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ON THE

AT A G T T QNS dee.
%

Read before the ROYAL SOCIETY, June 15, 180g.

1. e theory of the figures of the planets involves in it
two distinct researches. In the first of these, it is required to
determine the force with which a body, of a given figure and
density, would attract a particle of matter, occupying any pro-
posed situation : in the second, the subject of investigation is
the figure itself, which a mass of matter, wholly or partly
fluid, would assume, by the joint effect of the mutual attrac-
tion of its particles, and a centrifugal force arising from a ro-
tatory motion about an axis. To render the second of these
inquiries more exactly conformable to what actually takes
place in nature, the influence of the attractions of the several
bodies, that compose the planetary system, ought to be super-
added to the forces already mentioned,

It is the first of these two researches, of which we propose
to treat at present ; and we shall even confine our attention
to homogeneous bodies, bounded by finite surfaces of the se-
cond order.

The theory of the attractions of spherical bodies is delivered
by Sir Isaac NEwton in the first book of the Principia.* In
the same place the illustrious author lays down a method for

* Sect. 13,
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2 Myr. Ivory on the Altractions

determining the attractions of round bodies (or such as are
generated by the revolving of a curve about a right line which
remains fixed) when the attracted pointis situated in the com-
mon axis of the circular sections:* and he employs this me-
thod to compute the attractive force of a spheroid of revolution
on a point placed in the axis.f MacLauriN was the first who
determined the attractions of such a spheroid generally, for
any point placed in the surface, or within the solid. The me-
thod of investigation, invented by that excellent geometer, is
synthetical, but original, simple, and elegant, and has always
been admired by mathematicians. When the attracted point
is placed without the solid, the difficulty of solving the pro-
blem is greatly increased ; and it was reserved for LE GENDRE
to complete the theory of attractions of spheroids of revolu-
tion, by extending to all points, whether without or within
the solid, what had before been investigated for the latter case
only.] La PrLack took a more enlarged view of the problem;
he extended his researches to all elliptical spheroids, or such
solids whose three principal sections are all ellipses; and he
obtained conclusions with regard to them, similar to what
MacLavrin and LE Gewpre had before demonstrated of
spheroids of revolution. In this more general view of the
problem, the investigation is particularly difficult, when the
attracted point is placed without the solid. The method of in-
vestigation, which LA Prace has employed for surmounting
the difficulties of this last case, although it is entitled to every
praise for its ingenuity, and the mathematical skill which it
displays, is certainly neither so simple nor so direct, as to

* Sect. 13, Prop. g1.  Prop. g1, Car. 2.
1 Acad. des Sciences de Paris, Savans Efrangers, Tom. X.
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leave no room for perfecting the theory of the attractions of
ellipsoids in both these respects. It consists in shewing that
the expressions for the attractions of an ellipsoid, on any ex-
ternal point, may be resolved into two factors ; of which, one
is the mass of the ellipsoid, and the other involves only the
excentricities of the solid and the co-ordinates of the attracted
point: whence it follows, that two ellipsoids, which have the
. Same excentricities, and their principal sections in the same
planes, will attract the same external point with forces pro-
portional to the masses of the solids. This theorem includes
the extreme case, when the surface of one of the solids passes
through the attracted point: and by this means the attraction
of an ellipsoid, upon a point placed without it, is made to de-
pend upon the attraction which another ellipsoid, having the
same excentricities as the former, exerts upon a point placed
in the surface.* Le Genpre has given a direct demonstra-
tion of the theorem of La Prack, by integrating the fluxional
expressions of the attractive forces; a work of no small diffi-
culty, and which is not accomplished without complicated cal-
culations.f In the Mecanique Celeste, the subject of attractions
of ellipsoids is treated by La Prack after the method first
given by himself in the Memoirs of the Academy of Sciences,]
founded on the theory of series and partial fluxions. It was
in the study of LA Prace’s work, that the method I am about
to deliver, was suggested; and it will not be altogether un-
worthy of the notice of the Royal Society, if it contribute to
simplify a branch of physical astronomy of great difficulty,
and which has so much engaged the attention of the most
eminent mathematicians.

