.) Find the centre C of the ellipse (632.),

fig. 220. fig. 221.

-

and draw T C. Find a third proportional to C T and
C A, and take C M equal to this third proportional.
Through M drawan ordinate to the diameter C A, or, what
is the same, a line parallel to its conjugate diameter
which may be found by (633.) ; and from the point P,
where this ordinate meets the ellipse, draw P T. This
ine will be a tangent to the ellipse at P (642.)

(644.) It isevident that tangents through P and P,
the extremities of the same ordinate, will meet the dia-
meter, produced at the same point T ; for the distance
of this point from the centre C will be a third propor-
tional to C M and C A, whichever of the points P, P,
the tangent be drawn from. .

(645.) If an ordinate to the transverse axis be drawn
through the focus F or ¥, the tangent drawn through
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a plane PV P’, parallel to its side BB’, the curve which
will be formed by the section is called a parabola. 1f the
plane A B O be perpendicular to the cutting plane, their
line of intersection V M will be the axis of the parabola,
and all cords, such as P P, drawn perpendicular to this
and terminated in the curve, will be bisected by it.

(654.) It is evident that the intersecting plane can-
not meet the opposite cone A” O B/, being parallel to BB,
and therefore no part of the parabola can lie below the
vertex V ; and, as the cutting plane cannot meet the line
O B above O, the branches V P and V P’ of the parabola
must go on diverging with the divergence of the conical
surface, and will thus extend without limit in that di-
rection.

(655.) Let M (fig.228.) be any point taken on the

fig. 228.
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axis of a parabola. On a perpendicular to the axis,
through M, take a distance M K equal to twice M V,
and draw KV ; from the point L, where K V meets
the curve, draw L F perpendicular to the axis. The
point F is called the focus of the parabola.

(656.) Take V D equal to V F, and through D draw
D G perpendicular to D M ; the line D G is called
the directriz of the parabola.

(657.) The ordinate F'L to the axis through the focus
is equal to twice the distance F V of the focus from the
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vertex, and therefore equal to F D, the distance of the
foeus from the directrix ; for KM isto MV oas L I is
to FV; but KM was taken equal to twice M V, and
therefore L I is twice F V.

(658.) If, while the length of the parameter L L’
(fig. 222.) of an ellipse, and the position of the vertex
A’, and the axis A" A is preserved, the centre C be sup-
posed to recede indefinitely, so that the length of the
axis A” A shall increase without limit, the form of the
ellipse will approach to that of a parabola, and will ap-
proximate to it without limit. This is what would take
place if the plane, which passes through V (fig. 227.),
and intersects the conical surface A O B, should first
intersect that surface in a direction V R, meeting the
side O B, and making an ellipse by its section, and then
turning on the point V, the angle R V O, made by the
cutting plane with V O, should be gradually increased ;
the point R would gradually recede from O, and the
ellipse would be constantly elongated, while the angle
RV M, under its plane and that of the parabola, would
be constantly diminished ; the cutting plane would at
length become parallel to O B; the point R would be
removed to an infinite distance; or, in other words, the
transverse axis, V R of the ellipse, would become infinite,
and the ellipse would become a parabola.

(659.) In the equation

t %ﬂ":’rﬂﬂw’
if we suppose p to be of definite magnitude, and A to

become infinite, %:G ; therefore, the equation would

become
y=2px
which is the equation of the parabola, and which, being
translated into ordinary language, is a statement of the
proposition, that the square of the ordinate y to the axis
of a parabola, is equal to the rectangle under the distance
& of that ordinate from the vertex of the curve and
T 2
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the parameter 2p, or double ordinate LL’, through the
focus.

(660.) Sinee the centre, or common point of inter-
section of the diameters of the ellipse recedes to an in-
finite distance when the ellipse becomes a parabola, these
diameters therefore become parallel to each other and to
the axis. Hence all lines in a parabola, such as V* X’
(fig. 229.) parallel to the axis V X, are diameters.

fig. 229,
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(661.) Each of the lines V/ X” will bisect a system
of chords parallel to a tangent through V', which
chords will be ordinates to these diameters respectively.

(662.) The distance F V” of any point V”in a pa-
rabola from the focus, is equal to its distance V' m
from the directrix.

In the ellipse, the ratio of these distances was shown
to be that of the distances of the centre from the vertex
and the focus. When the ellipse becomes a parabola,
these two distances become infinite, while their differ-
ence, or the distance V F, remains finite. Their ratio,
therefore, becomes a ratio of equality, and the line D" m”
( fig. 222.) becomes the line D m ( fig. 229.), the dis-
tance D F being now bisected at V, instead of being
divided as in fig. 222. in the ratio of ¢ to A. In like
manner, the ratio of the distance V/ F of any point V*
on the curve from the focus, to its distance V”m from
the directrix, instead of being that of ¢ to A is a ratio
of equality.
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(663.) The property just explained supplies a method
of constructing or drawing a parabola by a series of points.
Let F (fig. 230.) be the focus, and V the vertex of

fig2. 30.
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the proposed parabola. The line V F produced will be
its axis ; and if V D be taken equal to V F, and D m
be drawn perpendicular to VX, D m will be the direc-
trix. Taking any points M on the axis, let perpendi-
culars be drawn through them, and from the point F
let lines F V* be inflected on each perpendicular equal
to M D, the distance of that perpendicular from D. The
points V, thus determined, will be points of the parabola ;
and if points V" be taken at equal distances below the
axis on the perpendicular, they will be the correspond-
ing points on the lower branch of the curve.

These points on each branchmay thus be formed as nu-
merously and as close together as may be desired, and a
curve drawn through them will therefore be the parabola.

(664.) Since the diameters of the ellipse preserve
their properties as the centre recedes from the vertex,
their ordinates will still be parallel to tangents through
their vertices ; hence, every diameter of a parabola will
bisect a system of chords parallel to a tangent to the
curve through its extremity, as represented in fig.231.,
where V* X’ is a diameter, V' T a tangent through its

T
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be regarded as the ultimate position, which lines, drawn
from P to the foci of the ellipse, assume, when the
ellipse becomes a parabola. Sinee these lines, from the
foci of an ellipse, are inclined at equal angles to a tan-
gent, the lines which correspond to these in the para-
bola will have a like property ; and since these lines are
the lines drawn from the point of contact P to the focus
and the diameter P X drawn from the same point, these
lines will form equal angles with the tangent T T",

(666.) To draw a tangent, therefore, to a given point
P in a parabola,whose axis and focus are given : from the
focus draw F P and take F T equal to F P, and draw
T P. Thisline T P will be a tangent to the parabola
at P; for, since F'T and F P are equal, the angle T
is equal to the angle F P T ; but since P X is parallel
to T X, the angleT” P X" is equal to the angleT : there-
fore the angles F P T and X’ P T are equal.

(667.) If X' P be a ray of light, heat, sound, or
any other physical principle which obeys the common
law of reflection, and the curve at P have the property
of reflection, the ray X" P will be reflected from P to F,
and the same will be true of all rays which have di-
rections parallel to the axis X V. If the curve revolve
on its axis X V, so as to produce a paraboloid of revo-
lution, the surface of such a figure will have the pro-
perty of reflecting, to its focus F, all rays which strike
it in directions parallel to its axis; and, on the other
hand, if a luminous object be placed in F, the focus of
such a surface, the rays diverging from it, will be re-
flected by the surface in parallel lines. The reflectors
of lighthouses and beacons are sometimes constructed
of this form: a copper surface being produced in the
shape of a paraboloid of revolution, and highly plated
and burnished, the lamp being placed in the focus, a
cylinder of parallel rays will be reflected from the
surface, and thrown across the horizon in the direction
in which the light is intended to be seen.

If such a reflector had a fixed position, the beam of
light reflected from it would only be visible to ships in

T 4
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Jig. 235.
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points of bisection M, m, draw a line A X”. This line
will be a diameter, of which P P’, p p” are ordinates, and
therefore A X* will be parallel to the axis of the para-
bola. To find the axis, draw any line P p” at right
angles to A X’, and bisect it, and through its point of
bisection M, draw M V at right angles to it. This line
MV will be the axis of the parabola. The axis being
known, the focus F may be found by the method ex-
plained in (655.) ; and if V D betaken, equal to V F, and
D K be drawn perpendicular to D M, D K will be the
directrix,

(673.) To draw a diameter of a parabola which shall
make a given angle with its ordinates.

Let F be the focus and V X the axis (fig. 233.).
Draw F P, making the angle P F X equal to twice the
given angle, and take F T equal to F P, and draw T P,
which will be a tangent to the parabola at P. From P
draw P X parallel to V X, and P X’ will then be the
diameter required ; for, its ordinates being parallel to
the tangent P T, will make with it an angle equal to
the angle T ; but since F P is equal to F T, the angle
P F X will be equal to twice the angle T, which latter
will therefore be equal to the given angle.

(674.) The area included by the ordinate P M
(fig. 282.), the abscissa VM, and the parabolic arc
PV, is shown by the method of quadratures in the
higher analysis to be two thirds of the rectangle M R,
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Jig. 238,

A be the vertex of an hyperbola, of which F and F” will
be the foci, and A” the other vertex, the distance F’ A’
being taken equal to the distance F A. With F’ as
centre and a radius equal to F” A, let the arc of a circle
L L be described.  From F’ draw any radius F’ N of
this circle, and draw FN. Produce F’ N, and from F
draw a line, making with F N an angle equal to that
which the production of F' N makes with it. Let these
lines intersect at P. The point P will then be the ver.
tex of a triangle, whose base is F F, and the difference .
of whose sides is F*N. If several points be determined
in the same manner they will be points of an hyperbola,
whose foci are F and F’, and whose vertex is at A. Any
number of points being thus determined as nearly to-
gether as is desired, the curve which shall pass through
them will be an hyperbola. The centre of this hyper-
bola will be at C, the point of bisection of A A”. By a
like process, the branch of the curve on the opposite side,
passing through A” as its vertex, may be determined.
(678.) From the manner of determining the branches
of the curve just explained, it will be evident that the
parts of it contained within the four right angles, formed
by the lines A A” and B B’, are perfectly equal and si-
milar, and symmetrically placed with regard to these lines;
so that if the paper on which the curves are drawn be
doubled over, making a fold along the line A A’, the
lower branches would fall upon the upper; and if the
paper were doubled over, making a fold along the line
B B’, the right branches of the curve would fall upon the
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left. Thus, it appears that all lines terminated in either
branch of the curve, parallel to B B’, are bisected by the
production of A A’, and all lines terminated in the op-
posite branches, and parallel to A A, are bisected by B B”.

(679.) The lines A A” and B B” are therefore con-
jugate diameters of the curve, the line A A” being called
the transverse awis, and the line B B’ the conjugate
axis.

(680.) The leading properties of an hyperbola have
a close analogy to those of an ellipse. From the symme-
try and equality of the four branches of the curve, con-
tained in the four right angles formed by its axes, it
follows, that all right lines, such as EE’ ( fig. 239.)

fig. 239,
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drawn through the centre C and terminated in opposite
branches of the curve, will meet these branches at cor-
responding points, and that the centre C will be their
common point of bisection. The ordinates to the axis
EM and E’M’, through the extremities of the same
diameter, are equal; and it is evident, that another dia-
meter e ¢’, through the other extremities of these ordi-
nates to the axis, will be equal to the former, and
equally inclined to the axis, so that M M’ will: bisect the
angles ECe¢ and E“C ¢

(681.) Lines drawn from the foci of an hyperbola to
a point P in it, make equal angles with the tangent at
that point, in the same manner as was shown to be the
case in the ellipse; but in the case of the hyperbola, the
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tangent lies between these lines F P and F’ P, bisecting
the angle under them, whereas, in the ellipse, it lay
outside them. Tangents to the hyperbola at the vertices
A and A’ are perpendicular to the axis, and therefore
parallel to its ordinates ; and, in like manner, tangents
to the curve, through the extremities of any diameter,
are parallel to the ordinates to that diameter.

(682.) If F (fig. 240.) be the focus of an hyperbola,

fig. 240.

it appears from what has been stated, that rays of light,
or heat, or any other principle which obeys the law of
reflection, will, if they diverge from F, and are reflected
from the curve at P after reflection, follow directions di-
verging from the other focus F” ; and, on the other hand,
if rays X P, converging towards F’, be reflected by the
curve, they will after reflection converge towards the
other focus F. Hence, if an hyperboloid of revolution be
formed by the revolution of an hyperbola on its transverse
axis, and such a surface be endowed with the property
of reflection, rays converging to, or diverging from, one
focus, may be made to cmwerge to, or diverge from,
the other focus.

(683.) If C (fig. 241.) be the centre, A the vertex,
and F the focus of an hyperbola, take C D a third
proportional to C F and C A, and through D draw
D K perpendicular to C A ; the line D K will be the
directrix of the hyperbola, and is distinguished by pro-
perties analogous to the directrix of the ellipse (647.).
Let P be any points on the hyperbola, from which let
the lines P m be drawn parallel to the axis, and there-
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fig. 241,
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fore perpendicular to the directrix, the ratio of each of
the lines F P to Pm will be the same as the ratio of
F A to A D, or, what is the same, that of FC to A C.
Thus the line D K is distinguished by the property of
having the distances of all points in the curve from it
proportional to the distances of those points from the
focus. ?

