NBS standard reference materials catalog / R.W. Seward, editor.

Contributors

United States. National Bureau of Standards. Seward, Richard W.

Publication/Creation

Gaithersburg, Md.: U.S. Dept. of Commerce National Bureau of Standards, 1986.

Persistent URL

https://wellcomecollection.org/works/fbh8kjww

License and attribution

This work has been identified as being free of known restrictions under copyright law, including all related and neighbouring rights and is being made available under the Creative Commons, Public Domain Mark.

You can copy, modify, distribute and perform the work, even for commercial purposes, without asking permission.

NBS Standard Reference Materials Catalog 1986–87

U.S. Department of Commerce National Bureau of Standards

CF4V186

UNITED STATES DEPARTMENT OF COMMERCE National Bureau of Standards Gaithersburg, Maryland 20899

Dear Colleague:

I hope that you find this new Standard Reference Materials Catalog to be the best edition we have issued. We have tried to make it user oriented to help you find the materials you need both quickly and easily. We think, and hope you will agree, that the revised alphabetical index is a major improvement over earlier editions.

Because finding the right SRM out of almost 1,000 can be difficult, I would like to suggest the following approach:

- 1. Start with the Contents,
- 2. Flip though the Catalog to see its organization,
- 3. Browse through the Alphabetical Index.

Most of the materials are classified by matrix (such as steel) or by use (such as clinical chemistry). However, with such diverse offerings, the categories are not mutually exclusive, and you may find some materials of interest to you in any part of the Catalog.

The 1984–1985 Catalog went to about 45,000 people. At least 60,000 copies of this one will be distributed. I think this indicates an increasing interest in quality measurements. We are happy to be part of this tradition and welcome you to the growing family of SRM users.

Sincerely,

Stanley D. Rasberry

P.S. Please do not hesitate to call us if you have any questions about the SRM's described, their availability, or if you cannot find what you need. We would be happy to have your suggestions for improved service and new SRM's (see Guide for Requesting the Development of New SRM's).

NBS Standard Reference Materials Catalog 1986–87

R. W. Seward, Editor

Office of Standard Reference Materials National Bureau of Standards Gaithersburg, MD 20899

CAUTION: The values shown in the catalog are nominal values only. Users should consult the certificate issued with an SRM for the certified values

U.S. Department of Commerce Malcolm Baldrige, Secretary

National Bureau of Standards Ernest Ambler, Director

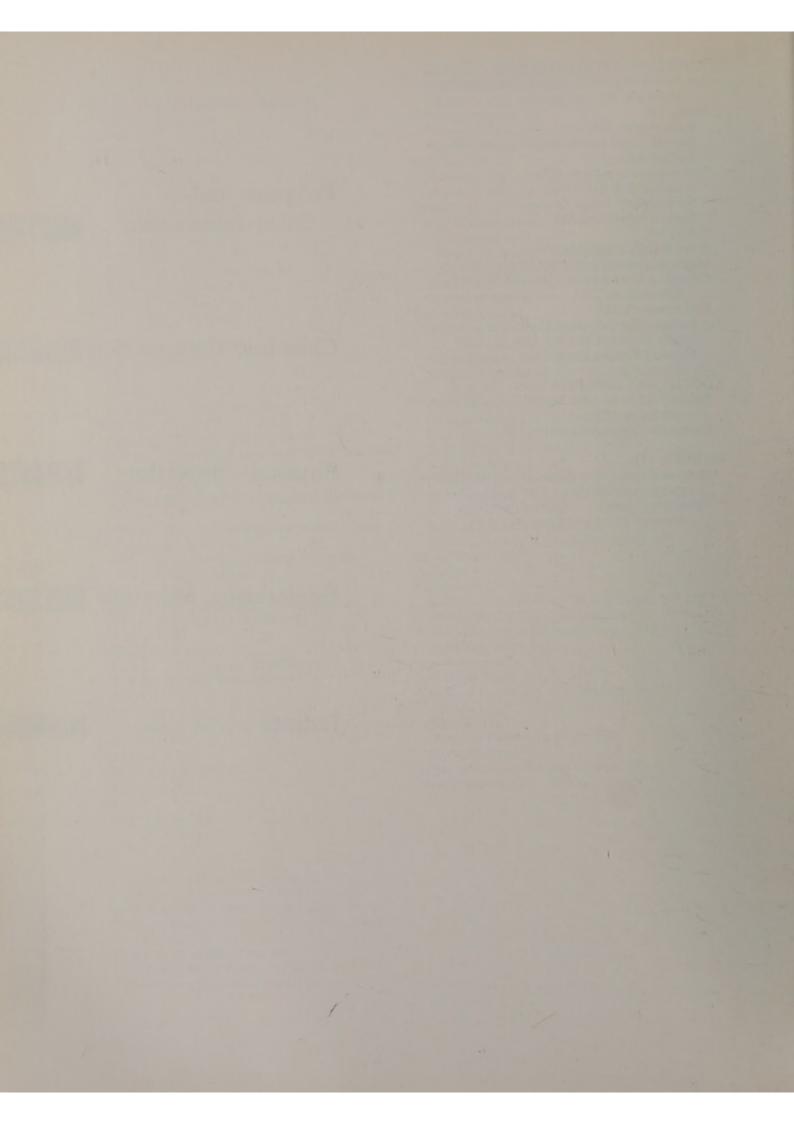
Issued June 1986

National Bureau of Standards Special Publication 260 Supersedes NBS Spec. Publ. 260, 1984–85 ed. Nat. Bur. Stand. (U.S.), Spec. Publ. 260, 1986–87 ed., 160 pages (June 1986) CODEN: XNBSAV

U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1986

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402

Contents


ABSTRACT AND KEY WORDS, 1	Nonferrous Alloys, 29
	Aluminum-Base Alloys, 29
PROGRAM INFORMATION, 3	Copper-Base Alloys (Chip Form), 30
Definitions, 3	Copper-Base Alloys (Solid Form), 31
SRM Catalog, 4	Copper "Benchmark", 32
Preparation and Availability of Standard	Lead-Base Alloys, 33
Reference Materials, 4	Nickel-Base Alloys, 33
Guide for Requesting Development of Standard	Trace Elements in Nickel-Base Superalloys
Reference Materials, 4	(Chip Form), 34
	Nickel Oxides (Powder Form), 34
ORDERING STANDARD REFERENCE	Titanium-Base Alloys (Chip Form), 35
MATERIALS, 7	Titanium-Base Alloys (Solid Form), 35
General, 7	Zinc-Base Alloys, 36
Terms, 8	Zirconium-Base Alloys, 37
Proforma Invoice (Price Quotations), 8	Gases in Metals, 38
Domestic Shipments, 8	High Purity Metals, 39
Foreign Shipments, 8	Microanalytical, 40
Documentation, 9	Metals for Microanalysis, 40
	Mineral Glasses for Microanalysis, 41
CERTIFIED REFERENCE MATERIALS	Glasses for Microanalysis, 41
FROM OTHER SOURCES, 10	Glass Fibers for Microanalysis, 42
	Primary, Working, and Secondary Chemicals, 43
OTHER SERVICES OF THE NATIONAL	Microchemicals, 43
BUREAU OF STANDARDS, 11	Spectrometric Solutions, 44
Calibration and Related Measurement Services, 11	
Office of Weights and Measures, 11	Clinical Laboratory, 46
Proficiency Sample Programs, 11	Serum Reference Materials, 47
Structural Engineering—High Capacity Testing	Biological Materials, 48
Machine, 12	Food and Beverage, 48
Accreditation of Testing Laboratories, 12	Ethanol Solutions, 49
National Center for Standards and Certification	Agriculture, 49
Information, 13	Environmental Materials, 51
National Standard Reference Data System, 13	Analyzed Gases, 51
National Standard Reference Data System, 15	Permeation Devices, 54
CHEMICAL COMPOSITION, 15	Analyzed Liquids and Solids, 54
Ferrous Alloys, 15	Simulated Rainwaters, 55
	Sulfur in Fossil Fuels, 56
Steels (Chip Form), 15 Plain Carbon Steels, 15	Trace Elements, 57
	Organic Constituents, 59
Low Alloy Steels, 16	GC/MS System Performance, 62
Special Low Alloy Steels, 17	Industrial Hygiene, 64
High Alloy Steels, 18	Freeze-Dried Urine, 64
Stainless Steels, 19	Materials on Filter Media, 64
Tool Steels, 19	Thin Films for X-ray Fluorescence, 64
Steels (Solid Form), 20	Respirable Quartz, 65
Low Alloy Steels, 20	Asbestos, 65
Stainless Steels, 23	Lubricating Materials, 66
Specialty Steels, 24	Metallo-Organic Compounds, 66
High Temperature Alloys, 24	Catalyst Package for Lubricant Oxidation, 66
Steelmaking Alloys, 25	Wear-Metals in Oil, 67
Cast Irons (Chip Form), 26	
Cast Steels, White Cast Irons, Ductile	

Irons, and Blast Furnace Irons (Solid Form), 27

Fertilizers, 68	Melting Point Materials, 96
Ores, 69	Laboratory Thermometer, 97
Rocks, Minerals, and Refractories, 72	Thermocouple Material, 97
Carbides, 74	Vapor Pressure, 98
Glasses, 75	Thermal Conductivity, 98
Cements, 76	Thermal Expansion, 99
Trace Elements, 77	Magnetic, 99
Nuclear Materials, 78	Magnetic Susceptibility, 99
Special Nuclear Materials, 78	Magnetic Moment, 99
Plutonium Assay, 78	Optical, 100
Plutonium Isotopic, 78	Spectrophotometric, 100
Uranium Assay, 79	Reflectance, 101
Uranium Isotopic, 79	Specular Spectral Reflectance, 101
Special Nuclear Containers, 80	Directional-Hemispherical Reflectance, 101
Radiation Dosimetry, 80	Refractive Index, 102
Fission Track Glasses, 80	
	Optical Rotation, 102
Stable Isotopic Materials, 81	Radioactivity, 103
	Alpha-particle, Beta-particle, Gamma-ray, and
PHYSICAL PROPERTIES, 83	Electron-capture Solutions, 104
Ion Activity, 83	Alpha-Particle Point-Sources, 105
pH, 83	Radiocarbon Dating and Ground Water Studie
pD, 83	105
Ion-Selective Electrodes, 84	Gaseous Materials, 105
Metrology, 84	Gamma-ray and X-ray Point-Sources, 106
Scanning Electron Microscope, 84	Low-Energy Photon Point-Sources, 106
Optical Microscope Linewidth-Measurement, 85	Radium-226 Solutions, 107
Depth Profiling, 85	Radon Analysis, 107
Coating Thickness, 86	Gamma-ray Solutions, 107
Nonmagnetic Coating on Magnetic Substrate,	Environmental Natural Matrix Materials for
86	Traceability Tests, 107
Magnetic Coating on Magnetic Substrate, 86	Radiopharmaceuticals, 108
Coating Weight, 87	Special Nuclear Material Packaging, 109
Gold Coating on Glass Sealing Alloy, 87	Metallurgical, 109
Gold Coating on Nickel, 87	Abrasive Wear, 109
Glass, 87	Corrosion, 110
Chemical Resistance (Durability) of Glass, 87	Electrochemical Potential and Thickness, 110
Electrical Properties of Glass, 88	Pitting or Crevice Corrosion, 110
Viscosity, 88	X-ray Fluorescent Emission Target, 111
Viscosity Fixpoints, 88	X-ray Diffraction, 111
Relative Stress Optical Coefficient, 89	Gas Transmission, 111
Glass Liquidus Temperature, 89	Reference Fuels, 112
Elasticity, 89	Electrical Resistivity and Conductivity, 112
Density, 90	
	Metals, 112
Microhardness, 90	Silicon, 112
Ultrasonics, 90	Residual Resistivity Ratio, 113
Polymers, 91	Eddy Current, 113
Molecular Weight, 91	Superconducting Critical Current, 113
Rheology, 92	Dye Penetrant Test Blocks, 113
Heat, 92	
Calorimetric, 92	
Combustion, 92	
Solution, 93	
Heat Source, 93	
Enthalpy and Heat Capacity, 93	
Differential Scanning Calorimetry, 94	
Differential Thermal Analysis, 94	
Superconductive Thermometric Fixed Point	
Devices, 95	
Freezing Point Materials, 96	
Defining Fixed Points—IPTS 68, 96	
Secondary Reference Points, 96	

Standard Rubbers and Rubber-Compounding Materials, 115 Sizing, 116 Particle Size, 116 Cement Turbidimetric and Fineness, 116 Surface Area, 117 Performance Standards, 117 Socketed Ball Bar, 117 Program and Radiographic Image Quality, 118 Sales Information Surface Roughness, 118 Color, 119 X-ray and Photographic, 119 Magnetic Computer Storage Media, 120 Centerline Drawings for Optical Character Recognition, 122 Fire Research, 123 Surface Flammability, 123 Smoke Density Chamber, 123 Chemical Composition Flooring Radiant Panel, 123, ADDITIONAL INFORMATION, 125 Numerical List of NBS Special Publications in the 260 Series, 125 Calibration Services Contacts, 130 INDICES, 133 Physical Properties Numerical Index of Standard Reference Materials (Name and Certificate Date), 133 Alphabetical Index by Standard Reference Material Name and Category, 143 Engineering Materials Indices

ENGINEERING MATERIALS, 115

Abstract and Key Words

National Bureau of Standards Standard Reference Materials 1986-87 Catalog

This catalog describes the Standard Reference Materials (SRM's) currently available from the National Bureau of Standards (NBS), lists those in preparation, and provides ordering information. The descriptions provide nominal values for these SRM's. Certified values are provided in the certificates that accompany each SRM. Price Lists for SRM's are issued as separate supplements to this catalog and include new SRM's as they are issued.

Key Words: analysis, calibration, characterization, composition, concentration, materials, measurement, property, quality assurance, quality control, reference materials, Standard Reference Materials, standardization.

Program Information

The National Bureau of Standards (NBS) offers for sale over 900 different materials through its Office of Standard Reference Materials. These materials are primarily Standard Reference Materials (SRM's) certified for their chemical composition, chemical property, or physical property, but include other reference materials. All materials bear distinguishing names and numbers by which they are permanently identified. Thus, each material bearing a given description is identical (within the specified limits) to every other sample bearing the same designation—with the exception of individually certified items, which are further identified by serial number.

Definitions

From "Terms and definitions used in connection with reference materials," ISO Guide 30-1981 (E):

- "Reference Material (RM): A material or substance one or more properties of which are sufficiently well established to be used for the calibration of an apparatus, the assessment of a measurement method, or for assigning values to materials."
- "Certified Reference Material (CRM): A reference material one or more of whose property values are certified by a technically valid procedure, accompanied by or traceable to a certificate or other documentation which is issued by a certifying body."

NBS Standard Reference Materials (SRM's): Certified reference materials issued by NBS. These are well-characterized materials produced in quantity to improve measurement science. SRM's are certified for specific chemical or physical properties, and are issued by NBS with certificates that report the results of the characterization and indicate the intended use of the material. They are prepared and used for three main purposes:

- (1) To help develop accurate methods of analysis (reference methods);
- (2) To calibrate measurement systems used to:
 - (a) facilitate exchange of goods,
 - (b) institute quality control,
 - (c) determine performance characteristics, or
 - (d) measure a property at the state-of-the-art limit; and
- (3) To assure the long-term adequacy and integrity of measurement quality assurance programs.

NBS certified values are obtained by one of three routes of measurement:

- (1) A previously validated reference method,
- (2) Two or more independent, reliable measurement methods, or
- (3) A network of cooperating laboratories, technically competent and thoroughly knowledgeable with the material being tested.

These measurement routes are described in "The Role of Standard Reference Materials in Measurement Systems," NBS Monograph 148, 54 pages (Jan 1975).

Reference Materials (RM's) listed in this catalog are sold by, but not certified by, NBS. They meet the ISO definition for RM's, and many meet the definition for CRM's. The documentation issued with these materials is either a:

- (1) "Report of Investigation," the sole authority of which is the author of the report. RM's are intended to further scientific or technical research on that particular material. The principle consideration in issuing an RM is to provide a homogeneous material so that investigators in different laboratories are assured that they are investigating the same material.
- (2) "Certificate," issued by the certifying agency (other than NBS), e.g., other national laboratories, other government agencies, other standardizing bodies, or other non-profit organizations. When deemed to be in the public interest and when alternate means of national distribution do not exist, NBS acts as the distributor for such materials. This service is available to organizations that qualify and have the reference materials that would help meet national measurement needs.

Project managers Ray McKenzie (left) and Bob Alvarez (right) discuss program plans with Stan Rasberry, chief of the Office of Standard Reference Materials (center).

SRM Catalog

New catalogs of NBS Standard Reference Materials are published approximately every two years, listing materials available and materials in preparation, and deleting discontinued materials. Catalog supplements (Price Lists) are issued simultaneously with new catalogs and approximately every six months to keep the catalog current between editions. These supplements list current prices, and reflect any changes in material availability—listing new and renewed materials and dropping discontinued ones.

The numerical values given in this catalog to describe the materials' properties are NOMINAL values only and are to be used only as guides in selecting SRM's. They are NOT TO BE USED in place of the values given on the certificate issued with the materials.

Two indices are provided for user convenience. The first is an alphabetical index that lists categories of materials, elements, and names of materials. The second is a numerical index that lists the numbers, names, and certificate dates of the materials in the catalog.

Preparation and Availability of Standard Reference Materials

New and renewal SRM's are being prepared continually. These SRM's are included in the next edition of the catalog and its supplements. Prospective users that have requested that their names be added to the SRM mail list are notified as these new items become available. To have your name placed on this mail list, please write to the address given below.

Renewal SRM's are intended to be completed before the supply of an existing SRM is exhausted. This is not always possible and an SRM may be out-of-stock for a time. When this occurs, those ordering the material are so notified and possible substitutes (if any) are suggested. When a renewal is issued, customers who have ordered the previous lot are promptly notified of the price and availability of the renewal. If little demand exists or if an alternate source of supply becomes available, production of an SRM may be discontinued permanently.

Renewal SRM's are not identical to the preceeding lot; however, they meet the same specifications and can be used for the same purpose. For example, the first 0.1 percent carbon Bessemer steel was prepared in 1909 (Standard Sample No. 8). Since then a number of renewals, 8a, 8b, 8c, etc., were prepared. The current SRM 8j, Bessemer Steel (Simulated), 0.1% C, represents the eleventh lot of the material. Each lot differs somewhat in detailed analysis, thus the use of the specific certificate for that lot is essential.

Guide for Requesting Development of Standard Reference Materials

The National Bureau of Standards has the function to develop, produce, and distribute Standard Reference Materials (SRM's) that provide a basis for comparison of measurements on materials, and that aid in the control of production processes. To perform this function, the Office of Standard Reference Materials evaluates the requirements of science, industry, and government for carefully characterized reference materials, and directs their production and distribution.

Production manager Tom Gills, deputy chief Bill Reed, and project manager Dick Seward review SRM production costs.

NBS currently has over 900 SRM's available, about 100 new ones in preparation, and requests for the production of many others.

To be an SRM, a candidate material must meet one or more of these criteria:

- 1. It would permit users to attain more accurate measurements.
- 2. Its production elsewhere would not be economically or technically feasible.
- 3. It would be an industry-wide standard for commerce from a neutral source not otherwise available.
- Its production by NBS would provide continued availability of a well-characterized material important to science, industry, or government.

NBS has recognized and responded to requests to enlarge the scope of the SRM program to include all types of well-characterized materials for use in calibrating measurement systems, or for producing scientific data that can be referred to a common base. However, the requests for new SRM's greatly exceed the Bureau's capacity to produce and certify such materials. Consequently, requests for new SRM's of limited use, or for which the need is not very great, are deferred in favor of requests that clearly show a critical need. To determine which requests receive top priority, NBS needs and uses information supplied by industry and such interested organizations as the American National Standards Institute, American Nuclear Society, American Petroleum Institute, American Society for Testing and Materials, etc.

Accordingly, while NBS welcomes all requests for developing new SRM's, both NBS and industry would be helped if such requests provide information that permit objective assessment of the urgency and importance of the proposed new reference materials.

Requests for the development of new Standard Reference Materials should provide information such as listed below.

- 1. Short title of the proposed SRM.
- 2. Purpose for which the SRM would be used.

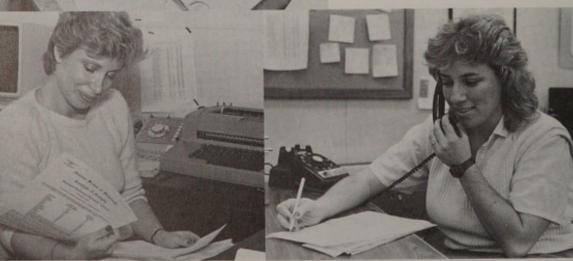
Lee Klein manages the sales and marketing program, as well as the SRM data processing system.

3. Reasons why the SRM is needed.

 Special characteristics and requirements for the material. Include additional requirements and reasons if more than one SRM is necessary for standardization in this area.

5. An estimate of the probable present and future (6-10 year) demand for such an SRM in your operations and elsewhere. (National and international estimates are useful.)

6. Whether such an SRM, or a similar one, could be produced or obtained from a source other than


NBS; and if so, justify its preparation by NBS.

7. Miscellaneous pertinent information to aid justification for the SRM, such as: (a) an estimate of the potential range of application, monetary significance of the measurement affected, scientific and technological significance including, when feasible, estimates of the impact upon industrial productivity, growth, quality assurance or control, and (b) supporting letters from industry leaders, trade organizations, interested committees, and others.

All such requests should be addressed to:
Office of Standard Reference Materials
ATTN: SRM Development
Room B311 Chemistry Building
National Bureau of Standards
Gaithersburg, MD 20899

Dolly Downs (top), Fran Klein (left), and Patty Brletic prepare certificates and other documentation for SRM's.

Ordering Standard Reference Materials

General

Purchase orders for all SRM's, except Special Nuclear Materials, should be addressed to:

Office of Standard Reference Materials

Room B311 Chemistry Building

National Bureau of Standards

Gaithersburg, MD 20899

Telephone: (301) 921-2045

Telex: TRT 197674NBS UT

Purchase orders for Special Nuclear Materials only should be addressed to:

NBS Special Nuclear Standard Reference Materials

U.S. Department of Energy

New Brunswick Laboratory, D-350

9800 South Cass Avenue

Argonne, IL 60439

Telephone: (312) 972-2485

FTS 972-2485

All orders should give the number of units, catalog number, and name of the material requested. For example: "1 each, SRM 79a, Fluorspar (Customs Grade)." The materials described in this catalog are sold only in the units listed or multiples thereof.

Acceptance of an order does not imply acceptance of any provisions set forth in the order contrary to the policy, practice, or regulations of the National Bureau of Standards or the U.S. Government.

In general, orders received for "out-of-stock" material will be filled with the renewal material, if available; otherwise they will be cancelled. Customers are notified when an order is cancelled; and their names are placed on a notification list. This list is used when a renewal material is issued to notify customers

Telephone orders are shipped within three days. Jocelyn Washington, Beth Thomas, and Dana O'Driscoll have direct access to the computer for current sales information and order entry. of the price and availability of the item. Customers so notified are requested to submit a new order if they still want the item.

For some individually certified SRM's, production lots are small and may entail frequent stock outages. In these cases, the notification list is used to fill orders on a "first come, first served" basis. NOTE: For such SRM's, customers are notified that the SRM is again available and are requested to confirm their original purchase orders.

Terms

Prices quoted are in U. S. dollars (\$), and are published in the catalog supplements (price lists). When price lists are issued, they are sent to persons or organizations on the SRM mail list. These prices are subject to change without notice and orders will be billed for the prices in effect at the time of shipment. No discounts are given on purchases of SRM's or RM's.

Remittances of the purchase price need not accompany the purchase order. Payment of invoices is expected within 30 days of the receipt of the invoice. Payment on foreign orders may be made by any of the following:

- a. Banker's draft against U.S.A. bank,
- b. Bank to bank transfer to U.S.A. bank,
- c. Cash against documents.
- d. Sight draft,
- e. International money order, or
- f. UNESCO coupons.

Letters of credit: If a letter of credit or any method of payment other than those listed above is to be used, the services of an agent in the United States must be secured to act in your behalf. Your agent would purchase the material and our invoice would indicate that the agent is the purchaser. The material would be shipped to your agent, who would tranship in accordance with your instructions.

Late Charges

Unless otherwise notified, payment is due within 30 days of shipment of the order to the customer. U.S. Treasury regulations require that late charges be assessed for each 30-day period, or portion thereof, that the payment is overdue.

Proforma Invoice (Price Quotation)

Proforma service will be provided only to those requiring such service.

Domestic Shipments

Shipments of material (except for certain restricted categories and refrigerated items) intended for the United States and Canada are normally shipped prepaid, providing the parcel does not exceed the weight limitations prescribed by postal laws and regulations. Refrigerated items are shipped collect via air express.

Foreign Shipments

The regulations of various nations covering the importation of SRM's differ widely; any attempt to list all possible variations would be impractical. Therefore, where shipping practices outlined below do not apply, purchasers will be informed of the best method of shipment for their countries.

Most foreign orders will be shipped by prepaid International Air Parcel Post. Exceptions are those items in restricted categories, those items requiring refrigeration, and shipments exceeding parcel post weight limits. These exceptions will be shipped FOB Gaithersburg, MD, unless an agent (shipping or brokerage firm) located in the United States is used. When an agent is required, the purchaser will be notified and will be requested to obtain the services of one and inform us of the agent's name and address. In such cases, the material will be packed for overseas shipment and will be forwarded to the agent FOB Gaithersburg, MD.

Documentation

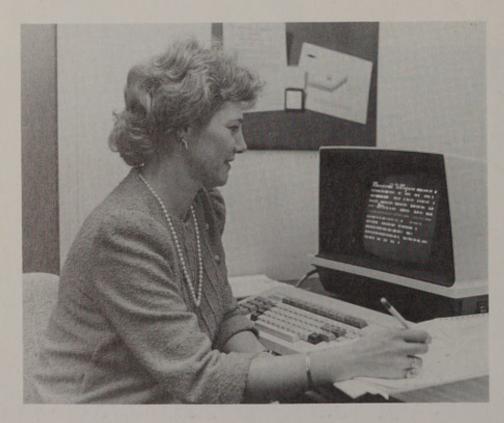
The documents we furnish are:

- a. Two commercial invoices,
- b. Two sight drafts,
- c. Two packing slips, and
- d. An air waybill for air shipments.

(All documents are printed in English.)

If documents other than those listed above are required, the services of an agent in the United States will be needed to purchase and ship the material.

NOTE: Orders and inquiries submitted in English will be processed more rapidly than those requiring translation.



Certified Reference Materials From Other Sources

Certified reference materials (CRM's) are available from many sources. The International Organization for Standardization (ISO), through its Council Committee on Reference Materials (REMCO), has prepared an international Directory of Certified Reference Materials. Inquiries may be directed to:

Dr. M. Parkany
Secretary for REMCO
International Organization for Standardization
1, Rue de Varembe
Case Postale 56
1211 Geneva 20
Switzerland

The International Union of Pure and Applied Chemistry (IUPAC), through its Commission on Physicochemical Measurements and Standards, issues a catalog of CRM's that are useful for the realization of physicochemical properties. It also has prepared a number of related documents. The current IUPAC edition is: "Physicochemical Measurements: Catalogue of Reference Materials from National Laboratories," Revised 1976, Pure & Appl. Chem., 48, 503–414 (1976).

Donna Fredericks, systems analyst, keeps the SRM computer programs working properly for sales and inventory control.

Other Services of the National Bureau of Standards

Some of the other services offered by NBS that may be of interest to SRM users are briefly described below.

Calibration and Related Measurement Services

The measurement services of NBS include the calibration of standards, test of instruments, and certain interlaboratory testing programs. These services are described in NBS Special Publication 250, National Bureau of Standards Calibration Services User Guide, 1986–88 ed. [Available from the Superintendent of Documents, U. S. Government Printing Office, Washington, DC 20402.]

An abbreviated list of the services offered through this program appears under Additional Information. These services are performed at either the NBS Washington laboratories (Gaithersburg, Md.) or those in Boulder, Colo. For additional information on available measurement services, consult Special Publication 250 or write to:

Office of Physical Measurement Services Room B362 Physics Building National Bureau of Standards Gaithersburg, MD 20899

Telephone: (301) 921-2805

Requests for measurement services available in Boulder should be addressed to:

Measurement Services Clerk National Bureau of Standards Boulder, CO 80303

Telephone: (303) 497-3753

Office of Weights and Measures

The NBS Office of Weights and Measures operates a Type Evaluation Program which provides for an evaluation of (1) prototype weighing and measuring devices to determine compliance with the requirements of NBS Handbook 44, "Specifications, Tolerances, and Other Technical Requirements for Commercial Weighing and Measuring Devices," (2) standards to determine compliance with the requirements of NBS Handbook 105–1, 105–2, 105–3, "Specifications and Tolerances for Reference Standard and Field Standard Weights and Measures." This program may be used by manufacturers and weights and measures officials in determining the acceptability of devices for commercial use or the suitability of reference and field standards. For information on programs of NBS and the States, write or telephone:

Office of Weights and Measures Room A617 Administration Building National Bureau of Standards Gaithersburg, MD 20899

Telephone: (301) 921-2401

Proficiency Sample Programs

General information on the Proficiency Sample Programs may be obtained from:

Materials Reference Laboratories National Bureau of Standards Gaithersburg, MD 20899

Telephone: (301) 921-3481

Information is available on the following programs:

Proficiency Sample Programs for Hydraulic Cements and Portland Cement Concrete Proficiency Sample Programs for Soils, Aggregates, and Bituminous Materials Inspection of Cement and Concrete Testing Laboratories
Inspection of Soils and Bituminous Testing Laboratories

Structural Engineering-High Capacity Testing Machine

The research and testing facilities for structural engineering include a 53-MN (12 million-1bf) capacity universal testing machine believed to be the largest in the world. A significant addition to the nation's facilities for research and testing in the field of large structures, this unique machine is available to do work for the entire technological community upon consideration of requests on a case-by-case basis. This hydraulically operated machine is a vertical, four screw type with the main fixed paten flush with the floor. It is capable of applying 53 MN (12,000,000 1bf) in compression to test specimens up to 17 m (58 ft) in height and 27 MN (6,000,000 1bf) in tension to specimens up to 16 m (53 ft) in length. To extend the versatility of the machine, the reinforced concrete foundation incorporates a floor tie-down system which can accommodate test specimens for transverse loading up to 27 m (90 ft) in length. Calibration of all load ranges indicates that they exhibit errors generally no greater than 0.5 percent of the applied load. For more information, write or telephone:

Structural Engineering Program Room B168 Building Research National Bureau of Standards Gaithersburg, MD 20899

Telephone: (301) 921-3471

Accreditation of Testing Laboratories

General information about the National Voluntary Laboratory Accreditation Program (NVLAP) or application packages may be obtained from:

Manager, Laboratory Accreditation Room A531 Administration Building National Bureau of Standards Gaithersburg, MD 20899

Telephone: (301) 921-3431

Information is available for the following specific testing areas:

Program for Thermal Insulation Materials

Program for Freshly Mixed Concrete

Program for Carpet

Program for Solid Fuel Room Heaters

Program for Personnel Dosimeters Processors

Program for Commercial Products (Paint, Paper, Mattresses)

Program for Seals and Sealants

Program for Photographic Film

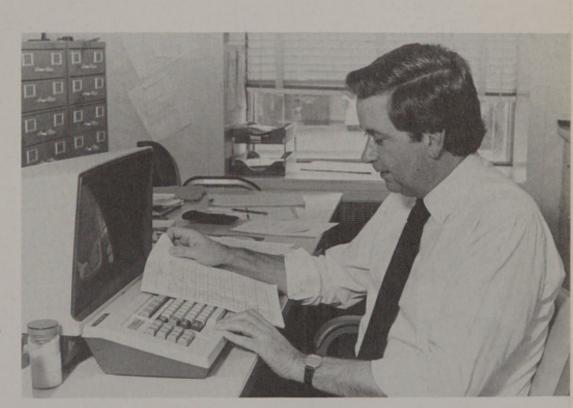
Program for Electromagnetic Compatibility and Telecommunication Equipment

Acoustical Testing Services

National Center for Standards and Certification Information

The National Center for Standards and Certification Information (NCSCI) contains title information or full texts for more than 240,000 engineering or related standards issued by U.S. technical societies, professional organizations, and trade associations; State purchasing offices; U.S. Federal Government agencies; and major foreign national and international standardizing bodies. NCSCI publishes general and specific indices of standards. Information services which are free consist of searching Key-Word-In-Context (KWIC) Indices to determine whether any published standards, specifications, codes, test methods, or recommended practices exist for a given item or product. Inquiries should be directed to:

National Center for Standards and Certification Information Room B166 Technology Building National Bureau of Standards Gaithersburg, MD 20899


Telephone: (301) 921-2587

National Standard Reference Data System

The National Standard Reference Data System (NSRDS) is a nationwide program established to compile and critically evaluate quantitative physical science data and assure its availability to the technical community. The program publishes compilations of critically evaluated data, critical reviews of experimental techniques, and bibliographies. A complete list of NSRDS publications is available from the Office of Standard Reference Data (OSRD). OSRD responds to queries within the scope of the program by providing references, referrals, documentation, or data, as available. Inquiries or requests for information should be directed to:

Office of Standard Reference Data Room A323 Physics Building National Bureau of Standards Gaithersburg, MD 20899

Telephone: (301) 921-2228

Maintaining stock levels and scheduling packaging activities keep Paul Lundberg busy.

Chemical Composition

Ferrous Alloys

Steels (Chip Form)

These SRM's are for checking chemical methods of analysis. They consist of steel alloys selected to provide a wide range of analytical values for elements. They are furnished in 150-gram units (unless otherwise noted) as chips usually sized between 0.4 to 1.2 mm, prepared from selected portions of commercial ingots.

Plain	Carbo	n Stee	els								
SRM	Туре								(Nominal		
						С	Mn	P		S	Si
	200								Grav	Comb	
8j	Bessemer		1), 0.1C			0.081	0.505	0.095		0.077	0.058
11h	BOH, 0.20					0.200	0.510	0.010		0.026	0.21,
12h	BOH, 0.40	-				0.407	0.842	0.018		0.027	0.235
13g	BOH, 0.60	1000				0.613	0.853	0.006		0.031	0.355
14f	BOH, 0.80	C		1	(0.753	0.410	0.009		0.039	0.172
15g	BOH, 0.10	С		1700	(0.094	0.485	0.005		0.026	0.095
16f	BOH, 1.10	С			(0.97	0.404	0.014	Gertania de	0.026	0.214
19g	AOH, 0.2	С			(0.223	0.554	0.046	0.032	0.033	0.186
20g	AISI 1045	5			(0.462	0.665	0.012		0.028	0.305
152a	BOH, 0.50	C (Tin bea	aring)		(0.486	0.717	0.012		0.030	0.202
178	Basic Oxy	gen 0.4C		1	(0.395	0.824	0.012		0.014	0.163
335	BOH, 0.10		only) 30	0 g	(0.092					
337a	BOH, 1.10				(0.969				0.024	
368	AISI 1211				(0.089	0.82	0.084		0.132	0.007
SRM	Cu	Ni	Cr	v	Mo	Co	Ti	Sn	Al (total)	N	Other
8j	0.020	0.113	0.047	0.015	0.038						
11h	0.061	0.028	0.025	0.001			0.004				
12h	0.073	0.032	0.074	0.003	0.006				(0.038)	0.006	
13g	0.066	0.061	0.050	0.001					0.04 ₈		
14f	0.072	0.053	0.070	0.002	0.013				0.060		
15g	0.036	0.017	0.028	0.001					No.		
16f	0.006	0.008	0.020	0.002	0.003	0.003					
19g	0.093	0.066	0.374	0.012	0.013	0.012	0.027	0.008	0.031		Nb 0.026
20g	0.034	0.034	0.036	0.002	0.008				0.040		
152a	0.023	0.056	0.046	0.001	0.036			0.032			
170	0.022	0.010	0.016	0.001	0.003						
178	0.032	0.010	0.010	0.001	0.003					0.010	1000
368	n parenthe	7000000000		1-17/4/2014						0.010	1

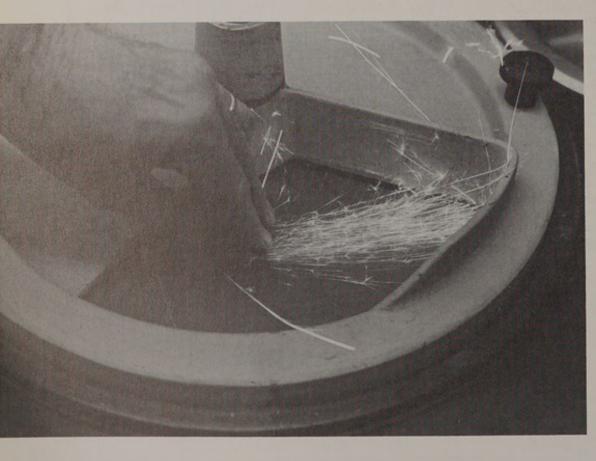
OW	Alloy Steels										
-				(Other	Chem	ical Cor	npositio	n (Nom	inal Weig	th Perc	ent)
SRM	Т	уре		Forms)	C	Mn	P		S	Si	Cu
								Grav	Comb		
30f	Cr-V (SAE 6150)				0.490	0.79	0.011		0.009	0.283	0.074
32e	Ni-Cr (SAE 3140)				0.409	0.798	0.008	0.022	0.021	0.278	0.127
33e	Ni-Mo (SAE 4820)			0.186	0.525	0.005		0.009	0.262	0.070
36b	Cr2-Mol				0.114	0.404	0.007		0.019	0.258	0.179
72g	Cr-Mo (SAE X41:	30)			0.278	0.492	0.009		0.014	0.223	0.011
											0.0/4
100b	Manganese (SAE	Г1340)			0.397	1.89	0.023	0.029	0.028	0.210	0.064
106b	Cr-Mo-Al (Nitrall	loy G)			0.326	0.506	0.008	0.016	0.017	0.274	0.117
125b	High-Silicon			1134	0.028	0.278	0.029		0.008	2.89	0.071
129c	High-Sulfur				0.125	0.769	0.076		0.245	0.020	0.013
									0.020		
131c	Low Carbon-Silico	on (100g)		1218	0.0029				0.020	0.242	0.007
139b	Cr-Ni-Mo (AISI	8640)		1222	0.403	0.778	0.013	0.010	0.019	0.242	0.097
155	Cr0.5-W0.5			- 12	0.905	1.24	0.015	0.010	0.011	0.322	0.083
163	Low Alloy, 1.0 Cr	(100g)			0.933	0.897	0.007		0.027	0.488	0.087
179	High-Silicon			1135	0.027	0.094	0.006		0.026	3.19	0.056
291	Cr-Mo (ASTM A	213)			0.177	0.550	0.008		0.020	0.23	0.047
202	Cr-Ni-Mo (AISI 8	620)	-		0.222	0.96	0.018		0.022	0.300	0.032
293 1036	Low Carbon Silic		only 25 g)		0.222				0.0007		
1030	Low Caroon Sinc	on (Sunui	Omj, 20 g/					41		71777	
SRM	Ni	Cr	v	Mo		Sn		Al otal)	N	(Other
30f	0.070	0.945	0.182						0.010		
32e	1.19	0.678	0.002	0.023	(0.011)			0.009		
33e	3.36	0.068		0.224			0.0)30			
36b	0.203	2.18	0.004	0.996							
72g	0.016	0.905	0.003	0.170							
				0.007	-				0.004		
100b	0.030	0.063	0.003	0.237			1.	07	0.004		
106b	0.217	1.18	0.003	0.199		0.002			1000	Ca	0.0051
125b	0.038	0.019	0.010	0.008		0.003	U.	329		Ca	0.0001
129c	0.251	0.014	0.012	0.002							
139b	0.510	0.488	0.004	0.182					0.007		
155	0.100	0.485	0.014	0.039						W	0.517
163	0.081	0.982		0.029					0.007		
179	0.050	0.022	< 0.01	0.014		0.004	0.	0028			
291	0.065	1.33		0.53			0.	002			
-	31000		0.004	0.20			-	039			

0.204

0.004

0.510

 0.48_{o}


293

0.039

SRM	Ту	ma.	(04)	her for		С	Mn	P	************	S	Si	Cu	Ni	Cr
SKW	1,	pe	(Oti	ner for	ms)	C	IVIII	P		3	31	Cu	NI	Cr
361	AISI 434	0	661,	1095,12	261a	0.383	0.66	0.014		0.014	0.22	2 0.04	2 2.00	0.694
362	AISI 94E (Mod)	317	662,	1096,12	262a	0.160	1.04	0.041		0.036	0.39	0.50	0.59	0.30
363	Cr-V (M	od)	663,	1097,12	263a	0.62	1.50	0.02,		0.0068	0.74	0.10	0.30	1.31
364	High Car (Mod)	rbon	664,	1098,12	264a	0.87	0.255	0.01		0.0250	0.06	0.24	0.144	0.063
365	Iron, Ele	ctrolytic	665,	1099,12	265a	0.0068	0.0056	0.002		0.0055	0.00	80 0.05	8 0.041	0.007_{2}
SRM	v	Мо	w	Co	Ti	As	Sn		Al otal)	Nb	Ta	Zr	N	Ca
361	0.01	1 0.19	0.017	0.032	0.020	0.017	0.010	0.	021	0.022	0.020	0.009	(0.0037)	0.0001
362	0.04	0 0.068	0.20	0.30	0.084	0.092	0.016	0.	095	0.29	0.20	0.19	(0.00404)	0.0002
363	0.31	0.028	0.046	0.048	0.050	0.010	0.104	0.	24	0.049	(0.053	0.049	(0.0041)	0.0002
364	0.10	s 0.49	0.10	0.15	0.24	0.052	0.008	(0.	008)	0.15,	0.11	0.068	(0.0032)	0.0000
365	0.00	06 0.0050)	0.007	0.000	6 (0.000	2) (0.000	2) (0.	0007)				0.0013	
SRM	В	Pb	Sb		Bi	Ag	5	ie	T	e	Ce	La	Nd	Fe
361	0.00037	0.00002 _s	0.004	2 (0.0	0004)	0.0004	(0.00)4)	(0.00	006) 0	.0040	(0.001)	0.0007 _s	(95.6)
362	0.0025	0.0004 _s	0.013	(0.0	002)	0.0011	(0.00	012)	(0.00	011) 0	.0019	(0.001)	0.00075	(95.3)
363	0.00078	0.0018 _e	0.002	(0.0	(8000	0.0037	(0.00	0016)	(0.00	009) 0	.0030	(0.002)	0.0012	(94.4)
364	0.0106	0.023 _o	0.034	(0.0	0009)	(0.0000	2) (0.00	0021)	(0.00	002) 0	.0005,	(0.0002)	0.0001s	(96.7)
365	0.00012	0.000019												99.90
SRM	M	g 2	Zn	Pr	(Ge	0		Н		Au	Hf		Sr
361	0.00	026 (0.0	0001)	(0.000	3) [0.	.006] (0.0009)	(<0	.0005)	(<0	.00005)	(0.000	2) (<	0.0005)
362	0.00	06 _s (0.0	0005)	(0.000	3) [0.	.002] (0.00107)	(<0	.0005)	(<0	.00005)	(0.000	3) (<	0.0005)
363	0.00	062 (0.0	0004)	(0.000-	4) [0.	.010] (0.00066)	(<0	.0005)	0	.0005	(0.000	(5)	
364	0.00	016 [0.0	001]	(0.000)	1) [0.	.003] (0.0010)	(<0	.0005)	0	.0001	(0.001	3) (0.001)

		7-17
TTILL	Alloy	Stanla
High	AHOV	Steels
	T MEET O	~

					(Other	Cher	mical Co	ompos	ition (No	ominal W	eight Perce	nt)
SRM	Турс				Forms)	C	Mn	P		S	Si	Cu
									Gra	v Con	ıb	
126c	High-Ni	ickel (36	% Ni)		1158	0.025	0.468	0.00)4	0.0	05 0.194	0.040
344		i7-Mo2-				0.069	0.57	0.01	18	0.0	19 0.395	0.106
345	Cr16-N	i4-Cu3				0.048	0.224	0.01	8 0.0	12 0.0	12 0.610	3.44
346a	Valve S	teel			1233	0.502	9.16	0.03	31	0.0	02 0.219	0.375
348	Ni26-C	r15 (A28	6)			0.044	1.48	0.0	15	0.0	02 0.54	0.22
SRM	Ni	Cr	v	Mo	Co	Ti	Al (to	otal)	Nb	Ta	В	Fe
126c	36.05	0.062	0.001	0.011	0.008							
344	7.28	14.95	0.040	2.40		0.076	1.10	6				
345	4.24	16.04	0.041	0.122	0.089				0.231	0.002		
346a	3.43	21.08	0.096	0.237	(0.05)	(<0.001)	(0.0	01)	(0.01)		(<0.001)	N0.415
348	25.8	14.54	0.25	1.3		2.24	0.2	3			0.0031	53.3

Solid metal SRM's are resurfaced as needed for optical emission spectroscopy.

CI			CA.	
-51	ain	less	* to	AIC
-	am	1000	DIC	612

SRM	Т	уре				(Ot		Chen	nical Cor	npositio Perc		ninal W	eight
						ror	ms)	C	Mn	P	S	Si	Cu
73c	Cr13 (SAE	420)						0.310	0.330	0.018	0.036	0.181	0.080
101f	Stainless (A	ISI 304	L) (100g)					0.014	0.087	0.008	0.008	0.876	0.030
121d	Cr17-Ni11-	-Ti0.3 (A	ISI 321)			1	171	0.067	1.80	0.019	0.013	0.54	0.121
123c	Cr17-Ni11-	-Nb0.6 (AISI 348)			1	172	0.056	1.75	0.024	0.014	0.59	0.103
133b	Cr13-Mo0.	3-S0.3						0.128	1.07	0.018	0.328	0.327	0.080
160b	Cr19-Ni12-	-Мо3				1	155	0.044	1.64	0.020	0.018	0.509	0.172
166c	Low Carbo	on (AISI	3162) Car	bon Onl	y (100g)			0.0078		19			
339	Cr17-Ni9-5	Se0.2 (SA	AE 303Se)					0.052	0.738	0.129	0.013	0.654	0.199
343a	Cr16-Ni2 (AISI 431	1)			1	219	0.149	0.42	0.026	0.001	0.545	0.162
367	Cr24-Ni0.3	(AISI 4	46)		SAN INCOME	1	267	0.093	0.315	0.018	0.016	0.58	
SRM	Ni	Cr	V	Mo	Co	Ti	N	b	Та	Pb	-	Se	N
73c	0.246	12.82	0.030	0.091									0.037
101	9.96	18.49	0.034	0.007	0.088								
121d	11.17	17.43		0.165	0.10	0.342							
123c	11.34	17.40		0.22	0.12		0.0	65 <	0.001				
133b	0.230	12.63	0.071	0.052		10							
160b	12.26	18.4 _s	0.047	2.38	0.101					0.001			0.03,
339	8.89	17.42	0.058	0.248	0.096						0.	247	
343a	2.16	15.64	0.056	0.164	(0.04)	(<0.001)	(0.0	01)	(< 0.000	1)		0.078
367	0.29	24.19	0.08										0.168

To		

					Chemical	Composit	ion (Nomi	nal Weigh	t Percent)	
SRM	Туре		100	C	Mn	P		S	Si	Cu
							Grav	Comb		
50c	W18-Cr4-V1		(0.719	0.342	0.022	0.010	0.009	0.311	0.079
132b	Mo-W-Cr-V		(0.864	0.341	0.012		0.004	0.185	0.088
134a	Mo8-W2-Cr4-V1		(0.808	0.218	0.018	0.007	0.007	0.323	0.101
153a	Co8-Mo9-W2-Cr4-	V2	(0.902	0.192	0.023	0.007	0.007	0.270	0.094
SRM		Ni	Cr	V	Mo	W	Co	Sn	As	N
50c		0.069	4.13	1.16	0.082	18.44		0.018	0.022	0.012
132b		0.230	4.38	1.83	4.90	6.28	0.029			
134a		0.088	3.67	1.25	8.35	2.00				
153a		0.168	3.72	2.06	8.85	1.76	8.47			0.024

Steels (Solid Form)

These SRM's are furnished in various forms. The 600 series is for microchemical methods of analysis such as electron probe microanalysis, spark source mass spectrometric analysis, and laser probe analysis. The 1100, 1200, and 1700 series are for optical emission and x-ray spectroscopic methods of analysis. These materials have been prepared to ensure high homogeneity.

NOTE: Values in parentheses are not certified, but are given for additional information on the chemical composition.

Nominal Sizes for Solid Steel SRM's:

600 Series: 3.2 mm (1/8 in) diameter, 51 mm (2 in) long.

1100, 1200, and 1700 Series: 31 mm (1¼ in) diameter, 19 mm (¾ in) thick. C indicates a chill cast sample: 31 mm (1¼ in) diameter, 19 mm (¾ in) thick.

ow-	Alloy	Steels							
SR	M	Туре	(Other	Chemical	Composition (Nominal Weight Percent)				
J.		***	Forms)	С	Mn	P	S	Si	
	1134	High-Silicon	125b	0.026	0.277	0.028	0.009	2.89	
	1135	High-Silicon	179	0.027	0.094	0.006	0.026	3.19	
	1136	High-Sulfur	129c	0.113	0.755	0.066	0.220	0.018	
	1169b	Lead-Bearing		0.1	(1.1)	(0.07)	(0.3)	(0.01)	
	1217	Nickel	33e	0.186	0.525	0.005	0.009	0.262	
	1218	Low Carbon and Sulfur Silicon	131c	0.0029	0.014	(0.002)	0.0011	(3.2)	
	1221	Resulfurized/Rephosphorized		0.020	0.102	0.090	0.112	0.876	
	1222	Cr-Ni-Mo (AISI 8640)	139b	0.43	0.78	0.013	0.022	0.24	
	1224	Carbon		0.75	0.41	0.009	0.039	0.173	
	1225	Low Alloy (AISI 4130)		0.274	0.48	0.007	0.014	0.221	
	1226	Low Alloy		0.085	0.274	0.0022	0.0044	0.231	
	1227	Basic Open Hearth, 1% C		0.97	0.402	0.014	0.026	0.215	
	1228	Basic Open Hearth, 0.1% C	and the state of	0.072	0.365	0.004	0.018	0.007	
	1254	Ca in Low Alloy (Si)		(0.03)	(0.28)	(0.03)	(0.008)	(2.9)	
*661	1261a	AISI 4340	361,1095	0.39	0.66	0.015	0.015	0.22	
*662	1262a	AISI 94B17 (Mod)	362,1096	0.163	1.05	0.044	0.037	0.40	
*663	1263a	Cr-V (Mod)	363,1097	0.57	1.50	0.029	0.0055	0.74	
*664	1264a	High Carbon (Mod)	364,1098	0.871	0.25 _s	0.010	0.025	0.06	
*665	1265a	Electrolytic Iron	365,1099	0.008	0.0057	0.002s	0.0059	0.00	
	1269	Low Alloy (AISI 1526, Mod)		0.298	1.35	0.012	0.0061	0.18	
	1270	Cr-Mo Low Alloy		0.077	0.626	0.0065	0.0065	0.24	
	C1285	Low Alloy (A242 Mod)	41	0.058	0.332	0.072	0.020	0.36	
	1286	Low Alloy (Hy 80)		0.196	0.152	0.008	0.017	0.13	
THE	1761	Low Alloy A	dament and	(IN PREP)					
	1762	Low Alloy B		(IN PREP)					

Low-Alloy Steels (Continued)

SRM		Ty	ре		(Other	Chemical	Compositio Perce		al Weight
					Forms)	C	Mn	P	S Si
17	63 Low	Alloy C			(IN	N PREP)			
17	64 Low	Alloy D			(IN	N PREP)			
17	65 Low	Alloy E			(IN	N PREP)			
17	66 Low	Alloy F			(IN	N PREP)		100	
17	67 Low	Alloy G			(IN	N PREP)	1		
SRM		Cu	Ni	Cr	v	Mo	W	Co	Ti
	1134	0.070	0.038	0.019		0.008			
	1135	0.056	0.050	0.022	< 0.01	0.014			
	1136	0.014	0.270	0.014	0.012	0.002			
	1169b	(0.07)	(0.04)	(0.05)	(0.001)	(0.01)			
	1217	0.070	3.36	0.068	(0.001)	0.224		(0.06)	(0.001)
	1218	0.003	(0.002)	0.006	(<0.001)	(0.003)		(0.002)	(0.004)
	C1221	0.041	0.067	0.049	(0.0007)	0.038		(0.010)	(0.0014)
	1222	0.097	0.51	0.48	0.005	0.18		(0.016)	(0.002)
	1224	0.072	0.054	0.071	0.002	0.013			
	1225		0.018	0.91	0.004	0.166			
	1226	0.125	5.42	0.467	0.0018	0.446	(0.005)	0.029	0.0021
	1227	0.006	0.007	0.019	0.002	0.003		0.003	(0.0008)
	1228	0.012	0.018	0.016	< 0.001	0.009			
	1254	(0.07)	(0.04)	(0.02)		(0.008)			
*661	1261a	0.042	1.99	0.69	0.011	0.19	0.017	0.032	0.020
*662	1262a	0.51	0.60	0.30	0.041	0.070	0.21	0.30	0.084
*663	1263a	0.098	0.32	1.31	0.31	0.030	0.046	0.048	0.050
*664	1264a	0.250	0.142	0.06₅	0.10₅	0.49	0.102	0.15	0.23
*665	1265a	0.0058	0.041	0.0072	0.0006	0.005	(0.0004)	0.007 _o	0.0006
	1269	0.095	0.108	0.201	0.004	0.036	(0.001)	(0.014)	(0.009)
	1270	0.114	0.174	2.34	0.013	0.956	(0.003)	0.038	(0.003)
	C1285	0.37	1.17	0.80					
	1286	0.043	2.81	1.53					

Low-Alloy	Steels	(Continued)
-----------	--------	-------------

	SRM	As	Sn	Al (total)	В	Pb	Ag	Ge
	1134		0.003	0.329				
	1135		0.004	0.0028				200
	1169b					0.193	130000000000000000000000000000000000000	
	1217			0.030				
	1218			0.005				Zr(0.002)
	C1221			0.111				
	1222			(0.038)				
	1224			0.060				-
	1226		(0.003)	0.054				
	1227			(0.028)				
	1228			0.061				
	1254		(0.003)	(0.33)				Ca 0.0053
*661	1261a	0.017	0.011	0.021	0.0005	0.00002 _s	0.0004	[0.006]
*662	1262a	0.092	0.016	0.095	0.0025	0.00043	(0.001)	[0.002]
*663	1263a	0.010	(0.095)	0.24	0.00091	0.0022	(0.0037)	[0.010]
*664	1264a	0.052	[0.005]	(0.008)	0.011	0.024	(0.00002)	[0.003]
*665	1265a	(0.0002)	(0.0002)	(0.0007)	0.00013	0.000015	(0.000002)	(~0.0014)
-003	1269	(0.0062)	(0.039)		(<0.001)	0.005	(0.0002)	
	1270	(0.02)	(0.02)	(0.005)	(0.0033)	(0.0016)	(0.0001)	
-	RM	0	N	Н	Nb	Ta		Zr
*661	1261a	(0.0009)	(0.0037)	[<0.0005]	0.022	0.0)20	0.009
*662	1262a	(0.0011)	(0.0041)	[<0.0005]	0.30	0.2		0.20
*663	1263a	(0.0007)	(0.0041)	[<0.0005]	0.049)53)	0.050
*664	1264a	[0.0017]	[0.003]	[<0.0005]	0.15,	0.1	-	0.69
*665	1265a	(0.0063)	(~0.0011)	(~0.0001)		40.000	00005)	(<0.00001)
ermoneus	SRM	Sb	Bi	Ca		Mg	Te	Zn
*661	1261a	0.0042	0.0004	(<0.00	001)	(0.0001)	0.006	(0.0001)
*662	1262a	0.0120	(0.002)	(0.00	002)	(0.0006)	(0.0005)	(0.0005)
*663	1263a	0.002	(0.0008)	(<0.00	001)	(0.0005)	(0.0022)	(0.0004)
*664	1264a	(0.035)	(0.0009)	(<0.00	001)	(0.0001)	[0.0002]	[0.001]
*665	1265a	-(<0.00005)	-(<0.00001) -(<0.00	0001) -(<	(0.00002)	-(<0.00001)	(<0.0001)
-	SRM	Au	Ce	Hf	La	Nd	P	r Fe
*661	1261a	(<0.00005)	0.0013	[0.0002]	0.0004	0.00	0.0	00014) (95.6
*662	1262a	(<0.00005)	(0.0011)	[0.006]	0.0004	(0.00	0.05) (0.0	00012) (95.3
*663	1263a	0.0005	(0.0016)	[0.0015]	0.000	(0.00	007) (0.0	00018) (94.4
*664	1264a	0.0001	(0.00025)	[0.005]	0.000	0.00	0012) (0.0	00003) (96.7
		-(<0.000002	- 1	-				

^{*}SRM's 661, 662, 663, 664, and 665 are sold in a set only as SRM 668.

Values in parentheses are not certified, but are given for information only.

Brackets indicate approximate value from heat analysis.

Stainless Steels

CDM		T.			Other		Chemica	al Com	position (N	iominal	Weight Pe	ercent)	
SRM		1 1 1	pe		Forms	C	Mn	P	S	Si	Cu	Ni	Cr
C1151	Cr22-Ni7					0.039	2.50	0.017	7 0.038	0.38	0.418	7.29	22.70
C1152	Cr18-Ni1	0				0.148	0.96	0.02	0.0064	0.80	0.102	10.88	17.81
C1153	Cr16-Ni8	3				0.264	0.50	0.030	0.018	1.07	0.23	8.77	16.69
C1154	Cr19-Ni1	2				0.086	1.42	0.06	0.053	0.50	0.40	12.92	19.06
1155	Cr18-Ni1	2-Mo2	2 (AISI	316)	160b	0.046	1.63	0.020	0.018	0.502	0.169	12.18	18.45
1170b	Selenium	-Bearin	ng			(0.052)	(0.738)	(0.129	0.013)	(0.654	(0.199)	(8.89)	(17.42)
1171	Cr17-Ni1	1-Ti0.	3		121d	0.067	1.80	0.018		0.54	0.121	11.2	17.4
1172	Cr17-Ni1	1-Nb0	0.6		123c	0.056	1.7 _e	0.025		0.59	0.10 _s	11.3 _s	17.40
1219	Cr16-Ni2	(AISI	431)		343a	0.149	0.42	0.026		0.545		2.16	15.64
1223	Chromiu	_			133b	0.127	1.08	0.018	0.329	0.327	0.081	0.232	12.64
1267	AISI 446				367	0.093	0.315	0.018	0.015	0.58		0.29	24.14
C1287	AISI 310	Mod.				0.36	1.66	0.029	0.024	1.66	0.58	21.16	23.98
C1288	A-743					0.056	0.83	0.023	0.010	0.41	3.72	29.3	19.55
C1289	AISI 414	Mod.				0.014	0.35	0.017	0.021	0.156	0.205	4.13	12.12
SRM	v	Мо	Co	Ti	N	Al	N	Ъ	Ta	W	Pb	2	Zr
C1151	0.037	0.80	0.032								0.0039		
C1152	0.030	0.43	0.22								0.0047		
C1153	0.18	0.24	0.127								0.0054		
C1154	0.135	0.07	0.38								0.0178		
1155	0.047	2.38	0.101								0.001		
1170b	(0.058)	(0.248)	(0.096)			F. 6 13		787			7.11	Se 0.:	23
1171		0.16s	0.10	0.34									
1172		0.22	0.12					0.65 <	< 0.001				
1219	0.056	0.164	(0.04)	(<0.001)	0.078	(0.00	01) (0.01) S	in(0.008)	(0.02)	(<0.0001)	B(<	0.001)
1223	0.068	0.053			(0.05)	(<0.00)5)	S	Sn(0.004)		(0.0001))	
1267	0.08				0.17								
C1287	0.09	0.46	0.31	0.050	(0.034)	(0.06	5) (0.07)	0(0.017)		0.008	(0.00	6)
market and the same	0.086	2.83	0.10	0.012	(0.028)	(0.00	025) (0.22) (0(0.029)	(0.2)	0.0041	(0.00)	2)
C1288					(0.017)		016) (0(0.027)		0.0005	(0.00	0.000

Speci	alty Steels						10000					4111	
				Che	emical (Compos	sition (Nominal	Weigh	t Perc	ent)		
SRM	Туре	C	Mn	P	S	Si	Cu	Ni	Cr	V	Mo	w	Co
1157	Tool (AISI M2)	0.836	0.34	0.011	0.004	0.18	0.088	0.228	4.36	1.82	4.86	6.28	0.02
1158	High-Nickel (Ni 36)	0.025	0.468	0.004	0.005	0.194	0.039	36.03	0.062	0.001	0.010		0.00
1233	Valve Steel (IN PREP)												

High-T	emp	eratur	e Alloys								
				A	Chemical	Composit	tion (Nomi	nal Weigh	t Percent	1)	
SRM		Туре		C	Mn	P		S	Si		Cu
1199*	L6	05		(0.14)	1.42	(0.0)	05)		0.83		
1200*	S 8	16		(0.40)	1.34	(0.0)	15)		0.86		
1207-2		spaloy		0.083	0.29s	0.0	05	0.009	0.61s		0.033
1244		onel 600		0.062	0.29	0.0	10	0.003	0.12		0.26
1245	Inc	onel 625		0.036	0.18	0.0	11	0.001	0.40		0.37
1246	Inc	oloy 800		0.082	0.91	0.0	18	0.001	0.18		0.49
1247	Inc	oloy 825		0.021	0.38	0.0	18	0.002	0.32		1.75
SRM	Ni	Cr	Mo	Co	Ti	Al .	Nb	Ta	Fe	W	В
1199	10.2	19.9	(<0.02)	51.6	(<0.01)		(<0.02)		0.65	15.4	
1200	20.0	19.9	4.00	42.0	(0.03)		3.18	1.08	3.19	3.86	
1207-2	55.7	19.44	4.34	13.5 _o	2.54	1.3,			2.09		
1244	73.2	15.7	0.20	0.058	0.25	0.26	(0.14)		9.6		< 0.05
1245	59.5	21.9	8.6	0.074	0.28	0.26	3.5	< 0.01	4.5		< 0.00
1246	30.8	20.1	0.36	0.076	0.38	0.30	(0.09)		46.2		< 0.00
1247	43.5	23.4	2.73	0.089	0.75	0.060	(0.46)		26.5		< 0.00

*SRM's 1199 and 1200 sold only in a set as S1199.