* dcad. des Sciences de Paris pour 1783, + Ibid. 1788. t For 17g3.
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. Let a,b,¢, be three co-ordinates, that determine the po-
sition of a point attracted by a solid: and let dM denote a
molecule, or element of the mass of the solid, whose position
is fixed by the co-ordinates z, y, %, respectively parallel to
a, b, ¢: then, supposing the invariable density to be denoted

by unity, if we putf:{(a_x}- + (b— )+ (5_5)-},}

the distance of the molecule from the attracted point, the di-

rect attraction of the molecule on the point will be = jpf

This force of attraction is next to be decomposed into other
forces, having fixed directions independent on the position of
the attracting molecule ; and the directions most naturally sug-
gested for this purpose, are the three axes respectively paral-
lel to the co-ordinates, When the direct attraction is thus
decomposed, the resulting forces, acting parallel to the axes,
and directed to the planes from which the co-ordinates are
reckoned, will be respectively,

dM(a—x)

s ey
Leilimih

J3
dM{c—=z)

VE
Let A denote the accumulated amount of all the attractions,

parallel to the axis of x; and, in like manner, let B and C
denote the same things for the attractions parallel to the axes
of y and z: then, by restoring the value of £, and writing dr .
dy . dz for its equivalent dM, there will be obtained,

, parallel to the axis of z,
, parallel to the axis of y,

, parallel to the axis of z.
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wi dz . dy.dz. (a—x)
A _fff { (a—2)*4 :'f’—:]"‘: el —E :

2
LY dy.dy.d=. (hb—y)
ettt
B dr . dy.d=, (e—=)
5 f[f { =0+ by 4 (e—2 [ £
where the several triple fluents must be extended to all the
molecules that compose the mass of the solid.*

The expressions of A, B, and C, just found, are all integra-
ble with respect to one of the variable quantities they contain.
Thus A is integrable with respect to z: Let 2' be the greatest
value of z (y and » remaining constant) on the positive side

of the plane of y and 2, and 2" the greatest value, on the ne-

gative side of the same plane; then, the integration being
performed, we shall get

A=ffdy.dz:.

|
{ {{a—-x'l'+ (b—3)*+ {t—zi‘}%— {{u+x"i’+ (b—y)* + {c—zl'}%}'
In this expression of A, the fluxion under the sign of double
integration denotes the attraction which a prism of the matter
of the solid, whose length is 2/ 4- 2” and its base dy . dz, exerts
on the gttracted point, in the direction of the length of the
prism.

If the plane, to which x is perpendicular, bisect the solid, as
is the case of the principal sections of solids bounded by finite
surfaces of the second order, then 2"=2": and as z* is nothing
more than what z becomes at the surface of the solid, if we
now suppose , y, x to be three co-ordinates of a point in the
_ surface, and, for the sake of brevity, put

* Mecan. Celeste, Tom. I. p. 3.
C
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a={(a—z) 4 (b—y) +(c—2)}4
= {(a4z) 4 (b—y) + (c—=)}3

A::[/dy.a’z. {é_EI"} : (2)
this double fluent is to be extended to all the points, or inde-
finitely small spaces dy. dz, that compose the principal section
of the solid made by the plane of y and .

In like manner, if B and C be integrated ; the first with
respect to the variable y, and the second with respect to the
variable z; two new expressions of these attractions will be
obtained, exactly similar to the expression for A, that has just
been investigated.

8. The general equation of a surface of the second order
bounding a finite solid, is*

FtEtE=1:

if the three quantities &, ', ¥’ be supposed to be all equal, then
the solid will be a sphere ; if two of them, as ¥ and ¥ be equal,
it will be a solid of revolution ; and if all the three be unequal,
it will be an ellipsoid, or a spheroid, having all its three prin-
cipal sections ellipses. In what follows, we shall always sup-
pose that £ is the least of the three quantities &, ¥, ¥”, or the
least of the semi-axes of the solid.

The general equation of the ellipsoid, will be satisfied by
putting z = % cos. ¢, y =¥ sin. ¢ cos. J, and z = &' sin. ¢
sin. ¢ ; where ¢ and { denote two indeterminate angles. In
order to substitute these values of z, y, and 2 in the formula
(2), we must begin with taking the fluxion of y, on the sup-

then,

* Mecan. Celeste, Tom. 1L p. 7.
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position that one of the indeterminate angles is constant ; thus,
if { be constant, then dy = k cos. ¢ cos. §. dp: and, because y
must be constant when = varies, we must make
dz =k"cos. ¢ sin. . dp 4 ¥’ sin. ¢ cos. § . dif
0=k cos. ¢ cos. ) .dp — ¥ sin. ¢ sin. J . d{,
and, by exterminating dp, we get dz= ‘-E::"--E_f .dl. Thus, by
substitution, the formula (2) will become

A=k"k"'jfsin.:p§us. U.dp.dy. {—;‘—d‘lﬂ} ;  (3)
and, .
A== {[a—k ms.q:j‘—[-( b=k sin. ¢ cos.  )*4- (c=—~" sin. g sin. §)* }%
Al=— {(a_l..kms. @ )* 4 (b—# sin. ¢ cos. § )*4- (e—F&" sin. ¢ sin. ) }
the double fluent must be taken from ¢ = o, to p = = (= de-

b=

noting half the pheriphery of the circle, whose radius is 1),
and from ¢ =9, to J = 2w,