(684.) From this property, a method of determining
the curve, by a series of points, follows, perfectly similar
to the method of determining the ellipse by points in
reference to its directrix explained in (651.). It is only
necessary to draw any number of lines perpendicular to
the axis, and from the focus to inflect on each of them
a line which shall bear to their distances respectively
the same ratio as the distance of the focus from the
centre bears to the semi-transverse axis.

(685.) If T P ( fig.242.) be a tangent to the hyperbola
at P, and P’ M be an ordinate to the axis at the same point,
then, by a property analogous to that of the ellipse, al-
ready explained (642.), we shall have CT to C A as
CA to CM ; and, therefore, the rectangle under C'T and
CM is always equal to the square of the semi-axis ;
and, therefore, as C M increases C T must diminish.
But as the hyperbola extends indefinitely from A
in the direction A P, consisting of an infinite branch,
the distance C M increases without limit, as the point
of contact P recedes, and therefore the distance C T at
the same time diminishes without limit. If the point
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of contact P be removed to an infinite distance, then
C M becomes infinite, and 'C T vanishes, Hence it

fig. 242.
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appears that the tangent to the curve always intersects
the axis between C and A, but that the farther the
point of contact is removed from the vertex, the nearer
the tangent approaches to the centre; and that the curve
has a constant tendency to coincide with a certain line
passing through the centre, although it never can actually
coincide with such a line, since that would involve the
condition of its being at aninfinite distance from the centre,

(686.) It was shown among the properties of the
ellipse, that the square of the ordinate P M to the axis
always bears the same ratio to the reetangle under the
distances between that ordinate and the extremities A A’
of the axis; this ratio being that of the square of the
semi-conjugate to the square of the semi-transverse axis.
In like manner the square of P M ( fig. 242.) bears to
the rectangle under M A and M A’, the same ratio,
wherever the point P is taken. Let a distance C B be
taken on the conjugate axis, such that the square of
C B shall bear to the square of C A, the same ratio as
the square of any crdinate bears to the rectangle under
the corresponding segments. This distance C B is con-
sidered as the length of the semi-conjugate axis, although
it does not, as in the ellipse, meet the curve at B,

The properties of the hyperbola may be expressed
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If through B and B’ parallels N R and N"R"to A A’
be drawn, and through A and A” parallels N"R and
N R’ to B B’ be drawn, the diagonals R" R and N” N of
this rectangle will be the positions to which the curve
altimately tends as it recedes from its centre.

For B A is to A C as any perpendicular drawn from
a point in C R produced is to the distanee of such per-
pendicular from C ; and as this is the same ratio as the
limiting ratio of P M to C M, it is evident that P M
ultimately tends to equality with such perpendicular as
C M is increased.

The line C N” produced has the same relation to the
lower branch of the hyperbola.

The lines C Y thus determined are called asymptotes.
An asymptote in general is a tangent drawn to a point of
the curve at an infinite distance, or, more strictly, it is
the limit of the position of the tangent, the distance of
the point of contact being supposed to be continually
and indefinitely increased.

(688.) Hence it is apparent, that the curve ap-
proaches its asymptote continually, the distance between
them deereasing without limit, but never vanishing.

(689.) An hyperbola may be described by a conti-
nuous motion in the following manner : — To the focus
¥ (fig. 2438.) let a straight ruler F” L be attached by a
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departs more rapidly from the common tangent to it
and the ellipse at B, than the ellipse does, the curvature
of the circle is greater than the curvature of the ellipse
at B. If the arc of a circle be described, having its
centre on B B” produced through B’, the radius may be
taken of such a magnitude that the are B D" shall lie
above the ellipse, and therefore between the tangent and
the ellipse. Such a ecircle would therefore have a less
curvature than the ellipse at B.

If the centre C’ of a circle passing through B be con-
ceived to move downwards on the line B B, the circle
being at first under the ellipse on each side of the point
B, would gradually approach it as the radius would be
increased. The centre would at length reach a point on
the axis BB, or on that line produced, such that for all
centres below it the circle on either side of B would lie
above the ellipse, and for all centres above it, the circle
would lie below the ellipse. It is evident, therefore, that
all circles having their centres above this point would
have a greater curvature than the ellipse, and all circles
having their centres below it would have a less curvature,
The circle, therefore, whose centre lies between the
centres of those which pass above the ellipse on either
side of B, and those which pass below it, comes nearer
to the curvature of the ellipse than any other circle.

(694.) Such a circle is called the osculating circle of
the ellipse, or the circle of curvature at the point B.

(695.) The investigation of the wmagnitude of the
radius of the circle of curvature to any point in a curve
requires the application of principles of analysis, higher
and more difficult than can with propriety be intro-
duced into this volume. We can only state, therefore,
the magnitude of the osculating circle for particular
curves, without giving any demonstration by which its
magnitude may be obtained. ‘

(696.) The radius of the osculating circle of the
ellipse at either extremity of the transverse axis, is equal
to a third proportional to the semi-transverse axis and
the semi-conjugate axis; and the radius of curvature,

v 4
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at the extremities of the semi-conjugate axis, is equal
to a third proportional to the semi-conjugate axis and
the semi-transverse axis. From the extremity A of
the semi-transverse axis to the extremity B of the semi-
conjugate axis, the radius of curvature gradually in-
reases, its limiting magnitudes being those just stated.

(697.) To determine the radius of curvature for any
point in the ellipse between A and B, let the semi-
conjugate diameter to that which passes through the
point be found, and let its cube be divided by the
rectangle under the semi-axes. The quotient will be
the radius of curvature corresponding to the given
point.

(698.) A line drawn from the point of contact of a
tangent, perpendicular to the tangent, is called a normal
of the curve.

(699.) Since a line drawn perpendicular to the tan-
gent to a circle, at the point of contact, must pass
through the centre of the circle, it is evident that the
centre of the circle of curvature must always lie upon
the normal to the curve.

(700.) Since lines drawn from the foci of an ellipse
are equally inclined to the tangent, they will also be
equally inclined to the normal. The normal will, there-
fore, bisect the angle formed by lines from the foci to
any point in the ellipse.

(701.) If the centres of the circles of curvature for
all the points of the elliptical quadrant be determined,
by taking upon the several normals distances equal to
the radii of curvature, these centres will be found to
be placed on a curve touching the transverse axis at a
certain point O, and the conjugate axis at Z, the con-
vexity of this curve being turned towards the centre C.
The radius of curvature corresponding to any point P
in the elliptical quadrant, will be a tangent to this
curve at a certain point O/, PO’ being the radius of
curvature corresponding to such point P.

(702.) Let a flexible thread be supposed to have one
extremity fastened to Z and wrapped upon the curve
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Z 0”0, and the other extremity be brought to A, the
thread being unwound and at the same time kept ex-
tended, its extremity at A will move over the quadrant
of the ellipse A B, and the part of the thread unwound
from the curve at any point P will be the radius of cur-
vature for that point.

(703.) The curve O Z on which the centres of cur-
vature of any other curve A B are placed, is called the
involute of that other curve. Thus, in the present case,
the curve O O Z is the involute of the ellipse.

(704.) Since the curvature of the ellipse undergoes
the same changes throughout each quadrant, the involute
of B A’ is a curve O’ Z equal and similar to O Z lying
in the angle A” C Z, and in like manner the involutes
of the elliptic quadrants A B” and A" B’ are similar
curves O Z” and O" Z’ lying above the axis A A".

(705.) When a convenient practical method of de-
seribing a curve by one continuous motion of a pencil
cannot be found, the curve may be determined with
sufficient accuracy for all practical purposes by finding
the centres of the circles of curvature for points in it
separated by short intervals ; ares of the circles of cur-
vature being described and extended through these in-
tervals will give a line formed of' a series of circular
arcs differing so little from the curve sought, that they
may be taken as representing it for any practical purpose.

(706.) If a thread having a pencil attached to it be
wound upon a curve, the pencil as it is unwound, the
thread being constantly extended, will describe a curve,
the centres of curvature of which will lie upon the curve
from which the thread is unwound ; the curve deseribed
by the penecil is in this case called the evolute of the
curve from which the thread is unwound. :

(707.) In the construction of arches the formation
of the voussoirs or arch-stones depends on the determina-
tion of the normals and radii of curvature to the differ-
ent points of the curve, according to which the arch is
formed. Let PP (fig. 247.) be a part of the arch of
the width of a single arch-stone ; the faces P L form-
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ing the sides of the stones must be so cut, that, when fixed
in their places, these faces shall be normals to the curve,

Jig. 247.

and the bottom or external face P P must form an arc
of the circle of curvature to the curve at P. It will be
apparent, therefore, that the correct form canionly be given
to such blocks by a due attention to those geometrical
properties of the curve on which the determination of
the normals and osculating circles depends.

(708.) As the radius of the osculating circle is an in-
dication of the quantity of curvature, and as the varia-
tion of that radius shows the manner in which the flex-
ure of a curve changes throughout any of its branches,
s0 the position of the centre of the osculating circle, or,
to use the language of analysis, the sign of the radius of
curvature shows the direction of the curvature of the

curve, that is, the side towards which the concavity is’

turned. According as the radius of curvature, alge-
braically considered, is positive or negative, the con-
cavity is turned to the one side or the other. Asa
quantity which undergoes continuous variation can only
change its sign, so as after being positive to become
negative, or after being negative to become positive,
either by vanishing or becoming infinite, it follows that,
when the direction of the concavity changes, and there-
fore the radius of curvature undergoes a change of sign,
it must pass through one or other of these states, If,
on approaching the point where its sign changes it is
in an increasing state, it will at the point where the

sign changes become infinite, and the curvature there

will become infinitely small, or the curve will at that
place become very nearly a straight line.  But if it be
in a decreasing state as it approaches the point where it
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itself is rolled along the line A B from A towards B,
the pencil V will trace a curve VP B ; and if, in like
manner, it be rolled in the other direction from A to-
wards B, the pencil will trace an equal and similar
curve V B,

(715.) The curve B V B’ thus, defined, is called a
eycloid, and is the curve which would be traced by a
point situated on the edge of a carriage-wheel as that
wheel is rolled in a straight direction on a level plane.

(716.) While the generating circle rolls from A to
B, every point of its semi-circumference A 1 V applies
itself to the line A B, and when the semicircle reaches
the point B, the describing point V coincides with B,
and the point A takes the position A"

It is evident therefore that A B is equal to half the
circumference A D V of the generating circle.

And in like manner, when the cirele is rolled to B” in
the contrary direction, the point A takes the position A%,
and the describing point V coincides with B’

The distance A B” is therefore rolled over by the
semi-circumference A D V of the generating circle, and
is therefore equal to that semi-circumference.

(717.) The line B B" is called the base of the cy-
cloid, and is equal to the circumference of the gene-
rating circle. :

(718.) The line AV is called the azis of the cy-
cloid, and is equal to the diameter of the generating
circle.

(719.) All lines P P’ parallel to the base and ter-
minated in the cycloid, are bisected at M by the axis ;
for the branches of the curve at each side of the axis
A V are perfectly equal and symmetrical.

(720.) As the generating circle rolls along the base
of the cycloid, the deseribing point P ( fig. 251.) has
two motions : first, a progressive motion in a direction
parallel to the base B B”, and secondly, a motion of
rotation round the centre of the generating circle.

These motions are equal; for, in the time of omne
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revolution of the generating circle, the deseribing point ?
moves by its progressive motion through the space B B,

fig. 251.

B

while by its motion of rotation it moves through a space
equal to the circumference of the circle. Let us sup-
pose the circle to roll from the position A in which
the describing point P coincides with the vertex of the
cycloid, to the position L in which the describing point
has moved to P, and the point which was at A be now
at A’. The distance L A will then be equal to the are
L A’ of the circle, since that arc has rolled over I, A,
and since A B is equal to the semicircle AL P’ we
have L B equal to the arc of the circle L P,

The point P’, in virtue of the two equal motions al-
ready explained, one in the horizontal direction P’ N,
parallel to A B, and the other in the direction of the
tangent P° T to the circle at P, will have an actual
motion in a direction equally inclined to each of these
lines. The direction of the curve at P, or, what is the
same, the direction of a tangent to the curve at that
point, will therefore be a line bisecting the angle N P’ T,
But it is easy to show that such a line will be the con-
tinuation of the chord of the arc of the circle between
P” and the highest point O ; for if L P’ be drawn, the
angle O P’ M will be equal to the angle O L P’, because
of the similarity of the right angled triangles O Q P’ and
O P’ L, and the angle O P’ T will also be equal to the
angle O L P’ ; therefore O P’ T” will be equal to O P’ Q,
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or what is the same, N P’ R will be equal to T P’ R ;
the line O P’ R therefore bisects the angle T' P” N, and
is therefore a tangent to the cycloid at P*.

