Tables of physical and chemical constants and some mathematical functions / by G.W.C. Kaye and T.H. Laby.

## Contributors

Kaye, G. W. C. 1880-1941. Laby, T. H. 1880-1946.

## **Publication/Creation**

London : Longmans, Green, [1941]

## **Persistent URL**

https://wellcomecollection.org/works/h3qqbgdn

## License and attribution

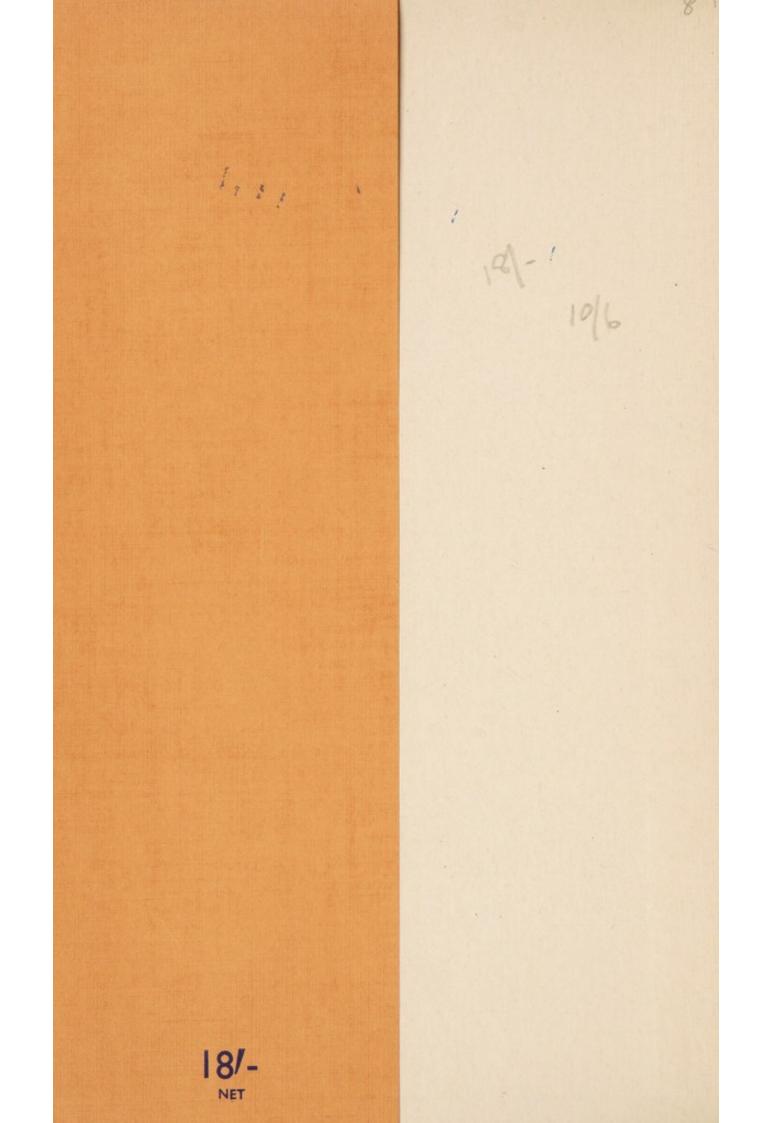
This work has been identified as being free of known restrictions under copyright law, including all related and neighbouring rights and is being made available under the Creative Commons, Public Domain Mark.

You can copy, modify, distribute and perform the work, even for commercial purposes, without asking permission.



Wellcome Collection 183 Euston Road London NW1 2BE UK T +44 (0)20 7611 8722 E library@wellcomecollection.org https://wellcomecollection.org G. W. C. KAYE AND T. H. LABY

# TABLES OF PHYSICAL AND CHEMICAL CONSTANTS


## AND

SOME MATHEMATICAL FUNCTIONS

NINTH EDITION

Q410 1941 K23T

LONGMANS





Digitized by the Internet Archive in 2019 with funding from Wellcome Library

https://archive.org/details/b31356904

## PHYSICAL AND CHEMICAL CONSTANTS

## FOUR-FIGURE MATHEMATICAL TABLES.

By G. W. C. KAYE, O.B.E., M.A., D.Sc., F.R.S., and T. H. LABY, M.A., Sc.D., F.R.S. 8vo.

## TABLES OF

## PHYSICAL AND CHEMICAL CONSTANTS AND SOME MATHEMATICAL FUNCTIONS

BY

G. W. C. KAYE,

O.B.E., M.A., D.Sc., F.R.S.

LATE SUPERINTENDENT OF THE PHYSICS DEPARTMENT, THE NATIONAL PHYSICAL LABORATORY

AND

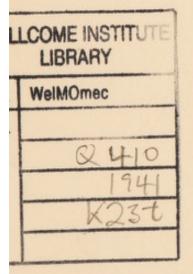
T. H. LABY,

M.A., Sc.D., F.R.S. professor of natural philosophy, university of melbourne

NINTH EDITION

LONGMANS, GREEN AND CO. LONDON • NEW YORK • TORONTO

#### LONGMANS, GREEN AND CO. LTD. OF PATERNOSTER ROW


43 ALBERT DRIVE, LONDON, S.W.19 17 CHITTARANJAN AVENUE, CALCUTTA NICOL ROAD, BOMBAY 36A MOUNT ROAD, MADRAS

LONGMANS, GREEN AND CO. 55 FIFTH AVENUE, NEW YORK 221 EAST 20TH STREET, CHICAGO

LONGMANS, GREEN AND CO. 215 VICTORIA STREET, TORONTO

#### BIBLIOGRAPHICAL NOTE

| FIRST PUBLISHED |  | October   | 1911 |
|-----------------|--|-----------|------|
| Second Edition  |  | September | 1916 |
| Third Edition   |  | March     | 1918 |
| New Impression  |  | <br>May   | 1919 |
| Fourth Edition  |  | November  | 1920 |
| Fifth Edition   |  | June      | 1926 |
| Sixth Edition   |  | January   | 1928 |
| Seventh Edition |  | March     | 1939 |
| Eight Edition   |  | June      | 1936 |
| Ninth Edition   |  | September |      |



683 590

CODE NUMBER: 95347

All rights reserved Printed in Great Britain by William Clowes & Sons, Limited, Beccles

## PREFACE TO NINTH EDITION.

THE geographical remoteness of the two authors, accentuated by the attendant difficulties of the war, has led to a scheme whereby each has accepted responsibility for the revision of certain sections in the present edition. Professor Laby has rewritten the following tables :—

| Units and dimensions          | General and atomic constants      |
|-------------------------------|-----------------------------------|
| Electrical units              | α-rays                            |
| Conversion factors            | Radioactivity                     |
| Mechanical equivalent of heat | Isotopes                          |
| Velocity of light             | Arrangement of electrons in atoms |

As regards "units," an attempt has been made to give an account of the principles underlying physical measurement and the choice of units. The electrical units include those which it was originally proposed by the International Electrotechnical Commission should come into force as "absolute" units on January 1, 1940, but the adoption of which has been deferred for the present. Much consideration has been given to selecting values of the general and atomic constants of physics (e, h and e/m) which appear to have the least error. Explanatory introductions have been added to the new tables of radioactive elements and isotopes.

In the revision of the above tables Professor Laby has received valuable assistance from Mr. V. D. Hopper, M.Sc., who has recently completed with him a determination of the electronic charge, Mr. R. D. Hill, M.Sc., who has kindly read the proofs, and from Miss Jean E. Laby, B.Sc. The initials of those responsible for a table are appended to it.

With reference to the remaining tables which have been subjected to revision or correction, these have been dealt with by Dr. Kaye, who has again had the valuable assistance of Mr. J. H. Awbery, B.A., B.Sc., to whom, and to others at the National Physical Laboratory who have made suggestions, grateful thanks are tendered.

## PUBLISHERS' NOTE

THE lamented death of Dr. Kaye, which took place while the work was going through the press, accentuated still further the difficulties of production. In this misfortune the Physics Department of the National Physical Laboratory very kindly came to our assistance and gave a final inspection to the text of the volume and prepared the index, thus avoiding another considerable delay in publication. For this timely help we are most grateful.

## EXTRACT FROM PREFACE TO FIRST EDITION.

THE need for a set of up-to-date English physical and chemical tables of convenient size and moderate price has repeatedly impressed us during our teaching and laboratory experience. We have accordingly attempted in this volume to collect the more reliable and recent determinations of some of the important physical and chemical constants.

To increase the utility of the book, we have inserted, in the case of many of the sections, a brief *résumé* containing references to such books and original papers as may profitably be consulted.

Attention has been paid to the setting and accuracy of the mathematical tables; these are included merely to facilitate calculations arising out of the use of the book, and limitations of space have cut out all but a few of the more essential functions.

We began this book while at the Cavendish Laboratory, Cambridge, and Dr. G. A. Carse shared in its inception. To Mr. G. F. C. Searle, F.R.S., we feel we owe much for his encouragement and suggestions when the scope of the book was under consideration . . .

G. W. C. K. T. H. L.

September, 1911.

## CONTENTS

|                  |       |     |      |     |    |   |   |   |  |  |   | PAGES   |
|------------------|-------|-----|------|-----|----|---|---|---|--|--|---|---------|
| ATOMIC WEIGHTS   |       | •   |      |     |    | • | • |   |  |  | • | 1—2     |
| UNITS            |       |     |      |     |    |   |   |   |  |  |   | 3—17    |
| GENERAL PHYSICS  | AND   | Ası | rroi | NON | đΥ |   |   |   |  |  |   | 17-52   |
| НЕАТ             |       |     |      |     |    |   |   |   |  |  |   | 53-77   |
| Sound            |       |     |      |     |    | • |   | • |  |  |   | 78—80   |
| LIGHT, INCLUDING | Spec  | TRO | osco | OPY |    |   |   |   |  |  |   | 81—91   |
| ELECTRICITY AND  | MAG   | NET | ISM  |     |    |   |   |   |  |  |   | 92—105  |
| X-RAYS, ATOMS AN | ND IO | NS  |      |     |    |   |   |   |  |  |   | 105—129 |
| CHEMISTRY AND C  | FEOLO | GY  |      |     |    |   |   |   |  |  |   | 130-149 |
| MATHEMATICAL T   | ABLES | 5.  |      |     |    |   |   |   |  |  |   | 150-168 |
| ISOTOPES         |       |     |      |     |    |   |   |   |  |  |   | 169—172 |
| INDEX            |       |     |      |     |    |   |   |   |  |  |   | 173-181 |

### CONTENTS

#### THE ELEMENTS IN THE ORDER OF ATOMIC NUMBERS

INTERNATIONAL ATOMIC WEIGHTS 1938

Mean atomic weights of elements relative to atomic weight of oxygen (O  $\equiv$  16), chemical composition being that found in nature.

|         |            | Atomie  | Contraction of the second |           | 57     |            | Atomic            |                                       |           |
|---------|------------|---------|---------------------------|-----------|--------|------------|-------------------|---------------------------------------|-----------|
| Symbol. | At.<br>No. | Waight  | First isolated by         | Date.     | Symbol | At.<br>No. | Weight<br>(1938). | First isolated by                     | Date.     |
| 0       |            | (1000). |                           |           | 00     |            | (1000).           |                                       |           |
| н       | I          | 1.0081  | Cavendish                 | 1766      | Pd     | 46         | 106.7             | Wollaston                             | 1803      |
| He      | 2          | 4'003   | Ramsay & Cleve*           | 1895      | Ag     |            | 107.880           | -                                     | P.        |
| Li      | 3          | 6.940   | Arfvedson                 | 1817      | Cd     | 48         | 112.41            | Stromeyer                             | 1817      |
| Be§     | 4          | 9.02    | Wöhler and Bussy          | 1828      | In     | 49         | 114.76            | Reich and Richter                     | 1863      |
| в       | 5          | 10.82   | Gay-Lussac & Thénard      | 1808      | Sn     | 50         | 118.70            | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | P.        |
| C       | 6          | 12.010  | -                         | P. Sb     |        | 51         | 121.76            | Basil Valentine                       | 15 centy. |
| N       | 7          | 14'008  | Rutherford                | 1772 Te   |        | 52         | 127.61            | v. Richenstein                        | 1782      |
| 0       | 8          | 16.000  | Priestley and Scheele     | 1774      | 1      | 53         | 126.92            | Courtois                              | 1811      |
| F       | 9          | 19'00   | Moissan                   | 1886      | Xe     | 54         | 131.3             | Ramsay and Travers                    | 1898      |
| Ne      | 10         | 20'183  | Ramsay and Travers        | 1898      | Cs     | 55         | 132.91            | Bunsen and Kirchhoff                  | 1861      |
| Na      | II         | 22.997  | Davy                      | 1807      | Ba     | 56         | 137.36            | Davy                                  | 1808      |
| Mg      | 12         | 24'32   | Liebig and Bussy          | 1830      | La     | 57         | 138.92            | Mosander                              | 1839      |
| AI      | 13         | 26.97   | Wöhler                    | 1827      | Ce     | 58         | 140'13            | Mosander                              | 1839      |
| Si      | 14         | 28.06   | Berzelius                 | 1823      | Pr     | 59         | 140'92            | Auer von Welsbach                     | 1885      |
| P       | 15         | 31'02   | Brand                     | 1674      | Nd     | 60         | 144'27            | Auer von Welsbach                     | 1885      |
| s       | 16         | 32'06   |                           | P.        | Sm     | 62         | 150'43            | L. de Boisbaudran                     | 1879      |
| CI      | 17         | 35'457  | Scheele                   | 1774      | Eu     | 63         | 152'0             | Demarçay                              | 1901      |
| A       | 18         | 39.944  | Rayleigh & Ramsay         | 1894      | Gd     | 64         | 156.9             | Marignac                              | 1886      |
| K       | 19         | 39.096  | Davy                      | 1807      | Tb     | 65         | 159'2             | Mosander                              | 1843      |
| Ca      | 20         | 40'08   | Davy                      | 1808      | Dy     | 66         | 162.46            | U. & D.                               | 1907      |
| Sc      | 21         | 45'10   | Nilson and Cleve          | 1879      | Ho     | 67         | 163.5             | L. de Boisbaudran                     | 1886      |
| TI      | 22         | 47.90   | Gregor                    | 1789      | Er     | 68         | 167.2             | Mosander                              | 1843      |
| V       | 23         | 50.95   | Berzelius                 | 1831      | Tm     | 69         | 169.4             | Cleve                                 | 1879      |
| Cr      | 24         | 52.01   | Vauquelin                 | 1797      | Yb     | 70         | 173.04            | Marignac                              | 1878      |
| Mn      | 25         | 54.93   | Gahn                      | 1774      | Lu     | 71         | 175.0             | Urbain                                | 1908      |
| Fe      | 26         | 55.84   |                           | P.        | Hf     | 72         | 178.6             | Coster & von Hevesy                   | 1923      |
| Co      | 27         | 58.94   | Brand                     | 1735      | Та     | 73         | 180.88            | Eckeberg                              | 1802      |
| Ni      | 28         | 58.69   | Cronstedt                 | 1751      | W      | 74         | 183.92            | Bros. d'Elhujar                       | 1783      |
| Cu      | 29         | 63.57   | mathe - 1a                | P.        | Re     | 75         | 186.31            | Noddack & Taske                       | 1925      |
| Zn      | 30         | 65'38   | Ment. by B. Valentine     | 15 centy. | Os     | 76         | 190'2             | Smithson Tennant                      | 1804      |
| Ga      | 31         | 69'72   | L. de Boisbaudran         | 1875      | Ir     | 77         | 193.1             | Smithson Tennant                      | 1804      |
| Ge      | 32         | 72.60   | Winkler                   | 1886      | Pt     | 78         | 195.23            |                                       | 16 centy. |
| As      | 33         | 74.91   | Albertus Magnus           | 13 centy. | Au     | 79         |                   | - moion                               | P.        |
| Se      | 34         | 78.96   | Berzelius                 | 1817      | Hg     | 80         | 200.01            | Md. by Theophrastus                   | 300 B.C.  |
| Br      | 35         | 79.916  | Balard                    | 1826      | TI     | 18         | 204.39            | Crookes                               | 1861      |
| Kr      | 36         | 83.7    | Ramsay and Travers        | 1898      | Pb     | 82         | 207.21            | Mentd. by Pliny                       | P.        |
| Rb      | 37         | 85.48   | Bunsen and Kirchhoff      | 1861      | Bi     | 83         | 209'00            | Mtd. by B. Valentine                  | 15 centy. |
| Sr      | 38         | 87.63   | Davy                      | 1808      | Po     | 84         | 210               | M. & Mme. Curie                       | 1898      |
| Y       | 39         | 88.92   | Wöhler                    | 1828      | Rn     | 86         | 222               | M. & Mme. Curie                       | 1900      |
| Zr      | 40         | 91.22   | Berzelius                 | 1825      | Ra     | 1000       | 226.05            | Curies and Bémont                     | 1898      |
| Nb      |            | 92.91   | Hatchett                  | 1081      | Ac     | 89         | 226-7             | Debierne                              | 1898      |
| Mo      | 42         | 95.95   | Hjelm                     | 1790      | Th     | 90         | 232.15            | Berzelius                             | 1828      |
| Ru      | 44         | 101.2   | Claus                     | 1845      | Pa     |            | 231               | Piccard & Stahel                      | 1921      |
| Rh      | 45         | 102.91  | Wollaston                 | 1803      | U      | 92         | 238.07            | Peligot                               | 1841      |
|         | -          |         |                           |           |        |            |                   |                                       | -         |