Steelmaking Alloys

These SRM's are for checking chemical methods of analysis for major constituents and for selected minor elements. They are furnished as fine powders (usually <0.1 mm).

SRM		Туре		Wt/U	nit _		Che	emical (Com	position (Nominal	Weight l	Percent)	
SKM		Туре		(gran	ns)	С	Mn	P		S	Si	Cu	Ni	0
57a	Refined S	Silicon		60	0	.024	0.015	0.0	003	0.003	98.55	0.004	0.008	(~0.3)
58a	Ferrosilio	con (73S	i)	75	0	.014	0.16	0.0	009	< 0.002	73.20	0.024	0.012	(0.20)
59a	Ferrosilio	con (50S	i)	50) (.046	0.75	0.0)16	0.002	48.10	0.052	0.033	
195	Ferrosilio	con (75S	i)	75	0	.034	0.17	0.0)2	< 0.002	75.3	0.047	0.032	0.42
64c	Ferrochr	omium I	HC	100) 4	.68	0.16	0.0)20	0.067	1.22	0.005	0.43	
196	Ferrochr	omium I	C	100) (.035	(0.282)	0.0)20	0.003	0.373			
71	Calcium	Molybda	ite	60)									
90	Ferropho	sphorus		75				26.2	2					
340	Ferroniol	bium		100	0	.061	1.70	0.0)36		4.39	5	Sn 0.063	
68c	Ferroman	nganese	HC	100) 6	.72	80.04	0.1	19	0.008	0.225			
589	Fe-Cr-Si			100	0	.043	0.32	0.0)26	0.002	39.5	0.013	0.20	(0.06)
SRM	Cr	v		Мо	Ti	Al	1	Nb		Zr	Ca	Fe	В	As
57a	0.024	0.013	Pb<	< 0.001	0.040	0.47	7			0.002	0.17	0.50	0.001	< 0.001
58a	0.020	(0.002)		(0.01)	0.051	0.95	Co <	< 0.01		0.002	0.30	25.23	0.0010	
59	0.08					0.35	5				0.042	2 50.05	0.058	
195	0.047	(0.001)		(0.01)	0.037	0.04	16 Co<	< 0.01	((<0.02)	0.053	3 23.6	0.001	(0.0024)
64c	68.00	0.15			0.02		C	00.051			N0.04:	5 24.98		
196	70.83	(0.12)												
71				35.29	0.063							1.92		
90					-									
340					0.89			57.51	- 1	Ta3.73				
68c	0.074		-									12.3		0.021
689	36.4	0.09	Pt	(0.004)	0.40	0.04	19 C	00.034	Bi	(<0.003)	N(0.002	2) 23.2	0.0017	(0.009)

Cast Irons (Chip Form)

These SRM's are furnished in 150-g units (unless otherwise noted) for use in checking chemical methods of analysis.

4k Cast 5L Cast 6g Cast 7g Cast 82b Cast 107c Cast 115a Cast 122h Cast 334 Gra 338 Whi 341 Duc 342a Noc 365 Elec 890 HC 891 Ni-1	t (High Phosph t (Ni-Cr) t (Ni-Cr-Mo) t (Cu-Ni-Cr) t (Car Wheel) ty Cast ite Cast	iorus)	Total 2.54 3.2 ₂ 2.60 2.85 2.69 2.85 2.99 2.62 3.52 2.83 3.33 1.81 1.86 0.0068 2.91 2.71 3.33	C Graphitic 2.6s 1.98 2.01 2.59 2.37 1.98 1.96 2.82	0.40 0.82 ₅ 0.68 1.05 0.612 0.745 0.480 1.00 0.543 (0.76) 0.92 0.274 0.0056 0.62 0.55 0.76	0.025 0.149 0.2804 0.557 0.794 0.025 0.079 0.086 0.311 (0.054) 0.024 0.019 0.0025 0.025 0.038 0.054	0.061 0.064	S Comb 0.052 0.043 0.124 0.124 0.060 0.007 0.059 0.065 0.072 0.043 0.015 0.007 0.006 0.0055 0.015	1.31 1.33 1.82 1.05 2.41 2.10 1.21 2.13 0.513 (1.82) 2.44 2.73 0.0080 0.67 0.56 1.83	0.043 0.24 ₃ 1.01 0.502 0.128 0.038 0.205 5.52 0.028 (0.27) 0.152 0.152 0.055 0.055 0.270
4k Cast 5L Cast 6g Cast 7g Cast 7g Cast 107c Cast 115a Cast 115a Cast 122h Cast 334 Gra 338 Whi 341 Duc 342a Noc 365 Elec 890 HC 891 Ni-1 892 Ni-1 872 SRM 3d 4k 5L 6g	t (High Phosph t (Ni-Cr) t (Ni-Cr-Mo) t (Cu-Ni-Cr) t (Car Wheel) ty Cast ite Cast ctile dular ctrolytic Iron 250+V Hard, Type I Hard, Type IV		2.54 3.2 ₂ 2.60 2.85 2.69 2.85 2.99 2.62 3.52 2.83 3.33 1.81 1.86 0.0068 2.91 2.71 3.33	2.6 ₅ 1.98 2.01 2.59 2.37 1.98 1.96 2.82	0.82 ₅ 0.68 1.05 0.612 0.745 0.480 1.00 0.543 (0.76) 0.92 0.274 0.0056 0.62 0.55	0.149 0.2804 0.557 0.794 0.025 0.079 0.086 0.311 (0.054) 0.024 0.019 0.0025 0.025 0.038	0.061	0.052 0.043 0.124 0.124 0.060 0.007 0.059 0.065 0.072 0.043 0.015 0.007 0.006 0.0055 0.0029	1.33 1.82 1.05 2.41 2.10 1.21 2.13 0.513 (1.82) 2.44 2.73 0.0080 0.67 0.56	0.24 ₃ 1.01 0.502 0.128 0.038 0.205 5.52 0.028 (0.27) 0.152 0.135 0.0058 0.055 0.150
4k Cast 5L Cast 6g Cast 7g Cast 107c Cast 115a Cast 115a Cast 122h Cast 334 Gra 338 Whi 341 Duc 342a Noc 365 Elec 890 HC 891 Ni-1 892 Ni-1 872 SRM 3d 4k 5L 6g	t (High Phosph t (Ni-Cr) t (Ni-Cr-Mo) t (Cu-Ni-Cr) t (Car Wheel) ty Cast ite Cast ctile dular ctrolytic Iron 250+V Hard, Type I Hard, Type IV		3.2 ₂ 2.60 2.85 2.69 2.85 2.99 2.62 3.52 2.83 3.33 1.81 1.86 0.0068 2.91 2.71 3.33	2.6 ₅ 1.98 2.01 2.59 2.37 1.98 1.96 2.82	0.82 ₅ 0.68 1.05 0.612 0.745 0.480 1.00 0.543 (0.76) 0.92 0.274 0.0056 0.62 0.55	0.149 0.2804 0.557 0.794 0.025 0.079 0.086 0.311 (0.054) 0.024 0.019 0.0025 0.025 0.038	0.064	0.043 0.124 0.124 0.060 0.007 0.059 0.065 0.072 0.043 0.015 0.007 0.006 0.0055 0.0059	1.33 1.82 1.05 2.41 2.10 1.21 2.13 0.513 (1.82) 2.44 2.73 0.0080 0.67 0.56	0.24 ₃ 1.01 0.502 0.128 0.038 0.205 5.52 0.028 (0.27) 0.152 0.135 0.0058 0.055 0.150
5L Cast 6g Cast 7g Cast 7g Cast 82b Cast 107c Cast 115a Cast 122h Cast 334 Gra 338 Whi 341 Duc 342a Noc 365 Elec 890 HC 891 Ni-1 892 Ni-1 872 SRM 3d 4k 5L 6g	t (High Phosph t (Ni-Cr) t (Ni-Cr-Mo) t (Cu-Ni-Cr) t (Car Wheel) ty Cast ite Cast ctile dular ctrolytic Iron ty 250+V Hard, Type I Hard, Type IV		2.60 2.85 2.69 2.85 2.99 2.62 3.52 2.83 3.33 1.81 1.86 0.0068 2.91 2.71 3.33	1.98 2.01 2.59 2.37 1.98 1.96 2.82	0.68 1.05 0.612 0.745 0.480 1.00 0.543 (0.76) 0.92 0.274 0.0056 0.62 0.55	0.2804 0.557 0.794 0.025 0.079 0.086 0.311 (0.054) 0.024 0.019 0.0025 0.025 0.038	0.064	0.124 0.124 0.060 0.007 0.059 0.065 0.072 0.043 0.015 0.007 0.006 0.0055 0.015	1.82 1.05 2.41 2.10 1.21 2.13 0.513 (1.82) 2.44 2.73 0.0080 0.67 0.56	1.01 0.502 0.128 0.038 0.205 5.52 0.028 (0.27) 0.152 0.055 0.055
6g Cast 7g Cast 7g Cast 82b Cast 107c Cast 115a Cast 122h Cast 334 Gra 338 Whi 341 Duc 342a Noc 365 Elec 890 HC 891 Ni-1 892 Ni-1 872 Ni-1 874 SRM	t (High Phosph t (Ni-Cr) t (Ni-Cr-Mo) t (Cu-Ni-Cr) t (Car Wheel) ty Cast ite Cast etile dular etrolytic Iron to 250+V Hard, Type I Hard, Type IV		2.85 2.69 2.85 2.99 2.62 3.52 2.83 3.33 1.81 1.86 0.0068 2.91 2.71 3.33	2.01 2.59 2.37 1.98 1.96 2.82	1.05 0.612 0.745 0.480 1.00 0.543 (0.76) 0.92 0.274 0.0056 0.62 0.55	0.557 0.794 0.025 0.079 0.086 0.311 (0.054) 0.024 0.019 0.0025 0.025 0.038	0.064	0.124 0.060 0.007 0.059 0.065 0.072 0.043 0.015 0.007 0.006 0.0055 0.015	1.05 2.41 2.10 1.21 2.13 0.513 (1.82) 2.44 2.73 0.0080 0.67 0.56	0.502 0.128 0.038 0.205 5.52 0.028 (0.27) 0.152 0.135 0.0058 0.055 0.150
7g Cast 82b Cast 107c Cast 115a Cast 115a Cast 122h Cast 334 Gra 338 Whi 341 Duc 342a Noc 365 Elec 890 HC 891 Ni-1 892 Ni-1 SRM 3d 4k 5L 6g	t (High Phosph t (Ni-Cr) t (Ni-Cr-Mo) t (Cu-Ni-Cr) t (Car Wheel) ty Cast ite Cast ctile dular ctrolytic Iron 250+V Hard, Type I Hard, Type IV		2.69 2.85 2.99 2.62 3.52 2.83 3.33 1.81 1.86 0.0068 2.91 2.71 3.33	2.59 2.37 1.98 1.96 2.82	0.612 0.745 0.480 1.00 0.543 (0.76) 0.92 0.274 0.0056 0.62 0.55	0.794 0.025 0.079 0.086 0.311 (0.054) 0.024 0.019 0.0025 0.025 0.038	0.064	0.060 0.007 0.059 0.065 0.072 0.043 0.015 0.007 0.006 0.0055 0.015	2.41 2.10 1.21 2.13 0.513 (1.82) 2.44 2.73 0.0080 0.67 0.56	0.128 0.038 0.205 5.52 0.028 (0.27) 0.152 0.135 0.0058 0.055 0.150
7g Cast 82b Cast 107c Cast 115a Cast 122h Cast 334 Gra 338 Whi 341 Duc 342a Noc 365 Elec 890 HC 891 Ni-1 892 Ni-1 SRM 3d 4k 5L 6g	t (Ni-Cr) t (Ni-Cr-Mo) t (Cu-Ni-Cr) t (Car Wheel) ty Cast ite Cast ctile dular etrolytic Iron 250+V Hard, Type I Hard, Type IV		2.85 2.99 2.62 3.52 2.83 3.33 1.81 1.86 0.0068 2.91 2.71 3.33	2.37 1.98 1.96 2.82	0.745 0.480 1.00 0.543 (0.76) 0.92 0.274 0.0056 0.62 0.55	0.025 0.079 0.086 0.311 (0.054) 0.024 0.019 0.0025 0.025 0.038	0.064	0.007 0.059 0.065 0.072 0.043 0.015 0.007 0.006 0.0055 0.015	2.10 1.21 2.13 0.513 (1.82) 2.44 2.73 0.0080 0.67 0.56	0.038 0.205 5.52 0.028 (0.27) 0.152 0.135 0.0058 0.055
107c Cast 115a Cast 115a Cast 122h Cast 334 Gra 338 Whi 341 Duc 342a Noc 365 Elec 890 HC 891 Ni-1 892 Ni-1 872 SRM 3d 4k 5L 6g	t (Ni-Cr-Mo) t (Cu-Ni-Cr) t (Car Wheel) ty Cast ite Cast ctile dular ctrolytic Iron 250+V Hard, Type I Hard, Type IV		2.99 2.62 3.52 2.83 3.33 1.81 1.86 0.0068 2.91 2.71 3.33	1.98 1.96 2.82	0.480 1.00 0.543 (0.76) 0.92 0.274 0.0056 0.62 0.55	0.079 0.086 0.311 (0.054) 0.024 0.019 0.0025 0.025 0.038		0.059 0.065 0.072 0.043 0.015 0.007 0.006 0.0055 0.015	1.21 2.13 0.513 (1.82) 2.44 2.73 0.0080 0.67 0.56	0.205 5.52 0.028 (0.27) 0.152 0.135 0.0058 0.055 0.150
107c Cast 115a Cast 115a Cast 122h Cast 334 Gra 338 Whi 341 Duc 342a Noc 365 Elec 890 HC 891 Ni-1 892 Ni-1 SRM 3d 4k 5L 6g	t (Ni-Cr-Mo) t (Cu-Ni-Cr) t (Car Wheel) ty Cast ite Cast ctile dular ctrolytic Iron 250+V Hard, Type I Hard, Type IV		2.99 2.62 3.52 2.83 3.33 1.81 1.86 0.0068 2.91 2.71 3.33	1.98 1.96 2.82	0.480 1.00 0.543 (0.76) 0.92 0.274 0.0056 0.62 0.55	0.086 0.311 (0.054) 0.024 0.019 0.0025 0.025 0.038		0.065 0.072 0.043 0.015 0.007 0.006 0.0055 0.015	2.13 0.513 (1.82) 2.44 2.73 0.0080 0.67 0.56	5.52 0.028 (0.27) 0.152 0.135 0.0055 0.055
115a Cast 122h Cast 122h Cast 334 Gra 338 Whi 341 Duc 342a Noc 365 Elec 890 HC 891 Ni-1 892 Ni-1 872 SRM 3d 4k 5L 6g	t (Cu-Ni-Cr) t (Car Wheel) ty Cast ite Cast ctile dular ctrolytic Iron 250+V Hard, Type I Hard, Type IV		2.62 3.52 2.83 3.33 1.81 1.86 0.0068 2.91 2.71 3.33	1.96 2.82	1.00 0.543 (0.76) 0.92 0.274 0.0056 0.62 0.55	0.311 (0.054) 0.024 0.019 0.0025 0.025 0.038		0.072 0.043 0.015 0.007 0.006 0.0055 0.015 0.029	0.513 (1.82) 2.44 2.73 0.0080 0.67 0.56	0.028 (0.27) 0.152 0.135 0.0058 0.055 0.150
122h Cast 334 Gra 338 Whi 341 Duc 342a Noc 365 Elec 890 HC 891 Ni-1 892 Ni-1 SRM 3d 4k 5L 6g	t (Car Wheel) by Cast ite Cast ctile dular ctrolytic Iron 250+V Hard, Type I Hard, Type IV		3.52 2.83 3.33 1.81 1.86 0.0068 2.91 2.71 3.33	1.23	0.543 (0.76) 0.92 0.274 0.0056 0.62 0.55	0.311 (0.054) 0.024 0.019 0.0025 0.025 0.038	0.007	0.043 0.015 0.007 0.006 0.0055 0.015 0.029	2.44 2.73 0.0080 0.67 0.56	(0.27) 0.152 0.135 0.0058 0.055 0.150
334 Gra 338 Whi 341 Duc 342a Noc 365 Elec 890 HC 891 Ni-1 892 Ni-1 SRM 3d 4k 5L 6g	ctile dular ctrolytic Iron 250+V Hard, Type I Hard, Type IV		2.83 3.33 1.81 1.86 0.0068 2.91 2.71 3.33	1.23	0.76) 0.92 0.274 0.0056 0.62 0.55	0.024 0.019 0.0025 0.025 0.038	0.007	0.007 0.006 0.0055 0.015 0.029	2.44 2.73 0.0080 0.67 0.56	0.152 0.135 0.0058 0.055 0.150
341 Duc 342a Noc 365 Elec 890 HC 891 Ni-1 892 Ni-1 SRM 3d 4k 5L 6g	ctile dular ctrolytic Iron 250+V Hard, Type I Hard, Type IV		3.33 1.81 1.86 0.0068 2.91 2.71 3.33		0.92 0.274 0.0056 0.62 0.55	0.024 0.019 0.0025 0.025 0.038	0.007	0.007 0.006 0.0055 0.015 0.029	2.44 2.73 0.0080 0.67 0.56	0.152 0.135 0.0058 0.055 0.150
342a Nod 365 Elec 890 HC 891 Ni-1 892 Ni-1 SRM 3d 4k 5L 6g	dular etrolytic Iron 250+V Hard, Type I Hard, Type IV		1.86 0.0068 2.91 2.71 3.33		0.274 0.0056 0.62 0.55	0.019 0.0025 0.025 0.038	0.007	0.006 0.0055 0.015 0.029	2.73 0.0080 0.67 0.56	0.135 0.0058 0.055 0.150
342a Nod 365 Elec 890 HC 891 Ni-1 892 Ni-1 SRM 3d 4k 5L 6g	dular etrolytic Iron 250+V Hard, Type I Hard, Type IV		1.86 0.0068 2.91 2.71 3.33		0.274 0.0056 0.62 0.55	0.019 0.0025 0.025 0.038	0.007	0.006 0.0055 0.015 0.029	2.73 0.0080 0.67 0.56	0.135 0.0058 0.055 0.150
365 Elec 890 HC 891 Ni-1 892 Ni-1 SRM 3d 4k 5L 6g	ctrolytic Iron 250+V Hard, Type I Hard, Type IV		0.0068 2.91 2.71 3.33	1.36	0.0056 0.62 0.55	0.0025 0.025 0.038		0.0055 0.015 0.029	0.0080 0.67 0.56	0.0058 0.055 0.150
890 HC 891 Ni-1 892 Ni-1 SRM 3d 4k 5L 6g	250+V Hard, Type I Hard, Type IV Ni		2.91 2.71 3.33		0.62 0.55	0.025 0.038		0.015 0.029	0.67 0.56	0.055 0.150
891 Ni-l 892 Ni-l SRM 3d 4k 5L 6g	Hard, Type I Hard, Type IV Ni		2.71 3.33		0.55	0.038		0.029	0.56	0.150
892 Ni-l SRM 3d 4k 5L 6g	Hard, Type IV Ni		3.33							-
3d 4k 5L 6g	Ni				0.70	0.034				11.2.711
3d 4k 5L 6g		Cr	V		THE RESERVE OF THE PERSON NAMED IN				1.00	
4k 5L 6g	0.025			1	Mo		-	Co		Ti
5L 6g		0.03	(0.00)	2)	(0.00					0.003)
6g	0.042	0.116	0.02	4	0.04		Zn(-	< 0.001)		0.03)
	0.086	0.148	0.03	4	0.02	0				0.050
7g	0.135	0.370	0.05	6	0.03	5				0.059
- 0	0.120	0.048	0.01	0	0.01	2			(0.044
82b	1.22	0.333	0.02	7	0.00	2			(0.027
107c	2.20	0.693	0.01		0.83				(0.19
115a	14.49	1.98	0.01	4	0.05	0			(0.020
122h	0.078	0.052	0.04	1	(0.00	(3)			(0.034
338	(5.5)	(10.2)	(0.04	_				(0.32)		
241	20.22	1.00	0.01	12	0.01	0		- 1		0.018
341	20.32	1.98	0.01	4	0.00	1000				0.020
342a	0.06	0.058	0.00	006	0.00			0.0072		0.0006
365	0.041	0.0072	0.00					(0.03)		
890	0.397	32.4	0.45)	0.10	76		(0.03)		
891			100000	39	0.27	7		0.19	((0.01)

Cast Irons (Chip Form) (Continued) SRM N As Sn Al (total) Mg Fe 4k (0.03)(0.004)(0.004)Sb(<0.001) (0.0016)Pb(0.001) 5L 0.005 0.042 0.005 6g 0.014 0.004 7g 341 0.068 342a 0.070 Pb0.000019 99.90 (0.0007)0.001 365 (0.0002) (~ 0.0002) (0.089)890 (0.008)(<0.01)(61.8)891 (0.004)(<0.01)(0.008)(0.012)(88.5)892 (0.009)(0.019)(77.4)(0.006)(0.02)

Cast Steels, White Cast Irons, Ductile Irons, and Blast Furnace Irons (Solid Form)

Values in parentheses are not certified, but are for information only.

These SRM's are for analysis of cast steels and cast irons by rapid instrumental methods.

	_	Chemical Composition (Nominal Weight Percent)										
SRM	Туре	C	Mn	P	S	Si	Cu	Ni	Cr			
C1137a	White Cast Iron	2.86	0.52	0.087	0.017	1.15	0.192	2.17	0.643			
1138a	Cast Steel (No. 1)	0.118	0.35	0.035	0.056	0.25	0.09	0.10	0.13			
1139a	Cast Steel (No. 2)	0.79。	0.92	0.012	0.013	0.80	0.47	0.98	2.1 _s			
1144a	Blast Furnace Iron (2)	4.32	1.23	0.084	0.083	0.182	0.091	0.06_{3}	0.029			
1145	White Cast Iron	2.85	0.040	0.24	0.21	0.29	0.52	0.59	0.67			
1146	White Cast Iron	2.01	1.64	0.55	0.022	3.68	1.49	3.01	2.56			
C1150a	White Cast Iron	3.48	0.81	0.063	0.070	1.24	0.092	0.074	0.95			
C1173	Cast Steel 3	0.453	0.174	0.031	0.092	1.38	0.204	4.04	2.63			
1173	Ni-Cr-Mo-V Steel	0.423	0.19	0.033	0.092	1.28	0.204	4.06	2.70			
C1290	High Alloy (HC-250+V)	3.04	0.66	0.030	0.013	0.971	0.065	0.917	30.5			
C1291	High Alloy (Ni-Hard, Type I)	2.67	1.14	0.028	0.032	1.34	0.26	4.34	2.78			
C1292	High Alloy (Ni-Hard, Type IV)	3.47	0.55	0.049	0.016	0.59	0.36	5.04	11.4			
C2423	Ductile Iron	3.76	0.98	0.27	(0.0006)	1.67	1.55	0.146	0.322			
C2423a	Ductile Iron	3.66	0.91	0.246	(<0.001)	1.59	1.61	0.147	0.322			
C2424	Ductile Iron	2.68	0.268	0.041	0.024	3.37	0.125	0.061	0.13			
C2424a	Ductile Iron	2.76	0.207	0.034	0.016	3.30	0.099	0.045	0.15			
C2425	Ductile Iron	3.26	0.76	0.191	0.012	2.50	0.47	0.55	0.092			
C2425a	Ductile Iron	3.30	0.72	0.188	0.010	2.38	0.47	0.57	0.085			

Cast Steels, White Cast Irons, Ductile Irons, and Blast Furnace Irons (Solid Form) (Continued)

SRM	v	Mo	Ti	As	Al	Te	Co
C1137a	0.019	0.86	(0.04)		(0.007)	Mg0.032	Ce0.016
1138a	0.020	0.05	(0.0012)	(<0.005)	(0.067)		
1139a	0.26	0.51	(0.004)	(<0.005)	(0.13)		
1144a	0.025	(0.007)	0.32	(0.004)	(<0.005)	0.022	
1145	0.11	0.48	0.017				0.058
1146	0.20	1.51	0.20				0.13
C1150a	0.034	0.074	0.045				0.014
C1173	0.42	1.46	0.037	(0.02)	(0.005)		0.064
1173	0.42	1.50	(0.015)			Nb(0.045)	0.076
C1290	0.442	(0.041)					
C1291	0.031	0.32					
C1292	0.041	0.25					
C2423	0.048	0.155	0.10		(0.09)		(0.02)
C2423a	0.043	0.159	0.10		(0.08)		(0.01)
C2424	0.083	0.019	0.050		(<0.01)		(0.05)
C2424a	0.081	0.019	0.045		(<0.01)		(0.05)
C2425	0.013	0.30	0.19		(0.02)		(0.02)
C2425a	0.013	0.29	0.20		(0.02)		(0.03)
SRM		Mg		Ce		La	В
C2423		0.058		0.036		0.011	(0.01)
C2423a		0.076		0.031		0.0042	(0.01)
C2424		0.006		0.0046		0.0011	(0.002)
C2424a		0.014		0.0053		0.0010	(0.001)
C2425		0.040		0.0062		0.0015	(0.10)
C2425a		0.047		0.023		0.0037	(0.1)

Nonferrous Alloys

CDM		T		Wt/	Chem	ical Co	mposi	tion (Nom	inal Weight	Percent)
SRM		Туре		Unit (grams)	Mn	Si	Cu	Ni	Cr	v
85b	Wrought (Chi	p)		75	0.61	0.18	3.99	0.084	0.211	0.006
87a	Al-Si (Chip)			75	0.26	6.24	0.30	0.57	0.11	< 0.01
853	Alloy 3004 (C	hip)		30	1.26	0.18	0.15	0.004	< 0.001	0.017
1240	Alloy 3004			Disk	1.26	0.18	0.15	0.004	< 0.001	0.017
854	Alloy 5182 (C	hip)		30	0.38	0.16	0.050	0.020	0.030	0.016
1241	Alloy 5182			Disk	0.38	0.16	0.050	0.020	0.030	0.016
855	Casting Alloy	356 (fine m	illings)	30	0.057	7.17	0.13	0.015	0.013	
1255a	Casting Alloy	356 (IN PF	REP)	Disk			13.11			
856	Casting Alloy	380 (fine m	illings)	30	0.35	9.21	3.51	0.37	0.055	
1256a	Casting Alloy	380 (IN PF	REP)	Disk						
1257	High Purity (I	N PREP)		Disk						
858	Alloy 6011 (m	odified) (fir	ne millings)	35	0.48	0.79	0.84	0.0006	0.0011	0.0030
1258	Alloy 6011 (3:	5mm D×19	mm thick)	Disk	0.48	0.78	0.84	0.0006	0.0011	
859	Alloy 7075 (fi	ne millings)		35	0.078	0.17	1.59	0.063	0.176	0.0082
1259	Alloy 7075 (3:	5mm D×19	mm thick)	Disk	0.079	0.18	1.60	0.063	0.173	
SRM	Ti	Sn	Ga	Fe	Pb	Mg	,	Zn	Zr	Be
85b	0.022		0.019	0.24	0.021	1.49		0.030		
87a	.0.18	0.05	0.02	0.61	0.10	0.37		0.16		
853	0.018		0.018	0.50		1.11		0.052	0.002	
1240	0.022		0.018	0.50		1.11		0.052	0.002	
854	0.030		0.018	0.20		4.54		0.051	0.002	
1241	0.030		0.018	0.20		4.54		0.051	0.002	
855	0.15	0.010		0.16	0.015	0.37		0.083		
856	0.068	0.10		0.92	0.10	0.06	1	0.96		
858	0.042			0.078		1.01		1.04		< 0.0001
1258	(0.04)		(0.010)	0.079		0.98		1.03		< 0.0001
859	0.041					2.45	1	5.46		0.0026
1259	(0.04)		(0.022)	0.205		2.48		5.44		0.0005

Copper-Base Alloys (Chip Form)

SRM			Туре			Wt/ Unit	Chemi	ical Comp	Percent)	iominal	Weight
						(grams)	Cu	Ni	Fe	Zn	Pb
37e	Brass, Shee	et				150	69.61	0.53	0.004	27.85	1.00
158a	Bronze, Sil	licon				150	90.93	0.001	1.23	2.08	0.097
871	Bronze, Ph	nosphor (C	CDA 521)		100	91.68		< 0.001	0.025	0.010
872	Bronze, Ph	nosphor (C	CDA 544)		100	87.36		0.003	4.0	4.13
874	Cupro-Nic	kel, 10%	(CDA 7	06) "High	n-Purity"	100	88.49	10.18	1.22	0.002	< 0.0005
875	Cupro-Nic	kel, 10%	CDA 70)6) "Dop	ed"	100	87.83	10.42	1.45	0.11	0.0092
879	Nickel Silv	er (CDA	762)			100	57.75	12.11	0.0020	30.04	0.002
880	Nickel Silv	er (CDA	770)			100	54.51	18.13	0.004	27.3	0.002
1034	*Unalloyed	d Copper				rod	(99.96%)	(0.6)	(2.0)	(<11)	(0.5)
1035	**Leaded-	Tin Bronz	e Alloy			50	(78.5)	(0.75)	(0.001)	(0.25)	(13.5)
SRM	Mn	Sb	Sn	Cr	P	Ag	Si	Al	Te	Cd	Se
37e			1.00	0							
158a	1.11		0.9	6	0.026		3.03	0.46			
871			8.1	4	0.082						
872			4.10	6	0.26						
874	0.0020	< 0.001	0.0	07	0.002		(0.0006)		<	0.0002	0.00015
875	< 0.0007	< 0.001	0.0	09	0.0020		(0.0008)			0.0022	0.0004
879	< 0.001										
880	< 0.001										
1034	(<0.1)	(0.2)	(<0.2	(0.3)		(8.1)	(<2)	(<2)	(0.5)	<1)	(3.3)
1035			(6.8								
SRM	Bi	0	Co	C	Au	н	S	As	M	lg .	Ti
874	< 0.0002	(0.06)	((0.0023)		(0.0016)	(0.0011)	(<0.000	6) (0.0	0002)	(0.0001)
875	0.003	(0.14)		(0.0035)		(0.004)	(0.0011)	(0.001	0.0)	010)	(<0.0002)
1034	(0.2)	(363)	(0.02)		(<0.05)		2.8	(0.2)	(<1)		
1035		(0.64)					22.3 ppm		P (0.0	004)	

Values in parentheses are not certified, but are given for information only. *Values for SRM 1034 are ppm by weight.
**Sulfur value for SRM 1035 is ppm by weight.

Copper-Base Alloys (Solid Form)

The SRM's with "C" prefix are chill-cast blocks, 31 mm square, 19 mm thick; the others are wrought disks, 31 mm in diameter and 19 mm thick. Both forms have nearly identical chemical compositions.

6	RM	т	ype		-		Composi					
	, KIVI				Cu	Zn	Pb	Fe	Sn	Ni	Al	Sb
1103	-	Free-Cutting I			59.27	35.72	3.73	0.26	0.88	0.15		
1106	C1106	Naval Brass A			59.08	40.08	0.032	0.004	0.74	0.025		
1107	C1107	Naval Brass B			61.21	37.34	0.18	0.037	1.04	0.098		
1108	C1108	Naval Brass C			64.95	34.42	0.063	0.050	0.39	0.033		
-	C1109	Red Brass A			82.2	17.43	0.075	0.053	0.10	-		
	C1110	Red Brass B			84.59	15.20	0.033	0.033	0.051	0.053		
1111	C1111	Red Brass C			87.14	12.81	0.013	0.010	0.019	0.022		
1112	C1112	Gilding Metal			93.38	6.30	0.057	0.070	0.12	0.100		
1113	C1113	Gilding Metal	В		95.03	4.80	0.026	0.043	0.064	0.057		
1114	C1114	Gilding Metal	С		96.45	3.47	0.012	0.017	0.027	0.021		
1115	C1115	Commercial B	ronze A		87.96	11.73	0.013	0.13	0.10	0.074		
1116	C1116	Commercial B	ronze B		90.37	9.44	0.042	0.046	0.044	0.048		
1117	C1117	Commercial B	ronze C		93.01	6.87	0.069	0.014	0.021	0.020		
1118		Aluminum Bra	iss A		75.1	21.9	0.025	0.065			2.80	0.010
	C1119	Aluminum Bra	ass B		77.1	20.4	0.050	0.030			2.14	0.050
	C1121	Beryllium Cop	per CA-1	70	97.4 _e	(0.01)	(0.002)	0.085	0.01	0.012	0.07	
	C1123	Beryllium Cop	per CA-1	75	97.10	0.01	(0.001)	0.04	(0.01)	(0.01)	0.02	
1275		Cupro-Nickel	(CDA 706)	88.2	0.085	0.006	1.46	0.008	9.76		0.000
	SRM	A	s B	e	Bi	Cd	Mn		P	Si		Ag
1103								0	.003			
1106	C1106						0.005					
1108	C1108		7				0.025					
	C1109				2		1		.006			
1112	C1112							0	.009			
1113	C1113							0	.008			
1114	C1114							0	.009			
1115	C1115							0	.005			
1116	C1116							0	.008			
1117	C1117				-			0	.002			
1118		0.0	007					0	.13	0.002	1	
	C1119	0.0	140					0	.070	0.001:	5	
	C1121		1.	92			(0.004)) (0	.005)	0.11	((0.005)
	C1123		0.	46			(0.002) (0	.002)	0.03	((0.009)
1275		(0.0	001)		(<0.001)	0.0003	0.42	0	.005	(0.001)) ((0.004)
S	RM	Te	Co	(Cr	Se	Mg	В		S		Ti
199	C1121		0.295	(0.0)	002)							
	C1123		2.35	(0.0)								
		(0.0002)	0.024	(0.0	0002)	0.0004	0.003	(0.00	009)	(0.008)	(0	0.0002)

	FF		mark'					THE REAL PROPERTY.	111111				
-	CDM												
1	SRM	Ту	ре	Cu(Wt%)	hemical C	ompositi	on (No	omin	al Parts	Per Mill	ion by We	ight)
(Chi	p) (Solid	0			Sb	As	Bi	Cr		Co	Fe	Pb	Mn
393		Сорр	er "O"	99.99	8 0.2	5 0.41	< 0.1	< 0.5		0.02	<1	0.039	< 0.01
394	494	Copp	er I	99.91	4.5		0.35	2.0		0.5	147	26.5	3.7
395	495	Coppe	er II	99.94	8.0	1.6	0.50	6.0		0.3	96	3.25	5.3
396	496	Coppe	er III	99.95	<1	< 0.2	0.07	4.3		0.4	143	0.41	7.5
	457	Сорре	er IV	99.96	0.2	0.2	0.2	(0.3)) ((0.2)	2.0	0.5	< 0.1
398	498	Coppe	er V	99.98	7.5	25	2.0	(0.3)		2.8	11.4	0.0	(0.2)
399	499	Сорре		99.79	30	47	10.5	(0.5)		0.5	11.4	9.9	(0.3)
400	500		er VII	99.70	102	140	24.5	(0.5)		0.6	20.0	114	(0.3)
-00	C1251		er VIII	99.96	12.6		(3)	2.8	-	8.8	(10)	7.5	(0.2)
	C1252	Сорре		99.89	42	115	20	7.4		90	(35)	60	(7)
	01202	Сорр	UL A2X	77.07	72	115	20	7.4		70	(33)	00	(28)
	C1253	Coppe	er X	99.42	(150)	432	70	216	(50	00)	(330)	244	(380)
454		Coppe	0.000	99.84	24	46	19			(4)	(50)	66	(300)
5	SRM	Ni	Se	Ag	S	Te	Sn		Zn	Al	Cd	Au	Mg
393		0.05	< 0.05	0.10	<1	< 0.5		0.1 <	< 0.1	< 0.1	< 0.1	< 0.05	-0
394	494	11.7	2.0	50.5	15	0.58	7	_	05	(<2)	(0.5)		<0.
395	495	5.4	0.63	12.2	13	0.32			12.2	(<2)	(0.4)		(<1)
396	496	4.2	0.62	3.30	9.5	(0.02)		0.8	5.0	(<2)	(0.6)		
	457	0.6	4.2	8.1	(4)	0.29		0.2 <		(<2)	(<1)	(<0.05)	(<1)
					(-)	0.27		V.2	11	(\ _)	((1)	((0.05)	(1)
398	498	7.0	17.5	20.1	(11)	10.1		4.8	24	(<2)	(22)	(0.1)	(<1)
399	499	506	95	116.8	(10)	50	(~90)	45	(<2)	(<1)	(4)	(<1)
100	500	603	214	181	(9)	153	(~200) 1	14	(<2)	(<1)	(10)	(<1)
	C1251	22	11.1	81.4	(22)	15	(15)	8.3	(2)	2	15.0	(10)
	C1252	128	53.6	166.6	(29)	51	(110		60	(7)	14	34.9	(20)
	C1253	(500)	165	503	55	199	(470) 3	68	(180)	74	74.4	(80)
154		(150)	479	286		27		2.2	7	(100)	14	7.5	(00)
S	RM	Si	Be	В		Ca	Li	I	Pd Pd	P		Ti	Zr
393		< 0.5	< 0.0	1 <0.	01	< 0.05	< 0.01	-1	0.05	<0.	05	< 0.5	< 0.5
394	494	(<2)	25.0	70.		23.02	20.01	-	0.00	\ U.		(0.5	(0.5
395	495	(<2)									-		
396		(<2)				1 1 11	1 - 1 - 0						
398	498	(<2)	-										
399	499	(<2)											
400	10-215-	(<2)											

Lead-	Base	Alloys								
SR	м	T		Chemica	al Comp	osition	Nomin	al Weigl	ht Perc	ent)
Chip	Disk	Туре	Cu	Ni	As	Sn	Sb	Bi	Ag	Fe
127b	1131	Solder Pb60-Sn40	0.011	0.012	0.01	39.3	0.43	0.06	0.01	
53e	1132	Bearing Metal(84Pb-10Sb-6Sn)	0.054	0.003	0.057	5.84	10.2	0.052		< 0.001

Nicke	el-Base Alloys										
CDM	Toma		Wt/Unit		Chemical	Compo	sition (N	ominal '	Weight F	ercent)	
SRM	Туре		(grams)	C	Mn	P	S	Si	Cu	Ni	Cr
349a	Ni57-Co14-Cr20		(IN PREP)								
882	Ni66-Cu31-A13		100	0.006	0.0007		0.0014	0.006	31.02	65.25	
864	Inconel, 600		100	0.064	0.29	0.010	0.003	0.12	0.26	73.1	15.7
865	Inconel, 625		100	0.037	0.18	0.012	0.001	0.41	0.36	59.5	21.9
866	Incoloy, 800		100	0.082	0.92	0.017	0.001	0.17	0.49	30.8	20.1
867	Incoloy, 825		100	0.021	0.39	0.018	0.002	0.32	1.74	43.5	23.4
1160	Ni80, Mo4, balance	Fe	Disk	0.019	0.550	0.003	0.001	0.37	0.021	80.3	0.05
SRM	I Mo	Co	Ti		Al		В		Fe	N	b
882			0.57		2.85			0.	009		
864	0.20	0.059	0.26		0.26		< 0.005	9.	6	(0.	14)
865	8.6	0.072	0.28		0.21		< 0.001	4.	5	3.	5
866	0.36	0.075	0.31		0.29		< 0.001	46.	1	(0.	09)
867	2.73	0.089	0.75		0.062		0.002	26.	6	(0.	45)
1160	4.35	0.054						14.	3		

Trace Elements in Nickel-Base Superalloys (Chip Form)

SRM	Туре	Wt/Unit	Nomina	al Trace Cor	nposition (F Weight)	arts Per M	lillion by
	-7,00	(grams)	Pb	Bi	Se	Te	TI -
897	"Tracealloy" A	35	11.7	(0.5)	9.1	1.05	0.51
898	"Tracealloy" B	35	2.5	(1.0)	2.00	0.54	2.75
899	"Tracealloy" C	35	3.9	(0.3)	9.5	5.9	0.252

				Appro	oximate B	ase Con	position	(Weigh	t Percent)			
SRM	С	Cr	Co	Ni	W	Nb	Al	Ti	В	Zr	Ta	Hf
897	(0.12)	(12.0)	(8.5)	(Bal)	(1.75)	(0.9)	(2.0)	(2.0)	(0.010)	(0.10)	(1.75)	(1.2)
898	(0.12)	(12.0)	(8.5)	(Bal)	(1.75)	(0.9)	(2.0)	(2.0)	(0.010)	(0.10)	(1.75)	(1.2)
899	(0.12)	(12.0)	(8.5)	(Bal)	(1.75)	(0.9)	(2.0)	(2.0)	(0.010)	(0.10)	(1.75)	(1.2)

Values in parentheses are not certified, but are given for information only.

Nickel Oxides (Powder Form)

		Wt/Unit		Chem	ical Co	mpositio	(Nomi	nal Wei	ght Per	cent)	
SRM	Туре	(grams)	Mn	Si	Cu	Cr	Co	Ti	Al	Fe	Mg
671	Oxide 1	25	0.13	0.047	0.20	0.025	0.31	0.024	0.009	0.39	0.030
672	Oxide 2	25	0.095	0.11	0.018	0.003	0.55	0.009	0.004	0.079	0.020
673	Oxide 3	25	0.0037	0.006	0.002	0.0003	0.016	0.003	0.001	0.029	0.003

CODE 4				Nomi	nal Trace	Composition	(Parts I	Per Millio	n by Wei	ght)		
SRM	Pb	Se	Bi	As	Sn	Sb	Cd	Ga	Ag	Te	Tl	Zn
671	16	2.0	0.07	(59)	(2.7)	(0.4)	(0.7)	(0.8)	(0.5)	(<0.2)	(<0.1)	(160)
672	38	0.40	0.3	(74)	(4)	(0.5)	(1.7)	(0.4)	(0.3)	(<0.2)	(<0.1)	(140)
673	3.5	0.2	0.06	(0.4)	(<0.5)	(<0.05)	(0.05)	(<0.1)	(<0.1)	(0.4)	(<0.1)	(1.7)

Values in parentheses are not certified, but are given for information only.

Titanium-Base Alloys (Chip Form)

SRM	T	Wt/		C	hemica	l Compo	sition (Nominal V	Weight	Percent)		
SKM	Туре	Unit (grams)	C	Mn	Cu	Мо	Sn	Al	Fe	N	v	Si
173ь	6Al-4V	100	0.025		0.008	0.013	(0.03)	6.36	0.23	0.015	4.31	0.46
176	5A1-2.5Sn	100	0.015	0.0008	0.003	0.0003	2.47	5.16	0.070	0.010		
650	Unalloyed A	30	W1.55	0.016	0.033	0.002	0.03	< 0.01	0.024	Cr 0.002	0.009	0.004
651	Unalloyed B	30	W0.39	0.005	0.032	0.031	0.026	< 0.006	0.058	Cr 0.037	0.021	0.01
652	Unalloyed C	30	W0.5	0.046	0.081	0.039	0.053	0.039	0.67	Cr 0.082	0.024	0.16

Titanium-Base Alloys (Solid Form)

SRM	Toma	Ch	emical Comp	osition (Non	ninal Weight P	ercent)	
31 mm D× 19 mm thick	Туре	Mn	Cr	Fe	Мо	Al	v
641	8Mn (A)	6.68					
642	8Mn (B)	9.08					
643	8Mn (C)	11.68					
644	2Cr-2Fe-2Mo (A)		1.03	1.36	3.61		
646	2Cr-2Fe-2Mo (C)		3.43	2.14	1.11		
654a*	6Al-4V (B)	(<0.1)	(0.20)	(0.20)	(<0.05)	6.34	3.9

^{*31} mm D×6.4 mm thick.

Frank Mills controls the chipping of a titanium alloy that will be ground, sieved, and blended to insure high homogeneity before analytical testing for certification.

Values in parentheses are not certified, but are given for information only.

on.	-	Wt/									
SRM	Туре	Unit (grams)	Mn	Cu	Ni	Sn	Al	Cd	Fe	Pb	Mg
94c	Die Casting Alloy	150	0.014	1.01	0.00	6 0.006	4.13	0.002	0.018	0.006 0.	042
on.	-				Chem	ical Compo	sition (Nominal	Weight	Percent)	
SRM	Туре			Cu	Al	Mg	Fe	Pb	Cd	Sn	Cr
625	Zinc-base A-ASTM	AG 40A	0.0	034	3.06	0.070	0.036	0.0014	0.0007	0.0006	0.0128
626	Zinc-base B-ASTM	AG 40A	0.0	056	3.56	0.020	0.103	0.0022	0.0016	0.0012	0.0395
627	Zinc-base C-ASTM	AG 40A	0.	132	3.88	0.030	0.023	0.0082	0.0051	0.0042	0.0038
628	Zinc-base D-ASTM	AC 41A	0.0	611	4.59	0.0094	0.066	0.0045	0.0040	0.0017	0.0087
629	Zinc-base E-ASTM	AC 41A	1.:	50	5.15	0.094	0.017	0.0135	0.0155	0.012	0.008
630	Zinc-base F-ASTM	AC 41A	0.9	976	4.30	0.030	0.023	0.0083	0.0048	0.0040	0.0031
631	Zinc spelter (modifi	ed)	0.0	0013	0.50	(<0.001)	0.005	(0.001)	0.0002	0.0001	0.0001
SRM	Mn	Ni	Si		In	Ga		Ca	A	g	Ge
625	0.031	0.0184	0.017								
626	0.048	0.047	0.042								
627	0.014	0.0029	0.021								
628	0.0091	0.030	0.008								10 11
629	0.0017	0.0075	0.078								
630	0.0106	0.0027	0.022								
631	0.00015 (-	< 0.0005)	(0.002))	0.0023	(0.002	2)	< 0.001	(<0.0	0005)	(0.0002)

Lircon	num-	Base All	loys		principal de la constante de l	and the same		100000			-			
CDM	Т	Wt	/Unit		Ch	nemical (Composit	tion (N	Nominal	Parts I	er M	illion)		
SRM	Тур	e (gr	ams)	C	Mn S	Si Ci	ı Ni	Ci	r Ti	Sn(V	Vt%)	Fe	N	U
360ь	Zircalo	y-2 (IN F	REP)											
SR					Chen	nical Co	mpositio	n (No	minal Pa	rts Per	Mill	ion)		
31 mm 9.5 mm		Туре	Hf	C	Cr	Cu	Fe	Mn	Мо	Ni	N	Si	Ti	W
1234		Zirconium	A 46	(80)	(55)	(<10)	(240)	(10)	(2)	(20)	(14)	(40)	(20)	(25)
1235		Zirconium	B 95	(170)	(60)	(80)	(850)	(25)	(40)	(65)	(32)	(95)	(90)	(50)
1236		Zirconium	C 198	(280)	(250)	(250)	(1700)	(45)	(100)	(140)	(69)	(205)	(185)	(140
1237		Zircaloy D	31	(100)	(1510)	(<10)	(1650)	(10)	(<10)	(40)	(19)	(35)	(30)	(25)
1238		Zircaloy E	178	(310)	(580)	(60)	(2500)	(60)	(120)	(100)	(72)	(170)	(100)	(95)
1239		Zircaloy F	77	(170)	(1055)	(130)	(2300)	(50)	(45)	(45)	(42)	(95)	(40)	(45)

Bob Alvarez (left) and research chemist John Norris discuss optical emission spectrometric analyses of solid metal SRM's.

Gases in Metals

These SRM's are for determining hydrogen, oxygen and nitrogen by vacuum fusion, inert gas fusion, and neutron activation methods. SRM's 1095 to 1099 are sold only in a set as SRM 1089.

SRM	Туре	Form	Oxygen (ppm)	Hydrogen (ppm)	(ppm)
352b	Unalloyed titanium for hydrogen	Platelets		50	
354a	Unalloyed titanium for hydrogen	IN PREP			
355	Unalloyed titanium	Rod	3031		
357	Unalloyed zirconium	Wire	(1200)	19	49
358	Unalloyed zirconium	Wire	(1100)	107	28
1086	Unalloyed titanium	Chips	(1350)	116	
1087	Unalloyed titanium	Chips	(840)	57.5	
1088	Unalloyed titanium	Chips	(1450)	88.5	
1090	Ingot iron	Rod	491		(60)
1091a	Stainless steel (AISI 431)	Rod	132.2		
1093	Valve steel	Rod	60		(4807)
1094	Maraging steel	Rod	4.5		(71)
1089	Set of 5: 1095, 1096, 1097, 1098, and 1099	Rods			
1095	AISI 4340 steel	Rod	9		(37)
1096	AISI 94B17 (mod)steel	Rod	10.7		40.4
1097	Cr-V (mod)steel	Rod	6.6		(41)
1098	High carbon (mod)steel	Rod	10		32
1099	Electrolytic iron	Rod	61		(13)

High-Purity Metals

These SRM's are for determining impurity elements in high-purity metals. (See also specific metals.)

SRM		Туре				Unit Siz	te			mpositions (
								C	ı Ni	Sn Pb	Zr
685W*	High-Purit	y Gold ((Wire)		1.4 mm I	0×102 mm	n long	0.	1		
685R*	High-Purit	y Gold ((Rod)		5.9 mm I	0×25 mm	long	0.	1		
680aL1	High-Purit	y Platinu	ım (Wire)		0.51 mm	D×102 m	m long	0.	1 <1	<1	<0.
680aL2	High-Purit					D×1.0 m		0.		<1	<0.
681L1	Doped-Pla					D×102 m		5.	1 0.5	12	11
681L2	Doped-Pla	tinum (V	Vire)		0.51 mm	D×1.0 m	long	5.	1 0.5	12	11
682*	High-Purit	y Zinc			Semicircu	ular segme	nts 57 m	m D 0.	042	(0.02)	
683*	Zinc Metal				Semicircu	ular segme	nts 57 m	m D 5.	9	(0.02) 11.	1
728	Zinc				Shot, 450) g		5.	7	(0.02) 11.	1
726	Selenium, l	ntermed	liate Purity		Shot, 450) g		<1	< 0.5	<1 <1	Mn < 0
1257	Aluminum,	High P	urity		(IN PRE	P)					
SRM	Ag	Mg	In	Fe	0	Pd	Au	Rh	Ir	Cd	Ti
685W*	[0.1]		0.007	0.3	[2]						
685R*	[0.1]		0.007	0.2	[<2]						
680aL1	< 0.1	<1		1.3	4	0.2	<1	< 0.2	< 0.01		
680aL2	< 0.1	<1		1.3	4	0.2	<1	< 0.2	< 0.01		
681L1	2.0	12		5	7	6	9	9	11		1 3
681L2	2.0	12		5	7	6	9	9	11		
682*	(0.02)			(0.1))		- 1			(0.1)	
683*	1.3			2.2						1.1	(0.2)
728	1.1			2.7						1.15	

^{*}Certificate gives upper limits for other elements found to be present.

RM 1R-Ultra-Purity Aluminum Polycrystalline Rods

These rods are intended for use in research on the mechanical and physical properties of extremely pure aluminum; e.g., in the determination of resistivity as a function of strain at cryogenic temperatures to facilitate the design of cryogenic magnets, or superconductor stabilizing elements. Unit of issue: 4.2 mm in diameter and 25.4 mm long.

Values in parentheses are not certified, but are given for information only.

Values in brackets are subject to greater error since only one method of analysis was employed.

Microanalytical

These SRM's provide a highly homogeneous material at microscopic spatial resolution. They are intended primarily for use in calibration of quantitative electron probe, secondary ion mass spectrometry, spark source mass spectrometry, and laser probe microanalytical techniques.

SRM	Туре	Unit Size
470	Mineral Glasses (K-411 & K-412)	2 Rods: 1×1×15 mm
479a	Fe-Cr-Ni Alloy	Plate: 4.6 mm D, 1 mm thick
480	Tungsten-22% Mo Alloy	Rod: 1 mm D, 1 mm long
481	Au-Ag Set	6 Wire: 0.5 mm D, 50 mm long
482	Au-Cu Set	6 Wire: 0.5 mm D, 50 mm long
483	Iron-3.22% Silicon	Plate: 3×3×0.28 mm thick
1871	Glasses (K-456, K-493, & K-523)	3 Rods: 1×1×15 mm
1872	Glasses (K-453, K-491, & K-968)	3 Rods: 1×1×15 mm
1873	Glasses (K-458, K-489 & K-963)	3 Rods: 1×1×15 mm
1874	Glasses (K-495, K-490, & K-546)	3 Rods: 1×1×15 mm
1875	Glasses (K-496, K-497, & K-1013)	3 Rods: 1×1×15 mm
8531	Glass Fibers (K-456, K-493, K-453, K-491, K-458, K-489, K-495, K-490, K-496, K-497)	Fibers: 10–100 μm D \times 50–60 mm long

SRM	Туре		Chemical Composition (Nominal Weight Percent)									
		Au	Cu	Ag	w	Мо	Si	Fe (by differ- ence)				
479a	Fe-Cr-Ni Alloy				Cr18.1	Ni10.9		71.0				
480	Tungsten-22% Mo Alloy				78.5	21.5						
481	Au 100 A	100.00										
	Au-20% Ag B	80.05		19.96								
	Au-40% Ag C	60.05		39.92								
	Au-60% Ag D	40.03		59.93								
	Au-80% Ag E	22.43		77.58								
	Ag 100 F			100.00		-						
482	Au 100 A	100.00										
	Au-20% Cu B	80.15	19.83									
	Au-40% Cu C	60.36	39.64									
	Au-60% Cu D	40.10	59.92									
	Au-80% Cu E	20.12	79.85									
	Cu 100 F		100.00									

Mineral Glasses for Microanalysis

SRM 470	Composition (Nominal Weight Percent)									
Glass	SiO ₂	FeO	MgO	CaO	Al ₂ O ₃					
K-411	54.30	14.42	14.67	15.47	_					
K-412	45.35	9.96	19.33	15.25	9.27					

Glasses for Microchemical Analysis

		SRM 1871			SRM 1872			SRM 1873			SRM 1874			SRM 1875	
		Glass			Glass			Glass			Glass			Glass	
	K-456	K-493	K-523	K-453	K-491	K-968	K-458	K-489	K-963	K-495	K-490	K-546	K-496	K-497	K-1013
						Compo	osition (No	minal Weigh	t Percent)						
РЬ	65.67	63.28	63.10	54.21	54.69	54.74	2000	(1.32)	-	-	(1.47)	-	-	(0.86)	-
Si	13.37	(13.09)	(12.94)	-	(0.11)	-	23.05	(22.23)	(21.96)	_	(0.19)	-	-	(0.13)	-
Ge	-	_	(0.24)	28.43	26.10	25.93	2	_	(0.39)	-	_	(0.50)	-	2000	(0.34)
Ba	-	-	(0.61)	-	-	(0.46)	41.79	39.53	39.21	-	-	(0.99)		-	(0.52)
Zn	-	-	-	-	-	-	3.01	2.93	2.95	-	-	-	-	-	-
P	-	_	(0.24)	_	_	(0.21)	-	-	(0.33)	_	-	(0.42)	32.98	31.59	32.26
Mg	-	-	(0.12)	-	-	(0.22)	-	-	(0.34)	-	-	(0.17)	6.65	6.49	5.86
Al	-	(0.13)	-	_	(0.10)	-	-	(0.11)	-	10.89	(10.2)	(10.1)	6.47	5.97	6.08
В	-	[0.04]	-	-	[0.03]	-	-	[0.06]	-	(23.0)	(21.5)	(21.6)	-	[0.05]	5-7
Zr	-	(0.38)	(0.33)	-	(0.26)	(0.48)	-	(0.40)	(0.61)	-	(0.53)	(0.52)	-	(0.32)	(0.45)
Ti	-	(0.20)	(0.21)	-	(0.14)	(0.16)	-	(0.27)	(0.32)	-	(0.31)	(0.39)	-	(0.22)	(0.21)
Ce	-	(0.53)	-	-	(0.59)	_	_	[0.80]	-	-	(1.46)	-	-	(0.94)	-
Ta		(0.64)	-	-	(0.52)	-	-	(0.95)	-	-	(1.02)	-	-	(0.71)	-
Fe	-	(0.25)	-	-	(0.17)	-	-	(0.35)	-	-	(0.38)	-	-	(0.26)	-
Li	-	[0.0005]	-	-	[0.0005]	-	-	[0.0009]		(2.3)	(2.2)	(2.2)	-	[0.0005]	-
Ni	-	-	(0.25)	-	_	(0.20)	-	-	(0.33)	-	_	(0.39)	-	-	(0.31)
Eu	-	-	(0.73)	-	-	(0.64)	-	-	(0.95)	-	-	(1.21)	-	-	(0.53)
U	-	-	(0.23)	-		(0.05)	-	-	(0.16)	- 1	-	(0.24)	-		(0.15)
Th	-	-	(0.08)	-	-	(0.12)	-	-	(0.06)	-	-	(0.16)	-	-	(0.10)
Cr	-	-	(0.20)	-	-	(0.19)	-	-	(0.31)	-	-	(0.14)	100	-	(0.14)
0	(20.35)	(20.58)	(20.82)	(16.73)	(16.45)	(16.67)	(31.86)	(31.84)	(31.96)	(63.49)	(60.75)	(61.36)	(53.90)*	(52.46)*	(53.05)*
Total	(99.39)	(99.12)	(100.10)	(99.37)	(99.16)	(100.07)	(99.71)	(100.79)	(99.88)	(99.68)	(100.01)	(100.39)	(100.00)	(100.00)	(100.00)

Values in parentheses are for information only, they are not certified.

Values in brackets were calculated from the weight of material added to the melt, they are not certified.

^{*}Oxygen values in SRM 1875 were calculated by difference, not by the stoichiometry of the oxides as was done for the other glasses.