(721.) Since the ares A p and L P’ are equal, and
also the ares P p and O P, the lines A p and L P’ are
equal and parallel, and the lines P p and O P’ are like-
wise equal and parallel.

(722.) The tangent at P’, is therefore parallel to the
corresponding chord P p of the generating circle on the
axis.

(723.) To draw a tangent therefore to a point P” on
a cycloid, draw a line P” M from that point perpen-
dicular to the axis A P, and from the point p, where
that line meets the generating circle on the axis, draw a
chord p P, and through P’ draw a line O P’ R parallel
to this chord ; this line will be a tangent to the cycloid
at P,

(724.) The arc P p of the generating circle on the
axis is equal to the parallel p P’ to the base, intercepted
between that arc and the cycloid. For A L has been
already proved equal to A’ L ; but the latter is equal to
O P, and therefore to P p; but A L is equal to P’ p,
being opposite sides of the parallelogram A P”; there-
fore p P’ is equal to the arc P p.

(725.) It is a property of the cycloid, which may
be demonstrated by the aid of the higher analysis, that
the cycloidal arc P P is equal to twice the chord P p,
and this will be the case wherever the parallel P’ p is
drawn. Hence the semi-cycloid P B is equal to twice
the diameter of the generating circle, and the entire
length of the cycloid B P B’ is equal to four times the
diameter of the generating circle.

(726.) Hence the length of a cycloid is to the length
of its base as four times the diameter of a circle is to its
circumference.

(727.) Since P” O is a tangent to the cyeloid at P,
and the angle O P” L is a right angle being in a semi-
circle, the line P” L is the normal to the cycloid at P,
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(739.) The line O AV divides the curve symmetri-
cally, the branch V P P being in all respects similar to
VB E.

For if O B and O B’ be inclined at equal angles to
O A, the triangle O A B will be equal to the triangle
O A B’; and therefore the line O B will be equal to
OB’. But BP and B’P" are equal, being both equal
to the parameter ; therefore O P is equal to O P ; and,
since the angle VO P is supposed to be equal to the
angle V. O P, the triangle P O m is equal to the tri-
angle PO m. Therefore P P’ is bisected at m, and is
perpendicular to V O ; so that if the curve V I’ were
folded over on V P’, the point P would fall upon P/,
and the same would be true of all other corresponding
points on each side of the line O V.

(740.) Since, therefore, it appears that all lines P P’
perpendicular to O V, and terminated in the curve, are
bisected by O V, the line O V is the axis of the con-
choid.

(741.) The point V is called the vertex of the con-
choid.

(742.) The directrix X X’ is an asymptote to the
two branches of the conchoid.

For, from any point P let a perpendicular P M to
X X’ be drawn. The triangle P M B will then be similar
to the triangle O A B, and therefore the ratio of P M
to P B will be the same as the ratio of OA to O B;
but by the definition of the curve, the point B recedes
indefinitely from A, and therefore O B is subject to
unlimited increase. The ratio therefore of O A to OB
is subject to unlimited diminution ; but this ratio is the
same as that of P M to P B, that is, of the distance of
the curve from the directrix to the parameter. Since
therefore the ratio of the distance of the curve from the
directrix to the parameter is subject to unlimited dimi-
nution, the distance of the curve from the directrix will
be decreased without limit as the curve recedes from its
axis OV, in either direction ; the directrix is therefore
an asymptote to both branches of the curve.

x 3
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(748.) To draw a tangent at any point P of the
conchoid.

From the pole O ( fig.259.) draw O P, and take a point
pon the curve sonear Pthat the arc P p may be regarded
as a straight line, and draw O p crossing the directrix
at b. From p and b draw pn and bn” perpendicular to
OBP. Since BP is equal to bp, the difference be-
tween O P and O p is equal to the difference between
OB and O 5. But since pn and b 2" may be considered
as small circular arcs, of which O is the centre, these
differences will be P n and B n”: we shall have there-
fore P n equal to Bn’. Again as the triangles » O #’
and p O n are similar, bn" is to pn as O n” is to O n,
or as O B is to O P, because B #” and P n being inde-
finitely small, O B and O P may be taken instead of O
and O n, Draw P X parallel to A M, O L perpendicu-
lar to OP, and join B L, meeting the production #’ b in
b’ ; then n” b will be parallel O L, and therefore & 2” is to
b'n"as OQis to O L, or as OB isto OP,oras b » is to
pn, by what has been proved before; we hence infer
that 4" n” is equal to pn, and since B %’ is equal to P x,
the angle & Bn’ will be equal to the angle p P n, and

the line B 3" or B L will be parallel to the curve, or to
its tangent at P,

To draw a tangent at P, therefore, draw P X parallel
to the directrix, join O P, and through O draw O L
perpendicular to O P. From L draw L B to the point
where P O crosses the directrix, and from P draw P T
parallel to B L ; the line P T will then be the required
tangent,
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(751.) The weight of the cord produces at each
point of it a certain tension, which is balanced by the
strength of the cord. Let V be the lowest point of the
curve, and supposing the cord V P B to be cut off' from
AV, and a similar cord being attached to it at V and
carried in a horizontal direction over a pulley M, let
M K be such a length of the cord that its weight shall
be just sufficient to keep the cord A Vin the position
which it had when connected with the point B. It is
evident that the weight of M K, will be the tension of
the catenary at the lowest point V.

(752.) The length M K is called the parameter of
the catenary.

753.) If the points A and B be in the same hori-
zontal line, the line D V, drawn in the vertical direction
from the middle point of A B, will be the axis of the
catenary, and will divide the curve symmetrically.

(754.) Produce D V downwards, so that V C shall
be equal to the parameter of the curve, and with C as
centre, and C V as radius, let a circle be described.
From any point P in the catenary, draw P Q perpendi-
cular to D V, and from @ draw Q R a tangent to the
circle. A line P T drawn from P parallel to Q R, will
then be a tangent to the catenary at P.

(755.) The catenary being defined by mechanical
qualities, its properties must necessarily be derived from
mechanical laws. It follows, from the nature of the
centre of gravity as demonstrated in mechanics, that the
tensions at V and P are in equilibrium with the weight
of the cord between P and V acting vertically at its centre
of gravity. If T Z be then parallel to V D, a triangle
whose sides are parallel to TP, TV, and T Z will re-
present these three forces, viz. the tension at P, the ten-
sion at V, and the weight of P V. Such a triangle is
Z P T. If, therefore, Z P represent the tension at V,
and Z T the weight of PV, P T will represent the ten-
sion at P.

(756.) Since P T is greater than P Z, the strain or
tension at P will be greater than the strain at V, and









Squ. Root. | Cube Root.

I I I 1'0000000 | I1°000000
2 4 8§ | 174142136 | 1°259921
3 9 27 1°7320508 | 1°442250
4 16 64 2*c000000 | 1°587401

5 25 125 2°2360680 | 1°709976
6 36 216 24494397 | 1°817121
7 49 343 | 2°6457513 | 1°912931
8 64 512 2*8284271 | 2°0c000CO
9 81 729 3*0o00000 | 2080084
10 100 1 CCO 3°1622777 | 2°154435
11 121 1331 3°3166248 | 2-223980
12 144 1728 3°4641016 | 2°289429
13 169 2197 | 36055513 | 2'351335
14 196 2 744 3'7416574 | 27410142
15 225 3375 | 38729833 | 2°'466212
16 2 56 4096 4'0000000 | 2'519842
17 2 89 49173 41231056 | 2°571282
13 3 24 5832 4'2426407 | 2'620741
19 361 6859 4'3588989 | 2'668402
20 400 8 ooo 4°4721360 | 2°714418
21 441 9261 4'5825757 | 2°758924
22 4 84 10 648 46904158 | 2°8c2039
23 529 12167 | 477958315 | 2°843867
24 576 13824 | 4°8989795 | 2884499
25 625 15625 §'cocccoo | 2°924018
26 6 76 17576 [ 5°0990195 | 27962496
2 729 19 683 5°1961524 | 3°ccocOO
28 7 84 21952 52915026 | 3036589
29 841 24 389 5°3851648 | 3'072317
10 9 co 27 000 5:'4772256 | 3°107232
71 g 61 29 791 55677644 | 3°141381
32 10 24 32 768 5°6568542 | 3°174802
33 | 108 35937 | 5'7445626 | 3207534
14 11 56 39 304 5:8309519 | 3°239612
15 122§ 42 875 59160798 | 3'271066
36 12 g6 46 656 6'cooccoo | 37301927
17 13 bg 50653 60827625 | 3°332222
38 14 44 54872 6:1644140 | 3°361975
39 1521 59319 | 6'2449980 | 3'391211
40 16 00 64000 | 6°3245553 | 3°419952
41 16 81 68 gz21 6°4031242 | 3°448217
w2 17 64 74088 | 6°4807407 | 3476027
43 18 49 79597 | 6°5574385 | 3'503398
44 19 36 85184 | 6°6332496 | 3°530748
45 6:7082039 | 4556893




Cube,

Squ. Root,

97 336
103823
110 592
117 649
125 000

67827300,

6°8556546
6-9282032
7°0C00000
7:0710678

132 651
140 608
148 377
157 464
166 375

7" 1414234
7°2111026
72801099
7°3484692
7:416198 5

3°732511
3*;56135
3°779763
3802953

175616
185193
195 112

205879

216 00O

7°4833148
7°5498344
7'6157731
7°6811457
7'7459667

3°8253862
1°3438501
3'870877
3'892996
3'914868

226 981
238328
250047
262 144
274 625

78102497
78740079
7'9372539
8rococoooo

8*0b22577

3'936497
3'957892
3979954
4°0CQ0C0O
4020726

287 496
300763
314432
328 509
343 000

8-1240384
8:1853528
82462113
330662139
8:3666001

4'041240
4061548
4081655
4'101566
47121285

357 911
373 248

389 017"

405 224
421 873

3:4261498
84852314
85440037
86023253
8:6602540

4°140818
4160168
47179339
4°198336
4217167

438 976
456 533
474 552

493 ©39
512 000

8°7177979
8'7749644
88317609
88881944
89442719

4235824
47254321
4272659
4°290840
4°308870

531441
551 368
571787
592 704
614 125

9° 0000000
90553851
9° 1104336
9 1651514
9*219544:5

4326749
4344481
4:362071
47379519
4396830

636 056
658 503
631 472
794 969
729 000

9'2736185
9°3273791
9 3808315
9'4339811

9'4368370

47414005
47431048
4'447960
4'464745
4481405




SR S

Num.] Square, Cube, Squ. Root. | Cube Root,
91 82 81 753 571 975393920 | 4'497941
92 84 64 778638 | 95916630 | 4°514357
93 86 49 804357 | 9'6436508 | 4°530655
94 88 36 830584 | 96953507 | 47546836
95 9025 857 375 97467943 | 47562903
96 92 16 884736 | 9'7979590 | 4'578857
97 9409 912673 | 9'8488578 | 4594701
98 96 04 941192 | 9'8994949 | 4'610436
99 9801 9709299 | 9'9498744. | 4626065
100 | Iocooo 1000000 | 10°c0c0000 | 4641589
101 10201 10130 301 10°0498756 | 4657010
102 I 0404 1061208 10°0995049 | 4'672329
103 106cg 1092 727 10°1488916 | 4°687548
104 108 16 I124 864 10°'1980390 | 4'702669
10§ 11025 1157625 10°2469508 | 4°717694
106 112136 1191016 102956301 | 4°'732624
107 11449 1225043 10°3440804 | 4747459
108 11664 1259712 103923048 | 4762203
109 11881 1295029 | 10°4403065| 4'776856
110 12100 1431000 10°4830885 | 4791420
111 12321 1367631 | 1075356538 | 4805896
112 12544 I 404928 10°5830052 [ 4'820284
113 § 12769 1442397 | 10°6301458 | 4'834588
114 12996 1481544 | 10°6770783 | 4848808
115.§ 13225 1520875 | 10°7238053 | 4'862944
116 13456 15603896 107703296 | 4 876999
117 136 89 I 601613 10°'8166538 | 4890973
113 | 13924 1643032 | 10°8627805 | 4'904868

119 14161 1685159 10'g0o87121 | 4'918685 -
120 | 1 44 co 1728 coo 10°9544512 | 4'932424
121 14641 1771561 11'0000000 | 4°946087
122 14884 1815848 11°'0453610 | 4°959676
123 15129 1860867 | 11'0905365| 4'973190
124 15376 1906 624 11°1355287 | 4°986631
12§ 15625 1953 125 11°'1803399 | §°coocoo
126 15876 2000376 | 11°2249722 | 5013298
‘127 | 16129 2048 383 | 11°2694277 | 5'026526
128 16784 2 097 152 11°3137085 | 5'039684
129 16641 2146689 1 11°3578167 | 5°052774
130 16900 2 197 000 11'4017543 | 5065797
131 | 17161 2248091 | 11'4455231| 5°078753
132 17424 2299 968 11°4891253 | 5°c91643
133 ] 17689 2352637 | 11°5325626 | 5'104469
134 | 17956 2406 104 §11°5758369 | 5117230
135 18225 2 460 375 11'61895c0 | §°129928




Cube.