To obtain a further transformation of the last expression of
A, we are now to determine the semi-axes of an ellipsoid,
whose surface shall pass through the attracted point, and which
shall have the same excentricities, and its principal sections
in the same planes, as the given ellipsoid. Let &, &', ” be the
semi-axes required : then, because the attracted point is to be
in the surface of the solid,

Ftptn=1
and, because the excentricities must be equal to those of the
given ellipsoid, therefore A" — It = ¥* — ' = ¢, and 1"* —i*
= k" = b =¢": hence

ﬂ“ b'l- ﬁ" £
St st e =1
an equation which now contains only one unknown quantity,
Ce
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namely, k. It is plain that one value of 4, and only one, may,
in all cases, be determined from this equation. For, by taking
& small enough, the function on the left hand side will become
greater than any positive quantity how great soever; and by
taking & great enough, the same function will become less
than any positive quantity how small soever: and while % in-
creases from o, ad infinitum, the function continually decreases
from being infinitely great to be infinitely little. Therefore
there is only one ellipsoid, having the required conditions,
whose surface will pass through the attracted point.* When
I is determined, then ' = Vi F ¢*, "=+t 4~ ¢" : and in
consequence of the equation,
F+E+r=1

we may suppose, @ = h cos.m, b= k'sin.m cos.n, ¢ = h"
sin. 7 Sin. x. :

Let these values of a, b, ¢ be substituted in the last expres-
sions for A and A’: then
A== { (hcos. m—k cos. ¢)* 4 (k' sin. m cos. n—#k' sin. ¢ cos. 4’

- (A" sin. m sin. 2 — & sin, ¢ sin, 11»)‘};’;
Al= { (h cos.m 4 k cos. ¢)* (A’ sin. m cos. n— &' sin. ¢ cos.J)*
= (%" sin. m sin. n — k" sin. ¢ sin. ;]a]'}%
and because i* =k f e, i =k " =k ¢, =
K 4 ¢”, we shall readily obtain
A= {-’1‘ — ahk cos. m cos, ¢ — el’ ¥ sin. m cos. n sin. ¢ cos.
— 20"k sin, m sin, n sin. ¢ sin.§ 4= B - & sin. *m cos. n
= " sin. *m sin, "z -4 ¢* sin. *¢ cos. Y + € sin. *p sin, 'LIJ} :
A= {h‘ -+ ghk cos. m cos. p — 2h'k’ sin. m cos, n sin. @ cos. ¥
* Mecan, Celeste, Tom, II. p. 50,
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~ gh"k" sin.m sin.n sin. ¢ sin. ¢ 4 &' 4 ¢ sin. *m cos. 'z
4 €” sin. *m sin. *n 4 € sin. *¢ cos. "y 4 €” sin. "o sin. *§ } L.

In these values of A and A’, it is plain that the quantities
h, I, k" are alike concerned with the quantities &, ¥', and £":
and hence, by interchanging the semi-axes of the two ellip-
soids, we may represent each of the expressions for A and A’
in two forms, which, when expanded, are identical : thus

A= {(h cos, m—k cos. ¢)* - (' sin. m cos. n—F sin. ¢ cos. /)
== (A" sin. m sin. n—k" sin, ¢ sin. ¢/ )* }% = 4 (k cos. m—h cos.
@ )’ (&' sin. m cos. n—k' sin. ¢ cos. J)*4- (& sin. m sin, n—h"
sin. ¢ sin. §)* {4,

= {{fx cos. m = kcos. ¢ )* - (' sin. m cos, n—F' sin. ¢ cos. )’
= (¥ sin. m sin. n—k" sin. ¢ sin. L,L}'}—;- = { (kcos.m -+ h cos.
@)+ (¥ sin. m cos. n—Nn' sin. ¢ cos. )~ (k" sin. m sin, n— A"
sin. ¢ sin. § )* .