Beth Thomas confirms SRM availability via computer as she takes a telephone purchase order.

				y 313 I	RM 85		- ALCOHOL:	NAME OF TAXABLE PARTY.	THE PERSON NAMED IN	THE REAL PROPERTY.
	K-456	K-493	K-453	K-491	K-458	K-489	K-495	K-490	K-496	K-497
			Chemical	Compositio	n (Nomina	l Weight P	'ercent)			
SiO ₂	28.77	27.89	-	0.19	49.38	46.76	_	0.42	_	0.27
PbO	71.23	69.08	58.72	59.35	_	1.28	_	1.55	_	.99
GeO ₂	_	_	41.28	37.98	-	_	-	-	-	-
BaO	_	-	_	-	46.80	43.88	-	-	_	-
ZnO	_	-	_	-	3.82	3.72	_	_	_	-
P ₂ O ₅	_	_	_	_	_	_	_	_	79.54	76.03
MgO	_	_	_	_	_	_	_	-	9.03	8.64
Al ₂ O ₃	_	0.20	_	0.16	_	0.29	20.00	18.68	11.43	10.92
B ₂ O ₃	_	.14	-	.11	-	.20	75.00	70.00	-	0.15
ZrO ₂	-	.49	_	.40	-	.70	-	0.85	-	.54
		-								
TiO ₂	-	.32	-	.26	_	.46	_	.55	_	.35
CeO ₂	-	.68	_	.56	_	.98	_	1.19		.76
Ta ₂ O ₅	-	.88	-	.72	-	1.26	_	1.53	-	.98
Fe ₂ O ₃	-	.32	_	.26	_	0.046	-	0.55	-	.35

Primary, Working, and Secondary Chemicals

These SRM's are high-purity chemicals defined as primary, working, and secondary standards in accordance with recommendations of the Analytical Chemistry Section of the International Union of Pure and Applied Chemistry [Ref. Analyst 90, 251 (1965)]. These definitions are as follows:

Primary Standard:

a commercially available substance of purity 100±0.02 percent (Purity 99.98 + percent).

Working Standard:

a commercially available substance of purity 100±0.05 percent (Purity 99.95 + percent).

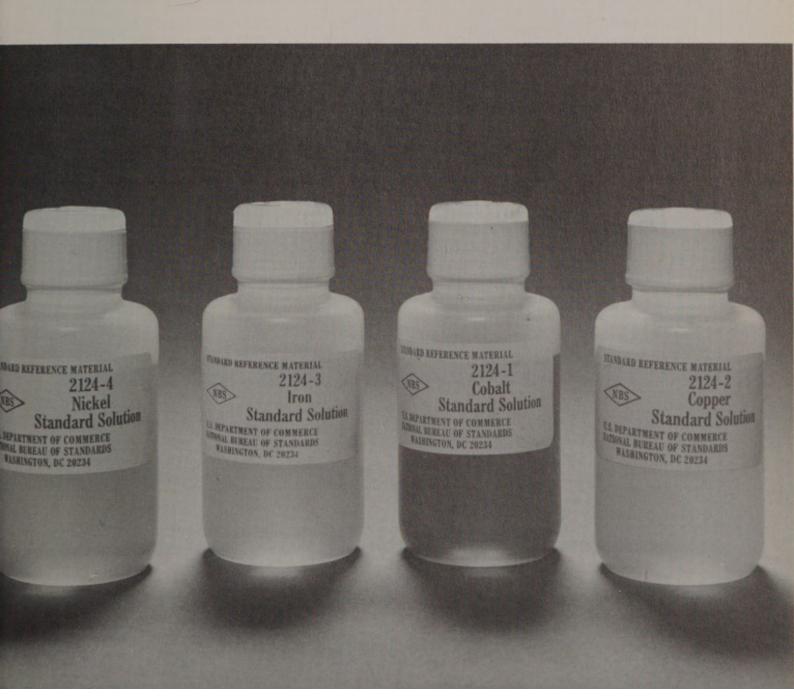
Secondary Standard:

a substance of lower purity which can be standardized against a primary grade standard.

SRM	Туре	Wt/Unit (grams)	Certified Use	Purity Stoichi- ometric
17d	Sucrose	60	Polarimetric Value	(a)
40h	Sodium Oxalate	60	Reductometric Value	99.972
41c	Dextrose (D-Glucose)	70	Reductometric Value	99.9
83d	Arsenic Trioxide	60	Reductometric Value	99.9926
84j	Potassium Hydrogen Phthalate	60	Acidimetric Value	99.996
136d	Potassium Dichromate	60	Oxidimetric Value	99.9931
350a	Benzoic Acid	30	Acidimetric Value	99.9958
723a	Tris(hydroxymethyl)aminomethane	50	Basimetric Value	99.9703
949f	Plutonium Metal	0.5	Assay	99.99
950ь	Uranium Oxide (U ₃ O ₈)	25	Uranium Oxide Standard Value	99.968
951	Boric Acid	100	Acidimetric and Boron Isotopic Value	100.00
960	Uranium Metal	26	Assay	99.975
987	Strontium Carbonate	1	Assay and Isotopic	99.98
999	Potassium Chloride	60	Assay Standard for:	
			Potassium	99.98
			Chloride	99.99

3.0				
M	ICT	och	em	ical

SRM	Туре	Wt/Unit (grams)	Elements Certified
141c	Acetanilide	2	N,C,H
142	Anisic Acid	2	Methoxyl (CH ₃ O)
143c	Cystine	2	S,C,H,N
148	Nicotinic Acid	2	N,C,H
-			
2141	Urea	2	N
2142	o-Bromobenzoic Acid	2	Br
2143	p-Fluorobenzoic Acid	2	F
2144	m-Chlorobenzoic Acid	2	Cl


Spectrometric Solutions

These SRM's are intended as standard stock solutions for use in atomic absorption spectrometry, optical emission (plasma) spectrometry, or any other analytical technique that requires aqueous solutions for calibrating instruments. Each SRM contains four single element solutions of 50 mL each.

SRM	Solution 1	Solution 2	Solution 3	Solution 4
2121	Cadmium	Lead	Silver	Zinc
2122	Barium	Calcium	Magnesium	Strontium
2123	Lithium	Potassium	Sodium	Rubidium
2124	Cobalt	Copper	Iron	Nickel
2125	Boron	Chromium	Manganese	Molybdenum
126	Antimony	Arsenic	Selenium	Tin
127	Aluminum	Beryllium	Phosphorus	Silicon
128	Gold	Mercury	Palladium	Platinum
129	Titanium	Tungsten	Vanadium	Zirconium
	Element	Concentration, mg/mL	Acid Concentrat	ion SRM
	Aluminum	10.00	HC1 10%	2127-1
	Antimony	10.00	HC1 50%	2126-1
Arsenic Barium	Arsenic	10.00	HC1 15%	2126-2
	Barium	10.00	HC1 10%	2122-1
	Beryllium	10.00	HCl 10%	2127-2
	Boron	5.00	Water	2125-1
	Cadmium	10.00	HNO ₃ 10%	2121-1
	Calcium	10.00	HC1 10%	2122-2
	Chromium	10.00	HC1 10%	2125-2
Cobalt		10.00	HNO _s 10%	2124-1
	Copper	10.00	10.00 HNO ₃ 10%	
	Gold	10.00	HC1 10%	2128-1
	Iron	10.00	HC1 10%	2124-3
	Lead	10.00	HNO ₃ 10%	2121-2
	Lithium	10.00	HC1 1%	2123-1
	Magnesium	10.00	HC1 10%	2122-3
	Manganese	10.00	HNO ₃ 10%	2125-3
	Mercury	10.00	HNO ₃ 10%	2128-2
	Molybdenum	10.00	HC1 10%	2125-4
Nickel		10.00	HNO ₃ 10%	2124-4
	Palladium	10.00	HC1 10%	2128-3
	Phosphorus	10.00	HC1 0.05%	2127-3
	Platinum	10.00	HC1 10%	2128-4
	Potassium	10.00	HC1 1%	2123-2
	Rubidium	10.00	HC1 1%	2123-4
	Selenium	10.00	HNO ₃ 10%	2126-3
	Silicon	10.06	Water	2127-4

Spectrometric Solutions (Continued)

Element	Concentration, mg/mL	Acid Concentration	SRM
Silver	10.00	HNO ₃ 10%	2121-3
Sodium	10.00	HC1 1%	2123-3
Strontium	10.00	HC1 10%	2122-4
Tin	10.00	HC1 60%	2126-4
Titanium	IN PREP		2129-1
Tungsten	IN PREP		2129-2
Vanadium	IN PREP		2129-3
Zinc	10.00	HC1 10%	2121-4
Zirconium	IN PREP		2129-4

Clinical Laboratory

These SRM's are for calibrating apparatus and validating analytical methods used in clinical and pathology laboratories. See also: spectrophotometric SRM's and temperature SRM's.

SRM	Туре	Associated Publications	Purity %	Wt/Unit
900	Antiepilepsy Drug Level Assay (phenytoin, ethosuximide, phenobarbital, and primidone)		4 drugs 3 levels	Set of 4 vials
909	Human Serum		#	Set of 6 vials
910	Sodium Pyruvate		98.7	25 g
911a	Cholesterol		99.8	2 g
912a	Urea		99.9	25 g
913	Uric Acid		99.7	10 g
914a	Creatinine		99.7	10 g
915	Calcium Carbonate	SP 260-36	99.9	20 g
916	Bilirubin		99.0	100 mg
917	p-Glucose		99.9	25 g
918	Potassium Chloride	SP 260-63	99.9	30 g
919	Sodium Chloride	SP 260-60	99.9	30 g
920	D-Mannitol		99.8	50 g
921	Cortisol		98.9	1 g
922	Tris(hydroxymethyl) aminomethane		99.9	25 g
923	Tris(hydroxymethyl) aminomethane HCl		99.7	35 g
924	Lithium Carbonate	SP 260-69	100.0	30 g
925	VMA (4-hydroxy-3-methoxymandelic acid)		99.4	1 g
926	Bovine Serum Albumin (Powder)			5 g
927a	Bovine Serum Albumin (7% Solution)	(IN PREP)	*	10 vials, 2.15 mL ea
928	Lead Nitrate		100.00	30 g
929	Magnesium Gluconate		100.1	5 g
937	Iron Metal		99.90	50 g
938	4-Nitrophenol	10 00 00	99.75	15 g
955	Lead in Blood		4 levels	Set of 4 vials
998	Angiotensin I (Human)		94.1	500 μg
1595	Tripalmitin		99.5	2 g
1599	Anticonvulsant Drug Level Assay (valproic acid and carbamazepine)		2 drugs/ 3 levels	Set of 4 vials
1700	Blood Gas: CO ₂ -10%, Bal N ₂		_	0.56 m³ (20 ft³)
1701	Blood Gas: CO ₂ -5%, O ₂ -12%, Bal N ₂		_	0.56 m³ (20 ft³)
1702	Blood Gas: CO ₂ -5%, O ₂ -20%, Bal N ₂		-	0.56 m³ (20 ft³)
1703	Blood Gas: CO ₂ -10%, O ₂ -7%, Bal N ₂		-	0.56 m³ (20 ft³)
8419	Bovine Serum, Inorganic Constituents			Set of 3, 4 mL vials
Confor	ms to NCCLS specification ACC-1.			

Serum Reference Materials

These materials are for calibrating instrumentation and evaluating the reliability of analytical methods for the determination of major, minor, and trace constituents in blood serum, plasma, and similar biological fluids. NOTE: The values in parentheses are not certified.

	Concentrations						
Constituent	SRM 909	(Procedure A)	SRM 909	(Procedure B)	RM	RM 8419	
	(ре	er gram)					
Aluminum	_		_		(1.1)	μg/L	
Cadmium	1.46	ng/mL g	1.24	ng/mL	_		
Calcium	3.560	mmo1/L g	3.013	mmo1/L	(5.1)	mmo1/L	
Chloride	128.0	mmo1/L g	108.4	mmo1/L	-		
Chromium	108	ng/mL g	91.3	ng/mL	(0.30)	μg/L	
Cholesterol	4.359	mmo1/L g	3.69	mmo1/L	_		
Cobalt	_		_		(1.2)	μg/L	
Copper	1.29	μg/mL g	1.10	μg/mL	(0.75)	mg/L	
Creatine	0.179	mmo1/L g	0.152	mmo1/L	_		
Glucose	7.56	mmo1/L g	6.41	mmo1/L	-		
Iron	2.34	μg/mL g	1.98	μg/mL	(2.0)	mg/L	
Lead	23.7	ng/mL g	20.0	ng/mL	_		
Lithium	1.945	mmo1/L g	1.65	mmo1/L	_		
Magnesium	1.425	mmol/L g	1.21	mmo1/L	(0.85)	mmo1/L	
Manganese	_		_		(2.6)	μg/I	
Molybdenum	_		_		(16)	μg/L	
Nickel	_		_		(1.8)	μg/I	
Potassium	4.155	mmo1/L g	3.52	mmol/L	(5.1)	mmo1/L	
Selenium	- /-		-		(16)	μg/I	
Sodium	158.4	mmo1/L g	134.1	mmo1/L	(141)	mmo1/I	
Urea	11.387	mmo1/L g	9.64	mmo1/L	-		
Uric Acid	0.570	mmo1/L g	0.483	mmo1/L			
Vanadium	3.19	ng/mL g	2.70	ng/mL	(<2)	μg/I	
Zinc			1000		(1.1)	mg/I	

Biological Materials

These SRM's are intended for use in the calibration of apparatus and methods used in the analysis of biological materials for major, minor, and trace constituents.

ood and B	everage						
SRM	1549	1566	1567	1568	1569	1577a	RM 50
Туре	Non-fat Powdered Milk	Oyster Tissue	Wheat Flour	Rice Flour	Brewers Yeast	Bovine Liver	Albacore Tuna
Unit Size	100 g	30 g	80 g	80 g	50 g	50 g	70 g
ELEMENTS	Nominal	Composition in	μg/g, unless	otherwise not	ed.		
Aluminum	(2)					(2)	
Antimony	(0.00027)		1 100		-	(0.003)	7 1 1 1 1 1
Arsenic	(0.0019)	13.4	(0.006)	0.41		0.047	(3.3)
Bromine	(12)	(55)	(9)	(1)		(9)	
Cadmium	0.0005	3.5	0.032	0.029		0.44	30000
Calcium	1.30%	0.15%	0.019%	0.014%		120	
Chlorine	1.09%	(1.0%)				0.28%	
Chromium	0.0026	0.69	D. Carlo		2.12		
Cobalt	(0.0041)	(0.4)		0.02		0.21	10000
Copper	0.7	63.0	2.0	2.2		158	
Fluorine	(0.20)	(5.2)					
Iodine	3.38	(2.8)					1000
Iron	1.78	195	18.3	8.7		194	
Lead	0.019	0.48	0.020	0.045		0.135	(0.46)
Magnesium	0.120%	0.128%				600	
Manganese	0.26	17.5	8.5	20.1		9.9	
Mercury	0.0003	0.057	0.001	0.0060		0.004	(0.95)
Molybdenum	(0.34)	(<0.2)	(0.4)	(1.6)		3.5	
Nickel		1.3	(0.18)	(0.16)			
Nitrogen						(10.7%)	
Phosphorus	1.06%	(0.81%)				1.11%	
Potassium	1.69%	0.969%	0.136%	0.112%		0.996%	
Rubidium	(11)	4.45	(1)	(7)		12.5	
Selenium	0.11	2.1	1.1	0.4		0.71	(3.6)
Silver	(<0.0003)	0.89				0.04	
Sodium	0.497%	0.51%	8.0	6.0		0.243%	
Strontium		10.36				0.138	
Sulfur	0.351%	(0.76%)				0.78%	
Tellurium			(<0.002)	(<0.002)			
Thallium	-	(<0.005)				(0.003)	
Thorium		(0.1)					
Tin	(<0.02)						The same
Uranium		0.116				0.00071	4
Vanadium		2.3					
Zinc	46.1	852	10.6	19.4		123	(13.6)

	~ .		
Ethanol	Sa	utione	ĕ
Luianoi			а

SRM	Туре	Certified Constituent	Wt/Unit
1590	Stabilized Wine	Ethanol: 18.57% by volume	Set of 10, 10-mL vials
1828	Ethanol-Water	Ethanol: 95.629 wt%	Set: 1, 15-mL vial
	Solutions	Ethanol: 0.2992 wt%	2, 3-mL vials
		Ethanol: 0.1487 wt%	2, 3-mL vials

Agricultural					
SRM	1572	1573	1575	RM 8412	RM 8413
Туре	Citrus Leaves	Tomato Leaves	Pine Needles	Corn Stalk	Corn Kernel
Unit Size	70 g	70 g	70 g	34 g	47 g
ELEMENT	Nominal Composit	ion in μg/g, unless	otherwise noted.		
Aluminum	92	(0.12%)	545		(4)
Antimony	(0.04)		(0.2)		
Arsenic	3.1	0.27	0.21		
Barium	21				
Boron		(30)			
Bromine	(8.2)	(26)	(9)		
Cadmium	0.03	(3)	(<0.5)		
Calcium	3.15%	3.00%	0.41%	(2160)	(42)
Cerium	(0.28)	(1.6)	(0.4)		
Cesium	(0.098)				
Chlorine	(414)			(2440)	(450)
Chromium	0.8	4.5	2.6		
Cobalt	(0.02)	(0.6)	(0.1)		
Copper	16.5	11	3.0	(8)	(3.0)
Europium	(0.01)	(0.04)	(0.006)		
Fluorine				(0.65)	(0.24)
Iodine	1.84				
Iron	90	690	200	(139)	(23)
Lanthanum	(0.19)	(0.9)	(0.2)		
Lead	13.3	6.3	10.8		
Magnesium	0.58%	(0.7%)		(1600)	(990)
Manganese	23	238	675	(15)	(4.0)
Mercury	0.08	(0.1)	0.15		

Agricultural (C	continued)				
SRM	1572	1573	1575	RM 8412	RM 8413
Туре	Citrus Leaves	Tomato Leaves	Pine Needles	Corn Stalk	Corn Kernel
Unit Size	70 g	70 g	70 g	34 g	47 g
Molybdenum	0.17				
Nickel	0.6		(3.5)		
Nitrogen	(2.86%)	(5.0%)	(1.2%)	(6970)	(13750)
Phosphorous	0.13%	0.34%	0.12%		
Potassium	1.82%	4.46%	0.37%	(17350)	(3570)
Rubidium	4.84	16.5	11.7		
Samarium	(0.052)				
Scandium	(0.01)	(0.13)	(0.03)	-1-1-110	
Selenium	(0.025)			(0.016)	(0.004)
Sodium	160			(28)	
Strontium	100	44.9	4.8	(12)	
Sulfur	0.407%				
Tellurium	(0.02)				
Thallium	(<0.01)	(0.05)	(0.05)		
Thorium		0.17	0.037		
Tin	(0.24)				
Uranium	(<0.15)	0.061	0.020		
Zinc	29	62		(32)	(15.7)

Environmental Materials

Analyzed Gases

These SRM's are for calibrating apparatus used to measure various components of gas mixtures, and atmospheric pollutants. All cylinders conform to the appropriate DOT specifications.

SRM	Туре	Certified Component	No	ninal Concentration
1658a	Methane in Air	CH ₄	1	μmole/mole (ppm)
1659a	Methane in Air	CH ₄	10	μmole/mole (ppm)
1660a	Methane-Propane in Air	CH ₄	4	μmole/mole (ppm)
		C ₃ H ₈	1	μmole/mole (ppm)
1661a	Sulfur Dioxide in Nitrogen	SO ₂	500	μmole/mole (ppm)
1662a	Sulfur Dioxide in Nitrogen	SO ₂	1000	μmole/mole (ppm)
1663a	Sulfur Dioxide in Nitrogen	SO ₂	1500	μmole/mole (ppm)
1664a	Sulfur Dioxide in Nitrogen	SO ₂	2500	μmole/mole (ppm)

Research chemist Bill Cuthrell prepares to analyze the concentration of a proposed gas SRM.

Analyzed Gases (Continued)

SRM	Туре	Certified Component	Nominal Concentration	
1665b	Propane in Air	C ₃ H ₈	3	μmole/mole (ppm)
1666b	Propane in Air	C₃H ₈	10	μmole/mole (ppm)
1667b	Propane in Air	C ₃ H ₈	50	μmole/mole (ppm)
1668b	Propane in Air	C ₃ H ₈	100	μmole/mole (ppm)
1669b	Propane in Air	C ₂ H ₈	500	μmole/mole (ppm)
1670	Carbon Dioxide in Air	CO ₂	0.033	mole percent
1671	Carbon Dioxide in Air	CO ₂	0.034	mole percent
1672	Carbon Dioxide in Air	CO ₂	0.035	mole percent
1674b	Carbon Dioxide in Nitrogen	CO ₂	7.0	mole percent
1675b	Carbon Dioxide in Nitrogen	CO ₂	14.0	mole percent
1677c	Carbon Monoxide in Nitrogen	СО	10	ppm
1678c	Carbon Monoxide in Nitrogen	СО	50	ppm
1679c	Carbon Monoxide in Nitrogen	СО	100	ppm
1680b	Carbon Monoxide in Nitrogen	CO	500	ppm
1681b	Carbon Monoxide in Nitrogen	СО	1000	ppm
1683b	Nitric Oxide in Nitrogen	NO	50	ppm
1684b	Nitric Oxide in Nitrogen	NO	100	ppm
1685b	Nitric Oxide in Nitrogen	NO	250	ppm
1686b	Nitric Oxide in Nitrogen	NO	500	ppm
1687b	Nitric Oxide in Nitrogen	NO	1000	ppm
1693	Sulfur Dioxide in Nitrogen	SO ₂	50	ppm
1694	Sulfur Dioxide in Nitrogen	SO ₂	100	ppm
1696	Sulfur Dioxide in Nitrogen	SO ₂	3500	ppm
1700	Blood Gas: CO ₂ -10%, Bal N ₂	Concentra	ition in mol	e percent
1701	Blood Gas: CO ₂ -5%, O ₂ -12%, Bal N ₂	Concentra	ition in mol	e percent
1702	Blood Gas: CO ₂ -5%, O ₂ -20%, Bal N ₂	Concentra	tion in mol	e percent
1703	Blood Gas: CO ₂ -10%, O ₂ -7%, Bal N ₂	Concentra	tion in mol	e percent
1805	Benzene in Nitrogen	C ₆ H ₆	0.25	ppm
1806	Benzene in Nitrogen	C ₆ H ₆	10	ppm
1808	Tetrachloroethylene in N ₂	C ₂ Cl ₄	0.25	ppm
1809	Tetrachloroethylene in N ₂	C ₂ Cl ₄	10	ppm
2612a	Carbon Monoxide in Air	СО	10	μmole/mole (ppm)
2613a	Carbon Monoxide in Air	СО	20	μmole/mole (ppm)
2614a	Carbon Monoxide in Air	СО	45	μmole/mole (ppm)

Analyzed Gases (Continued)

SRM	Туре	Certified Component	Nom	ninal Concentration
2619a	Carbon Dioxide in Nitrogen	CO ₂	0.5	mole percent
2620a	Carbon Dioxide in Nitrogen	CO ₂	1.0	mole percent
2621a	Carbon Dioxide in Nitrogen	CO ₂	1.5	mole percent
2622a	Carbon Dioxide in Nitrogen	CO ₂	2.0	mole percent
2623a	Carbon Dioxide in Nitrogen	CO ₂	2.5	mole percent
2624a	Carbon Dioxide in Nitrogen	CO ₂	3.0	mole percent
2625a	Carbon Dioxide in Nitrogen	CO ₂	3.5	mole percent
2626a	Carbon Dioxide in Nitrogen	CO ₂	4.0	mole percent
2627	Nitric Oxide in Nitrogen	NO	5	μmole/mole (ppm)
2628	Nitric Oxide in Nitrogen	NO	10	μmole/mole (ppm)
2629	Nitric Oxide in Nitrogen	NO	20	μmole/mole (ppm)
2630	Nitric Oxide in Nitrogen	NO	1500	μmole/mole (ppm)
2631	Nitric Oxide in Nitrogen	NO	3000	μmole/mole (ppm)
2632	Carbon Dioxide in Nitrogen	CO ₂	300	ppm
2633	Carbon Dioxide in Nitrogen	CO ₂	400	ppm
2634	Carbon Dioxide in Nitrogen	CO ₂	800	ppm
2635	Carbon Monoxide in Nitrogen	СО	25	ppm
2636	Carbon Monoxide in Nitrogen	СО	250	ppm
2637	Carbon Monoxide in Nitrogen	СО	2500	ppm
2638	Carbon Monoxide in Nitrogen	СО	5000	ppm
2639	Carbon Monoxide in Nitrogen	СО	1	mole percent
2640	Carbon Monoxide in Nitrogen	СО	2	mole percent
2641	Carbon Monoxide in Nitrogen	СО	4	mole percent
2642	Carbon Monoxide in Nitrogen	СО	8	mole percent
2643	Propane in Nitrogen	C ₂ H ₈	100	ppm
2644	Propane in Nitrogen	C₃H ₈	250	ppm
2645	Propane in Nitrogen	C ₃ H ₈	500	ppm
2646	Propane in Nitrogen	C ₃ H ₈	1000	ppm
2647	Propane in Nitrogen	C₃H ₈	2500	ppm
2648	Propane in Nitrogen	C₃H ₈	5000	ppm
2649	Propane in Nitrogen	C₃H₅	1	mole percent
2650	Propane in Nitrogen	C ₃ H ₈	2	mole percent
2651	Propane in Nitrogen and Oxygen	C ₃ H ₈ /O ₂	0.01/5.0	mole percent
2652	Propane in Nitrogen and Oxygen	C ₃ H ₈ /O ₂	0.01/10.0	mole percent
2653	Nitrogen Dioxide in Air	NO ₂	250	ppm
2654	Nitrogen Dioxide in Air	NO ₂	500	ppm
2655	Nitrogen Dioxide in Air	NO ₂	1000	ppm
2656	Nitrogen Dioxide in Air	NO ₂	2500	ppm
2657	Oxygen in Nitrogen	O ₂	2	mole percent
2658	Oxygen in Nitrogen	O ₂	10	mole percent
2659	Oxygen in Nitrogen	O ₂	21	mole percent

Permeation Devices

These SRM's are for calibrating air pollution monitoring apparatus, and may be used to verify air pollution analytical methods and procedures. Each tube is individually certified.

SRM's 1625, 1626, and 1627 are certified over the temperature range of 20 to 30°C. SRM's 1629a, 1911, and 1912 are calibrated at 25.0°C only; and they cannot be shipped by air.

SRM	Туре	Tube Length	Permeation Rate (µg/	Typical Concentrations (ppm) Flow Rates (liters per minute)		
	(cm) min) at 25°C	1	5	10		
1625	Sulfur Dioxide Permeation Tube	10	2.8	1.07	0.214	0.107
1626	Sulfur Dioxide Permeation Tube	5	1.4	0.535	0.107	0.0535
1627	Sulfur Dioxide Permeation Tube	2	0.56	0.214	0.0428	0.0214
629a	Nitrogen Dioxide Permeation Device	10	1.0	0.5	0.1	0.05
911	Benzene Permeation Device	10	0.4	0.2	0.04	0.02
912	Tetrachloroethylene Perm. Device	10	1.0	0.5	0.1	0.05

Analyzed Liquids and Solids

These SRM's are for analysis of materials for constituents of interest in health or environmental problems. See also: Clinical SRM's and Industrial Hygiene SRM's.

				Ce	Certified Element		
SRM	Туре	Unit Size	Lead	Nickel	Sulfur	Mercury	Vanadi- um
1579	Powdered Lead Base Paint	35 g	11.87%				,
1618	Vanadium and Nickel in Residual Fuel Oil	100 mL		75µg/g	(4.3%)		423μg/g
1630	Trace Mercury in Coal	50 g				0.13 μg/g	
1636a	Lead in Reference Fuel	3 vials each	0.03, 0.05, 0.07, 2.0 g/gal				
1637a	Lead in Reference Fuel	4 vials each	0.03, 0.05, 0.07 g/gal				
1638b	Lead in Reference Fuel	IN PREP					
1641b	Mercury in Water (µg/mL)	6×20 mL				1.52 μg/mL	
1642b	Mercury in Water (ng/mL)	950 mL				1.49 ng/mL	
8505	Vanadium in Crude Oil	250 mL					390µg/

Simulated Rainwaters

These materials were developed to aid in the analysis of acidic rainwater by providing stable, homogeneous material as control standards at two levels of acidity.

NOTE: Values in parentheses for SRM 2694 are not certified, and no values are certified for RM 8409.

SRM Type		Unit of Issue					
2694 Simula	ted Rainwater	Se	et 4: 2-50mL	each of 2 levels			
8409 Simula	ted Rainwater	Se	et 2, 1-50mL	each of 2 levels			
Constituent	Element/Parameter	2694-I	2694-II	8409-I	8409-II		
pH, 25°C		4.30	3.59	(4.320)	(3.61)		
Specific Conductance (µ	uS/cm, 25°C)	26	130	(25)	(128)		
Acidity, meq/L		0.050	0.248	(0.055)	(0.280)		
Fluoride, mg/L		0.054	0.098	(0.058)	(0.102)		
Chloride, mg/L		(0.24)	(1.0)	(0.230)	(1.00)		
Nitrate, mg/L		0.501	7.06	(0.535)	(7.18)		
Nitrate-Nitrogen, mg/L			_	(0.121)	(1.62)		
Sulfate, mg/L		2.69	10.8	(2.62)	(10.5)		
Sulfate-Sulfur, mg/L			-	(0.875)	(3.49)		
Sodium, mg/L		0.205	0.419	(0.208)	(0.410)		
Potassium, mg/L	3	0.052	0.106	(0.058)	(0.112)		
Ammonium, mg/L		_	(1.0)	-	(1.07)		
Ammonium-Nitrogen, n	ng/L	-	-	-	(0.83)		
Calcium, mg/L		0.014	0.049	(0.027)	(0.05)		
Magnesium, mg/L		0.024	0.051	(0.026)	(0.05)		

Sulfur in Fossil Fuels

CDM	Tomo	Unit Size	C-16 W4 01	Furnace	H	HV2
SRM	Туре	Unit Size	Sulfur Wt.%	Ash Wt.%	MJ•Kg ⁻¹	(BTU•lb ⁻¹)
1616 5	Sulfur in Kerosene (IN PREP)					
1617 5	Sulfur in Kerosene (IN PREP)					
1619	Sulfur in Residual Fuel Oil	100 mL	0.719			
1620a	Sulfur in Residual Fuel Oil	100 mL	4.504			
1621b	Sulfur in Residual Fuel Oil	100 mL	0.950			
1622b	Sulfur in Residual Fuel Oil	100 mL	1.982			
1623a	Sulfur in Residual Fuel Oil	100 mL	0.240			
1624a	Sulfur in Distillate Fuel Oil	100 mL	0.141			
2682	Coal (Sub-bituminous)	50 g	0.47	6.37	27.45	(11800)
2683	Coal (Bituminous)	50 g	1.85	6.85	32.70	(14060)
2684	Coal (Bituminous)	50 g	3.00	11.09	29.68	(12760)
2685	Coal (Bituminous)	50 g	4.62	16.53	28.15	(12100)
1819	Sulfur in Lubricating Base Oil: Oil I Oil II Oil III Oil IV Oil V	20 g 20 g 20 g 20 g 20 g 20 g	299 µg/g 1070 µg/g 2865 µg/g 6030 µg/g 10550 µg/g	41		

NOTE: The calorific values $(MJ\cdot Kg^{-1})$ may decrease upon the aging or normal oxidation of the coals. NBS will continue to monitor these calorific values and report any substantive change to the purchaser.

					HE WATER OF		HE WATER LIE	
SRM	1632b	1633a	1634b	1635	1643b	1645	1646	1648
Туре	Coal (Bitumi- nous)	Coal Fly Ash	Fuel Oil	Coal (Sub- bituminous)	Water	River Sediment	Estua- rine Sediment	Urban Particu- late
Unit Size	75 g	75 g	100 mL	75 g	950 mL	70 g	75 g	2 g
ELEMENT	Nominal	Concentratio	ns in μg/g	g, unless other	rwise noted.			
Aluminum	0.855%	(14%)	(16)	(0.32%)		2.26%	6.25%	3.42%
Antimony	(0.24)	(7)		(0.14)		(51)	(0.4)	(45)
Arsenic	3.72	145	0.12	0.42	(49) ng/g	(66)	11.6	115
Barium	67.5	(0.15%)	(1.3)		44 ng/g			(737)
Beryllium		(12)			19 ng/g		(1.5)	
Bismuth	1031				(11) ng/g			
Bromine	(17)				B(94) ng/g			(500)
Cadmium	0.0573	1.0		0.03	20 ng/g	10.2	0.36	75
Calcium	0.204%	1.11%	(15)			(2.9)	0.83%	
Cerium	(9)	(180)		(3.6)			(80)	(55)
Cesium	(0.44)	(11)					(3.7)	(3)
Chlorine	(1260)							(0.45%
Chromium	(11)	196	(0.7)	2.5	18.6 ng/g	2.96%	76	403
Cobalt	2.29	(46)	0.32	(0.65)	26 ng/g	10.1	10.5	(18)
Copper	6.68	118		3.6	21.9 ng/g	109	18	609
Europium	(0.17)	(4)		(0.06)			(1.5)	(0.8)
Fluorine						(0.09%)		
Gallium		(58)		(1.05)				
Germanium							(1.4)	
Hafnium	(0.43)	(7.6)		(0.29)			4	(4.4)
Hydrogen	5.07%							(1.0)

SRM	1632b	1633a	1634b	1635	1643b	1645	1646	1648
Туре	Coal (Bitumi- nous)	Coal Fly Ash	Fuel Oil	Coal (Sub- bituminous)	Water	River Sediment	Estua- rine Sediment	Urban Particu- late
Unit Size	75 g	75 g	100 mL	75 g	950 mL	70 g	75 g	2 g
Iodine								(20)
Iron	0.759%	9.4%	31.6	0.239%	99 ng/g	11.3%	3.35%	3.91%
Lanthanum	(5.1)					(9)		(42)
Lead	3.67	72.4	(2.8)	1.9	23.7 ng/g	714	28.2	0.6559
Lithium	(10)						(49)	
Magnesium	0.0383%	0.455%				0.74%	1.09%	(0.8%)
Manganese	12.4	(190)	0.23	21.4	28 ng/g	785	375	(860)
Mercury		0.16	(<0.001)			1.1	0.063	
Molybdenum	(0.9)	(29)			85 ng/g	3 35 33 6	(2)	
Nickel	6.10	127	28	1.74	49 ng/g	45.8	32	82
Nitrogen	1.56%							
Phosphorus							0.054%	
Potassium	0.0748%	1.88%				1.26%	(1.4%)	1.05%
Rubidium	5.05	131					(87)	(52)
Samarium	(0.87)							(4.4)
Scandium	(1.9)	(40)		(0.63)		(2)	(10.8)	(7)
Selenium	1.29	10.3	0.18	0.9	9.7 ng/g	(1.5)	(0.6)	27
Silicon	(1.4%)	22.8%					(31%)	-
Silver					9.8 ng/g			(6)
Sodium	0.0515%	0.17%	(90)	(0.24%)		0.54%	(2%)	0.4259
Strontium	(102)	830			227 ng/g			
Sulfur	1.89%		2.8%	0.33%		(1.1)	(0.96%)	(5%)
Tellurium							(0.5)	
Thallium		5.7			8.0 ng/g	1.44	(0.5)	
Thorium	1.342	24.7		0.62		1.62	(10)	(7.4)
Titanium	0.0454%	(0.8%)		(0.02%)			(0.51%)	(0.40%
Tungsten	(0.48)							(4.8)
Uranium	0.436	10.2		0.24		1.11	1	5.5

Values in parentheses are not certified, but are given for information only.

(300)

220

Vanadium

Zinc

(14)

11.89

55.4

3.0

5.2

4.7

45.2 ng/g

66 ng/g

23.5

0.172% 138

94

140

0.476%

Dale Friend operates equipment that fills and seals ampoules used for various liquid SRM's.

SRM	Туре	Unit of Issue
1580	Shale Oil	Set of 5, 2mL/ampoules
1581	Polychlorinated Biphenyls in Oil	Set of 4, 5mL/ampoules
1582	Petroleum Crude Oil	Set of 5, 2mL/ampoules
1583	Chlorinated Pesticides in Isooctane	Set of 6, 2mL/ampoules
1584	Phenols in Methanol	Set of 5, 2mL/ampoules
1585	Chlorinated Biphenyls	IN PREP
1586	Isotopically Labelled Priority Pollutants	Set of 6, 2mL/ampoules
1587	Nitro PAH in Solution	Set of 4, 1mL/ampoule
1614	Dioxin (2,3,7,8 TCDD) in Isooctane	Set of 6, 1.2mL/ampoule
1639	Halocarbons (in Methanol)	Set of 5, 1.5 mL/ampoule
1644	Polynuclear Aromatic Hydrocarbon Generator Columns	Set of 3 columns
1647	Priority Pollutant PAH (in Acetonitrile)	Set of 5, 1.2mL/ampoule
1649	Urban Dust/Organics	10 grams
1650	Diesel Particulate Matter	Set of 5, 100mg/ampoule

				THE PARTY OF THE P		
SRM Constituents	1580 (μg/g)	1582 (μg/g)	1644 (μg/kg)	1647 (μg/mL)	1649 (μg/g)	1650 (μg/g)
Anthracene	(µg/g)	(μg/g)	16.6 to 60.1	3.29	(µg/g)	(hR/R)
Benz[a]anthracene		3.0	3.38 to 12.8	5.03	2.6	6.5
Benzo[a]pyrene	21	1.1	0.59 to 2.26	5.3	2.9	1.2
Benzo[e]pyrene	18	1.1	0.57 10 2.20	2.0		(10)
Fluoranthene	54	2.5		10.1	7.1	51
o-Cresol	385					
Phenol	407					1
Perylene	3.4	31				(0.13
Pyrene	104			9.84		48
2,6-Dimethylphenol	175	-				
Benzo[f]quinoline	16			132 100		
(5,6-Benzoquinoline)						
Naphthalene				22.5		
Acenaphthylene				19.1		
Acenaphthene				21.0		
1-Nitropyrene						19
Fluorene				4.92		
Phenanthrene		101		5.06		(71)
Chrysene				4.68		(22)
Benzo[b]fluoranthene				5.11		
Benzo[k]fluoranthene				5.02		(2.1)
Benzo[ghi]perylene				4.01	4.5	2.4
Dibenz[a,h]anthracene	-			3.68		
Indeno[1,2,3-cd]pyrene	1			4.06	3.3	-
Dibenzothiophene		33				

Organic (Constituents ((Continued)
-----------	----------------	-------------

Organic Constituents (Continued)			
SPM 1620 Continued Constant of the Continued C			
SRM 1639—Certified Concentration of Halocarbons at 23±3°C Compound			
Chloroform		oncentration, ng/μL	
Chlorodibromomethane		6235	
Bromodichloromethane	124.6 389.9		
Bromoform			
Carbon Tetrachloride	86.5		
Trichloroethylene	157.0		
Tetrachloroethylene		85.8 40.6	
SRM 1581 Polychlorinated Biphenyls in Oils		10.0	
Matrix	Aroclor Type	Concentration (μg/g)	
Motor Oil	1242	100	
Motor Oil	1260	100	
Transformer Oil	1242	100	
Transformer Oil	1260	100	
SRM 1583 Chlorinated Pesticides in 2,2,4-Trimethylpentane			
Destable	Con	centrations	
Pesticide	(μg/g)	(μg/mL, 23°C)	
Y-BHC (Lindane)	1.11	0.77	
d-BHC	0.76	0.53	
Aldrin	0.86	0.59	
Heptachlor Epoxide	(0.997)		
4,4'-DDE (p,p'-DDE)	1.23	0.85	
4,4'-DDT (p,p'-DDT)	1.90	1.31	
SRM 1584 Priority Pollutant Phenols in Methanol			
Compound	Conc	entration (μg/mL, 23°C)	
2-Chlorophenol		64.4	
Phenol		29.7	
2-Nitrophenol		25.2	
2,4-Dimethylphenol		51.6	
2,4-Dichlorophenol		35.6	
4-Chloro-m-cresol		27.4	
2,4,6-Trichlorophenol		20.4	
4-Nitrophenol	Man In make and	20.7	
4,6-Dinitro-o-cresol		20.1	
Pentachlorophenol		15.4	
2,4-Dinitrophenol		(22.4)	

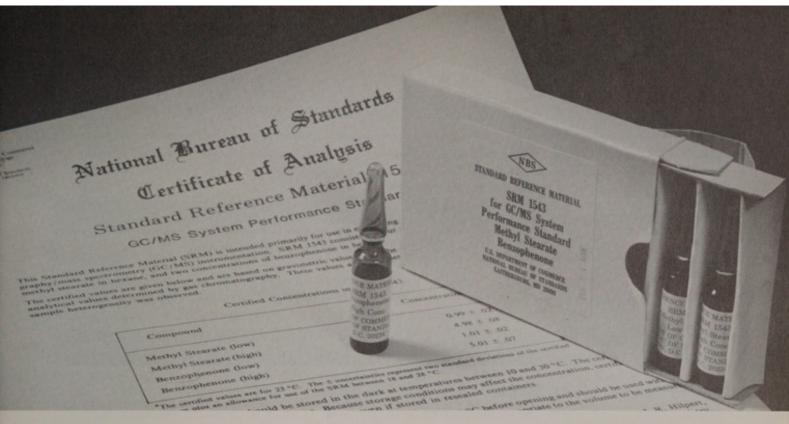
Organic Constituents (Continued)

SRM 1586 Isotopically Labeled and Unlabeled Priority Pollutants in Methanol

	Concentrati	ions (μg/g)
Compound	1586-1 (unlabeled)	1586-2 (labeled)
Carbon tetrachloride	128.5	124.4
Benzene	101.1	99.0
Chlorobenzene	133.0	144.0
Phenol	117.0	116.0
Nitrobenzene	126.0	134.5
2-Nitrophenol	103.6	101.9
2,4-Dichlorophenol	102.5	82.2
Naphthlene	126.5	126.6
Bis(2-ethylhexyl)phthalate	63.9	60.4
Benzo(a)pyrene	49.2	44.1

SRM 1587 Nitrated Polycyclic Aromatic Hydrocarbons in Methanol

C	Conce	Concentrations	
Compound	(μg/g)	(μg/mL, 23°C)	
2-Nitrofluorene	9.67	7.64	
9-Nitroanthracene	5.01	3.96	
3-Nitrofluoranthene	9.24	7.30	
1-Nitropyrene	8.95	7.07	
7-Nitrobenz[a]anthracene	9.27	7.32	
6-Nitrochrysene	8.13	6.42	
6-Nitrobenzo[a]pyrene	(6.1)	(4.8)	


SRM 1614 Dioxin (2,3,7,8-TCDD in Isooctane)

	Conc	entrations (ng/mL, 23°C)	Concentrations	
Compound	(ng/g)			
2,3,7,8-TCDD	98.3	67.8		
2,3,7,8-TCDD-13C	95.6	65.9		

GC/MS System Performance

These SRM's are for evaluating the sensitivity of gas chromatographic/mass spectrometry (GC/MS) instrumentation. They consist of two concentrations each of methyl stearate and benzophenone.

SRM Type	Concentrations (ng/µL)			
	Туре	Methyl Stearate	Benzophenone	Unit Size
1543	GC/MS System Performance	0.99; 4.98	1.01; 5.01	1 Set, 4 vials
8443	GC/MS System Performance	0.99; 4.98	1.01; 5.01	5 Sets, 20 vials

Top: SRM 1543, GC/MS Performance Standard, contains 4 vials, two each of different concentrations of methyl stearate and benzophenone.

Left: Inspection, labeling, and packaging of SRM's often combine automated and hand operations. Frances Smithers labels small vials not suitable for machine labeling.

Industrial Hygiene

These SRM's were developed for industrial hygiene analyses to provide reference materials for toxicology research and for monitoring human exposure to selected toxic elements.

Freeze-Dried Urine

SRM's 2670, 2671a, and 2672a consist of freeze-dried urine in 30 mL serum bottles. The freeze-dried urine SRM's are to be reconstituted by the addition of 20 mL of pure water to each bottle. Each unit contains a set of four bottles, two bottles each at normal and elevated levels.

SRM	Matrix	Constituent Certified or Determined
2670	Freeze-Dried Urine	Arsenic, Cadmium, Calcium, Chloride, Copper, Lead, Magnesium, Manganese, Nickel, Potassium, Selenium, Sodium, Zinc
2671a	Freeze-Dried Urine	Flouride
2672a	Freeze-Dried Urine	Mercury

Materials on Filter Media

These SRM's consist of potentially hazardous materials deposited on filters to be used to determine the levels of these materials in industrial atmospheres.

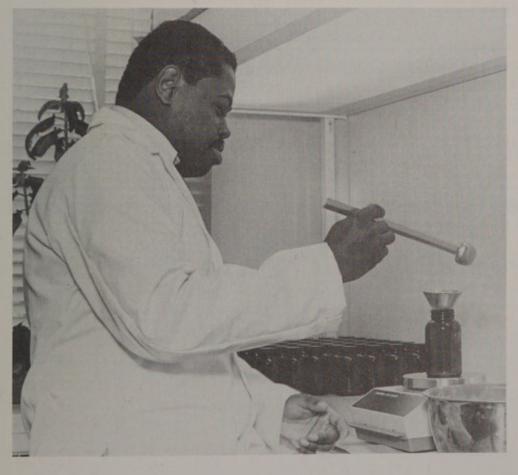
CDM	Tr.	TI-te Ct	Material	Qua	Quantity Certified (µg/filter)					
SRM	Туре	Unit Size	Certified	1	II	Ш	IV			
2673	Sulfate and Nitrate	2 filters at	Sulfate	503	2002	6939	2			
	on Filter Media	each level	Nitrate	100	1002	2513	2			
2676b	Metals on Filter Media	Set of 12	Cadmium	0.99	2.49	10.14	(<0.01)			
			Lead	7.55	14.9	30.4	(<0.04)			
			Manganese	1.88	9.41	18.5	(<0.01)			
			Zinc	10.01	49.7	99.5	(0.4)			
2677	Beryllium and Arsenic	2 sets of 4	Beryllium	0.052	0.256	1.03	< 0.001			
	on Filter Media		Arsenic	0.103	1.07	10.5	< 0.002			
2679a	Quartz on Filter Media	Set of 4	Quartz	<2	30.8	80.2	202.7			
			Clay	(370)	(370)	(370)	(370)			

Thin Films for X-ray Fluorescence

These SRM's are for standardizing x-ray spectrometers. They may be useful in elemental analysis of particulate matter collected on filter media, and where x-ray spectrometer calibration functions are determined using thin film standards. Each SRM is individually certified and consists of a silica-base glass film deposited on a polycarbonate filter.

SRM	Туре	Elements Certified	
1832	Thin-Glass Film	Al, Ar, Ca, Co, Cu, Fe, Mn, Si, Na, and V	
1833	Thin-Glass Film	Ar, Fe, Pb, K, Si, Ti, and Zn	

Respirable Quartz


This SRM consists of quartz powder that is in the respirable size range. It is intended for use in determining the level of quartz in an industrial atmosphere by x-ray diffraction.

SRM	Туре	Constituent Certified	Amoun
1878	Alpha Quartz	95.5% Crystalline α-quartz	5 g

Asbestos

These SRM's consists of four 3×3 mm sections of a 0.4 mm pore size polycarbonate filter containing chrysotile fibers mixed with an urban dust. It is intended for use in evaluating the techniques used to count and identify chrysotile asbestos fibers in filter samples by transmission electron microscopy.

SRM	Туре	Fiber Loading
1876a	Chrysotile Asbestos	37 fibers/0.01 mm²
8410	Chrysotile Asbestos Research Filter	20 fibers/0.01 mm ²

Powdered SRM's are packaged by weight. John Savoy uses a balance to assure the correct amount in each bottle.

Lubricating Materials

Metallo-Organic Compounds

These SRM's are for preparing solutions in oils of known and reproducible concentrations of metals. Certificates give directions for preparing a solution of known concentration in lubricating oil.

		Cor	nstituent Certifi	ed
SRM	Туре	Element	(Wt. percent)	Wt/Unit (grams)
075a	Aluminum 2-ethylhexanoate	Aluminum	8.07	5
051b	Barium cyclohexanebutyrate	Barium	28.7	5
053a	Cadmium cyclohexanebutyrate	Cadmium	24.8	5
074a	Calcium 2-ethylhexanoate	Calcium	12.5	5
078Ь	Tris (1-phenyl-1,3-butanediono) chromium (III)	Chromium	9.6	5
055b	Cobalt cyclohexanebutyrate	Cobalt	14.8	5
080a	Bis(1-phenyl-1,3-butanediono)copper (II)	Copper	16.37	5
079b	Tris (1-phenyl-1,3-butanediono)iron (III)	Iron	10.45	5
059c	Lead cyclohexanebutyrate	Lead	IN PREP	5
060a	Lithium cyclohexanebutyrate	Lithium	4.1	5
061c	Magnesium cyclohexanebutyrate	Magnesium	6.45	5
062b	Manganous cyclohexanebutyrate	Manganese	13.2	5
065b	Nickel cyclohexanebutyrate	Nickel	13.89	5
071b	Triphenyl phosphate	Phosphorus	9.48	5
066a	Octaphenylcyclotetrasiloxane	Silicon	14.14	5
077a	Silver 2-ethylhexanoate	Silver	42.60	5
069Ь	Sodium cyclohexanebutyrate	Sodium	12.0	5
070a	Strontium cyclohexanebutyrate	Strontium	20.7	5
057Ь	Dibutyltin bis (2-ethylhexanoate)	Tin	22.95	5
052b	Bis(1-phenyl-1,3-butanediono)oxovanadium (IV)	Vanadium	13.01	5
073Ь	Zinc cyclohexanebutyrate	Zinc	16.66	5

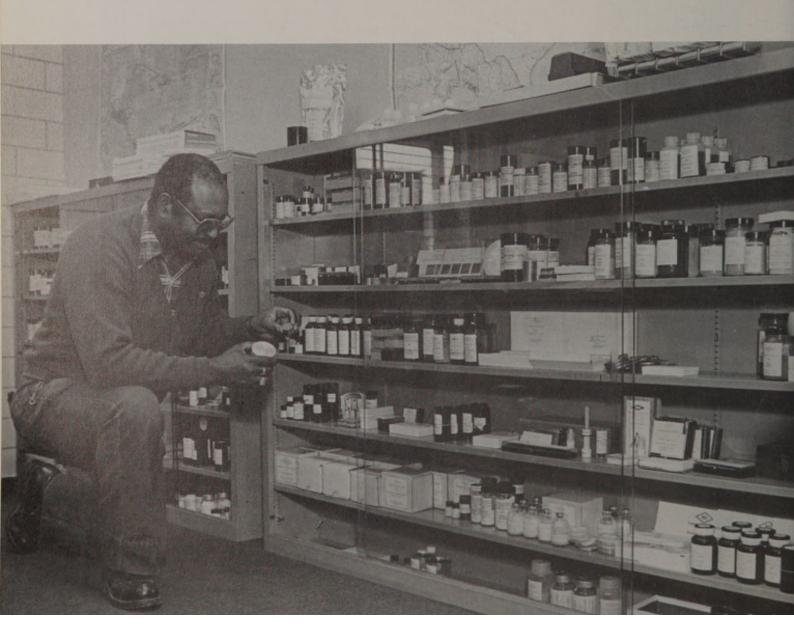

Catalyst Package for Lubricant Oxidation

SRM 1817 is intended primarily for use in evaluating the oxidation stability of lubricating oils, i.e., automative crankcase lubricants. The SRM contains: (1) an oxidized/nitrated fuel fraction, (2) a metal naphthenate mixture, and (3) distilled water. The metal naphthenate mixture has the following weight percentages of metal naphthenates: lead-82, iron-7, copper-4, manganese-3.5, and tin-3.5. SRM 1817 is available as a kit of 5 ampoules of each of the three components. The fuel and metal catalysts are sealed under inert atmosphere to ensure their stabilities.

Wear-Metals in Oil

SRM	1083	1084	1085	
Туре	Base Oil (ppm)	Wear-Metals in Oil 100 ppm	Wear-Metals in Oil 300 ppm	
Unit Size	150 mL	85 mL	85 mL	
ELEMENT (Values in μg/g)				
Aluminum	(<0.5)	98	296	
Chromium	(<0.02)	100	298	
Copper	(<0.5)	98	295	
Iron	(<1)	100	300	
Lead	(<0.04)	(101)	(305)	
Magnesium	(<0.1)	98	297	
Molybdenum	(<0.01)	97	292	
Nickel	(<0.4)	101	303	
Silicon	(<1)	(102)	(308)	
Silver	(<0.05)	(101)	(296)	
	SECTION AND ADDRESS.			
Sulfur	(980)	(2237)	(4806)	
Tin	(<0.4)	102	296	
Titanium	(<5)	99	300	

Values in parentheses are not certified, but are given for information only.



Many SRM's are certified as bulk material and then packaged by weight into individual containers, as Helen Tyler is doing with this powdered SRM.

Fertilizers

These SRM's are intended for use in the fertilizer industry as working standards for the determination of the certified constituents.

			-				Wt/Un	it Co	mpositio	n (Nom	inal W	eight Per	cent)
SRM			Ty	pe			(grams)	-	P	K	P ₂ O ₂	K ₂ O	CaO
193	Potassium	Nitrat	te				90	13.85	5	38.66			
194	Ammoniu	m Dih	ydroge	en Phosp	hate		90	12.15	5 29.92				
200	Potassium Dihydrogen Phosphate						90		22.74	28.76			
120b	Phosphate Rock (Florida)					90				34.57	0.12	49.40	
694	Phosphate Rock (Western)						90				30.2	0.51	43.6
					Co	mpositi	on (Non	inal Wei	ght Perce	ent)			
SRM		SiO ₂	F	Fe ₂ O ₃	Al ₂ O ₃	MgO	Na ₂ O	MnO	TiO ₂	CO ₂	CdO	U	V ₂ O
120ь		4.68	3.84	1.10	1.06	0.28	0.35	0.032	0.15	2.79	0.002	0.01284	
694		11.2	3.2	0.79	1.8	0.33	0.86	0.0116	(0.11)		0.015	0.01414	0.31

Ores	201000000000		-							
SRM	7	9a	180		181		182		183	
Туре	Fluo Custon	rspar, is grade	Fluorspar grad		igh Lithium ore Lithium (Spodumene) (Petal					
Unit Weight	12	20g	120 g 45 g		45 g	4	15 g	45 g		
Constituents										
CaF ₂	97.:	39%	98.80	%						
Li₂O					6.39%	4.	.34%	4	.12%	
SRM		330		331		332		33.	3	
Туре	Cop	pper, ore mil heads	l Co _l	pper, ore mill	tails Cop	per, Concer	itrate	Molybd Concer		
Unit Weight		100 g		100 g		50 g		35	g	
Constituents										
Cu		0.84%		0.091%		28.4%		1.0389	6	
Re		0.30 ppm		0.4 ppm				0.087%		
Мо		0.018%		0.0022%		0.64%		55.3%		
Au	(0.093 ppm)		(0.034 ppm)	(2.14 ppm))	(8.9 pp	n)	
Ag	(1.37 ppm)		(0.243 ppm)	(38.7 ppm)		(25.0 ppi	m)	
			Wt/		Constituer	nt (Nominal	Weight	Percent)		
SRM	Туре		Units (grams)	WO ₃	Ca	Fe		Pb	Mn	
77 Tungsten	Concentra	te	100	67.4	(0.37)	(7.4)		(0.07)	(10.0)	
SRM	Mo	Nb	O ₂	P	Si	s	Ta	Sn	Ti	
277	(0.06)	(1.0)	(21.4)	(0.03)	(0.85)	(0.25)	(0.20)	(0.54)	(2.2)	

SRM's are issued in a variety of sizes, shapes, and backages. Carlton Fisher compares a 64 mm diameter aluminum spectrometric SRM with that of a 32 mm diameter steel SRM.

SRM	27f	690	691	692	693	113a	329
Туре	Iron Ore, Sibley	Iron Ore, Canada	Iron Oxide, reduced	Iron Ore, Labrador	Iron Ore, Nimba	Zinc Concentrate (Zinc Concentrate
Unit Weight	100 g	150 g	100 g	150 g	150 g	100 g	100 g
Constituents (Nominal	Weight Percen	t)					
Al ₂ O ₃	0.82	0.18	1.22	1.41	1.02		
BaO							
Cd						0.78	0.14
CaO	0.039	0.20	0.63	0.023	0.016	1.1,	0.08
Co			0.030			(0.11)	(0.009)
Cu			0.032			0.31	0.132
In							0.019
Total Fe	65.97	66.85	90.8	59.58	65.11	2.08	12.94
Pb						2.80	6.06
MgO	0.019	0.18	0.52	0.035	0.013	0.75	0.165
MnO	0.011	0.23	0.043	0.46	0.091	Ni(0.07)	Ni(0.006)
P	0.041	0.011	0.006	0.039	0.056		
K ₂ O	0.008	0.0030		0.039	0.0028		
SiO ₂	4.17	3.71	3.7	10.14	3.87	(1.54)	(0.61)
Ag						0.046,	0.008
Na ₂ O	0.012	0.003	0.186	0.008	0.0028		
S	0.005	0.003	0.008	0.005	0.005	30.6	(31.7)
TiO ₂	0.019	0.022	0.27	0.045	0.035		
Zn						57.3	45.5
Moisture						0.008	0.45

SRM	69b	696	697	698	699	120b	694	25d	670
Туре	Bauxite, Arkan- sas	Bauxite, Surinam	Bauxite, Domini- can	Bauxite, Jamai- can	Alumina (Reduc- tion Grade)	Phosphate Rock, Florida	Phosphate Rock, Western	Manga- nese Ore	Rutile
Unit Weight	60 g	60 g	60 g	60 g	60 g	90 g	90 g	100 g	90 g
Constituents (No	minal Weig	tht Percent)						
Al ₂ O ₃	48.8	54.5	45.8	48.2		1.06	1.8	5.32	
BaO	(0.008)	(0.004)	(0.015)	(0.008)				(0.21)	
CdO						0.002	0.015		
CaO	0.13	0.018	0.71	0.62	0.036	49.40	43.6	(0.052)	
Co	(0.0001)	(0.00009)	(0.0013)	(0.0045)			F 3.2		
Cr ₂ O ₃	0.011	0.047	0.100	0.080	0.0002	F 3.84	(0.10)		0.2
FeO ₃	7.14	8.70	20.0	19.6	0.013	1.10	0.79	3.92	0.8
MgO	0.085	0.012	0.18	0.058	0.0006	0.28	0.33		-
MnO	0.110	0.004	0.41	0.38	0.0005	0.032	0.0116	Mn51.78	
P ₂ O ₅	0.118	0.050	0.97	0.37	0.0002	34.57	30.2	0.25	
K₂O	0.068	0.009	0.062	0.010		0.12	0.51	0.93	
SiO ₂	13.43	3.79	6.81	0.69	0.014	4.68	11.2	2.52	0.5
Na ₂ O	0.025	(0.007)	(0.036)	(0.015)	0.59	0.35	0.86		
SO ₂	0.63	0.21	10.13	0.22				0.13	
TiO ₂	1.90	2.64	2.52	2.38		0.15	(0.11)		96.16
U						128.4µg/g	141.4μg/g		
V ₂ O ₅	0.028	0.072	0.063	0.064	0.0005	, , ,	0.31		0.60
ZnO	0.0035	0.0014	0.037	0.029	0.013		(0.19)		
ZrO ₂	0.29	0.14	0.065	0.061					0.84
Ga ₂ O ₃					0.010		4 115 15		
Li ₂ O					0.002				
Available Oxygen								14.28	
Moisture								(0.96)	
Loss on Ignition	27.2	29.9	22.1	27.3					

SRM	1c	88b	70a	99a	97b	98a	81a	165a	1413
Туре	Lime- stone, argilla- ceous	Lime- stone, dolomi- tic	Feld- spar, potash	Feld- spar, soda	Clay, flint	Clay, plastic	Glass sand	Glass sand (low iron)	Glass sand (high alumi- na)
Unit Weight	50 g	IN PREP	40 g	40 g	IN PREP	60 g	75 g	75 g	75g
Constituents (Nomi	nal Weight	Percent)							
Al ₂ O ₃	1.3		17.9	20.5		33.19	0.66	0.059	9.90
BaO			0.02	0.26		0.03			0.12
CaO	50.3		0.11	2.14		0.31			0.74
Cr ₂ O ₃						0.03	46 μg/g	(1.1 µg/g)	
Fe ₂ O ₂	0.55		0.075	0.06s		1.34	0.082	0.012	0.24
Li ₂ O						0.070			
MgO	0.42			0.02		0.42			0.06
MnO	0.025								
P ₂ O ₅	0.04			0.02		0.11			
K ₂ O	0.28		11.8	5.2		1.04			3.94
Rb₂O			0.06						
SiO ₂	6.84		67.1	65.2		48.94			82.77
Na ₂ O	0.02		2.55	6.2		0.082			1.75
SrO	0.030					0.039			
ΓίΟ₂	0.07		0.01	0.007		1.61	0.12	0.011	0.11
ZrO ₂						0.042	0.034	0.006	

Rocks.	Minerals.	and	Refractories	(Continued)
WEAR CARDS	ATMARKET SORING	*****	TACAT METOTICO	(COMPANIED CA)

SRM	154b	278	688	76a	77a	78a
Туре	Titanium dioxide	Obsidian rock	Basalt rock	Burnt Refractory (Al ₂ O ₃ -40%)	Burnt Refractory (Al ₂ O ₃ -60%)	Burnt Refractory (Al ₂ O ₃ -70%)
Unit Weight	90 g	35 g	60 g	75 g	75 g	75 g
Constituents (Nom	inal Weight Pe	ercent)				
Al ₂ O ₃		14.15	17.36	38.7	60.2	71.7
CaO		0.983		0.22	0.05	0.11
FeO			7.64			
Fe ₂ O ₃		2.04	10.35	1.60	1.00	1.2
Li ₂ O				0.042	0.2 _s	0.12
MgO				0.52	0.38	0.70
MnO		0.052	0.167			
P ₂ O ₅		0.036	0.134	0.120	0.092	1.3
K ₂ O		4.16	0.187	1.33	0.090	1.22
SiO ₂		73.05	48.4	54.9	35.0	19.4
Na ₂ O		4.84	2.15	0.07	0.037	0.078
SrO				0.037	0.009	0.25
TiO ₂	99.74	0.245	1.17	2.0 _s	2.6	3.22
ZrO ₂				0.15	0.21	0.31
Loss on Ignition				(0.34)	(0.22)	(0.42)

Pam Clark processes orders from foreign customers whose use (and purchases) of SRM's has increased markedly in recent years.