Squ. Root,

Cube Root,

2 515 456
25711353
2628 c72
2685619

2 744 coO

11°6619018
117046999
1T1°74.7340%
11°7898261
11°8321596

5142563
5155137
5167649
5180101
5°192494

2 303 221
2 863 288
2 924 207
2935984
3048 625

11°8743421

11'9163753
1179582607

12°000C0000
12°0415946

5°204828
5‘21?103
§'229321
5'241483
5'253588

3112 136
3176 523
3241792
3 307 949
S 313000

12'0830460
i
121655251
12'2065556
122474487

5265637
5277632
5289572
5'301459
$°313293

3442 951
7 511 808
3581577
3 652 264
3723 875

12°2882057
1273288280
12°3693169
124096736
12"4498996

5°325074
5°336803
57348481
5°360108
5°371685

3796416
3869 893
3944 312
4019679
4 c96 coo

12°4899960
12'5299641
12°5698051

t 12°60g95202

12°6491106

57383213
57394691
5406120
5'417501
5428835

4173281
4251 528
4330747
4410 944
4 49% 125

12'6385775
1277279221
12°7671453
12°8062485
12°8452726

5°'440122
5°451362
5'462556
5'473704
5'484807

4574296
4657 463
4741632
4 826 809

4913 000

12°8840987
1279228480
12'9614814
13'0CC00000
13°0384048

5°495865
5° 506878
5517848
5'528775
57539658

5000211
5088 448
5177717
5268 024
5359375

130766968
13°1148770
131529464
13" 1909060
132287566

57559499
5561298
5°57%055
5'582770
5593445

5451776
5545233
5639752
5735339
5832 coo

13°26064992
1373041347
13°3416641
13°3790882
13°4164079

5°604079
5614672
5625226
57035741
5646216




Num.] Square. Cube. Squ. Root, iCuhe Root. |

81 32761 5929741 | 134536240 | 5656653
182 33124 bo28 568 13°4907376 | 5667051
183 ] 33489 6128487 | 1375277493 | 5677411
184 338 56 6229 504 [ 135646600 | 5687734
| 185 | 34225 6331625 | 13°6014705| 5°698019
186 34596 6434856 | 136381817 | 5708267
137 | 34969 6 539203 | 136747943 | 5°718479
188 3 53 44 6644672 | 13°71130092 728654
189 | 35721 6751269 | 13'7477271| 5'738794
190 361 co 6859000 | 137840488 | 5°748897

191 7164 81 6 g67 871 138202750 | 5758965
192 3 68 64 7077 888 | 13°8564065| 5768998
193 | 37249 7189057 1378924440 | 5°778997
194 | 37636 7301384 |13'9283883| 5°788960
195 | 38025 7414875 | 13°9642400 | 5°798890
196 7 84 16 7 529 536 14"cococoo | 5808786
197 388 cg 7645 373 14'0356688 | 5°818648
198 | 39204 7762392 | 14'0712473 | 5828477
199 39601 78805909 | 14°1067360 | 5'838272
200 4 00 00 8coocco | 141421356 | 5°348035
201 40401 8 120 601 14'1774469 | 5857766
202 408 04 8 242 408 14°2126704 | 5°867464
2073 41209 8 365 427 14°2478068 | 5'877131
204 | 41616 8489664 | 142828569 | 5886765
205 42025 8615125 14°3178211 | 5396368
206 424 36 8741816 14'3527001 | 5°90594.1

207 | 42849 8869743 |14'3874946 | 5'915482
2038 432 64 8998912 | 14'4222051| 5'924992
209 | 436381 9129329 | 144568323 | 5°934472
210 | 44100 g261000 | 144913767 | 5'943922
211 | 44521 9393931 | 145258390 | 5953342
232 4 49 44 9 528 128 14'5602198 | 5°962732
213 | 45369 9663597 | 14°5945195 | 5°972093
214 | 45796 9800344 | 146287388 | 5981424
215 462 25 9938375 | 146628783 | 5'990726
216 4 66 56 10077 696 | 146969385 | 6'ccooco
217 | 47089 | 10218313 |14°7309199| 6'009243
| 2183 | 47524 10360232 | 14'7648231 | 6°013462
219 47961 10 503 459 | 14'7986486 | 6°027650
220 | 48400 10648 cco | 14°3323970 | 6°036811
221 438 41 10793 861 14°8660687 | 6°c45943
222 | 49284 10941048 | 148996644 | 6-055049
223 | 49729 11089 567 | 14°9331845 | 6064127
224 | 50176 11239424 | 14°9666295 | 6073178
225 | 50625 11390625 | 15'c000000 | 6082202




Cube.

Squ. Root.

Cube Root.

11543176 ]15°0332964 | 5091199
11 697 083 15'c665192 | 6'100170
11 852 352 | 15°0996689 | 6109115
12 008 989 15'1327460 | 6°1180133
12 167c00 | 15°1657509 | 6126926
12 326 391 15°1986842 | 6°135762
12 487168 | 15°2315462 | 6°144634
12649 337 | 15'2643375| 6°153449
12 812 go4 152970585 | 6°162240
12 977875 | 15°3297097 | 6'171006
13 144256 | 1573622915 | 6°179746
13312053 | 15°3948043 | 6'188463
13481272 | 15°4272486 | 6°197154
13651919 15°4596248 | 6°205822
13 824 cco 15°4919334 | 6°214465
13997 521 | 15°5241747 | 6'223084
14172 488 | 155563492 | 6°231680
14348907 | 15°5884573 | 6°240251
14526784 | 156204994 | 6°2488co
14706 125 | 15°6524758 | 6°257325
14886936 | 156843871 | 6°265827
15069223 | 15°7162336( 6°274305
15252092 15°7480157 | 6°282761
15438249 | 157797338 | 6°291195
15625000 | 158113883 | 6'299605
15813251 | 15°8429795 | 6°307994
16 003 008 15°8745079 | 6*316360
16194277 - | 1579059737 | 6°324704
16 387 064 | 159373775 | 6°333026
16 581 175 15'9687194 | 6°341326
16 777216 | 16*00c0c0o0 | 067349604
16974 593 | 160312195 | 6°357861
17173512 | 160623784 | 6°3606097
17373979 | 16°0934769 | 6°374311
17 576000 | 161245155 | 6°382504
261 | 68121 | 17779581 |16°1554944  6°390676
262 6 86 44 17984 728 | 16'1864141 | 67398828
263 69169 18 191 447 16°2172747 | 67406953
264 | 69696 18 399 744 | 16°2430768 | 6°415069
265 70225 18 609 625 | 16°2788206 | 6423158
266 | 70756 18821096 | 163095064 | 67431228
267 | 71289 | 19034163 |16°3401346 6°439277
268 71824 19248832 | 163707055 | 6°447306
269 72361 19 465 109 | 16°4012195 | 67455315

19 683 coo

16°4316767

6:463304




Cube.

Squ. Root.

Cube Root.

19902 §11
20 123 648
20 346 417
20 570 824
20796 875

16°4620776
16°4924225
16°5227116
16°5529454
16°5811240

6471274
6479224
6487154
6°495065
6'502957

21024 576
21253933
21484952
21717 639
21§52 000

16°6132477
166433170
16:6733320
167032931
16°7332005

6° 510830
6°513684
6526519
6'534335
6'542133

22 188 041
22 425768
22 665 187
22 gob 304
23 149 125

16°7630546
16°7928556
16'8226038
16°8522995
16:8319430

6°549912
6*557672
6565414
6573139
6:580844

23 393 656
23639 903
21 887 872
24 137 569
24 389 coo

169115345
16'9410743
16°9705627
| ) leléla alalela]
17°0293364

6°588532
6°596202
6603854
6611489
6:619106

24 642 171
24 897 088
25153757
26412 184
25672 375

17°0587221
17-0880075
17°1172428
17°1464282
171755640

6626705
6°674287
6°641852
6+649400
6:656930

25934 336
26 198 073
26 463 592
26 730 899
27 000 000

17°2046505%
17'2336879
17°2626765
172916165
173205081

6664444
6*671940
6679420
6686884

6:694329

27 270 901
27 543 608
27 818 127

28 094 464
28 372 625

1773493516
17°3781472
17°4068¢52
17°4355958
17°4642492

6701759
6709173
6716570
6723951
6731316

28 652 616
28 934 443

29218 112
29 503 629
29 791 000

17°4928557
17°5214155
17°5499283
17°5783958
17°6068169g

6°738664
6745997
6753313
6760614
6:767899

30080231
30371 328
30664297
30959 144
31255875

17°6351921
17°6635217
176918060
17°7200451
177482393

6775169
6782423
6789661
6'796884
6°804092




Cube.

Squ. Root,

Cube Root. §

Num.] Square.
316 998 56 31554496 | 17°7763888| 6°811233
317 | 1004389 31855013 | 17'8044938 | 6°818462
318 } 1O 1124 92 157432 | 17°8325545| 6-825624
319 | 101761 32461759 |17'8605711| 6°832771
320 | 102400 32768000 | 17°8885438 | 6°839904 |
321 ] 103041 33076 161 | 17°9164729 | 6°847021 |
322 | 103684 33386248 | 17°94413584 ] 6-854124
3213 104329 33698267 | 17'9722008 | €'861212
324 | 104976 34012224 | 18'cococco| 6-8638235
325 | 1035625 | 341328125 180277564 | 6°875344
326 | 106276 34 645976 | 18-0554701 | 6°882389
927 | 106929 34965783 | 180831413 | 6839419
328 | 107584 | 35287552 Ji18 1107703 | 6'89643;5
329 | 108241 35611289 181383571 | 6°'903436
330 | 108900 35937000 | 181659021 679104273
331 109561 36264691 | 18'1934054 | 6°917396
332 1 110224 36 504 368 |} 18-2208672 | 6°924356
333 | 110889 36 926 037 | 18°2482876 | 6°931301
1334 | 111556 | 37259704 |18'2756669 | 6'938232
335 | 112225 | 37595375 | 18'3030052 | 6'945150
{ 336 | 112896 37933056 | 133303028 | 6°952053
337 | 113569 | 38272753 |18'3575598 | 6°958943
§ 338 | 114244 38614472 §138°3847763| 6°965820
339 | 114921 18958219 | 184119526 | 6°972683
340 | 115600 | 39304c00 | 184390889 | 6°979532
341 | 116281 39651821 | 184661853 | 6986368
f 342 | 116964 40001688 | 184932420 67993191
§ 343 ] 117649 401353 607 | 13*5202592 | 7'coocccO
344 | 118336 | 40707584 |18'5472370| 77006796
345 | 119025 | 41063625 | 13°5741756| 77013579
346 1197 16 41421736 | 18'6010752 | 7'020349
347 | 120409 41781923 | 18°6279360 | 7°027106
248 12 1104 42144 192 | 18°6547581| 7°033850
349 | 121801 42 508 549 | 18'6815417 | 7°040581
360 | 122500 42 875000 | 187082869 | 7°047299
Jirq- 1230l 43243551 | 18°7349940 | 77054004
352 | 123904 | 43614208 | 18°7616630| 7-0bobgy
353 | 124609 | 43986977 | 187882942 | 7067377
354 | 125316 44161864 |18-8148877| 77074044
355 | 126025 | 44738875 | 188414437 | 7°08abgg
356 | 1267 36 45118016 | 18°8679623 | 7087341
357 | 127449 | 45499293 | 13'8944436 | 77093971
358 | 128164 45832712 | 18'9208879 | 7°100588
359 | 128881 46268 279 |18'9472953 | 7°107194
360 | 1296cC0 46 656 coo | 189736660 | 7113787



Num.] Square. Cube. Squ. Root. | Cube Root.
361 | 130321 47045881 | 19'000cc00 | 77120367
362 | 131044 47437928 | 190262976 | 7126936
363 | 131769 | 47832147 |19'0525589 | 77133492
364 | 132496 | 48228544 |19'0787840| 77140037
365 | 133225 | 48627125 |19°1049732 | 7°146569
366 | 1339356 49027896 | 19°1311265| 7°153090
367 | 134689 [ 49430863 ]19°1572441 | 7°159599
368 | 135424 49836032 | 191833261 | 7166096
36g | 136161 50243409 | 19°2093727| 7°172581
370 | 136900 | 50653000 |19°2353841| 7°179054
371 | 137641 51064811 | 19°2613607| 7'185516
372 | 1383384 51478 848 | 19'2873015| 7°'191966
373 139129 51895117 | 19°313207 7°198403
374 | 139876 | 52313624 |19'3390796| 7°204832

140625 | 52734375 | 193649167 | 7211248
376 | 141376 §3157376 | 19°3907194 | 7°217652
377 | 142129 53582633 | 194164878 | 7'224045
378 | 142834 54010152 | 194422221 | 77230427
379 | 143641 | 54439939 | 194679223 | 7°236797
180 | 144400 54872000 |19°4935887 | 7'243156
381 | 145161 55306341 | 1975192213 | 7°249504
382 | 145924 55742968 | 19°5448203| 7255841
383 | 1466389 56 181887 | 19°5703858 [ 7°262167
384 | 147456 | 56623104 |19°5959179 | 7'268482
385 | 148225 57066625 | 196214169 | 7°274736
386 | 148996 57 512456 | 19°6468327| 7231079
387 | 149769 | 57960603 |19°6723156| 7°287362
388 | 150544 | 58411072 | 196977156 | 7°293633
389 | 151321 58 863 869 | 19'7230829 | 7°299894
390 | 152100 | 59319000 |19°7484177 | 77306144
391 | 1528 31 59776471 | 19°7737199 | 7°312383
392 | 153664 60236288 | 19°79898gg | 7°318611
393 | 154449 | 60698457 1198242276 | 7°324829
394 | 155236 | 61162984 |19°8494332| 7°331037
395 | 156025 | 61629875 |§19'8746069 | 7°337234
396 | 156816 | 62099136 | 198997487 | 7°'343420
397 | 157609 | 62570773 |19°9248588 | 7'349597
398 | 158404 | 63044792 |19°9499373| 7°355762
399 | 159201 | 63521199 |19'9749844  7°361918
400 | 16co00 64 cooooco | 20°coccooo | 7°368063
401 | 160801 64481201 | 200249844 | 7374198
goz | 161604 64964 808 | z0'0499377 | 7°380323
403 | 162409 | 65450827 |20°0748599 | 7°386437
404 | 16132 16 65939264 |20°0997512 | 7'392542
go5 | 164025 66 430125 | 201246118 | 7°398636




Square.