P., Prehistoric; \* Lockyer (in sun), 1868; U. & D., Urbain & Demenitroux; § Be or GI; ‡ Nb or Ch. Atomic Numbers 43, 61, 85 and 87 are still unrepresented. See Isotopes, pp. 169-71

#### INTERNATIONAL ATOMIC WEIGHTS FOR 1938 ( $O \equiv I6$ )

(See "Eighth Report of the Committee on Atomic Weights" of the Inter-national Union of Chemistry; also F. W. Clarke, "A Recalculation of the Atomic Weights." Mean atomic weights of the elements relative to the atomic weight of oxygen,  $O \equiv 16$ , the isotopic composition of the elements being that found in nature. For isotopes, see p. 169-71.)

| Element.                      | Symbol.  | Atomic<br>Weight. | Element.                         | Symbol.  | Atomic<br>Weight. |
|-------------------------------|----------|-------------------|----------------------------------|----------|-------------------|
| Aluminium · ·                 | AI       | 26.97             | Neodymium · ·                    | Nd       | 144'27            |
| Antimony · ·                  | Sb       | 121.20            | Neon · · · ·                     | Ne       | 20.183            |
| Argon · · · ·                 | A        | 39'944            | Nickel · · · ·                   | Ni       | 58.69             |
| Arsenic · · ·                 | As       | 74'91             | Niobium † · ·                    | Nb       | 92.91             |
| Barium · · ·                  | Ba       | 137.36            | Nitrogen · · ·                   | N        | 14.008            |
| Beryllium*                    | Be       | 9'02              | Osmium · · ·                     | Os       | 190'2             |
| Bismuth · · ·                 | Bi       | 209'00<br>10'82   | Oxygen · · ·                     | 0        | 16.000            |
| Boron · · · ·                 | B        | 79.916            | Palladium · ·                    | Pd       | 106.7             |
| Bromine · · ·                 | Br<br>Cd | 112'41            | Phosphorus · ·                   | Pt       | 31'02<br>195'23   |
| Cadmium · · ·                 | Cs       | 132.91            | Platinum · · ·<br>Potassium · ·  | K        | 39.096            |
| Cæsium · · ·<br>Calcium · · · | Ca       | 40'08             | Potassium · · · Praseodymium     | Pr       | 140'92            |
| Carbon · · ·                  | c        | 12'010            | Protoactinium ·                  | Pa       | 231               |
| Cerium · · ·                  | Če       | 140'13            | Radium                           | Ra       | 226.05            |
| Chlorine · · ·                | CI       | 35'457            | Radon                            | Rn       | 222               |
| Chromium · ·                  | Cr       | 52'01             | Rhenium · · ·                    | Re       | 186.31            |
| Cobalt · · · ·                | Co       | 58.94             | Rhodium · · ·                    | Rh       | 102.01            |
| Copper · · · ·                | Cu       | 63'57             | Rubidium · · ·                   | Rb       | 85.48             |
| Dysprosium · ·                | Dy       | 162'46            | Ruthenium · ·                    | Ru       | 101.2             |
| Erbium                        | Er       | 167'2             | Samarium · ·                     | Sm       | 150.43            |
| Europium · · ·                | Eu       | 152'0             | Scandium · ·                     | Sc       | 45'10             |
| Fluorine · · ·                | F        | 19.00             | Selenium · · ·                   | Se       | 78.96             |
| Gadolinium · ·                | Gd       | 156.9             | Silicon · · ·                    | SI       | 28.06             |
| Gallium · · ·                 | Ga       | 69'72             | Silver · · · ·                   | Ag       | 107.880           |
| Germanium · ·                 | Ge       | 72.60             | Sodium · · ·                     | Na       | 22.997            |
| Gold · · · · ·                | Au       | 197'2             | Strontium · ·                    | Sr       | 87.63             |
| Hafnium · · ·                 | Hf       | 178.6             | Sulphur · · ·                    | S        | 32.06             |
| Helium · · ·                  | He       | 4.003             | Tantalum · ·                     | Та       | 180.88            |
| Holmium · · ·                 | Ho       | 163.5             | Tellurium                        | Te       | 127.61            |
| Hydrogen · ·                  | H        | 1.0081            |                                  | Tb       | 159'2             |
| Indium · · · ·                | In       | 114'76            | Thallium · · ·                   | TI       | 204.39            |
| lodine · · · ·                | 1        | 126.92            | Thorium · · · ·<br>Thulium · · · | Th       | 232'12            |
| Iridium · · · · ·             | lr<br>Fe | 193'1<br>55'84    | Tin · · · ·                      | Tm<br>Sn | 169'4<br>118'70   |
| Krypton · · ·                 | Kr       | 83.7              | Titanium                         | Ti       |                   |
| Lanthanum                     | La       | 138.92            | Tungsten                         | w        | 47'90<br>183'92   |
| Lead · · · ·                  | Pb       | 207'21            | Uranium                          | Ű        | 238.07            |
| Lithium                       | Li       | 6.940             | Vanadium                         | v        | 50.95             |
| Lutecium · · ·                | Lu       | 175'0             | Xenon · · · ·                    | Xe       | 131.3             |
| Magnesium · ·                 | Mg       | 24'32             | Ytterbium                        | Yb       | 173.04            |
| Manganese · ·                 | Mn       | 54'93             | Yttrium                          | Ŷ        | 88.92             |
| Mercury                       | Hg       | 200'61            | Zinc · · · · ·                   | Zn       | 65'38             |
| Molybdenum ·                  | Mo       | 95'95             | Zirconium · ·                    | Zr       | 91'22             |
|                               |          |                   |                                  |          | _                 |

Beryllium or Glucinum (Gl).
 † Niobium or Columbium (Cb).

#### C.G.S. UNITS AND DIMENSIONS

The metric standards of length and mass are kept at the International Bureau of Weights and Measures in the Pavillon de Breteuil, Sèvres, near Paris. The Bureau is jointly maintained by the principal civilized governments as members of the Metric Convention. The use of metric weights and measures was legalized in the United Kingdom in 1897.

#### LENGTH

Unit-the centimetre, 1/100 of the international metre, which is the distance, at the melting-point of ice, between the centres of two lines engraved upon the polished "neutral web" surface of a platinum-iridium bar of a nearly X-shaped section, called the International Prototype Metre.

The alloy of 90 Pt, 10 Ir used (also for the International Kilogramme) has not a large expansion coefficient (see p. 63), is hard and durable, and was artificially aged. Pt-Ir copies of this metre, called National Prototype Metres, were made at the same time, and distributed by lot about 1889 to the different governments. The international metre is a copy of the original Borda platinum standard-the mètre des archives. This was intended to be one ten-millionth of the quadrant from the equator to the pole through Paris, and was legalized in 1795 by the French Republic. But as the value of a quadrant came to be more accurately determined, and moreover is changing, the actual bar constructed was made the standard.\*

The international prototype metre has been measured several times in terms of the wavelengths of the red cadmium ray (see p. 86). See Michelson's "Light Waves," 1903. Guillaume, "La Convention du Mètre."

1 metre = 1,553,164.13 wave-lengths in dry CO2 free air at 15° C. and 76 cm. of Hg.

= 1,552,734.81 wave-lengths in vacuum (Sears and Barrell, Phil. Trans., 1934).

#### MASS

Unit—the gramme, 1/1000 of the International Prototype Kilogramme, which is the mass of a cylinder of platinum-iridium.

The international kilogramme is a copy of the original Borda platinum kilogramme-the kilogramme des archives-which was intended to have the same mass as that of a cubic decimetre of pure water at the temperature of its maximum density. More exact measurements revealed the incorrectness of the relation (see p. 17), and so the kilogramme was subsequently defined as above.

As with the metre, Pt-Ir copies of the international standard-National Prototype Kilogrammes-have been distributed to the different governments.

#### TIME

Unit—the second is defined to be 1/86,164.100 of a sidereal day. The sidereal day is the period of rotation of the earth with respect to an equatorial star without proper motion.<sup>†</sup>

The second is often defined as  $1/(24 \times 60 \times 60)$  of a mean solar day, *i.e.* 1/86,400 of the average value of the somewhat variable interval (the apparent solar day) between two successive returns of the sun to the meridian (see p. 24).

In actual practice the sidereal day is the interval between two successive transits of the first point of Aries ‡ across any selected meridian. The sidereal day so measured is shorter than the period of rotation of the earth relative to a fixed star by 0.009 second; the difference arises from the precession of the earth's axis, which causes an annual retrograde motion of 50 seconds of arc of the first point of Aries along the ecliptic.

In the accurate determination of time by astronomical observations of the earth's rotation relative to fixed stars, the observations need to be corrected for **nutation** in right ascension. The earth's axis is subject to precession, and to a periodic motion called nutation due to the sun and moon's gravitational action on the rotating earth. See " Nautical Almanac, 1940.'

A tropical or solar year is the average interval between two successive returns of the sun to the first point of Aries; it is found to equal 365.2422 mean solar days. Our modern

The mean meridian quadrant pole to the equator =  $1.000228.10^9$  cm. (see p. 22).

<sup>+</sup> Tidal friction is retarding the rotation of the earth, so that the above (sidereal) definition of the second, while practically justified, is theoretically not quite perfect.

<sup>&</sup>lt;sup>‡</sup> The first point of Aries is that one of the two nodes of intersection of the ecliptic and the celestial equator where the sun (moving in the ecliptic) crosses the equator from south to north (at about March 21). The ecliptic is the apparent yearly track of the sun in a great circle on the celestial sphere.

### BRITISH UNITS

(Julian) calendar assumes that in 4 successive civil years, 3 consist of 365 days, and 1 of 366; the average thus being 365.25 days. The Gregorian correction (that century years are not to count as leap years unless divisible by 400) reduces this value to 365.2425 mean solar days, and thus the average civil year is a close approximation to a tropical year.

A sidereal year is the time interval in which the sun appears to perform a complete revolution with reference to the fixed stars; i.e. it is the time in which the earth describes one sidereal revolution round the sun. Owing to precession, a sidereal year is longer than a tropical year.

Epoch 1900.

Tropical year =  $365 \cdot 2422$  mean solar days.

Sidereal year =  $365 \cdot 2564$  ,, ,, , =  $366 \cdot 2564$  sidereal days.

Reference : Newcomb, "Astronomy," or Russell, Dugan, and Stewart, "Astronomy."

#### BRITISH IMPERIAL STANDARDS

#### (From information supplied by Major MacMahon, F.R.S., Board of Trade, Standards Office.)

According to the Weights and Measures Act, 1878, the yard is the distance, at 62° F., between the central transverse lines in two gold plugs in the bronze bar, called the Imperial Standard Yard, when supported on bronze rollers in such manner as best to avoid flexure of the bar.

The defining lines are situated at the bottom of each of two holes, so as to be in the median plane of the bar, which is of 1 inch square section and 38 inches long. Its composition is 32 Cu, 5 Sn, 2 Zn. Copper alloys are now known not to be suitable for standards of length, and in 1902 a Pt-Ir X-shaped copy of the yard was made.

The **pound** is the **weight** in vacuo of a platinum cylinder called the **imperial** standard pound.

The imperial standard yard and pound are preserved at the Standards Office of the Board of Trade, Old Palace Yard. A number of official copies have been prepared, and are in the custody of the Royal Society, the Mint, Greenwich Observatory, and the Houses of Parliament.

The gallon contains 10 lbs. weight of distilled water weighed in air against brass weights at a pressure of 30 inches, and with the water and the air at 62° F.

NOTE .- No mention is made in the Act of the density of the brass weights, or of the humidity of the air.]

#### BRITISH AND METRIC EQUIVALENTS

The present legal equivalents are those legalized by the Order in Council of May 19, 1898, and derived at the International Bureau of Weights and Measures, by Benoît in 1895 in the case of the yard and the metre, and by Broch in 1883 for the pound and the kilogramme. (See Trav. et Mém. du Bur. Intl., tomes iv., 1885, and xii., 1902.)

| Imperial Standard.              | International Prototype. | (Reciprocal.) |
|---------------------------------|--------------------------|---------------|
| I yard =                        | ·914399 metre            | 1.093614      |
| I pound ==                      | ·45359243 kilogramme     | 2.2046223     |
| Compare Sears and Barrell, Phil | . Trans., 1934.          |               |

#### UNITED STATES AND METRIC EQUIVALENTS

The metric system was legalized in the United States in 1866. By Executive order, April 1893, the U.S. yard is defined as-

I U.S. yard = 3600/3937 metre = 0.914402 m. I U.S. inch = 2.540006 cm. 1 U.S. pound =  $1/2 \cdot 20462$  kgm. (legal definition). I U.S. gallon = 3.785332 litre. See Circular 47 of the U.S. National Bureau of Standards, 1915.