Rocks, Minerals, and Refractories (Continued)

SRM	103a	198	199
Туре	Chrome Refractory	Silica Refractory	Silica Refractory
Unit Weight	60 g	45 g	45 g
Constituents (Nominal Wei	ight Percent)		
Al ₂ O ₃	29.96	0.16	0.48
CaO	0.69	2.71	2.41
Cr ₂ O ₃	32.06		
FeO	12.43		
Fe ₂ O ₃		0.66	0.74
Li ₂ O		0.001	0.002
MgO	18.54	0.07	0.13
MnO	0.11	0.008	0.007
P ₂ O ₅	0.01	0.022	0.015
K ₂ O		0.017	0.094
SiO ₂	4.63		
Na ₂ O		0.012	0.015
TiO ₂	0.22	0.02	0.06
ZrO ₂	0.01	< 0.01	0.01
Loss on Ignition		0.21	0.17

Ca	44	L	з.	a	-	-

CDM T		CDM	700	Wt/Unit	(Chemical Con	position (N	ominal We	eight Percer	it)
SRM	Туре	(grams)	SiC	Total C	Free C	Fe	O ₂	N ₂		
112b	Silicon Carbide	80	97.37	29.43	0.26	0.13				
276a	Tungsten Carbide	75		6.11	(0.02)		(0.03)	(0.003)		

Glasse	5				Mark Land Land					
SRM	89	91	92	93a	620	621	1411	1412	1830	1831
Туре	Lead- Barium	Opal	Low- Boron	High- Boron	Soda- Lime, Flat	Soda- Lime, Con- tainer	Soft Boro- silicate	Multi Compo- nent	Soda- Lime, Float	Soda- Lime, Sheet
Unit Size	45 g	45 g	45 g	Wafer 32 mm D×6 mm	3 platelets 35×35×3 mm	3 disks 38 mm D×5 mm	10 plate- lets	8 platelets	3 platelets 38×38× 6 mm	platelets 37×37× 3 mm
Constitue	nt (Nomin	nal Weigh	t Percent)							
SiO ₂	65.35	67.50	(75.0)	80.8	72.8	71.13	58.04	42.38	73.07	73.08
РЬО	17.50	0.10						4.40		
Al ₂ O ₃	0.18	6.01		2.28	1.80	2.76	5.68	7.52	0.12	1.21
Fe ₂ O ₃	0.049	0.079		0.028	0.043	0.040	0.050	(0.031)	0.121	0.087
ZnO		0.08	(0.2)				3.85	4.48		
CdO								4.38		
MnO	0.088	(0.008)								
ΓiO ₂	0.01	0.019		0.014	0.018	0.014	0.02		0.011	0.019
ZrO ₂	0.005	0.009		0.042		0.007				
CaO	0.21	10.49	(8.3)	0.01	7.11	10.71	2.18	4.53	8.56	8.20
BaO	1.40					0.12	5.00	4.67		
Li ₂ O								(4.50)		
MgO	0.03	(0.008)	(0.1)	0.005	3.69	0.27	0.33	(4.69)	3.90	3.51
K₂O	8.40	3.24	(0.6)	0.014	0.41	2.01	2.97	4.14	0.04	0.33
Na ₂ O	5.70	8.47	(13.1)	3.98	14.39	12.74	10.14	4.69	13.75	13.32
B ₂ O ₃			0.70	12.56			10.94	4.53		
P ₂ O ₅	0.23	0.023								
As ₂ O ₅	0.36	0.10								
As ₂ O ₃	0.03	0.09			0.056	0.030				
SO ₃	0.03				0.28	0.13			0.26	0.25
CI	0.05	0.015		0.06			11111			
SrO							0.09	4.55		
F		5.73								
Loss on Ignition	0.32		(0.42)							

Cements

These SRM's are for x-ray spectroscopic and chemical analysis of portland cements and related materials. Each unit consists of three sealed vials each containing approximately 5 g of material.

SRM	633	634	635	636	637	638	639	1880	1881
Туре	RED	GOLD	BLUE	YELLOW	PINK	GREEN	CLEAR	BLACK	WHITE
Unit Weight	15 g	15 g	15 g	15 g	15 g	15 g	15 g	15 g	15 g
Constituer	nt (Nominal	Weight Per	cent)						
CaO	64.50	62.5 ₈	59.8 _s	63.54	66.04	62.09	65.76	63.13	58.67
SiO ₂	21.8 _s	20.7 ₃	18.41	23.22	23.07	21.4s	21.61	19.82	22.25
Al ₂ O ₃	3.78	5.21	6.29	3.02	3.2 _s	4.4s	4.2 _s	5.02	4.19
Fe ₂ O ₃	4.20	2.84	2.61	1.61	1.80	3.55	2.40	2.91	4.68
SO ₃	2.20	2.21	7.0,	2.31	2.38	2.34	2.48	3.37	3.65
MgO	1.04	3.30	1.23	3.95	0.6,	3.83	1.2	2.69	2.62
K₂O	0.17	0.42	0.45	0.59	0.25	0.59	0.06	0.91	1.17
TiO ₂	0.24	0.29	0.32	0.18	0.21	0.25	0.32	0.23	0.23
Na ₂ O	0.64	0.15	0.07	0.11	0.15	0.13	0.65	0.28	0.04
SrO	0.31	0.12	0.21	0.04	0.09	0.07	0.15	0.06	0.11
P ₂ O ₅	0.24	0.10	0.17	0.08	0.24	0.06	0.08	0.29	0.09
Mn ₂ O ₃	0.04	0.28	0.09	0.12	0.06	0.05	0.08	0.08	0.26
F	0.08	0.08	0.04	0.06	0.04	0.04	0.02	0.10	0.09
ZnO	0.01	0.02	0.01	0.03	0.01	0.10	0.01	0.01	0.01
Cr ₂ O ₃	0.01	0.08	0.01	0.01	0.01	0.01	0.01		
Ignition	loss 0.7 _s	1.62	3.24	1.16	1.6,	0.95	1.0 _o	1.38	2.01
Total	100.06	100.00	100.03	100.00	99.97	99.97	100.16	100.30	100.07
SRM		Ту	pe						Unit
1882	Calcium A	Aluminate (Cement (40	% Al ₂ O ₃)					IN PREP

Trace Elements

The SRM's are for trace chemical analysis, specifically for calibrating instruments and evaluating analytical techniques used to determine trace elements in inorganic matrices.

SRM	607	610-611	612-613	614-615	616-617
Туре	Trace Elements in Potassium Feldspar	Trace Elements in Glass	Trace Elements in Glass	Trace Elements in Glass	Trace Elements in Glass
Concentration		500 ppm	50 ppm	1 ppm	0.02 ppm
Wafer Thickness		610 3 mm 611 1 mm	612 3 mm 613 1 mm	614 3 mm 615 1 mm	616 3 mm 617 1 mm
Unit of Issue	5 g	6 Wafers	6 Wafers	6 Wafers	6 Wafers
Element		Nominal C	oncentrations (ppm)	
Antimony				(1.06)	(0.078)
Barium			(41)		
Boron		(351)	(32)	(1.30)	(0.20)
Cadmium				(0.55)	
Cerium			(39)		
Cobalt		(390)	(35.5)	(0.73)	
Copper		(444)	(37.7)	1.37	(0.80)
Dysprosium			(35)		
Erbium			(39)		
Europium			(36)	(0.99)	
Gadolinium			(39)		
Gallium				(1.3)	(0.23)
Gold		(25)	(5)	(0.5)	(0.18)
Iron		458	51	(13.3)	(11)
Lanthanum			(36)	(0.83)	(0.034)
Lead		426	38.57	2.32	1.85
Manganese		485	(39.6)		
Neodymium			(36)		
Nickel		458.7	38.8	(0.95)	
Potassium		(461)	(64)	30	29
Rubidium	523.90	425.7	31.4	0.855	0.100
Samarium			(39)		
Scandium				(0.59)	(0.026)
Silver		(254)	22.0	0.42	
Strontium	65.485	515.5	78.4	45.8	41.72
Thallium		(61.8)	(15.7)	(0.269)	(0.0082)
Thorium		457.2	37.79	0.748	0.0252
Titanium		(437)	(50.1)	(3.1)	(2.5)
Uranium		461.5	37.38	0.823	0.0721
Ytterbium			(42)		

In addition to the elements listed above, the glass SRM's contain the following 25 elements: As, Be, Bi, Cs, Cl, F, Ge, Hf, Hg, Li, Lu, Mg, Nb, P, Pr, Se, S, Te, Tb, Tm, Sn, W, V, Y, and Zr.

NOTE: Glass-Nominal Composition: 72% SiO₂, 12% CaO, 14% Na₂O, and 2% Al₂O₃.

Values in parentheses are not certified, but are given for information only.

Nuclear Materials

Special Nuclear Materials

These SRM's are available to Department of Energy contractors, Nuclear Regulatory Commission, or State Licensees, and foreign governments that have entered into an agreement of cooperation with the U.S. Government regarding the use of these materials. Purchase orders and requests for information regarding ordering procedures, availability, and shipment of these SRM's should be directed to:

NBS Special Nuclear Standard Reference Materials U.S. Department of Energy New Brunswick Laboratory, D-350

9800 South Cass Avenue

Argonne, IL 60439 (312) 972-2453

FTS: 972-2453

Pluto	nium Assay			
SRM	Identification (Batch Name)	Constituent Certified	Element Weight*	(Weight Percent)
945	Plutonium Metal, standard matrix	Impurities	5	99.9
949f	Plutonium Metal Assay	Plutonium Content	0.5	99.99

Pluto	nium Isotopic		A LORDON DE	mailing.				
CDM		Element		Certifie	d Isotope	s (Atom I	Percent)	
SRM	Identification (Batch Name)	Weight (g)	²³⁸ Pu	239Pu	²⁴⁰ Pu	241Pu	²⁴² Pu	244Pu
946	Plutonium Sulfate Tetrahydrate	0.25	0.232	84.464	12.253	2.477	0.574	
947	Plutonium Sulfate Tetrahydrate	0.25	0.278	77.089	18.610	2.821	1.202	
948	Plutonium Sulfate Tetrahydrate	0.25	0.010	91.736	7.922	0.299	0.0330	
996	Plutonium—Spike	0.001	0.005	0.034	0.677	0.092	1.325	97.867

TT .	
Uranium	Assay

SRM	Identification (Batch Name)	Constituent Certified	Element Weight (g)	Assay (Weight Percent)
950b	Uranium Oxide	U ₃ O ₈	25	99.968
960	Uranium Metal	U	26	99.975
993	Uranium—235 Spike (solution)	U-235	0.1	99.8184
995	Uranium-233 Spike (solution)	U-233	0.005	99.9232
969	Uranium Oxide (for NDA measurements)	U-235	200	Set of 5 enrichments 0.3, 0.7, 2.0, 3.0, 4.5%

** .	
Uranium	Isotopic
CA COMMA COMMA	TOO FO DIE

SRM	Uranium Oxide (U ₃ O ₈)	Wt (mome)	Certified Isotopes (Atom P		es (Atom Perce	nt)
SKM	Cranium Oxide (U ₃ O ₈)	Wt (grams)	234U	235 U	236U	238U
U-0002	Depleted	1.0	0.00016	0.01755	< 0.00001	99.9823
U-005a	Depleted	1.0	0.0034	0.5064	0.00118	99.4890
U-010	Enriched	1.0	0.00541	1.0037	0.00681	98.984
U-015	Enriched	1.0	0.00850	1.5323	0.0164	98.443
U-020a	Enriched	1.0	0.01732	2.0262	0.01179	97.9447
U-030a	Enriched	1.0	0.02778	3.0404	0.000599	96.9312
U-050	Enriched	1.0	0.0279	5.010	0.0480	94.915
U-100	Enriched	1.0	0.0676	10.190	0.0379	89.704
U-150	Enriched	1.0	0.0993	15.307	0.0660	84.528
U-200	Enriched	1.0	0.1246	20.013	0.2116	79.651
U-350	Enriched	1.0	0.2498	35.190	0.1673	64.393
U-500	Enriched	1.0	0.5181	49.696	0.0755	49.711
U-750	Enriched	1.0	0.5923	75.357	0.2499	23.801
U-800	Enriched	1.0	0.6563	80.279	0.2445	18.820
U-850	Enriched	1.0	0.6437	85.137	0.3704	13.848
U-900	Enriched	1.0	0.7777	90.196	0.3327	8.693
U-930	Enriched	1.0	1.0812	93.336	0.2027	5.380
U-970	Enriched	1.0	1.6653	97.663	0.1491	0.5229

Special Nuclear Containers Size SRM Type Service 9900 Special Nuclear Container 13 gallon Special Nuclear Container, DOT 6M 9940 55 gallon 9941 Special Nuclear Container 10 gallon 9942 Special Nuclear Container, Type A NOTE: These special packaging materials may be necessary to fill your order, depending upon Department of Energy, Department of Transportation, and Nuclear Regulatory Commission shipping requirements.

Radiation Dosimetry

This SRM is a cobalt-in-aluminum alloy wire 0.5 mm in diameter and 1 meter long for use as a neutron density monitor standard.

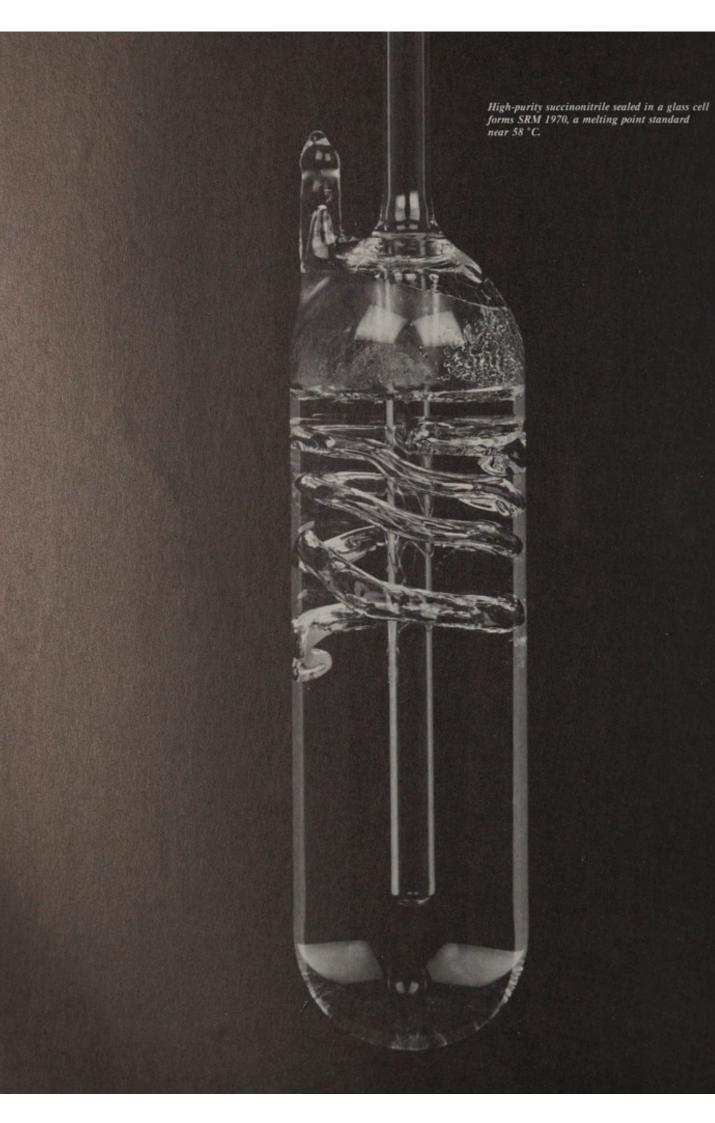
SRM	Identification (Batch Name)	Cobalt Content (Weight Percent)
953	Neutron density monitor wire (Co in A1)	0.116

Fission Track Glass

These SRM's containing uranium at three concentration levels, will aid laboratories, performing fission track analyses, in interlaboratory comparisons of data and in monitoring neutron fluences. The materials were irradiated in the NBS 10 Megawatt Research Reactor, at two different neutron energies.

Each SRM unit contains four unirradiated glass wafers and two irradiated wafers.

SRM	Uranium Content (ng/g)	U (Atom Percent)	Reactor Position	Cu Foil	Au Foil
				Neutron Flux	(×10 ¹² n·cm ⁻² ·s ⁻¹)
961	461.5	0.2376	RT-3:	4.56	5.43
			RT-4:	1.31	1.46
					uence(×1014n·cm-2
962a	37.38	0.2392	RT-3:	4.37	4.75
			RT-4:	3.87	4.17
963a	0.823	0.2792	RT-3:	41.2 39.5	45.8 43.0
	0.020	0.2.72	RT-4:	39.5	43.0


Stable Isotopic Materials

The isotopic composition of these SRM's has been determined by mass spectrometry.

SRM	Isotopic Reference Standards	Element Certified	Wt/Unit (grams)
51	Boric Acid	Boron	100
52	Boric Acid, 95% Enriched 10B	Boron	0.25
75	Sodium Chloride	Chlorine	0.25
77	Sodium Bromide	Bromine	0.25
78a	Silver Nitrate	Silver	0.25
79	Chromium Nitrate	Chromium	0.25
080	Magnesium Metal	Magnesium	0.25
981	Lead Metal, Natural	Lead	1.0
982	Lead Metal, Equal Atom (206/208)	Lead	1.0
983	Lead Metal, Radiogenic (92%-206)	Lead	1.0
084	Rubidium Chloride, assay and isotopic	Rubidium	0.25
85	Potassium Chloride, assay and isotopic	Potassium	1.0
987	Strontium Carbonate, assay and isotopic	Strontium	1.0
989	Rhenium, assay and isotopic	Rhenium	pkg. (50)
990	Silicon, assay and isotopic	Silicon	wafer, 3 cm×0.2 cm
91	Lead-206 Spike, assay and isotopic	Lead	15
94	Gallium Metal, isotopic	Gallium	0.25
97	Thallium Metal, isotopic	Thallium	0.25

Rosemary Blasingame prepares hazardousmaterial documentation to accompany the certificates and invoices issued with SRM's.

Physical Properties ION ACTIVITY

pH

These SRM's are used to prepare solutions of known hydrogen ion concentration to calibrate commercial pH instruments. SRM's 186Ic and 186IIc, 191a and 192a, and 922 and 923 are certified for use as admixtures only. SRM's 186Ic and 186IIc may be used to prepare a solution with a pH of 6.863 at 25 °C, or a physiological buffer solution with a pH of 7.415 at 25 °C.

SRM	Туре	pH(S) Values (at 25°C)	Wt/Unit (grams)
185f	Potassium hydrogen phthalate	4.006	60
186Ic 186IIc	Potassium dihydrogen phosphate Disodium hydrogen phosphate	\$6.863 7.415	30 30
187c	Sodium tetraborate decahydrate (Borax)	9.180	30
188	Potassium hydrogen tartrate	3.557	60
189	Potassium tetroxalate	1.679	65
91a 192a	Sodium bicarbonate Sodium carbonate	{10.011	25 30
)22)23	Tris(hydroxymethyl)aminomethane Tris(hydroxymethyl)aminomethane hydrochloride	{7.699	25 35

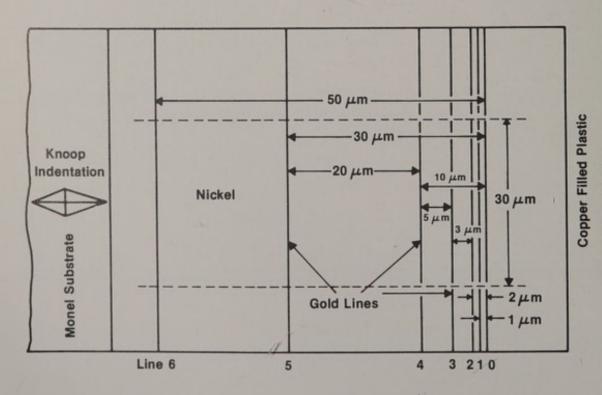
pD

These SRM's are for the preparation of solutions of known deuterium-ion concentration to calibrate pH indicating equipment to indicate pD data. SRM's 2186I and 2186II, and 2191a and 2192a are certified for use as admixtures only.

SRM	Туре	pD(S) Values (at 25°C)	Wt/Unit (grams)
2185	Potassium hydrogen phthalate	4.518	60
2186I	Potassium dihydrogen phosphate	{7.428	30
2186II	Disodium hydrogen phosphate		30
2191a	Sodium bicarbonate	{10.732	30
2192a	Sodium carbonate		30

Ion-Selective Electrodes

These SRM's are certified for the calibration of ion-selective electrodes and have conventional ionic activities based on the Stokes-Robinson hydration theory for ionic strengths greater than 0.1 mole per liter.


SRM	Туре	Certified Property	Wt/Unit (grams)
2201	Sodium Chloride	pNa, pCl	125
2202	Potassium Chloride	pK, pCl	160
2203	Potassium Flouride	pF	125

METROLOGY

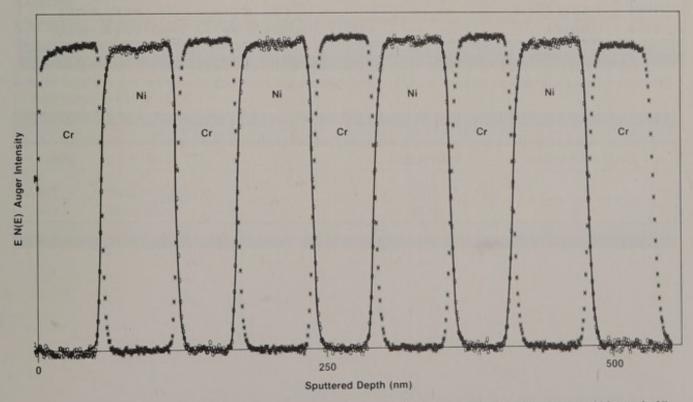
Scanning Electron Microscope (SEM)

These SRM's are for calibrating the magnification scale and evaluating the performance of Scanning Electron Microscopes. SRM 484d has spacings of 1, 2, 3, 5, 10, 20, 30, and 50 μ m and can be used to calibrate the magnification scale of an SEM from 1000 to 20,000 X to an accuracy of 5 percent or better. SRM 2069a consists of graphitized natural fibers with smooth and uniform edges on an SEM specimen mount.

SRM	Туре	Size
484d	SEM Magnification Standard	11 mm D, 6.5 mm hi
2069a	SEM Performance Standard	12 mm D, 3 mm peg

Alternating layers of gold and nickel are used to fabricate SRM 484d. The diagram shows the spacings between gold lines used to calibrate the magnification scale of scanning electron microscopes.

Optical Microscope Linewidth-Measurement


These SRM's are for use in calibrating optical microscopes used to measure the widths of opaque lines and clear spaces on integrated-circuit photomasks. They can also be used to calibrate line spacings and line-to-space ratios. The accuracy of a measured linewidth or line spacing is $\pm 0.05 \mu m$ or better. They are not for use with partially transmitting materials, in reflected light with opaque materials, or in a scanning electron microscope. SRM 475 is made with anti-reflective chromium on a borosilicate glass substrate. SRM 476 is made with bright chromium.

SRM	Туре	Spacings	Size
475	Linewidth Measurement Standard	0.5 to 12 μm	6.35×6.35×0.15 cm
476	Linewidth Measurement Standard	0.5 to 12 μm	6.35×6.35×0.15 cn

Depth Profiling

This SRM is for calibrating equipment used to measure sputtered depth and erosion rates in surface analysis. SRM 2135 consists of nine alternating metal thin-film layers—five layers of pure chromium and four of pure nickel—on a polished silicon (100) substrate. It is certified for total chromium and total nickel thickness, for individual layer uniformity, for Ni/Cr bi-layer uniformity, and for individual layer thickness. The nominal thicknesses for Cr and Ni are 53 and 66 nm, respectively.

SRM	Туре	Unit/Size
2135	Ni-Cr Thin-Film Depth Profile Standard	1×2.54×0.04 cm

Auger sputter depth profile of SRM 2135 was obtained using 1 keV argon ion bombardment. Total sputtering time was 16 hours; the Ni (0) and Cr(x) Auger intensities shown have been normalized.

COATING THICKNESS

These magnetic type thickness SRM's are 30×30 mm for calibrating coating thickness gages used to measure the thickness of nonmagnetic coatings on steel, or nickel on steel. The steel substrates have the properties of AISI 1010 steel and the nickel coatings have the properties of an annealed Watts nickel electrodeposited free of cobalt and iron.

These SRM's may be used to measure the thickness of paint and other organic coatings on steel, as well as zinc (galvanized) and other nonmagnetic metallic coatings.

Vonma	gnetic Coatin	g on Magnetic	c Substrate (Cu and C	er on Steel)
CDM	SRM Unit Size		Nominal Coating	Thickness
SRIVI	Onit Size		micrometer	milliinch (mil)
1357	Set of 3		6, 20, 48	0.2, 0.8, 2.0
1358	Set of 3		80,225,1000	3.1, 9.8, 39
1359	Set of 4		48, 140, 505, 800	2.0, 5.5, 20, 32
1360	Set of 4		2.5, 6, 12, 20	0.1, 0.2, 0.5, 0.8
1361a	Set of 4		6, 12, 25, 50	0.2, 0.5, 1.0, 2.0
1362a	Set of 4		40, 80, 140, 200	1.6, 3.1, 5.5, 7.9
1363a	Set of 4		255, 385, 505, 635	9.8, 16, 20, 26
1364a	Set of 4		800, 1000, 1525, 1935	32, 39, 59, 79
Magne	tic Coating o	n Magnetic Su	ubstrate (Nickel on St	eel)
SRM	Unit Size		Nominal Coating	Thickness
SILVI	Cint Size		micrometer	milliinch (mil)
1365a	Set of 4		3, 8.5 14, 19	0.1, 0.4, 0.6, 0.8
1366a	Set of 4		25, 34.5, 42, 50	1.0, 1.4, 1.6, 2.0

COATING WEIGHT

The gold coating SRM's are 15×15 mm and were measured by beta-ray backscatter and x-ray fluorescence techniques relative to NBS gold coating materials for which the average weights per unit area were determined by weight and area measurements. These SRM's are for calibrating equipment used to measure weight per unit area of gold coating of equivalent purity.

Gold C	Coating on Glass S	Sealing Alloy (Fe53-Ni	i29-Co17)	
SRM	Unit Size	Nominal Coating	Nominal Coat	ing Thickness
SKIVI	Ont Size	Weight (mg/cm²)	micrometer	microinch
1398a	Set of 4	1.5, 3.0, 6.0, 14.0	0.8, 1.5, 3, 7	30, 60, 120, 280
Gold C	Coating on Nickel			
CDM	V. 11 CI	Nominal Coating	Nominal Coat	ing Thickness
SRM	Unit Size	Weight (mg/cm ²)	micrometer	microinch
1379	1 each	0.35	0.175	7
1380	1 each	0.55	0.275	11
1387	1 each	2.2	1.4	45
1399b	Set of 4	1.5, 3.0, 6.0, 14.0	0.8, 1.5, 3, 7	30, 60, 120, 280

Glass

Chemical Resistance (Durability) of Glass

These SRM's are for checking test methods and calibrating equipment used to determine the resistance of glass containers to chemical attack. The values below represent the volume of fiftieth-normal sulfuric acid used to titrate to the methyl-red end point the alkaline extract from a crushed sample of glass after exposure to high-purity water at 121°C.

SRM	Туре	Unit of Issue	mL of N/50 H ₂ SO ₄
522	Soda-lime-silica	2.2 kg	7.67
623	Borosilicate	2.2 kg	0.34

Electrical Properties of Glass

SRM 624 is for checking test methods and for calibrating equipment used to determine the dc volume resistivity of glass per ASTM C657. SRM 774 is for checking methods used to determine dielectric constant and ac loss characteristics of insulating materials per ASTM D150.

SRM	Туре	Unit of Issue	Approximate Value
624	Lead-silica, for dc resistivity	200 kg	log ₁₀ ρ~9.9 Ω-cm
774	Lead-silica, for dielectric constant	5×5×2.5 cm	K~7.47

Viscosity

SRM's 710a, 711, and 717 are rectangular bars for checking the performance of high-temperature viscosity equipment (rotating cylinders) and low-temperature viscosity equipment (fiber elongation, beam-bending, parallel-plates, etc.).

CDA				Tempe	rature (°C	at Visco	osity (poi	ses)			
SRN	102	103	104	10 ⁵	106	107	10s	10°	1010	1011	1012
710a	(IN PREP)										
711	1327.1	1072.8	909.0	794.7	710.4	645.6	594.3	552.7	518.2	489.2	464.5
717	1545.1	1248.8	1059.4	927.9	831.2	757.1	698.6	651.1	611.9	579.0	550.9

/isco:	sity Fixpoints				-
SRM	Type of Glass	Unit of Issue	Soften- ing Point °C	Anneal- ing Point °C	Strain Point °C
709	Extra Dense Lead	500 g	384	328	311
710a	Soda Lime-Silica, type 523/586	I	N PREP		
711	Lead-Silica, type 617/366	1.3 kg	602	432	392
712	Mixed Alkali Lead Silicate ¼ in patties (6 pcs.)	225 g	528	386	352
713	Dense Barium Crown 620/603 1% in diam×% in thick gobs (4 pcs.)	225 g	738	631	599
714	Alkaline Earth Alumina Silicate ¹ / ₄ in diam cane (16 pcs.—6 in long)	225 g	908	710	662
715	Alkali-Free Aluminosilicate 1/4 in diam cane (13 pcs.—6 in long)	200 g	961	764	714
716	Neutral, ½ in diam cane (6 pcs.—6 in long)	250 g	794	574	530
717	Borosilicate, 4.2 cm×4.2 cm×12.5 cm bar	450 g	720	516	471

Relative Stress Optical Coefficient

These glasses are for calibrating instruments used to measure relative stress optical coefficient per ASTM C770. They are rectangular bars.

SRM	Type of Glass	Unit of Issue	Relative Stress Optical Coefficient at $\lambda = 546.1$ nm
708	Lead-Silica, A	625 g	Glass A C=2.857 Brewsters, 10 ⁻¹² m ² /N
	Borosilicate, B	275 g	Glass B C=3.652 Brewsters, 10 ⁻¹² m ² /N
709	Extra dense Lead	500 g	C=-1.359 Brewsters, 10 ⁻¹² m ² /N

Glass Liquidus Temperature

This SRM is for checking test methods and for calibrating equipment used to determine the liquidus temperature of glass by the gradient furnace methods per ASTM C829.

SRM	Туре	Unit of Issue	Temperature, °C
773	Soda-lime-silica, for liquidus temperature 2.5×2.5×0.6 cm	60 g	990

Elasticity

This SRM is for calibrating apparatus used in the measurement of resonance frequencies from which elastic moduli are calculated. Each bar has been individually measured and calibrated, and all surfaces were machined flat and parallel.

SRM	Туре	Size
718	Polycrystalline Alumina	12.7×1.27×0.32 cm

Density

SRM's 211c, 217c, 2211, 2212, and 2213 are certified for density (air saturated at 1 atm) at 20, 25, and 30°C, and may be used to calibrate pycnometers and density balances.

SRM's 1840 and 1841 are certified for density at 20°C and may be used to determine the density of solids and liquids by means of hydrostatic weighing.

SRM	Туре	Density 20 °C (g/cm³)	Amount
211c	Toluene	0.86686	5mL
2211	Toluene	0.86686	8 mL
2212	Toluene	0.86686	25mL
217c	2,2,4 Trimethylpentane (Isooctane)	0.691929	5mL
2213	2,2,4 Trimethylpentane (Isooctane)	0.691929	25mL
840	Silicon	2.329	100 g
841	Silicon	2.329	200 g

Microhardness

These SRM's are for use in calibrating and checking the performance of microhardness testers. These test blocks were made by electroforming the test metal on a steel substrate. The hardness numbers are certified at loads of 25, 50, and 100 gram-force for both Vickers and Knoop indenters.

SRM	Туре	Hardness	Size
893	Bright Copper (Knoop)	125 KHN	12.5 mm square
894	Bright Copper (Vickers)	125 VHN	12.5 mm square
895	Bright Nickel (Knoop)	550 KHN	12.5 mm square
896	Bright Nickel (Vickers)	550 VHN	12.5 mm square
905	Bright Nickel (Knoop) (IN PREP)		100

Ultrasonics

This SRM is a displacement-measuring transducer to be used to determine the size and character of surface vibrations in the frequency range of 0.1 to 1 MHz. It may also be used as a standard against which other transducers may be calibrated.

SRM	Туре	Unit
1856	Acoustic Emission Transducer	Each

Polymers

Molec	eular Weight	
SRM	Туре	Wt/Unit (grams)
705	Polystyrene, narrow molecular weight distribution, M _w ≈ 179,300, M _w /M _n ≈ 1.07	5
706	Polystyrene, broad molecular weight distribution, M _w ≈257,800, M _w /M _n ≈2.1	18
1475	Polyethylene, linear, $M_w \approx 52,000$, $M_w/M_n \approx 2.9$	50
1476	Polyethylene, branched	50
1478	Polystyrene, narrow molecular weight distribution, $M_w \approx 37,400$, $M_w/M_n \approx 1.04$	2
1479	Polystyrene, narrow molecular weight distribution, M _w ≈1,050,000	2
1482	Polyethylene, linear, M _w ≈13,600	1
1483	Polythylene, linear, M _w ≈32,100	1
1484	Polythylene, linear, M _w ≈119,600	1

These materials are certified for the properties indicated in the table.

Method	705	706	1475	1476	1478	1479	1482	1483	1484
(Light Scattering)	X	X	Х			X	X	X	Х
	X	X			X				
(Gel Permeation			X						
Chromatography-GPC)									
(Osmometry)	X				X		X	X	Х
(GPC)			X						
(GPC)			X						
(Capillary Viscometer)					X				
	X	X							
	X								
	X	X							
			X	X			X	X	
			X	X			X	X	X
			X	X					
(ASTM)			X	X					
(ASTM)			X	X					
	(Light Scattering) (Sedimentation Equilibrium) (Gel Permeation Chromatography-GPC) (Osmometry) (GPC) (GPC) (Capillary Viscometer)	(Light Scattering) X (Sedimentation Equilibrium) X (Gel Permeation Chromatography-GPC) (Osmometry) X (GPC) (GPC) (Capillary Viscometer) X X (ASTM)	(Light Scattering) X X (Sedimentation Equilibrium) X X (Gel Permeation Chromatography-GPC) (Osmometry) X (GPC) (GPC) (Capillary Viscometer) X X X X X X (ASTM)	(Light Scattering) X	(Light Scattering) X X X (Sedimentation Equilibrium) X X (Gel Permeation X X Chromatography-GPC) (Osmometry) X (GPC) X X (Capillary Viscometer) X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	(Light Scattering) X X X (Sedimentation Equilibrium) X X X (Gel Permeation X X (Chromatography-GPC) X X (GPC) X X (GPC) X X (Capillary Viscometer) X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	(Light Scattering) X X X X (Sedimentation Equilibrium) X X X (Gel Permeation X X Chromatography-GPC) (Osmometry) X X (GPC) X X (GPC) X X (Capillary Viscometer) X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	(Light Scattering) X	(Light Scattering) X

Rheology

This SRM is for calibrating instruments used in polymer technology and science to determine rheological properties of polymer melts or solutions. It is certified for Rate of Shear, Viscosity, and First Normal Stress Difference at 25°C.

SRM	Туре	Unit size
1490	Polyisobutylene Solution in Cetane	250 mL

Heat

Calorimetric

These SRM's are intended to relate the gain or loss of energy and work experienced during a chemical reaction or by change of temperature to the units of energy and work as defined by the International System of Units (SI). The unit for energy and work under this system is the joule, which is related to the calorie by the equation: 4.184 joule=1 calorie.

Comb	oustion Calorimetric		Designation of the latest states of the latest stat
SRM	Туре	Approximate Heat of Combustion (MJ/kg)	Unit Amount
39i	Benzoic Acid	26.4	30 g
217c	2,2,4-Trimethylpentane (Isooctane)	47.712	5 mL
2213	2,2,4-Trimethylpentane (Isooctane)	47.712	25 mL
1656	Thianthrene	33.480	30 g
1657	Synthetic Refuse Derived Fuel	13.87	100 g
2151	Nicotinic Acid	22.184	25 g
2152	Urea	-10.536	25 g
2682	Coal, Sub-bituminous: %S=0.47; %Ash=6.37	27.45 (11800 BTU/lb)	50 g
2683	Coal, Bituminous: %S=1.85; %Ash=6.85	32.70 (14060 BTU/lb)	50 g
2684	Coal, Bituminous: %S=3.00; %Ash=11.09	29.68 (12760 BTU/lb)	50 g
2685	Coal, Bituminous: %S=4.62; %Ash=16.53	28.15 (12100 BTU/lb)	50 g

continue to monitor these calorific values and report any substantive change to the purchaser.

Solution Calorimetric				
SRM	Туре	Heat of Solution (MJ/kg)	Wt/Unit (grams)	
724a	Tris(hydroxymethyl)aminomethane (Hydrochloric Acid and Sodium Hydroxide Solution Calorimetry)	Evolved 0.24576 Absorbed 0.1418	50	
1655	Potassium Chloride (Water Solution Calorimetry)	Absorbed 0.235	30	

Heat Source Calorimetric					
SRM	Туре	Heat of Evolution (MJ/kg)	Wt/Unit (grams)		
1651	Zirconium-barium chromate heat source powder	1.46	50		
1652	Zirconium-barium chromate heat source powder	1.632	50		
1653	Zirconium-barium chromate heat source powder	1.762	50		

Enthalp	y and Heat Capacity		
SRM	Туре	Temperature Range (K)	Unit Size
RM 5	Copper	~25	19 mm D×12 cm
705	Polystyrene, powder	10-350	5 g
720	Synthetic sapphire, small rods	0-2250	15 g
781-D1	Molybdenum, sintered rod	273.15-2800	10 cm×0.32 cm D
781-D2	Molybdenum, sintered rod	273.15-2800	10 cm×0.64 cm D
1475	Polyethylene, powder	5-360	50 g

Differential Scanning Calorimetry

These SRM's are for calibrating differential scanning calorimeters, differential thermal analyzers, and similar instruments.

SRM	Туре	Melting Temperature	Enthalpy of Fusion	Unit of Issue (mm)
220	Tin (99.9995%)	505.08 K	56.057 J/g	6096×25×0.127
2221	Zinc (99.999%)	692.59 K	111.18 J/g	965.2×152.4×0.0508

This SRM is for evaluating methods of determining purity by differential scanning calorimetry. It consists of phenacatin and phenacetin doped with p-aminobenzoic acid.

SRM	Туре	Dopant Level (p-ABA, mol%)	Unit
1514	Thermal Analysis Purity	0, 0.7, 2, 5	Set of 4, 0.5 g/vial

Differential Thermal Analysis

GM's 754, 757, 758, 759, 760, and 761 have been issued by NBS in cooperation with the International Confederation of Thermal Analysis as standards for calibrating differential thermal analysis, differential scanning calorimetry, and thermogravimetry equipment under operating conditions.

GM	Material		Peak Temp.	Unit
754	Polystyrene	(glass transition)	105°C	10 g
757	1,2-Dichloroethane	(melting point)	−32°C	4 mL
	Clycohexane	(transition point)	−83°C	4 mL
		(melting point)	7*C	
	Phenyl Ether	(melting point)	30°C	4 mL
	o-Terphenyl	(melting point)	58°C	5 g
758	Potassium Nitrate	(transition point)	128°C	10 g
	Indium	(melting point)	157°C	3 g
	Tin	(melting point)	232°C	3 g
	Potassium Perchlorate	(transition point)	300°C	10 g
	Silver Sulfate	(transition point)	430°C	3 g
759	Potassium Perchlorate	(transition point)	300°C	10 g
	Silver Sulfate	(transition point)	430°C	3 g
	Quartz	(transition point)	573°C	3 g
	Potassium Sulfate	(transition point)	583°C	10 g
	Potassium Chromate	(transition point)	665°C	10 g

Differential Thermal	Analysis	(Continued)
----------------------	----------	-------------

GM	Material		Peak Temp.	Unit
760	Quartz	(transition point)	573°C	3 g
	Potassium Sulfate	(transition point)	583°C	10 g
	Potassium Chromate	(transition point)	665°C	10 g
	Barium Carbonate	(transition point)	810°C	10 g
	Strontium Carbonate	(transition point)	925°C	10 g
761	Permanorm 3	(magnetic transition)	259°C	1 g
	Nickel	(magnetic transition)	353°C	1 g
	Mumetal	(magnetic transition)	381°C	1 g
	Permanorm 5	(magnetic transition)	454°C	1 g
	Trafoperm	(magnetic transition)	750°C	1 g

Superconductive Thermometric Fixed Point Devices

Each device is composed of small cylinders of high purity material mounted in a threaded copper stud and enclosed by a mutual inductance coil set. SRM 767a is intended to provide fixed points on the 1976 Provisional 0.5 to 30 K Temperature Scale (EPT-76). Both SRM's should prove particularly valuable to users of *He-4He dilution refrigerators, in which direct calibrations on the liquid helium vapor pressure-temperature scales are difficult, and to those who wish to determine the temperature reproducibility of physical phenomena or of cryogenic equipment.

SRM	Туре	Material	Nominal Temperature (K)
767a	Superconductive Thermometric Fixed Point Device	Niobium	9.3
		Lead	7.2
		Indium	3.4
		Aluminum	1.2
		Zinc	0.9
		Cadmium	0.5
768	Superconductive Thermometric Fixed Point Device (Low)	Gold-Indium	0.205
	(Available after November 1986)	Gold-Aluminum	0.157
		Iridium	0.098
		Beryllium	0.024
		Tungsten	0.015

Freezing Point

SRM's 740 and 741 are defining fixed points for the International Practical Temperature Scale of 1968 (IPTS-68). The secondary reference points are for calibrating thermometers, thermocouples, and other temperature measuring devices. These SRM's are certified per IPTS-68.

Defining Fixed Points			
SRM	Туре	Temperature *C	Wt/Unit (grams)
740	Zinc	419.58	350
741	Tin	231.9681	350

Secondary Reference Points			position of the last
SRM	Туре	Temperature °C	Wt/Unit (grams)
12g	Tin	. 231.967	350
13h	Zinc	*419.58	350
14f	Aluminum	660.3	200
15d	Copper	1084.8	450
19e	Lead	327.493	600
743	Mercury	-38.841	680

Melting Point				
SRM	Туре	Form	Temperature *C	Wt/Unit (grams)
742	Alumina, 99.9+%	Powder	2053	10
1968	Gallium, 99.9999+%	Sealed Cell	29.7723	25
1969	Rubidium, 99.9+%	Sealed Cell	39.30	154
1970	Succinonitrile, 99.999+%	Sealed Cell	58.0796	60
1971	Indium, 99.9999+%	Sealed Cell	156.65	100

GM 8000 is issued by NBS in cooperation with the Office of Reference Materials at the National Physical Laboratory (NPL) in Teddington, England. This set of ten highly purified substances is intended for use in the calibration of thermometry used in determining the melting points of samples in glass capillary tubes. Both the meniscus point and the liquefaction point for each substance are certified by NPL.

GM	Туре	Melting Point	Amount
8000	4-Nitrotoluene	52°C	1 g
	Naphthalene	80	1 g
	Benzil	95	1 g
	Acetanilide	114	1 g
	Benzoic Acid	122	1 g
	Diphenylacetic Acid	147	1 g
	Anisic Acid	183	1 g
	2-Chloroanthraquinone	210	1 g
	Carbazole	246	1 g
	Anthraquinone	285	1 g

Laboratory Thermometer

This mercury-in-glass thermometer is for use in clinical laboratories. Its main scale extends from 24.00 to 38.00 °C, in 0.05 in °C divisions. It has an auxiliary scale from -0.20 to +0.20 °C.

SRM	Туре	Calibrated Points (°C)	Unit
934	Clinical Laboratory Thermometer	0, 25, 30, 37	1 each

Thermocouple Material		
SRM	Туре	Form
1967	Platinum, High-Purity (99.999+%)	Wire: 0.51 mm D, 1 meter long

Vapor	Pressure			
SRM	Туре	Pressure Range (atmosphere)	Temperature Range (K)	Unit Size
745	Gold	10 ⁻³ to 10 ⁻⁸	1300-2100	Wire 1.44 mm×152 mm
746	Cadmium	10 ⁻⁴ to 10 ⁻¹¹	350-594	Rod 6.4 mm×64 mm
748	Silver	10 ⁻³ to 10 ⁻¹²	800-1600	Rod 6.4 mm×64 mm

пеги	nal Conductivity			
SRM	Туре	Dimension (mm)	Temperature Range (K)	Conductivity at 293 K (W/M·K)
450b	Fibrous Glass Board	600×600×25.4	260-330	0.03
451	Fibrous Glass Batt	600×600×25.4	260-330	0.039
460	Stainless Steel	6.4 D, 50 length	5-1200	14.1
461	Stainless Steel	12.7 D, 50 length	5-1200	14.1
462	Stainless Steel	34 D, 50 length	5–1200	14.1
3420	Electrolytic Iron	6.4 D, 50 length	6-1000	77.9
3421	Electrolytic Iron	31.7 D, 50 length	6-1000	77.9
3422	Sintered Tungsten	3.2 D, 50 length	4-3000	173
3423	Sintered Tungsten	6.4 D, 50 length	4–3000	173
3424	Graphite	6.4 D, 50 length	5-2500	90.9
3425	Graphite	12.7 D, 50 length	5-2500	90.9
3426	Graphite	25.4 D, 50 length	5-2500	90.9

Thermal Expansion				
SRM	Туре	Temperature Range (K)	Diameter (mm)	Length (mm)
731-L1	Borosilicate Glass	80-680	6.4	51
731-L2	Borosilicate Glass	80-680	6.4	102
731-L3	Borosilicate Glass	80-680	6.4	152
737	Tungsten	80-1800	6.4	51
739-L1	Fused Silica	80-1000	6.4	51
739-L2	Fused Silica	80-1000	6.4	102
739-L3	Fused Silica	80-1000	6.4	152

Magnetic

Magnetic Susceptibility		
SRM	Туре	Form/Unit
763	Aluminum	Cylinder 3 mm diameter × 3 mm
764	Platinum	Cylinder 3 mm diameter × 3 mm
765	Palladium	Cylinder 3 mm diameter × 3 mm
766	Manganese Flouride	Cube 3×3×3 mm

Magnetic Moment		
SRM	Туре	Size
772	Nickel Sphere	2.4 mm D

OPTICAL

Spectrophotometric

SRM 930D: This SRM consists of three neutral density glass filters. The filters have transmittances of approximately 10, 20, and 30 percent. Each filter is individually certified for transmittance at wavelengths of 440, 465, 546.1, 590, and 635 nm.

SRM 931d: This SRM consists of three sets of four solutions—a blank solution and three concentrations of absorbing liquid. The net absorbances are certified for each concentration at wavelengths of 302, 395, 512, and 678 nm.

SRM 932: This SRM is an all quartz rectangular parallelepiped cuvette designed to fit the holder of conventional spectrophotometers. The cuvettes range in pathlength from 9.97 to 10.03 mm, and are certified for pathlength and parallelism of the windows to within ± 0.0005 mm.

SRM 935: Solutions made with this SRM are certified for apparent specific absorbances at wavelengths of 235, 257, 313, 345, and 350 nm.

SRM 936: A solution made with this SRM is certified for its molecular emission spectrum over the wavelength range of 375 to 675 nm.

SRM's 2009 and 2010: The SRM's are for checking the wavelength scale between 400 and 760 nm for bandpasses between 1.5 and 10.5 nm. SRM 2009 is mounted in a standard cuvette-sized holder, and SRM 2010 is approximately 51 mm square.

SRM 2031: This SRM consists of three filters mounted in holders and an empty holder; all holders are equipped with shutters. Two of the filters have an evaporated layer of semitransparent metal sandwiched between two quartz plates assembled by optical contact. The third filter is a single quartz plate. Each filter is individually calibrated at 250, 280, 340, 360, 400, 465, 500, 546.1, 590, and 635 nm.

SRM 2032: Aqueous solutions made with this SRM are certified for specific absorbances from 240 to 280 nm for use as a stray light standard in the ultraviolet region.

SRM 2033: This SRM consists of the same material as SRM 2032 plus a reference beam attenuator for extending the dynamic range of the stray light test.

SRM 2034: This SRM is a solution sealed in a non-fluorescent, fused-silica cuvette for checking the wavelength scale between 240 and 650 nm.

Spectrophotometric Wavelength SRM Type Unit Range (nm) 930D Glass Filters, Transmittance 440-635 3 filters/4 holders 931d Liquid Filters, Absorbance 302-678 Set: 12 vials 932 Quartz Cuvette, Pathlength 1 each 935 Potassium Dichromate, UV Absorbance 235-350 15 grams 936 Quinine Sulfate Dihydrate, Fluorescence 375-675 1 gram 2009 Didymium-oxide Glass, Wavelength 400-760 1 filter/1 holder 2010 Didymium-oxide Glass, Wavelength 1 filter, 51 mm² 400-760 2031 Metal-on-Quartz Filters, Transmittance 250-635 3 filters/4 holders 2032 Potassium Iodide, Stray Light 240-280 25 grams 2033 Potassium Iodide with Attenuator 240-280 25 grams w/attenuator Holmium-oxide Solution, Wavelength 2034 240-650 1 sealed cuvette

SRM 2034 is 4% holmium oxide in 10% perchloric acid in water, sealed in a non-fluorescent, fused-silica cuvette for use as a spectrophotometric wavelength SRM.

Reflectance

These SRM's are for calibrating the reflectance scale of integrating sphere reflectometers used to evaluate materials for solar energy collectors and to calibrate reflectometers used in evaluating the appearance of polished metals and metal plated objects.

Specular Spectral Reflectance				
SRM	Туре	Wavelength Range (nm)	Size	
2003	First Surface, Aluminum on Glass	250-2500	5.1 cm D	
2011	First Surface, Gold on Glass	600-2500	5.1 cm D	
2023	Second Surface, Aluminum on Fused Quartz	250-2500	5.1×5.1 cm	
2024	Second Surface, Aluminum on Fused Quartz	250-2500	2.5×10.2 cm	
2025	Second Surface, Aluminum on Fused Quartz with wedge	250-2500	2.5×10.2 cm	

Direct	ional-Hemispherical Reflectar	nce	
SRM	Туре	Wavelength Range (nm)	Size
2015	Opal Glass	400-750	2.5×5.0×0.64 cm
2016	Opal Glass	400-750	10×10×0.64 cm
2019ь	White Ceramic Tile	350-2500	5.1×5.1×0.81 cm
2020	White Ceramic Tile	350-2500	3.8×7.6×0.81 cm
2021	Black Porcelain Enamel	280-2500	5.1×5.1×0.20 cm

Refractive Index

SRM's 211c, 217c, 2211, 2212, 2213 are certified for refractive index at 20, 25, and 30 °C, from 435.8 to 667.8 nm for seven wavelengths.

SRM's 1820 and 1822 are certified for refractive index at thirteen wavelengths from 404.7 nm to 706.5 nm. These SRM's are designed for calibrating refractometers and certifying refractive index immersion liquids. They consist of two rectangular glass slabs: one slab has polished faces and is to be used to check the performance of a refractometer; the second slab is unpolished and can be broken into fragments to certify the refractive index of immersion liquids by microscope methods.

SRM 1823 consists of two silicone liquids that are miscible and span the refractive index range of a variety of glasses and glass fibers. The liquids are suitable for calibrating refractometers and are certified for refractive index at ten wavelengths from 435.8 to 667.8 nm, at temperatures of 20, 40, 60, and 80 °C.

SRM	Туре	n ²⁰	Unit Size
211c	Toluene	1.497	5 mL
211	Toluene	1.497	8 mL
212	Toluene	1.497	25 mL
217c	2,2,4-Trimethylpentane (Isooctane)	1.391	5 mL
2213	2,2;4-Trimethylpentane (Isooctane)	1.391	25 mL
820	Glass (Borosilicate)	1.488	Set: 2 slabs
822	Glass (Soda-Lime)	1.518	Set: 2 slabs
823-I	Silicone Liquid (I)	1.518	60 mL
823-II	Silicone Liquid (II)	1.559	60 mL

Optical Rotation

These SRM's are intended for use in calibrating or checking polarimetric apparatus. In aqueous solution the optical rotation of SRM 17c is certified at three wavelengths, while that of SRM 41c is certified at two wavelengths. SRM 41c is also certified at one wavelength in a dimethyl sulfoxide solution.

SRM	Туре	Optical Rotation In Aqueous Solution	Unit Size
17d 11c	Sucrose	(712 mrad)	60 g
11c	Dextrose	931.8 mrad	70 g

Pam Hodge of the Radioactivity group provides information on the availability, scheduling, and license requirements for radioactivity SRM's.

RADIOACTIVITY

These SRM's are shipped express or air freight (shipping charges collect). The amount of a radionuclide in an SRM, at a specified time, is stated as (1) the number of atoms (or the mass, for radium SRM's), (2) the activity, or "decays per second," or (3) the emission rate of a particular radiation, depending on the method of calibration or the intended use. For solution SRM's, the quantity is usually specified per gram of liquid. The active portion of gamma-ray "point-source" standards is usually restricted to the central few millimeters of a low-mass, low-Z support to minimize scattering. Alpha-particle-emitting radionuclides are deposited or plated on metal backings.

The unit for activity has traditionally been the curie (Ci), but simpler relations between activity, emission rate, and counting rate result if the current SI (International System of Units) unit "1 per second" is used. This is symbolized as "s-" and has been given the special name becquerel (Bq). The relationship between the curie and the bequerel is:

 $1 \text{ Ci} = 3.7 \times 10^{10} \text{ Bq}.$

Many SRM's are measured and certified in terms of emission rate. In this catalog, αs^{-1} , $\beta^- s^{-1}$, $\beta^+ s^{-1}$, Kxs^{-1} , and γs^{-1} are used for the emission rates of alpha particles, negatrons, positrons, K x-rays, and gamma rays, respectively.

The SRM's without an asterisk (*) may be ordered singly, without a license, under the general licensing provisions of the Atomic Energy Act of 1954. Those marked by an asterisk are available only under the special licensing provisions of the Atomic Energy Act of 1954.

NOTE: Certain radionuclides are not economical to maintain in stock because of short half lives or low demand. When sufficient demand exists, based on letters of inquiry, these materials are prepared and those who have expressed interest are notified of their availability. If you need any radionuclide not listed, write the Radioactivity Group, Room C114 Radiation Physics Building, National Bureau of Standards, Gaithersburg, MD 20899; or telephone (301) 921-2665.

In addition, chemically stable solutions of most radionuclides may be submitted to NBS for calibration as described in National Bureau of Standards Calibration Services User Guide, NBS Special Publication 250 (1986, ed.). Requests for these test should be submitted, with full source information for approval of suitability to the Radioactivity Group.

Alpha-Particle, Beta-Particle, Gamma-Ray, and Electron-Capture Solutions

SRM	Radionuclide	Approximate activity, of calibration (mont	per gram, at time h/year) (Bq g ⁻¹)	Approx. Mass of Solution (g)	Overall Uncertainty (%)
4332B*	Americium-243	89	11/83	5	1.4
4251B*	Barium-133	5×10 ^s	1/82	5	1.4
4222B	Carbon-14	4.9×104	7/83	3.5	1.3
4250B*	Cesium-134	2×10 ^e	4/82	5	1.2
4233B*	Cesium-137, Barium-137m	7×10 ^s	8/79	5.1	1.4
4943*	Chlorine-36	1×104	12/84	3	2.3
4408LD*	Cobalt-57	5×10 ⁶	7/84	5	1.0
4915D*	Cobalt-60	3×10 ^s	2/84	5	0.8
4329*	Curium-243	70	6/84	5	1.4
4926C	Hydrogen-3	3×10³	9/78	18	0.6
4927C	Hydrogen-3	6×10s	3/85	3	0.6
4947	Hydrogen-3	1×10 ^s	9/78	4	1.0
4361	Hydrogen-3	1.3	9/78	490	0.9
4949B	Iodine-129	7×10 ³	1/82	1	1.9
4929D	Iron-55	4×104	9/85	5	3.0
4932F*	Mercury-203	4×10s	12/85	5	1.0
4226*	Nickel-63	1×10 ^e	12/84	4.1	1.0
4327*	Polonium-208	77	6/84	1.1	1.4
4338*	Plutonium-240	18	4/80	5	1.0
4940C	Promethium-147	1.4×104	9/85	5	1.0
4919E*	Strontium-90	3.4×10 ^a	3/85	5	1.4
4928C	Sulfur-35	4×10s	8/85	4	0.4
4288*	Technetium-99	4×104	11/82	5	1.6
4328*	Thorium-229	884	5/84	2	1.5
4324*	Uranium-232	83	2/84	5	1.5
4276B*	Long-Lived Mixed Radionuclide Antimony-125	2: 1.2×10 ⁴	6/83	5	
	Europium-154	1.5×10 ⁴			
	Europium-155	7×10 ³			

Alpha-Particle Point-Sources

These SRM's consist of a practically weightless deposit of the nuclide on a thin platinum foil cemented to a monel disk.

SRM	Radionuclide	Approx. α-particle-emission rate into 2π geometry and/or approx. activity at time of calibration (month/year)		Overall uncertainty (%)	
4904G*	Americium-241	30 to 1.3×104s ⁻¹	2/82	1.0 to 1.3	

Radio	carbon Dating an	d Ground Water Studies
Contempo	rary Standard for Carbon-14	4 Dating Laboratories
SRM	Material	Description
4990C	Oxalic Acid	One-half pound of oxalic acid taken from specially prepared material for use as a common contemporary standard against which world-wide measurements can be compared.
Low-Level	Tritiated-Water Standard	
SRM	Material	Description
4361	Hydrogen-3	Contains 490 grams of ³ H-H ₂ O in a flame-sealed bottle. The radioactivity concentration was 1.312 Bq g ⁻¹ , as of the date of the most recent gas-counting measurement—September 3, 1978. The total uncertainty in this value is 0.85%.

Gaseous	Materials					annet a manua		
SRM	Radionuclide	Approximate activity radioactivity concentration of calibration (month	ion at time	Approx. Vol. (cm ³)	Approx. Overa Pressure Uncerta (atm) (%)			
4935C	Krypton-85	5×10 ⁷ Bq mol ¹	3/74	10	1	0.9		
4235*	Krypton-85	1×10 ⁷ Bq	11/74	3	1	1.2		
4308C	Krypton-85	1.6×10 ⁶ Bq	11/79	30	0.3	3.1		
4415LJ*	Xenon-133	1.5×10* Bq	time of dispatch	5	0.1	1.5		

Gamma-Ray and X-Ray Point-Sources

These SRM's are usually prepared by depositing the radioactive material and sealing it between two layers of polyester tape, mounted on an aluminum ring, exceptions are americium and thorium. SRM 4213, Americium-241, is prepared by electroplating americium onto a 0.010-cm thick platinum foil, which is covered with a 0.005-cm thick aluminum foil. The aluminum-covered source is sandwiched between two layers of 0.036-cm thick polyurethane film tape. SRM 4206c, Thorium-228, is prepared by depositing and sealing the radionuclide between two layers of gold foil and this sandwich is then sealed between two double layers of polyurethane-film tape.