Cube.

Squ. Root.

AR R L P e T (e

Cube Root.

406 | 164836 66 923 416 | 20°1494417 | 77404721
407 | 165649 | 67419143 |20'1742410| 7°410795
408 | 166464 67917312 | 20°1990099 | 7°416859
409 § 1672 81 68417929 |20'2237484| 7°422914

16 81 00 68 921000 | 202484567 | 7°428959
411 | 168921 | 69426531 |20°2731349| 7°434994
412 | 169744 | 69934528 |202977831| 7'441019
413 1705 69 70444997 |[20'3224014 | 7'447034
414 | 171396 | 70957944 12073469899 | 7°453040
415 | 172228 71473 375 |20°3715488 | 7°459016
416 | 173056 71991296 |20°3960781 | 7°465022
417 | 1738389 72 511713 |20°4205779 | 7'470999
418 | 174724 | 73034632 |20'4450483 | 7°476966
419 | 175561 | 73560059 |20'4694895| 7°482924
420 | 176400 74 083 coo | 2074939015 | 7°488872
421 1" 17 7241 74618 461 | 20°5182845 | 7°494811
422 | 17808, 75 151448 | 20°5426386 | 7°500741
423 1 178929 75686 967 | 20°5669638 | 7°506661
4z4 | 179776 76225024 | 20°5912603 | 7'512571
425 180625 76 765625 206155281 | 77518473
426 | 131476 | 77308776 |20'6397674 | 7524365
427 | 182329 | 77854483 ]20°6639783 | 7530248
428 | 183184 78 402 752 | 20'6881609 | 7'536122
429 | 1834041 | 78953589 |]20°7123152| 7°541987
430 | 184900 | 79507000 207364414 | 7'547842
431 ] 1835761 | 8oob299r |z20'7605395| 7°553689
432 | 186624 80621 568 [20'7846097 | 7°'559526
433 | 187489 81182737 F20'8086520( 7°565355
434 | 138356 81746 504 | 208326667 | 7°571174
435 | 189225 82312875 |20'8566536| 7°576985
436 | 1900496 82 381856 |20'88cb130| 7°582786
437 | 190969 | 83453453 |20°9045450 | 7588579
438 | 191844 84027672 |20'9284495 | 7'594363
439 | 192721 84604 519 | 209523268 | 7°600138
440 | 1913600 85184000 |[20'9761770| 7'605905
441 | 194481 85766 121 | 21°00c000C0 | 7611667
442 | 195364 86 350888 |21'0237960| 7617412
443 | 196249 | 86938307 |21'0475652| 7623152
444 | 197136 87528 984 | 210713075 | 7°628834
445 19 8025 83 121 125 | 21'0950231 | 7634607
446 | 198916 88716536 |211187121| 7'640321
447 | 199809 | 89314623 |21°1423745| 7646027
448 | 200704 899151392 [21'1660105| 7°651725
449 | zo1601 9o 518 849 | 211896201 | 7°657414

2025 C0 91 125000 |21°'2132034 | 7'663004




TS e L R D R T e D e el i e W ki

Square. Cube. . Squ. Root. | Cube Root.
20 34 O1 91733851 §21'2367606 | 7'668766
20 43 04 0z 345408 212602916 | 7°674430
20 5209 92959677 | 212837967 | 7°680086
206116 | 93576664 J21°3072758 | 7°685733
207025 94 196375 | 21°33072090| 7'691372
2079 36 94818816 |21"3541565| 7697002
208849 | 95443993 |21'3775583 7702625
20 97 64 96071912 |21°4009346 | 7°708239
2106 81 96702 579 | 21°4242853 | 7'713845
211600 | 97336c00 |21'4476106 | 7°719443
212521 97972 181 | 21°4709106 | 7°725032
213444 98611128 214941853 | 7'730614
214369 99252847 f21'5174348 | 7°7356188
215296 | 99897344 }21°5406592 | 7°741753
216225 | 100544625 |21'5638587 | 7°747311
217166 | 101194696 |21°5870331| 7°752861
218089 | 101847563 J21°6101828 | 7°758402
219024 | 102503232 f21'6333077| 77763936
219961 | 103161709 |21°6564078 | 7'769462
220900 | 103823000 [21°6794834| 7°774980
22 18 41 104 487 111 | 21'7025344 | 7' 780490
222784 | 105154048 |z21°7255610( 7'785993
22 37 29 105 823817 |21°7485632 | 7°791487
224676 | 106496424 |21'7715411| 7°796974 -
22 5625 | 107171875 §21°7944947 | 7'802454
22 6570 107850176 |21'8174242 | 7807925
227529 | 108531333 |21°8403297 | 7'813389
228484 | 109215352 |21°8632111| 7818846
229441 | 109902239 |21°8860686 | 7°824294
230400 | 110592000 [21'g08g0o23| 7'829735
231361 | 111284641 |21°9317122 | 7835169
232324 | 111980168 §21°9544984 | 7°840595
233289 | 112678 587 |21'9772610 | 7°846013
2342 56 | 113379904 {[22'00cc000 | 7351424
235225 | 114084125 |22°0227155( 7856823
236196 | 114791256 |22°0454077 | 7°862224
237169 | 115501303 |22°0680765 | 7'867613
238144 | 116214272 |22'0907220 | 7°872994
239121 | 116930169 |22°1133444 | 7'878368
2401co | 117649000 |22'1350436 | 7°883735
241081 | 118370771 |22°1585198 | 7'339095
242064 | 119095488 |22'1810730 | 7°894447
243049 | 119823157 222036033 | 7°899792
244036 | 120553784 |22°2261108 | 7'9o5129
24 5025 | 121287 375 |22'2485955 | 7°910460




Square,

|
;

Cube,

Squ. Root,

Cube Root. |

24 60 16
24 7009
24 3004
24 90 OI
25 00 00

122 023 936
122 763 473
123 505992

124 251499
1‘25 o000 Q00

222710575
22°2934968
22°3150136
223383079
22°4606798

7°915783
7°921099
7°926408
717931710
7°93700%

25 1001
25 20 04
253009
2540 16
255025

125751 501
126 506 co8
127 263 527
128 024 064
128 787 625

223830293
22°4053565
22°4276615
22°4499443
22°4722051

7°942293
7°947574
7'952848
7°958114
7'963374

25 60 36
257049
25 80 64
259081
26 01 co

129 554216
130 323 843
131096 512
131 872 229
132 651 00O

22°4944438

22°516660¢4 |

2275383553
22' 5610283

225831706

7968627
7°973873
7°979112
7°984344
7'989570 |

26 1121
262144
26 11 69
26 41 96
26 52 25

133432 831
134217 728
135005 697
135796 744
136 590 875

226053091
22°6274170
2270495033
270715681
22-0936114

7°994738
8 000000

&-co5204
8'010403
8'015595

26 62 56
26 72 89
26 87 24
2693 61
27 04 CO

137 388 096
138 188 413
138 991 832

139 798 359
140 608 coo

22°7156334
22'7376340
2277596134
22°7815715
22°803508¢

8020779
8025957
8*031129
8036293
8'041451

27 14 41
2724 84
27 3529
27 4576
27 5625

141 420761
142 236 648
143055 667
143 877 824
144 703 12§

22°8254244
228473193
228691933
22°8910463
22°0123785

8046603
8:051748
8'056886
8062018
8'c67141

27 66 76
e i
2787 84
27 98 41
28 cg co

145 531 576
146 363 183
147 197 952
148 035 889
148 877 cco

2279346899
22°9564806
22°'9782506
23°0000000
23'0217289

8:072262
8:077374
8082480
8'087579
8092672

28 19 61
28 3024
28 40 89
28 51 56
28 62 25

149 721291
150 568 768
151419437
X5 273 594
153130 375

23'0434372
23'0651252
230867928
23" 1084400
211300670

8:097759
8:102839
8107913
8'112980
8118041

28 72 96
28 83 69
2894 44
290521
29 16 co

153 990 656
154 854 153
155 720 872
156 500 819
157 464 000

23'15167138
231732605
231948270
232163735

232379001

8:123096
8128145
8:177137
3'133223 |
8143253 |




Square,

Cube.

Squ. Root,

Cube Root.

2926 81
29 37 64
294849
29 59 36
29 702§

153 340421
159 2200838
160 103 CcO7
160 989 184
161 878 625

23'2594067
232808935
23°3027604
23°3238076
2373452351

8148276
8'153294
8158305
8'163310
81683009

298116
29 9209
3003 04
30 14 OI
302500

162 771 336
163 667 323
164 566 592
165 469 149
166 375 coo

233666429
23°3880311
2374993998
2374307490
234520788

8:173302
8178289
3-183269
8:188244
8:193213

30 36 o1
30 47 04
30 58 09
30 69 16
308025

167 284 151
168 196 608
169 112 377
170031 464
170953 875

23'4733892
234946802
23°5159520
23°5372046
2375584380

8'198175
3203132
8-208082
8:213027
3'217966

3091 36
310249
311364
312481
31 36 0o

171 879 616
172 808 693
173 741 112
174676 879
175 616 coo

23°5796522
236008474
236220236
236431808
216643191

8222898
8227825
8232746
8237661
8242571

314721
315844
3169 69
31 80 g6
319225

176 558 481
177 504 328
178 453 547

179 406 144
180 362 125

236854386
23°7065392
23°7276210
237486842
23°7697286

8247474
8252371
8257267
8:262149
8267029

3203 56
32 14 89
3226 24
32 37 61
32 49 o0

181 321 496
182 284 263
183250432
184 220009
185 193 coo

2377907545
23'8117618
238327506
23'8537209
23°8746728

8271904
8276773
3:281635
8286493

8°291344

12 60 41
32 71 84
32 83 29
3294 76
330623

186 169 411
187 149 248
188 132 517
189 119 224
AG 00 375

23°8956c63
23°9165215
23'9374184
23°9532971
239791576

3296190
8*301030
8:305865
8310604
8:315517

3317 76
332929
334084
33 5241
33 64 00

191 102 976
192 100033
193 100 §52

194 104 539
195 112000

240000000
24'0208241
240416306
240624188
24°0831891

8:320135
8325147
8329954
8334755
8:339551

337561
33 87 24
3398 89
34 10 56
34 22 25

196 122 941
197 137 368
198 155287

199 176 704

200 201 625

24°1039416
24" 1246762
24'1453929
24°1660919
24°1867732

8344341
8349126
8353905
8358678
8363447




Num.