NOTE.—1 U.S. inch = 1.000003 imperial inch.

I U.S. gallon = 0.8327 imperial gallon. 1.201 = 1/0.8327.

T. H. L.

#### GENERAL PRINCIPLES OF MEASUREMENT. UNITS AND STANDARDS

The magnitude of a given physical quantity is its ratio to the magnitude of **unit quantity**, a quantity of the same kind. This ratio (magnitude of a given quantity/ magnitude of unit) = n, is a number which in general is not integral. It is called the **numeric** in the expression for the magnitude of a physical quantity. For the application of this principle it is necessary to have a unit of each of the quantities of physics.

The introduction of the **metric** and the **C.G.S. systems** reduced the number of redundant units and rationalized physical units and standards. Any system of units is based on a physical theory (e.g. the C.G.S. system on Newtonian mechanics). The **standards** of a system are chosen to be permanent and reproducible with precision (e.g. the metre and sidereal day as standards of length and time have these characteristics). Finally, convenience of magnitude in a unit is sought, but is unattainable for those quantities which as known to science have a large range of magnitude. Length is such a magnitude, and lengths from  $10^{-13}$  to  $10^{+20}$  cm. are recorded in these pages.

In Newtonian mechanics a fundamental relation is the second law of motion, and it is one between four quantities: mass, length, time, and force. In the C.G.S. system of units three of these, the centimetre, gram, and second, are chosen as **fundamental units**, and the units of the other quantities of general physics (including force) are derived from them.

In the **engineering system** of certain English-speaking countries length, time, and force are taken as fundamental quantities. The **foot, second**, and the **weight of one pound** (lbwt.) are the units of these quantities. The units of a number of other quantities are derived from them (see table below). Since the weight of one pound produces an acceleration of g ft.sec.<sup>-2</sup> in I pound mass, it produces unit acceleration in a mass of g pound, and therefore the latter has unit mass. At latitude 45°, at sea-level, g = 32.1725 in this system.

In the **metric** (gravitational) **engineering system** the **metre**, **second**, and **weight of one kgm**. (kgmwt.) are the fundamental units. (Units derived from them are given below.)

The unit of mass is g kgm., g being 9.80616 for lat.  $45^{\circ}$  at sea-level.

#### DERIVED C.G.S. UNITS AND STANDARDS

#### GENERAL AND MECHANICAL UNITS

Angle :- Units-radian, right angle, degree, minute, second.

#### $1 \text{ radian} = 180/\pi \text{ deg.} = 57^{\circ} \cdot 29578.$

**Solid Angle**:—*Unit*—the stereradian is the solid angle which unit area of the surface of sphere of unit radius subtends at the centre of the sphere. Complete solid angle at centre of a sphere =  $4\pi$  stereradian.

Area:-Unit-the square centimetre.

**Volume** :— Unit—the cubic centimetre (c.c.). The metric unit is the **litre**, now defined as the volume of a kilogramme of pure, air-free water at the temperature of maximum density (see p. 31) and 760 mm. pressure (*Procès Verbaux*, 1901, p. 175). The litre was originally intended to be I cubic decimetre or 1000 c.cs.; the present accepted experimental relation is that I kilogramme of water at  $4^{\circ}$  C. and 760 mm. pressure measures 1000.028 c.cs. (see p. 17).

**Density**:—*Unit*—I gm. per c.c. **Specific gravity** expresses the density of a substance relative to that of water, and is objectionable in requiring two temperatures to be stated.

Velocity :- Unit-I cm. per second. Angular Velocity :- Units-I radianper sec. ; I revolution per sec.

Acceleration :—Time rate of alteration of velocity. Unit—(1 cm. per sec.) per sec. Angular Acceleration :— Units—1 radian per sec.<sup>2</sup>; 1 revolution per sec.<sup>2</sup>. T. H. L.

Momentum :-- Unit-I gm. cm. sec.<sup>-1</sup>.

Moment of a Force:—The moment of a force about a given axis is proportional to the force, and to the distance of its line of action from the axis. Unit —I cm.<sup>2</sup> gm. sec.<sup>-2</sup>.

**Moment of Inertia** of a body about a given axis is  $\Sigma mr^2$ , where *m* gm. is the mass of one of the elementary particles into which the body can be divided, and *r* cm. is its perpendicular distance from the axis of rotation. Unit—I cm.<sup>2</sup> gm. (see p. 25).

**Angular Momentum** about a given axis :-- Unit-a rigid body of unit moment of inertia (I cm.<sup>2</sup> gm.) about an axis which rotates with unit angular velocity (I rad. sec.<sup>-1</sup>) about that axis has I cm.<sup>2</sup> gm. sec.<sup>-1</sup> angular momentum.

**Force**:—*Unit*—the dyne is that force which produces an acceleration of I cm. sec.<sup>-2</sup> in a particle of I gm. mass.

**Couple, Torque, Turning Moment:**—Unit—two equal opposite parallel forces each of I dyne, I cm. apart, produce unit couple I dyne cm.

**Work**:—Unit—unit work, I dyne cm., is done by a force of I dyne when its point of application is displaced I cm. in the direction in which it acts. I dyne cm. = I erg. I joule = 10<sup>7</sup> erg.

**Energy:**—Kinetic, Potential, Chemical, Thermal, Electric, Magnetic and other forms of energy are distinguished. A *unit* for the measurement of all forms of energy is the unit of work, the **erg**. The calorie is a unit of thermal energy (see below). The watt. sec. is a unit of electrical energy (see electrical units).

**Power:**—Unit—erg per sec. A system which does work at the rate of I erg per second has unit power.

I joule sec.<sup>-1</sup> =  $IO^7$  erg. sec.<sup>-1</sup> = I watt.

I international watt =  $1.00020 \cdot 10^7 \text{ erg sec.}^{-1}$ .

**Pressure** (hydrostatic) :- The force produced by a fluid normal to a surface per unit of area. Unit pressure is I dyne per cm.<sup>2</sup>.

I bar = I dyne cm.<sup>-2</sup> (As used to express small pressures.) I bar =  $10^6$  dyne cm.<sup>-2</sup> (As used in meteorology.)

For gravitational units of pressure, see below.

Stress, Modulus of Elasticity, Young's Modulus, Rigidity, Bulk Modulus or Incompressibility:—Stress is the force per unit area normal (or tangential) to a specified surface. Unit stress is I dyne per cm.<sup>2</sup>.

The constant of proportionality in Hooke's law (Stress/strain) = constant, is a modulus of elasticity, and it has the dimensions of stress, since strain is of zero dimensions. Thus unit stress, I dyne per cm.<sup>2</sup>, is the unit of the above elastic constants.

Surface Tension :- Unit-dyne cm.

Gravitation Universal Constant :- Unit-gm.-1 cm.-3 sec.-2.

Viscosity :- Unit-gm. cm.-1 sec.-1.

#### HEAT UNITS

**The Dimensions of Temperature :**—There are no generally accepted dimensions for the quantity temperature. One procedure is to ignore the inter-relation of temperature and heat, but to assign to heat the dimensions of energy  $(ML^2T^{-2})$ . The dimensions of temperature are then written simply as  $\theta$ . With these conventions those of other thermal quantities can be derived, *e.g.* those of entropy are  $ML^2T^{-2}\theta^{-1}$ .

In the table of dimensions of heat units which follows, dimensions are given on this system.

An alternative procedure is to calculate the dimensions of temperature from the principle that the kinetic energy per gm.-mol. of the molecules of an ideal gas is proportional to its absolute temperature. They are then L<sup>2</sup>T<sup>-2</sup>, and entropy has the dimensions of mass, M.

T. H. L.

**Temperature** :--- The melting-point of pure ice under I atmosphere is defined as 0° C., and the boiling-point of water under 1 atmosphere as 100° C. This fundamental interval is divided into 100 parts by use of an agreed thermometric procedure (see p. 53); each part is a degree Centigrade.

7

Heat :- Dynamical unit—the erg.

Thermal unit-The calorie, the heat required to raise the temperature of I gm. of water by 1° C. at a stated temperature.

 $1 15^{\circ}$  C. calorie =  $4 \cdot 1852 \cdot 10^{7}$  erg.

1 20° C. calorie =  $4.1813 \cdot 10^7$  erg. 1 British thermal unit = 1 lb. water 1° F. = 252 cal. at 17° C.

In the data of thermo-chemistry, "Calorie" may mean "large calorie," i.e. kilocalorie. 860 international kilocalories = I kilowatt hour.

**Gas Constant R** in pv = RT, the equation for an ideal gas. R in erg deg.<sup>-1</sup> mol.-1 has the value :

 $\mathbf{R} = \frac{pv}{T} = \frac{1.01320 \times 10^{6} \times 22415^{2}}{273.16} = 8.3142 \times 10^{7} \ (g = 980.616).$ 

R in other units has the values

82.059 cm.<sup>3</sup> atmos. deg.<sup>-1</sup> mol.<sup>-1</sup> = 0.08206 litre atmos. deg.<sup>-1</sup> mol.<sup>-1</sup>=1.9865 cal.<sub>15°</sub> deg.<sup>-1</sup> mol.<sup>-1</sup>.

(See Birge, "General Physical Constants," 1929.)

**Boltzmann's constant \mathbf{k}:=k=\mathbf{R}/\mathrm{number} of molecules per gm.-mol.**  $= 1.3709 \cdot 10^{-16} \text{ erg deg.}^{-1}$ .

**Entropy**:—When in a reversible change a substance takes in a quantity of heat dQ at a temperature T, its increase of entropy is dQ/T. Units—mean calorie gm.<sup>-1</sup> deg.<sup>-1</sup>, joule gm.<sup>-1</sup> deg.<sup>-1</sup>, international joule gm.<sup>-1</sup> deg.<sup>-1</sup>.

Enthalpy :- Total heat content per gram of a liquid and its vapour. In steam tables the enthalpy of I gm. of water at o° C. at its saturated vapour pressure is taken as zero. Units-mean cal. gm.-1, joule gm.-1, international joule gm.-1.

#### ENGINEERING GRAVITATIONAL UNITS

In the following "lbwt." means the weight of a standard pound, and "kgmwt." is that of the international kilogram; both weights vary from place to place. g is the measure of the acceleration effective in a measurement, or it is a conventional value. g in latitude 45° at sea-level is such a value, and it is given below.

| Quantity.                                                                                                        | Unit.                                                                                                                                         | Unit.                                                                                                                                         | Quantity.                                                                                        | Unit.                                                                                                                                                    | Unit.                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Fundamental<br>Length<br>Force<br>Mass<br>Derived<br>Area<br>Volume .<br>Density .<br>Velocity<br>Acceleration . | ft.<br>lbwt.<br>g lb.<br>ft. <sup>2</sup><br>ft. <sup>3</sup><br>(lb. ft. <sup>-3</sup> )<br>ft. sec. <sup>-1</sup><br>ft. sec. <sup>-2</sup> | metre<br>kgmwt.<br>g kgm.<br>m. <sup>2</sup><br>m. <sup>3</sup><br>(kgm. m. <sup>-3</sup> )<br>m. sec. <sup>-1</sup><br>m. sec. <sup>-2</sup> | Momentum .<br>Moment of<br>Inertia<br>Couple .<br>Energy, Work<br>Power .<br>Pressure,<br>Stress | g lb. ft. sec. <sup>-1</sup><br>g lb. ft. <sup>2</sup><br>lbwt. ft.<br>lbwt. ft.<br>lbwt. ft. sec. <sup>-1</sup><br>lbwt. ft. <sup>-2</sup><br>g=32.1725 | g kgm. m. sec. <sup>-1</sup><br>g kgm. m <sup>2</sup><br>kgmwt. m.<br>kgm. m. sec. <sup>-1</sup><br>kgm. m. <sup>-2</sup><br>g=9.8062 |

#### NORMAL GRAVITY AND UNITS

In the above units those of force, work, power, pressure, etc., and of mass, moment of inertia, etc., are indefinite until the value of g for which they are true is known. One convention is to take as the normal acceleration of gravity its value at latitude 45° and sea-level. Helmert's formula gives this value as

 $980.616 \text{ cm. sec.}^{-2} = 9.80616 \text{ m. sec.}^{-2} = 32.1725 \text{ ft. sec.}^{-2}$ 

#### DIMENSIONS OF UNITS

**Normal atmosphere**:—Two slightly different units of pressure called "one atmosphere" are used. In both the pressure is that of 76 cm. of mercury at o° C., but two values of g are used. The International Committee of Weights and Measures recommended in 1901 g be taken as 980.665 for barometric reductions. Assuming the density of mercury at o° C. is 13.59509 gm. cm.<sup>-3</sup>,

I normal atmosphere =  $A_n$  dyne cm.<sup>-2</sup> = 1.013249. 10<sup>6</sup> dyne. cm.<sup>-2</sup>.

In 1929 the same Commission (in effect eliminating the mercury column) defined the standard atmosphere as equal to 1.013250. 10<sup>6</sup> dyne. cm.<sup>-2</sup>.

Nevertheless, when g = 980.616 has been used in precision measurement of physical constants, then

I atmosphere =  $A_{45}$  dyne cm.<sup>-2</sup> = 1.013199 . 10<sup>6</sup> dyne . cm.<sup>-2</sup>.

The use of the dyne cm.<sup>-2</sup> as the unit of pressure would avoid the uncertainties which have been associated with the use of the atmosphere as a unit of pressure.

#### DIMENSIONS OF UNITS

The dimensions in terms of length, mass, and time are denoted by the indices given under L, M, and T. Thus the dimensions of power are  $L^2MT^{-3}$ .

| Quantity.                                                                                                                                  | L.                                    | М.    | Т.                                                     | Quantity.   | <b>L</b> . 1 | M.                                   | Т.                         | Quantity.                           | L.                                     | М.                              | Т.                        | θ |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------|--------------------------------------------------------|-------------|--------------|--------------------------------------|----------------------------|-------------------------------------|----------------------------------------|---------------------------------|---------------------------|---|
| Length<br>Mass<br>Time<br>Angle<br>Surface<br>Volume<br>Density<br>Velocity<br>Angular vel.<br>Acceleration<br>Angular ac-<br>celeration . | 0<br>0<br>2<br>3<br>-3<br>1<br>0<br>1 | 0 0 0 | 0<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>-1<br>-1<br>-2 | Angular mo- | 2<br>2<br>2  | I -<br>I<br>I -<br>I -<br>I -<br>I - | -I<br>-1<br>-2<br>-2<br>-3 | Heat<br>Thermal Con-<br>ductivity . | -I<br>I<br>-I<br>2<br>0<br>0<br>2<br>I | I – I<br>I 0<br>I 0<br>I I<br>I | -2<br>2<br>-I<br>-I<br>-2 |   |

#### MECHANICAL AND HEAT UNITS

#### ELECTRICAL AND MAGNETIC UNITS

References:-J. J. Thomson, "Mathematical Theory of Electricity and Magnetism"; Page and Adams, "Principles of Electricity," 1936.