SRM	Radionuclide	Principal Photon Energy (MeV)	Approximate acti at time of calib (except MRN) (year)	ration	Overall Uncertainty (%)
4213*	Americium-241	0.060	3×10s	2/70	2.8
4241B*	Barium-133	0.081	8×10 ⁴	1/81	1.4
4200B	Cesium-137, Barium-137m	0.662	4×104	9/79	1.6
4207	Cesium-137, Barium-137m	0.662	3×10 ⁵	9/79	1.6
4214B	Cobalt-57	0.122	4×10 ⁵	2/83	0.8
4203D*	Cobalt-60	1.173-1.332	2×104 to 2×105	3/84	0.9
4218E*	Europium-152	0.122 to 1.408	5×104 to 5×108	11/82	1.5
4201B	Niobium-94	0.702 to 0.871	5×10 ³	4/70	1.5
4206C*	Thorium-228	2.615	8×104	11/80	2.0
Long-Live 4275B	ed Mixed Radionuclide Antimony-125, Tellurium-125m	0.027 to 1.274	5×104	5/83	
	Europium-154		6×104		
	Europium-155		3×104		

Low-Energy-Photon Point-Sources

These SRM's consist of a thin-layer deposit of the radionuclide on a thin stainless steel or platinum foil cemented to a monel disk.

SRM 4260C	Radionuclide	Principal Photon Energy (MeV)	Approx. emission rate at time of calibration (month/year)		Overall Uncertainty (%)
	Iron-55	0.0059	2×104 Kxs ⁻¹ steradian ⁻¹	11/82	1.8
4264B	Tin-121m, Antimony-121	0.0372	$4 \times 10^{2} \text{ ys}^{-1}$	11/82	3.0
4267	Niobium-93m	0.016	8×10 ² Kxs ⁻¹	11/85	3.0

Radium-226 Solutions

Radon Analysis

These samples are contained in flame-sealed glass ampoules.

SRM	Nominal Radium Content (g)	(month/year)	Approx. Mass of Solution (g)	Overall Uncertainty (%)
1952B	Blank Solution	8/76	20	68
1953D	4×10 ⁻⁹	6/84	5	1.2
1951C	8×10 ⁻¹²	4/78	10	1.5
1950E	4×10 ⁻¹⁰	6/84	5	1.3

Gamma-Ray Solutions

These samples are contained in flame-sealed glass ampoules.

SRM	Nominal Radium Content (g)	(month/year)	Approx. Mass of Solution (g)	Overall Uncertainty (%)
4956	2×10 ⁻⁷	9/67	5.1	4.4
4957	5×10 ⁻⁷	9/67	5.1	1.8
4958	1×10 ⁻⁶	9/67	5.1	1.8
4959	2×10 ⁻⁶	9/67	5.1	1.3
4960	5×10 ⁻⁶	9/67	5.1	1.3
4961	1×10 ⁻⁵	9/67	5.1	1.1
4962	2×10 ⁻⁵	9/67	5.1	1.1

Environmental Natural Matrix Materials for Traceability Tests

SRM 4350B-Columbia River Sediment

This material was collected from a river downstream from a nuclear reactor facility. Concentrations of fission and activation products are elevated over typical world-wide levels. ^{239/240} Pu and ²⁴¹ Am are very homogenously distributed through the sample and are in soluble chemical forms. Inhomogeneity does not exceed 3 percent for other radionuclides.

SRM 4351—Human Lung

This material contains radioactivity concentrations on the order of 10⁻⁴ Bq g⁻¹. It has been freeze-dried, cryogenically ground, homogenized, and packed in a glass bottle under vacuum. There is significant inhomogeneity in ^{239/240} Pu which is unavoidable because plutonium was taken into the lungs in particulate form. Assessments of accuracy of measurement technique can be improved by averaging over several samples.

SRM 4352-Human Liver

This material contains radioactivity concentrations on the order of 10⁻⁴ Bq g⁻¹. It has been freeze-dried, cryogenically ground, homogenized, and packed in a glass bottle under vacuum.

SRM 4353-Rocky Flats Soil Number 1

This material was collected within 13 centimeters of the soil surface at Rocky Flats, Co. ²³⁹ Pu and ²⁴¹ Am concentrations are about an order of magnitude higher than typical world-wide levels. Approximately 10 percent of the plutonium is in a refractory chemical state. The material also contains "hot" particles and a statistical method is provided for dealing with these. Inhomogeneities, excluding hot particles, do not exceed 3 percent.

SRM 4355-Peruvian Soil

This material, which has been the subject of a trace-element study, has non-measurable radioactivity concentrations for many fallout radionuclides and can be used as a blank or for sensitive tests of radioanalytical procedures at low-radioactivity concentrations for other radionuclides. The results of the trace-element study are given for 57 elements.

RM 45B-River Sediment

This material contains radioactivity concentrations of roughly an order of magnitude greater than SRM 4350B. The values, however, are uncertified although the inhomogeneity does not exceed 3 percent for all radionuclides. This material can be used for routine checking for reproducibility of results after tests have been performed with SRM 4350B.

adioph	armaceuticals				
SRM	Radionuclide (5 mL solution)	Half Life		Approximate Radioactivity at Time of Dispatch (Bq g ⁻¹)	Overall Uncertainty
400LF*	Chromium-51	27.702	d	1×10 ⁶	1.8
408LD*	Cobalt-57	271.7	d	8×10s	1.6
416LF*	Gallium-67	3.261	d	3×10 ⁶	1.7
1421L*	Gold-195	183	d	5×10s	2.3
405LB*	Gold-198	2.696	d	4×10 ^e	1.7
417LE*	Indium-111	2.805	d	3×10 ⁶	1.3
414LC*	Iodine-123	13.221	hr	6×10 ⁷	1.5
407Lİ*	Iodine-125	59.6	d	8×10 ⁵	2.0
401LL*	Iodine-131	8.021	d	1×10 ⁶	1.7
411LB*	Iron-59	44.51	d	8×10 ^s	1.5
1420LB*	Lead-203	51.88	hr	3×10 ^s	1.7
4418L*	Mercury-203	46.60	d	1×10 ^e	1.0
4412LJ*	Molybdenum-99, Technetium-99m	65.92	hr	2×10 ⁶	1.8
4406LH*	Phosphorus-32	14.29	d	1×10 ^e	1.4
1409LD*	Selenium-75	119.8	d	1×10°	2.5
4403LB*	Strontium-85	64.85	d	1×10°	1.4
4410HJ*	Technetium-99m	6.007	hr	2×10°	1.8
4404LG*	Thallium-201	72.91	hr	2×10 ⁶	2.0
4402LC*	Tin-113, Indium-113m	115.08	d	8×10 ⁵	3.1
4415LJ*	Xenon-133 (5 mL gas)	5.243	d	5×10 ⁸ s ⁻¹ total	1.4
4419LB*	Ytterbium-169	32.03	d	2×10 ⁶	2.5

Special Nuclear Material Packaging					
SRM	Туре	Description			
9910	Special Nuclear Material Package	Lead Container, 21/2×6 inches			

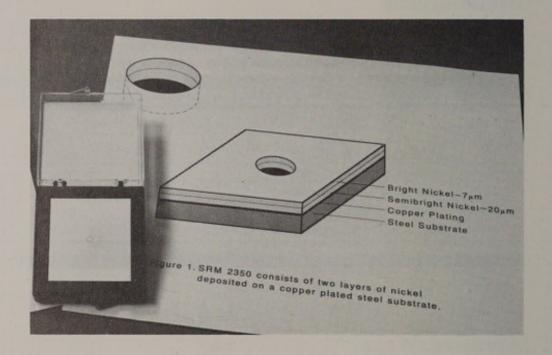
Metallurgical

SRM's 485a, 486, 487, and 488 are for calibrating of x-ray diffraction equipment used in determining the amount of retained austenite in ferrous materials. SRM 493 is for calibrating x-ray diffraction and Mössbauer equipment to determine the relative amounts of iron carbide in steel.

SRM	Туре			Form
485a	Austenite in Ferrite	5%	Disk: 21 mm	dia.×2.4 mm thick
486	Austenite in Ferrite 1	5%	Disk: 21 mm	dia.×2.4 mm thick
487	Austenite in Ferrite 3	90%	Disk: 21 mm	dia.×2.4 mm thick
488	Austenite in Ferrite	2%	Disk: 21 mm	dia.×2.4 mm thick
493	Spheroidized Iron Carbio	le (Fe ₃ C) in Ferrite	Wafer: 29×29	×2.4 mm

Abrasive Wear

SRM 1857 is for use in the dry sand/rubber wheel abrasion test per ASTM G65, Procedure A.


SRM	Туре	Form
1857	D-2 Tool Steel	2 blocks: 7.8×25×76 mm

Corrosion

Electrochemical Potential and Thickness

This SRM is for determining the reliability of step test measurements of electrochemical and thickness of multilayered nickel deposits. It consists of a 50×50 mm plate of copper-plated steel over which a duplex nickel coating has been deposited.

SRM	Туре	Step Test Potential (mV)	Total	Bright icrometers	Semibright
2350	Nickel Step Test Standard	110-150	27	(7)	(20)

Pitting or Crevice Corrosion

These SRM's are for use in evaluating the pitting or crevice corrosion of surgical implant materials per ASTM F746.

SRM	Туре	Form
1890	316L Stainless Steel Rod and Teflon Collar	4 sets: 6.4 mm D, 25.4 mm long
1891	Co-Cr-Mo Alloy Rod and Teflon Collar	2 sets: 6.4 mm D, 25.4 mm long

X-ray Fluorescent Emission Target

This SRM is intended for use in determining the detector window absorption in semiconductor x-ray spectrometers according to ANSI-IEEE Standard STO 759. When excited by a 55Fe source this glass target will emit fluorescent x-rays in the range 1.0 to 5.2 keV.

SRM	Туре	Form	Unit Size
477	Glass Fluorescence Source	Disk	2×25 mm D

X-ray Diffraction

SRM's 640a, 674, and 675 are powdered materials to be used as internal standards for powder diffraction measurements. SRM 674 is a set of five oxides for use in the quantitative analysis (intensity measurement) of materials. See also: SRM's 485a-488, 493 (p. 109), and SRM 1878 (p. 65).

SRM	Туре	Lattice Parameter (25.0°C)	Unit Size
640a	Silicon Powder	5.430825 Å	10g
674	Powder Diffraction Intensity		
	Al ₂ O ₃ (α-alumina)	4.75893 Å	10g
	CeO ₂	5.41129 Å	10g
	Cr ₂ O ₃	4.95916 Å	10g
	TiO ₂ (Rutile)	4.59365 Å	10g
	ZnO	3.24981 Ā	10g
675	Powder Diffraction (Mica)	9.98104 Å	5g

Gas Transmission

SRM 1470 is for use in the measurement of gas transmission rates using a volumetric method (ASTM D1434), manometric method (ASTM D1434), or coulometric method (ASTM D3985) of measurement. The permeances of nitrogen, oxygen, carbon dioxide, and helium through this polyester film at 296.15 K are 0.0421, 0.352, 1.722, and 13.79 pmol-s⁻¹·Pa⁻¹, respectively.

SRM	Туре	Unit Size
1470	Polyester Plastic Film for Gas Transmission	15 sheets, 23 cm square

Reference Fuel

SRM's 1815a and 1816a are high purity liquids intended for use in maintaining the integrity of the octane rating of motor and aviation fuels as specified in the ASTM Manual for Rating Motor, Diesel and Aviation Fuels.

SRM	Туре	Purity, %	Unit Size
1815a	n-Heptane	99.987	100 mL
1816a	Isooctane (2,2,4-Trimethylpentane)	99.987	100 mL

Electrical Resistivity and Conductivity

Metals

These materials are for evaluating methods of measuring electrical resistance over wide temperature ranges.

SRM	Туре	Temperature Range	Resistivity at 293 K		Form
1460	Stainless Steel	5 to 1200 K	80.5 μΩ-cm	Rod:	6.4 mm D, 50 mm lon
1461	Stainless Steel	5 to 1200 K	80.5 μΩ-cm	Rod:	12.7 mm D, 50 mm lon
1462	Stainless Steel	5 to 1200 K	80.5μΩ-cm	Rod:	34.0 mm D, 50 mm lon
8420	Iron	6 to 1000 K	10.1 μΩ-cm	Rod:	6.4 mm D, 50 mm lon
8421	Iron	6 to 1000 K	10.1 μΩ·cm	Rod:	31.7 mm D, 50 mm lon
8422	Tungsten	4 to 3000 K	5.4 μΩ-cm	Rod:	3.2 mm D, 50 mm lon
8423	Tungsten	4 to 3000 K	5.4 μΩ-cm	Rod:	6.4 mm D, 50 mm lon

Silicon

SRM's 1521, 1522, and 1523 are for calibrating four-probe and eddy-current test equipment; SRM's 2526, 2527, 2528, and 2529 are for two-probe test equipment.

SRM	Туре	Resistivity	Form
1521	111 p-Type Silicon	0.1 and 10 Ω-cm	2 wafers, 51 mm D
1522	111 n-Type Silicon	25, 75, and 180 Ω·cm	3 wafers, 51 mm D
1523	100 and 111 p-Type Silicon	0.01 and 1 Ω-cm	2 wafers, 51 mm D
2526	111 p-Type Silicon, Spreading Resistance	0.001 to 200 Ω-cm	16 slices
2527	111 n-Type Silicon, Spreading Resistance	0.001 to 200 Ω-cm	16 slices
2528	100 p-Type Silicon, Spreading Resistance	0.001 to 200 Ω-cm	16 slices
2529	100 n-Type Silicon, Spreading Resistance	0.001 to 200 Ω-cm	16 slices

Residual Resistivity Ratio

This SRM is a set of five aluminum rods that are intended for use in checking four-terminal dc and eddy current decay techniques. The residual resisitivity ratio, $\rho(273 \text{ K})/\rho(4 \text{ K})$, is a sensitive indicator of purity and of the mechanical state of a material.

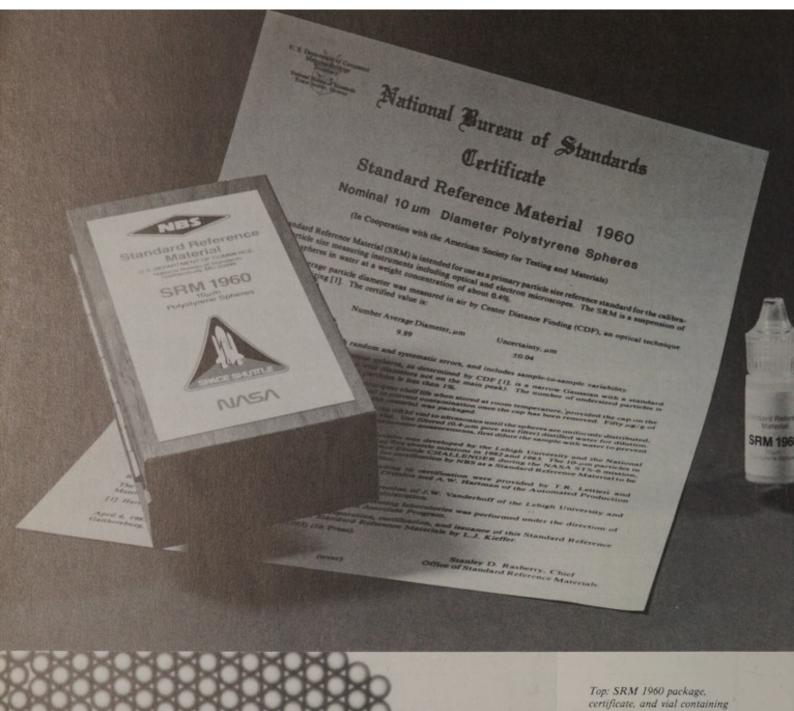
SRM	Туре	RRR Values	Form
769	Aluminum	130, 683, 1205, 2650, and 11,000	6.4 mm D, 52 mm long

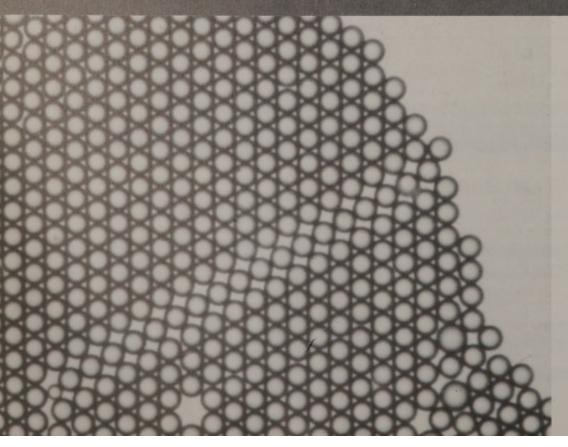
Eddy Current

These SRM's are intended for use in the calibration of eddy current conductivity meters and of secondary electrical conductivity standards. Eddy current measurements are used in nondestructive inspection of conducting materials and in the sorting of alloys for composition and heat treatment.

SRM	Туре	Conductivity	Form
1860	Aluminum	60% IACS	44×44×9.5 mm
1862	Aluminum-Magnesium Alloy	41% IACS	44×44×9.5 mm
1864	Copper (IN PREP)		
1865	Titanium Alloy (6Al-4V) (IN PREP)		

Superconducting Critical Current


This SRM is for checking the performance of measurement systems used in superconductor technology. It consists of 2.2 m of a multifilamentary niobium titanium, copper stabilized superconducting wire wound in a single layer onto a spool with a core diameter of 8.7 cm.


SRM	Туре	Magnetic Field (T)	Critical Current (A)
1457	Nb-Ti Wire	2,000	293.30
		4,000	187.38
		6,000	124.72
		8,000	69.72

Dye Penetrant Test Blocks

These SRM's are for checking the performance of liquid dye penetrants and dye penetrant crack detection techniques. These test block have four synthetic cracks, approximately 0.2, 0.5, 1, and 2 μ m wide.

SRM	Туре	Surface	Unit Size
1850	Penetrant Test Block	Bright Finish	5 cm dia., 1 cm thick
1851	NDE Penetrant Test Block	Matte Finish	5 cm dia., 1 cm thick

Top: SRM 1960 package, certificate, and vial containing polystyrene spheres in solution. Left: Photomicrograph of first SRM made in space, aboard Space Shuttle Challenger during the NASA STS-6 mission.

Engineering Materials

Standard Rubbers and Rubber-Compounding Materials

These SRM's have been prepared to provide the rubber industry with standard materials for rubber compounding. They are useful for the testing of rubber and rubber-compounding materials in connection with quality control of raw materials and for the standardization of rubber testing.

Each material has been statistically evaluated for uniformity by mixing rubber and rubber compounds, and vulcanizing them in accordance with ASTM Designation D-15 and determining the stress-strain properties of the resulting vulcanizates. Certificates are issued for the rubbers because the properties of different lots are not the same. Replacement lots of rubber-compounding SRM's impart essentially the same characteristics to rubber vulcanizates so that Certificates are not issued for these SRM's.

Rubbers			
SRM	Туре	Wt/Unit	Pounds
386j	Styrene-butadiene 1500	34 kg	75
388m	Butyl	34 kg	75
1495	Butyl (Low Viscosity)	34 kg	75

CUDDO	er Compounding Materials		
SRM	Туре	Wt/Unit	Pounds
370e	Zinc Oxide	8 kg	17.6
371h	Sulfur	6 kg	13.2
372i	Stearic Acid	3.2 kg	7.1
375g	Channel Black	28 kg	61.6
378b	Oil Furnace Black	28 kg	61.6
382a	Gas Furnace Black	32 kg	70.6
383a	Mercaptobenzothiazole	3.2 kg	7.1
384e	N-tertiary-Butyl-2-benzothiazolesulfenamide	3.2 kg	7.1

Sizing

Particle Size

SRM's 1003a, 1690, 1691, and 1960 can be used to calibrate various types of particle size measuring instruments including both light and electrical zone flow-through counters. SRM's 1004, 1017a, 1018a, and 1019a are for calibrating test sieves.

SRM	Туре	Size (μm)	Sieve No.	Wt/Unit
1003a	Glass Spheres	8-58	_	25 g
1004	Glass Spheres	34-120	400-140	63 g
1017a	Glass Spheres	100-310	140-50	84 g
1018a	Glass Spheres	225-780	60-25	74 g
1019a	Glass Spheres	760-2160	20-10	200 g
1690	Polystyrene Spheres (0.5% wt. concentration in water)	0.9	_	5 mL vial
1691	Polystyrene Spheres (0.5% wt. concentration in water)	0.3		5 mL vial
1960	Polystyrene Spheres (0.4% wt. concentration in water)	10.00	_	5 mL vial

Cement Turbidimetric and Fineness

This SRM is available to calibrate the Blaine fineness meter according to the latest issue of Federal Test Method Standard 158, Method 2101 or ASTM Designation C204; to calibrate the Wagner turbidimeter according to ASTM Designation C115; and to determine sieve residue according to ASTM Designation C430. Each set consists of twenty sealed vials, each containing approximately 10 grams of cement.

SRM	Туре	Properties Certified	Unit
114n	Portland Cement	Residue on 45 µm, electroformed sieve wet method	Set of 20 vials
		Surface area (Wagner turbidimeter)	
		Surface area (Air-permeability)	

SRM 2083, Socketed Ball Bar.

Surface Area of Powders

These materials are for calibrating and checking instruments used to determine the secific surface area of powders by BET. RM's 8005 through 8008 have been certified by the National Physical Laboratory, Teddington, U.K. (and meet the ISO definition for CRM's); RM's 8570, 8571, and 8572 are issued by NBS in cooperation with ASTM, but are not certified.


RM	Туре	Surface Area	Unit Size
8005	Alpha Alumina	2.1 m ² /g	50 g
8006	Alpha Alumina	0.3 m ² /g	50 g
8007	Alpha Alumina	0.1 m ² /g	50 g
8008	Alpha Alumina	0.8 m ² /g	50 g
3570	Calcined Kaolin	(11) m ² /g	10 g
571	Alumina	(160) m ² /g	10 g
3572	Silica-Alumina	(286) m ² /g	10 g

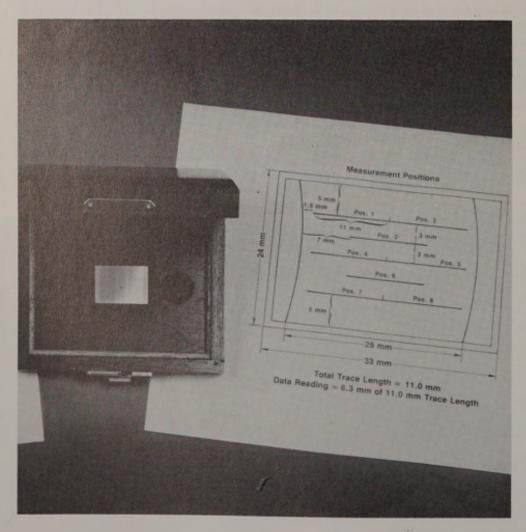
PERFORMANCE STANDARDS

Socketed Ball Bar

This SRM is for measuring the performance of coordinate measuring machines (CMM's) as per ASME Standard B89.1.12. It consists of a set of three precision balls pinned and cemented onto threaded shafts, one table-mount magnetic socket, one ram-mount magnetic socket, and 5 partially insulated extension tubes—50, 100, 200, 400, and 800 mm long.

SRM	Туре	Measuring Lengths (50 mm steps)	Unit
2083	Socketed Ball Bar	100 to 1650 mm	Set

Radiographic Image Quality


This SRM is for determining the radiographic image quality of x-ray radiographic systems, or x-ray system components such as film.

SRM	Туре	Unit of Issue
1844	Radiographic Quality Image Indicator	Set of 4 plates

Surface Roughness

These SRM's are for calibrating stylus instruments that measure surface roughness. These electroless-nickel coated steel blocks have a sinusoidal roughness profile machined on the top surface.

SRM	Туре	Roughness	Unit of Issue
2071	Sinusoidal Roughness	0.3µm	IN PREP
2072	Sinusoidal Roughness	1.0µm	IN PREP
2073	Sinusoidal Roughness	3.0µm	Block, 24×33 mm

SRM 2073, Sinusoidal Roughness specimen with a diagram of measurement positions.

Color

These SRM's are available to illustrate a characteristic color for each of the ISCC-NBS color-name blocks in NBS Special Publication 440, COLOR: Universal Language and Dictionary of Names. SRM 2106 consists of 251 color chips on 18 constant-hue centroid color charts, and constitutes a supplement to SP 440. SRM 2107 combines SRM 2106 with SP 440 to form a complete color kit. The centroid colors represent a systematic sampling of the whole color solid. Note: The color chips were re-measured in 1984 and are issued with the new data as an addendum. This addendum is available upon request.

SRM	Туре	Unit of Issue
2106	Centroid Color Charts	Set: 18 Charts
2107	Color Kit	Set: SRM 2106 and SP 440

X-ray and Photographic

SRM 1001 is a calibrated x-ray film step tablet of 17 steps that cover the optical density range from 0 to 4; it has a blue tint and emulsion on both sides. SRM 1008 is a calibrated photographic step tablet of 21 steps that cover the optical density range from 0 to 4; it has a black tint and emulsion on a single side.

SRM 1010a, Microcopy Resolution Test Charts, is used to test the resolving power of cameras or of whole microcopying systems. SRM 1010a consists of five charts printed photographically on paper, which have 26 high-contrast five-line patterns ranging in spatial frequency from one cycle per millimeter to 18 cycles per millimeter. Instructions for the use of the charts are supplied with each order.

SRM 2061 is a calibrated reflection step tablet having 12 steps that cover the optical density range from 0 to 2 on gray scale paper from white to black. It is intended primarily for use in photographic applications requiring color balance or separation.

SRM	Туре	Unit
1001	X-ray Film Step Tablet (0-4)	1 tablet, 17 steps
008	Photographic Step Tablet (0-4)	1 tablet, 21 steps
010a	Microcopy Resolution Test Chart	Set of 5 charts
2061	Reflection Step Tablet	1 tablet, 12 Steps

Lloyd Gilmore of the Computer Storage Media Group mounts a tape SRM for exercising; all tape SRM's are exercised by winding and rewinding several times before shipment to customers. Upon receipt, customers should exercise such SRM's before each use.

Magnetic Computer Storage Media

These SRM's are for evaluating the performance of magnetic computer storage media and systems, and for maintaining control over their production. Each SRM is individually calibrated and certified.

SRM	Description	Unit of Issue
3200	Secondary Standard Magnetic Tape—12.7 mm (½ in) wide tape, certified for signal amplitude outputs relative to the NBS Standard Reference Amplitudes at 8, 32, and 126 flux transitions per millimeter (200, 800, 3200 flux transitions per inch).	Open Reel
6250	Secondary Standard High Density Magnetic Tape—12.7 mm (½ in) wide tape, certified for signal amplitude output relative to the NBS Standard Reference Amplitude at 356 flux transitions per millimeter (9042 flux transitions per inch).	Open Reel
1600	Secondary Standard Magnetic Tape Cassette—3.8 mm (0.15 in) wide tape, certified for signal amplitude output relative to the NBS Standard Reference Amplitude at 63 flux transitions per millimeter (1600 flux transitions per inch).	Cassette
3216	Secondary Standard Magnetic Tape Cartridge—6.3 mm (¼ in) wide tape, certified for signal amplitude output relative to the NBS Standard Reference Amplitude at 126 flux transitions per millimeter (3200 flux transitions per inch).	Cartridge
3217	Secondary Standard High Density Magnetic Tape Cartridge—6.3 mm (¼ in) wide tape, certified for signal amplitude outputs relative to the NBS Standard Reference Amplitudes at 252 and 394 flux transitions per millimeter (6400 and 10000 flux transitions per inch).	Cartridge
3210	Secondary Standard Magnetic Flexible Disk Cartridge (FDC)—200 mm (8 in) FDC, certified on Side 0 for signal amplitude outputs relative to the NBS Standard Reference Amplitudes at 250,000 and 500,000 flux transitions per second on tracks 00 and 76, respectively.	FDC

These RM's are certified by the Physikalisch-Technische Bundesantalt (PTB), Federal Republic of Germany, for signal amplitude, overwrite, and resolution. The RM numbers correspond to the ISO standard number, and the materials conform to relevant ANSI, ISO, and ECMA standards for flexible disk cartridges.

RM	Description	Unit/Size
5654	Flexible Disk Cartridge	200 mm (8 in)
5596	Flexible Disk Cartridge	130 mm (5.25 in)
7487	Flexible Disk Cartridge	130 mm (5.25 in)
8630	Flexible Disk Cartridge	130 mm (5.25 in)

Jim Park and Lloyd Gilmore examine SRM 3216, Secondary Standard Magnetic Tape Cartridge. Two SRM 6250's and a 3210 are on the table.

CENTERLINE DRAWINGS FOR OPTICAL CHARAC-TER RECOGNITION STYLE—B CHARACTERS

This SRM is an exact copy of the centerline drawings that uniquely define each printed character shape and size used in constant strokewidth Style B Size I Optical Character Recognition (OCR-B) applications in accordance with one or more of the following standards: American National Standard X3.49–1975 (R 1982), Character Set for Optical Character Recognition (OCR-B); Federal Information Processing Standards Publication (OCR), European Computer Manufacturers Association Standard ECMA-11 for the Alphanumeric Character Set OCR-B for Optical Recognition, 3rd Edition, 1976 and International Standard ISO 1073/II-1976, Alphanumeric Character Sets for Optical Recognition Part II: Character Set OCR-B.

This Standard Reference Material contains information on the shape, size, strokewidth, and position relative to the base line of the OCR-B characters.

SRM	Characters	Sheets	Size	Sheet Size
1901	118	118	OCR-B I	32×44×0.01 cm

O123456789
ABCDEFGHIJKLM
NOPQRSTUVWXYZ
abcdefghijklm
nopqrstuvwxyz
*+-=/.;"'?!()<>[]%#&@^
¤£\$!!\
'A'AÆIJÑÖØÜ
aæijøß\$¥
"'``^~
{}m

SRM 1901 consists of individual centerline drawings for each of the OCR-B size I characters illustrated here.

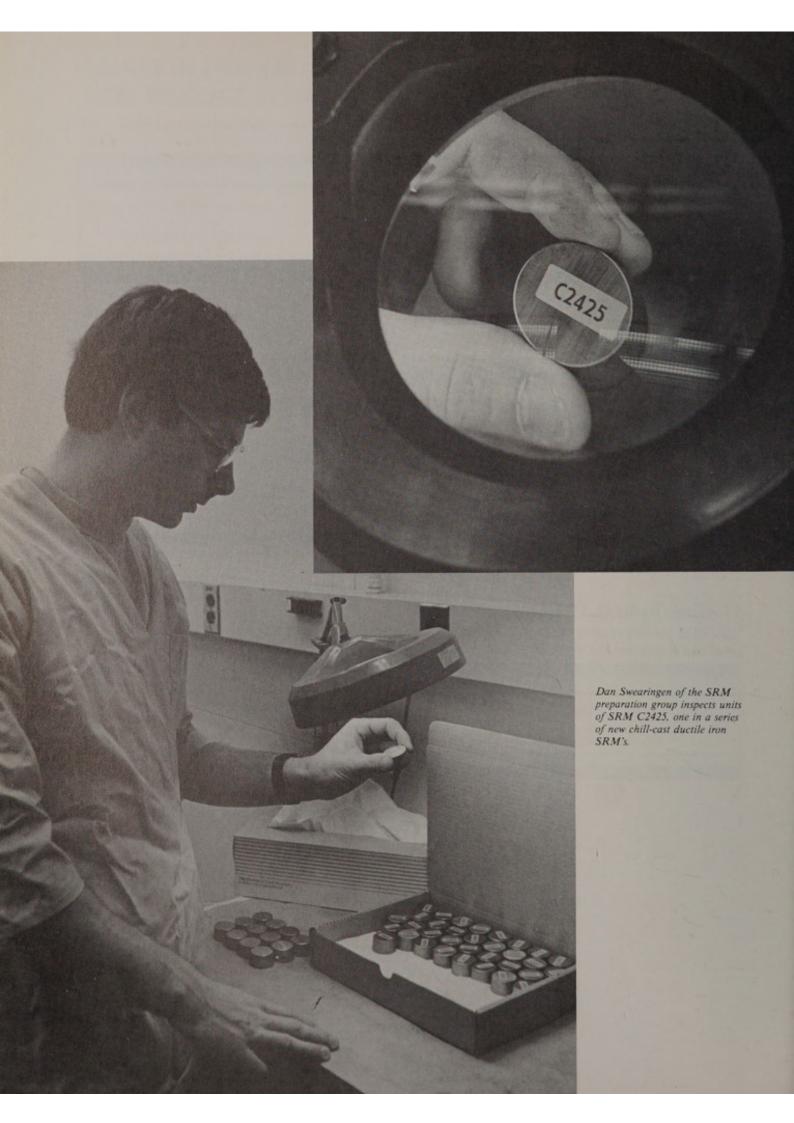
FIRE RESEARCH

Surface Flammability

SRM 1002c, Hardboard Sheet, is issued for checking the operation of radiant panel test equipment in accordance with the procedures outlined in ASTM Standard E162-78.

SRM	Туре	Certification	Unit of Issue
1002c	Hardboard Sheet	Flame Spread Index, I=153 Heat Evolution Factor, Q=36.5	Set of 4: $6 \times 18 \times \frac{1}{4}$ inch

Smoke Density Chamber


These SRM's are certified for maximum specific optical density and are issued for performing operational checks of smoke density chambers.

SRM	Туре	Maximum Specific Optical Density	Unit of Issue
1006ь	Non-flaming Exposure Condition (α-cellulose)	Dm (corr.)=183	3 sheets
1007a	Flaming Exposure Condition (plastic)	Dm (corr.)=17850(t)-132	3 sheets

Flooring Radiant Panel

This SRM consists of three sheets of kraft paperboard. It is for checking the operation of flooring radiant panel test apparatus used to measure critical radiant flux as per ASTM E648.

SRM	Туре	Critical Radiant Flux	Unit Size (cm)
1012	Flooring Radiant Panel	0.36 W/cm ²	104.1×25.4×0.305

Additional Information

OTHER NBS PUBLICATIONS IN THIS SERIES

Seward, R. W., ed., Catalog of NBS Standard Reference Materials (1986-87 edition), NBS Spec. Publ. 260 (May 1986)——SN003-003-02558-5.

Michaelis, R. E., and Wyman, L. L., Standard Reference Materials: Preparation of White Cast Iron Spectrochemical Standards, NBS Misc. Publ. 260-1 (June 1964). COM74-11061**

Michaelis, R. E., Wyman, L. L., and Flitsch, R., Standard Reference Materials: Preparation of NBS Copper-Base Spectrochemical Standards, NBS Misc. Publ. 260-2 (October 1964). COM74-11063**

Michaelis, R. E., Yakowitz, H., and Moore, G. A., Standard Reference Materials: Metallographic Characterization of an NBS Spectrometric Low-Alloy Steel Standard, NBS Misc. Publ. 260-3 (October 1964). COM74-11060**

Hague, J. L., Mears, T. W., and Michaelis, R. E., Standard Reference Materials: Sources of Information, NBS Misc. Publ. 260-4 (February 1965). COM74-11059

Alvarez, R., and Flitsch, R., Standard Reference Materials: Accuracy of Solution X-Ray Spectrometric Analysis of Copper-Base Alloys, NBS Misc. Publ. 260-5 (March 1965). PB168068**

Shultz, J. I., Standard Reference Materials: Methods for the Chemical Analysis of White Cast Iron Standards, NBS Misc. Publ. 260-6 (July 1965). COM74-11068** Bell, R. K., Standard Reference Materials: Methods for the Chemical Analysis of NBS Copper-Base Spectrochemical Standards, NBS Misc. Publ. 260-7 (October 1965). COM74-11067**

Richmond, M.S., Standard Reference Materials: Analysis of Uranium Concentrates at the National Bureau of Standards, NBS Misc. Publ. 260-8 (December 1965). COM74-11066**

Anspach, S. C., Cavallo, L. M., Garfinkel, S. B., Hutchinson, J. M. R., and Smith, C. N., Standard Reference Materials: Half Lives of Materials Used in the Preparation of Standard Reference Materials of Nineteen Radioactive Nuclides Issued by the National Bureau of Standards, NBS Misc. Publ. 260-9 (November 1965). COM74-11065**

Yakowitz, H., Vieth, D. L., Heinrich, K. F. J., and Michaelis, R. E., Standard Reference Materials: Homogeneity Characterization of NBS Spectrometric Standards II: Cartridge Brass and Low-Alloy Steel, NBS Misc. Publ. 260-10 (December 1965). COM74-11064**

Napolitano, A., and Hawkins, E. G., Standard Reference Materials: Viscosity of Standard Lead-Silica Glass, NBS Misc. Publ. 260–11 (November 1966).

Yakowitz, H., Vieth, D. L., and Michaelis, R. E., Standard Reference Materials: Homogeneity Characterization of NBS Spectrometric Standards III: White Cast Iron and Stainless Steel Powder Compact, NBS Misc. Publ. 260–12 (September 1966).

Spijkerman, J. L., Snediker, D. K., Ruegg, F. C., and DeVoe, J. R., Standard Reference Materials: Mossbauer Spectroscopy Standard for the Chemical Shift of Iron Compounds, NBS Misc. Publ. 260–13 (July 1967). Menis, O., and Sterling, J. T., Standard Reference Materials: Determination of Oxygen in Ferrous Materials—SRM 1090, 1091, and 1092, NBS Misc. Publ. 260-14 (September 1966).

Passaglia, E., and Shouse, P. J., Standard Reference Materials: Recommended Method of Use of Standard Light-Sensitive Paper for Calibrating Carbon Arcs Used in Testing Textiles for Colorfastness to Light, NBS Misc. Publ. 260–15 (June 1967). (Replaced by NBS Spec. Publ. 260–41.)

Yakowitz, H., Michaelis, R. E., and Vieth, D. L., Standard Reference Materials: Homogeneity Characterization of NBS Spectrometric Standards IV: Preparation and Microprobe Characterization of W-20% Mo Alloy Fabricated by Powder Metallurgical Methods, NBS Spec. Publ. 260-16 (January 1969). COM74-11062**

Catanzaro, E. J., Champion, C. E., Garner, E. L., Marinenko, G., Sappenfield, K. M., and Shields, W. R., Standard Reference Materials: Boric Acid; Isotopic and Assay Standard Reference Materials, NBS Spec. Publ. 260–17 (February 1970). Out of Print.

Geller, S. B., Mantek, P.A., and Cleveland, N. G., Standard Reference Materials: Calibration of NBS Secondary Standard Magnetic Tape (Computer Amplitude Reference) Using the Reference Tape Amplitude Measurement "Process A," NBS Spec. Publ. 260–18 (November 1969). (See NBS Spec. Publ. 260–29.)

Paule, R. C., and Mandel, J., Standard Reference Materials: Analysis of Interlaboratory Measurements on the Vapor Pressure of Gold (Certification of Standard Reference Material 745). NBS Spec. Publ. 260–19 (January 1970). PB190071**

^{*} Send order with remittance to Superintendent of Documents, US Government Printing Office, Washington, DC 20402. Remittance from foreign countries should include an additional one-fourth of the purchase price for postage.

^{**} May be ordered from: National Technical Information Services (NTIS), Springfield, Virginia 22161.

- Paule, R. C., and Mandel, J., Standard Reference Materials: Analysis of Interlaboratory Measurements on the Vapor Pressures of Cadmium and Silver, NBS Spec. Publ. 260–21 (January 1971). COM74–11359**
- Yakowitz, H., Fiori, C. E., and Michaelis, R. E., Standard Reference Materials: Homogeneity Characterization of Fe-3 Si Alloy, NBS Spec. Publ. 260-22 (February 1971). COM74-11357**
- Napolitano, A., and Hawkins, E. G., Standard Reference Materials: Viscosity of a Standard Borosilicate Glass, NBS Spec. Publ. 260-23 (December 1970). COM71-00157**
- Sappenfield, K. M., Marinenko, G., and Hague, J. L., Standard Reference Materials: Comparison of Redox Standards, NBS Spec. Publ. 260-24 (January 1972). COM72-50058**
- Hicho, G. E., Yakowitz, H., Rasberry, S. D., and Michaelis, R. E., Standard Reference Materials: A Standard Reference Material Containing Nominally Four Percent Austenite, NBS Spec. Publ. 260-25 (February 1971). COM74-11356**
- Martin, J. F., Standard Reference Materials: National Bureau of Standards-US Steel Corporation Joint Program for Determining Oxygen and Nitrogen in Steel, NBS Spec. Publ. 260-26 (February 1971). 85 cents* PB 81176620
- Garner, E. L., Machlan, L. A., and Shields, W. R., Standard Reference Materials: Uranium Isotopic Standard Reference Materials, NBS Spec. Publ. 260-27 (April 1971). COM74-11358**
- Heinrich, K. F. J., Myklebust, R. L., Rasberry, S. D., and Michaelis, R. E., Standard Reference Materials: Preparation and Evaluation of SRM's 481 and 482 Gold-Silver and Gold-Copper Alloys for Microanalysis, NBS Spec. Publ. 260–28 (August 1971). COM71–50365**
- Geller, S. B., Standard Reference Materials: Calibration of NBS Secondary Standard Magnetic Tape (Computer Amplitude Reference) Using the Reference Tape Amplitude Measurement "Process A-Model 2," NBS Spec. Publ. 260-29 (June 1971). COM71-50282**

- Gorozhanina, R. S., Freedman, A. Y., and Shaievitch, A. B. (translated by M. C. Selby), Standard Reference Materials: Standard Samples Issued in the USSR (A Translation from the Russian), NBS Spec. Publ. 260-30 (June 1971). COM71-50283**
- Hust, J. G., and Sparks, L. L., Standard Reference Materials: Thermal Conductivity of Electrolytic Iron SRM 734 from 4 to 300 K, NBS Spec. Publ. 260-31 (November 1971). COM71-50563**
- Mavrodineanu, R., and Lazar, J. W., Standard Reference Materials: Standard Quartz Cuvettes for High Accuracy Spectrophotometry, NBS Spec. Publ. 260–32 (December 1973). 55 cents* SN003–003–01213–1
- Wagner, H. L., Standard Reference Materials: Comparison of Original and Supplemental SRM 705, Narrow Molecular Weight Distribution Polystyrene, NBS Spec. Publ. 260–33 (May 1972). COM72–50526**
- Sparks, L. L., and Hust, J. G., Standard Reference Materials: Thermoelectric Voltage, NBS Spec. Publ. 260-34 (April 1972). COM72-50371**
- Sparks, L. L., and Hust, J. G., Standard Reference Materials: Thermal Conductivity of Austenitic Stainless Steel, SRM 735 from 5 to 280 K, NBS Spec. Publ. 260–35 (April 1972). COM72–50368**
- Cali, J. P., Mandel, J., Moore, L. J., and Young, D. S., Standard Reference Materials: A Referee Method for the Determination of Calcium in Serum, NBS SRM 915, NBS Spec. Publ. 260-36 (May 1972). COM72-50527**
- Shultz, J. I., Bell., R. K., Rains, T. C., and Menis, O., Standard Reference Materials: Methods of Analysis of NBS Clay Standards, NBS Spec. Publ. 260-37 (June 1972). COM72-50692**
- Richmond, J. C., and Hsia, J. J., Standard Reference Materials: Preparation and Calibration of Standards of Spectral Specular Reflectance, NBS Spec. Publ. 260–38 (May 1972). COM72–50528**
- Clark, A. F., Denson, V.A., Hust, J. G., and Powell, R. L., Standard Reference Materials: The Eddy Current Decay Method for Resistivity Characterization of High-Purity Metals, NBS Spec. Publ. 260-39 (May 1972). COM72-50529**

- McAdie, H. G., Garn, P.D., and Menis, O., Standard Reference Materials: Selection of Thermal Analysis Temperature Standards Through a Cooperative Study (SRM 758, 759, 760), NBS Spec. Publ. 260-40 (August 1972). COM72-50776**
- Wood, L. A., and Shouse, P. J., Standard Reference Materials: Use of Standard Light-Sensitive Paper for Calibrating Carbon Arcs Used in Testing Textiles for Colorfastness to Light, NBS Spec. Publ. 260-41 (August 1972). COM72-50775**
- Wagner, H. L., and Verdier, P. H., eds., Standard Reference Materials: The Characterization of Linear Polyethylene, SRM 1475, NBS Spec. Publ. 260-42 (September 1972). COM72-50944**
- Yakowitz, H., Ruff, A. W., and Michaelis, R. E., Standard Reference Materials: Preparation and Homogeneity Characterization of an Austenitic Iron-Chromium-Nickel Alloy, NBS Spec. Publ. 260-43 (November 1972). COM73-50760**
- Schooley, J. F., Soulen, R. J., Jr., and Evans, G. A., Jr., Standard Reference Materials: Preparation and Use of Superconductive Fixed Point Devices, SRM 767, NBS Spec. Publ. 260-44 (December 1972). COM73-50037**
- Greifer, B., Maienthal, E. J., Rains, T. C., and Rasberry, S. D., Standard Reference Materials: Powdered Lead-Based Paint, SRM 1579, NBS Spec. Publ. 260-45 (March 1973). COM73-50226**
- Hust, J. G., and Giarratano, P. J., Standard Reference Materials: Thermal Conductivity and Electrical Resistivity Standard Reference Materials: Austenitic Stainless Steel, SRM's 735 and 798, from 4 to 1200 K, NBS Spec. Publ. 260–46 (March 1975). SN003–003–01278–5*
- Hust, J. G., Standard Reference Materials: Electrical Resistivity of Electrolytic Iron, SRM 797, and Austenitic Stainless Steel, SRM 798, from 5 to 280 K, NBS Spec. Publ. 260–47 (February 1974). COM74– 50176**

Mangum, B. W., and Wise, J. A., Standard Reference Materials: Description and Use of Precision Thermometers for the Clinical Laboratory, SRM 933 and SRM 934, NBS Spec. Publ. 260-48 (May 1974). 60 cents* SN003-003-01278-5

Carpenter, B. S., and Reimer, G. M., Standard Reference Materials: Calibrated Glass Standards for Fission Track Use, NBS Spec. Publ. 260–49 (November 1974). COM74– 51185**

Hust, J. G., and Giarratano, P. J., Standard Reference Materials: Thermal Conductivity and Electrical Resistivity Standard Reference Materials: Electrolytic Iron, SRM's 734 and 797 from 4 to 1000 K, NBS Spec. Publ. 260–50 (June 1975). \$1.00* SN003–003–01425–7

Mavrodineanu, R., and Baldwin, J. R., Standard Reference Materials: Glass Filters as a Standard Reference Material for Spectrophotometry— Selection, Preparation, Certification, Use—SRM 930, NBS Spec. Publ. 260-51 (November 1975). \$1.90* SN003-003-01481-8

Hust, J. G., and Giarratano, P. J., Standard Reference Materials: Thermal Conductivity and Electrical Resistivity Standard Reference Materials 730 and 799, from 4 to 3000 K, NBS Spec. Publ. 260–52 (September 1975). \$1.05* SN003– 003–01464–8

Durst, R. A., Standard Reference Materials: Standardization of pH Measurements, NBS Spec. Publ. 260– 53 (December 1975, Revised). \$1.05* SN003-003-01551-2

Burke, R. W., and Mavrodineanu, R., Standard Reference Materials: Certification and Use of Acidic Potassium Dichromate Solutions as an Ultraviolet Absorbance Standard, NBS Spec. Publ. 260-54 (August 1977). \$3.00* SN003-003-01828-7

Ditmars, D. A., Cezairliyan, A., Ishihara, S., and Douglas, T. B., Standard Reference Materials: Enthalpy and Heat Capacity; Molybdenum SRM 781, from 273 to 2800 K, NBS Spec. Publ. 260–55 (September 1977). \$2.20* SN003– 003–01836–8

Powell, R. L., Sparks, L. L., and Hust, J. G., Standard Reference Materials: Standard Thermocouple Materials, Pt 67: SRM 1967, NBS Spec. Publ. 260–56 (February 1978). \$2.20* SN003–003–01886–4 Cali, J. P., and Plebanski, T., Guide to United States Reference Materials, NBS Spec. Publ. 260-57 (February 1978). \$2.20* PB 277173

Barnes, J. D., and Martin, G. M., Standard Reference Materials: Polyester Film for Oxygen Gas Transmission Measurements SRM 1470, NBS Spec. Publ. 260–58 (June 1979). \$2.00* SN003–003–02077

Chang, T., and Kahn, A. H., Standard Reference Materials: Electron Paramagnetic Resonance Intensity Standard; SRM 2601, NBS Spec. Publ. 260–59 (August 1978). \$2.30* SN003–003–01975–5

Velapoldi, R. A., Paule, R. C., Schaffer, R., Mandel, J., and Moody, J. R., Standard Reference Materials: A Reference Method for the Determination of Sodium in Serum, NBS Spec. Publ. 260-60 (August 1978), \$3,00* SN003-003-01978-0

Verdier, P. H., and Wagner, H. L., Standard Reference Materials: The Characterization of Linear Polyethylene (SRM 1482, 1483, 1484), NBS Spec. Publ. 260-61 (December 1978). \$1.70* SN003-003-02006-1

Soulen, R. J., and Dove, R. B., Standard Reference Materials: Temperature Reference Standard for Use Below 0.5 K (SRM 768), NBS Spec. Publ. 260–62 (April 1979). \$2.30* SN003–003–02047–8

Velapoldi, R. A., Paule, R. C., Schaffer, R., Mandel, J., Machlan, L. A., and Gramlich, J. W., Standard Reference Materials: A Reference Method for the Determination of Potassium in Serum, NBS Spec. Publ. 260-63 (May 1979). \$3.75* SN003-003-02068

Velapoldi, R. A., and Mielenz, K. D., Standard Reference Materials: A Fluorescence Standard Reference Material Quinine Sulfate Dihydrate (SRM 936), NBS Spec. Publ. 260-64, (January 1980). \$4.25* SN003-003-02148-2

Marinenko, R. B., Heinrich, K. F. J., and Ruegg, F. C., Standard Reference Materials: Micro-Homogeneity Studies of NBS Standard Reference Materials, NBS Research Materials, and Other Related Samples, NBS Spec. Publ. 260–65 (September 1979). \$3.50* SN003-003-02114-1 Venable, W. H., Jr., and Eckerle, K. L., Standard Reference Materials: Didymium Glass Filters for Calibrating the Wavelength Scale of Spectrophotometers—SRM 2009, 2010, 2013 and 2014), NBS Spec. Publ. 260–66 (October 1979). \$3.50* SN003–003–02127–0

Velapoldi, R. A., Paule, R. C., Schaffer, R., Mandel, J., Murphy, T. J., and Gramlich, J. W., Standard Reference Materials: A Reference Method for the Determination of Chloride in Serum, NBS Spec. Publ. 260–67 (November 1979). \$3.75* SN003–003–02136–9

Mavrodineanu, R., and Baldwin, J. R., Standard Reference Materials: Metal-On-Quartz Filters as a Standard Reference Material for Spectrophotometry-SRM 2031, NBS Spec. Publ. 260–68 (April 1980). \$4.25* SN003–003–02167–9

Velapoldi, R. A., Paule, R. C., Schaffer, R., Mandel, J., Machlan, L. A., Garner, E. L., and Rains, T. C., Standard Reference Materials: A Reference Method for the Determination of Lithium in Serum, NBS Spec. Publ. 260–69 (July 1980). \$4.25* SN003–003–02214–4

Marinenko, R. B., Biancaniello, F., Boyer, P. A., Ruff, A. W., and DeRobertis, L., Standard Reference Materials: Preparation and Characterization of an Iron-Chromium-Nickel Alloy for Microanalysis, NBS Spec. Publ. 260-70 (May 1981). \$2.50* SN003-003-02328-1

Seward, R. W., and Mavrodineanu, R., Standard Reference Materials: Summary of the Clinical Laboratory Standards Issued by the National Bureau of Standards, NBS Spec. Publ. 260–71 (November 1981). \$6.50* SN003–003–02381–7

Reeder, D. J., Coxon, B., Enagonio, D., Christensen, R. G., Schaffer, R., Howell, B. F., Paule, R. C., and Mandel, J., Standard Reference Materials: SRM 900, Antiepilepsy Drug Level Assay Standard, NBS Spec. Publ. 260–72 (June 1981). \$4.25* SN003-003-02329-9

Interrante, C. G., and Hicho, G. E., Standard Reference Materials: A Standard Reference Material Containing Nominally Fifteen Percent Austenite (SRM 486), NBS Spec. Publ. 260-73 (January 1982). \$2.75* SN003-003-02386-8

Marinenko, R. B., Standard Reference Materials: Preparation and Characterization of K-411 and K-414 Mineral Glasses for Microanalysis: SRM 470, NBS Spec. Publ. 260-74 (April 1982). \$3.50 SN003-003-02395-7

Weidner, V. R., and Hsia, J. J., Standard Reference Materials: Preparation and Calibration of First Surface Aluminum Mirror Specular Reflectance Standards (SRM 2003a), NBS Spec. Publ. 260–75 (May 1982). \$3.75 SN003–003–02399–0

Hicho, G. E., and Eaton, E. E., Standard Reference Materials: A Standard Reference Material Containing Nominally Five Percent Austenite (SRM 485a), NBS Spec. Publ. 260–76 (August 1982). \$3.50 SN003–003–02433–3

Furukawa, G. T., Riddle, J. L., Bigge, W. G., and Pfieffer, E. R., Standard Reference Materials: Application of Some Metal SRM's as Thermometric Fixed Points, NBS Spec. Publ. 260-77 (August 1982). \$6.00 SN003-003-02434-1

Hicho, G. E., and Eaton, E. E., Standard Reference Materials: Standard Reference Material Containing Nominally Thirty Percent Austenite (SRM 487), NBS Spec. Publ. 260–78 (September 1982). \$3.75* SN003–003–02435–0

Richmond, J. C., Hsia, J. J., Weidner, V. R., and Wilmering, D. B., Standard Reference Materials: Second Surface Mirror Standards of Specular Spectral Reflectance (SRM's 2023, 2024, 2025), NBS Spec. Publ. 260-79 (October 1982). \$4.50* SN003-003-02447-3

Schaffer, R., Mandel, J., Sun, T., Cohen, A., and Hertz, H. S., Standard Reference Materials: Evaluation by an ID/MS Method of the AACC Reference Method for Serum Glucose, NBS Spec. Publ. 260–80 (October 1982). \$4.75* SN003–003– 02443–1 Burke, R. W., and Mavrodineanu, R., Standard Reference Materials: Accuracy in Analytical Spectrophotometry, NBS Spec. Publ. 260–81 (April 1983). \$6.00* SN003– 003–02484–8

Weidner, V. R., Standard Reference Materials: White Opal Glass Diffuse Spectral Reflectance Standards for the Visible Spectrum (SRM's 2015 and 2016), NBS Spec. Publ. 260–82 (April 1983). \$3.75* SN003–003– 02489–9

Bowers, G. N., Jr., Alvarez, R., Cali, J. P., Eberhardt, K. R., Reeder, D. J., Schaffer, R., and Uriano, G. A., Standard Reference Materials: The Measurement of the Catalytic (Activity) Concentration of Seven Enzymes in NBS Human Serum SRM 909, NBS Spec. Publ. 260–83 (June 1983). \$4.50* SN003–003–02499–6

Gills, T. E., Seward, R. W., Collins, R. J., and Webster, W. C., Standard Reference Materials: Sampling, Materials Handling, Processing, and Packaging of NBS Sulfur in Coal Standard Reference Materials, 2682, 2683, 2684, and 2685, NBS Spec. Publ. 260–84 (August 1983). \$4.50* SN003–003–02520–8

Swyt, D. A., Standard Reference Materials: A Look at Techniques for the Dimensional Calibration of Standard Microscopic Particles, NBS Spec. Publ. 260–85 (September 1983). \$5.50* SN003–003–02521–6

Hicho, G. E., and Eaton, E. E., Standard Reference Materials: A Standard Reference Material Containing Two and One-Half Percent Austenite, SRM 488, NBS Spec. Publ. 260–86 (December 1983). \$1.75* \$N003-003-02541-1

Mangum, B. W., Standard Reference Materials: SRM 1969: Rubidium Triple-Point—A Temperature Reference Standard Near 39.30°C, NBS Spec. Publ. 260–87 (December 1983). \$2.25* SN003–003–02544–5 Gladney, E. S., Burns, C. E., Perrin, D. R., Roelandts, I., and Gills, T. E., Standard Reference Materials: 1982 Compilation of Elemental Concentration Data for NBS Biological, Geological, and Environmental Standard Reference Materials, Spec. Publ. 260–88 (March 1984). \$7.00* SN003–003–02565–8

Hust, J. G., Standard Reference Materials: A Fine-Grained, Isotropic Graphite for Use as NBS Thermophysical Property RM's from 5 to 2500 K, NBS Spec. Publ. 260-89 (September 1984). \$4.50* SN003-003-02608-5

Hust, J. G., and Lankford, A. B., Standard Reference Materials: Update of Thermal Conductivity and Electrical Resistivity of Electrolytic Iron, Tungsten, and Stainless Steel, NBS Spec. Publ. 260–90 (September 1984). \$3.00* SN003–003–02609–3

Goodrich, L. F., Vecchia, D. F., Pittman, E. S., Ekin, J. W., and Clark, A. F., Standard Reference Materials: Critical Current Measurements on an NbTi Superconducting Wire Standard Reference Material, NBS Spec. Publ. 260–91 (September 1984). \$2.75* SN003–003–02614–0

Carpenter, B. S., Standard Reference Materials: Calibrated Glass Standards for Fission Track Use (Supplement to NBS Spec. Publ. 260-49). NBS Spec. Publ. 260-92 (September 1984). \$1.50* \$N003-003-02610-7

Ehrstein, J., Preparation and Certification of Standard Reference Materials for Calibration of Spreading Resistance Probes, NBS Spec. Publ. 260–93 (January 1985). \$2.25* SN003–003–02633–6

Gills, T. E., Koch, W. F., Stolz, J. W., Kelly, W. R., Paulsen, P. J., Colbert, J. C., Kirklin, D. R., Pei, P. T. S., Weeks, S., Lindstrom, R. M. Fleming, R. F., Greenberg, R. R., and Paule, R. C., Methods and Procedures Used at the National Bureau of Standards to Certify Sulfur in Coal SRM's for Sulfur Content, Calorific Value, Ash Content, NBS Spec. Publ. 260–94 (December 1984). \$2.25* SN003–003–02629–8

Mulholland, G. W., Hartman, A. W., Hembree, G. G., Marx, E., and Lettieri, T. R., Standard Reference Materials: Development of a 1 µm Diameter Particle Size Standard, SRM 1690, NBS Spec. Publ. 260-95 (May 1985). SN003-003-02665-4

Carpenter, B. S., Gramlich, J. W., Greenberg, R. R., and Machlan, L. A., Standard Reference Materials: Uranium-235 Isotopic Abundance Standard Reference Materials for Gamma Spectrometry Measurements, NBS Spec. Publ. 260-96 (In Preparation).

Mavrodineanu, R., and Gills, T. E., Standard Reference Materials: Summary of the Coal, Ore, Mineral, Rock, and Refractory Standards Issued by the National Bureau of Standards, NBS Spec. Publ. 260-97 (September 1985).