Square, Cube. Squ. Root. | Cube Root,
586 | 343396 | 201230056 )24'2074369 | 8:368209
537 34 45 69 202 262 001 24'2280829 | 8-372967
588 | 345744 | 203297472 |24'2487113| 8377719
589 | 346921 | 204336469 ]24°2693222| 8-382463
590 | 348100 | 205379000 |24'2899156 | 8:387206
59T | 349281 | 206425071 J24'3104916 | 8391942
592 | 350464 | 207474688 243310501 | 8°396673
593 | 351649 | 208527857 |24'3515913| 8°401398
594 | 3528136 | 209584584 |24'3721152 | 8406118
595 | 354025 | 210644875 |24'3926218 | 8-410833
596 | 355216 | 211708736 |a24g131112| 8°415542
597 | 356409 | 212776173 §24°4335834 | 8'420246
598 | 357604 | 2138477192 |24'4540385 | 8424945
599 | 358801 | 214921799 |24°4744765| 8'429638
600 | 360000 | 216000000 |24'4948974 | 8°434727
6or | 361201 | 217081801 |24'5153013| 8°'439010
6oz | 362404 | 218167208 |24'5356883 | 8443688
6o3 | 363609 | 219256227 |24'5560583 | 8448360
6o4 | 364816 | 220348864 |24'5764115| 8'453028
605 | 366025 | 2214457125 |24°5967478 | 8'457691
606 | 367236 | 222545016 |24'6170673| 8:262343
bo7 | 368449 | 223648543 |24'6373700| 8467000
608 | 169664 | 224755712 | 246576560 | 8471647
6og | 370881 | 225866529 |24'6779254 | 8476289
610 | 372100 | 226981000 |24'6981781 | 8480926
6brr | 373321 | 228099131 |24°7184142 | 8485558
612 | 374544 | 229220928 |24'7386338 | 8-490185
613 | 375769 | 230346397 |24'7588368 | 8:494806
614 | 376996 | 231475544 |24°7790234 | 8°499423
615 | 378225 | 232608375 |24'7991935| 8'504035
616 | 379456 | 233744896 |24-8193473| 8:508642
617 | 380689 | 234885113 |24°8394847 | 8'513243
618 | 381924 | 236029032 | 248596058 | 8'517840
619 | 383161 | 237176659 | 248797106 | 8:522432
620 | 384400 | 238328000 |24'8997992 | 8'527019
621 | 385641 | 239483061 |24'9198716| 8531601
622 | 386884 | 240641848 |24°9399278 | 8°536178
623 | 388129 | 241804367 |249599679 | 8540750
624 | 389376 | 242970624 |24°9799920 | 8:545317
625 | 390625 | 244 140625 | 25°cocoo00 | .8°549880
626 | 391876 | 245314376 |25'0199920| 8554437
627 | 393129 | 246491883 ]250399681 | 8558990
628 | 394384 | 247673152 |25'0599282 | 8:563538
629 | 395641 | 248858189 |25'0798724 | 8568081
630 | 396900 | 250047000 |25'0998c08 | 8-572619




Square, Cube. Squ. Root, | Cube Root.
398161 | 251239591 Y25'1197134| 8'577152
399424 | 252435968 251396102 | 8-581681
400689 | 253636137 }25°1594913 | $°586205
401956 | 254840104 |25.1793566 | 8'590724
403225 | 256047875 {25°1992063 | 8:595248
494496 | 257259456 |25°2190404 | 8'599748
405769 | 258474853 | 252388589 | 8-604252
407944 | 259694072 f252586619 | 8:608753
408321 | 260917119 252784493 | 8-613248
409600 | 262 144000 |252982213 8617739
410881 | 263374721 |25°3179778 | 8'622225
412164 | 2646092838 |25°3377189 | 8-626706
413449 | 265847707 125°3574447 | 8631183
414736 | 267089984 |25°3771551| 8635655
416025 | 268336125 |25°3968502 | 8640123
417316 | 269586136 §25°4165301 | 8'64458;5
418609 | 270840023 |25'4361947 | 8649044
419904 | 272097792 |25'4558441 | 8653497
421201 | 273359449 |25'4754784| 8657946
422500 | 274625000 |25°4950976 | 8662391
42 38 o1 275894451 |25°5147016 | 8666831
425104 | 277167308 |25°5342907 | 8'671266
42 6409 | 278445077 |25'5538647 | 8675697
427716 | 279726264 |25'5734237 | 8680124
429025 | 281011375 | 255929678 | 8-684546
430336 | 282300416 256124969 | 8:683963
431649 | 283593393 |25'6320112 | 8693376
432964 | 284890312 |25'6515107 | 8697782
4342 81 286 191 179 25'6709953 | 8702188
435600 | 287496000 |25'6904652 | 8:706 588
436921 | 288804781 |257099203 | 8'710983
438244 | 290117528 |25'7293607 | 8'715373
439569 | 291434247 |25'7487864 | 8'719760
4403 96 292 754944 §25'7681975| 8724141
442225 | 294079625 1257875939 | 8728519
4435 56 | 295408296 }25'8069758 | 8'732892
4448389 | 296740963 §25'8263431 | 8737260
446224 | 298077632 |25'8456960 | 8:741625
447561 | 299418309 | 258650343 | 8745985
44 8g oo 300 763 0c0 |25'8843582 | 8750340
4502 41 302 111711 }25°9036677 | 87754691
4515834 303464448 ]25°9229628 | 8'759038
452929 | 304821217 l25'94232435| 8'763381
4542 76 306 182 024 {25'9615100 | 8767719
455625 307 546 875 | 259807621 | 8:772053




518400

373 248 oco

26°8328157

Square. Cube. Squ. Root. | Cube Root.
676 § 456976 | 308915776 §26'cccocoo| 8776383
677 | 453329 | 310283 733 | 260192237 | 8'780708
678 | 459684 | 311665752 |26'0384331| 8785030 |
679 § 461041 | 313046839 |26'0576284 | 8789347
680 | 462400 | 314432000 | 260768096 | 8-793659
6831 | 463761 | 315821241 |26°0959767 | 8'797968
682 | 465124 | 317214568 |26'1151297| 8'802272
683 | 466489 | 318611987 |26°1342687| 8'806572
654 | 4678456 | 320013504 §26°1533937 | 8'810868
685 | 469225 | 321419 125 | 26°1725047| 8815160
686 | 470596 | 322828846 )26'1916017 | 8'819447
687 | 471969 | 324242703 |26°2106848  8-823731
688 | 473344 | 325660672 |26°2297541| 8828010
689 | 474721 | 327082769 |26:2488095 | 8832285
bgo | 476100 | 328 s0ogoco 262678511 | 8836556
691 | 477481 | 329939371 {26:286878g | 8-840823
692 | 478864 | 331373888 |26'3058g929 | 8°845085
693 } 480249 | 332812557 [26°3248932 | 8849344
694 | 481636 | 334255384 [26°3438797 | 8853598
695 | 483025 | 335702375 |26°3628527| 8-857849
696 § 484416 | 3371533536 |=26'3818119| 8°862095
697 | 485809 | 338608873 |26-4007576| 8:866337
698 | 487204 | 340068 392 | 26'4196896 | 8°870576
699 | 488601 | 341532099 |26°4386081| 8-874810 §
700 § 490000 | 343000000 f26'4575131| 3'879040 |
701 | 4971401 | 344472101 |26°4764046 | 8°883266
702 | 492804 | 345948 408 |26°4952826 | 8887438
703 | 494209 | 347428927 265141472 | 8-891706
704 § 495616 | 348913664 |265329983| 8'895920
705 | 497025 | 350402625 §26°5518261| 8'gocrjo
706 | 498436 | 351895816 f 265706605 | 8°904337
707 | 499849 | 353393243 |26°5894716| $°908539
708 | 501264 | 354894912 [ 2660826094 | 8912737
709 § 502681 | 356400829 |26'627c539| 8'91bg31
710 § 504100 | 3579I1000 |26'6458252 | 3921121
| 711 ) 505521 | 359425431 |26°6645833 | 8'925308
712 | 506944 | 3600944 128 [26:6833281| 8-920490
713 | 508369 | 362467097 |26'7020598 | 8933669
714 | 509796 | 363994 344 126'72077841 8937843
| 715§ s11225 | 365525875 267394839 | 8942014
716 | 512656 | 367061696 |26'7581763| 8-946131
717 | '514089 | 368 601813 |26:7763557| 8950344
718 | 515524 | 370146232 |26'7956220| 8'954503
516961 | 3716094959 §26°8141754| 8958648
8:962809




! Num.

Square, Cube. Squ. Root. | Cube Root.
721 | 510841 | 374805361 |26°8514432| 8'966957
722 | 521284 | 376367048 |26'87c0577| 8971101
723 | 522729 | 377933067 |26'8886593| 8975241
724 | 524176 | 379503424 |26-9072481| 3979377
725 | 525625 | 381078 125 |26'9258240 | 8'983509
726 | 527076 | 382657176 |26°9443872| 8987637
727 | 528529 | 384240583 |26'9629375| 8991762
728 | 529984 | 385828352 |26'9814751| 3°995383
729 | 531441 | 387420439 | 27°cooccco| 9*000CCO
740 532900 | 389017000 |z27'0185122| Q'OO4T11]
731 | 534361 | 390617891 |}27'0370117 | 9008223
732 | 535824 | 392223168 J27'0554985| 9'0r2329
733 | 537289 | 393832837 |27'0739727 | 97016431
734 | 538756 | 395446904 |27°0924344 | 97020529
735 | 540225 | 397065375 271108834 | 9024624
736 | 541696 | 398688256 |27'1293199 | 9028715
737 | 543169 | 400315553 |27°1477439 | 9'032802
738 | 544644 | 401947272 |27°1661554 | 9036886
739 | 546121 | 403583419 |27:1845544 | 97040965
1 740 | 547600 | 405224000 |27'2029410| 97045042
741 | 549081 | 406 869021 |27°2213152 | 9049114
742 | 550564 | 408518488 |27'2396769 [ 97053183
743 | 552049 | 410172407 |27°2580263| 9'057243
744 | 553536 | 411830784 272763634 | 9061310
745 | 555025 | 413493625 272946831 9'065368
746 | 556516 | 415160936 |27'3130006 | 9'069422
747 | 558009 | 416832723 }27'3313c07 | 9°073473
748 | 559504 | 418 508992 }27°3495887 | 9077520
749 | 561001 | 420189749 |27°3678644 | 97031563
750 | 562500 | 421875000 |27°3861279 | 9085603
751 | 564001 | 423564751 |27°4043792 | 9'089639
752 | 565504 | 425259008 |27°4226184| 9°093672
753 | 567009 | 426957777 |27°4408455 | 9'097701
7c4 | 568516 | 428661064 [27°4590604 | 9°101726
755 | 570025 | 430368875 |27'4772633| 97105748
756 | 571536 | 432081216 ]27°4954542 | 97109767
757 | 573049 | 433798093 |27°5136330 | 9'113782
758 | 574564 | 435519512 |27°5317998 | 97117793
759 | 576081 | 437245479 |27°5499546 | ‘9°121801
760 | 577600 | 438976000 | 27'5680975 | 9-125805
761 | 579121 | 440711081 |27°5862284| 9129806
762 | 580644 | 442450728 |27'6043475| 9°133803
763 | 5832169 | 444194947 |27°6224546 | 9°137797
764 | 583696 | 445943744 |27'6405499 | 9'141787
765 | 585225 | 447697 125 |27'6586334 | 97145774



Num. ESquare. Cube. Squ. Root. | Cube Root.
766 | 586756 | 449455096 |27'6767050 | 9°149758
767 | 588289 | 451217663 |27°6947648 | 9°153737
768 | 589824 | 452984832 |27°7128129 | 9'157714
769 | 591361 [ 454756609 |27'7308492 | 9'161687
770 | 592900 | 456533000 [27°7488739| 9 165656
771 | 594441 | 458 314011 ]27°7668368 [ 97169622
772 | 595984 | 460099648 |27°7848880| 9173585
773 | 597529 | 461889917 278028775 | 9°177544
774 | 599076 | 463684824 |27°8208555| 9181500
775 | 600625 | 465484375 |27°8388218 | 9-185453
776 | 602176 | 467288576 |27'8567766 | 9°189402
777 | 603729 | 469097433 |27'8747197 | 9°193347
778 | 605284 | 470910952 |27°8926514 | 9197290
779 | 606841 | 472729139 |27'9105715 | 9'201229
780 | 608400 | 474552000 |27°9284801| 9205164
781 | 609961 | 476379 541 |27°9463772 | 9209096
782 | 611524 | 478211768 |27°9642629| 9'213025
783 | 613089 | 480048687 | 279821372 | 9216950
784 | 614656 | 4818907304 |28-coccooo| 9220873
785 | 616225 | 483736625 |=28'0178515| 9°224791
786 | 617796 | 485587656 |28-0356915| 9228707
787 | 619369 | 487443403 |28'c535203 | 9232619
788 | 620944 | 489303872 |28'0713377| 9236528
789 | 622521 | 491169069 |280891438 | 9240433
790 | 624100 | 493039000 |28:1069386 | 9°244335
791 | 6235681 | 494913671 |28-1247222| 9243234
792 | 627264 | 496793088 |28'1424946] 9252130
793 | 628849 | 498677257 |28'1602557 | 9'256022
794 | 630436 | 500566184 |28:1780056 | 9'259911
795 | 632025 | 502459875 |28'1957444 | 9'263797
796 | 633616 | 504358336 |28'2134720| 9267680
797 | 635209 | 506261573 |28'2311884| 9'271559
798 | 636804 | 508169 592 |28°2483938 | 9°275435
799 | 638401 | 510082399 |28:2665881| 9'279308
8oo | 640000 | 512000000 |28'2842712| 9°283178
gor | 641601 | 513922401 |28°5019434 | 9287044
8oz | 643204 | 515849608 |28:3196045| 9290907
803 | 644809 | 517781627 |28°3372546| 9°294767
804 | 646416 | 519718464 |28:3548938| 9298624
8o5 | 648025 | 521660125 |28-3725219| 9'302477
806 | 649636 | 523606616 |[28°3901391| 9°3063238
8o7 | 651249 | 525557943 |28°4077454| 9'310175
808 | 652864 | 527514112 | 284253408 | 9°314019
809 | 654481 | 529475129 |28°4429253| 9°317860
810 | 656100 | 531441000 |28°4604989| 9°321697




Squ. Root.