Practical Absolute System of Electrical Units (see *Phys. Soc. Proc.* 48, 445, 1936). Report on Electrical and Magnetic Units to the International Conference on Physics. Appendix by H. Abraham on Magnetic Quantities, 1935.

To derive a system of electrical units four fundamental units are required.

**Electromagnetic System** is derived from the cm., gm., sec., and the permeability of a vacuum taken as unit permeability. It is called the e.m.c.g.s. system and e.m.u. is the abbreviation for electromagnetic unit. The inverse square law for magnetic poles is used to define unit pole, and other magnetic and electrical quantities are derived from unit pole.

Absolute System of Units is the name now given to the following multiples of the e.m. units of resistance, etc. :

I ohm =  $10^9$  e.m.u., I amp. =  $10^{-1}$  e.m.u., I volt =  $10^8$  e.m.u. I henry =  $10^9$  e.m.u., I coulomb =  $10^{-1}$  e.m.u., I farad =  $10^{-9}$  e.m.u.

T. H. L.

8

and by international agreement these will replace the international ohm, ampere, and volt, etc. In anticipation of this change the ratio of the international ohm to the absolute ohm and the same ratio for the ampere and volt have been accurately measured in national physical laboratories.

**Practical System of Units**:—These units were intended to be the above multiples of the e.m. units of resistance, current and e.m.f., but were actually defined in terms of a mercury ohm, and the silver coulombmeter. Derived units of this system are derived from 10<sup>9</sup> cm., 10<sup>-11</sup> gm., 1 sec., the permeability of a vacuum as fundamental units. This system, never completely used, will now become obsolete.

**Electrostatic System** for which the cm., gm., sec. and the dielectric constant of a vacuum are the fundamental units is another system of electrical units.

There are many possible systems of electrical units, and any procedure followed in deriving one has arbitrary elements in it which are determined by considerations of convenience and individual preference. Writers on electrical theory following Gauss use a combination of e.s. units and e.m. units, but recently the use of two systems of units has been criticized as irrational.

**Heaviside-Lorentz Units**:—In writings on Maxwell's electromagnetic theory Heaviside-Lorentz units are often used, which are a modification of the combined e.m. and e.s. units obtained by simply changing the unit of force from I dyne to  $I/4\pi$  dyne.

| Quantity.                                                     | Sym-<br>bol. Defining relation<br>in e.s.u. |                                                                                                               | Quantity.                    | Sym-<br>bol, | Defining relation<br>in e.s.u.                                                                           |  |  |
|---------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------|--------------|----------------------------------------------------------------------------------------------------------|--|--|
| <b>Electrostatic</b><br>Charge<br>Field<br>Potential<br>E.M.F | QEV &                                       | $ \begin{split} \mathbf{E} &= \mathbf{Q}/\epsilon_0 r^2 \\ d\mathbf{V} &= -\mathbf{E} \cos a dl \end{split} $ | Polarization .<br>Dielectric | D<br>P<br>«C | $D \equiv \epsilon_0 E + 4\pi P$<br>electric moment/cm. <sup>3</sup><br>$\epsilon \equiv D/E$<br>C = Q/V |  |  |

#### ELECTROSTATIC UNITS AND QUANTITIES

 $\epsilon_0$  is the dielectric constant for a vacuum; in e.s.u.,  $\epsilon_0 = I$ .

**Charge**:—Unit—to define unit charge in the above expression for Coulomb's law the force is made I dyne, the distance I cm., the charges made equal and placed in a vacuum, *i.e.* F = I, r = I,  $Q_1 = Q_2$ ,  $\epsilon_0 = I$ . In words: unit charge is that charge which repels in a vacuum an equal and like charge with a force of I dyne.

**Electric Field**:—Unit—Unit field is that field which acts on unit electrostatic charge with a force of I dyne. The field in a vacuum at r cm. from a point charge Q is  $Q/r^2$ .

**Potential:**—In the above expression for potential, dV erg, is the work done by unit electrostatic charge against the electric field (E) when it is deplaced dl cm. in a direction making an angle a with the field. The work done, V erg, in bringing unit charge from infinity to a point P is the potential of P.

Unit P.D. exists between two points in an electric field when I erg of work is done in taking unit charge from one point to the other.

**E.M.F.:** — Unit e.m.f. exists in a circuit when I erg of work is done in taking unit e.s. charge round the circuit.

**Electric Displacement,** D, is defined as the vector sum of the electric field,  $\epsilon_0 E$ , and  $4\pi$  times the polarization P, *i.e.* D.  $\equiv \epsilon_0 E + 4\pi P$ . As stated above the dielectric constant (electric permeability) of a vacuum is taken as 1, that is,  $\epsilon_0 \equiv 1$ . If this equation is written as it often is, D  $\equiv E + 4\pi P$ , it is dimensionally inhomogeneous, in other words, D is the sum of two electrical quantities of different kinds, which is meaningless. (The definition of magnetic induction, which is defined in a similar manner to D, has been the subject of much recent discussion by Abraham and others.) T. H. L. **Polarization**, **P**:—When a dielectric is in an electric field, the electrons and protons are displaced relative to one another by the action of the field. Electric dipoles are formed throughout the dielectric, which is said to be polarized. The polarization is defined to be the electric moment of the dipoles per unit volume. It is the charge in e.s.u. per cm.<sup>2</sup> in a plane normal to the direction of polarization.

**Dielectric Constant**,  $\epsilon$ , is defined by  $\epsilon \equiv D/E$ . It can be deduced from this definition that the law of force between charges in a medium of dielectric constant  $\epsilon$  (e.g. in air) is  $F = Q_1 Q_2 / \epsilon r^2$ , and that the dielectric constant  $\epsilon$  of a medium is the ratio of the capacity of a condenser having the medium for a dielectric to the capacity of the same condenser with a vacuum as dielectric.

**Capacity**:—The ratio of the charge, Q e.s.u., to the potential difference, V e.s.u., for a condenser is constant, and is its capacity, C e.s.u.

Unit capacity is that of an isolated conducting sphere of I cm. radius in a vacuum. In an infinite medium of dielectric constant  $\epsilon$  its capacity is  $\epsilon$  e.s.u.

| Quantity.                                                                                                                   | Sym-<br>bol.               | Defining relation<br>in c.m.u.                                                                                                                                                                                                   | Quantity.                                                                             | Sym-<br>bol.                    | Defining relation<br>in e.m.u.                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MagneticPole.Moment.Field.Potential.Magneto-motive forceInduction.IntensityofmagnetizationPermeability.Susceptibility.Flux. | т М<br>НΩ<br>ЖВ<br>І μ κ φ | $F = m_1 m_2 / \mu_0 r^2$ $M \equiv m.l$ $H = m / \mu_0 r$ $d\Omega = -H \cos a dl$ $\mathcal{H} = \phi H \cos a dl$ $B \equiv \mu_0 H + 4\pi I$ $I \equiv M / dv$ $\mu \equiv B / H$ $\kappa \equiv I / H$ $\phi = \int_s B dS$ | Electrical<br>Charge<br>Current<br>Potential<br>E.M.F<br>Resistance .<br>Inductance . | Q<br>I<br>V<br>&<br>R<br>L<br>M | $Q=\int Idt$<br>$\oint H \cos adl = 4\pi n I$<br>$dV = -E \cos adl$<br>$\mathcal{E} = \oint E \cos adl$<br>$R = \mathcal{E}/I$<br>$\mathcal{E} = -LdI/dt$<br>$M = \mu \int \int \cos adl dl'/r$ |

#### ELECTROMAGNETIC UNITS AND QUANTITIES

**Magnetic Pole:**—Unit—as for the definition of unit e.s. charge we put  $F = I, r = I, m_1 = m_2, \mu_0 = I$ , in Coulomb's law of force for magnetic poles, and obtain the definition:

Unit magnetic pole is that pole which repels in a vacuum an equal and like pole with a force of I dyne.

**Magnetic Moment** :- Unit-the moment of that dipole, which consists of unit positive and negative poles 1 cm. apart.

Magnetic Force or Field :- Unit field acts on unit magnetic pole with a force of I dyne.

**Magnetic Potential**:--Unit potential exists at any point P in the magnetic field when I erg of work is done against the field in bringing unit positive pole from infinity to P.

Magnetomotive Force: - Unit M.M.F. acts in a magnetic circuit when the work done in taking unit pole round the circuit is I erg.

The **ampere-turn** is a unit of m.m.f. and of magnetic potential. I ampereturn =  $0.4\pi$  e.m.u. = 1.25664 e.m.u. of magnetic potential.

**Magnetic Induction**, B is defined by the vector sum,  $B = \mu_0 H + 4\pi I$ , where  $\mu_0 = I$  in e.m.u.

Maxwell's definition of B is : the magnetic induction of a material is equal to the force which acts on unit magnetic pole placed in a narrow cavity in the material,

T. H. L.

the cavity having plane sides normal to the direction of the magnetization. This definition and the preceding one have been the subject of much discussion. (See "References" above, particularly Abraham's paper.)

**Intensity of Magnetization**, I, of a magnetic material is its magnetic moment per unit volume. It is evidently the magnetic pole per cm.<sup>2</sup> over a plane surface normal to the direction of polarization.

**Magnetic Permeability**,  $\mu$ . Although the magnetic induction B induced by a magnetizing force H is not proportional to H, for materials which show magnetic hysteresis, magnetic permeability,  $\mu$ , is defined by the relation  $\mu \equiv B/H$ .

**Magnetic Susceptibility**,  $\kappa$ . I/H is constant for diamagnetic and some paramagnetic materials.  $\kappa$  is defined by the relation  $\kappa \equiv$  I/H. Since

 $I = (B - \mu_0 H)/4\pi$ , and  $\mu_0 = I$  in e.m.u., therefore  $\kappa = (\mu - I)/4\pi$ .

**Magnetic Flux**:—The magnetic flux for an element of area dS cm. is B.dS. The flux  $\phi$  for a surface S cm.<sup>2</sup> is  $\int BdS$ , the quantities being vector ones.

**Electrical Units:**—Units of all the magnetic quantities have been derived from Coulomb's law of force and four fundamental units. To pass from magnetic to electrical units Ampère's law for the magnetic field of an electric current is used to define unit current in terms of unit magnetic pole.

**Electromagnetic Unit Current** flows in a conductor when the work done in taking unit magnetic pole in a closed path round the conductor is  $4\pi$  erg.

**Electric Charge**:—Unit quantity of electricity crosses in I sec. any section of a conductor when I e.m.u. of current flows in the conductor.

**Electromagnetic Units** of the following quantities are derived from the e.m.u. of charge by means of the expressions given in the above table under electrical quantities : **Potential, E.M.F., Capacity, Resistance, Inductance**. The defining relations for **Displacement, Polarization**, and **Dielectric Constant** given in the Table of Electrostatic Units are used to derive units of these quantities from the e.m.u. of charge.

**Conversion Factors** :- The ratio of the electromagnetic units to the electrostatic units, and to the practical **absolute units** is given on p. 12.

**Inductance** is defined by Faraday's law,  $\mathscr{E} = -dN/dt = -LdI/dt$ , for the e.m.f. induced in a circuit when the current in it varies.

**The Mutual Inductance**, M, of a pair of coils is given in terms of their linear dimensions by Neumann's formula  $M = \mu \iint \cos a dl \cdot dl'/r$ , which is derived from Ampère's law. Both laws give the same e.m. unit of inductance sometimes called the "centimetre." L and M have the dimensions  $=[\mu \cdot length]$ .

#### PRACTICAL ELECTRICAL UNITS

The **International Ohm** is the resistance offered to an unvarying electric current by a column of mercury at 0° C., 14.4521 grammes in mass, of a constant cross-section, and of a length of 106.300 cms.

The **International Ampere** is the unvarying electric current which, when passed through a solution of nitrate of silver in water, in accordance with authorized specification, deposits silver at the rate of **.00111800** gramme per second.

#### DIMENSIONS OF ELECTRICAL QUANTITIES

**Dimensions of E.S. Units:**—The dimensions of electric charge in terms of M, L, T and  $\epsilon$  are derived from Coulomb's law thus :

|        | $[F] = [MLT^{-2}] = [Q_1Q_2/\epsilon L^2],$                                                                              |          |
|--------|--------------------------------------------------------------------------------------------------------------------------|----------|
| giving | $[\mathbf{Q}] = [\mathbf{M}^{\frac{1}{2}} \mathbf{L}^{\frac{n}{2}} \mathbf{T}^{-1} \boldsymbol{\epsilon}^{\frac{1}{2}}]$ | T. H. L. |

The dimensions of electric field, E, potential, V, e.m.f., &, displacement, D, polarization, P, dielectric constant, e, capacity, C, are derived from those of Q using the relations in the table on electrostatic quantities.

To calculate the dimensions of magnetic quantities, Ampère's law for the magnetic field of an electric current is used. The work done on a magnetic pole, m, when taken round a path which encloses a current, I, is proportional to I and to m, when taken round a path which encloses a current, 1, is proportional to 1 and to m, but is independent of the path. Ampère's law may be expressed :  $W = 4\pi Im/A$ , where  $4\pi/A$  is the constant of proportionality. All the systems of units in use put A = I and give to Im the dimensions of work ; to do this is a convention, but so far it is a generally accepted one. (See "Giorgi units," p. 13.) The dimensions of I are  $[QT^{-1}]$ , and we get for those of m

$$[m] = [\mathbf{M}^{\ddagger} \mathbf{L}^{\ddagger} \boldsymbol{\epsilon}^{-\ddagger}]$$

The dimensions of the other magnetic quantities are derived from those of magnetic pole, using the defining relations in the table containing those quantities.

Dimensions of E.M. Units are derived in a similar manner, starting with the inverse square law for magnetic poles.

Ratio of E.M. and E.S. Units :- The ratio of the e.m.u. of charge to the e.s.u. is c, where c is the measure of the velocity of light in cm. sec.<sup>-1</sup> Now the dimensions of charge must be the same on all systems of units. If we equate the dimensions of the e.s. to those of the e.m. unit it is found that

$$[\mu^{-\frac{1}{2}}\epsilon^{-\frac{1}{2}}] = [L/T],$$

that is  $1/\sqrt{\mu\epsilon}$  has the dimensions of a velocity. This is necessary if the dimensions which have been derived are to be consistent with Maxwell's electromagnetic theory in which  $c = 1/\sqrt{\mu_0 \epsilon_0}$  is the expression for the velocity of light in a vacuum. If the A mentioned above is not of zero dimensions then  $A^2/\mu_0\epsilon_0 = c^2$ .

The dimensions of the e.m. and e.s. units are tabulated below.

#### ELECTRICAL AND MAGNETIC UNITS

c, the ratio of the electromagnetic to the electrostatic unit of quantity, is usually taken as 3 × 1010, and is a pure number (p. 84). (See Rucker, Phil. Mag., 22, 1889.)