Hust, J. G., Standard Reference Materials: Glass Fiberboard SRM for Thermal Resistance, NBS Spec. Publ. 260–98 (August 1985). SN003–003– 02674–3 Callanan, J. E., Sullivan, S. A., and Vecchia, D. F., Standard Reference Materials: Feasibility Study for the Development of Standards Using Differential Scanning Calorimetry, NBS Spec. Publ. 260–99 (August 1985). SN003–003–02675–1

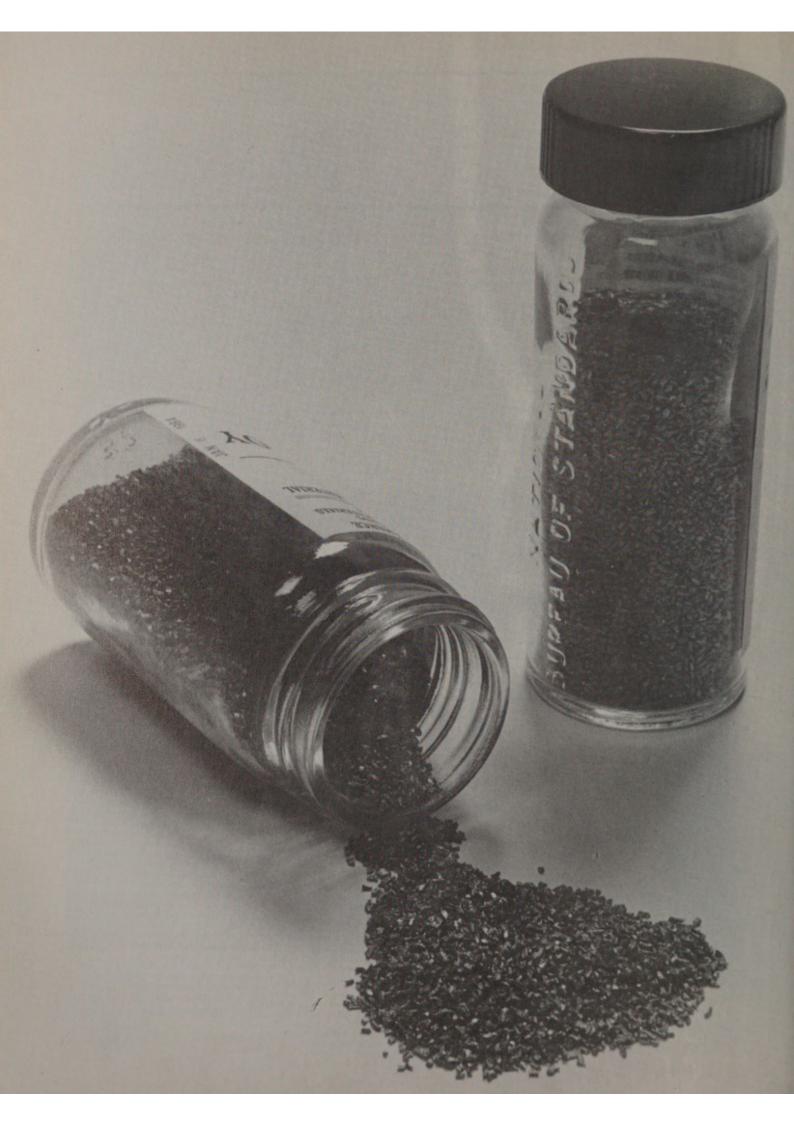
Taylor, J. K., Standard Reference Materials: Handbook for SRM Users, NBS Spec. Publ. 260-100

Mangum, B. W., Standard Reference Materials: SRM 1970, Succinonitrile Triple-Point Standard: A Temperature Reference Standard Near 58.08°C, NBS Spec. Publ. 260– 101 (In Preparation).

Standard Reference Materials: Holmium Oxide Solution Wavelength Standard from 240-650 nm, SRM 2034, NBS Spec. Publ. 260-102 (In Press). Hust, J. G., Standard Reference Materials: Glass Fiberblanket SRM for Thermal Resistance, NBS Spec. Publ. 260–103 (September 1985). SN003–003–02687–5

Mavrodineanu, R., and Alvarez, R., Standard Reference Materials: Summary of the Biological and Botanical Standards Issued by the National Bureau of Standards, NBS Spec. Publ. 260–104 (November 1985).

Julie Frum, SRM secretary, also coordinates the preparation of the NBS "260 Series" of publications that deal exclusively with SRM's and the SRM program.


Calibration Service Contacts

Measurement Area	Names	Telephone
General Information		
Gaithersburg, Md., Laboratories	Measurement Services Staff	(301) 921-2805
Boulder, Colo., Laboratories	Measurement Services Staff	(303) 497-3239
Dimensional Measurements	measurement bervices starr	(303) 471-3233
Angular	W. H. Gallagher, Jr.	(301) 921-2216
API Plug and Ring Gages; Two-Diminesional Gages	E. G. Erber	(301) 921-2216
End Standards	G. Chaconas	(301) 921-2216
Gage Blocks	G. Chaconas	(301) 921-2216
Hydrometers	J. R. Whetstone	(301) 921-3281
Line Standards	T. D. Doiron	(301) 921-2216
Optical Reference Planes; Roundness	W. H. Gallagher, Jr.	(301) 921-2216
Penetration Needles	R. G. Hartsock	(301) 921-2216
Plain Conical/Threaded Plug and Ring Gages; Micrometers	W. H. Gallagher, Jr.	(301) 921-2216
Special Tests of Length Standards and Sieves	T. D. Doiron	(301) 921-2216
Spherical Diameter, Ring Gages; Special Tests of Length and	W. H. Gallagher, Jr.	(301) 921-2216
Diameter	W. H. Ganagher, M.	(301) 321-2210
Step Gages	W. H. Gallagher, Jr.	(301) 921-2216
Surface Texture	T. V. Vorburger	(301) 921-2210
Surveying Rods and Tapes	R. G. Hartsock	
Volume and Density	J. F. Houser	(301) 921-2216
	J. F. Houser	(301) 921–3681
Electromagnetic Measurements	N. D. Dalashi	(201) 021 2715
AC-DC Voltage/Current Converters (to 1 MHz) AC Resistors	N. B. Belecki	(301) 921-2715
	T. M. Souders	(301) 921-2727
Capacitance Dividers	R. E. Hebner, Jr.	(301) 921-3121
Coaxial/Waveguide Terminations Reflection Coefficients Current Transformers	L. F. Saulsbery	(303) 497-3970
	J. D. Ramboz	(301) 921-3121
Data Converters	T. M. Souders	(301) 921-2727
DC Resistance	N. B. Belecki	(301) 921-2715
DC Voltage	N. B. Belecki	(301) 921-2715
Eddy-Current Conductivity	G. M. Free	(301) 921-2715
Electromagnetic Field-Strength Parameters	J. E. Cruz	(303) 497-3763
HF Capacitance/Inductance	R. N. Jones	(303) 497–3609
High Frequency Resistors	R. N. Jones	(303) 497–3609
High Frequency Voltage	R. E. Hebner, Jr.	(301) 921-3121
Inductive Dividers	N. B. Belecki	(301) 921-2715
LF AC Voltmeters and Sources	H. K. Schoenwetter	(301) 921-2727
LF Capacitance/Inductance	N. B. Belecki	(301) 921-2715
LF Power/Energy	J. D. Ramboz	(301) 921-3121
Microwave Antenna Parameter	A. C. Newell	(303) 497-3743
Mixed Dividers	R. H. McKnight	(301) 921-3121
N-Port Scattering	L. F. Saulsbery	(303) 497-3970
Noise Temperature	W. C. Daywitt	(303) 497-3720
Phase Angle Meters	R. S. Turgel	(301) 921-2727
Power-Frequency Capacitors	W. E. Anderson	(301) 921-3121
Pulse Waveform	W. L. Gans	(303) 497-3538
Q Standards	R. N. Jones	(303) 497-3609
Resistive Dividers	M. Misakian	(301) 921-3121
RF-DC Voltage/Current Converters (100Hz-1GHz)	G. Rebuldela	(303) 497-3561
RF/Microwave Attenuators	L. F. Saulsbery	(303) 497-3970
RF/Microwave Phase Shifters	L. F. Saulsbery	(303) 497-3970
RF/Microwave Power Meters	L. F. Saulsbery	(303) 497-3970
VHF Omnidirectional Range	N. T. Larsen	(303) 497-3711
Voltage Transformers	W. E. Anderson	(301) 921-3121
Ionizing Radiation Measurements		
Dosimetry of X rays, Gamma rays and Electrons	R. Loevinger	(301) 921-2364
High-Dose Dosimetry	W. L. McLaughlin	(301) 921-2201
Neutron Sources and Dosimeters	E. D. McGarry	(301) 921-2767
Radioactivity Sources	J. M. Calhoun	(301) 921-2383
Mechanical Measurements		
Acoustic	V. Nedzelnitsky	(301) 921-3607
Acoustic		

Measurement Area	Names	Telephone
Cryogenic Flow Rate	J. A. Brennan	(303) 497-3611
Flow Rate	K. R. Benson	(301) 921-3681
Force	R. A. Mitchell	(301) 921-3884
Mass	J. G. Keller	(301) 921-3118
Ultrasonic	G. V. Blessing	(301) 921-3646
Vibration	M. R. Serbyn	(301) 921-3607
Optical Radiation Measurements		100000000000000000000000000000000000000
Laser Power/Energy	W. E. Case	(303) 497-3741
Optical Fiber	R. L. Gallawa	(303) 497-3761
Photometric	D. A. McSparron	(301) 921-3613
Radiometric	J. K. Jackson	(301) 921-3613
Spectrophotometric	V. R. Weidner	(301) 921-2453
UV Radiometric	J. M. Bridges	(301) 921-2356
Thermodynamic Measurements		
Humidity	S. Hasegawa	(301) 921-3748
Laboratory Thermometers	J. A. Wise	(301) 921-2087
Pressure	B. E. Welch	(301) 921-2121
Radiation Thermometry	R. L. Wilkinson	(301) 921-3613
Resistance Thermometry	W. R. Bigge	(301) 921-2757
Thermocouples and Pyrometer Indicators	G. W. Burns	(301) 921-2069
Vacuum and Low Pressure	R. W. Hyland	(301) 921-2121
Time and Frequency Measurements		
Frequency Dissemination	G. Kamas	(303) 497-3378
Time Dissemination	D. W. Allan	(303) 497-5637
Oscillator Characterization	J. E. Gray	(303) 497-3209

Measurement Services staff members (standing from left): Joanne Marshall, George Uriano (director of NBS Measurement Services), Treva Siedling, Vickie Weedon, Margaret Musick, Verna Moore, and Ernest Garner (chief of the Office of Physical Measurement Services).

INDICES

Numerical Index

RM	SRM Description	Certifi- cate Date	Page	SRM	SRM Description	Certifi- cate Date	Pag
1c	Limestone, Argillaceous	Dec 78	72	92	Glass, Soda-Lime (Powder)	Mar 82	7
3d	Iron, White	Apr 79	26	934		Aug 73	7
4k	Iron, Cast	May 76	26	940	Zn-base Die-Casting Alloy	Aug 73	3
5L	Iron, Cast	Nov 70	26	971	Clay, Flint		7
6g	Iron, Cast	Nov 70	26	984	Clay, Plastic	Oct 69	7
7g	Iron, Cast (High-Phosphorus)	Oct 59	26	998	Feldspar, Soda	Aug 81	7
8j	Steel, Bessemer (Simulated)	Apr 72	15	1000		Aug 59	
	0.1C			1011		May 70	
llh	Steel, BOH, 0.2C	Apr 74		103a		Sep 62	
12h	Steel, BOH, 0.4C	Mar 66		106		Mar 61	
13g	Steel, Carbon, 0.6C	Apr 74		1076		May 83	2
14f	Steel, Carbon (AISI 1078)	Feb 81		1121		Jan 85	
15g	Steel, BOH, 0.1C	Mar 84		113	The state of the s	Dec 75	1
16f	Steel, BOH, 1.0C	Mar 83		114	trate Portland Cement, Fineness	Feb 82	1
17d	Sucrose (Polarimetric)		43, 102	115:		Apr 62	
0-	Steel AOU 02C	Can 64		1200		Jul 72	
19g	Steel, AOH, 0.2C Steel, AISI 1045	Sep 64 Oct 70		1216		Aug 81	
20g 25d	Ore, Manganese	Feb 84		1210	Ti0.3 (AISI 321)	ring or	
27f	Ore, Iron (Sibley)	May 77		1221		Apr 83	1
30f	Steel, Cr-V (SAE 6150)	Jun 79		1236		Jul 71	
32e	Steel, Ni-Cr	Apr 57			Nb0.6 (AISI 348)		
33e	Steel, Nickel	Nov 84		125		Feb 82	
36b	Steel, Cr2-Mo1	Jul 69			ing)		
37e	Brass, Sheet	Aug 58		126	Steel, High-Nickel (Ni36)	Dec 77	
391	Benzoic Acid, Calorimetric	Jul 68		127	Solder, Sn40-Pb60	Oct 81	
40h	Sodium Oxalate (Reductome-	May 82	43	129		Aug 73	
	tric)			1310		Jun 77	
1c	D-Glucose (Dextrose) (Polari-	Nov 84	43,	132		Aug 73	
	metric)		102	133		Aug 81	
2g	Tin Freezing Point	Jul 72		134		May 57	
3h	Zinc Freezing Point	Aug 73		136		Aug 81	
4f	Aluminum Freezing Point	Apr 73		139		May 78	
5d	Copper Freezing Pt	Dec 71		1410	The state of the s	Sep 76 Jul 69	
9e	Lead Freezing Point	Dec 71		142 143		Sep 76	
Oc.	Steel, W18-Cr4-V1 (Tool)	Jun 57		148		Dec 70	
3e	Bearing Metal, Lead-base	Jan 70		152		Oct 65	
57a	Silicon Metal	Dec 80		153		Jan 60	
58a	Ferrosilicon (73-Si, Regular	Apr 78	25	154		May 73	
500	Grade) Ferrosilicon (48-Si)	Nov 69	25	155		Oct 46	
59a 64c	Ferrochromium, High-Carbon	Aug 77		158		Aug 61	
68c	Ferromanganese, High-Carbon	Aug 79	25	160		Aug 69	
69b	Bauxite (Arkansas)	Aug 79	71		Mo2 (AISI 316)		
70a	Feldspar (Potash)	Aug 81	72	163		Jan 68	
71	Calcium Molybdate	Feb 29		165		Oct 78	
72g	Steel, Low-Alloy AISI 4130	Jun 81		166	Stainless Steel, Low-C (AISI	Mar 70	
73c	Stainless Steel, 13 Cr	Jul 66	19		316L)	D 01	
76a	Burnt Refractory (A1203-39)	May 85	73	173		Dec 84	
77a	Burnt Refractory (A1203-60)	May 85	73	176		Oct 81	
78a	Burnt Refractory (A1203-72)	May 85		178	Steel, BOF 0.4C	Jul 69 Jul 76	
79a	Fluorspar (Customs grade)	Jan 80		179	Steel, High Silicon Fluorspar, High-Grade	Mar 71	
81a	Sand, Glass (High Iron)	Jan 78		180 181	Ore, Lithium (Spodumene)	Oct 81	
82b	Iron, Cast, Ni-Cr	Apr 66		182	Ore, Lithium (Petalite)	Oct 81	
83d	Arsenic Trioxide, Reductome- tric	Mar 82	43	183	Ore, Lithium (Lepidolite)	Oct 81	
84j	Potassium Hydrogen Phthalate	Nov 84	43	185		Jan 84	
85b	Aluminum Alloy (Wrought)	May 57		100	pH Dil I	C 70	18 2
87a	Silicon-Aluminum Alloy	Aug 81		186		Sep 70	
88b	Limestone, Dolomitic	1100	72	944	phate, pH	C 70	10. 3
89	Glass, Lead-Barium	Aug 32		186	He Disodium Hydrogen Phos-	Sep 70	1
00	Ferrophosphorous	Oct 28		187	phate, pH Sodium Tetraborate Decahy-	Mar 84	
	- CHOPHOSPHOLOUS		-	187	Soulum retraporate Decany-	TARREL DA	10 10

^{*}In Prep.

SRM	SRM Description	Certifi- cate	Page	SRM	SRM Description	Certifi-	Page
		Date				Date	
188	Potassium Hydrogen Tartrate, pH	Jan 64	83	470 475	Mineral Glasses AR Cr Optical Linewidth	Oct 81 Apr 81	40 85
189	Potassium Tetroxalate, pH	Jan 64	83	476	B Cr Optical Linewidth	*	85
191a	Sodium Bicarbonate, pH	Nov 84	83	477	Glass Fluorescence Source	Feb 83	
192a	Sodium Carbonate, pH	Nov 84	83	479a	Fe-Cr-Ni Alloy	Nov 80	
193	Potassium Nitrate	Mar 74	68	480	Tungsten-Molybdenum	Nov 68	
194	Ammonium Dihydrogen Phos-	Jan 74	68	481	Gold-Silver	Feb 69	
105	phate (756)	Jan 76	25	482	Gold-Copper	Jun 69	
195	Ferrosilicon (75Si)	Nov 70	25 25	483	Iron-Silicon	Apr 71	40 84
196 198	Ferrochromium (Low Carbon) Silica Brick (0.16 A1 ₂ 0 ₅)	Jan 60	74	484d 485a	SEM Magnification 5% Austenite in Ferrite	Jul 85 Oct 81	109
199	Silica Brick (0.48 A1 ₂ 0 ₃)	Jan 60	74	486	15% Austenite in Ferrite	Mar 81	109
200	Potassium Dihydrogen Phos-	Aug 74	68	487	30% Austenite in Ferrite	May 82	
	phate			488	2% Austenite in Ferrite	Oct 83	
211c	Toluene	Sep 84	90,	493	Iron Carbide in Ferrite	May 85	
			102	494	Copper I	Jan 78	
217c	2,2,4-Trimethylpentane	Sep 84	90,	495	Copper II	Jan 78	
276-	Calife Towards		2, 102	496	Copper III	Jan 78	
276a 277	Carbide, Tungsten	May 80 Oct 78	74 69	498 499	Copper V	Jan 78 Jan 78	
278	Tungsten Concentrate Obsidian Rock	Aug 81	73	500	Copper VII	Jan 78	
291	Steel, Cr-Mo (ASTM A-213)	Oct 75	16	607	Potassium Feldspar	May 73	
293	Steel, Cr-Ni-Mo (AISI 8620)	Mar 75	16	610	Glass, Trace Elements (500	Jan 82	
329	Zinc Concentrate, Zn-45	Dec 75	70		ppm)		
330	Ore, Copper Mill Heads	Jan 77	69	611	Glass, Trace Elements (500	Jan 82	77
331	Ore, Copper Mill Tails	Jan 77	69		ppm)		
332	Copper Concentrate	Jun 77	69	612	Glass, Trace Elements (500	Jan 82	77
333	Molybdenum Concentrate	Jan 77	69	612	ppm)	I 02	77
334	Iron, Gray Cast	Mar 82	26 15	613	Glass, Trace Elements (50 ppm)	Jan 82	"
335 337a	Steel, BOH, 0.1C Steel, BOH, 1.1C	Apr 66 Apr 85	15	614	Glass, Trace Elements (1 ppm)	Jan 82	77
338	Iron, White Cast	Jun 82	26	615	Glass, Trace Elements (1 ppm)	Jan 82	
339	Steel, Cr17-Ni9-Se0.2	Jul 65	19	616	Glass, Trace Elements (0.02	Jan 82	77
340	Ferroniobium	Nov 70	25		ppm)	12/11/12	17000
341	Iron, Ductile Cast	Mar 62	26	617	Glass, Trace Elements (0.02	Jan 82	77
342a	Iron, Nodular Cast	Apr 70	26	620	ppm)	T 02	76
343a	Stainless Steel, Cr16-Ni2 (AISI	Jul 85	19	620 621	Glass, Soda-Lime Flat Glass, Container	Jan 82 Jan 82	
344	431) Steel Cals Nil Ma assain	Oct 63	18	622	Glass, Soda-Lime-Silicate	Mar 76	
344	Steel, Cr15-Ni7 (Mo precip harden)	Oct 05	10	623	Glass, Borosilicate	Mar 76	
345	Steel, Cr16-Ni4 (Cu precip	Jan 64	18	624	Glass, Electrical Resistance	Oct 77	
- 10	harden)			625	Zn-Base Alloy A	Apr 64	36
346a	Steel, Valve (Cr21-Ni3-Mn8)		18	626	Zn-Base Alloy B	Apr 64	
348	High Temp Alloy A286 (Ni26-	Oct 81	18	627	Zn-Base Alloy C	Apr 64	
240	Cr15)			628 629	Zn-Base Alloy D	Apr 64	
349a	Ni-Base, Ni57-Co14-Cr20	401	33	630	Zn-Base Alloy E Zn-Base Alloy F	Apr 64 Apr 64	
350a 352b	Benzoic Acid, Acidimetric Titanium for Hydrogen	Apr 81 Apr 83	43 38	631	Zinc Spelter (mod)	Nov 81	
354a	Titanium for Hydrogen	Apr os	38	633	Portland Cement, red	Dec 83	
355	Titanium for Oxygen	Sep 66	38	634	Portland Cement, gold	Dec 83	
357	Zirconium, Gasometric	Jun 80	38	635	Portland Cement, blue	Dec 83	
358	Zirconium, Gasometric	Jun 80	38	636	Portland Cement, yellow	Dec 83	
360ь	Zircaloy 2, Zr-Base Alloy	*	37	637	Portland Cement, pink	Dec 83	
361	Steel, AISI 4340	Feb 81	17	638 639	Portland Cement, green Portland Cement, clear	Dec 83 Dec 83	
362 363	Steel, AISI 94B17 (modified) Steel, Cr-V (modified)	Feb 81 Feb 81	17 17	640a	Silicon X-ray Diffraction	Dec 82	
364	Steel, High C (modified)	Feb 81	17	641	Ti-Base Alloy, 8Mn (A)	Oct 81	
365	Iron, Electrolytic	Feb 81	17,	642	Ti-Base Alloy, 8Mn (B)	Oct 81	35
			26	643	Ti-Base Alloy, 8Mn (C)	Oct 81	
367	Stainless Steel (AISI 446)	Jul 77	19	644	Ti-Base 2Cr-2Fe-2Mo (A)	Jan 60	
368	Steel, AISI 1211	Jan 78	15	646	Ti-Base 2Cr-2Fe-2Mo (C)	Jan 60	
370e	Zinc Oxide	none		650 651	Titanium Titanium	Nov 85 Nov 85	
371h 372i	Sulfur Stearic Acid	none	115	652	Titanium	Nov 85	-
375g	Channel Black	none	115	654a	Titanium Alloy 6A1-4V	Oct 81	
3786	Oil Furnace Black	none		668	Steels, Set 661-665	Sep 81	
382a	Gas Furnace Black	none	115	670	Ore, Rutile	Jun 85	
383a	Mercaptobenzothiazole	none	115	671	Nickel Oxide 1	Dec 60	
384e	n-Tertiary-Butyl-2	none		672	Nickel Oxide 2	Dec 60	
386j	Styrene Butadiene	Jan 85	115	673	Nickel Oxide 3	Dec 60	34
388m	Butyl Rubber	e eo	115				
393 394	Copper "0" Copper I	Sep 80	32 32				
395	Copper II	Jan 78 Jan 78	32				
396	Copper III	Jan 78	32				
398	Copper V	Jan 78	32				
399	Copper VI	Jan 78	32				
400	Copper VII	Jan 78					
454	Copper XI	Sep 80	32				
457	Copper IV	Jan 78	32				

^{*}In Prep.

687 Mica X-ray Diffraction Jun 82 111 865 Inconde (25 May 84 34 36 681 Platinum, Deped Mar 77 39 866 Incology 820 Mar 78 39 861 Incology 820 May 84 34 34 36 36 May 84 34 May 85 34 May 85 34 May 85 34 May 86 34 May	SRM	SRM Description	Certifi- cate Date	Page	SRM	SRM Description	Certifi- cate Date	Page
683 Mac Vary Diffraction Jun 82 1111 865 Inconel 625 May 84 34 860 Blatum. High Purity Mar 77 39 866 Incology 800 Mar 77 39 866 Incology 800 Mar 78 39 867 Incology 800 Mar 78 39 87 100 Mar 78 30 Mar 8 30 Mar 9 Mar 8 30 Mar 9 Mar	674	Intensity X-ray Diffraction Set	Jun 83	111	864	Inconel 600	May 84	33
6818 Platinum, High Purity Mar 77 39 866 Incololy 800 May 84 39 867 Incololy 820 Incololy 820 Incolol								33
681 Platinum, Doped 682 Zinc, High Purity 683 Bast Rock 684 Pastal Rock 685 Perrochromium Silicon 685 Bast Rock 686 Perrochromium Silicon 686 Perrochromium Silicon 687 Perrochromium Silicon 688 Bast Rock 689 Perrochromium Silicon 689 Perrochromium Silicon 689 Perrochromium Silicon 680 Perrochromium Silicon 680 Perrochromium Silicon 680 Perrochromium Silicon 681 Reduced Iron Oxide 682 Perrochromium Silicon 683 Basti Rock 684 Basti Rock 685 Basti Rock 686 Perrochromium Silicon 686 Perrochromium Silicon 687 Perrochromium Silicon 687 Perrochromium Silicon 688 Basti Rock 689 Perrochromium Silicon 689 Perrochromium Silicon 689 Perrochromium Silicon 680 Orc. Iron (Kinada) 681 Patinum Person 680 Perrochromium Silicon 681 Patinum Person 682 Perrochromium Silicon 683 Perrochromium Silicon 684 Basti Rock 685 Basti Rock 686 Perrochromium Silicon 685 Basti Rock 686 Perrochromium Silicon 686 Perrochromium Silicon 687 Perrochromium Silicon 688 Basti Rock 689 Perrochromium Silicon 689 Perrochromium Silicon 689 Perrochromium Silicon 680 Perrochromium Silicon 680 Perrochromium Silicon 680 Perrochromium Silicon 680 Perrochromium Silicon 681 Patinum Person 682 Perrochromium Silicon 683 Patinum Person 684 Bastir Cast Rock 685 Perrochromium Silicon 685 Perrochromium Silicon 686 Patinum Person 685 Perrochromium Silicon 686 Patinum Person 687 Patinum Person 688 Bastir Cast Rock 688 Perrochromium Silicon 689 Perrochromium Silicon 689 Perrochromium Silicon 680 Polystyren 178 Month March Person 680 Polystyren 178 Month March Person 680 Person 680 Patinum Person 680 Patinu								33
682 Zinc, Pure Oct 81 39 871 Phosphor Bronze, CDA 521 Aug 79 34 683 Gold, High Purity Oct 81 39 872 Phosphor Bronze, CDA 521 Aug 79 34 685 Gold, High Purity Oct 81 39 872 Cupro-Nickel, 10 (CDA 706) Jan 78 36 689 Ferrochromium Silicon Feb 82 25 875 690 Ore, Iron (Canada) Oct 78 70 879 Nickel Silver, CDA 702 Jun 79 36 691 Reduced Iron Oxide Apr 82 70 880 Nickel Silver, CDA 703 Jun 79 36 692 Ore, Iron (Labrador) Oct 82 70 880 Nickel Silver, CDA 703 Jun 79 37 1 891 Iron, HA White Cast(IHC-2004) Phosphate Rock (Western) Jun 84 68, 890 Nickel Silver, CDA 704 Jun 79 37 1 891 Iron, HA White Cast(IHC-2004) Phosphate Rock (Western) Jun 84 68, 890 Nickel Silver, CDA 705 Jun 79 38 1 1 90 Nickel Silver, CDA 706 Jun 79 38 1 1 90 Nickel Silver, CDA 707 Jun 707 1 90 Nickel Silver, CDA 708 Jun 79 38 1 1 90 Nickel Silver, CDA 708 Jun 79 38 1 1 90 Nickel Silver, CDA 709 Jun 79 38 1 90 Nickel Silver, CDA 709 Jun 79 38 1 90 Nickel Silver, CDA 709 Jun 79 38 1 90 Nickel Silver, CDA 709 Jun 79 38 1 90 Nickel Silver, CDA 709 Jun 79 38 1 90 Nickel Silver, CDA 709 Jun 79 38 1 90 Nickel Silver, CDA 709 Jun 79 38 1 90 Nickel Silver, CDA								33
683 Zinc, Pure Oct 81 39 872 Phosphor Bronze, CDA 544 Aug 79 3 and 78 3								30
685 Gold, High Purity 686 Basalk Rock 687 Bastle Rock 688 Bastle Rock 689 Ferrochromun Silson 689 Ferrochromun Silson 680 Ferrochromun Silson 680 Ferrochromun Silson 680 Ferrochromun Silson 681 Ferrochromun Silson 682 Ferrochromun Silson 683 Ferrochromun Silson 684 Ferrochromun Silson 685 Ferrochromun Silson 686 Ferrochromun Silson 686 Ferrochromun Silson 687 Ferrochromun Silson 688 Ferrochromun Silson 689 Ferrochromun Silson 689 Ferrochromun Silson 680 Ferrochromun Silson 680 Ferrochromun Silson 681 Ferrochromun Silson 682 Ferrochromun Silson 683 Ferrochromun Silson 684 Ferrochromun Silson 685 Ferrochromun Silson 686 Ferrochromun Silson 687 Ferrochromun Silson 688 Ferrochromun Silson 689 Ferrochromun Silson 680 Ferrochromun Silson 680 Ferrochromun Silson 681 Ferrochromun Silson 682 Ferrochromun Silson 683 Ferrochromun Silson 684 Ferrochromun Silson 685 Ferrochromun Silson 686 Ferrochromun Silson 687 Ferrochromun Silson 688 Ferrochromun Silson 689 Ferrochromun Silson 680 Ferrochromun Silson 681 Ferrochromun Silson 682 Ferrochromun Silson 683 Ferrochromun Silson 684 Ferrochromun Silson 685 Ferrochromun Silson 686 Ferrochromun Silson 686 Ferrochromun Aug 79 71 Ferrochro	683		Oct 81	39				30
688 Basalt Rock 689 Ferrochromium Silicon 689 Ferrochromium Silicon 689 Ferrochromium Silicon 680 Ore, Iron (Clanada) 680 Ore, Iron (Clanada) 681 Ore, Iron (Clanada) 682 Ore, Iron (Clanada) 683 Ore, Iron (Clanada) 684 Phosphate Rock (Western) 685 Ore, Iron (Rimba) 686 Ore, Iron (Rimba) 687 Ore, Iron (Rimba) 688 Ore, Iron (Rimba) 689 Ore, Iron (Rimba) 689 Ore, Iron (Rimba) 680 Ore, Iron (Rimba) 680 Ore, Iron (Rimba) 681 Ore, Iron (Rimba) 682 Ore, Iron (Rimba) 684 Phosphate Rock (Western) 685 Bauxite (Jonninican) 685 Bauxite (Jonninican) 686 Bauxite (Jonninican) 687 Bauxite (Jonninican) 688 Bauxite (Jonninican) 689 Aluminum, Reduction Grade 689 Bauxite (Jonninican) 689 Aluminum, Reduction Grade 689 Bauxite (Jonninican) 680 Aluminum, Reduction Grade 680 Bauxite (Jonninican) 680 Aluminum, Reduction Grade 681 Bauxite (Jonninican) 681 Bauxite (Jonninican) 682 Bauxite (Jonninican) 683 Bauxite (Jonninican) 684 Bauxite (Jonninican) 685 Bauxite (Jonninican) 686 Bauxite (Jonninican) 687 Bauxite (Jonninican) 688 Bauxite (Jonninican) 689 Aluminum, Reduction Grade 689 Bauxite (Jonninican) 689 Aluminum, Reduction Grade 689 Bauxite (Jonninican) 680 Bauxite (Jonninican) 680 Bauxite (Jonninican) 680 Bauxite (Jonninican) 681 Bauxite (Jonninican) 681 Bauxite (Jonninican) 681 Bauxite (Jonninican) 682 Breatly Mylite Cast(Ni-Hard 685 Breatly Mylite Cast(Ni-Hard 687 Bauxite (Jonninican) 687 Bauxite (Jonninican) 688 Bauxite (Jonninican) 689 Aluminum Alloy Jool 689 Aluminum Alloy Jool 680 Bauxite (Jonninican) 680 Bauxite (Jonninican) 680 Bauxite (Jonninican) 681 Bauxite (Jonninican) 681 Bauxite (Jonninican) 681 Bauxite (Jonninican) 682 Breatly Mylite (Jonninican) 683 Bauxite (Jonninican) 684 Bauxite (Jonninican) 685 Bauxite (Jonninican) 685 Bauxite (Jonninican) 686 B	685	Gold, High Purity	Oct 81	39	874			30
	688	Basalt Rock	Aug 81	73				
691 Reduced fron Oxide Apr \$2 70 879 Nickel Silver, CDA 762 Jun 79 30 692 Ore, fron ((Indrador) Oct 82 70 880 Nickel Silver, CDA 770 Jun 79 30 693 Ore, fron ((Nimba) Oct 78 70 882 Nickel Silver, CDA 770 Jun 79 30 693 Ore, fron ((Nimba) Oct 78 70 882 Nickel Silver, CDA 770 Jun 79 30 30 30 30 30 30 30 3					875	Cupro-Nickel, 10 (CDA 706)	Jan 78	30
692 Ore, Iron (Labrador) Oct 28 70 880 Nickel Silver, CDA 770 May 97 93 693 Phosphate Rock (Western) Jun 84 68, 890 Iron, HA White Cast(HC Apr 82 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
693 Prosphate Rock (Western) Jun 84 68, 890 Iron, HA White Cast(Ni-Hard Apr 82 2 250-V) 30 1 1 891 Iron, HA White Cast(Ni-Hard Apr 82 2 2 1 1 891 Iron, HA White Cast(Ni-Hard Apr 82 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1000					30
694 Phosphate Rock (Western) Jun \$4 68, 890 Iron, HA White Cast(HC								
696 Bauxite (Surinam)						Ni-Cu Alloy (65Ni 31Cu 3Al)		
697 Bauxtie (Dominican) Aug 79 71 892 Iron, HA White Cast(Ni-Hard Apr 82 2 706 707				71		250+V)	100	
699 Bauxie (Jamaican)					891		Apr 82	26
699 Alumina, Reduction Grade Aug 81 71 710 711 710 710 711 710 710 711 710 710 711 710 710 711 710 710 711 710					002		4 02	26
Tracealloy A Aug 81 37 Aug 83 Aug 84 Aug 83 Aug 83 Aug 84 Aug 84 Aug 83 Aug 84					892		Apr 82	26
93 898 Tracealloy B Aug 83 3708 Glasses, Stress Optical Coefficient Sep 73 89 900 Antiepilepsy Drug Level Apr 79 44 Arracealloy C Aug 83 34 Aluminum Alganetic Susceptibility Apr 72 91 91 92 Antiepilepsy Drug Level Apr 79 44 Arracealloy C Aug 83 44 Aluminum Alganetic Susceptibility Apr 72 91 92 Antiepilepsy Drug Level Apr 79 44 Arracealloy C Aug 83 44 Aluminum Alloy 518 Aug 83 44 Aluminum Alloy 518 Apr 73 99 Aluminum Alloy 518 Aug 85 Aluminum Alloy 518 Aug 89 Aluminum Alloy 518 Aluminum Alloy 515					907		Aug 92	2.4
Tracealloy C Aug 83 30 Aug 81	103	Folystyrene 179k mor wt	NOV 76					
Took Glasses, Stress Optical Coefficient Sep 73 89 Sep 73 Sep 74	706	Polystyrene 258k mol wt	Feb 70					
Cient Assay Collass, Extra Dense Lead Jun 74 88, 999 Human Serum Mar 85 4							-	
Sodium Pyruvate May 81 4		cient				Assay		47
710a Glass, Soda Lime-Silica	709	Glass, Extra Dense Lead	Jun 74					
711 Glass, Lead-Silica	710-	Class Sada Line Siline						46
712 Glass, Alkali Lead-Silica			1.16					
713 Glass, Dense Barium Crown Oct 66 88 914 Cartainine 714 Glass, Alkali Alumina Silica Oct 66 88 915 Galcium Carbonate Nov 73 44 716 Glass, Alkali-free Alumina Sep 66 88 917 Po-Glucose (Dextrose) Sep 73 47 717 Glass, Borosilicate Nov 69 88 918 Potassium Chloride Nov 73 47 72 720 Synthetic Sapphire Apr 72 89 919 Sodium Chloride Nov 73 47 72 720 Synthetic Sapphire Apr 82 93 920 D-Mannitol Nov 73 47 72 723 Tris(hydroxymethyl) aminomethane, Basimetric Nov 73 47 72 724 Tris(hydroxymethyl) aminomethane, Basimetric Nov 73 47 72 724 Tris(hydroxymethyl) aminomethane, Calorimetric Jan 67 39 92 Tris(hydroxymethyl) aminomethane, PH Tris(hydroxym								
714 Glass, Alkali Alumina Silica Oct 66 88 915 Calcium Carbonate Nov 73 4 716 Glass, Neutral Sep 66 88 916 Dilliubin Mar 71 4 717 Glass, Borosilicate Nov 69 88 917 D-Glucose (Dextrose) Sep 73 4 718 Alumina Elasticity Apr 72 89 919 Sodium Chloride Nov 73 4 720 Synthetic Sapphire Apr 82 93 920 D-Mannico Nov 73 4 720 Synthetic Sapphire Apr 82 93 920 D-Mannico Nov 73 4 721 Tris(hydroxymethyl) aminomethane, Calorimetric Particolorimetry Par							Nov /3	
715 Glass, Alkali-free Alumina Sep 66 88 916 Billrubin Mar 71 4 716 Glass, Borosilicate Nov 69 88 918 Potassium Chloride Nov 73 4 718 Alumina Elasticity Apr 72 89 919 Sodium Chloride Nov 73 4 720 Synthetic Sapphire Apr 82 93 920 D-Mannitol Nov 73 4 723 Apr 73 921 Cortisol (Hydrocortisone) Dec 73 4 724 Trisfhydroxymethyl) aminomethane, Basimetric Trisfhydroxymethyl) aminomethane, Calorimetric Sep 73 93 921 Cortisol (Hydrocortisone) Dec 73 4 728 Dec 73 Dec 74 Dec 74 Dec 75							Nov. 72	46
716 Glass, Rotural Sep 66 88 917 D-Glucose (Dextrose) Sep 73 47 717 Glass, Borosilicate Nov 69 88 918 Potassum Chloride Nov 73 47 720 Synthetic Sapphire Apr 82 93 920 D-Mannitol Nov 73 47 723 Tristhydroxymethyl) aminomethane, Basimetric Apr 81 43 921 Cortisol (Hydrocortisone) Dec 73 47 73 74 Tristhydroxymethyl aminomethane, Calorimetric Selenium, Inter-Purity Jan 67 39 921 Tristhydroxymethyl) aminomethane, Calorimetric Jan 67 39 922 Tristhydroxymethyl) aminomethane, Ph Tristhydroxymethyl) Apr 73 99 922 Tristhydroxymethyl) Apr 73 99 924 Tristhydroxymethyl) Apr 73 99 925 Tristhydroxymethyl) Apr 73 99 926 Tristhydroxymethyl) Apr 74 Tungsten May 76 99 99 99 4 Tristhydroxymethyl) Apr 75 99 99 4 Tristhydroxymethyl) Apr 75 99 99 4 Tristhydroxymethyl) Apr 75 99 99 99 4 Tristhydroxymethyl) Apr 75 99 99 99 99 99 99 99								46
717 Glass, Borosilicate Nov 69 88 918 Potassium Chloride Nov 73 4 718 Alumina Elasticity Apr 72 89 919 Sodium Chloride Nov 73 4 720 Synthetic Sapphire Apr 82 93 920 Dahamitol Nov 73 4 721 Apr 73 921 Cortisol (Hydrocortisone) Dec 73 4 724 Tris(hydroxymethyl) aminomethane, Basimetric Potation P								
718 Alumina Elasticity								
Apr 82 93 920								
Tris(hydroxymethyl)	720		Apr 82	93				
Trishydroxymethyl amino- methane, Basimetric Trishydroxymethyl amino- methane, Calorimetric Jan 67 39 Trishydroxymethyl amino- methane, Calorimetric Jan 67 39 Trishydroxymethyl amino- methane, Purity Jan 67 39 Jan 67 31 Jan 73 7 Jan 737 Tungsten May 76 99 Jan 67 39 Jan 73 99 Jan 73 10 Jan 74 10	723a		Apr 81	43				
Tris(hydroxymethyl) amino-methane, Calorimetric methane, Calorimetric problems of the proble		methane, Basimetric	-					
Recharch Part Purity Jan 67 39 Methane hydrochloride, pH Nov 73 4 4 4 4 4 4 4 4 4	724a		Sep 73	93		methane, pH		83
728 Zinc-Intermediate Purity Oct 81 39 924 Lithium Carbonate Nov 73 4 731 Glass, Borosilicate Jul 72 99 925 4-Hydroxy-3-methoxy-dl Dec 73 4 4-Hydroxy-3-methoxy-dl Dec 74 4 4-Hydroxy-3-methoxy-dl Dec 74 4 4-Hydroxy-3-methoxy-dl Dec 74 4 4-Hydroxy-3-methoxy-dl Dec 74 4 4 4-Hydroxy-3-methoxy-dl Dec 75 4 4 4 4 4 4 4 4 4	726		Inn 63	30	923		Aug 76	
731 Glass, Borosilicate Jul 72 99 925 4-Hydroxy-3-methoxy-dl-mandelic Acid (VMA) Dcc 73 4 737 Tungsten May 76 99 926 Bovine Serum Albumin (Total Jul 77 40 Zinc Freezing Point Jul 72 96 Potential Protein) Potential Protein Bovine Serum Albumin (Total Protein) Potential Protein Protein Bovine Serum Albumin (Total Protein) Potential Protein Prot					024		No. 72	83
Tangsten								
Page Fused Silica May 71 99 926 Bovine Serum Albumin (Total 740 Zinc Freezing Point Feb 70 96 Protein)					723		Dec 15	40
740 Zinc Freezing Point					926		Inl 77	46
Tin Freezing Point Jul 72 96 927a Bovine Serum Albumin (7% 142 742 Alumina Melting Point Jul 70 96 98 98 98 98 98 98 98					720			
Alumina Melting Point	741	Tin Freezing Point	Jul 72	96	927a			46
743 Mercury, Triple Point Apr 76 96 745 Gold, Vapor Pressure May 69 98 746 Cadmium, Vapor Pressure Aug 70 98 748 Silver, Vapor Pressure Aug 70 98 749 Silver, Vapor Pressure Aug 70 98 740 Aluminun, Magnetic Suscepti- bility 740 Platinum, Magnetic Suscepti- bility 741 Platinum, Magnetic Suscepti- bility 742 Palladium, Magnetic Suscepti- bility 743 Magnetic Suscepti- bility 744 Platinum, Magnetic Suscepti- bility 745 Palladium, Magnetic Suscepti- bility 746 Manganese Fluoride, Mag Suscepti- bility 747 Platinum, Magnetic Suscepti- bility 748 Silver, Vapor Pressure Aug 70 98 749 Gass, Dielectric Constant Jul 82 88 740 Platinum, Magnetic Suscepti- bility 745 Palladium, Magnetic Suscepti- bility 746 Palladium, Magnetic Suscepti- bility 747 Thermometric Fix Point Jun 83 95 Crystalline Potassium Dichrophotometry Cept 749 Platinum Sulfate Dihydrate Device (Low) 740 Platinum Sulfate Dihydrate Thermometric Fix Point Dec 78 95 Thermometric Fix Point Dec 78 97 Trip Glass, Liquidus Temperature Nov 80 89 Trip Glass, Dielectric Constant Jul 82 88 Trip Glass, Dielectric Cons	742	Alumina Melting Point				Solution, Total Protein)		
746 Cadmium, Vapor Pressure Aug 70 98 748 Silver, Vapor Pressure Aug 70 98 763 Aluminum, Magnetic Susceptibility 764 Platinum, Magnetic Susceptibility 765 Palladium, Magnetic Susceptibility 766 Manganese Fluoride, Mag Susaceptibility 766 Manganese Fluoride, Mag Susaceptibility 767 Thermometric Fix Point Dec 78 95 768 Thermometric Fix Point Dec 78 95 769 Electrical "RRR" Set Nov 82 113 769 Electrical "RRR" Set Nov 82 113 771 Glass, Liquidus Temperature Nov 80 89 772 Nickel, Magnetic Moment Oct 78 99 785 Aluminum Alloy 3004 785 Aluminum Alloy 3004 786 Aluminum Alloy 5182 787 Aluminum Alloy 5182 788 Aluminum Alloy 6011 (mod) 789 Aluminum Alloy 6011 (mod) 780 Flacting August August August Aug 82 780 Manganese Fluoride, Mag Susaceptibility 781 Molybdenum, Heat Capacity Apr 77 782 May 81 783 Aluminum Alloy 5182 784 Aluminum Casting Alloy 356 785 Aluminum Casting Alloy 380 786 Aluminum Alloy 6011 (mod) 787 Manganese Fluoride, Apr 79 788 May 85 789 Aluminum Alloy 6011 (mod) 780 Manganese Fluoride, Apr 79 780 Manganese Fluoride, Apr 79 780 Manganese Fluoride, Apr 79 785 Manganese Fluoride, Apr 79 786 Clinical Laboratory Thermomocter eter 787 Quartz Cuvette for Spectro-Dec 80 789 Quartz Cuvette for Spectro-Dec 80 780 Clinical Laboratory Thermomocter eter 780 Quinine Sulfate Dihydrate 781 Apr 79 782 Quartz Cuvette for Spectro-Dec 80 783 Aluminum Matloy 6016 784 Plutonium Sotopic (12 May 85 785 Aluminum Casting Alloy 356 786 Aluminum Alloy 6011 (mod) 787 Mar 78 788 Aluminum Alloy 6011 (mod) 788 May 85 789 May 85 780 Manganese Fluoride, Apr 79 780 Quartz Cuvette for Vater by Unant Subspice (17 May 10 May 85 785 Aluminum Alloy 6011 (mod) 786 Manganese Fluoride, Apr 73 787 Mar 4 Mar 89 788 Aluminum Alloy 6011 (mod) 789 Manganese Fluoride, Apr 79 793 Mar 4 Nitrophenol 794 Plutonium Isotopic (12 May 85 795 Mar 4		Mercury, Triple Point			928			
748 Silver, Vapor Pressure 763 Aluminum, Magnetic Susceptibility 764 Platinum, Magnetic Susceptibility 765 Palladium, Magnetic Susceptibility 766 Manganese Fluoride, Mag Susceptibility 767 Manganese Fluoride, Mag Susceptibility 768 Thermometric Fix Point Dec 78 769 Electrical "RRR" Set Nov 82 770 Sless, Liquidus Temperature Nov 80 771 Sless, Liquidus Temperature Nov 80 772 Glass, Liquidus Temperature Nov 80 773 Sless, Liquidus Temperature Nov 80 774 Glass, Dielectric Constant Jul 82 775 Sless, Aluminum Alloy 3004 776 Manganese Fluoride, Mag Susceptibility 777 Moybenum, Heat Capacity Apr 73 778 Horiotal Laboratory Thermomoter Cot 78 779 Sless, Liquidus Temperature Nov 80 770 Sless, Liquidus Temperature Nov 80 771 Sless, Liquidus Temperature Nov 80 772 Sless, Dielectric Constant Jul 82 773 Sless, Liquidus Temperature Nov 80 774 Glass, Dielectric Constant Jul 82 775 Sless, Aluminum Alloy 3004 776 Manganese Filters for Spectrophotometry (Visible) 777 Sless, Circlett For Spectrophotometry 778 Sless, Aluminum Alloy 5182 779 May 85 780 May 85 781 Molybdenum, Heat Capacity Apr 79 785 Aluminum Casting Alloy 356 786 Aluminum Alloy 6011 (mod) 787 Jun 80 788 Sless Aluminum Alloy 6011 (mod) 788 Jun 80 789 Sless Aluminum Alloy 7075 789 Sless Aluminum Alloy 7075 780 May 81 780 Moybdenum, Heat Capacity Apr 79 780 May 85 781 Moybdenum, Heat Capacity Apr 79 782 Sless Aluminum Casting Alloy 380 785 Aluminum Alloy 6011 (mod) 786 Mar 78 787 Moybdenum, Heat Capacity Apr 79 788 Moybdenum, Heat Capacity Apr 79 789 Sless Aluminum Alloy 6011 (mod) 780 May 81 781 Moybdenum, Heat Capacity Apr 79 782 May 85 783 Moybdenum, Heat Capacity Apr 79 784 May 85 785 Aluminum Alloy 6011 (mod) 786 Mar 78 787 Moybdenum, Heat Capacity Apr 79 788 Moybdenum, Heat Capacity Apr 79 789 Sless Aluminum Alloy 6011 (mod) 780 Mar 78 780 Moybdenum, Heat Capacity Apr 79 782 Moybdenum, Heat Capacity Apr 79 783 Moybdenum, Heat Capacity Apr 79 785 Moybdenum, Heat Capacity Apr 79 786 Mar 78 787 Moybdenum, Heat Capacity Apr 79 788 Moybdenum, Heat Capacity Apr 79 789 Me		Gold, Vapor Pressure			929	Magnesium Gluconate Dihy-	Apr 79	46
Aluminun, Magnetic Susceptibility 764 Platinum, Magnetic Susceptibility 765 Palladium, Magnetic Susceptibility 766 Manganese Fluoride, Mag Susceptibility 767 Manganese Fluoride, Mag Susceptibility 768 Thermometric Fix Point Dec 78 95 769 Electrical "RRR" Set Nov 82 113 769 Palladium, Magnetic Susceptibility 760 Manganese Fluoride, Mag Susceptibility 760 Manganese Fluoride, Mag Susceptibility 761 Thermometric Fix Point Dec 78 95 762 Thermometric Fix Point Dec 78 95 763 Thermometric Fix Point Dec 78 95 764 Thermometric Fix Point Dec 78 95 765 Palladium, Magnetic Susceptibility 766 Manganese Fluoride, Mag Susceptibility 767 Thermometric Fix Point Jun 83 95 768 Thermometric Fix Point Dec 78 95 769 Electrical "RRR" Set Nov 82 113 769 Flutonium Sulfate Dihydrate Apr 79 10 769 Jun 78 4 770 Nickel, Magnetic Moment Oct 78 99 771 Glass, Liquidus Temperature Nov 80 89 772 Molybdenum, Heat Capacity Apr 77 773 Glass, Dielectric Constant Jul 82 88 774 Molybdenum, Heat Capacity Apr 77 775 Slass Aluminum Alloy 3004 776 May 85 29 777 Slass Aluminum Alloy 3004 778 May 85 29 778 Molybdenum, Heat Capacity Apr 77 779 Slass Aluminum Alloy 3004 770 May 85 29 771 Slass Aluminum Casting Alloy 380 772 May 85 29 773 May 85 29 774 Slass Aluminum Casting Alloy 380 775 Aluminum Casting Alloy 380 776 Aluminum Alloy 6011 (mod) Jun 80 29 777 Slass Aluminum Alloy 6011 (mod) Jun 80 29 778 Slass Aluminum Alloy 7075 779 Slass Aluminum Alloy 6011 (mod) Jun 80 29 770 Slass Aluminum Alloy 7075 771 May 772 May 773 772 May 773 773 May 774 774 May 775 775 May 775 776 May 775 777 May 777 778 May 778 779 May 779 779 May 779 779 May 779 770 Metal								
bility Platinum, Magnetic Susceptibility Palladium, Palladiu					930D		Aug 84	100
Palladium, Magnetic Susceptibility 766 Manganese Fluoride, Mag Susception Dec 80 10 767 Manganese Fluoride, Mag Susception Dec 80 10 768 Thermometric Fix Point Dec 78 95 769 Device (Low) 769 Electrical "RRR" Set Nov 82 113 770 Nickel, Magnetic Moment Oct 78 99 771 Glass, Liquidus Temperature Nov 80 89 772 Nickel, Magnetic Constant Jul 82 88 773 Molybdenum, Heat Capacity Apr 77 93 853 Aluminum Alloy 3004 769 Manganese Fluoride, Mag Susception Dec 78 95 770 Glass, Dielectric Constant Jul 82 88 771 Molybdenum, Heat Capacity Apr 77 93 852 Aluminum Alloy 3004 753 May 85 29 854 Aluminum Casting Alloy 356 Jan 80 29 855 Aluminum Casting Alloy 380 Jan 80 29 856 Aluminum Alloy 6011 (mod) Jun 80 29 857 Aluminum Alloy 7075 858 Aluminum Alloy 7075 859 Aluminum Alloy 7075 860 Quinine Sulfate Dihydrate Apr 79 10 870 May 81 4 871 Molybdenum, Heat Capacity Apr 77 93 872 Plutonium Isotopic (12%) Aug 82 72 873 May 85 29 874 Plutonium Isotopic (18%) Aug 82 73 875 Aluminum Casting Alloy 356 Jan 80 29 876 Aluminum Casting Alloy 356 Jan 80 29 877 May 80 29 878 Aluminum Alloy 6011 (mod) Jun 80 29 879 Aluminum Alloy 7075 889 Aluminum Alloy 7075 889 Aluminum Alloy 7075 889 Aluminum Alloy 7075 880 Aluminum Alloy 7075 881 Aluminum Alloy 7075 881 Aluminum Alloy 7075 882 Aluminum Alloy 7075 884 Aluminum Alloy 7075 885 Aluminum Alloy 7075 886 Aluminum Alloy 7075 887 Aluminum Alloy 7075 888 Aluminum Alloy 7075 889 Aluminum Alloy 7075 889 Aluminum Alloy 7075 880 Aluminum Alloy 7075	764	Platinum, Magnetic Suscepti-	Apr 73	99	931d	UV and Visible Spectropho-		100
766 Manganese Fluoride, Mag Suscept 767a Thermometric Fix Point Jun 83 95 Device 768 Thermometric Fix Point Dec 78 95 Device (Low) 769 Electrical "RRR" Set Nov 82 113 771 Nickel, Magnetic Moment Oct 78 99 773 Glass, Liquidus Temperature Nov 80 89 774 Glass, Dielectric Constant Jul 82 88 Molybdenum, Heat Capacity Apr 77 93 853 Aluminum Alloy 3004 May 85 29 854 Aluminum Alloy 5182 May 85 29 May 85 29 May 85 29 May 85 29 May 86 29 May 87 Plutonium Metal Matrix May 81 Aug 82 May 85 29 May 86 29 May 87 Plutonium Metal May 81 Aug 82 May 85 29 May 86 29 May 87 Plutonium Metal Mar 78 78 Mar 79 88 Mar 79 95 Mar 79 95 Mar 79 96 Mar 79 96 Mar 78 78 Mar 79 88 Mar 78 78	765	Palladium, Magnetic Suscepti-	Apr 73	99	932	Quartz Cuvette for Spectro-	Dec 80	100
Thermometric Fix Point Jun 83 95 935 Crystalline Potassium Dichromate for UV Absorbance	766	Manganese Fluoride, Mag Sus-	Apr 73	99	934	Clinical Laboratory Thermom-	Oct 74	97
Device (Low) 937 Iron Metal Jun 78 4	767a	Thermometric Fix Point	Jun 83	95	935	Crystalline Potassium Dichro-	Jun 77	100
The following	768		Dec 78	3 95				
772 Nickel, Magnetic Moment Oct 78 99 945 Plutonium Metal Matrix Jan 73 7 773 Glass, Liquidus Temperature Nov 80 89 946 Plutonium Isotopic (12%) Aug 82 7 774 Glass, Dielectric Constant Jul 82 88 947 Plutonium Isotopic (18%) Aug 82 7 781 Molybdenum, Heat Capacity Apr 77 93 948 Plutonium Isotopic (8%) Aug 82 7 853 Aluminum Alloy 3004 May 85 29 949f Plutonium Metal Sep 82 7 854 Aluminum Alloy 5182 May 85 29 950b Uranium Oxide Mar 78 7 855 Aluminum Casting Alloy 356 Jan 80 29 951 Boric Acid Oct 71 4 856 Aluminum Alloy 6011 (mod) Jun 80 29 952 Enriched Boric Acid Oct 71 8 859 Aluminum Alloy 7075 Jun 80 29 953 Neutron Density Monitor Wire Mar 69 8	769		Nov 82	113				
773 Glass, Liquidus Temperature Nov 80 89 946 Plutonium Isotopic (12%) Aug 82 77 774 Glass, Dielectric Constant Jul 82 88 947 Plutonium Isotopic (18%) Aug 82 77 781 Molybdenum, Heat Capacity Apr 77 93 948 Plutonium Isotopic (8%) Aug 82 77 853 Aluminum Alloy 3004 May 85 29 949f Plutonium Metal Sep 82 78 854 Aluminum Alloy 5182 May 85 29 950b Uranium Oxide Mar 78 78 855 Aluminum Casting Alloy 356 Jan 80 29 951 Boric Acid Oct 71 48 856 Aluminum Casting Alloy 380 Jan 80 29 857 Aluminum Alloy 6011 (mod) Jun 80 29 952 Enriched Boric Acid Oct 71 88 859 Aluminum Alloy 7075 Jun 80 29 953 Neutron Density Monitor Wire Mar 69 8955 Lead in Blood Dec 84 48								
774 Glass, Dielectric Constant Jul 82 88 947 Plutonium Isotopic (18%) Aug 82 7 781 Molybdenum, Heat Capacity Apr 77 93 948 Plutonium Isotopic (8%) Aug 82 7 853 Aluminum Alloy 3004 May 85 29 949f Plutonium Metal Sep 82 7 854 Aluminum Alloy 5182 May 85 29 950b Uranium Oxide Mar 78 7 855 Aluminum Casting Alloy 356 Jan 80 29 951 Boric Acid Oct 71 4 856 Aluminum Casting Alloy 380 Jan 80 29 858 Aluminum Alloy 6011 (mod) Jun 80 29 859 Aluminum Alloy 7075 Jun 80 29 952 Enriched Boric Acid Oct 71 8 859 Aluminum Alloy 7075 Jun 80 29 953 Neutron Density Monitor Wire Mar 69 8 955 Lead in Blood Dec 84 4) 89				78
781 Molybdenum, Heat Capacity Apr 77 93 948 Plutonium Isotopic (8%) Aug 82 7 853 Aluminum Alloy 3004 May 85 29 949f Plutonium Metal Sep 82 7 854 Aluminum Alloy 5182 May 85 29 950b Uranium Oxide Mar 78 7 855 Aluminum Casting Alloy 356 Jan 80 29 951 Boric Acid Oct 71 4 856 Aluminum Alloy 6011 (mod) Jun 80 29 952 Enriched Boric Acid Oct 71 8 859 Aluminum Alloy 7075 Jun 80 29 953 Neutron Density Monitor Wire Mar 69 8 955 Lead in Blood Dec 84 4	774							
854 Aluminum Alloy 5182 May 85 29 950b Uranium Oxide Mar 78 7 855 Aluminum Casting Alloy 356 Jan 80 29 951 Boric Acid Oct 71 4 856 Aluminum Casting Alloy 380 Jan 80 29 952 Enriched Boric Acid Oct 71 8 858 Aluminum Alloy 6011 (mod) Jun 80 29 952 Enriched Boric Acid Oct 71 8 859 Aluminum Alloy 7075 Jun 80 29 953 Neutron Density Monitor Wire Mar 69 8 955 Lead in Blood Dec 84 4								
855 Aluminum Casting Alloy 356 Jan 80 29 951 Boric Acid Oct 71 4 856 Aluminum Casting Alloy 380 Jan 80 29 858 Aluminum Alloy 6011 (mod) Jun 80 29 952 Enriched Boric Acid Oct 71 8 859 Aluminum Alloy 7075 Jun 80 29 953 Neutron Density Monitor Wire Mar 69 8 955 Lead in Blood Dec 84 4								
856 Aluminum Casting Alloy 380 Jan 80 29 858 Aluminum Alloy 6011 (mod) Jun 80 29 952 Enriched Boric Acid Oct 71 8 859 Aluminum Alloy 7075 Jun 80 29 953 Neutron Density Monitor Wire Mar 69 8 955 Lead in Blood Dec 84 4								
858 Aluminum Alloy 6011 (mod) Jun 80 29 952 Enriched Boric Acid Oct 71 8 859 Aluminum Alloy 7075 Jun 80 29 953 Neutron Density Monitor Wire Mar 69 8 955 Lead in Blood Dec 84 4		Aluminum Casting Alloy 356			951	Boric Acid	Oct /1	
859 Aluminum Alloy 7075 Jun 80 29 953 Neutron Density Monitor Wire Mar 69 8 955 Lead in Blood Dec 84 4		Aluminum Casting Alloy 380			0.00	Projected Basis Asid	Ont 71	81 81
955 Lead in Blood Dec 84 4		Aluminum Alloy 6011 (mod)						
	839	Aluminum Alloy 7075	Jun 80	4				
					960	Uranium Metal	May 72	