855

ay r o

625 026 375

29°2403830

Num.] Square. Cube, Cube Root.
8r1 | 657721 | 533411731 284780617 9328532
812 | 659344 | 535387328 ]284956137( 9°329363
813 | 66096y | 537367797 |28'5131549 | 9°333192
814 | 662596 | 539353144 285306852 | 9'337017
815 | 664225 | 541343375 | 285482048 | 9°340839
816 | 6658356 | 543338496 |285657137 | 9'344657
817 | 667489 | 545338513 |28'5832119 | 9'348473
818 | 669124 | 547343432 |28'60cbgg3| 9°352286
819 | 670761 | 549353259 |28'6181760| 9°356095
820 ] 6724co | 551368000 |[28'6356421| 97359902
821 | 674041 | 553387661 }28'6530976 | 9363705
822 | 675684 | 555412248 | 286705424 | 97367505
823 | 677329 | 557441767 |28°6879766 | 9'371302
824 | 678976 | 559476224 |28'7054002| 97375096
825 | 680625 | 561515625 |28'7228192| 9°378887
1 826 | 682276 | 563559976 |28'7402157| 9°382675
827 | 683929 | 565609287 [28'7576077 | 9°386460
828 | 685584 | 567663552 §28'7749891 | 9°390242
{ 829 | 687241 | 569722789 |28:79213601| 9°394021I
4 830 ] 6823900 | 571787000 | 28'8097206| 9'397796
831 | bgoj561 573856 191 | 28'8270706 | 97401569
832 | 692224 | 575930368 |28-8444102 | 9°405339
833 | 693889 | 578009537 |28:8617394| 9°409105
1 834§ 695556 | 580093704 |28-8790582| 9°412869
835 | 697225 | 582182875 | 288963666 | 9416630
836 | 698896 | 584277056 | 28'9136646 | 9'420387
837 | 700569 | 586376253 |289309523 | 9424142
1 338 | 702244 | 538480472 |28-9482297 | 9°3427394
839 | 703921 | 590589719 ! 28'9654967 | 9°431642
840 | 705600 | 592704000 |28-9827535| 9'435388
1 841 | 707281 | 594823321 |29'c0cccoo | 9439131
842 | 708964 | 596947688 |29'0172363| 9°342870
843 | 710649 | 599077107 [29°0344623 | 9'446607
{ 844 | 712336 | 601211584 [29'0516781| 9'450341
| 845 | 714025 | 603351125 [29°0688837 | 9'454072
§ 846 | 715716 | 605495736 |29-0860791 | 9'4578c0
§ 847 | 717409 | 607645423 J29'1032644 | 9°461523
848 | 719104 | 6098co192 |291204396 97365247
849 | 720801 | 611960049 [29:1376046 | 9°468966
850 | 722500 | 614125000 |20°1547595| 9°472682
851 § 724201 | 616295051 |29'1719043 | 97476396
852 | 725904 | 618470208 fz29°18gogg0| 97480106
§ 853 | 727609 | 620650477 |29'2061637 | 9°483814
854 | 729316 | 622835864 |29'22327384| 9487518
731025

9491220



Num. Square. Cube. Squ. Root. | Cube Root,
856 7327 36 627222016 [29°2574777| 97494919
857 | 734449 | 629422793 |29'2745623 | 9498615
858 | 736164 | 631628712 |29°2916370 | 9'502308
859 § 737881 | 633839779 |29°3087018 | 9°505993
860 | 739600 | 636056000 ]29°3257566 | g'509685
861 74 1321 638 277 381" | 29'3428015| 9513370
862 | 743044 | 640503928 ]29°3598365 | 9'517051
863 | 744769 | 642735647 |29°3768616 | g9°520730
864 | 746496 | 644972544 |29°3938769 9524406
865 | 748225 | 647214625 |29'4108823| 9°528079
866 § 749956 | 649461896 }29°4273779 | 9°531750
867 § 751689 | 651714363 ]29°4443637| 9535417
868 | 753424 | 653972032 ]29'4618397 | 9539082
869 | 755161 | 656234909 }29°4788059 | 9'542744
870 | 756900 | 658 503000 |29°4957624 | 9°546403
871 7586 41 660776 311 | 29°5127091 | 9'550059
872 | 760384 | 663054848 [29°5296461| 9'553712
873 | 762129 | 665338617 295465734 | 9'557363
874 | 763876 | 667627624 ]29°5634910( g9'561011
875 | 765625 | 669921875 295803989 | 9°564656
876 | 767376 | 672221376 |29°5972972 | 97568298
877 | 769129 | 674526133 129°6141858 | 9'571938
878 | 770884 | 676836152 |29'6310648 | 9°575574
879 | 772641 | 679151439 296479342 9'579208
88c | 774400 | 681472000 [29'6647939| 9'582840
881 | 776161 683 797 841 §29'6816442 9' 586468
882 | 777924 | 686128968 |29°6984843 | 9'590094
883 | 779689 | 638465387 |29°7153159 | 97593717
884 | 781456 | 690807104 |29°7321375| 97597337
885 | 783225 | 693154125 |29°7439496 | 9°600953
886 | 784996 | 695506456 }29'7657521| 9'604570
887 | 786769 | 697864103 |29°7825452| 9608182
888 | 788544 | 700227072 |29°7993289 | 9°611791
889 | 790321 | 702595369 |29'8161030| 9615398
8go | 792100 | 704969cc0 | 29°8328678 | 9'61goc2
891 | 793881 | 707347971 |29°8496231| g9'622603
892 795664 | 709732288 |29°86636g90| 9'626202
893 | 797449 | 712121957 |29'8831056 | 9'629797
894 | 7992136 | 714516984 |2978998328 | 9°633391
895 8o 1025 716 917 9375 [ 29°9165506 | 9'636981
896 | 802816 | 719323136 1299332591 | 9640569
897 | 804609 | 721734273 |29°9459583] 9'644154
898 | 806404 | 724150792 [29°9666481| 9647737
809 | 808201 | 726572699 299833287 | 9651317

810000 | 729cc0000 | 30°coc0cco | 9654894




Square. Cube. Squ. Root. | Cube Root.
gor | 811801 | 731432701 | 300166620 9658468
goz | 813604 | 733870808 l 30°0333148 | g¢'662040
9o3 | 815409 | 736314327 |30°04995384 | 9665610
g9og4 | 817216 | 738763264 | 3070665928 | 9'669176
go5 | 819025 | 741217625 |30°0832179 | 9672740
gob | 8208136 | 743677416 | 300998339 | 9:676302
go7 | 822649 | 746 142643 | 30°1164407 | 9679860
go8 | 824464 | 748613312 J30°1330383 | 9683417
gog | 826281 | 751089429 | 301496269 | 9 686970
gio ! 828100 | 753571000 | 30°1662063| 9 690521
911 | 829921 | 756058031 | 301827765 | g'694069
912 | 831744 | 758 550528 |30°1993377 | 9697615
913 | 833569 | 761048497 |30°2158899| 9701158
914 | 835396 | 763551944 {30°2324329 | 9704699
915 | 837225 | 766060875 | 302489669 | g9-708237
916 | 839056 | 768575296 | 302654919 | 9711772
917 | 840889 | 771095213 | 302820079 | 9'715305
918 | 842724 | 773620632 [ 30°2985148 | 9°718835
919 | 844561 | 776 151559 |30°3150128 | 9722363
g2z0 | 846400 | 778688000 | 30°3315018 | 9725888
g21 | 848241 | 781229961 | 30°3479818 | o9'720411
g2z § 850084 | 783777448 | 30°3644529| 9°732931
923 | 851929 | 786330467 | 30°3809151| 9°736448
924 | 853776 | 788889024 |30°3973683| 9°739963
925 | 855625 | 791453125 §30°4138127| 9°743476
926 | 857476 | 794022776 |30°4302481| 9746986
927 | 85¢329 | 796597983 |30°4466747 | 97750493
928 | 861184 | 799178752 J30°4630924 | 9°753998
929 | 863041 | 801765089 |30'4795013 | 9757500
930 | 864900 | 804357000 | 30°4959014 | 9761000
931 | 866761 | 806954491 |30°5122926 | 9'764497
932 | 868624 | 809557568 | 305286750 9767992
9335 | 870489 | 812166237 | 30°5450487 | 9771434
934 | 872356 | 8147803504 |30°5614136| 9774974
935 | 874225 | 817400375 130°5777697 | 9778462
936 | 876096 | 8200253856 | 30°5941171| 9781947
937 | 877969 | 822656953 | 300104557 | 9'785429
938 | 879844 | 825293672 ! 30'6267857 | 9788909
939 | 881721 | 827936019 | 306431069 9°792386
940 | 883600 | 830584000 | 306504194 | 9°795861
941 | 885481 | 833237621 |30°6757233| 9799334
942 | 887364 | 835896888 | 30'6920185| 9°302804
943 | 89249 | 838561807 |30'7083051| 9806271
944 | 891136 | 841232384 |30°7245830( 9809736

893025 | 843908625 | 307408523 | 9813199




Num.y Square. Cube. Squ. Root. | Cube Root.
940 | 894916 | 846 560536 }30°7571130| 9'816659
947 § 8963809 | 849278 123 |30'7733651| 9820117
943 § 898704 | 851971392 |30°7896086 | 9'823572
949 1 9ocbor | 854670349 | 30°8058436 | 9°827025
g50 | goz25c0 | 857375000 | 30°8220700| g°830476
951 | 994401 | 8600351351 | 30°8382879| 9°833924
952 § 906304 | 862801408 |[30°8544972| 9837369
953 | 908209 | 865523177 | 30°8706981| 9¢°840813
954 | 910116 | 868250664 |30°8868904 | 9°844254
955 § 912025 | 870983875 |30°9030743 | 9847692
956 | 913936 | 873722816 | 309192497 | 9851128
957 | 915849 | 876467493 |30°9354166 | 9'854562
958 | 917764 | 879217912 | 30°9515751| 9°857993
959 | 919681 | 881974079 |30'9677251| 9861422
96o | 92 16co | 884736000 [ 309838668 | 09-864848
961 | 9213521 | 887503681 | 31°0000C00| 9'868272
962 | 925444 | 890277 128 | 310161248 | 9°871694
963 | 927369 | 893056347 |31°0322413| 9875113
964 § 929296 | 895841344 |31°0483494 | 9878530
965 | 931225 | 398632125 | 310044491 | 9881945
966 | 933156 | 9or428696 § 310305405 9'385357
967 | 935089 | 904231063 | 31°0966236| 9 888767
968 | 937024 | 907039232 [31°1126984| 9°892173
969 | 93861 | 909853209 §31'1287648 | 9895580
970 | 94c900 | gr2673ccc | 31°1448230| 9898983
971 | 0428341 | 915498611 | 31°1608729| 9'902384
972 | 944784 | 918330048 | 31°1769145| 9°9c5782
973 | 946729 | 921167317 [31'1929479 | 9'909178
974 | 948676 | 924010424 |31°2089731| 9'912571
975 | 950625 | 926859375 | 31°22499c0 | 9°915962
976 | 952576 | 929714176 312409987 | ¢'91935T
977 | 954529 | 932574833 312569992 | 9922738
978 | 956434 | 935441352 §31°2729915| 9'926122
979 | 958441 | 938313739 §31°2889757 | 9°929504
980 § 960400 | 941192000 §31°3049517 | 9°932884
981 | 9621361 | 944076141 |31°3200195| 9°936261
982 | 964324 | 946966 168 |} 3173368792 | 9°939636
933 | 966289 | 949862087 |31°3528308 | 9'g43009
984 | 968256 | 952763904 §31°3687743 | 9'946380
985 | 970225 ) 955671625 |§ 313847097 | 9'949748
986 1 972196 | 958585256 J314006369 | 9'953114
987 | 974169 | 961504803 f31°4165561| 9°956477
988 | 976144 | 964430272 314324673 | 97959839
989 | 978121 | 967361669 | 314483704 | 9°963198