Reference: "International Conference on Physics, London, 1934": Reports on Units.

|                                                                                                                       |                | Dimen                                                                                                                                              | sions.                                                       | Relations.                                                                              |                                                                                                  |                                                                                                        |                                                                                                                                                                                      |  |
|-----------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Unit.                                                                                                                 | Sym-<br>bol.   |                                                                                                                                                    |                                                              |                                                                                         | Units.                                                                                           |                                                                                                        |                                                                                                                                                                                      |  |
|                                                                                                                       |                | L. M. T. c.                                                                                                                                        | L. M. T. µ.                                                  | E.M.U.                                                                                  |                                                                                                  |                                                                                                        |                                                                                                                                                                                      |  |
| Electrical<br>Charge<br>Resistance<br>Current<br>Potential<br>E.M.F<br>Electric field .<br>Conductivity<br>Inductance | QRIV SE KCL; M | $\begin{array}{c} 3 3 2 & -1 & -1 \\ -1 & 0 & 1 & -1 \\ 3 2 & -1 & -2 \\ -1 & -2 & -1 & -1 \\ -1 & -2 & -1 & -1 \\ -1 & -1 & -1 & -1 \\ -1 & -1 &$ | $\begin{array}{c} -1 & -1 & -1 \\ -1 & -1 & -1 \\ -1 & -1 &$ | $\begin{pmatrix} c^{2} \\ 1/c \\ c \\ c \\ 1/c^{2} \\ 1/c^{2} \\ 1/c^{4} \end{pmatrix}$ | Prae.<br>coulomb<br>ohm<br>ampere<br>volt<br>(volt/cm.)<br>ohm <sup>-1</sup><br>farad<br>{ henry | E.M.U.<br>= $10^{-1}$<br>= $10^{3}$<br>= $10^{-1}$<br>= $10^{8}$<br>= $10^{-9}$<br>= $10^{9}$<br>I cm. | E.S.U.<br>$= 3 \times 10^{9}$ $= \frac{1}{9} \times 10^{-11}$ $= 3 \times 10^{9}$ $= 1/300$ $-$ $= 9 \times 10^{11}$ $= \frac{1}{9} \times 10^{-11}$ $= \frac{1}{9} \times 10^{-20}$ |  |
| Displacement .<br>Polarization .<br>Dielectric con-<br>stant)                                                         | D<br>P<br>¢    |                                                                                                                                                    | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$        | 1/c                                                                                     | -                                                                                                | I<br>I<br>—                                                                                            | $= \frac{3 \times 10^{10}}{3 \times 10^{10}}$<br>= 3 × 10 <sup>10</sup>                                                                                                              |  |
|                                                                                                                       |                |                                                                                                                                                    |                                                              |                                                                                         |                                                                                                  |                                                                                                        | T. H. L.                                                                                                                                                                             |  |

|              |                                                                         | Dimensions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                                       |                                                       | Relations.                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|--------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Sym-         | E.S.                                                                    | Unit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E.M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I. Unit                                               |                                                       | E.S.U.                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|              | L. M.                                                                   | Τ. ε.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | И. Т. /                                               | ι.                                                    | E.M.U.                                                |                                                       | Units.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                      |
|              |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                                       |                                                       | Prac.                                                 | E.M.U.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E.S.U.                                                 |
| $\phi^m$     | 1<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2                               | $0 - \frac{1}{2}$<br>$0 - \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01010101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{1}{2} - I$<br>$\frac{1}{2} - I$                |                                                       | с<br>1/с                                              | <br>10 <sup>—8</sup> prac.                            | =I max-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $=\frac{1}{3} \times 10^{-10} \\ = 3 \times 10^{10}$   |
| H<br>Ω       |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                     | -                                                     |                                                       | 10 prac.<br>10 prac.                                  | =I oer-<br>sted<br>=I gil-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $= 3 \times 10^{10}$ $= 3 \times 10^{10}$              |
| æ)<br>M<br>B | 1                                                                       | $0 - \frac{1}{2}$<br>$0 - \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1<br>taj-actor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{\frac{1}{2} - I}{\frac{1}{2} - I}$             |                                                       | c<br>c                                                | <br>10 <sup>-8</sup> prac.                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $=\frac{1}{3}\times10^{-10}$                           |
| I<br>µ       | $   \begin{array}{c}     -3 & \frac{1}{2} \\     -2 & 0   \end{array} $ | $0 - \frac{1}{2}$<br>2 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $-\frac{1}{2}_{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{1}{2} - 1$<br>0 0                              | 12 1                                                  | с<br>с <sup>2</sup>                                   | 10 <sup>-8</sup> prac.<br>10 <sup>-7</sup> prac.      | = I gauss<br>= I "per-<br>meabil-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = 1 × 10 <sup>-10</sup>                                |
|              | bol.<br>m<br>φ<br>H<br>Ω<br>M<br>B<br>I                                 | bol.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5.<br>1.5. | $\begin{array}{c c} \text{Sym-bol.} \\ \hline \textbf{E.S. Unit.} \\ \hline \textbf{L. M. T. } \boldsymbol{\epsilon}. \\ \hline \textbf{M} & \frac{1}{2} & \frac{1}{2} & 0 & -\frac{1}{2} \\ \phi & \frac{1}{2} & \frac{1}{2} & 0 & -\frac{1}{2} \\ \phi & \frac{1}{2} & \frac{1}{2} & 2 & \frac{1}{2} \\ \hline \textbf{H} & \frac{1}{2} & \frac{1}{2} & -2 & \frac{1}{2} \\ \hline \textbf{M} & \frac{1}{2} & \frac{1}{2} & -2 & \frac{1}{2} \\ \mathcal{H} & \frac{1}{2} & \frac{1}{2} & -2 & \frac{1}{2} \\ \mathcal{H} & \frac{1}{2} & \frac{1}{2} & -2 & \frac{1}{2} \\ \mathcal{H} & \frac{1}{2} & \frac{1}{2} & -2 & \frac{1}{2} \\ \mathcal{H} & \frac{1}{2} & \frac{1}{2} & 0 & -\frac{1}{2} \\ \mathcal{H} & \frac{1}{2} & \frac{1}{2} & 0 & -\frac{1}{2} \\ \end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Symbol.       E.S. Unit.       E.M. Unit.       E.S.U.         L. M. T. $\epsilon$ .       L. M. T. $\mu$ .       E.M.U. $m$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\phi$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $m$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $m$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\phi$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $m$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $M$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $M$ $\frac{3}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $M$ $\frac{3}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ <td< td=""><td><math display="block">\begin{array}{c c c c c c c c c c c c c c c c c c c </math></td></td<> | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

#### HEAVISIDE-LORENTZ UNITS

**Charge**:—Unit—Coulomb's inverse square law of force between electric charges is used to define unit charge. It is that charge which repels an equal and like charge at a distance of 1 cm. in vacuo with a force of  $1/4\pi$  dyne. Unit pole is defined in the same manner. The remaining units of electricity and magnetism are derived using the defining relations given in the foregoing tables relating to e.s. and e.m. units. The relations which exist between h.l., e.m., and e.s. units are given below.

| RELATIONS | H.L.U. T | O E.M.U. | AND E.S.U. |
|-----------|----------|----------|------------|
|           |          |          |            |

| Unit.                                                                                                                                                                                                            | Symbol.                                                     | h.l.u.                                               | e.m.u.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e.s.u.                                                                                                                                                                  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Charge<br>Current<br>Electric field<br>Polarization<br>Magnetic force<br>Magnetic potential<br>Magnetomotive force .<br>Intensity of magnetization<br>Magnetic induction<br>Resistance<br>Capacity<br>Inductance | Q<br>I<br>E<br>P<br>H<br>Ω<br>ℋ<br>I<br>B<br>R<br>C<br>L, M | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $= 1/c  \text{e.m.u.} \\= 1/c  ,, \\= 1/c  ,, \\= 2c\sqrt{\pi}  ,, \\= 1  ,, \\= 2\sqrt{\pi}  ,, \\= 2\sqrt{\pi}  ,, \\= 2\sqrt{\pi}  ,, \\= 2\sqrt{\pi}  ,, \\= 1  ,, \\= 4\pi c^2  ,, \\= 4\pi $ | $= I  e.s.u. \\= I  \\= 2\sqrt{\pi}  \\= 2c\sqrt{\pi}  \\= 2c\sqrt{\pi}  \\= 2c\sqrt{\pi}  \\= 2c\sqrt{\pi}  \\= 2c\sqrt{\pi}  \\= 1/c  \\= 4\pi  \\= 4\pi  \\= 4\pi  $ |  |

#### GIORGI UNITS

Giovanni Giorgi in 1904 proposed the metre, kgm., sec., and the ohm (practically defined) as the fundamental units of a system of electrical units. The International Electrotechnical Commission in 1933 invited its national committees to consider the Giorgi system, and whether the fourth unit should be a resistance of T. H. L.

109 e.m.u. " or the corresponding value of the space permeability of a vacuum." The Standards, Units and Nomenclature Commission of the Union of Physics in 1935 recommended the fourth unit should be " $10^{-7}$  henry per metre," the value of the permeability of space on that system. The following table is based on one given in the report of the latter body, but  $10^8$  under ohm is here altered to  $10^9$ .

| Systems.         |                 |                  |                       |        | Coul.                       |                       | Volt.                 | Ohm.                 |                      |
|------------------|-----------------|------------------|-----------------------|--------|-----------------------------|-----------------------|-----------------------|----------------------|----------------------|
| Length.          | Mass.           | Time.            | μ <sub>0</sub>        | A.     | μ <sub>0</sub> / <b>Α</b> . | Cour.                 | Amp.                  | VOIL.                | Unm.                 |
| I cm.<br>I metre | 1 gm.<br>1 kgm. | I sec.<br>I sec. | I<br>10 <sup>-7</sup> | I<br>I | 1<br>10 <sup>-7</sup>       | 10 <sup>-1</sup><br>I | 10 <sup>-1</sup><br>I | 10 <sup>8</sup><br>1 | 10 <sup>9</sup><br>1 |

#### FUNDAMENTAL UNITS OF M.K.S. AND C.G.S. ELECTROMAGNETIC SYSTEMS

 $\mu_0$  = magnetic permeability of vacuum. Definition of A by Ampère's law:  $F = mi \sin \phi dS / Ar^2$ .

#### RELATION OF INTERNATIONAL PRACTICAL TO ABSOLUTE UNITS

The international ohm and ampere were defined at a conference at London in 1908.

The International Ohm is the resistance offered to an unvarying electric current by a column of mercury at o° C. 14.4521 gm. in mass, of a constant cross section and of length of 106.300 cm.

The International Ampere is the unvarying electric current which, when passed through a solution of nitrate of silver in water deposits silver at the rate of 0.00111800 gm. per sec.

Other international practical units are derived from the ohm and the amp. The int. ohm was intended to be 109 e.m.u. resistance and the int. amp. 10-1 e.m.u. National physical laboratories have determined the actual ratios, which are expressed as :

I int. ohm = p. 10<sup>9</sup> e.m.u. of resistance,

I int. ampere =  $q \cdot 10^{-1}$  e.m.u. of current

According to the "Procès Verbaux des Séances du Comité international des Poids et Mesures " (p. 113, 1937) :

p = 1.00048

#### q = 0.00086

these values of p and q are based on the following observations:

| National<br>Laboratory. | p.       | q.        | National<br>Laboratory. | p.       | q.       |  |
|-------------------------|----------|-----------|-------------------------|----------|----------|--|
| Great Britain           | 1.000504 | 0·999848  | Germany                 | 1.000483 | 0.999938 |  |
| United States           | 1.000454 | 0·999895* | Japan                   | 1.000465 |          |  |

\* Nat. Bur. Standards later (1939) obtain p = 1.000479 and q = 0.999868.

The error in q (the ratio for the ampere) is possibly  $\pm$  0.00004 and is mainly due to the difficulties which arise in the use of the silver coulombmeter in precision measurements. The error in p (the ratio for the ohm) is smaller, and is possibly + 0.000016T. H L.

(See Birge, "General Physical Constants," Sup. Phys. Rev., 1, 14, 1929; Hartshorn, "Absolute Electrical Measurements," Phys. Soc. Reports, 5, 1939.)

The ratio, international : absolute unit, for the practical units is :

| Unit.           | Ohm.               | Amp.                      | Coulomb.                  | Volt.                     | Farad.                           | Henry.            | Watt.                                  |
|-----------------|--------------------|---------------------------|---------------------------|---------------------------|----------------------------------|-------------------|----------------------------------------|
| Value in e.m.u. | \$ 10 <sup>9</sup> | <i>q</i> 10 <sup>-1</sup> | <i>q</i> 10 <sup>-1</sup> | <i>pq</i> 10 <sup>8</sup> | ¢ <sup>−1</sup> 10 <sup>−9</sup> | ∮ 10 <sup>9</sup> | <i>∳q</i> <sup>2</sup> 10 <sup>7</sup> |
| inter./absolute | 1.00048            | 0.99986                   | 0.99986                   | 1.00034                   | 0·99952                          | 1·00048           | 1·00020                                |

#### E.M.F. OF WESTON CADMIUM CELL

The electromotive force (E) of the Weston cell in **absolute** volts (10<sup>8</sup>. E.M. units) as realized from one of the accepted specifications. The present accepted international value of E is **1.01864 absolute volts** at 20° C.

This cell consists of anode Cd amalgam, electrolyte saturated cadmium sulphate, cathode Hg covered with mercurous sulphate. For precision the temperature of the cell must be uniform and *constant*.

**Temperature coefficient.**—Over the range  $0^{\circ}$  to  $40^{\circ}$ , Wolff (1908) obtained for the E.M.F. at  $t^{\circ}$ —

| E at 20°. | Method.                                            | Observer.                                          | E at 20°. | Method.                                          | Observer.               |  |
|-----------|----------------------------------------------------|----------------------------------------------------|-----------|--------------------------------------------------|-------------------------|--|
| 1·01868   | Intl. ohm. and<br>current weigher<br>Intl. ohm and | Ayrton, Mather,<br>and Smith, 1908<br>Dorsey, 1011 |           | Intl. ohm and<br>Intl. ampere<br>Intl. ohm and   | 1935                    |  |
| 1.01864   | current weigher                                    |                                                    | 1.01857   | current weigher<br>Intl. ohm and<br>Intl. ampere | 1935<br>N.B.S.,<br>1935 |  |

 $E_t = E_{20} - .0000406(t - 20) - 9.5 \times 10^{-7}(t - 20)^2.$ 

The E.M.F. of the **Clark cell** = 1.433 volts at  $15^{\circ}$  C. It diminishes by about 1.2 parts in 1000 for  $1^{\circ}$  C. rise of temp.

T. H. L.

#### RATIO OF E.M. TO E.S. UNITS

This ratio was first measured in 1857. To measure it for the e.m. and e.s. units of capacity a condenser is used whose capacity,  $C_s$  e.s.u., can be calculated from its linear dimensions. Its capacity,  $C_m$  e.m.u., is then found by means of Maxwell's bridge in terms of a resistance R e.m.u. and a frequency,  $n \sec^{-1}$ , where  $C_m = 1/R \cdot n$ . For capacity,  $C_m/C_s = c^2$ .