Page								
ppm	SRM	SRM Description	cate	Page	SRM	SRM Description	cate	Page
Pisson Track Glass (U-1 ppm) Feb 84 80 1084 Wear-Metals in Lube Oil (100 Jul 85 1085 Pisson Track Glass (U-1 ppm) Feb 84 80 1085 Pisson Track Glass (U-1 ppm) Feb 84 80 1085 Pisson Track Glass (U-1 ppm) Feb 84 80 1085 Pisson Track Glass (U-1 ppm) Feb 84 80 1085 Pisson Track Glass (U-1 ppm) Feb 84 80 1085 Pisson Track Glass (U-1 ppm) Feb 84 80 1085 Pisson Track Glass (U-1 ppm) Feb 84 80 1085 Pisson Track Glass (U-1 ppm) Feb 84 80 1085 Pisson Track Glass (U-1 ppm) Feb 84 80 1085 Pisson Track Glass (U-1 ppm) Feb 84 80 1085 Pisson Track Glass (U-1 ppm) Feb 84 80 1085 Pisson Track Glass (U-1 ppm) Feb 84 80 1085 Pisson Track Glass (U-1 ppm) Feb 84 1091 Pisson Track Glass (U-1 ppm) Pisson Track	961		Jun 74	80	1083		Jul 85	6
960 Uranium Oxide—Gamma Jus 5 79 970 Uranium Oxide—Gamma Jus 5 79 971 Promise, Joseph Mar 65 81 972 Spectrometry Mar 65 81 973 Silver, Isotopic Mar 65 81 974 Bromine, Jostopic Mar 65 81 975 Silver, Isotopic Mar 65 81 976 Chromium, Isotopic Mar 66 81 977 Chromium, Isotopic Mar 66 81 978 Magnesium, Isotopic Mar 68 81 979 Chromium, Isotopic Mar 68 81 970 Chromium, Isotopic Mar 68 81 970 Chromium, Isotopic Mar 68 81 971 Chromium, Isotopic Mar 68 81 972 Chromium, Isotopic Mar 68 81 973 Lead, Common Isotopic Mar 81 974 Rubidium Chloride, Kasay & Jun 70 975 Respective Mar 68 81 976 Respective Mar 68 81 977 Strontium, Assay & Isotopic Mar 98 978 Respective Mar 68 81 979 Chromium, Assay & Isotopic Mar 68 81 970 Chromium, Assay & Isotopic Mar 68 81 970 Chromium, Assay & Isotopic Mar 68 81 971 Chromium, Assay & Isotopic Mar 68 81 972 Chart 81 973 Chromium, Assay & Isotopic Mar 76 81 974 Chromium, Assay & Isotopic Mar 76 81 975 Chart 81 976 Chromium, Assay & Isotopic Mar 76 81 1006 Brass, Naval, A Nov 81 977 Chromium, Assay & Isotopic Mar 76 81 1007 Ar 1007 Brass, Naval, C Nov 81 1007 Ar 1007 Brass, Naval, C Nov 81 1008 Potassium, Isotopic Mar 76 81 1008 Potassium, Assay & Isotopic Mar 76 81 1009 Uranium, 244 Spike, Assay & Jun 81 1009 Uranium, 245 Spike, Assay & Mar 76 1009 Uranium, 245 Spike, Assay & Mar 77 1009 Uranium, 245 Spike, Assay & Mar 77 1009 Uranium, 245 Spike, A	962a	Fission Track Glass (U-50	Feb 84	80	1084	Wear-Metals in Lube Oil (100	Jul 85	6
Spectrometry		Fission Track Glass (U-1 ppm)			1085	Wear-Metals in Lube Oil (300	Jul 85	6
9778 Bromine, Isotopic	7.77		0 011 02		1086		Jun 80	34
978							Jun 80	
980 Magnesium, Isotopie Jan 67 81 1090 Oxygen in Ingot Iron Oct 85 1091								
981 Lead, Common Isotopic 981 Lead, Common Isotopic 982 Lead, Equal-Atom Isotopic 983 Lead, Radiogenic kotayor 984 Lead, Equal-Atom Isotopic 985 Lead, Radiogenic kotayor 986 Lead, Radiogenic kotayor 987 St. Lead, Radiogenic kotayor 988 Lead, Radiogenic kotayor 989 Lead, Radiogenic kotayor 980 Lead, Radiogenic kotayor 980 St. Lead, Radiogenic kotayor 980 St. Lead, Radiogenic kotayor 981 Lead, Radiogenic kotayor 980 Lead, Radiogenic kotayor 981 Lead, Radiogenic kotayor 981 Lead, Radiogenic kotayor 982 Potassum, Assay & Isotopic 983 Lead, Radiogenic kotayor 984 St. Lead, Radiogenic kotayor 985 Potassum, Assay & Isotopic 986 Strontium, Assay & Isotopic 987 Strontium, Assay & Isotopic 988 Lead, Radiogenic kotayor 989 Lead, Radiogenic kotayor 980 Radiogenic Radiogenic Feb 74 81 Lillo 980 Rasion Radiogenic Feb 74 81 Lillo 981 Silicon, Assay & Isotopic 981 Uranium-235 Spike, Assay & Isotopic 982 Uranium-235 Spike, Assay & Isotopic 983 Lead, Radiogenic								
981 Lead, Common Isotopic								
982 Lead, Equal-Atom Isotopic 983 Lead, Radiogenic Botopic 984 Rubidium Chloride, Assay & Jul 70 81 103 Brass, Free Cutting, A Nov 81 985 Potassium, Assay & Isotopic 986 Potassium, Assay & Isotopic 987 Strontium, Assay & Isotopic 988 Rhenium, Assay & Isotopic 990 Silicon, Assay & Isotopic 990 Silicon, Assay & Isotopic 990 Silicon, Assay & Isotopic 991 Lead-206 Spike, Assay & Jun 75 992 Silicon, Assay & Isotopic 993 Silicon, Assay & Isotopic 994 Callium, Isotopic 995 Silicon, Assay & Isotopic 996 Silicon, Assay & Isotopic 997 Lead-206 Spike, Assay & Jun 75 998 Algorithm, Salay & Jun 81 998 Algorithm, Salay & Jun 81 999 Silicon, Assay & Isotopic 990 Silicon, Assay & Isotopic 991 Lead-206 Spike, Assay & Jun 75 992 Silicon, Assay & Isotopic 993 Silicon, Assay & Isotopic 994 Callium, Isotopic 995 Silicon, Assay & Isotopic 996 Silicon, Assay & Isotopic 997 Lead-206 Spike, Assay & Jun 81 998 Algorithm, Salay & Jun 81 999 Silicon, Assay & Isotopic 999 Silicon, Assay & Isotopic 990 Silicon, Assay & Isotopic 990 Silicon, Assay & Isotopic 991 Lead-206 Spike, Assay & Jun 75 992 Lead-206 Spike, Assay & Jun 75 993 Lead-206 Spike, Assay & Jun 81 994 Callium, Isotopic 995 Lead-206 Spike, Assay & Jun 81 995 Pilitonium-244 Spike, Assay & Jun 81 996 Pilitonium-244 Spike, Assay & Jun 81 997 Thallium, Isotopic 998 Angiotensin I (Human) 999 Angiotensin I (Human) 990 Silicon, Assay & Isotopic 990 Silicon, Assay & Isotopic 990 Silicon, Assay & Isotopic 990 Angiotensin I (Human) 990 Angiotensin I (Hu					1091a		Oct 85	3
984 Rubidium Chloride, Assay & 110 70 81 1103 Brass, Free Cutting, A Aug 65 1 106 Brass, Naval, A Nov 81 103 Brass, Free Cutting, A Nov 81 106 Brass, Naval, A Nov 81 106 Brass, Naval, A Nov 81 107 81 1106 Brass, Naval, A Nov 81 107 81 1106 Brass, Naval, A Nov 81 107 81 1107 Brass, Naval, B Nov 81 107 107 107 107 107 107 107 107 107 10					1093		Nov 84	3
Second S								
987 Strottimu, Assay & Isotopic 988 Strottimu, Assay & Isotopic 989 Rhenium, Assay & Isotopic 990 Rhenium, Assay & Isotopic 991 Repeloitim, Assay & Isotopic 992 Rhenium, Assay & Isotopic 993 Rhenium, Assay & Isotopic 994 Rhenium, Assay & Isotopic 995 Rhenium, Assay & Isotopic 996 Rhenium, Assay & Isotopic 997 Lega/206 Spike, Assay & Isotopic 998 Rhenium, Assay & Isotopic 999 Lega/206 Spike, Assay & Isotopic 999 Lega/206 Spike, Assay & Isotopic 999 Lega/205 Spike, Assay & Isotopic 999 Uranium-233 Spike, Assay & Isotopic 999 Uranium-233 Spike, Assay & Isotopic 999 Uranium-233 Spike, Assay & Isotopic 990 Pollumin-244 Spike, Assay & Isotopic 991 Pollumin-245 Spike, Assay & Isotopic 992 Resolution Principle Isotopic 993 Resolution Principle Isotopic 994 Pollumin-234 Spike, Assay & Isotopic 995 Pollumin-244 Spike, Assay & Isotopic 996 Pollumin-244 Spike, Assay & Isotopic 997 Thallium, Isotopic 998 Pollumin-245 Spike, Assay & Isotopic 999 Pollumin-245 Spike, Assay & Isotopic 999 Pollumin-245 Spike, Assay & Isotopic 990 Pollumin-245 Spike, Assay & Isotopic 991 Thallium, Isotopic 992 Pollumin-245 Spike, Assay & Isotopic 993 Pollumin-255 Spike, Assay & Isotopic 994 Pollumin-255 Spike, Assay & Isotopic 995 Pollumin-245 Spike, Assay & Isotopic 996 Pollumin-245 Spike, Assay & Isotopic 997 Thallium, Isotopic 998 Pollumin-255 Spike, Assay & Isotopic 999 Pollumin-255 Spike, Assay & Isotopic 999 Pollumin-255 Spike, Assay & Isotopic 990 Pollumin-245 Spike, Assay & Isotopic 991 Thallium, Isotopic 992 Pollumin-255 Spike, Assay & Isotopic 993 Pollumin-255 Spike, Assay & Isotopic 994 Pollumin-255 Spike, Assay & Isotopic 995 Pollumin-255 Spike, Assay & Isotopic 996 Pollumin-255 Spike, Assay & Isotopic 997 Thallium, Isotopic 998 Pollumin-255 Spike, Assay & Isotopic 998 Pollumin-255 Spike, Assay & Isotopic 999 Pollumin-255 Spike, Assay & Isotopic 990 Pollumin-255 Spike, Assa		Rubidium Chloride, Assay &			1103	Brass, Free Cutting, A	Aug 65	3
Strontium, Assay & Isotopic Cef 52 43,	085		Aug 70	91				3
Section State St								3
Section Property	201	orientam, resay to isotopic	001 02					3
	989		Feb 74					3
Opt			Aug 75	81	C1108	Brass, Naval, C	Nov 81	3
Uranium-235 Spike, Assay & Jun 75 79	991		Mar 76	81				3
Sotopic Dec 85	002			-				3
Gallium, Isotopic Dec 85 81 1112 Gilding Metal, A Oct 81	993		Jun /5	79				
	004		Dec 85	81				3
Sotopic								3
Putonium-244 Spike, Assay & Jun 81	777				77.7.7.7.7			
998	996		Jun 81	78			Oct 81	
998 Angiotensin I (Human) Jan 83 46 1115 Bronze, Commercial, A Nov 81		Isotopic						
999 Porissium Chloride (Primary) Sep 72 43 Cl115 Bronze, Commercial, A Nov 81								3
1001 X-Ray Film Step Tablet (0-4) Mar 85 119 1116 Bronze, Commercial, B Nov 81 1002e Surface Flammability Dec 78 123 Cl1116 Bronze, Commercial, C Nov 81 1003a Glass Spheres (8-58 μm) Sep 84 116 1117 Bronze, Commercial, C Nov 81 1004 Glass Beads (34-120 μm) Apr 72 116 Cl1117 Bronze, Commercial, C Nov 81 1005 Moke Density, Nonflame (cellulose) Cl119 Brass, Aluminum, A Dec 81 1007a Smoke Density, Nonflame (cellulose) Dec 81 Jul 82 1007a Smoke Density, Flame (ABS Feb 76 123 Cl112 Beryllium-Copper CABRA Dec 81 1010								
1002a 1003a Glass Spheres (8-58 µm) Sep 84 116 1117 Bronze, Commercial, C Nov 81 1004 Glass Spheres (8-58 µm) Apr 72 116 C1117 Bronze, Commercial, C Nov 81 1004 Glass Beads (34-120 µm) Apr 72 116 C1117 Bronze, Commercial, C Nov 81 1006b Smoke Density, Nonflame (cellulose) C1119 Brass, Aluminum, B Dec 81 Jul 82 119 Brass, Aluminum, B Dec 81 Jul 82 119 Brass, Aluminum, B Dec 81 1005 Dec 81 1005 Dec 81 1006 Dec 81 1007 Dec 81 1008 Dec 81 D								
1004 Glass Beads (34-120 µm) Apr 72 116 Cl117 Bronze, Commercial, C Nov 81								3
1006								3
1010								3
1007a						Brass, Aluminum, A	Dec 81	3
Distric Photographic Step Tablet (0-4) Mar 85 119	10079		Feb 76	123				3
1010a Microcopy Resolution Test Jun 82 119 75		plastic)				165-170		3
1017a Glass Beads (100–310 μm) Sep 71 116 1134 Steel, High-Silicon Apr 70		Microcopy Resolution Test				75		3
1017a Glass Beads (100-310 \(\mu\) Sep 71 116 1134 Steel, High-Silicon Apr 70 1018a Glass Beads (225-780 \(\mu\) May 73 116 1135 Steel, High-Silicon Jul 72 Jul 73 Jul 74 Jul 75 Jul 75 Jul 76 Jul 77 Jul 78 Jul 74 Jul	1012		Sep 84	123				
1018a Glass Beads (225-780 µm) May 73 116 1135 Steel, High-Silicon Jul 72								
1034					1135	Steel, High-Silicon		
1035								2
1036 Steel, Low Carbon Silicon Sep 82 16 1139a Steel, Cast, 2 Jan 77 1051b Barium Metallo-organic Jul 15 66 1144a Iron, Blast Furnace, 2a Dec 76 1052b Vanadium Metallo-organic Mar 68 66 1145 Iron, White Cast May 78 1053a Cadmium Metallo-organic Jan 70 66 C1146a Iron, White Cast Oct 83 1055b Cobalt Metallo-organic Aug 68 66 C1150a Iron, White Cast Dec 85 C1057b Tin Metallo-organic Aug 68 66 C1151 Stainless Steel (23Cr-7Ni) Jan 80 1069c Lead Metallo-organic Apr 64 66 C1152 Stainless Steel (18Cr-11Ni) Jan 80 1061c Magnesium Metallo-organic Apr 64 66 C1153 Stainless Steel (17Cr-9Ni) Jan 80 1061c Magnesium Metallo-organic Apr 76 66 C1154 Stainless Steel (17Cr-13Ni) Jan 80 1065b Mickel Metallo-organic Apr 76 66 C1155 Stainless Steel (19Cr-13Ni) Jan 80 1065b Nickel Metallo-organic Apr 76 66 C1155 Stainless Steel (AISI 316) Aug 69 1065b Nickel Metallo-organic Apr 69 66 1157 Steel, Tool (AISI M2) Aug 73 1066a Silicon Metallo-organic Feb 69 66 1158 Steel, High-Nickel (36Ni) Dec 77 1079a Strontium Metallo-organic Apr 64 66 1160 Electronic and Magnetic Alloy Aug 81 1070a Strontium Metallo-organic Apr 64 66 1160 Electronic and Magnetic Alloy Aug 81 1073b Zinc Metallo-organic Apr 64 66 1170b Steel, Lead-bearing Apr 82 Jan 74 1075a Aluminum Metallo-organic Feb 66 66 1170 Stainless Steel (AISI 348) Jul 71 1074a Calcium Metallo-organic Feb 66 66 C1173 Steel, Ni-Cr-Mo-V May 83 C1775a Silver Metallo-organic Feb 69 66 C1173 Steel, Ni-Cr-Mo-V May 83 C1775a Silver Metallo-organic Feb 69 66 C1173 Steel, Ni-Cr-Mo-V May 83 C1775a C177								
1051b Barium Metallo-organic Jul 15 66 1144a Iron, Blast Furnace, 2a Dec 76 1052b Vanadium Metallo-organic Jan 70 66 C1146a Iron, White Cast May 78 1053a Cadmium Metallo-organic Jan 70 66 C1146a Iron, White Cast Oct 83 1055b Cobalt Metallo-organic Jul 68 66 C1150a Iron, White Cast Dec 85 1057b Tin Metallo-organic Aug 68 66 C1151 Stainless Steel (23Cr-7Ni) Jan 80 1059c Lead Metallo-organic Apr 64 66 C1152 Stainless Steel (18Cr-11Ni) Jan 80 1060a Lithium Metallo-organic Oct 81 66 C1153 Stainless Steel (17Cr-9Ni) Jan 80 1061c Magnesium Metallo-organic Oct 81 66 C1154 Stainless Steel (17Cr-9Ni) Jan 80 1062b Manganese Metallo-organic Apr 76 66 1155 Stainless Steel (19Cr-13Ni) Jan 80 1065b Nickel Metallo-organic Apr 76 66 1155 Stainless Steel (AISI 316) Aug 69 1065b Nickel Metallo-organic Apr 69 66 1157 Steel, Tool (AISI M2) Aug 73 1069b Sodium Metallo-organic Apr 69 66 1158 Steel, High-Nickel (36Ni) Dec 77 1069b Sodium Metallo-organic Feb 69 66 1160 Electronic and Magnetic Alloy Aug 81 1070a Strontium Metallo-organic Feb 76 66 1170b Steel, Selenium-bearing Jan 74 1073b Zinc Metallo-organic Jul 67 66 1170b Steel, Selenium-bearing Jan 74 1075a Aluminum Metallo-organic Feb 76 66 1170b Steel, Selenium-bearing Jan 74 1075a Aluminum Metallo-organic Feb 69 66 1170b Feb 81 1172 Stainless Steel (AISI 348) Jul 71 1075a Aluminum Metallo-organic Feb 69 66 1170b Feb 81 1170b Feb 81 1170b Feb 81 1170b		Leaded-1 in Bronze Alloy Steel Low Carbon Silicon						
1052b								
1053a Cadmium Metallo-organic Jan 70 66 C1146a Iron, White Cast Oct 83 1055b Cobalt Metallo-organic Jul 68 66 C1150a Iron, White Cast Dec 85 1057b Tin Metallo-organic Aug 68 66 C1151 Stainless Steel (23Cr-7Ni) Jan 80 1069c Lead Metallo-organic Apr 64 66 C1152 Stainless Steel (18Cr-11Ni) Jan 80 1061c Magnesium Metallo-organic Apr 64 66 C1153 Stainless Steel (18Cr-13Ni) Jan 80 1061c Magnesium Metallo-organic Apr 76 66 C1154 Stainless Steel (19Cr-13Ni) Jan 80 1062b Manganese Metallo-organic Apr 76 66 C1155 Stainless Steel (19Cr-13Ni) Jan 80 1062b Manganese Metallo-organic Nov 67 66 C1155 Stainless Steel (19Cr-13Ni) Jan 80 1062b Manganese Metallo-organic Apr 76 66 C1155 Stainless Steel (18I3 1316) Aug 69 1157 Steel, Tool (AISI M2) Aug 73 1066a Silicon Metallo-organic Apr 69 66 C1158 Steel, High-Nickel (36Ni) Dec 77 1069b Sodium Metallo-organic Feb 69 66 C1160 Electronic and Magnetic Alloy Aug 81 1070a Strontium Metallo-organic Feb 76 66 C1170 Steel, Lead-bearing Jan 74 1073b Zinc Metallo-organic Jul 67 66 C1170 Steel, Selenium-bearing Jan 74 1074a Calcium Metallo-organic Get 66 C1173 Steel, Alsi 321) Jul 71 1074a Calcium Metallo-organic Get 66 C1173 Steel, Ni-Cr-Mo-V May 83 1077a Silver Metallo-organic Feb 68 66 C1173 Steel, Cast 3 Feb 81 1078b Chromium Metallo-organic Feb 69 66 C1173 Steel, Cast 3 Feb 81 C1173 Steel, Cast 3 Feb 81 C1173 Steel, Cast 3 Feb 81 C1174 Sainless Steel (AISI 348) C1175 Sainless Steel (AISI 348) C1176 C1176 C1176 C1177								
1055b Cobalt Metallo-organic Jul 68 66 C1150 Iron, White Cast Dec 85 1057b Tin Metallo-organic Aug 68 66 C1151 Stainless Steel (23Cr-7Ni) Jan 80 1069c Lead Metallo-organic * 66 C1152 Stainless Steel (18Cr-11Ni) Jan 80 1060a Lithium Metallo-organic Apr 64 66 C1153 Stainless Steel (19Cr-13Ni) Jan 80 1061c Magnesium Metallo-organic Apr 66 C1154 Stainless Steel (19Cr-13Ni) Jan 80 1062b Manganese Metallo-organic Apr 76 66 L155 Stainless Steel (AISI 316) Aug 69 Manganese Metallo-organic Apr 76 Apr 69 Apr 69 Apr 69 Apr 69 Steel, Tool (AISI M2) Aug 73 L157 Steel, Tool (AISI M2) Aug 73 L158 Steel, High-Nickel (36Ni) Dec 77 L159 Dec 77								
1059c			Jul 68	66				
1060a		Tin Metallo-organic	Aug 68					
1061c Magnesium Metallo-organic Oct 81 66 C1154 Stainless Steel (19Cr-13Ni) Jan 80 1062b Manganese Metallo-organic Apr 76 66 1155 Stainless Steel (AISI 316) Aug 69 1065b Nickel Metallo-organic Nov 67 66 1157 Steel, Tool (AISI M2) Aug 73 1066a Silicon Metallo-organic Apr 69 66 1158 Steel, High-Nickel (36Ni) Dec 77 1069b Sodium Metallo-organic Feb 69 66 1160 Electronic and Magnetic Alloy Aug 81 1070a Strontium Metallo-organic Apr 64 66 1169b Steel, Lead-bearing Apr 82 1071b Phosphorus Metallo-organic Feb 76 66 1170b Steel, Selenium-bearing Jan 74 1073b Zinc Metallo-organic Jul 67 66 1171 Stainless Steel (AISI 321) Jul 71 1075a Aluminum Metallo-organic Oct 67 66 1172 Stainless Steel (AISI 348) Jul 71 1075a Aluminum Metallo-organic Feb 68 66 C1173 Steel, Ni-Cr-Mo-V May 83 1077a Silver Metallo-organic Feb 68 66 C1173 Steel, Cast 3 Feb 81 1078b Chromium Metallo-organic Feb 69 66 1200 High Temperature Alloy Aug 74 1079b Iron Metallo-organic Feb 69 66 1200 High Temperature Alloy Aug 74 1079c High Temperature Alloy Aug 74 1079c High Temperature Alloy Aug 81 Spaloy 1217 Steel, Nickel (SAE 4820) Nov 84 1207-2 High Temperature Alloy Aug 81 Spaloy 1217 Steel, Nickel (SAE 4820) Nov 84 1207-2 High Temperature Alloy Aug 81 Spaloy 1217 Steel, Nickel (SAE 4820) Nov 84 1207-2 High Temperature Alloy Aug 81 Aug								4
1062b Manganese Metallo-organic Apr 76 66 1155 Stainless Steel (AISI 316) Aug 69 1065b Nickel Metallo-organic Nov 67 66 1157 Steel, Tool (AISI M2) Aug 73 1066a Silicon Metallo-organic Apr 69 66 1158 Steel, High-Nickel (36Ni) Dec 77 1069b Sodium Metallo-organic Feb 69 66 1160 Electronic and Magnetic Alloy Aug 81 1070a Strontium Metallo-organic Feb 76 66 1169b Steel, Lead-bearing Apr 82 1071b Phosphorus Metallo-organic Feb 76 66 1170b Steel, Selenium-bearing Jan 74 1073b Zinc Metallo-organic Jul 67 66 1171 Stainless Steel (AISI 321) Jul 71 1075a Aluminum Metallo-organic Oct 67 66 1172 Stainless Steel (AISI 348) Jul 71 1075a Aluminum Metallo-organic Feb 68 66 C1173 Steel, Ni-Cr-Mo-V May 83 1077a Silver Metallo-organic Feb 68 66 C1173 Steel, Cast 3 Feb 81 1078b Chromium Metallo-organic Feb 69 66 1200 High Temperature Alloy Aug 74 1079b Iron Metallo-organic Feb 69 66 1200 High Temperature Alloy Aug 74 1079c								5
1065b Nickel Metallo-organic Nov 67 66 1157 Steel, Tool (AISI M2) Aug 73								2
1066a Silicon Metallo-organic Apr 69 66 1158 Steel, High-Nickel (36Ni) Dec 77 1069b Sodium Metallo-organic Feb 69 66 1160 Electronic and Magnetic Alloy Aug 81 1070a Strontium Metallo-organic Apr 64 66 1169b Steel, Lead-bearing Apr 82 1071b Phosphorus Metallo-organic Feb 76 66 1170b Steel, Selenium-bearing Jan 74 1073b Zinc Metallo-organic Jul 67 66 1171 Stainless Steel (AISI 321) Jul 71 1074a Calcium Metallo-organic May 66 66 1172 Stainless Steel (AISI 348) Jul 71 1075a Aluminum Metallo-organic Oct 67 66 1173 Steel, Ni-Cr-Mo-V May 83 1077a Silver Metallo-organic Feb 68 66 C1173 Steel, Cast 3 Feb 81 1078b Chromium Metallo-organic Jul 72 66 I199 High Temperature Alloy Aug 74 1079b Iron Metallo-organic Feb 69 66 1200 High Temperature Alloy Aug 74 S816 1207-2 High Temperature Alloy Aug 81 Aug 81 Aug 81 Aug 81 Aug 81 Aug 82 Aug 81 Aug 84 Aug 8								2
1069b Sodium Metallo-organic Feb 69 66 1160 Electronic and Magnetic Alloy Aug 81					1158	Steel, High-Nickel (36Ni)	Dec 77	2
1070a Strontium Metallo-organic Apr 64 66 1169b Steel, Lead-bearing Apr 82 1071b Phosphorus Metallo-organic Feb 76 66 1170b Steel, Selenium-bearing Jan 74 1073b Zinc Metallo-organic Jul 67 66 1171 Stainless Steel (AISI 321) Jul 71 1074a Calcium Metallo-organic Oct 67 66 1172 Stainless Steel (AISI 348) Jul 71 1075a Aluminum Metallo-organic Oct 67 66 1173 Steel, Ni-Cr-Mo-V May 83 1077a Silver Metallo-organic Feb 68 66 C1173 Steel, Cast 3 Feb 81 1078b Chromium Metallo-organic Jul 72 66 1199 High Temperature Alloy Aug 74 1079b Iron Metallo-organic Feb 69 66 1200 High Temperature Alloy Aug 74 1080a Copper Metallo-organic Feb 69 66 1200 High Temperature Alloy Aug 74 1079c Aug 7	1069b			66		Electronic and Magnetic Alloy		3
1073b Zinc Metallo-organic Jul 67 66 1171 Stainless Steel (AISI 321) Jul 71 1074a Calcium Metallo-organic May 66 66 1172 Stainless Steel (AISI 348) Jul 71 1075a Aluminum Metallo-organic Oct 67 66 1173 Steel, Ni-Cr-Mo-V May 83 1077a Silver Metallo-organic Feb 68 66 C1173 Steel, Cast 3 Feb 81 1078b Chromium Metallo-organic Feb 69 66 L605 L6								2
1074a Calcium Metallo-organic May 66 66 1172 Stainless Steel (AISI 348) Jul 71 1075a Aluminum Metallo-organic Oct 67 66 1173 Steel, Ni-Cr-Mo-V May 83 1077a Silver Metallo-organic Feb 68 66 C1173 Steel, Cast 3 Feb 81 1078b Chromium Metallo-organic Jul 72 66 1199 High Temperature Alloy Aug 74 1079b Iron Metallo-organic Feb 69 66 L605 1080a Copper Metallo-organic Feb 69 66 1200 High Temperature Alloy Aug 74 S816 1207-2 High Temperature Alloy Aug 81 Spaloy 1217 Steel, Nickel (SAE 4820) Nov 84 1207-100 Nov 84 12								4
1075a Aluminum Metallo-organic Oct 67 66 1173 Steel, Ni-Cr-Mo-V May 83 1077a Silver Metallo-organic Feb 68 66 C1173 Steel, Cast 3 Feb 81 1199 High Temperature Alloy - Aug 74 1079b Iron Metallo-organic Feb 69 66 1200 High Temperature Alloy - Aug 74 S816 1207-2 High Temperature Alloy - Aug 81 Spaloy 1217 Steel, Nickel (SAE 4820) Nov 84 1207-2								2
1077a Silver Metallo-organic Feb 68 66 C1173 Steel, Cast 3 Feb 81 1078b Chromium Metallo-organic Jul 72 66 1199 High Temperature Alloy— Aug 74 1079b Iron Metallo-organic Feb 69 66 1200 High Temperature Alloy— Aug 74 1079b S816 1207-2 High Temperature Alloy— Aug 74 1079b S816 1207-2 High Temperature Alloy— Aug 81 1079b Steel, Nickel (SAE 4820) Nov 84								2
1078b Chromium Metallo-organic Jul 72 66 1199 High Temperature Alloy— Aug 74 1079b Iron Metallo-organic Feb 69 66 1200 High Temperature Alloy— Aug 74 1207-2 High Temperature Alloy— Aug 74 1207-2 High Temperature Alloy— Aug 81 1207-2 Steel, Nickel (SAE 4820) Nov 84								2
1079b Iron Metallo-organic Feb 69 66 1200 High Temperature Alloy— Aug 74 2 S816 1207-2 High Temperature Alloy, Wa- Aug 81 3 spaloy 1217 Steel, Nickel (SAE 4820) Nov 84						High Temperature Alloy-		2
S816 1207-2 High Temperature Alloy, Wa- Aug 81 spaloy 1217 Steel, Nickel (SAE 4820) Nov 84	10796	Iron Metallo-organic	Feb 69	66	1200	High Temperature Alloy-	Aug 74	2
1217 Steel, Nickel (SAE 4820) Nov 84					1207-2	High Temperature Alloy, Wa-	Aug 81	2
1218 Steel, Silicon, Low C & S Nov 84					1217 1218	Steel, Nickel (SAE 4820)	Nov 84 Nov 84	2

^{*}In Prep.

SRM	SRM Description	Certifi- cate Date	Page	SRM	SRM Description	Certifi- cate Date	Page
1219	Stainless Steel (AISI 413)		23	1387	Gold Coating on Nickel 2.2	Sep 85	87
C1221	Steel, Resulfurized/Rephos- phorized	Jan 82	20	1398a	Gold Coating on Fe-Ni-Co	May 84	87
1222 1223	Steel, Cr-Ni-Mo (AISI 8640) Stainless Steel, High S (AISI	Oct 78 Sep 85		13996	Alloy (set) Gold Coating on Nickel (set)	May 84	
1224	416)	F	20	1411	Soft Borosilicate Glass	Aug 85	
1224 1225	Steel, Carbon (AISI 1078) Steel, Low-Alloy (AISI 4130)	Feb 81 Mar 83		1412 1413	Multicomponent Glass Glass Sand, High Alumina	Aug 85 Aug 85	
1226	Steel, Low-Alloy (HY 130)	Dec 82	20	1450b	Thermal Resistance, Fibrous	May 85	
1227 1228	Steel, BOH 1.0 C Steel, BOH 0.1 C	Mar 83 Sep 82	20	1451	Glass Board Thermal Resistance, Fibrous	May 85	98
1233 1234	Steel, Valve Zirconium A	Nov 80	24 37	1457	Glass Blanket Superconducting Critical Cur-	June 84	113
1235	Zirconium B	Nov 80	37		rent Nb-Ti Wire		
1236 1237	Zirconium C Zircaloy-4 D	Nov 80 Nov 80		1460	Thermal Conductivity and Electrical Resistivity, Stain-	May 84	98,
1238	Zircaloy-4 E	Nov 80			less Steel		
1239 1240	Zircaloy-4 F Aluminum Alloy 3004	Nov 80 Jul 85	29	1461	Thermal Conductivity and Electrical Resistivity, Stain-	May 84	98, 112
1241	Aluminum Alloy	Man. 94	29 24	1462	less Steel	May 24	98,
1244 1245	Inconel 600 Inconel 625	May 84 May 84	24	1462	Thermal Conductivity and Electrical Resistivity, Stain-	May 84	112
1246 1247	Inconel 800 Inconel 825	May 84 May 84		1470	less Steef Gas Transmission, Polyester	Feb 82	111
C1251	Phosphorized Copper (Cu	Sep 80			Film		
C1252	VIII) Phosphorized Copper (Cu IX)	Sep 80	32	1475	Linear Polyethylene (52k mol wt)	Dec 78	91,
C1253 1254	Phosphorized Copper (Cu X) Steel, Silicon (Ca only)	Sep 80 Apr 82	32	1476	Branched Polyethylene (viscos-	Nov 69	91
1255a	Aluminum Casting Alloy 356	Jan 80		1478	ity) Polystyrene, (37k mol wt)	Jan 79	91
1256a	Aluminum Casting Alloy 380	Jan 80	29	1479	Polystyrene, (1M mol wt)	Mar 81	
1257 1258	High Purity Aluminum Aluminum Alloy 6011 (mod)	May 78	Mr.	1482	Linear Polyethylene (13k mol wt)	Oct 76	91
1259 1261a	Aluminum Alloy 7075	May 78 Feb 81	29	1483	Linear Polyethylene (32k mol	Mar 76	91
1262a	Steel, AISI 4340 Steel, AISI 94B17 (mod)	Feb 81	20	1484	wt) Linear Polyethylene (119k mol	Oct 76	91
1263a 1264a	Steel, Cr-V (mod) Steel, High Carbon (mod)	Feb 81 Feb 81	20	1490	wt) Polyisobutylene Solution in	Dec 77	92
1265a	Iron, Electrolytic	Feb 81	20		Cetane, Rheology		
1267 1269	Stainless Steel (AISI 446) Steel (AISI 1526) Line Pipe (mod)	Jan 78 Jun 81	23 20	1495	Rubber, Isobutylene-Isoprene (Butyl) (Low Mooney Vis- cosity)	Mar 81	1115
1270	Steel, A336 (F-22) 2.3Cr-1Mo	Jun 81		1514	Thermal Analysis Purity	Jul 84	94
1275 C1285	Cupro-Nickel (CDA 706)	Mar 80 Jun 82		1521	(DSC) Boron-doped Silicon Slices for	Feb 85	5 112
1286	Steel, A242 (mod) Steel, Low Alloy (HY 80)	Jun 82		1321	Resistivity (0.1 & 10	1 00 00	112
C1287	Steel, ACI HK (AISI 310	Jun 81	23	1522	ohm-cm) Silicon Power Device Level	Sep 84	112
C1288	steel, ACI CN-7M (A-743)	Aug 81	23 23	1322	Resistivity (25, 75, & 180	Sep o	112
C1289	Steel, ACI CA-6NM (AISI 414 mod)	Jun 81		1523	ohm-cm) Silicon Resistivity for Eddy	Feb 85	112
C1290 C1291	Iron, White Cast (HC-250+V) Iron, White Cast (Ni-Hard,	Jan 85 Jan 85			Current Testers (0.01 & 1.0 ohm-cm)		
	Type I)			1543	GC/MS System Performance	Aug 84	
C1292	Iron, White Cast (Ni-Hard, Type IV)	Jan 85	27	1549 1566a	Non-Fat Milk Powder Oyster Tissue	Jul 85 Feb 83	
1357	Cu-Cr Coating (nonmagnetic)	Aug 84	86	1567	Wheat Flour	Jan 78	
1358	on Steel Cu-Cr Coating (nonmagnetic)	Aug 84	- 86	1568 1569	Rice Flour Brewers Yeast (Cr only)	Jan 78 Sep 76	
	on Steel			1572	Citrus Leaves	Dec 82	2 49
1359	Cu-Cr Coating (nonmagnetic) on Steel	May 84		1573 1575	Tomato Leaves Pine Needles	Oct 76	49
1360	Cu-Cr Coating (nonmagnetic) on Steel	May 84		1577a 1579	Bovine Liver Powdered Lead-Based Paint	Feb 85 Jan 73	
1361a	Cu-Cr Coating (nonmagnetic) on Steel	May 84		1580	(Pb only) Organics in Shale Oil	Nov 80	
1362a	Cu-Cr Coating (nonmagnetic) on Steel	May 84	86	1581	Polychlorinated Biphenyls in Oil	Jan 82	59
1363a	Cu-Cr Coating (nonmagnetic) on Steel	May 84					
.1364a	Cu-Cr Coating (nonmagnetic) on Steel	May 84					
1365a	Nickel (magnetic) on Steel	May 84 May 84					
1366a 1379	Nickel (magnetic) on Steel Ultra-thin Gold on Nickel 0.35	May 84	87				
	mg		87		1		

SRM	SRM Description	Certifi- cate Date	Page	SRM	SRM Description	Certifi- cate Date	Page
1582	Petroleum Crude Oil	Jan 84		1655	Potassium Chloride for Solu-	Mar 81	93
1583	Chlorinated Pesticides in 2,2,4- Trimethylpentane	Feb 85		1656	tion Calorimetry Thianthrene, Combustion Ca-	Jan 85	92
1584	Priority Pollutant Phenols in Methanol	Apr 84	59	1657	Synthetic Refuse-Derived Fuel,	Mar 85	92
1585 1586	Chlorinated Biphenyls Isotopically Labeled and Unla-	Oct 84	59 59	1658a	Combustion Calorimetry Methane in Air, 1ppm	Mar 81	-51
	beled Priority Pollutants in Methanol		**	1659a 1660a	Methane in Air, 10ppm Methane (4) and Propane (1) in	Mar 81 Mar 81	51 51
1587	Nitrated Polycyclic Aromatic Hydrocarbons in Methanol	Jun 85		1661a	Air Sulfur Dioxide in Nitrogen,	Mar 81	51
1590 1595	Stabilized Wine Tripalmitin	Dec 80 Jul 83		1662a	500ppm Sulfur Dioxide in Nitrogen,	Mar 81	51
1599	Anticonvulsant Drug Level	Aug 82		1663a	1000ppm Sulfur Dioxide in Nitrogen,	Mar 81	51
1600	Secondary Standard Magnetic Tape Cassette (Computer	Mar 74	120		1500ppm		
1614	Amplitude) Dioxin in Isooctane		59	1664a	Sulfur Dioxide in Nitrogen, 2500ppm	Mar 81	51
1616	Sulfur in Kerosene		56	1665b	Propane in Air, 3ppm	Jan 80	
1617	Sulfur in Kerosene		56	1666b 1667b	Propane in Air, 10ppm Propane in Air, 50ppm	Jan 80 Jan 80	
1618	V and Ni in Residual Fuel Oil	May 85	54	1668b	Propane in Air, 100ppm	Jan 80	
1619	Sulfur in Residual Fuel Oil	Dec 81	56	1669b	Propane in Air, 500ppm	Jan 80	
1620a	(0.7%) Sulfur in Residual Fuel Oil	Dec 81	56	1670	Carbon Dioxide in Air, 330ppm	Dec 82	
1621b	(4.5%) Sulfur in Residual Fuel Oil	Dec 81	56	1671	Carbon Dioxide in Air, 340ppm	Dec 82	52
1622b	(0.9%) Sulfur in Residual Fuel Oil	Dec 81	56	1672	Carbon Dioxide in Air, 350ppm	Dec 82	52
1623a	(1.9%) Sulfur in Residual Fuel Oil	Dec 81	56	1674b	Carbon Dioxide in Nitrogen,	Jan 80	52
1624a	(0.2%) Sulfur in Distillate (Diesel)	Dec 81	56	1675b	Carbon Dioxide in Nitrogen, 14%	Jan 80	52
1625	Fuel Oil (0.1%) Sulfur Dioxide Permeation	Jan 73	54	1677c	Carbon Monoxide in Nitrogen, 10ppm	Jan 80	52
1626	Tube, 10 cm Sulfur Dioxide Permeation	Aug 71	54	1678c	Carbon Monoxide in Nitrogen, 50ppm	Jan 80	52
1627	Tube, 5 cm Sulfur Dioxide Permeation	Aug 71	54	1679c	Carbon Monoxide in Nitrogen, 100ppm	Jan 80	52
1629a	Tube, 2 cm Nitrogen Dioxide Perm Device, 10 cm	Apr 81	54	1680b	Carbon Monoxide in Nitrogen, 500ppm	Jan 80	52
1630 1632b	Trace Mercury in Coal	Aug 79		1681b	Carbon Monoxide in Nitrogen, 1000ppm	Jan 80	52
	Trace Elements in Coal (Bituminous)	Jun 85		1683b	Nitric Oxide in Nitrogen, 50ppm	Jan 80	52
1633a	Ash	Jan 85		1684b	Nitric Oxide in Nitrogen, 100ppm	Jan 80	52
1634b 1635	Trace Elements in Fuel Oil Trace Elements in Coal (Sub-	Aug 79	57	1685b	Nitric Oxide in Nitrogen, 250ppm	Jan 80	52
1636a	bituminous) Lead in Reference Fuel	Feb 80		1686b	Nitric Oxide in Nitrogen,	Jan 80	52
1637a 1638b	Lead in Reference Fuel Lead in Reference Fuel	Feb 80	54 54	1687b	500ppm Nitric Oxide in Nitrogen,	Jan 80	52
1639	Halocarbons (in methanol) for	Apr 83		1690	1000ppm Polystyrene Spheres, 1 μm	Dec 82	116
1641b	Water Analysis Mercury in Water (μg/mL)	Apr 83	54	1691	Polystyrene Spheres, 0.3 µm	May 84	
1642b	Mercury in Water (ng/mL)	Jun 82		1693	Sulfur Dioxide in Nitrogen,	Jul 84	52
1643b 1644	Trace Elements in Water Generator Columns for Poly-	May 84 Apr 81		1694	50ppm Sulfur Dioxide in Nitrogen,	Jul 84	52
1044	nuclear Aromatic Hydrocar-	Apr 81	39	1696	100ppm Sulfur Dioxide in Nitrogen,	Jul 84	
1645	bons River Sediment	May 82	57	1020	3500ppm	- Juli Os	-
1646	Estuarine Sediment	Jun 82	57	1700	Carbon Dioxide in Nitrogen, 10% Blood Gas	Jun 85	46, 52
1647	Priority Pollutant Polynuclear Aromatic Hydrocarbons	Dec 81		1701	Carbon Dioxide and Oxygen in Nitrogen, 5% and 12%,	Jun 85	
1648 1649	Urban Particulate Matter	May 82			Blood Gas		
1650	Urban Dust/Organics Diesel Particulate Matter	Apr 82 Feb 85		1702	Carbon Dioxide and Oxygen in	Jun 85	46,
1651	Heat-Source Powder for Ca- lorimetry Zirconium-Barium	Nov 68			Nitrogen, 5% and 20%, Blood Gas		52
1662	Chromate, 1460			1703	Carbon Dioxide and Oxygen in Nitrogen, 10% and 7%,	Jun 85	46, 52
1652	Heat-Source Powder for Ca- lorimetry Zirconium-Barium Chromate, 1632	Nov 68			Blood Gas		-
1653	Heat-Source Powder for Ca- lorimetry Zirconium-Barium	Nov 68	93				
	Chromate, 1762						

SRM	SRM Description	Certifi- cate Date	Page	SRM	SRM Description	Certifi- cate Date	Page
1761	Steel, Low Alloy		20	1911	Benzene Permeation Device	Aug 82	54
1762	Steel, Low Alloy		20	1912	Tetrachloroethylene Perm	Sep 85	
1763	Steel, Low Alloy		21		Device		-
1764	Steel, Low Alloy		21	1960	Polystyrene Spheres, 10 µm	Apr 85	116
1765	Steel, Low Alloy		21	1967	High-Purity Platinum Ther-	Feb 77	
1766	Steel, Low Alloy		21	****	moelement	100 //	21
1767	Steel, Low Alloy		21	1968	Gallium Melting Point	Jun 77	96
1805		Dec 82	52	1969	Rubidium Triple Point	Jan 84	
	Benzene in Nitrogen, 0.25ppm	Dec 82		1970	Succinonitrile Triple Point	Mar 85	
1806 1808	Benzene in Nitrogen, 10ppm	Dec 82	52	1971	Indium Melting Point	Mai ob	96
1000	Tetrachloroethylene in Nitro-	Jun 83	52	2003	Aluminum Mirror, First Sur-		1000
1809	gen, 0.25 ppm Tetrachloroethylene in Nitro-	Jun 83	52	2009a	face, Reflectance Didymium Glass Filter, Wave-	May 85 Jul 84	
1815a	gen, 10 ppm	Mar 95	112	20074	length	Jul 04	100
	n-Heptane, Reference Fuel	Mar 85		2010a	Didymium Glass Filter, Wave-	Jul 84	100
1816a	Isooctane, Reference Fuel	Mar 85	112	2010a		Jul 04	100
1817	Catalyst Package for Lubricant Oxidation	May 83	66	2011	length Gold Mirror, First Surface,	Mar 84	101
1819 1820	Sulfur in Lubricating Base Oil Refractive Index Glass, Borosi-	Jul 85 Sep 74	56 102	2015	Reflectance White Opal Glass Diffuse	May 82	101
1822	licate Refractive Index Glass, Soda-	Nov 84	102	2016	Spectral Reflectance White Opal Glass Diffuse	May 82	101
1823	Lime Refractive Index Silicone Liq-	Dec 76	102	2019Ь	Spectral Reflectance White Ceramic Tile for Direc-	Oct 83	101
1828	uids Ethanol-Water Solutions	Jun 85	49	2020	tional-Hemispherical Reflect White Ceramic Tile for Direc-	Oct 83	101
1830	Soda-Lime Float Glass	Jul 82	75		tional-Hemispherical Reflect		
1831 1832	Soda-Lime Sheet Glass Thin Glass Film on Polycar-	Jul 82 May 84	75 64	2021	Black Porcelain Enamel, Di- rectional-Hemispherical Re-	Sep 80	101
	bonate for X-ray Fluores- cence			2023	flect Aluminum Mirror, Second Sur-	Apr 81	101
1833	Thin Glass Film on Polycar- bonate for X-ray Fluores-	May 84	64	2024	face, Reflectance Aluminum Mirror, Second Sur-	Apr 81	101
1840	cence Silicon Density, 100 g	May 82	90	2025	face, Reflectance Aluminum Mirror with Wedge,	Feb 82	101
1841 1844	Silicon Density, 200 g Radiographic Image Quality	May 82 Nov 84	90 118	2031	Second Surface, Reflectance Metal-on-Quartz Filters for	Oct 84	100
1850	Indicator Penetrant Test Block	Dec 80	113	2032	Potassium Iodide Stray Light	Oct 79	
1851	NDE Penetrant Test Block (Matte)	Apr 84	113	2033	KI Stray Light with Attenua- tor Holmium Oxide Solution	May 80 Jun 85	
1856	Acoustic Emission Transducer	Jul 85	90		Wavelength	-	
1857	Tool Steel Abrasive Wear	Mar 83	109	2061	Reflection Step Tablet (0-2)	Dec 80	119
1860	Al, Eddy Current 60% IACS	Aug 82	113	2069a	SEM Performance Standard	Feb 85	
1862	Al, Eddy Current 41% IACS	Aug 82	113	2071	Sinusoidal Roughness	*	118
1864	Cu, Eddy Current 100% IACS		113	2072	Sinusoidal Roughness		118
1865	Ti, Eddy Current 6% IACS	*	113	2072		Nov 84	
1871	Pb-Si Glasses for Microanaly-	May 84	40		Sinusoidal Roughness		
	sis			2083	Socketed Ball Bar	Aug 85	
1872	Pb-Ge Glasses for Microanaly-	May 84	40	2106 2107	Centroid Color Charts Centroid Color Kit	none	
1873	Ba-Zn-Si Glasses for Microan-	May 84	40	2121	Spectrometric Solutions: Cad- mium, Lead, Silver, and	Jan 84	44
1874	alysis Li-Al-Bo Glasses for Microan-	Dec 84	40	2122	Zinc Spectrometric Solutions:	Aug 84	44
1875	alysis Al-Mg-P Glasses for Microan-	Dec 84	40		Barium, Calcium, Magnesi- um, and Strontium		
1076	alysis Chrysotile Ashestos Eibers	14		2123	Spectrometric Solutions: Lithi-	Apr 84	44
1876a	Chrysotile Asbestos Fibers	No. 02	65		um, Potassium, Sodium, and		
1878	Respirable Alpha Quartz	Nov 83	65		Rubidium	The same of	
1880	Portland Cement, black	Feb 84	76	2124	Spectrometric Solutions:	Oct 84	44
1881	Portland Cement, white	Feb 84	76		Cobalt, Copper, Iron, and		
1882	Ca-Al Cement		76		Nickel	1000	
1883 1890	Ca-Al Cement Stainless Steel for Pitting or	May 83	76 110	2125	Spectrometric Solutions: Chro- mium, Boron, Manganese,	Dec 84	44
1891	Crevice Corrosion Co-Cr-Mo Alloy for Pitting of	Sep 85	110	2126	and Molybdenum Spectrometric Solutions: Anti-	Feb 85	44
1893	Crevice Corrosion Cu Microhardness Test Block-	Feb 84	90		mony, Arsenic, Selenium, and Tin	1000	11500
1894	Knoop Cu Microhardness Test Block-	Feb 84	90	2127	Spectrometric Solutions: Alu- minum, Beryllium, Phospho-	Oct 85	44
1895	Vickers Ni Microhardness Test Block-	Feb 84	90	2128	rus, and Silicon Spectrometric Solutions: Gold,	Mar 86	44
1896	Knoop Ni Microhardness Test Block- Vickers	Feb 84	90		Mercury, Palladium, and Platinum		100
1901	Vickers Centerline Drawings for Opti- cal Character Recognition-	Mar 76	122	2129	Spectrometric Solutions: Tita- nium, Tungsten, Vanadium, and Zirconium		44
1905	Type B Ni Microhardness Block-High Knoop		90				

SRM	SRM Description	Certifi- cate Date	Page	SRM	SRM Description	Certifi- cate Date	Page
2135a	Ni/Cr Thin-Film Depth Profile		85	2632	Carbon Dioxide in Nitrogen	Apr 79	53
2141 2142	Urea o-Bromobenzoic Acid	Aug 70 Sep 70	43	2633	(300ppm) Carbon Dioxide in Nitrogen	Apr 79	53
2143 2144	p-Fluorobenzoic Acid m-Chlorobenzoic Acid	Jan 82 Apr 73	43	2634	(400ppm) Carbon Dioxide in Nitrogen	Apr 79	53
2151 2152	Nicotinic Acid (Calorimetry) Urea (Calorimetry)	Jan 85 Jan 85	92 92	2635	(800ppm) Carbon Monoxide in Nitrogen	Oct 79	53
2185	Potassium Hydrogen Phthalate, pD	Nov 84	83	2636	(25ppm) Carbon Monoxide in Nitrogen	Oct 79	53
21861	Potassium Dihydrogen Phos- phate, pD	May 68	83	2637	(250ppm) Carbon Monoxide in Nitrogen	Oct 79	53
2186II	Disodium Hydrogen Phos- phate, pD	May 68	83	2638	(2500ppm) Carbon Monoxide in Nitrogen	Oct 79	53
2191a 2192a	Sodium Bicarbonate, pD Sodium Carbonate, pD	Nov 84 Nov 84	83 83	2639	(5000ppm) Carbon Monoxide in Nitrogen	Jul 79	53
2201 2202	Sodium Chloride, pNa & pCl Potassium Chloride, pK & pCl	Mar 84 Mar 84	84 84	2640	(1%) Carbon Monoxide in Nitrogen	Jul 79	53
2203 2211	Potassium Fluoride, pF Toluene 8mL	May 73 Mar 85	84 90,	2641	(2%) Carbon Monoxide in Nitrogen	Jul 79	53
2212	Toluene 25mL	Mar 85	102 90,	2642	(4%) Carbon Monoxide in Nitrogen	Jul 79	53
2213	2,2,4-Trimethylpentane 25mL	Mar 85	102 90,	2643	(8%) Propane in Nitrogen (100ppm)	May 80	53
		9	2, 102	2644	Propane in Nitrogen (250ppm)	May 80	
2220	Tin, Temp and Enthalpy of	Oct 85	94	2645	Propane in Nitrogen (500ppm)	May 80	
2221	Fusion Zinc, Temp and Enthalpy of	Oct 85	94	2646	Propane in Nitrogen (1000ppm)	May 80	
2350	Fusion Potential & Thickness Step	Aug 85	110	2647	Propane in Nitrogen (2500ppm)	May 80	33
C2423 C2423a	Ductile Iron Ductile Iron	:	27 27	2648	Propane in Nitrogen (5000ppm)	May 80	53
C2424 C2424a	Ductile Iron Ductile Iron	:	27 27	2649	Propane in Nitrogen (10,000ppm)	May 80	53
C2425 C2425a	Ductile Iron Ductile Iron	:	27	2650	Propane in Nitrogen (20,000ppm)	May 80	53
2526	111 p-Type Si, Spreading Re- sistance	Aug 83		2651	Propane and Oxygen in Nitro-	Jul 80	53
2527	111 n-Type Si, Spreading Re- sistance	Aug 83	112	2652	Propane and Oxygen in Nitro-	Jul 80	53
2528	100 p-Type Si, Spreading Re- sistance	Jan 84	112	2653	Nitrogen Dioxide in Air (250ppm)	Jun 82	2 53
2529	100 n-Type Si, Spreading Re- sistance	May 84	112	2654	Nitrogen Dioxide in Air (500ppm)	Jun 82	2 53
2612a	Carbon Monoxide in Air (10ppm)	Jan 80	52	2655	Nitrogen Dioxide in Air (1000ppm)	Jun 82	2 53
2613a	Carbon Monoxide in Air (20ppm)	Jan 80	52	2656	Nitrogen Dioxide in Air	Jun 82	2 53
2614a	Carbon Monoxide in Air	Jan 80	52	2657	(2500ppm) Oxygen in Nitrogen (2%)	Dec 79	9 53
2619a	(45ppm) Carbon Dioxide in Nitrogen	Jan 80		2658 2659	Oxygen in Nitrogen (10%) Oxygen in Nitrogen (20%)	Dec 79	9 53
2620a	(0.5%) Carbon Dioxide in Nitrogen	Jan 80	53	2670	Toxic Metals in Freezed-Dried Urine	Mar 85	
2621a	(1.0%) Carbon Dioxide in Nitrogen	Jan 80	53	2671a	Freeze-Dried Urine for Fluo- rine	Dec 82	
2622a	(1.5%) Carbon Dioxide in Nitrogen	Jan 80	53	2672a	Freeze-Dried Urine for Mercu- ry	May 83	
2623a	(2.0%) Carbon Dioxide in Nitrogen	Jan 80	53	2673	Sulfate and Nitrate on Filter Media	Jun 79	
2624a	(2.5%) Carbon Dioxide in Nitrogen	Jan 80	53	2676b	Metals on Filter Media (Cd- Mn-Pb-Zn)	Jan 83	
2625a	(3.0%) Carbon Dioxide in Nitrogen	Jan 80	53	2677 2679a	Be & As on Filter Media Quartz on Filter Media	May 84	
2626a	(3.5%) Carbon Dioxide in Nitrogen	Jan 80	53	2682 2683	Sulfur in Coal (0.5) Sulfur in Coal (1.9)	Feb 85 Feb 85	
2627	(4.0%) Nitric Oxide in Nitrogen	Jun 82	2 53	2684 2685	Sulfur in Coal (3.0) Sulfur in Coal (4.6)	Feb 85	5 56,92
2628	(5ppm) Nitric Oxide in Nitrogen	Jun 82	2 53	2694	Simulated Rainwater	Sep 85	
2629	(10ppm) Nitric Oxide in Nitrogen	Jun 82	2 53				
2630	(20ppm) Nitric Oxide in Nitrogen	May 79					
	(1500ppm)						
2631	Nitric Oxide in Nitrogen	May 79	53				

^{*}In Prep. **Subscription.