In the formula (g) ;
A=k’#i[]sm. ¢cos.¢.de.d {El_—- é},

the symbols A and A’ express the distances of the attracted
point, situated in the surface of the ellipsoid whose semi-axes
are h, ', k"', and determined by the co-ordinates a, b, ¢, or k
cos. m, I’ sin.m cos.n, h" sin.m sin.n, from the extremities
of a prism of the matter of the ellipsoid first considered, paral-
lel to the axis &, and having ¥ ' sin. ¢ cos. ¢ ..dp . d for its
base, and its length equal to 2k cos. ¢: and, if we take a point
in the surface of the last mentioned ellipsoid, that shall have
k cos.m, k' sin.m cos.n, ¥ sin.m sin. z (which we may de-
note by &', ¥/, ¢") for its co-ordinates; and conceive a prism
of the matter of the other ellipsoid, parallel to k and %, that



10 Myr, Ivory on the Attractions

shall have &' k" sin. ¢ cos. ¢ .dp . d{ for its base, and its length
equal to 24 cos. ¢ ; then, it is a consequence of what has been
shown above, that A and A’ will likewise express the distances
of the point, having ', ¥, ¢ for its co-ordinates from the ex-
tremities of this last prism. Therefore, if we put

Al= h’h"‘ffsin. ¢ Ccos.o.dp. dlb{i — EL} :

then will A’ (when the double fluent is taken between the
same limits as in the case of A) be equal to the attractive force
which the ellipsoid of homogeneous matter, whose semi-axes
are &, i, h", exerts on the point, whose co-ordinates are  cos.
m, &' sin. m cos. n, ¥ sin. m sin, n, or &', ¥, ¢/, in the direction
parallel to the axis . For, in the formula for A, as the
fluxion under the sign of double integration, denotes the at-
tractive force of an indefinitely small prism of the matter of
the ellipsoid, whose semi-axes are k, ¥, ¥ upon the point whose
co-ordinates are a, b, ¢, in the direction parallel to % and % ; so,
for the like reasons, in the formula for A’, the fluxion under
the same sign, will denote the attractive force of an indefinitely
small prism of the matter of the ellipsoid, whose semi-axes
are h, k', k", upon the point whose co-ordinates are &', ¥,¢':
and therefore the two fluents, when extended to all the prisms
that compose the ellipsoids, will denote the attractions of the
whole masses upon the respective points, in the direction men-
tioned. Thus the attractions A and A’ depend upon the same
fluent, and they are manifestly in the same proportion as & #”
is to k' k",

And if we denote by B’ and C’ the attractive forces which
the ellipsoid of homogeneous matter, whose semi-axes are
h, k', k" exerts on the point whose co-ordinates are a’, ¥/, ¢/, in
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the directions parallel to # and #”; it may, in like manner, be
shewn, that the attractions B and B’ have the same proportion
as kk” has to kk"”; and the attractions C and C’, the same pro-
portion as k&' to Al

The points in the surfaces of the two ellipsoids, which are
determined by the co-ordinates, % cos. m, &' sin. m cos. n, h'
sin.m sin. n, or a, b, ¢, and % cos. m, ¥ sin.m cos.n, ¥ sin. m
sin, n, or &', ', ¢!, may not improperly be called correspond-
ing points of the surfaces: they are such points as are situated
on the same sides of the planes of the principal sections, and
have their co-ordinates’ respectively proportional to the axes
to which they are parallel. This being premised, the result
of the foregoing investigation may be enunciated, as in the
following theorem :

“ If two ellipsoids of the same homogeneous atter have
 the same excentricities, and their principal sections in the
“ same planes; the attractions which one of the ellipsoids ex-
“ erts upon a point in the surface of the other, perpendicularly
“ to the planes of the principal sections, will be to the attrac-
““ tions which the second ellipsoid exerts upon the correspond-
““ ing point in the surface of the first, perpendicularly to the
“ same planes, in the direct proportion of the surfaces, or
“ areas, of the principal sections to which the attractions are
¢ perpendicular.”

For the principal sections, being ellipses, their areas are
proportional to the products of the semi-axes.

When the attracted point, of which the co-ordinates are ¢,
b, ¢, is placed without the ellipsoid having &, ¥, ¥ for its semi-
axes ; then the point, of which &', ¥, ¢’ are the co-ordinates, is
necessarily within the other ellipsoid: and, on account of the
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relation which has been shewn to take place between the at-
tractions of the two solids upon corresponding points in one
another’s surfaces, the case, when the attracted pointis placed
without an ellipsoid, is made to depend upon the case, when
the attracted point is within the surface.