**Bosa and Dorsey** (Bul. Bur. St., 1907) obtained for the ratio  $(2\cdot9971\pm0\cdot0003)$  × 10<sup>10</sup>, but they assumed 1 int. ohm = 10<sup>9</sup> e.m.u. This value now accepted is 1 int. ohm. =  $1\cdot00048 \cdot 10^9$  e.m.u.; this gives:  $c = 2\cdot9971 \times 10^{10} \times 1\cdot00024$  =  $2\cdot9978 \times 10^{10}$ .

The mean of the value of c found by seven observers prior to 1907 was  $3.0001 \times 10^{10}$  (see Abraham, 1900).

The accepted value of c = 2.99774.

V. D. H.

## CONVERSION FACTORS

| Conversion                                                                                                             | BRITISH INT<br>factors based on<br>e given for conve                                                                                    | the relations                                | given on p.                                                                                                                                          | 4. gi                                                                           | s taken as 980                                                                                                                                                                                                   |                                                                                                                                                                                                                               |  |  |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| British.                                                                                                               | Metric.                                                                                                                                 | (Reciprocal.)                                | Britis                                                                                                                                               | h.                                                                              | Metric.                                                                                                                                                                                                          | (Reciprocal.)                                                                                                                                                                                                                 |  |  |
|                                                                                                                        | 28.317 litre<br>.5682 litre<br>4.5460 litre<br>.06480 gm.<br>28.350 gm.<br>.45359 kgm.<br>10160 kgm.§<br>.01602<br>gm./cm. <sup>3</sup> | ·62137                                       | I lb./sq. f<br>I ton/sq.<br>"<br>Work-<br>I ft. lb.<br>Power-<br>I horse-po                                                                          | wgt. =<br>e                                                                     | dyne<br>68,943<br>dyne/cm.<br>70 <sup>•</sup> 306<br>gm./cm. <sup>2</sup><br>478 <sup>•</sup> 78<br>dyne/cm.<br>1 <sup>•</sup> 544 × 10 <sup>6</sup><br>dyne/cm.<br>1 <sup>•</sup> 575<br>kgm./mn<br>1•356 joule | $\begin{array}{c} 5 \\ 2 \cdot 248 \times 10^{-6} \\ 2 \\ 1 \cdot 45 \times 10^{-5} \\ \cdot 01422 \\ \cdot 02089 \\ 6 \cdot 477 \times 10^{-9} \\ \cdot 6349 \\ 1 \cdot 2 \\ \cdot 7373 \\ \text{tt} 1 \cdot 34 \end{array}$ |  |  |
| I yard                                                                                                                 | APPROXIMATE I<br>= I metre, less I<br>= I kgm., ,,                                                                                      | RELATIONS                                    | J. L.<br><b>NEOUS DATA</b><br>$\begin{cases} I mm. = 10^{-3} metre \\ I\mu = 10^{-6} ,, \\ I m\mu = 10^{-9} ,, \\ I Å. U. = 10^{-10} ,, \end{cases}$ |                                                                                 |                                                                                                                                                                                                                  |                                                                                                                                                                                                                               |  |  |
| 2 galls.                                                                                                               | = 10 litre, ,,<br>= 1000 kgm., les                                                                                                      | ss 2%                                        |                                                                                                                                                      |                                                                                 | il = 10 <sup>-3</sup> in                                                                                                                                                                                         |                                                                                                                                                                                                                               |  |  |
|                                                                                                                        |                                                                                                                                         |                                              |                                                                                                                                                      |                                                                                 | Tumber.                                                                                                                                                                                                          | Log. of Number.                                                                                                                                                                                                               |  |  |
| SOME BRITIS<br>The avoird<br>grain are the<br>I lb. (avoir.)<br>I oz. ,,<br>I oz. (troy)=<br>I oz. (apothe-<br>caries) | $ \begin{array}{c} \pi \\ \pi^2 \\ 1/\pi \\ \sqrt{\pi} \\ 1 \text{ radian} \\ 1^\circ \\ e \\ \log_e 10 \end{array} $                   | 9.86<br>·31<br>1.77<br>57°·29<br>·01<br>2.71 | 1592654<br>9604401<br>8309886<br>2453851<br>9578<br>7453 radian<br>8281828<br>92585                                                                  | ·49715<br>·99430<br>T·50285<br>·24857<br>I·75812<br>2·24188<br>·43429<br>·36222 |                                                                                                                                                                                                                  |                                                                                                                                                                                                                               |  |  |
| I fl. drachm 3<br>I fl. oz. 3                                                                                          | = =60 minim =<br>= 8 fl. drachm=<br>= 20 fl. oz. =                                                                                      | =28.41 ,,                                    | To convertMultiply<br>byCommon into hyperbolic logs, 2·30258<br>Hyperbolic ,, common ,, ·43429                                                       |                                                                                 |                                                                                                                                                                                                                  |                                                                                                                                                                                                                               |  |  |
| * Correct<br>t i joule=10                                                                                              | ct to 1 part in a<br>5 <sup>7</sup> ergs. § 1                                                                                           | million.<br>tonne=1000                       | t Co<br>kgm.                                                                                                                                         | ¶ I th                                                                          | 0 3 parts in a<br>erm=100,000                                                                                                                                                                                    | million.<br>o B.Th. units.<br>V. D. H.                                                                                                                                                                                        |  |  |

## MISCELLANEOUS DATA

| -                                                                                                                                                                                                                                                                                                                                                         | BRITISH                                                                                                                                                                                                                                                                                  | COINAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                        | NAUTICAL                                                                                                                                                                     |                                                                                                                                                                                               |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Coin.                                                                                                                                                                                                                                                                                                                                                     | We                                                                                                                                                                                                                                                                                       | ight.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Diameter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I nautical mile                                                                                                                                                                                                                                                                                        |                                                                                                                                                                              | et                                                                                                                                                                                            |  |  |  |
| sovereign                                                                                                                                                                                                                                                                                                                                                 | 8 grams                                                                                                                                                                                                                                                                                  | less .15%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.18 cm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I admiralty mile                                                                                                                                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                                                               |  |  |  |
| penny                                                                                                                                                                                                                                                                                                                                                     | 1 oz. (av                                                                                                                                                                                                                                                                                | voir.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I.2 inch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I knot = I nautical mile/hour                                                                                                                                                                                                                                                                          |                                                                                                                                                                              |                                                                                                                                                                                               |  |  |  |
| halfpenny                                                                                                                                                                                                                                                                                                                                                 | 1 ;,                                                                                                                                                                                                                                                                                     | ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I.O "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I fathom $= 6 f$                                                                                                                                                                                                                                                                                       | eet                                                                                                                                                                          |                                                                                                                                                                                               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | British<br>and German.                                                                                                                                                                                                                                                                                 | Continental<br>and American                                                                                                                                                  |                                                                                                                                                                                               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                           | Million                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 106                                                                                                                                                                                                                                                                                                  | 106                                                                                                                                                                          |                                                                                                                                                                                               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                           | Billion                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 10 <sup>12</sup>                                                                                                                                                                                                                                                                                     | 109                                                                                                                                                                          |                                                                                                                                                                                               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                           | Trillion                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 10 <sup>18</sup>                                                                                                                                                                                                                                                                                     | 1012                                                                                                                                                                         |                                                                                                                                                                                               |  |  |  |
| At 4° C. and 760 mm. Values recalcularity 14, 1910.)                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | See p. 5.)<br>Observ                                                                                                                                                                                                                                                                                   | er.                                                                                                                                                                          | c.cs.                                                                                                                                                                                         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                           | Gineau an                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chappuis, 1907                                                                                                                                                                                                                                                                                         | · · · · ·                                                                                                                                                                    | 1000.027                                                                                                                                                                                      |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                           | 1799 · · · e, 1904 ·                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1000·030<br>1000·029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | de Lépinay,<br>Buisson, 190                                                                                                                                                                                                                                                                            | 1000.028                                                                                                                                                                     |                                                                                                                                                                                               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | at. 45°.                                                                                                                                                                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                                               |  |  |  |
| Gas. g<br>He .<br>Ne .                                                                                                                                                                                                                                                                                                                                    | -1785<br>-9002                                                                                                                                                                                                                                                                           | Ob<br>Mean, 19<br>Watson,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and 1:<br>server.<br>913-1926<br>J.C.S., 1910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | at. 45°.<br>Gas. gms./li<br>Ra Em. 9.727                                                                                                                                                                                                                                                               | tre. 01<br>7 Gray & R:<br>1910                                                                                                                                               | oserver.<br>amsay, P.R.S.                                                                                                                                                                     |  |  |  |
| Gas. g<br>He .                                                                                                                                                                                                                                                                                                                                            | ms./litre.                                                                                                                                                                                                                                                                               | Ob<br>Mean, 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and 1:<br>server.<br>913-1926<br>J.C.S., 1910<br>,, 1908                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | at. 45°.<br>Gas. gms./li                                                                                                                                                                                                                                                                               | tre. 01<br>7 Gray & R:<br>1910                                                                                                                                               | oserver.<br>amsay, P.R.S.                                                                                                                                                                     |  |  |  |
| Gas. g<br>He .<br>Ne .<br>Kr .<br>Xe .                                                                                                                                                                                                                                                                                                                    | ms./litre.<br>•1785<br>•9002<br>3•708<br>5•851                                                                                                                                                                                                                                           | Ob<br>Mean, 19<br>Watson,<br>Moore<br>''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and 1:<br>server.<br>913–1926<br>J.C.S., 1910<br>,, 1908<br>,, 1908                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | at. 45°.<br>Gas. gms./li<br>Ra Em. 9.727                                                                                                                                                                                                                                                               | tre. 01<br>7 Gray & R:<br>1910<br>88 Baume &<br>1909                                                                                                                         | amsay, P.R.S.<br>Perrot, C.R.                                                                                                                                                                 |  |  |  |
| Gas. g<br>He .<br>Ne .<br>Kr .<br>Xe .<br>C.K<br>G gm.<br>GM <sub>1</sub> M <sub>2</sub> /d<br>of the Ca<br>Menzel us<br>adopted for<br><b>Refer</b>                                                                                                                                                                                                      | ms./litre.<br>$\cdot 1785$<br>$\cdot 9002$<br>$3 \cdot 708$<br>$5 \cdot 851$<br><i>R., Compt.</i><br>UN<br>-1, cm. <sup>3</sup> .<br>$7^2$ , has been<br>wendish to<br>sing the co<br>or <b>G</b> = ( <b>6</b><br>rences :                                                               | Mean, 10<br>Watson,<br>Moore<br>"<br>Rend.; )<br>IVERSA<br>sec. <sup>-2</sup> in<br>en measur<br>orsion bal<br>ommon bal<br>ommon bal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | and la<br>server.<br>913-1926<br>J.C.S., 1910<br>,, 1908<br>,,<br>T.C.S., Journ. O<br>L CONSTAN<br>a the expression<br>the expression<br>the expression<br>the expression<br>a the expression<br>the expression<br>a the expression<br>a the expression<br>the expression<br>a the e                              | at. 45°.<br>Gas. gms./li<br>Ra Em. 9.727<br>CH <sub>4</sub> . 9727<br>CH <sub>4</sub>                                                                                                                                                                                                                  | tre. 01<br>Gray & R:<br>1910<br>Baume &<br>1909<br>R.S., Proc. Ro<br>ATION G<br>a law of gra<br>d Heyl, using<br>g and Richard                                               | oserver.<br>amsay, P.R.S.<br>Perrot, C.R.,<br>y. Soc.<br>vitation, F =<br>developments<br>below. Value                                                                                        |  |  |  |
| Gas. g<br>He .<br>Ne .<br>Kr .<br>Xe .<br>C.K<br>G gm.<br>GM <sub>1</sub> M <sub>2</sub> /d<br>of the Ca<br>Menzel us<br>adopted for<br><b>Refer</b>                                                                                                                                                                                                      | ms./litre.<br>$\cdot 1785$<br>$\cdot 9002$<br>$3 \cdot 708$<br>$5 \cdot 851$<br><i>R., Compt.</i><br>UN<br>-1, cm. <sup>3</sup> .<br>$7^2$ , has been<br>wendish to<br>sing the co<br>or <b>G</b> = ( <b>6</b><br>rences :                                                               | Mean, 10<br>Watson,<br>Moore<br>"<br>Rend.; )<br>IVERSA<br>sec. <sup>-2</sup> in<br>en measur<br>orsion bal<br>ommon bal<br>ommon bal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | and 1:<br>913-1926<br>J.C.S., 1910<br>,, 1908<br>,,<br><i>I.C.S., Journ. C.</i><br>L CONSTAN<br>a the expression<br>the express | at. 45°.<br>Gas. gms./li<br>Ra Em. 9.727<br>CH <sub>4</sub> . 9727<br>CH <sub>4</sub>                                                                                                                                                                                                                  | tre. 01<br>Gray & R:<br>1910<br>Baume &<br>1909<br>R.S., Proc. Ro<br>ATION G<br>s law of gra<br>d Heyl, using<br>g and Richard<br>tre tabulated<br>Earth "; Bo               | oserver.<br>amsay, P.R.S.<br>Perrot, C.R.<br>y. Soc.<br>vitation, F =<br>developments<br>below. Value                                                                                         |  |  |  |
| Gas.     g       He     .       Ne     .       Kr     .       Xe     .       C.K       Ggm.       GM1M2/d       of the Ca       Menzel us       adopted for       Refer       Physique,                                                                                                                                                                   | ms./litre.<br>$\cdot 1785$<br>$\cdot 9002$<br>$3 \cdot 708$<br>$5 \cdot 851$<br>R., Compt.<br>UN<br>-1. cm. <sup>3</sup> .<br>$t^2$ , has been<br>wendish to<br>ing the co<br>or $\mathbf{G} = (6)$<br>rences :                                                                          | Ob<br>Mean, 19<br>Watson,<br>Moore<br>"<br>Rend.; J<br>IVERSA<br>sec. <sup>-2</sup> in<br>en measur<br>orsion bal<br>ommon ba<br>of <b>59</b> ±<br>Poynting<br>eyl, Bur.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and li<br>server.<br>913-1926<br>J.C.S., 1910<br>,, 1908<br>,,<br>J.C.S., Journ. O<br>L CONSTAN<br>a the expression<br>the e    | at. 45°.<br>Gas. gms./li<br>Ra Em. 9.727<br>CH <sub>4</sub> . 9.727<br>CH <sub>4</sub>                                                                                                                                                                                                                 | tre. 01<br>Gray & R:<br>1910<br>Baume &<br>1909<br>R.S., Proc. Ro<br>ATION G<br>s law of gra<br>d Heyl, using<br>g and Richar:<br>ure tabulated<br>Earth "; Bo<br>od.        | pserver.<br>amsay, P.R.S.<br>Perrot, C.R.<br>y. Soc.<br>vitation, F =<br>developments<br>and Krigar-<br>below. Value<br>ys, Congrès de                                                        |  |  |  |
| Gas.     g       He     .       Ne     .       Kr     .       Kr     .       C.K       G gm.       GM <sub>1</sub> M <sub>2</sub> /d       of the Ca       Menzel us       adopted for       Refer       Physique,       Torsion                                                                                                                          | ms./litre.<br>$\cdot 1785$<br>$\cdot 9002$<br>$3 \cdot 708$<br>$5 \cdot 851$<br><i>R., Compt.</i><br><i>UN</i><br>-1, cm. <sup>3</sup> .<br>$t^2$ , has been<br>wendish to<br>sing the color<br><b>G</b> = ( <b>G</b><br><b>ences</b> :<br>1900; He<br><b>Method.</b><br><b>Balance</b>  | Ob<br>Mean, 14<br>Watson,<br>Moore<br>,,<br>Rend.; J<br>IVERSA<br>sec. <sup>-2</sup> in<br>en measur<br>orsion bal<br>ommon ba<br>of <b>659</b> ±<br>Poynting<br>eyl, Bur.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and 1:<br>358erver.<br>913-1926<br>J.C.S., 1910<br>,, 1908<br>,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | at. 45°.<br>Gas. gms./li<br>Ra Em. 9.727<br>CH <sub>4</sub> . 9.727<br>CH <sub>4</sub> 716<br>Chem. Soc. ; P.1<br>T OF GRAVIT<br>on for Newton's<br>Braun, Eötvös an<br>and by Poyntin<br>Their results a<br>Density of the<br>1930.<br>Meth<br>Common Bala<br>Poynting, 1878                          | tre. 01<br>Gray & R:<br>1910<br>Baume &<br>1909<br>R.S., Proc. Ro<br>ATION G<br>s law of gra<br>d Heyl, using<br>g and Richarz<br>ure tabulated<br>Earth "; Bo<br>od.        | pserver.<br>amsay, $P.R.S.$<br>Perrot, $C.R.$<br>y. Soc.<br>vitation, $\mathbf{F} =$<br>developments<br>and Krigar<br>below. Value<br>ys, Congrès de<br><b>G.</b><br>$6.698 \times 10^{-8}$   |  |  |  |
| Gas.     g       He     .       Ne     .       Kr     .       Kr     .       C.K       G gm.       GM <sub>1</sub> M <sub>2</sub> /d       of the Ca       Menzel us       adopted for       Refer       Physique,       Torsion                                                                                                                          | ms./litre.<br>$\cdot 1785$<br>$\cdot 9002$<br>$3 \cdot 708$<br>$5 \cdot 851$<br><i>R., Compt.</i><br><i>UN</i><br>-1, cm. <sup>3</sup> .<br>$t^2$ , has been<br>wendish to<br>sing the color<br><b>G</b> = ( <b>G</b><br><b>ences</b> :<br>1900; He<br><b>Method.</b><br><b>Balance</b>  | Ob<br>Mean, 14<br>Watson,<br>Moore<br>,,<br>Rend.; J<br>IVERSA<br>sec. <sup>-2</sup> in<br>en measur<br>orsion bal<br>ommon ba<br>of <b>659</b> ±<br>Poynting<br>eyl, Bur.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and 1:<br>358erver.<br>913-1926<br>J.C.S., 1910<br>,, 1908<br>,,, 1908<br>,, 1008<br>,, 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | at. 45°.<br>Gas. gms./li<br>Ra Em. 9.727<br>CH <sub>4</sub> . 9.727<br>CH <sub>4</sub> 710<br>Chem. Soc. ; P.1<br>T OF GRAVIT<br>on for Newton's<br>Braun, Eötvös an<br>and by Poyntin<br>Their results a<br>Density of the<br>1930.<br>Meth<br>Common Bala<br>Poynting, 1878<br>Richarz and K         | tre. 01<br>Gray & R:<br>1910<br>Baume &<br>1909<br>R.S., Proc. Ro<br>ATION G<br>alaw of gra<br>d Heyl, using<br>g and Richar<br>ure tabulated<br>Earth "; Bo<br>od.<br>ance— | pserver.<br>amsay, $P.R.S.$<br>Perrot, $C.R.$<br>y. Soc.<br>vitation, $\mathbf{F} =$<br>developments<br>z and Krigar<br>below. Value<br>ys, Congrès de<br><b>G.</b><br>$6.698 \times 10^{-8}$ |  |  |  |
| Gas.     g       He     .       Ne     .       Kr     .       Kr     .       C.K       G gm.       GM <sub>1</sub> M <sub>2</sub> /d       of the Ca       Menzel us       adopted for       Refer       Physique,       Torsion                                                                                                                          | ms./litre.<br>$\cdot 1785$<br>$\cdot 9002$<br>$3 \cdot 708$<br>$5 \cdot 851$<br><i>R., Compt.</i><br><i>UN</i><br>-1. cm. <sup>3</sup> .<br>$t^2$ , has been<br>wendish to<br>sing the color<br><b>G</b> = ( <b>G</b><br><b>rences</b> :<br>1900; He<br><b>Method.</b><br><b>Balance</b> | Ob<br>Mean, 14<br>Watson,<br>Moore<br>,,<br>Rend.; J<br>IVERSA<br>sec. <sup>-2</sup> in<br>en measur<br>orsion bal<br>ommon ba<br>of <b>659</b> ±<br>Poynting<br>eyl, Bur.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and 1:<br>358erver.<br>913-1926<br>J.C.S., 1910<br>,, 1908<br>,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | at. 45°.<br>Gas. gms./li<br>Ra Em. 9.727<br>CH <sub>4</sub> . 9.727<br>CH <sub>4</sub> 710<br>Chem. Soc. ; P.1<br>T OF GRAVIT<br>on for Newton's<br>Braun, Eötvös an<br>and by Poyntin<br>Their results a<br>Density of the<br>1930.<br>Meth<br>Common Bala<br>Poynting, 1878<br>Richarz and K         | tre. 01<br>Gray & R:<br>1910<br>Baume &<br>1909<br>R.S., Proc. Ro<br>ATION G<br>s law of gra<br>d Heyl, using<br>g and Richarz<br>ure tabulated<br>Earth "; Bo<br>od.        | pserver.<br>amsay, $P.R.S.$<br>Perrot, $C.R.$<br>y. Soc.<br>vitation, $\mathbf{F} =$<br>developments<br>and Krigar<br>below. Value<br>ys, Congrès de<br><b>G.</b><br>$6.698 \times 10^{-8}$   |  |  |  |
| Gas.       g         He       .         Ne       .         Kr       .         Kr       .         Kr       .         Kr       .         C.K         Ggm.         GM1M2/d         of the Ca         Menzel us         adopted for         Refer         Physique,         Torsion         Boys, 189         Braun, 18         Eötvös, 18         Heyl, 1930 | ms./litre.<br>$\cdot 1785$<br>$\cdot 9002$<br>$3 \cdot 708$<br>$5 \cdot 851$<br><i>R., Compt.</i><br><i>UN</i><br>-1, cm. <sup>3</sup> .<br>$t^2$ , has been<br>wendish to<br>sing the color<br><b>G</b> = ( <b>G</b><br><b>ences</b> :<br>1900; He<br><b>Method.</b><br><b>Balance</b>  | Ob<br>Mean, 19<br>Watson,<br>Moore<br>"<br>Rend.; )<br>IIVERSA<br>sec. <sup>-2</sup> in<br>en measur<br>orsion bal<br>ommon bal | and 1:<br>pserver.<br>$P_{13}-1926$<br><i>J.C.S.</i> , 1910<br><i>,</i> , 1908<br><i>,</i> ,<br><i>J.C.S.</i> , <i>Journ</i> . O<br><b>L CONSTAN</b><br>a the expression<br>red by Boys, E<br>lance method,<br>alance method,<br>alance method,<br>alance method,<br>alance method,<br><b>CODS</b> × 10 <sup>-8</sup><br><i>G</i> .<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.<br>G.                                                                                                                                                                                 | at. 45°.<br>Gas. gms./li<br>Ra Em. 9.727<br>CH <sub>4</sub> . 9.727<br>CH <sub>4</sub> 710<br>Chem. Soc. ; P.1<br>T OF GRAVIT<br>on for Newton's<br>Braun, Eötvös an<br>and by Poyntin<br>Their results a<br>Density of the<br>1930.<br>Meth<br>Common Bala<br>Poynting, 1878<br>Richarz and K<br>1898 | tre. 01<br>Gray & R:<br>1910<br>Baume &<br>1909<br>R.S., Proc. Ro<br>ATION G<br>alaw of gra<br>d Heyl, using<br>g and Richar<br>ure tabulated<br>Earth "; Bo<br>od.<br>ance— | pserver.<br>amsay, $P.R.S.$<br>Perrot, $C.R.$<br>y. Soc.<br>vitation, $\mathbf{F} =$<br>developments<br>z and Krigar<br>below. Value<br>ys, Congrès de<br><b>G.</b><br>$6.698 \times 10^{-8}$ |  |  |  |