SRM	SRM Description	Certifi- cate Date	Page	SRM	SRM Description	Certifi- cate Date	Page
2200			100				
3200	Secondary Standard Magnetic Tape (Computer Amplitude	May 81	120	4411L 4412L	Iron-59 Solution Molybdenum-99 Solution	**	108
	Ref)			4414L	Iodine-123 Solution	**	108
3210	Secondary Standard Flexible Disk Cartridge (Computer	Nov 80	120	4415L	Xenon-133 Gaseous	**	105,
	Amplitude Ref)			4416L	Gallium-67 Solution	**	108
3216	Secondary Standard Magnetic Tape Cartridge (Computer	Aug 82	120	4417L 4418L	Indium-111 Solution Mercury-203 Solution	::	108 108
	Amplitude Ref)			4419L	Ytterbium-169 Solution	**	108
3217	Secondary Standard Magnetic		120	4420L 4421L	Lead-203 Solution		108
	Tape Cartridge-High Densi- ty (C A Ref)			4904G	Gold-195 Solution Americium-241 Alpha-particle	Apr 82	108
4200B	Cesium-137/Barium-137m	Dec 79	106	4915D	Cobalt-60 Solution	Feb 84	104
	Point Source			4919E	Strontium-99 Solution	May 83	104
4201B	Niobium-94 Gamma-ray	Jun 70		4926C	Hydrogen-3 Tritiated Water	Jan 79	
4203D	Cobalt-60 Point Source	Feb 84		4927C 4928C	Hydrogen-3 Tritiated Water	Mar 85	
4206C	Thorium-228/Thallium-208 Gamma-ray	Sep 68			Sulfur-35 Beta-particle Solu- tion	Aug 85	104
4207	Cesium-137/Barium-137m	Dec 79	106	4929D 4932F	Iron-55 X-ray Solution	Jul 85 Nov 85	104
4213	Point Source Americium-241 Gamma-ray	May 70	106	4935C	Mercury-203 Solution Krypton-85 Beta-particle Gas-	Jul 74	104
4214B	Cobalt-57 Point Source	Feb 85	106	47520	eous	341 /4	105
4218E	Europium-152 Point Source	Nov 82	106	4940C	Promethium-147 Beta-particle	Aug 85	104
4222B	Carbon-14-n-Hexadecane for Liquid Scintillation Counting	Aug 83	104	4943	Solution Chlorine-36 Beta-particle Solu-	Dec 84	104
4226B	Nickel-63 Solution	Dec 84		1017	tion		101
4233B	Cesium-137 Burn-up Standard	Nov 79		4947 4949B	Hydrogen-3 Tritiated Toluene Iodine-129 Solution	Apr 79 Feb 82	104
4235 4241B	Krypton-85 Gaseous Barium-133 Point Source	Apr 82	105	4950E	Radium-226 Solution	May 84	107
4250B	Cesium-134 Solution	Apr 82		4951C	Radium-226 Solution	Apr 78	107
4251B	Barium-133 Solution	Dec 81		4952B	Radium Standard Blank Solu-	Dec 60	107
4260C	Iron-55 Low-Energy Photon	Dec 82	106		tion		
4264B	Tin-121m Point-Source Gamma-ray	Sep 82	106	4953D 4956	Radium-226 Solution Radium-226 Gamma-ray Solu-	May 84 Mar 68	107 107
4267	Niobium-93m Point Source		106	4057	tion 0.2µg	M 60	107
4275B	Mixed Radionuclide Point Source	Jul 83	106	4957	Radium-226 Gamma-ray Solu- tion 0.5µg	Mar 68	107
4276B	Mixed Radionuclide Solution	Jul 83		4958	Radium-226 Gamma-ray Solu-	Mar 68	107
4288	Technetium-99 Solution	Nov 82		4959	tion 1.0µg Radium-226 Gamma-ray Solu-	Mar 68	107
4308C 4324	Krypton-85 Gaseous Uranium-232 Alpha-particle	Jan 83 May 84	105	4727	tion 2.0µg	Ivial Oo	107
4327	Solution Polonium-208 Alpha-particle	Jan 85		4960	Radium-226 Gamma-ray Solu- tion 5.0µg	Mar 68	107
4328	Solution			4961	Radium-226 Gamma-ray Solu- tion 10.0µg	Mar 68	107
	Solution	May 85		4962	Radium-226 Gamma-ray Solu- tion 20.0µg	Mar 68	107
4329	Curium-243 Alpha-particle So- lution	Mar 85		4990C	Carbon-14 Oxalic Acid	Jul 83	
4332B	Americium-243 Alpha-particle	Feb 84	104	5654	Flexible Disk Cartridge Secondary Standard High	PTB May 82	121
4338	Solution Plutonium-240 Alpha-particle	Aug 80	104	6250	Density Magnetic Tape	May 62	120
4350B	Solution Environmental Radioactivity,	Sep 81	107	6596	(Comp Amp Ref) Flexible Disk Cartridge	PTB	121
4351	River Sediment Environmental Radioactivity,	Oct 82	107	7487 8000	Flexible Disk Cartridge Melting Point Set (NPL CRM	PTB NPL	121 97
4352	Human Lung Environmental Radioactivity.	Jun 82		8005	M14-11) Alpha Alumina (Surface Area)	NPL	117
	Human Liver			8006 8007	Alpha Alumina (Surface Area) Alpha Alumina (Surface Area)	NPL NPL	117
4353	Environmental Radioactivity, Rocky Flats Soil Number 1	Dec 80		8008	Alpha Alumina (Surface Area) Simulated Rainwater	NPL Mar 85	117
4355	Environmental Radioactivity, Peruvian Soil	Jun 82	108	8409 8410	Asbestos Research Filter	Apr 84	65
4361	Hydrogen-3 Solution	Jan 81		8412	Corn (Zea Mays) Stalk		49
44007	Chambin 11 Calai		105	8413 8419	Corn (Zea Mays) Kernel Bovine Serum, Inorganic Con-	Mar 85	49 46,
4400L 4401L	Chromium-51 Solution Iodine-131 Solution		100	0417	stituents	00	47
4401L 4402L	Tin-133/Indium-113m Solu-		200	8420	Electrolytic Iron, Thermal Conductivity and Electrical	May 84	98, 112
4403L	tion Strontium-85 Solution	**	108		Resistivity		
4404L	Thallium-201 Solution		108	8421	Electrolytic Iron, Thermal	May 84	98,
4405L	Gold-198 Solution	**	100		Conductivity and Electrical		112
4406L	Phosphorus-32 Solution	::	100		Resistivity		
4407L	Iodine-125 Solution Cobalt-57 Solution		100				
4408L	Cooan-37 Solution		108				
4409L	Selenium-75 Solution		108				
4410H	Technetium-99m Solution	**	108		1		

Conductivity and Electrical Resistivity	SRM	SRM Description	Certifi- cate Date	Page
Resistivity 8423 Sintered Tungsten, Thermal Conductivity and Electrical Resistivity 8424 Graphite, Thermal Conductivity and Electrical Resistivity 8425 Graphite, Thermal Conductivity and Electrical Resistivity 8426 Graphite, Thermal Conductivity and Electrical Resistivity 8427 Graphite, Thermal Conductivity and Electrical Resistivity 8428 Graphite, Thermal Conductivity and Electrical Resistivity 8430 GC/MS System Performance Aug 84 62 62 62 62 62 62 62 62 62 62 62 62 62	8422	Sintered Tungsten, Thermal	May 84	98,
Conductivity and Electrical Resistivity 8424 Graphite, Thermal Conductivity and Electrical Resistivity 8425 Graphite, Thermal Conductivity and Electrical Resistivity 8426 Graphite, Thermal Conductivity and Electrical Resistivity 843 GC/MS System Performance 8505 Vanadium in Crude Oil 8531 Glass Fibers for Microanalysis 8570 Calcined Kaolin (Surface Area) 8571 Alumina (Surface Area) 8571 Alumina (Surface Area) 8572 Silica-Alumina (Surface Area) 8630 Flexible Disk Cartridge 9900 Special Nuclear Service 9910 Special Nuclear Material Package 9940 Nuclear Container, DOT 6M 9941 Nuclear Container, DOT 6M 9942 Nuclear Container, Type A GM 754 ICTA Polystyrene (DTA & ICTA 94 CDTA&DSC) GM 757 ICTA Temp Set Below 350 K GM 758 ICTA Temp Set 125-435 C GM 759 ICTA Temp Set 295-675 C GM 750 ICTA Temp Set 295-675 C GM 751 ICTA Temp Set 295-675 C GM 752 ICTA Temp Set 295-675 C GM 753 ICTA Temp Set 295-675 C GM 754 ICTA Temp Set 295-675 C GM 755 ICTA Temp Set 295-675 C GM 756 ICTA Temp Set 295-675 C GM 757 ICTA Temp Set 295-675 C GM 758 ICTA Temp Set 295-675 C GM 759 ICTA Temp Set 295-675 C GM 750 ICTA Temp Set 295-675 C GM 751 ICTA Temp Set 295-675 C GM 752 ICTA Temp Set 370-940 C GM 753 ICTA Temp Set 370-940 C GM 754 ICTA Temp Set 370-940 C GM 755 ICTA Temp Set 370-940 C GM 756 ICTA Temp Set 370-940 C GM 757 ICTA Temp Set 370-940 C GM 758 ICTA Temp Set 370-940 C GM 759 ICTA Temp Set 370-940 C GM 750 ICTA Temp Set 370-940 C GM 751 ICTA Temp Set 370-940 C GM 752 ICTA Temp Set 370-940 C GM 753 ICTA Temp Set 370-940 C GM 754 ICTA Temp Set 370-940 C GM 755 ICTA Temp Set 370-940 C GM 756 ICTA Temp Set 370-940 C GM 757 ICTA Temp Set 370-940 C GM 758 ICTA Temp Set 370-940 C GM 759 ICTA Temp Set 370-940 C GM 750 ICTA Temp Set 370-940 C ICTA 490-940-940-940-940-940-940-940-940-940-		The state of the s		112
ty and Electrical Resistivity 8425 Graphite, Thermal Conductivity and Electrical Resistivity 8426 Graphite, Thermal Conductivity and Electrical Resistivity 843 GC/MS System Performance 8505 Vanadium in Crude Oil 8531 Glass Fibers for Microanalysis 8570 Calcined Kaolin (Surface Area) 8571 Alumina (Surface Area) 8572 Silica-Alumina (Surface Area) 8630 Flexible Disk Cartridge 9900 Special Nuclear Service 9910 Special Nuclear Material Package 9940 Nuclear Container, DOT 6M 9941 Nuclear Container, DOT 6M 9942 Nuclear Container, DOT 6M 9942 Nuclear Container, Type A 9940 Nuclear Container, Type A 9940 Nuclear Container, Type A 9941 Nuclear Container, Type A 9942 Nuclear Container, Type A 9943 Nuclear Container, Type A 9944 Nuclear Container, Type A 9945 Nuclear Container, Type A 9946 Nuclear Container, Type A 9947 Nuclear Container, DOT 6M 9948 Nuclear Container, DOT 6M 9949 Nuclear Container, DOT 6M 9940 Nuclear Container, DOT 6M 9941 Nuclear Container, DOT 6M 9942 Nuclear Container, DOT 6M 9943 Nuclear Container, DOT 6M 9944 Nuclear Container, DOT 6M 9945 Nuclear Container, DOT 6M 9946 Nuclear Container, DOT 6M 9947 Nuclear Container, DOT 6M 9948 Nuclear Container, DOT 6M 9949 Nuclear Container, DOT 6M 9940 Nuclear Container, DOT 6M 9941 Nuclear Container, DOT 6M 9942 Nuclear Container, DOT 6M 9944 Nuclear Container, DOT 6M 9945 Nuclear Container, DOT 6M 9946 Nuclear Container, DOT 6M 9947 Nuclear Container, DOT 6M 9948 Nuclear Container, DOT 6M 9949 Nuclear Container, DOT 6M 9940 Nuclear Container,	8423	Conductivity and Electrical	May 84	98, 112
ty and Electrical Resistivity 8426 Graphite, Thermal Conductivity and Electrical Resistivity 8443 GC/MS System Performance 8505 Vanadium in Crude Oil 8531 Glass Fibers for Microanalysis 8570 Calcined Kaolin (Surface Area) 8571 Alumina (Surface Area) 8572 Silica-Alumina (Surface Area) 8630 Flexible Disk Cartridge 9900 Special Nuclear Service 9910 Special Nuclear Material Package 9940 Nuclear Container, DOT 6M 9941 Nuclear Container, DOT 6M 9942 Nuclear Container, Type A GM 754 ICTA Polystyrene (DTA & ICTA 94 DSC) GM 757 ICTA Temp Set Below 350 K (DTA&DSC) GM 758 ICTA Temp Set 295-675 C GM 759 ICTA Temp Set 295-675 C GM 750 ICTA Temp Set 295-675 C GM 760 ICTA Temp Set 570-940 C (DTA&DSC) GM 761 ICTA Thermogravimetry Set RM 1R Aluminum, Ultra-Purity (rod) RM 5 Copper Heat Capacity Test for Radioactivity Measure- ments Tuge May 84 98, 112 Aug 84 62 ASTM 117 ASTM 117 8571 ICTA Area 8630 Flexible Disk Cartridge PTB 121 n/a 80 n/a 80 n/a 80 n/a 80 n/a 80 Flexible Disk Cartridge PTB 121 n/a 80 n/a 994 Nuclear Container, DOT 6M n/a 80 n/a 994 Nuclear Container, DOT 6M n/a 80 n/a 994 ICTA 94 DSC) GM 751 ICTA Temp Set Below 350 K ICTA 94 (DTA&DSC) GM 752 ICTA 94 (DTA&DSC) GM 753 ICTA 1 Further Set 1 ICTA 95 (DTA&DSC) GM 760 ICTA Temp Set 295-675 C ICTA 95 (DTA&DSC) GM 761 ICTA Thermogravimetry Set 1 ICTA 95 (DTA&DSC) GM 761 ICTA Thermogravimetry Set 1 ICTA 95 (DTA&DSC) GM 761 ICTA Thermogravimetry Set 1 ICTA 95 (DTA&DSC) May 94 Nuclear Container, DOT 6M n/a 80 n/a 80 n/a 80 n/a 80	8424		May 84	98, 112
8426 Graphite, Thermal Conductivity and Electrical Resistivity May 84 98, 112 8443 GC/MS System Performance Aug 84 62 8505 Vanadium in Crude Oil — 54 8531 Glass Fibers for Microanalysis Jan 84 40 8570 Calcined Kaolin (Surface Area) ASTM 117 8571 Alumina (Surface Area) ASTM 117 8572 Silica-Alumina (Surface Area) ASTM 117 8630 Flexible Disk Cartridge PTB 121 9900 Special Nuclear Service n/a 80 9910 Special Nuclear Service n/a 80 9940 Nuclear Container, DOT 6M n/a 80 9941 Nuclear Container, DOT 6M n/a 80 9942 Nuclear Container, Type A n/a 80 GM 754 ICTA Polystyrene (DTA & ICTA 94 GM 757 ICTA Temp Set Below 350 K ICTA 94 GM 758 ICTA Temp Set 295-675 C ICTA 94 GM 759 ICTA Temp Set 570-940 C ICTA 95 GM 761 ICTA Thermogravimetry Set ICTA 95 <t< td=""><td>8425</td><td></td><td>May 84</td><td>98, 112</td></t<>	8425		May 84	98, 112
8443 GC/MS System Performance 8505 Vanadium in Crude Oil 8531 Glass Fibers for Microanalysis 8570 Calcined Kaolin (Surface Area) 8571 Alumina (Surface Area) 8572 Silica-Alumina (Surface Area) 8630 Flexible Disk Cartridge 9900 Special Nuclear Service 9910 Special Nuclear Material Package 9940 Nuclear Container, DOT 6M 9941 Nuclear Container, DOT 6M 9942 Nuclear Container, Type A 9942 Nuclear Container, Type A 9943 Nuclear Container, Type A 9944 Nuclear Container, Type A 9945 Nuclear Container, Type A 9946 Nuclear Container, Type A 9947 Nuclear Container, Type A 9948 Nuclear Container, Type A 9949 Nuclear Container, Type A 9940 Nuclear Container, Type A 9941 Nuclear Container, Type A 9942 Nuclear Container, Type A 9943 Nuclear Container, Type A 9944 Nuclear Container, Type A 9950 ICTA Temp Set Below 350 K 9960 ICTA Temp Set 125-435 C 9960 ICTA Temp Set 125-435 C 9970 ICTA Temp Set 295-675 C 9970 ICTA Temp Set 295-675 C 9970 ICTA Temp Set 295-675 C 9970 ICTA Temp Set 570-940 C 9970 ICTA Tem	8426	Graphite, Thermal Conductivi-	May 84	98, 112
8531 Glass Fibers for Microanalysis Jan 84 40 8570 Calcined Kaolin (Surface Area) ASTM 117 8571 Alumina (Surface Area) ASTM 117 8572 Silica-Alumina (Surface Area) ASTM 117 8630 Flexible Disk Cartridge PTB 121 9900 Special Nuclear Service n/a 80 9910 Special Nuclear Material Package n/a 109 9940 Nuclear Container, DOT 6M n/a 80 9941 Nuclear Container, DOT 6M n/a 80 9942 Nuclear Container, Type A n/a 80 GM 754 ICTA Polystyrene (DTA & ICTA 94 GM 757 ICTA Temp Set Below 350 K ICTA 94 GM 758 ICTA Temp Set 125-435 C ICTA 94 GM 759 ICTA Temp Set 295-675 C ICTA 94 GM 760 ICTA Temp Set 570-940 C ICTA 95 GM 761 ICTA Thermogravimetry Set ICTA 95 GM 76	8443	GC/MS System Performance	Aug 84	62
S570			-	54
8571 Alumina (Surface Area) ASTM 117 8572 Silica-Alumina (Surface Area) ASTM 117 8630 Flexible Disk Cartridge PTB 121 9900 Special Nuclear Service n/a 80 9910 Special Nuclear Service n/a 80 9940 Special Nuclear Material Package n/a 109 9941 Nuclear Container, DOT 6M n/a 80 9942 Nuclear Container, DOT 6M n/a 80 GM 754 ICTA Polystyrene (DTA & ICTA 94 n/a 80 GM 757 ICTA Temp Set Below 350 K ICTA 94 (DTA&DSC) GM 758 ICTA Temp Set 125-435 C ICTA 94 (DTA&DSC) GM 759 ICTA Temp Set 295-675 C ICTA 94 GM 760 ICTA Temp Set 570-940 C ICTA 95 GM 761 ICTA Thermogravimetry Set ICTA 95 RM 1R Aluminum, Ultra-Purity (rod) — 39 RM 5 Copper Heat Capacity Test Mar 77 93 Specimen Mar 78 108			Jan 84	40
8572 Silica-Alumina (Surface Area) ASTM 117 8630 Flexible Disk Cartridge PTB 121 9900 Special Nuclear Service n/a 80 9910 Special Nuclear Material Package n/a 109 9940 Nuclear Container, DOT 6M n/a 80 9941 Nuclear Container, DOT 6M n/a 80 9942 Nuclear Container, Type A n/a 80 GM 754 ICTA Polystyrene (DTA & ICTA 94 GM 757 ICTA Temp Set Below 350 K (DTA 94 GM 758 ICTA Temp Set 125-435 C (DTA 94 GM 759 ICTA Temp Set 295-675 C (DTA 94 GM 760 ICTA Temp Set 570-940 C (DTA 95 GM 761 ICTA Thermogravimetry Set (DTA 95 RM 1R Aluminum, Ultra-Purity (rod) (DTA Specimen) - 39 RM 5 Copper Heat Capacity Test Mar 77 93 Specimen Momogeneous River Sediment for Radioactivity Measurements Mar 78 108		Calcined Kaolin (Surface Area)	ASTM	117
8630 Flexible Disk Cartridge PTB 121 9900 Special Nuclear Service n/a 80 9910 Special Nuclear Material Package n/a 109 9940 Nuclear Container, DOT 6M n/a 80 9941 Nuclear Container, DOT 6M n/a 80 9942 Nuclear Container, DOT 6M n/a 80 9942 Nuclear Container, Type A n/a 80 GM 754 ICTA Polystyrene (DTA & ICTA 94 GM 757 ICTA Temp Set Below 350 K ICTA 94 (DTA&DSC) ICTA Temp Set 125-435 C ICTA 94 GM 759 ICTA Temp Set 295-675 C ICTA 94 GM 760 ICTA Temp Set 570-940 C ICTA 95 GM 761 ICTA Thermogravimetry Set ICTA 95 RM 1R Aluminum, Ultra-Purity (rod) — 39 RM 5 Copper Heat Capacity Test Mar 77 93 Specimen Mar 78 108 RM 45b Homogeneous River Sediment for Radioactivity	8571	Alumina (Surface Area)	ASTM	117
9900 Special Nuclear Service n/a 80 9910 Special Nuclear Material Package 9940 Nuclear Container, DOT 6M n/a 80 9941 Nuclear Container, DOT 6M n/a 80 9942 Nuclear Container, Type A n/a 80 GM 754 ICTA Polystyrene (DTA & ICTA 94 DSC) GM 757 ICTA Temp Set Below 350 K ICTA 94 (DTA&DSC) GM 758 ICTA Temp Set 125-435 C ICTA 94 (DTA&DSC) GM 759 ICTA Temp Set 295-675 C ICTA 94 (DTA&DSC) GM 760 ICTA Temp Set 570-940 C ICTA 95 (DTA&DSC) GM 761 ICTA Thermogravimetry Set ICTA 95 RM 1R Aluminum, Ultra-Purity (rod) — 39 RM 5 Copper Heat Capacity Test Mar 77 93 Specimen RM 45b Homogeneous River Sediment for Radioactivity Measure- ments	8572	Silica-Alumina (Surface Area)	ASTM	117
9910 Special Nuclear Material Pack- age 9940 Nuclear Container, DOT 6M n/a 80 9941 Nuclear Container, DOT 6M n/a 80 9942 Nuclear Container, Type A n/a 80 M 754 ICTA Polystyrene (DTA & ICTA 94 DSC) GM 757 ICTA Temp Set Below 350 K ICTA 94 (DTA&DSC) GM 758 ICTA Temp Set 125-435 C ICTA 94 (DTA&DSC) GM 759 ICTA Temp Set 295-675 C ICTA 94 (DTA&DSC) GM 760 ICTA Temp Set 570-940 C ICTA 95 GM 761 ICTA Temp Set 570-940 C ICTA 95 RM 1R Aluminum, Ultra-Purity (rod) RM 5 Copper Heat Capacity Test Mar 77 93 Specimen RM 45b Homogeneous River Sediment for Radioactivity Measure- ments	8630	Flexible Disk Cartridge	PTB	121
9940 Nuclear Container, DOT 6M n/a 80 9941 Nuclear Container, DOT 6M n/a 80 9942 Nuclear Container, Type A n/a 80 GM 754 ICTA Polystyrene (DTA & ICTA 94 DSC) GM 757 ICTA Temp Set Below 350 K ICTA 94 (DTA&DSC) GM 758 ICTA Temp Set 125-435 C ICTA 94 (DTA&DSC) GM 759 ICTA Temp Set 295-675 C ICTA 94 (DTA&DSC) GM 760 ICTA Temp Set 570-940 C ICTA 95 (DTA&DSC) GM 761 ICTA Thermogravimetry Set ICTA 95 RM 1R Aluminum, Ultra-Purity (rod) — 39 RM 5 Copper Heat Capacity Test Mar 77 93 Specimen RM 45b Homogeneous River Sediment for Radioactivity Measure- ments	9900	Special Nuclear Service	n/a	80
9941 Nuclear Container, DOT 6M n/a 80 9942 Nuclear Container, Type A n/a 80 GM 754 ICTA Polystyrene (DTA & ICTA 94 DSC) GM 757 ICTA Temp Set Below 350 K ICTA 94 (DTA&DSC) GM 758 ICTA Temp Set 125-435 C ICTA 94 (DTA&DSC) GM 759 ICTA Temp Set 295-675 C ICTA 94 (DTA&DSC) GM 760 ICTA Temp Set 570-940 C ICTA 95 (DTA&DSC) GM 761 ICTA Thermogravimetry Set ICTA 95 RM 1R Aluminum, Ultra-Purity (rod) — 39 RM 5 Copper Heat Capacity Test Mar 77 93 Specimen RM 45b Homogeneous River Sediment for Radioactivity Measure- ments	9910		n/a	109
9942 Nuclear Container, Type A n/a 80 GM 754 ICTA Polystyrene (DTA & ICTA 94 DSC) GM 757 ICTA Temp Set Below 350 K ICTA 94 (DTA&DSC) GM 758 ICTA Temp Set 125-435 C ICTA 94 (DTA&DSC) GM 759 ICTA Temp Set 295-675 C ICTA 94 (DTA&DSC) GM 760 ICTA Temp Set 570-940 C ICTA 95 (DTA&DSC) GM 761 ICTA Thermogravimetry Set ICTA 95 RM 1R Aluminum, Ultra-Purity (rod) — 39 RM 5 Copper Heat Capacity Test Mar 77 Specimen RM 45b Homogeneous River Sediment for Radioactivity Measure- ments	9940	Nuclear Container, DOT 6M	n/a	80
GM 754 ICTA Polystyrene (DTA & ICTA 94 DSC) GM 757 ICTA Temp Set Below 350 K (DTA&DSC) GM 758 ICTA Temp Set 125-435 C ICTA 94 (DTA&DSC) GM 759 ICTA Temp Set 295-675 C ICTA 94 (DTA&DSC) GM 760 ICTA Temp Set 570-940 C ICTA 95 (DTA&DSC) GM 761 ICTA Thermogravimetry Set ICTA 95 RM 1R Aluminum, Ultra-Purity (rod) — 39 RM 5 Copper Heat Capacity Test Mar 77 93 Specimen Amar 77 93 Specimen RM 45b Homogeneous River Sediment for Radioactivity Measurements Mar 78 108 Mar 78 Mar 78 108 Mar 78 108 Mar 78 Mar 78 108 Mar 78 Mar	9941	Nuclear Container, DOT 6M	n/a	80
GM 754	9942	Nuclear Container, Type A	n/a	80
(DTA&DSC)	GM 754	ICTA Polystyrene (DTA &	ICTA	94
GM 759 ICTA Temp Set 295-675 C ICTA 94 (DTA&DSC) GM 760 ICTA Temp Set 570-940 C ICTA 95 (DTA&DSC) GM 761 ICTA Thermogravimetry Set ICTA 95 RM 1R Aluminum, Ultra-Purity (rod) — 39 RM 5 Copper Heat Capacity Test Mar 77 93 Specimen RM 45b Homogeneous River Sediment for Radioactivity Measure- ments	GM 757	ICTA Temp Set Below 350 K (DTA&DSC)	ICTA	94
GM 760 ICTA Temp Set 570-940 C ICTA 95 (DTA&DSC) GM 761 ICTA Thermogravimetry Set ICTA 95 RM 1R Aluminum, Ultra-Purity (rod) — 39 RM 5 Copper Heat Capacity Test Mar 77 93 Specimen RM 45b Homogeneous River Sediment for Radioactivity Measurements	GM 758		ICTA	94
(DTA&DSC) GM 761 ICTA Thermogravimetry Set ICTA 95 RM 1R Aluminum, Ultra-Purity (rod) — 39 RM 5 Copper Heat Capacity Test Mar 77 93 Specimen RM 45b Homogeneous River Sediment for Radioactivity Measure- ments	GM 759		ICTA	94
GM 761 ICTA Thermogravimetry Set ICTA 95 RM 1R Aluminum, Ultra-Purity (rod) — 39 RM 5 Copper Heat Capacity Test Mar 77 93 Specimen RM 45b Homogeneous River Sediment for Radioactivity Measurements	GM 760	ICTA Temp Set 570-940 C (DTA&DSC)	ICTA	95
RM 1R Aluminum, Ultra-Purity (rod) — 39 RM 5 Copper Heat Capacity Test Mar 77 93 Specimen RM 45b Homogeneous River Sediment for Radioactivity Measurements	GM 761		ICTA	95
RM 5 Copper Heat Capacity Test Mar 77 93 Specimen RM 45b Homogeneous River Sediment for Radioactivity Measurements Mar 78 108	RM IR			39
for Radioactivity Measure- ments	RM 5		Mar 77	93
	RM 45b	Homogeneous River Sediment for Radioactivity Measure-	Mar 78	108
	RM 50		May 77	48

SRM	SR	Certifi- cate Date	Page		
J-0002	Uranium U-235	Isotopic,	Depleted	Apr 81	79
J-005a	Uranium U-235	Isotopic,	Depleted	Mar 85	79
J-010	Uranium U-235	Isotopic,	Enriched	Apr 81	79
J-015	Uranium U-235	Isotopic,	Enriched	Apr 81	79
J-020a	Uranium U-235	Isotopic,	Enriched	Mar 85	79
J-030a	Uranium U-235	Isotopic,	Enriched	Mar 85	79
J-050	Uranium U-235	Isotopic,	Enriched	Apr 81	79
J-100	Uranium U-235	Isotopic,	Enriched	Apr 81	79
J-150	Uranium U-235	Isotopic,	Enriched	Apr 81	79
J-200	Uranium U-235	Isotopic,	Enriched	Apr 81	79
J-350	Uranium U-235	Isotopic,	Enriched	Apr 81	79
J-500	Uranium U-235	Isotopic,	Enriched	Apr 81	79
J-750	Uranium U-235	Isotopic,	Enriched	Apr 81	75
J-800	Uranium U-235	Isotopic,	Enriched	Apr 81	75
J-850	Uranium U-235	Isotopic,	Enriched	Apr 81	75
J-900	Uranium U-235	Isotopic,	Enriched	Apr 81	. 79
J-930	Uranium U-235	Isotopic,	Enriched	Apr 81	75
J-970	Uranium U-235	Isotopic,	Enriched	Apr 81	79

Ruth Meyer, in addition to processing foreign orders, maintains supplies of extra certificates for SRM's.

Alphabetical Index

ABRASIVE WEAR, 109

Tool Steel ACIDIMETRIC, 43 Benzoic Acid Boric Acid Potassium Hydrogen Phthalate ACOUSTIC EMISSION TRANSDUCER, 90 ACETANILIDE, 43 Microchemical AGRICULTURE, 49 Ammonium Dihydrogen Phosphate (Fertilizer), 68 Bovine Liver, 48 Brewers Yeast, 48 Citrus Leaves, 49 Corn, 49 Cystine, 43 Dextrose, 43, 102 Mercury in Water, 54 Milk, Non-fat Powdered, 48 Oyster Tissue, 48 Phosphate Rock (Fertilizer), 68, 71 Pine Needles, 49 Potassium Dihydrogen Phosphate (Fertilizer), 68 Potassium Nitrate (Fertilizer), 68 Rice Flour, 48 Sucrose, 43, 102 Tomato Leaves, 49 Trace Elements in Water, 57 Tuna, Albacore, 48 Wheat Flour, 48 Wine, Stabilized, 49 ALLOYS (also see individual metals) Ferrous, 15 High Temperature, 24 Nonferrous, 29 Steelmaking, 25 ALUMINA Elasticity, 89 Melting Point, 96 Reduction Grade, 71 Surface Area, 117 ALUMINUM Alloys-Composition, 29 Aluminum-Copper Alloys, 31 Conductivity, 113 First Surface Mirror, 101 Freezing Point, 96 High-Purity, 29, 39 Magnetic Susceptibility, 99 Metallo-Organic, 66 Mirrors, Specular Reflectance, 101 Residual Resistivity Ratio, 113 Spectrometric Solution, 44 Specular Reflectance Mirrors, 101

Ultra-Purity, 39

AMERICIUM, 103-108 Radioactivity AMMONIUM DIHYDROGEN PHOSPHATE, 68 Fertilizer ANALYZED GASES, see Gases ANISIC ACID, 43 Microchemical ANGIOTENSIN I (Human), 46 Clinical ANTICONVULSANT DRUG LEVEL ASSAY, 46 Clinical ANTIEPILEPSY DRUG LEVEL ASSAY, 46 Clinical ANTIMONY, 44 Spectrometric Solution ARSENIC -Trioxide, Reductometric, 43 -on Filter Media, 64 Spectrometric Solution, 44 ASBESTOS, 65 Chrysotile Fibers Research Filter ATOMIC ABSORPTION, see Spectrometric Solutions AUSTENITE, 109 in Ferrite

BARIUM

Metallo-Organic, 66 Radioactivity, 103-108 Spectrometric Solution, 44 BASALT, 73 Rock

BASIMETRIC, 43 BAUXITE, 71

BEARING METAL, 33

Lead Alloy

BENZENE, 54

-Permeation Device

BENZOIC ACID Acidimetric, 43 Calorimetric, 92

BERYLLIUM

Beryllium-Copper Alloys, 31 -on Filter Media, 64 Spectrometric Solution, 44 BEVERAGE, see Food and Beverage

BILIRUBIN, 46 Clinical

BIOLOGICAL, 48 BLACK PORCELAIN ENAMEL, 101 Reflectance

BLOOD, 46 CHANNEL BLACK, 115 Rubber Compounding Material Lead in CHEMICAL **BLOOD GAS, 46, 52** Microchemical, 43 Analyzed Gases High Purity Metals, 39 BORON Primary, Working, and Secondary, 43 Boric Acid (Assay & Isotopic), 43, 81 CHLORINE Boric Acid, Enriched B-10, 81 Isotopic, 81 Spectrometric Solution, 44 Radioactivity, 103-108 BOTANICAL, see Agriculture CHOLESTEROL, 46 BOVINE Clinical -Serum, Inorganic Constituents, 46, 47 CHROMIUM -Liver, 48 Chrome Refractory, 74 BOVINE SERUM ALBUMIN, 46 Isotopic, 81 Clinical Metallo-Organic, 66 BRASS, see Copper Alloys Radioactivity, 103-108 BROMINE, 81 Spectrometric Solution, 44 Isotopic Steel, 16 BREWERS YEAST, 48 CITRUS LEAVES, 49 BRONZE, see Copper Alloys CLAYS, 72 BURNT REFRACTORIES, 73 Flint BUTYL, 115 Plastic Rubber CLINICAL LABORATORY, 46 Angiotensin I (Human) Anticonvulsant Drug Level Assay Antiepilepsy Drug Level Assay Bilirubin Bovine Serum Albumin CADMIUM Bovine Serum, Inorganic Constituents Metallo-Organic, 66 Calcium Carbonate -on Filter Media, 64 Cholesterol Spectrometric Solution, 44 Cortisol (Hydrocortisol) Vapor Pressure, 98 Creatinine CALCIUM p-Glucose (Dextrose) Carbonate (Clinical), 46 Human Serum Metallo-Organic, 66 4-Hydroxy-3-methoxy-d1-mandelic Molybdate, 25 Acid (VMA) Spectrometric Solution, 44 Iron Metal CALORIMETRY Laboratory Thermometer (See also, Fuels & Fossil Fuels) Lead in Blood Combustion, 92 Lead Nitrate Enthalpy, 93 Lithium Carbonate Heat Capacity, 93 Magnesium Gluconate Dihydrate Heating Value, 56, 92 D-Mannitol Heat Source, 93 4-Nitrophenol Solution, 93 Potassium Chloride CARBIDES, 74 Sodium Chloride Sodium Pyruvate Silicon Tris(hydroxymethyl)aminomethane, pH Tungsten Tris(hydroxymethyl)aminomethane CARBON (See, Rubber Compounding Materials) hydrochloride, pH Radioactivity, 103-108 Urea Uric Acid Steels, 15 COAL CAST IRON, 26 Calorimetric, 56, 92 CAST STEEL, 27 Sulfur in, 56 CATALYST PACKAGE FOR LUBRICANT OXIDATION, 66 Trace Elements in, 57 Trace Mercury in, 54 CEMENTS COAL FLY ASH, 57 Portland, Composition, 76 Trace Elements in Portland, Fineness, 116 CENTERLINE DRAWINGS FOR OCR, 122 COATING THICKNESS, 86 Cu-Cr Coating (nonmagnetic) on Steel CERAMIC MATERIALS Nickel (magnetic) on Steel Carbides, 74 Glasses, 75

Minerals, 72 Reflectance, 101 Refractories, 73 CESIUM, 103-108 Radioactivity **COATING WEIGHT, 87** DOSIMETRY, 80 Gold on Glass Sealing Alloy DRUG LEVEL ASSAY, see Clinical DSC, see Heat Gold on Nickel DTA, see Heat Ultra-Thin Gold on Nickel DYE PENETRANT CRACK BLOCK, 113 COBALT Metallo-Organic, 66 Radioactivity, 103-108 Spectrometric Solution, 44 Co-Cr-Mo ALLOY, 110 Pitting/Crevice Corrosion COLOR, 119 EDDY CURRENT TEST BLOCKS, 113 Centroid Color Charts Aluminum Centroid Color Kit Copper CONTAINER, 80, 109 Titanium Special Nuclear ELASTICITY, 89 COMPUTER, MAGNETIC STORAGE Alumina MEDIA, 120 ELECTRICAL CONDUCTIVITY, 112 COPPER ELECTRICAL RESISTIVITY, 112 Alloys, 30 Graphite Benchmarks (Unalloyed Cu), 32 Iron Brass, 31 "RRR" Set Bronze, 31 Tungsten ELECTRONIC AND MAGNETIC ALLOY, 83 Concentrate, 69 Freezing Point, 96 **ENGINEERING MATERIALS, 115** Gilding Metal, 31 ENTHALPY, see Heat ENVIRONMENTAL Heat Capacity Test Specimen, 93 Diesel Particulate Matter, 59 Metallo-Organic, 66 Estuarine Sediment, 57 Microprobe, 40 River Sediment, 57 Ores, 69 Radioactivity, Natural Matrices, 107 Spectrometric Solution, 44 Urban Particulate Matter, 57 **CORN**, 49 ETHANOL-WATER SOLUTIONS, 49 CORROSION, 110 **EUROPIUM**, 103-108 Implants Radioactivity Potential and Thickness Step Test Pitting or Crevice Corrosion CORTISOL, 43 Clinical CREATININE, 43 Clinical CRUDE OIL, 54 FELDSPAR, 72 **CURIUM**, 103-108 Potash Radioactivity Soda FERRITE, 109 CYSTINE, 43 FERRO-ALLOYS, see Steelmaking Alloys Microchemical FERTILIZERS, 68 Ammonium Dihydrogen Phosphate Phosphate Rock Potassium Dihydrogen Phosphate Potassium Nitrate FILTERS, 100 DENSITY FILTER MEDIA, 64 Liquids, 90 Be & As on Neutron, 80 Metals on (Cd-Mn-Pb-Zn) Photographic, 119 Quartz on Silicon, 90 Sulfate and Nitrate on Smoke, 123 Toxic Metals on X-ray, 119 FINENESS, 116 **DEPTH PROFILE, 85** Portland Cement Ni/Cr Thin-Film FIRE RESEARCH, 123 DEXTROSE, see D-Glucose FISSION TRACK, 80 DIFFERENTIAL SCANNING FLAMMABILITY, 123 FLOORING RADIANT PANEL, 123 CALORIMETRY, 94 DIFFERENTIAL THERMAL ANALYSIS, 94

DIFFRACTION, X-RAY, 111

pH, pD

DISODIUM HYDROGEN PHOSPHATE, 83

FLUORESCENCE	GAS FURNACE BLACK, 115
Glass, 111	GASES, 52
Quinine Sulfate Dihydrate, 100	Benzene in Nitrogen
X-ray, Glass Target, 111	Benzene Permeation Device, 54
LUORINE, 64	Carbon Dioxide in Air
in Freeze-Dried Urine	Carbon Dioxide in Nitrogen
LUORSPAR, 69	Carbon Dioxide in Nitrogen, Blood Gas
Customs Grade	Carbon Dioxide and Oxygen in Nitrogen,
High Grade	Blood Gas
LY ASH, COAL, 57	Carbon Monoxide in Air
OOD AND BEVERAGE, 48	Carbon Monoxide in Nitrogen
Corn	Methane in Air
Liver, Bovine	Methane and Propane in Air
Non-Fat Milk Powder	Nitric Oxide in Nitrogen
Oyster Tissue	Nitrogen Dioxide in Air
Rice Flour	Nitrogen Dioxide Permeation Device, 54
Tuna, Albacore	Oxygen in Nitrogen
Wheat Flour	Propane in Air
Wine, Stabilized	Propane in Nitrogen
FOSSIL FUELS	Propane and Oxygen in Nitrogen
	Sulfur Dioxide in Nitrogen
(See also, Calorimetry)	Sulfur Dioxide Permeation Tubes, 54
Heating Values, 56, 92	Tetrachloroethylene in Nitrogen
Lead in Reference Fuel, 54	Tetrachloroethylene Permeation Device,
Sulfur in Coal, 56	
Sulfur in Distillate Fuel Oil, 56	GASES IN METALS, 38
Sulfur in Kerosene, 56	Hydrogen
Sulfur in Residual Fuel Oil, 56	Oxygen
Trace Mercury in Coal, 54	GASOLINE, 54
Trace Elements in Coal, 57	Lead in Reference Fuels
Trace Elements in Coal Fly Ash, 57	GAS TRANSMISSION, 111
Trace Elements in Fuel Oil, 57	Polyester Film
V and Ni in Residual Fuel Oil, 54	GEOLOGICAL, 72
FREEZING POINT, 96	GLASS BEADS, see Sizing
(See also, Heat & Melting Point)	GLASSES, CHEMICAL COMPOSITION
Aluminum	Glass, 75
Copper	Microanalytical, 41
Lead	GLASSES, PHYSICAL PROPERTIES
Mercury	Dielectric Constant, 88
Tin	Electrical Resistance, 88
Zinc	Fixed Points, 88
FUELS	Fluorescence Source, 111
(See also, Calorimetry & Fossil Fuels)	Leaching Resistance, 87
n-Heptane, 112	Liquidus Temperature, 89
Isooctane, 90, 92, 102, 112	Stress Optical Coefficient, 89
Lead in Reference Fuel, 54	Thermal Expansion, 99
Reference Fuels, 112	Viscosity, 88
Synthetic Refuse-Derived Fuel, 92	GLASS SAND, 72
	GLASS SPHERES, see Sizing
	D-GLUCOSE (Dextrose)
	Clinical, 46
	Primary Chemical, 43
	GOLD
	Coating Weight, 87
GALLIUM	High Purity, 39
Isotopic, 81	Microprobe, 40
Melting Point, 96	Mirror (Reflectance), 101
Radioactivity, 103-108	Radioactivity, 103-108
GAS CHROMATOGRAPHY, 63	Reflectance (Specular), 101
GC/MS System Performance	Spectrometric Solution, 44
	Vapor Pressure, 98
	GRAPHITE, 98
	Thermal Conductivity

FLUORESCENCE

HAFNIUM, 37 IMPLANTS (see Corrosion) in Zircaloy INDIUM in Zirconium Melting Point, 96 HARDNESS, 90 Radioactivity, 103-108 Microhardness INDUSTRIAL HYGIENE, 64 HEAT INSTRUMENT PERFORMANCE Calorimetry, 92 (See also, Fuels & Fossil Fuels) Calorimetric, 92 Coordinate Measuring Machines, 117 Densitometry, 119 Differential Scanning Calorimetry, 94 Differential Thermal Analysis, 94 Differential Scanning Calorimetry, 94 Enthalpy, 93 Differential Thermal Analysis, 94 Freezing Points, 96 Gas Analysis, 52 GC/MS, 63 Heat Capacity, 93 Heat Source, 93 Hardness, Micro-, 90 Heating Values, 56, 92 Optical Microscopes, 85 Melting Points, 96 Particle Counters, 116 Superconducting Fixed Points, 95 pH Meters, 83 Thermal Conductivity, 98 Polarimetry, 102 Thermal Expansion, 99 Radioactivity Counting Systems, 103-108 Thermocouple Material, 97 Reflectometers, 101 Thermogravimetry, 94 Sacchrimeters, 102 Vapor Pressure, 98 SEM's, 84 n-HEPTANE, 112 Spectrometers, 20, 29 HIGH PURITY METALS, 39 Spectrophotometers, 100 (See Spectrometric Solutions) Surface Analyzers, 117 Aluminum (See A1 Alloys) Viscometers, 88 Cadmium (See Vapor Pressure) X-ray Diffraction, 109, 111 Copper (See Cu Benchmarks) X-ray Fluorescence, 111 Gallium (See Stable Isotopes) IODINE, 103-108 Radioactivity Iron (See Iron, Electrolytic) ION ACTIVITY, 84 Lead (See Freezing Points) Potassium Chloride Magnesium (See Stable Isotopes) Potassium Fluoride Mercury (See Freezing Points) Sodium Chloride Nickel (See Magnetic Moment) IRON Platinum Alloy Cast, 26, 27 Plutonium (See Special Nuclear Material) Blast Furnace, 27 Rhenium (See Stable Isotopes) Cast, 26, 27 Selenium Clinical, 46 Silicon (See X-ray Powder Diffraction) Electrical Resistivity, 112 Silver (See Vapor Pressure) Ductile Cast, 26, 27 Tin (See Freezing Points) Electrolytic, 21, 26 Titanium (See Ti Alloys) Gray Cast, 26 Tungsten (See Thermal Conductivity) High Alloy White Cast, 27 Uranium (See Special Nuclear Material) Metallo-Organic, 66 Zirconium (See Zr Alloys) Nodular Cast, 26 HIGH TEMPERATURE ALLOYS, 24 Radioactivity, 103-108 HOLMIUM OXIDE, 100 Spectrometric Solution, 44 Wavelength Thermal Conductivity, 98 HUMAN White, 26, 27 Liver (Radioactivity), 107 ISOBUTYLENE-ISOPRENE, 115 Lung (Radioactivity), 107 Rubber Serum (Clinical), 47 ISOTOPIC (STABLE), 81 4-HYDROXY-3-METHOXY-d1-Chlorine MANDELIC ACID (VMA), 46 Chromium HYDROGEN Gallium Gases in Metals, 38 Lead, Common Radioactivity, 103-108 Lead, Equal-Atom Lead, Radiogenic Magnesium Potassium Rhenium

Rubidium Silicon Silver Strontium Thallium KNOOP, 90 MAGNETIC MOMENT, 99 Microhardness Nickel MANGANESE KRYPTON, 103-108 on Filter Media, 64 Radioactivity Metallo-Organic, 66 Spectrometric Solution, 44 D-MANNITOL, 46 Clinical MARINE CHEMISTRY (See also, Environmental, Sediments, & LEAD Water Analysis) Alloys, 33 Albacore Tuna, 48 Freezing Point, 96 Estuarine Sediment, 57 -in Blood (Clinical), 46 Oyster Tissue, 48 -in Reference Fuels, 54 MATERIALS ON FILTER MEDIA, 64 Isotopic, 81 Arsenic -on Filter Media, 64 Beryllium Metallo-Organic, 66 Cadmium Nitrate (Clinical), 46 Lead Radioactivity, 103-108 Manganese Spectrometric Solution, 44 Nitrate LIMESTONE, 72 Sulfate Argillaceous Zinc Dolomitic MELTING POINT, 96 LINEWIDTH MEASUREMENT, 85 (See also, Heat & Freezing Point) LITHIUM Alumina Carbonate (Clinical), 46 Gallium Metallo-Organic, 66 Indium Ores, 69 Rubidium Spectrometric Solution, 44 Succinonitrile LIVER MERCAPTOBENZOTHIAZOLE, 115 Bovine, Biological, 48 MERCURY Human, Radioactivity, 107 Freezing Point, 96 LUBRICANT OXIDATION PACKAGE, 66 -in Coal, 54 LUBRICATING OIL -in Freezed-Dried Urine, 64 Ni and V in, 54 -in Water, 54 Wear-Metals in, 67 Radioactivity, 103-108 LUNG, 107 Spectrometric Solution, 44 Human, Radioactivity METALLO-ORGANIC COMPOUNDS, 66 Aluminum Barium Cadium Calcium Chromium Cobalt MAGNESIUM Copper Clinical, 46 Iron Isotopic, 81 Lead Metallo-Organic, 66 Lithium Spectrometric Solution, 44 Magnesium MAGNETIC SUSCEPTIBILITY, 99 Manganese Aluminum Nickel Manganese Fluoride Phosphorus Palladium Silicon Platinum Silver MAGNETIC COMPUTER STORAGE Sodium MEDIA, 120 Strontium Cartridge: Tape Tin Cartridge: High-Density Tape Vanadium Cassette: Tape Zinc Flexible Disk

METALLURGICAL, 109 Austenite in Ferrite

Iron Carbide in Ferrite

Reel: Tape

Reel: High-Density Tape

METALS ON FILTER MEDIA, 64

Arsenic

Beryllium

Cadmium

Lead

Manganese

Zinc

METROLOGY

Optical Linewidth, 85

Particle Size, 116

SEM Magnification, 84

Socketed Ball Bar, 117

MICROANALYTICAL, 40

Fe-Cr-Ni Alloy

Gold-Copper

Gold-Silver

Iron-Silicon

Mineral Glasses

Tungsten-Molybdenum

MICROCHEMICAL, 43

Acetanilide

Anisic Acid

o-Bromobenzoic Acid

m-Chlorobenzoic

Cystine

p-Fluorobenzoic Acid

Nicotinic Acid

Urea

MICROHARDNESS, 90

Knoop

Vickers

MICROPROBE

(See Microanalytical)

MINERALS, 72

MOLECULAR WEIGHT, 91

Polymers

MOLYBDENUM

Concentrate, 69

Heat Capacity, 93

Radioactivity, 103-108

Spectrometric Solution, 44

NICKEL

Alloys, 33

Magnetic Moment, 99

Metallo-Organic, 66

Oxides, 34

Radioactivity, 103-108

Spectrometric Solution, 44

NICOTINIC ACID, 43

Microchemical

NIOBIUM, 103-108

Radioactivity

NITRATE, 64

-on Filter Media

NITROGEN, see Gases

4-NITROPHENOL, 46

Clinical

NONDESTRUCTIVE EVALUATION (NDE),

113

Penetrant Test Blocks

NONFERROUS ALLOYS, 29

N-TERTIARY-BUTYL-2-

BENZOTHIAZOLESULFENAMIDE, 115

Rubber Compounding Material

NUCLEAR MATERIALS

Plutonium, 78

Uranium, 79

Fission Track Glass, 80

Uranium Oxide-Gamma Spectrometry, 79

Lead-206 Spike, 81

Neutron Density Monitor Wire, 80

OBSIDIAN ROCK, 73 OIL FURNACE BLACK, 115

OIL

Base Oil, Wear Metals in, 67

Distillate (Diesel) Fuel Oil (Sulfur), 54

Petroleum Crude Oil (Organics), 59

Residual Fuel Oil (Sulfur), 56

Residual Fuel Oil (Trace Elements), 57

Residual Fuel Oil (V and Ni), 54

OPAL GLASS

Composition, 75

Reflectance, 101

OPTICAL

Centerline Drawings for OCR, 122

Linewidth Measurement, 85

ORES, 69

Bauxites

Copper

Iron

Lithium

Manganese

Molybdenum

Reduced Iron Oxide

Rutile

Tungsten

Zinc

ORGANIC CONSTITUENTS, 59

Chlorinated Biphenyls

Chlorinated Pesticides

Dioxin in Isooctane

Generator Columns for PAH's

Halocarbons for Water Analysis

Isotopically Labeled and Unlabeled

Priority Pollutants

Nitrated Polycyclic Aromatic

Hydrocarbons

Organics in Shale Oil

Petroleum Crude Oil

Polychlorinated Biphenyls in Oil

Priority Pollutant Phenols in Methanol

Priority Pollutant PAH's

Urban Dust

OXYGEN, 53

Analyzed Gas

PACKAGE

Catalyst Package for Lubricant Oxidation, 66

Special Nuclear Material Package, 80,

PALLADIUM

Magnetic Susceptibility, 99 Spectrometric Solution, 44

PARTICLE SIZE, 116

pD, 83

Disodium Hydrogen Phosphate Potassium Dihydrogen Phosphate Potassium Hydrogen Phthalate Sodium Bicarbonate

Sodium Bicarbonate Sodium Carbonate

PERUVIAN SOIL, 107

Radioactivity

pH, 83

Disodium Hydrogen Phosphate

Potassium Tetroxalate

Sodium Bicarbonate

Sodium Carbonate

Sodium Tetraborate Decahydrate (Borax)

Tris(hydroxymethyl)aminomethane Tris(hydroxymethyl)aminomethane hydrochloride

PHOSPHORUS

Metallo-Organic, 66 Phosphate Rock, 68, 71 Radioactivity, 103–108 Spectrometric Solution, 44

PHOTOGRAPHIC, 119

Photographic Step Tablet (0-4) Microcopy Resolution Test Charts Reflection Step Tablet (0-2)

PINE NEEDLES, 49

PLATINUM

Doped, 39 High Purity, 39

Magnetic Susceptibility, 99 Spectrometric Solution, 44

Thermoelement, 97

PLUTONIUM

Assay, 78 Isotopic, 78

Metal, 43, 78

Radioactivity, 103-108

POLLUTANTS

(see Organics)

POLONIUM, 103-108

Radioactivity

POLYETHYLENE, 91

Molecular Weight

POLYISOBUTYLENE, 92

Rheology

POLYMER

Particle Size, 116

Polyethylene (Molecular Weight), 91

Polyisobutylene (Rheology), 92

Polystrene (Molecular Weight), 91

POLYSTYRENE

Differential Thermal Analysis, 94 Molecular Weight, 91

POTASSIUM

-Chloride (Calorimetric), 93

-Chloride (Clinical), 46

-Chloride (Isotopic), 81

-Chloride (Primary), 43

-Dichromate (Primary), 43

-Dichromate (Spectrophotometry), 100

-Dihydrogen Phosphate (Fertilizer), 68

-Dihydrogen Phosphate (pH), 83

-Hydrogen Tartrate (pH), 83

-Hydrogen Phthalate (pH), 83

-Hydrogen Phthalate (Primary), 43

-Iodide (Stray Light), 100

-Nitrate (Fertilizer), 68

Spectrometric Solution, 44

-Tetroxalate (pH), 83

POTENTIAL AND THICKNESS STEP TEST, 110

POWDERED LEAD-BASED PAINT, 54 PRIMARY CHEMICALS, 43

Arsenic Trioxide Benzoic Acid

Boric Acid

Dextrose (D-glucose)

Potassium Chloride

Potassium Dichromate

Potassium Hydrogen Phthalate

Plutonium Metal

Sodium Oxalate

Strontium Carbonate

Sucrose

Tris(hydroxymethyl)aminomethane

Uranium Oxide (U208)

Uranium Metal

PRIORITY POLLUTANTS (see Organics) PROMETHIUM, 103-108

Radioactivity

QUARTZ, 65

Respirable Alpha

QUININE SULFATE DIHYDRATE, 100

Fluorescence

RADIOACTIVITY, 103-108 REFLECTANCE, 101 Americium Aluminum Mirrors Barium Aluminum Mirror with Wedge Carbon-14 Black Porcelain Enamel Cesium-137/Barium-137m Point Source Diffuse Spectral Chlorine Directional-Hemispherical Chromium First Surface Cobalt Gold Mirror Curium Mirrors Environmental Second Surface Europium Spectral Gallium Specular Gold White Ceramic Tile Human Liver White Opal Glass Human Lung REFRACTIVE INDEX, 102 Hydrogen Borosilicate Glass Indium Isooctane Iodine Silicone Liquids Iron Soda-Lime Glass Krypton Toluene Lead 2,2,4-Trimethylpentane Mercury REFRACTORIES, 72 Mixed Radionuclides RESIDUAL RESISTIVITY RATIO, 113 Molybdenum RESISTIVITY Natural Matrix Boron-doped Silicon, 112 Nickel Electrical, 112 Niobium RRR, 113 Peruvian Soil Silicon Power Device Level, 112 Phosphorus Silicon, Eddy Current Testers, 112 Plutonium Silicon, Spreading Resistance, 112 Polonium Thermal, 98 Promethium RHENIUM, 103-108 Radium Isotopic River Sediment RIVER SEDIMENT Rocky Flats Soil Number1 Environmental, 57 Selenium Radioactivity, 108 Strontium ROCKS Sulfur Basalt, 73 Technetium Obsidian, 73 Thallium Phosphate, 68, 71 Thorium ROCKY FLATS SOIL, 107 Tin Radioactivity Uranium RRR (see Residual Resistivity Ratio) Xenon RUBBER, 115 Ytterbium Butyl RADIOGRAPHIC Isobutylene-Isoprene (Butyl) Image Quality Indicator, 118 Styrene Butadiene X-ray Film Step Tablet, 119 RUBBER COMPOUNDING MATERIALS, 115 RADIUM, 103-108 Channel Black Radioactivity Gas Furnace Black RAINWATER, 55 Mercaptobenzothiazole Simulated n-Tertiary-Butyl-2 Oil Furnace Black REFERENCE FUELS n-Heptane, 112 Stearic Acid Isooctane, 90, 92, 102, 112 Sulfur

Zinc Oxide RUBIDIUM Isotopic, 81 Melting Point, 96

Spectrometric Solution, 44

Lead in, 54

SAND, GLASS, 72	SPECTROMETRIC SOLUTIONS, 44
SAPPHIRE, SYNTHETIC, 93	Aluminum
Heat Capacity	Antimony
SCANNING ELECTRON MICROSCOPE	Arsenic
(SEM), 84	Barium
SEM Magnification	Beryllium
SEM Performance	Boron
SELENIUM	Cadmium
Intermediate Purity, 39	Calcium
Radioactivity, 103-108	Chromium
Spectrometric Solution, 44	Cobalt
SEM (see Scanning Electron Microscope)	Copper
SILICA	Gold
Silica Refractory, 74	Iron
Thermal Expansion, 99 SILICON	Lead
Density, 90	Lithium
Isotopic, 81	Magnesium
Metallo-Organic, 66	Manganese
Resistivity, 112	Mercury
Silicon Metal, 25	Molybdenum
Spectrometric Solution, 44	Nickel
X-ray Powder Diffraction, 111	Palladium
SILICONE, 102	Phosphorus
Refractive Index Liquids	Platinum
SILVER	Potassium
Isotopic, 81	Rubidium
Metallo-Organic, 66	Selenium
Microprobe, 40	Silicon Silver
Spectrometric Solution, 44	Sodium
Vapor Pressure, 98	Strontium
SIZING, 116	Tin
Glass Beads	Titanium
Glass Spheres	Tungsten
Polystyrene Spheres	Vanadium
Portland Cement	Zinc
SOCKETED BALL BAR, 117	Zirconium
SODA LIME GLASS, 75	SPECTROPHOTOMETRY, 100
Float	Glass Filters (Visible)
Sheet	Liquid Absorbance Filters (UV and
SODIUM	Visible)
-Bicarbonate (pH), 83	Metal-on-Quartz Filters (UV and Visible)
-Carbonate (pH), 83	Potassium Dichromate (UV Absorbance)
-Chloride (Clinical), 46 Metallo-Organic, 66	Potassium Iodide Stray Light
-Oxalate (Reductometric), 43	Quartz Cuvette for Spectrophotometry
-Pyruvate (Clinical), 46	Quinine Sulfate Dihydrate (Fluorescence)
Spectrometric Solution, 44	Stray Light
-Tetraborate Decahydrate (pH) [Borax], 83	Visible
SOLDER, 33	Ultra Violet
Lead-Base Alloy	SPECULAR REFLECTANCE (see
SMOKE DENSITY, 123	Reflectance)
Flaming (ABS plastic)	STAINLESS STEEL
Nonflaming (cellulose)	Chip Form, 19
SPECTRAL REFLECTANCE (see	Pitting/Crevice Corrosion, 110 Solid Form, 23
Reflectance)	STEARIC ACID, 115
	STEELMAKING ALLOYS, 25
	Ferrochromium, High-Carbon
	Ferrochromium (Low Carbon)
	Ferrochromium Silicon
	Ferromanganese, High-Carbon
	Ferroniobium
	Ferrophosphorous
	Ferrosilicon (48-Si)
	Ferrosilicon (73-Si)
	Ferrosilicon (75-Si)
	The state of the s

STEEL, CHEMICAL COMPOSITION THERMOGRAVIMETRY, 94 Chip form, 15 THERMOMETER, 97 Gasimetric, 38 Clinical Laboratory Solid form, 20 THERMOMETRIC FIXED POINTS, 95 STEP TABLET, 119 THICKNESS Photographic Coating, 86 Radiographic Step Test, Potential, 110 Reflection THORIUM, 103-108 X-ray Radioactivity STEP TEST, 110 TIN Potential & Thickness Step Enthalpy, 93 STRONTIUM Metallo-Organic, 66 Isotopic, 81 Radioactivity, 103-108 Metallo-Organic, 66 Secondary Freezing Point, 96 Radioactivity, 103-108 Spectrometric Solution, 44 Spectrometric Solution, 44 THIANTHRENE, 92 STYRENE BUTADIENE, 115 Calorimetric Rubber TITANIUM SUCCINONITRILE, 96 Alloys, 35 Triple Point Cell -Dioxide, 73 SUCROSE, 43, 102 Eddy Current Test Block, 113 Primary Chemical Spectrometric Solution, 44 SULFATE, 64 Unalloyed Titanium, 35 -on Filter Media Unalloyed Titanium for Gases, 38 SULFUR TOLUENE -in Base Oil, 67 Density, 90 -in Coal, 56, 92 Refractive Index, 102 -in Fossil Fuels, 56 TOMATO LEAVES, 49 -in Lubricating Oil, 56 TOXIC METALS IN FREEZED DRIED Radioactivity, 103-108 URINE, 64 Rubber Compounding Material, 115 TRACE ELEMENTS SULFUR DIOXIDE (See Environmental and Organic Analyzed Gas, 51 Constitutents) Permeation Tubes, 54 -in Coal, 57 SUPERCONDUCTING -in Estuarine Sediment, 57 Critical Current Wire, 113 -in Glass, 77 Thermometric Fixed Point Device, 95 -in Oil, 57 SURFACE AREA, 117 -in Potassium Feldspar, 77 SURFACE FLAMMABILITY, 123 -in River Sediment, 57 SURFACE FINISH, 118 -in Urban Particulate, 57 Sinusoidal Roughness -in Water, 57 TRANSMISSION, GAS, 111 2,2,4-TRIMETHYLPENTANE (Isooctane) Calorimetric, 92 Density, 90 Reference Fuel, 112 TECHNETIUM, 103-108 Refractive Index, 102 TRIPALMITIN, 46 Radioactivity Clinical TETRACHLOROETHYLENE TRIS(HYDROXYMETHYL) Analyzed Gas, 52 AMINOMETHANE Permeation Device, 54 THALLIUM Basimetric, 43 Calorimetric, 92 Isotopic, 81 Clinical pH, 46 Radioactivity, 103-108 THERMAL ANALYSIS, 94 Differential Scanning Calorimetry Differential Thermal Analysis TRIS(HYDROXYMETHYL) AMINOMETHANE HYDROCHLORIDE THERMAL CONDUCTIVITY, 98 Clinical pH, 46 Graphite pH, 83 TUNA, ALBACORE, 48 Iron TUNGSTEN Tungsten THERMAL EXPANSION, 99 Concentrate, 69 Spectrometric Solution, 44 Borosilicate Glass Fused Silica Thermal Conductivity, 98 Tungsten Thermal Expansion, 99 THERMAL RESISTANCE, 98 TURBIDIMETRIC, 115

Batt Board ULTRASONICS, 90 URANIUM

Assay, 79 Isotopic, 79 Metal, 43, 79 Oxide, 79

Radioactivity, 103-108

UREA

Calorimetric, 92 Clinical, 46 Microchemical, 43

URIC ACID, 46 Clinical

URINE, FREEZED-DRIED, 64

Fluorine Industrial Hygiene Mercury Toxic Metals XENON, 103-108 Radioactivity

X-RAY

Film Step Tablet, 119
Fluorescence, Glass Target, 111
Intensity X-ray Diffraction, 111
Mica X-ray Diffraction, 111
Radiographic Image Quality Indicator, 118
Silicon X-ray Diffraction, 111
Step Tablet, 119
Thin-Glass Film on Polycarbonate Filter, 64

Wellcome Library

YTTERBIUM, 103-108 Radioactivity

VICKERS, 90

Microhardness

VANADIUM

-in Crude Oil, 54 Metallo-Organic, 66 -in Residual Fuel Oil, 54 Spectrometric Solution, 44

VAPOR PRESSURE, 98

Gold Cadmium Silver

VISCOSITY, 88 VMA (see Clinical)

WAVELENGTH, 100

Didymium Glass Filter Holmium Oxide Solution

WATER ANALYSIS

Halocarbons, 61 Mercury, 54 Trace Elements, 57

WEAR, ABRASIVE, 109

Tool Steel

WEAR-METALS IN OIL, 67 WHITE CERAMIC TILE, 101

Reflectance

WHITE OPAL GLASS, 101

Reflectance

WINE, STABILIZED, 49

ZINC

Alloys, 36 Concentrate, 70 Enthalpy, 93 Freezing Point, 96 Metallo-Organic, 66 Oxide, Rubber Compounding Material, 115 Spectrometric Solution, 44 Spelter, 36 -on Filter Media, 64

ZIRCONIUM

Alloys, 37 Spectrometric Solution, 44 Unalloyed, Gasometric, 38

PHOTO CREDITS

Mark Helfer, NBS, Black-and-White and Color-Background Photography with Contributions from Beamie Young, NBS

Special Thanks to Each Following Organization/Individual for Contributing Color Photography:

American Iron and Steel Institute (continuous casting of steel, back cover)

Arie Hartman, NBS (SRM 1960, 10 μm polystyrene spheres—first product manufactured in space—front cover)

National Aeronautics and Space Administration (Space Shuttle, front cover)