4. Let us now consider the formula (2) for the attractive 1
force parallel to the axis &,

A=[fd.a= {5 =2}

on the supposition that the attracted point is within the ellip-
soid. If @ ==o (that s, if the attracted point be in the plane

of y and z) then — — —, == o, for all values of z, y, and »:

and, in this case, the whole attractive force A is evanescent,
as it ought to be. For all other values of a, the expression

— — —, in the circumstances supposed, is plainly a finite po-
sitive quantity : and, therefore, supposing b and ¢ to be con-
stant, and & to increase, we must infer that the attractive force
A will receive finite increments, so long as the point deter-
mined by the co-ordinates a, b, ¢, is within the ellipsoid. If
this point be in the surface, then the variable ordinates xz, y, 2,
when they belong to points indefinitely near to the attracted
point, will approach indefinitely to an equality with a, b, ¢;

. 1 1
and the corresponding values of - — —, and, consequently,

the fluxions of the force A, will' become infinitely great; on
which account the continuity of the function A is broken off.
From what has now been observed, it follows, that we may
substitute for the force A, its expansion in a series of the
powers of a, provided we are careful not to extend the con-
- clusions obtained by reasoning from the nature of such series,

&
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to the case when the attracted point is without the surface of
the ellipsoid.
LetR®*=2"+4 (b —y)" 4 (¢ — =)*, then
A= {R‘ +a(a—eax) }-}

a'={R'4a(a+ 2z) {4
and, if the function — — —, be expanded into a series, the ter-
minus generalis of that series will be

13§72 =1 a"(a 4 22)"— n"[a—z.:]"
Sl YT T RE 4t

and, hence it is plain, that all the even powers of a will disap-
appear, and only the odd powers will remain. Now, the ex-
pansion of the force A cannot contain any of the powers of a,

excepting those which enter into the series for é - _;-,: there-

fore, supposing the expansion of A to be arranged according

to the powers of a, it will necessarily be of this form, viz.
A=Alg 4 A g* - AU & A7 0" o, &e.:

where Al Al3), A}, &c, are functions independent of a. The

first of these coefficients, it is ¢asy to prove, will be determined

by this formula,

ﬁ“]: 2x.dy.dz : {4)
‘ff {z‘+ (B—y)* + (e—=* }%
and, with regard to the rest, they may be all shewn to depend
on A", in consequence of an equation in partial fluxions, first

noticed by La Prace, and derived from the nature of the
functions under consideration. In effect, the truth of the fol-

lowing formulas will be established by merely performing the
operations indicated, viz.

VAR
D




14 M., Ivory on the Attractions

(dd' —) (d‘d = dd . —
da®* db® St

and hence it is easy to infer, that
d’dﬂ dd A ddA
=) + (&) + =) =
Substitute the series for A in this last equation, and let the

coeflicients of the several powers of a be equated to 0; and
there will be obtained

1) (1)
(s) 1 daal ddA
A - (% ) (29
10 N .:HA“] a‘dﬁ.”
A TRe e {( db® dr:‘
i ddA !5’ mm (5)
A[? WA G {(dﬂ‘

‘Thus, all thc other coefficients depend upon the coefficient of

the first term, being derived from it by a repetition of the

same operations: and when the general expression of Al!)

shall be determined, the whole series will become known.
Resume the formula (4)

(1t 2x . dy.dx x
+ H‘/‘f{#—“i—lb—.ﬂ'—klﬁ—z]‘}i

r=R cos. p

b — y =R sin. pucos. g

¢ — z==R sin. p sin. ¢,
then will R = {I‘ + (b—y) + (c:—z}'}:}, express the line
drawn from the foot of a to the point in the surface of the
ellipsoid, of which a,y, = are the co-ordinates ; p will be the
angle which R makes with a; and ¢ the angle which the plane
drawn through R and a, makes with the plane of yand 2. In

and let
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consequence of the equation of the solid, R is a function of the
angles p and ¢: therefore, making p only variable, we shall
have

dRy .
—dy= {(EF] sin. p 4= R ms.p}cm.q.dp:
then, because y must be constant when % varies, we must
make

—dz = {(j—;‘) sin. p + R ms.p} sin.q.dp = {(g) sin. ¢
-[-R-::us.q} sin. p . dg, _

0 == {(%) sin.p + R ms.p} CoSs. ¢ . dp 4= {[%} cos. ¢ —
Rsin.q} sin. p . dg.

and by exterminating dp, we get

_dz=Rsu1.#-dg:
€os. ¢

and hence, by substitution,

dR

A= fff{@ cos. p sin. *p < cos. *p sin.p} dp . dg;
the fluent to be taken from p =0, to p = =, and from g =o,
= 2w.

The transformed formula for A" cannot be integrated, un-
less we substitute, in place of R, the function of the angles p
and g, that is equal to it. Now, z=R cos. p, y=b— R sin. p
cos. 4, *=¢ — R sin, p sin. q: let these values be substituted
in the equation of the solid,

_:1 _']"1 g: 3
rtETE=;

- and, for the sake of simplicity, let
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cos. sin. *p cos. sin. *p sin, *
M P + P g 1- iu f.l‘

;g Ersm f.n:ns g+ ¢ sin. psm q

PR
then
L 3 N D—-
H nﬂnva_ﬁ_ﬂ.