С

#### GRAVITY, LONGITUDE AND LATITUDE

#### ABSOLUTE VALUE OF THE ACCELERATION OF GRAVITY

The first determinations of the absolute value of the acceleration of gravity were made with "simple" pendulums. Kater introduced the reversible pendulum. When the periods of this pendulum about both knife-edges, which are unsymmetrically placed in a straight line passing through the centre of mass of the pendulum, are equal then  $g = 4\pi^2 l/l^2$ cm./sec.<sup>2</sup>, where *t* sec. is the period about either knife-edge, and *l* cm. is the distance between the knife-edges. Bessel showed theoretically that the buoyant action of the air on the pendulum, and the inertia of the air carried by it could be eliminated by using a reversible pendulum symmetrical in external form about its middle point. The observed period of the pendulum is reduced to that for infinitely small arc, and to a standard temperature and air density. Other corrections are made for yield of support, for elastic lengthening and bending of pendulum, for the "radius" and slipping of the knife-edges.

A weighted mean of the results which follow (excluding those of 1936 and 1939) is

g = 981.274 cm./sec.<sup>2</sup> at the Potsdam Geodetic Institute.<sup>†</sup>

This value is used by Borrass in a reduction of the relative determinations of g for 2736 stations in different parts of the world. **References:** Defforges, Observations du Pendule, Imprimerie Nationale, Paris 1894; Helmert, Theorie des Reversions Pendels, Potsdam 1898; Kühnen and Furtwängler, Bestimmung der absoluten Grösze der Schwerkraft, Berlin 1906; Bullard and Jolly, *Geophys. Sup. Roy. Ast. Soc.*, 1936; P. Heyl and Cook, J.R.N. Bur. St., 1936; J. S. Clark, Phil. Trans., 1939.

| Observer.                                                                                                                                                               | Station.                                                                                                         | Method.                                                                                                                                                                                                                                                                           | g for<br>Station.                                                                               | g for<br>Potsdam                                                       |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--|
| Bessel 1826<br>Pisati and Pucci .<br>Lorenzoni 1888 .<br>Barraquer 1889 .<br>Defforges 1894 .<br>v. Oppolzer 1904<br>Kühnen and Furt-<br>wängler 1906<br>P. Heyl and G. | Königsberg<br>Rome, 1894<br>Padua<br>Madrid<br>Paris Obs.<br>Rivesaltes<br>Vienna Obs.<br>Potsdam<br>Washington† | Simple pendulum using two lengths<br>Do. do.<br>Two Bessel reversible pendulums<br>Four Bessel reversible pendulums<br>Four Bessel pendulums : 1 m. 5 m.<br>5 m. 25 m. length<br>Two Bessel pend. of different mass<br>Five Bessel pendulums<br>Three reversible silica pendulums | 981.449<br>980.343<br>980.643<br>979.977<br>980.999<br>980.952<br>980.853<br>980.270<br>980.080 | 981.246<br>274<br>263<br>270<br>331<br>282<br>273<br>273<br>270<br>254 |  |
| Cook 1936.<br>J. S. Clark 1939 .                                                                                                                                        | N.P.L.<br>Teddington†                                                                                            | Reversible pendulum. Length by interferometer                                                                                                                                                                                                                                     | 981.1812‡                                                                                       |                                                                        |  |

\* Corrected by K. and F. for bending of pendulum, etc.

† For latitude, etc., see pp. 20, 21.

 $\ddagger$  Error calculated from consistency of observations  $\pm \cdot 0016$ .

#### RELATIVE VALUES OF GRAVITY. FIGURE OF THE EARTH

**Potsdam System.**—The publications of the International Geodetic Association use  $g=981^{\circ}274$  cm./sec.<sup>2</sup> at Potsdam (see above) as the base for relative determinations of gravity. Gravity surveys initiated in 1818 by Kater and Sabine have been carried out in most of the European States, America, India, and Japan by observing the time of swing of invariable pendulums at the several stations in the area under survey, and at a base station where the value of g is well determined. In 1880 v. Sterneck introduced the invariable half-second pendulum. Corrections to the period of the pendulum to infinitely small arc, for temperature, for buoyancy, and for the yield of the support are made. The square of the corrected period varies inversely as g. A large part of such observations was reduced by Helmert in 1896, and by Borrass for 2736 stations in 1909. (Relativen

T. H. L.

#### RELATIVE VALUES OF GRAVITY. FIGURE OF THE EARTH (contd.)

Messungen der Schwerkraft . . . Inter. Geod. Ass. 1911). The base stations of this reduction are printed below in black type. The agreement of relative determinations of gravity is shown by three values for the difference between g at Potsdam and Paris Obs., viz.

·330 cm./sec.<sup>2</sup> von Sterneck | ·334 cm./sec.<sup>2</sup> Haid | ·333 cm./sec.<sup>2</sup> Putnam

British Isles.—Bullard & Jolly (see reference above) have reviewed gravity measurements in Great Britain, values obtained by them using wireless time signals are given on p. 20.

**Gravity at Sea.**—Meinesz in expeditions by submarine during the period 1923– 1932 has measured g over wide ocean areas. The methods used are described in Meinesz "Theory and Practice of Pendelum Observations at Sea," *Netherlands Geod. Com.* 1929.

**The Figure of the Earth** has been deduced from gravity observations. Each observed value of g is corrected to that value, g.", which it would have at the ideal surface of the geoid, that is, it is corrected for terrain and altitude. We have

$$g_0'' = g + \delta g + \delta_1 g + \delta_2 g,$$
 where

- $\delta g =$  topographic correction (always positive) which corrects the observed value to what it would be if the terrain surrounding the station were horizontal.
- $\delta_1 g =$  Stokes' correction for altitude,  $+ 2 h g_0/r$ , follows from Newton's Law of attraction at a point at an altitude h, and is  $\cdot 0003086$  cm./sec.<sup>2</sup> per metre.  $\delta_2 g =$  Bouger's correction for elevated masses. This takes into account the attraction
- $\delta_2 g =$  Bouger's correction for elevated masses. This takes into account the attraction of the matter of density *d* forming the elevation, and is  $-3d.\delta_1 g/4D$ , where D is the mean density of the earth = 5.53 gm./cm.<sup>3</sup>. Faye, assuming with Airy (1855) that elevated masses rest like the tops of icebergs on matter of low density, decreases Bouguer's correction.

 $g_0$ ", the corrected value of g, is compared with that calculated for assumed shapes of the geoid.