980100 | 970299000 |31°4642654| 9°966555










oy

Diam, | Circumf. | Area. | Diam. | Circumf. | Area.
1'00 | 31416 0'7854 | 12'co | 37°6991 | 113'0973
1°2§ 3'9270 1'2272 | 12°25 | 38°4845 | 117'8588
1'50 47124 17671 | 12°50 | 39°2699 | 122'718%
175 | 54978 | 2°4053 ] 12'75 | 40°0553 | 127°6763
2'00 | 6°2832 3'1416 | 13°00 | 40°8407 | 132°7323
225 7°0686 379761 } 1325 | 41°6261 | 137°8865
2°50 7:8540 4'9087 | 13°50 | 42°4r115 | 143°1388
2'75 | 86394 | 59396 | 13'75 | 43°1969 | 1484893
3'00 94248 7°0686 | 1400 | 43°9823 | 153'93%0
3'25 | 10°2102 | | 82958 | 1425 | 44°7677 | 159°4849
3'50 | 10°9956 96211 | 14°50 | 45°5531 | 1651300
375 | 11°7810 | 110447 | 1475 | 46°3385 | 170°8732
4'00 | 12°5664 125664 | 15°00 | 47°1239 | 176°7146
4'25 | 133518 14'1863 | 15°25 | 47'9093 | 182'6542
4°50 | 14°1372 | 15'9043 | 15750 | 48-6947 | 188'6919
4'75 | 14'9226 177205 | 1575 | 49°4801 | 194°8278
5'c0 | 15'7080 19°6350 | 1600 | 50°2655 | 20170619
525 | 16°4934 | 21°6475 | 16°25 | 51°0509 | 207°3942
5'50 | 172788 | 237583 | 16°50 | 51°8363 | 213°8246
5°75 | 18:0642 259672 | 16°75 | 52°6217 | 220°3533
18-8496 28'2743 | 1700 | 534071 | 226°9801
19'6350 | 30'6796 | 17°25 | 54°1925 | 233'7050
20'4204 | 33°1831 | 17°50 | 549779 | 240°5282 |
21'2058 | 357847 | 17°75 | 55°7633 | 247'4495
21'9911 38:4845 | 18'00 | 56°5487 | 254°4690
22°7765 41°2825 | 1825 | 573341 | 261'5867
23'5619 | 44°1786 | 18-50 | 58-1195 | 268°3023
24°3473 | 47'1730 | 1875 | 58°9049 | 276°1163

251327
25°9181
26°7035
27°4889

50'2655
5374562

5677450
bo* 1320

19°C0o
19°25
19'50
19°75

59°6903
604757
612611

62°0465

2835287
291°0391
2986477
306° 3544

282743
29'0597
298451
306305

636173
67°2c06
70°8822

746619

2000

L 20'25

20°§0
20°7%§

62'8319
636173
64°4026
65-1880

31471593
322°0623
33c'0636
1381630

31°4159
32.'21313
32°9367
33°7721

78-5398
325150
86° 5901
90" 7626

2100
2124
21°50
21'?5

65°9734
66:7588
67°5442
68-3296

346°3606
35476564
363°0503
371'5424

3475575
3573429
3671287

| 36°9137 }
A L 5 e D e T T W A, b el T Tt NG, LT CTTLT . il i i .. ey 0 T

950332
99 4ozp
1038689
108°4340

22700
22°25%
22*50
22°75§

69 1150
69 goog
70°6858
71°4712

180' 1327
3888212
397 6078
406°4926



Circumf, | ~ Area, Diam. | Circumf, | Area.
22'2666 | 415°4756 | 34°co | 1068142 | 9079203
73'0420 | 42475568 | 34°25 | 107°5995 | 92I'321I
73'8274 | 433'7361 | 34°50 | 108°3849 | 34’8202
74°6128 | 4430137 | 34'75 | 109°1703 | 948°4174
24°00 | 75°3982 | 452°3893 | 3500 | 109°9557 | 962°1128
2425 | 7671836 | 461°8632 | 35'25 | 110°7411| 975°9063
24°50 | 76°96g90 | 471°4352 | 35°50 | 111°5265 | 939°7930
2475 | _77°7544 | _481°7055 | 35'75 | 112'3119 | 1003°7879
25700 | 78°5398 | 490'8739 | 36'00 | 11370973 | 1017°8760
2625 | 79°3252 | 500°7404 | 3625 | 113°8827 | 103270623
2550 | 80°1106 | 510°7052 | 36750 | 11476681 | 1046°3467
25'75 | 80°8960 | 520°7681 | 36°75 | 11574535 | 1060°7293
26'c0 | 81'6814 | 530'9292 | 37°00 | 11672389 | 10752101
2625 | 824668 | 5411884 | 37°25 | 117°0243 | 1089°7890
26-50 | 832522 | 551°5459 | 37°50 | 117°8097 | 11044662
2675 | 84’0376 | 562'c015 | 37°75 | 118°5957 | 1119°2415
27'00 | 84'8290| §72'5553 | 38'co (119°3805 | 1134°1149
27°25 | 856084 | 583°2072 | 38'25 | 12071659 | 1149°0866
27°50 | 8673938 | 593°9574 | 38'50 | 12079513 | 1164-1564
27'75 | 87°1792 | 6048057 | 38:75 | 121°7367 | 1179°3244
28'co | 87'9646 | 6157522 | 39°Co | I22°5221 1194° 5906
2825 | 88:75c0 | 626°7968 | 39°25 | 12373075 | 120979550
28'50 | 8975354 | 637°9397 | 3950 | 124°0929 | 1225°4175
2875 | go-3208 | 6491807 | 39°75 | 124'8783 | 1240'9782
29'0c0 | 91'1062 | 660°5199 | 40°co | 125'6637 | 12566371
29'25 | 91°8916 | 671°9572 | 4025 | 126°4491 | 12723941
2950 | 92°6770 | 683°4928 | 40°50 | 127°2345 | 1288°2493
2975 | 93°4624 | 695°1265 | 40'75 | 128°0199 | 13042027
3000 | 94°2478 | 706°8583 | 41700 | 1288053 | 132072543
3025 | 950332 | 7186884 | 41°25 | 129°5907 | 1336°4041
j0°50 | 95'8186 | 730'6166 | 41°50 | 130°3761 1352°6520
3075 | 966040 | 742°6431 | 41°75 | 131°1615 | 13689981
3100 | 97°3894 | 754'7676 | 42°00 | 13179469 | 1385°4424
31°25 | 98-1748 | 7669904 | 42°25 | 132°7323 | 1401°9848
31°50 g8:gboz | 779°3113 | 42°50 | 133°5177 14186254
3175 | 99:7456 | 791'7304 | 42'75 | 13473031 | 1435°3642
3200 | 1005310 | 804'2477 | 43°00 | 135'0835 | 145272012
32'25 | 101°3164 | 816°8632 | 43°25 | 135°8739 | 1469°1364
32°50 | 102°1018 | 829'5768 | 43°50 | 1366593 | 1486°1697
32775 | 102°8872 | 842°3886 | 43°75 | 137°4447 | 1503"3012
33°00 | 1036726 | 855'2986 | 44'co | 138°2301 | 1520° 5308
33°25 | 104°4580 | 868°3068 | 44°25 | 139°0155 | 15378587
33°50 | 105'2434 | 881°4131 | 44°50 | 139'8c0g | 15562847
33775 | 106°0288 | 894'6176 | 44'75 | 140°5863 | 1574 8089




Diam.

Circumf,

Area,

1

Diam.

Circumf.

Area.

45°00
4525
45°50
4575

141°3717
142°1571
1429425
1437279

15904313
1608 1518
1625'9705
16433374

56:00
5625
5650
5675

1759292
176°7146
17775000
1782854

246130086
24850489
2507°1873
252974239

46 co
4625
46°50
4675

1445133
145°2987
1460841
1468695

16619025
1680 0158
16982272
1716°5368

57°00
57°25
37°50
Sl 578

179’0708
1798562
180°64.16
1814270

25517586
2574°1916
25967227
26193520

47°00
47°25
47°50

4775

1476549
1484403
1492257
15070110

1734°9445
1753°4505
1772°0546
17907569

58 co
5825
5850
5873

182°2124
18279978
183°7832
1845686

26420794
26649051
26878289
2710° 8508

4800
4823
4850
4875

150°7964
151°5818
15273672
153°1526

1809°5574
13284560
1847°4528
186675478

5900
59°25
5950
59°75

185'3540
186°1394
186'9248
1877102

2733'9710
2757'1893
27805053
2803-9206

4900
49°25
49'50
49°75

153°9380
154°7234
155°5088
156°2942

18857410
19050323
1924'4218
19439095

6000
6o°2 5
6o 50
6075

188°4956
1892810
190 0664
1908518

2827°4334
2851°0444
28747536
2898*5610

50°co
5025
50°50
52:25

157°0796
1578650
158:6504

159°4358

196374954
1983°1794
2002°9617
2022'8421

61°c0
61°25
61°50
6175

191°6372
19274226
193°2079
193°9933

2922°4666
2946°4703
2970° 5722
29947723

51°00
51725
51'50
SI°75

160°2212
161°cobb
1617920
162°5774

20428206
2062'8974
20830723
2103°3454

6200
6225
62° 50
6275

194°7787
195°5641
19673495
19771349

3019'070§%
3043°4670
30679616
3092°5544

52700
52°25
52° 50
52°75

163°26238
164°1432
164°9336
165°7190

2123'7166
21441861

2164°7537
21854195

61'co
6325
63° 50
6375

197°9203
198°7057
199°4911
2002765

3117°2453
Jiq2 0344
31669217
3191'9072

500
53'25
53559
53:75

166 5044
167°2898
168'0752
168-8606

2206°1814
2227'0456
22480059
22690644

64 co
6425
64" 50
6475

201°0b19
201°8471
2026327
2034181

3216°9909
3242°1727
32674527
3291'831:‘9

54°00
54°25
54" 50
5475

169°6460
170°4314
171°2168
172°0022

2290°2210
2311°4759
23328239
23542801

6500
6525
65° 50
65'75

204°2035
204°'988g
2057743
206°5597

3318°3072
33438818
3369°5545
339573253

55'00
55°25
55°50
55°75

172°7876
1735730
1743584
175'1438

2375°8294
2397°477°
24192227
2441°'0666

66'co
66'25
66°50
66°75

2073451
208:1305
2089159
209°7013

3421° 1944
14471616
34732270
3499'39¢6



Circumf, l Area.

Diam,

Circumf,

Area,

210°4867 :

35256524

211°2721 ; 35520129

212°0§75
2128429

3578°4704
3605°0267

7800
7825
7850
7375

t 2450442
| 2458296

2466150
247°4004

| 47783624
4809°0420
4839'8198
4870°7958

213'6283 | 3631°6811

214°4137 !

215°1991 i 368

2159845

3658" 433?
52845
3712°2335

79°C0o
79°25
79°50

79°75

2481858

| 248°9712 .

249°7566 |
250" 5420

490176699
4932°7422
4963'9127
,4995 1314

2167699 | 3?39*130?

217°5553 ;

218° 3407’

| 219" 1261

1 3766742

3793'6 95
3821'0112

3000
8025
80" 50
8075

251°3274
252°1128
252°8932
253°6816

5026° 5482
5058'0132
5089°5764
51212378

2]9'91 Is
2206969
221°4823
222°2677

3848 4510
33759890
3903°6252

: 3931-3596

81'co
81'25
8150
8175

2544690
255'2544
256'0308
2568252

5152°9974
5184°8551
5216-8110
52488650

223'0§31
2238385
22462139
225°4093

3959 1931

1987° 1229
| 4015°15138

4041°2788

3200
82725
8250
82°75

2576106
258°3960
2591814
2599668

52810173
531372677
53456162
53780630

2261947
226'9801
2277655
228"5509

4071°5041 |

4099°8275

41282491 |

4156°7689

83 c0o
8325
83°50
83'75

2607522

' 261°5376 |
izﬁz'3130~
263°1084

5410°6079
54432510
5475°9923
§508°8718

1 229°33673
| 230°1217
2309071
2316925

418579868
42141029
4242'G172
4271'8297

84 00
84725
8450
84°75

2618918
2646792
26574646
266°2 500

5541°7694
5574 8052
5607°9392
564171714

232°4779
23326133
2340487
234°8341

43008403
43299492
4359°1562
4388°4613

8500
5525

85750 |

8575

267°0354
267°8208

2686062 |
2693916

5674°5017
5707'9302
| 5741°4569
577570818

235°6194
236°4048

237" 1902

237°9756 |

44178647
44473662
4476°9659
4506°6637

86-c0
3625
86-50
86775

| 27071770
| 270°9624
2717478
| 27275332

5808°8048
5842°6260

5910°5630

2387610 !

12395464
' 240°3318
241°1172

4536°4598
45663540
4596°3464
46264370

37 00
87'25
87°50
8775

| 273°3186
| 274" 1040

1 2748894

2756748

59446787
59788926
6o13'2047
6047:6149

241'go26
2426830
24374734

244°2588

| 4656°6257

4686°9126
47172977
4747'7810

88-co
8825
88-50
3875

2764602
| 277°2456
2780309
2788163

608212174
61167300
6151°4348
6186°2377

5876°5454 ) |


