This equation has two roots, viz.

= ¥N' 4 MD|4+ N _
R= i :

and, because D is always positive when the attracted point is
within the solid, as is here supposed, both these roots are real
quantities, whatever be the angles p and ¢. Conceive the line
R to be produced to meet the surface of the ellipsoid again
below the plane of y and 2, then, if the produced part be de-
noted by R, it is plain that R and R’ will be the two roots of
the above equation: and because R’, although in an opposite
direction, has the same angular position as R, we may substi-

tute R’ for R, in the expression for Al": thus,
dR’

A = sjf{-(—?; cos. p sin. *p <= cos. *p sin.p}a’p . dg.
Therefore, by adding together the two values of A", and
taking half the sum, we get

Al ff{( urp} (JR‘))ms P sin.*pf-2 cos.*p sin, P}dpdq

d RR’)

A“]"-ff{ ~—RR— C0s. p sin. *p <= 2 cos. *p sin. p}a’p dq :
the limits of this fluent being, as before, from p = o to ==z,
and from ¢ =0 to ¢ = 2.
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By the theory of equations RR' = — % : and, by substitu-

tion, the last expression of A!" will become
| (%)
A" =ff{-— MLcns.p sin, *p 4 2 cos."p sin.p}a’p . dq.

It is remarkable, that the last expression of A!" does not
contain either of the quantities b or ¢ ; for these do not enter
into the function M : and hence we are to conclude that the
value of A" is independent on these co-ordinates, and is the
same for all points situated within the same principal section
of the ellipsoid. Another inference is, that all the other co-
efficients AU, AlS) &c. of the expansion of the force A are
severally equal to o, as is plain from the law which connects
those quantities with one another, and with A"': on this ac-
count the expansion alluded to will be reduced to its first term,
and we shall have, simply,

A=Axa.

The same considerations likewise suggest a new analytical
expression of Al"); which, on account of its simplicity, and its
immediate dependence on the figure and equation of the solid,
seems to deserve the preference to every other: for, since it
has been shewn that the value of Al" is independent on the
co-ordinates b and ¢, we may exterminate these quantities from
the formula (4); and thus

A{l]2 zx.dy. dz :
ff{f—l‘jz‘i‘ t‘};—
the fluent to be extended to the whole of the surface of the

principal section made by the plane of y and =.
The same reasoning that has been applied to the determi-
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nation of the attractive force A, it is evident, will apply equally
to the attractions denoted by B and C: and, therefore, the
attractions of an ellipsoid, acting perpendicularly to the planes
of the principal sections, upon a point situated within the sur-
face, are as follows, viz.

Aman [l
B=bx[[ {;f;-:j; Lo

Czcxﬂ 2z . dx.dy 4
5

+r 4+ (3

the several fluents to be extended to the whole of the surfaces
of the principal sections, to which the attractions are perpen=
dicular.

When the attracted point is without the ellipsoid, it be=
comes necessary, in the first place, to determine the semi-axes
of another ellipsoid whose surface shall pass through the at-
tracted point, and which shall have the same excentricities
and its principal sections in the same planes, as the given
ellipsoid : these semi-axes have been denoted by A, &', k", and
the formulas for computing them have already been given.*
‘We must next determine the co-ordinates of the point in the
surface of the given ellipsoid, that corresponds to the attracted
point in the surface of the other ellipsoid: and, according to
the definition that has been given of them, these co-ordinates,

: k K

denoted by o', ¥, ¢’ are thus found; @' =ax—; V'=bx 5;
H L - L " et

¢ == ¢ x -} These things being determined, the attractions of

the ellipsoid whose semi-axes are &, ¥, h", upon the point whose
* Pages 7 and 8. + Page 11.
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co-ordinates are o', ', ¢’ (which is plainly within the solid) are

as follows:
iskatiie b 22 . dy . de
Al=ax~ xff{.:"-l-f-pzﬂ}g,
B'=bx%xffi;i'ff;}*

ot i f‘ﬁxfj. W de dy
{4+l
where 2/, y', 2’ are the three co-ordinates of a point in the sur-
face of the ellipsoid, whose semi-axes are h, ', . To deter-
mine the attractions of the given ellipsoid upon the given

" point, we have now only to apply the theorem demonstrated
in § 3; and so,

A .ﬁk" ﬂ [ X a8 dj' . g
bb"b" : e
3" +* 4= 'es §
kR o o
B_bx:”..ff i (6)
{e+r+x b
Rk T e
Ol w‘f/‘ dy' . dx .
{x‘+3‘+=«"}-}

5. If we examine the expressions (5 ) for the attractions of
an ellipsoid upon a point placed within the surface, it will
readily appear that the coeflicients, into which the co-ordinates
of the attracted point are multiplied, are homogeneous func-
tions of o dimensions of the semi-axes of the solid, these quan-
tities rising to the same dimensions in the numerators of the
functions, as in the denominators: and hence it is easy to in-
fer, that the values of these coefficients depend only on the
proportions of the semi-axes to one another, and not at all
upon their absolute magnitudes. Therefore, if we conceive
two ellipsoids of the same homogeneous matter, similar to
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one another and similarly placed, whose surfaces envelop the
same attracted point; it is plain, from what Las just been re-
marked, that the attractions of these ellipscids upon the point
will be precisely equal. Thus it appears, that the matter in-
closed between the surfaces of the two solids, does not alter
the attractive force of the inner ellipsoid ; which could not be
the case, unless the attraction of the superadded matterin any
one direction were precisely equal to the attraction of the
same matter in the contrary direction, so as to produce an
equilibrium of opposing forces. Hence we may extend to a
shell of homogeneous matter, bounded by any finite surfaces
of the second order, which are similar to one another and
similarly placed, what Sir Isaac Newron has demonstrated in
the like hypothesis for surfaces of revolution ;* as in the fol-
lowing theorem:

<« If a point be situated within a shell of homogeneous mat-
« ter, bounded by two finite surfaces of the second order,
¢ which are similar and similarly placed; then the attraction
¢ of the matter of the shell upon the point, in any one direc-
“ tion, will be equal to, and destroy, the attraction of the same
« matter, in the opposite direction.”

6. Nothing more is wanting to complete a theory of the
attractions of homogeneous ellipsoids, than to integrate the
fluxional expressions (5) already obtained. In the case of a
sphere, we have k=¥ =¥, and 2* 4 )" 4+ 2* =¥ : there-
fore

_&__axﬂjx oy dm

now ex.dy, dz is equal to a prism of the matter of the solid,

* Prin. Math. Lib. I. Prop. 0. Prop. g1. Cos. 3.
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this force is, therefore, directly as the mass, and inversely as
the square of the distance from the center of the sphere.

For an ellipsoid in general, we have x =k cos. ¢,y =¥ sin.
¢ cos. ), z = ¥ sin. ¢ sin. §: in order to transform the for-
mulas (5), we must first compute the values of dy . dz, dr . dz,
dz.dy. For this purpose, let the fluxion of y be taken, making
o the only variable, so thatdy =¥ cos. ¢ cos.J xdp: then, be-
cause y must be constant in the expression of the force A, when
= varies, we must make

dz = k' cos. ¢ sin. J . dp 4 ¥’ sin. ¢ cos. . d
o = ¥ cos. ¢ cos. . dp — ¥ sin. ¢ sin. § . d{,
and, by exterminating dp, we get dz =1{" EE';-E- x d : there=
fore
dy .dz = k¥’ cos. ¢ sin. ¢ . dp . di.

Again, because the value of = depends only on the angle o,
we have dr = — k sin. ¢ . dp: and, by taking the fluxions of
y and = relatively to the variable J, we have dy = — ¥ sin. ¢
sin. . d, dz = k' sin. ¢ cos. ¥ . d}: therefore,

dr .dy=Fk¥ sin.*p sin. § .dp . di

dx . dz = kk" sin.*p cos. 4. dop . di:
in these expressions the sign —, which stands before the
values of dr and dy, has been neglected : for that sign marks
only that z and y decrease when the angles ¢ and { increase,
and does not affect the absolute magnitudes of the fluents,
which are alone the subjects of our research. Observing that
kr=k 4 ¢, and k" = k* 4- ¢, the formulas (5) will now
become, by substitution,
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A:ﬂxgkk’k"xff :n5.1ﬁ+iin.¢.d§.n"¢a
{k‘ + €* sin. *p cos. N 4 €7 sin. *@ sin. %) } 3
B =bx ot x [ S e
{i‘" + ¢* sin. *p cos, *§ 4 € sin. *@ sin. %) } 4

C =L w skk"kﬂ xff sin. *@ sin. - . dp . dil :
{p + ¢* sin. *g cos. *4 + €7 sin. ?@ sin. %) _% 2

the several fluents to be taken from ¢ =oto g = %, and from
J=o0to) =2m.

Let
e : gin. @ . d9 . did ;
Q _ff {r 4 ¢ sin, *p cos. %} + ¢ sin. % sin.=.|,}.§
then the last values of A, B, and C will be expressed by the
partial fluxions of €, as fullnws

A=axobbl x {— 1 ]+ () + & (43}
Bmﬁxﬂkﬁ'ﬁ":—?
C=c xeht'¥' x — -:7, [%]
For the sake of brevity, let p* = ¢ cos.*} + €” sin.*{: then
aQ Yy ksin.g.dp.d)
e {'ET) "‘f[uwr 0. 9)3 °
and, by integrating relatively to o,
dQ_ d e k cos. p !
g (?T] =fﬁ+p" {1 {F+f=sin.*¢r;|{}'
and, by taking the whole fluent from ¢==0 to ¢ = 3, and

restoring the value of ¢,

(d& ) fk‘—l—c‘ws‘-#-;-t‘ﬁm“'[r

+ £*\ 3  sino
(#1 o, ) e L then, by substltutmn,

1
— (&) = mrrErm J s o
and, by integrating from ¢ == o0 to { = 2w,
Es
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very successfully cultivated, and is fertile in respurces and
methods that are applicable to every particular instance.,

The fluents in the formulas (6) for a point without the
surface, are derived from the ellipscid whose semi-axes are
h, I/, i, in the same manner as the fluents already considered

are derived from the given ellipsoid : and, because ;;fﬁ is equal
to the mass of the latter solid, divided by the mass of the for-
mer one, it is easy to infer that we have only to substitute &
for % in the fluents of the formulas (7), to obtain the expres-
sions of the attractions of the given ellipsoid upon a point
without the surface. Thus the two cases, when the attracted
point is within the solid or in the surface, and when it is with-
out the solid, differ only in the limits of the fluents: in the
former case, the fluents, beginning when the variable quan-
tity is infinitely great, are to be extended till it has decreased,
so as to be equal to the least of the semi-axes of the given
ellipsoid ; and, in the latter case, the fluents are to be ex-
tended only till the variable quantity has decreased, so as to
be equal to &, the least of the semi-axes of the ellipsoid, whose
surface passes through the attracted point. In the former
case, the values of the fluents are the same for all points
within the ellipsoid, and in its surface ; in the latter case, these
values depend upon the position of the attracted point,

The preceding formulas, being founded on the most gene-
ral hypothesis, are applicable to all figures bounded by finite
surfaces of the second order. The case of the sphere, which
corresponds to the supposition that the excentricities ¢* and ¢
are both evanescent, has already been considered, and, as it
is attended with no difficulty, it needs not be again discussed ;
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but the two cases of solids of revolution, that of the oblate
and oblong spheroids, are deserving of particular attention.
In the oblate spheroid, the two greater semi-axes & and £"
are equal to one another; and, therefore, it corresponds to
the supposition of ¢* = ¢, In this case the formulas (7) will

become
— dk
A = gaM f FFF0)
— dk
B=goM. [ er
— dk
C =M. [gep:
these expressions may be all integrated by the ordinary me-
thods, and thus we get

A...’"M {4 — arc. tan. %}

£
M '
B =="—.{ar¢:. tan. -—---;}
aeh 1 '
=
£

__ 3xM e k
k‘l

The formulas express the attractions of an oblate spheroid
upon a point within the surface or in it, acting parallel to a,
b, ¢, the co-ordinates of that point, of which a is parallel to the
axis of revolution.

When the attracted point is without the surface, we have
only to compute k, the semi-axis of revolution of the spheroid,
whose surface passes through the attracted point, and to sub-
stitute it for k in the last formulas, in order to have the ex-
pressions of the attractions sought: and it is to be remarked,
that the equation for finding %, which in the general case of the

'llllﬂ-
25
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ellipsoid rises to the third degree, is, in this case, depressed
to a quadratic. In effect, the equation for i,* when ¢ =¢",

becomes
A
bl + "I

— T o
whence

W= (a4 4 =) =2a"¢,
and so

21&’:&'-{-— Er'+£‘—.e’+v'{a’ +.ﬁ‘+c'—- el}' -1-4.11'&'.

In the oblong spheroid, one of the semi-axes ¥ and ¥ must
be made equal to the least semi-axis #, which corresponds to
the suppposition of " =o. In this case, the formulas (7) will
become

—dk
A =gM . [rrrroy
= dk
B = stM f* (B + )

— dk
== Slf-'M s W
In these expressions & is the radius of the equatorial circle of

the spheroid, and not the semi-axis of revolution, which is =
VFF¢: and if we change k to denote the semi-axis of re-

volution, which requires that v/ — ¢ be substituted for k;
and, for the sake of uniformity with the formulas for the ob-
late spheroid, likewise interchange a and b, and A and B, in
order that a may denote the ordinate parallel to the axis of
revolution, and that A may express the attractive force in the
same direction ; then, the last expressions will become

= gaM fk‘ {; e
B = ng [ “—‘”‘,],

—dk
® Page 7.