**Spheroid of Equilibrium.**—Clairaut, in 1743, assuming that the internal density of the earth varies so that layers of equal density are concentric coaxial spheroids of equilibrium, showed that the acceleration of gravity in latitude  $\lambda$  at sea-level would be

$$g_{\lambda} = g_{e} \{ 1 + (5 m/2 - e) \sin^{2} \lambda \}$$

where  $g_{e}$  is gravity at the equator, m is the ratio of the centrifugal to the gravitational acceleration at the equator, that is 0034672, and e = ellipticity = (a-b)/a. Stokes showed that this relation is more general than Clairaut claimed. Adding small terms to the above relation and correcting for altitude H, *Helmert* (1901) obtains for gravity,

 $\gamma_{\rm H} = 978.030 \,(1 + .005302 \,\sin^2 \lambda - .000007 \,\sin^2 2\lambda) - .0003086 {\rm H}$ 

 $= 980.616 - 2.2928 \cos 2\lambda + .0069 \cos^2 2\lambda - .0003086H$  (H in metres)

The value of the *ellipticity* \* used in these expressions is 1/298.3. The values of gravity given by Helmert's expression agree with the observed values. In the following table the latitude  $\lambda$ , the longitude, altitude H in metres, the observed value of gravity g relative to Potsdam, namely, 981.274 cm./sec.<sup>2</sup>,  $g_0$ ", which is g corrected as stated above,  $\gamma_0$  the value at sea-level calculated by Helmert's formula, and  $g_0$ " –  $\gamma_0$ , the difference between the corrected observed value and the calculated value for an ellipsoid of revolution are given. When there is no observed value for a station g is calculated and entered under observed but is marked\*. The stations with values printed in heavier type are base stations. References : collected observed values of g: Helmert (1896), Borrass (1911) and others in the C. R. Association Géodésique International ; U.S. Geodetic Survey ; Trigonometrical Survey of India. Figure of the Earth: Clarke's "Geodesy," 1880 ; Helmert "Höhere Geodäsie," "Die Grösse der Erde," 1906 ; Bourgeois and Perrier in "Recueil de Constantes Physiques," 1913 ; Poynting and Thomson, "Properties of Matter."

The International Geophysical Union (Madrid, 1924) adopted the Hayford Spheroid with ellipticity 1/297'o.

GRAVITY

| Placs.                                                                                                            | Longitude.                                                                            | Latitude.                                                                                    | Alti-<br>tude<br>H<br>metre.                  | g<br>Observed<br>cm./sec. <sup>1</sup>                                           | g,"<br>cm./sec.1                        | 7°,<br>Cal.<br>cm./sec."                   | $g_0'' - \gamma_0$<br>in 001<br>cm./sec. <sup>3</sup> | Observer.                                                      |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------|
| Pole                                                                                                              | <br>166 44 48                                                                         | 90 0 0<br>0 0 0<br>77 50 48 S                                                                | 0<br>0<br>9                                   | 983.216*<br>978.030*<br>982.986                                                  | 982*988                                 | 982'984                                    | + 4                                                   | Bernacchi                                                      |
| Aberdeen (Univ.)<br>Aberystwith<br>Bangor<br>Belfast<br>Birmingham<br>Bristol<br>Cambridge                        | 2 6 38 W<br>4 4 W<br>5 56 W<br>1 54 W<br>2 36 2 W<br>0 5 8 E                          | 57 8 58 N<br>52 25 N<br>53 13 N<br>54 37 N<br>52 28 N<br>51 27 5 N<br>52 12 9 N              | 21<br>                                        | 981.68*<br>981.279*<br>981.350*<br>981.471*<br>981.285*<br>981.187<br>981.264    |                                         |                                            |                                                       | Bullard & Jolly<br>Pendulum                                    |
| (Cavendish).<br>Cardiff<br>Dublin (Trin. Coll.).<br>, (R.C.S.)<br>Edinburgh (Roy. Obs.).<br>Leith Fort            | 6 40 32 W<br>3 11 2 W                                                                 | 52 12 2 N<br>51 28 0 N<br>53 20 35 N<br>53 23 13 N<br>55 55 4 N                              | 11<br>7<br>15<br>130                          | 981'266<br>981'197*<br>981'360*<br>981'360*<br>981'580                           | ·617                                    | *586                                       |                                                       | [House, B. & J.<br>B. & J.<br>B. & J.<br>Biot, Kater           |
| Eskdalemuir (Obs.)<br>Glasgow (Univ.)<br>Greenwich (Obs.) .<br>Kew (Obs.)<br>Leeds (Univ.)<br>Liverpool (Univ.) . | 3 12 18 W<br>4 17 12 W<br>0 00 8 E                                                    | 55 58 36 N<br>55 18 48 N<br>55 52 31 N<br>51 28 0 N<br>51 28 0 N<br>53 48 30 N<br>53 24 19 N | 21<br>244<br>46<br><b>47</b><br>5<br>18<br>51 | 981'613<br>981'454*<br>981'563*<br>981'1883<br>981'2006<br>981'370*<br>981'350*  | ·198<br>•203                            | .198                                       |                                                       | [Gravity St.                                                   |
| London (N.P.L.)                                                                                                   | 0 20 3 W<br>0 10 23 W<br>0 7 57 W<br>2 14 2 W<br>1 36 53 W<br>1 8 45 W                | 51 25 2 N<br>51 29 54 N<br>51 31 27 N<br>53 27 53 N<br>54 58 50 N                            | 9<br>14<br>28<br>39<br>55<br>58               | 981'195†<br>981'195*<br>981'193*<br>981'359*<br>918'483*<br>981'309*             |                                         |                                            |                                                       | в. & Ј.                                                        |
| Oxford                                                                                                            | 1 15 1 W<br>4 c8 9 W<br>1 27 W<br>2 28 10 W                                           | 51 45 6 N<br>51 22 1 N<br>53 23 2 N<br>53 50 40 N                                            | 58                                            | 981'207<br>981'130<br>981'370*<br>981'369*<br>979'244*                           |                                         |                                            |                                                       | B. & J.<br>"                                                   |
| Cairo (Observatory) .<br>Cape Town (Obs.) .<br>Durban .<br>Johannesburg (Univ.) .<br>Mauritius (Roy. Alf. O.)     | 31 17 14 E<br>18 29 E                                                                 | 29 0 S<br>30 4 3 <sup>8</sup> N<br>33 56 S<br>29 40 S<br>26 11 S<br>20 5 39 S                | 33<br>11<br>1753<br>55                        | 979'317*                                                                         | 979 <b>*6</b> 61                        | 979*640                                    | + 21                                                  | Loesch, Preston                                                |
| Baltimore (Univ.)<br>Boston<br>Chicago<br>Harvard, Cambridge<br>Cincinnati<br>Ithica, Cornell                     | 76 37 W<br>71 3 48 W<br>87 36<br>71 7 48 W<br>84 25 18 W                              | 42 21 36 N<br>41 47 24 N<br>42 22 48 N<br>39 8 18 N                                          | 30<br>22<br>182<br>14<br>245                  | 980°396<br>980°283<br>980°398<br>980°004                                         | '401<br>'319<br>'401<br>'056            | *326<br>*379<br>*089                       | - I<br>+ 24<br>- 7<br>+ 22<br>- 33                    | Preston<br>Putnam<br>Defforges, P.<br>Putnam<br>P. 1894        |
| Madison                                                                                                           | 76 29 0 W<br>89 24 W<br>121 38 36 W<br>73 34 W<br>73 57 30 W<br>75 42 W<br>75 11 42 W | 43 4 36 N<br>37 20 24 N<br>45 30 24 N<br>40 48 30 N<br>45 25 24 N                            | 247<br>270<br>1282<br>40<br>38<br>73<br>16    | 980'300<br>980'365<br>979'660<br>980'652<br>980'267<br><b>980'607</b><br>980'196 | *352<br>*935<br>*275<br>*199            | *442<br>*932<br>*662<br>*238<br>*654       | -34<br>+37<br>+37                                     | Smith, 'o6<br>Mendenhall<br>Smith, '99<br>Klotz, 'o2<br>Putnam |
| Pikes Peak<br>Princeton<br>Quebec (Obs.)<br>Quito (Obs.)<br>Machala<br>St. Louis                                  | 105 2 W<br>74 39 30 W<br>71 13 8 W<br>78 50 W<br>80 W<br>90 12 12 W                   | 38 50 18 N<br>40 20 54 N<br>46 48 21 N<br>0 0 14 S<br>0 3 16 S<br>38 38 6 N                  | 4293<br>64<br>70<br>2825<br>2<br>154          | 978'954<br>980'178<br>980'758*<br>977'281<br>977'989<br>980'001                  | 855<br>191<br>977'833<br>990<br>980'032 | *062<br>*197<br>977*030<br>*047<br>980*045 | -207<br>- 6<br>-197<br>- 57<br>- 13                   | "<br>Bourgeois<br>Putnam                                       |
| Seattle (Univ.)                                                                                                   | 77 0 30 W                                                                             | 37 47 30 N<br>47 36 36 N<br>43 39 36 N<br>38 56 32 N<br>38 53 12 N                           | 114<br>74<br>107<br>102<br>14<br>32           | 979'965<br>980'726<br>980'461*<br>980'097*<br>980'1121<br>980'274*               | 980'741                                 | 979'971<br>980'852<br>'067                 | + 18<br>-111<br>+ 48                                  | Smith, Preston,<br>[Mendenhall<br>Putnam, 1900                 |
|                                                                                                                   |                                                                                       | For foot                                                                                     | notes see                                     | e p. 21.                                                                         |                                         |                                            |                                                       | T. H. L.                                                       |

20

#### GRAVITY

| Place.                                                                                                                                                                                                                                                                                      | Longitude.                                                                                                                                                                          | Latitude.                                                                                                                                                     | Alti-<br>tude<br>H<br>metre.                                                | g<br>Observed<br>cm./sec. <sup>2</sup>                                                                                            | g,"<br>cm./sec. <sup>3</sup>                        | Y.<br>Cal.<br>cm./sec. <sup>3</sup>                                                                                    | g." - 7.<br>in .001<br>cm./sec. <sup>2</sup>                                                                       | Observer.                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Asia—<br>Bombay (Colaba)<br>Dehra Dun<br>Calcutta<br>Hong Kong (Obs.)<br>Jalpaiquri<br>Madras<br>Sandakphu<br>Tokyo (Phy. Ins.)                                                                                                                                                             | 78 3 12 E<br>88 21 24 E<br>114 10 30 E<br>88 44 12 E<br>80 14 54 E<br>88 0 18 E                                                                                                     | 0 ' ''<br>18 53 48 N<br>30 19 30 N<br>22 32 48 N<br>22 18 12 N<br>26 31 18 N<br>13 4 6 N<br>27 6 6 N<br>35 42 36 N                                            | 683<br>6<br>33<br>82<br>6                                                   | 978.771<br>978.924<br>978.281<br>978.192                                                                                          |                                                     | 979'346<br>978'789<br>'773<br>'060<br>'294<br>'101                                                                     | -136<br>+ 28<br>+ 4<br>-117<br>- 12<br>-155                                                                        | Elblein<br>Hecker, '04<br>Conyngham |
| Australasia—<br>Adelaide (Obs.)<br>Auckland<br>Brisbane.<br>Melbourne (Obs.)<br>(Univ.)<br>Perth.<br>Sydney (Obs.)<br>Wellington, N.Z. (Obs.)                                                                                                                                               | 138 35 8 E<br>174 46 12 E<br>153 1 36 E<br>144 58 34 E<br>144 58 E<br>115 52 E<br>151 12 24 E                                                                                       | 35 42 36 K<br>34 55 39 S<br>36 50 54 S<br>27 28 S<br>37 49 53 S<br>37 48 9 S<br>31 57 S<br>33 51 42 S<br>41 17 4 S                                            | 43<br>3<br>40<br>26<br>43<br>14<br>43                                       | 979'711*<br>979'962<br>979'148<br>970'987<br>979'979<br>979'473*<br>979'683<br>980'292                                            | 979 <sup>-805</sup><br>-963<br>-156<br>-992<br>-690 | •888<br>•129                                                                                                           | + 75<br>+ 27<br>+ 18                                                                                               |                                     |
| Europe—<br>Basle Berlin (Reichsanstalt) .<br>Christiania (Obs.)<br>Copenhagen (Obs.)<br>Geneva (Obs.)<br>Leyden (Obs.)<br>Moscow<br>Paris (Obs.)<br>Paris (Obs.)<br>Notsdam (Geod. Inst.) .<br>Pulkowo<br>Rome (Eng. Sch.)<br>St. Petersburg (Phy. I.)<br>Vienna (Mil. Geo. Ins.)<br>Zurich | 7 34 48 E<br>13 19 E<br>10 43 32 E<br>12 34 42 E<br>6 9 12 E<br>4 29 3 E<br>37 39 48 E<br>2 20 12 E<br>13 4 6 E<br>30 19 42 E<br>12 29 30 E<br>30 18 6 E<br>16 21 30 E<br>8 33 12 E | 47 33 36 N<br>52 31 N<br>55 54 42 N<br>55 41 12 N<br>46 12 N<br>52 9 20 N<br>55 45 36 N<br>48 50 11 N<br>52 22 54 N<br>59 56 30 N<br>48 12 42 N<br>48 12 42 N | 30<br>28<br>14<br>405<br>6<br>147<br>59<br>70<br>87<br>71<br>59<br>6<br>183 | 981'280*<br>981'927<br>981'559<br>980'599<br>981'280<br>981'280<br>981'262<br>980'943<br>980'943<br>980'941<br>981'274<br>981'274 |                                                     | 981'907<br>*562<br>980'724<br>981'257<br>568<br>980'962<br>981*277<br>*896<br>980'336<br>980'336<br>981'909<br>980'906 | $\begin{array}{r} + 26 \\ + 26 \\ - 42 \\ + 24 \\ + 24 \\ - 42 \\ + 24 \\ - 4 \\ + 17 \\ + 18 \\ + 23 \end{array}$ |                                     |

Calculated by Helmert's formula for the latitude and altitude stated; where the altitude is not given, g is calculated for sea-level.
† Absolute determination, Clark 1939, 981'1815.
‡ Absolute determination, 980'080, see p. 18.

‡ Absolute determination, 980'080, see p. 18.

#### ACCELERATION OF GRAVITY CALCULATED BY HELMERT'S FORMULA

 $\gamma = 980.616 - 2.5928 \cos 2\lambda + .0069 \cos^2 2\lambda$ . Lat.  $90^{\circ} \gamma = 983.216$ .

The length (1) of the "seconds" pendulum (i.e. 2 secs. period)  $= g/\pi^2 = 101321 g$ . 1 varies from 99'094 cms. at the equator to 99'620 cms. at the pole.

| Latitude.                             | 0°                                                             | 1°                                           | 2°                                            | 3°                                           | <b>4°</b>                                     | 5°                                            | 6°                                           | 7°                                           | 8°                                           | 9°                                            | 10°                                          | 11°                                           | 12°                                          | 13°                                          | 14°                                          |
|---------------------------------------|----------------------------------------------------------------|----------------------------------------------|-----------------------------------------------|----------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|-----------------------------------------------|----------------------------------------------|-----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|
| 0°<br>15°<br>30°<br>45°<br>60°<br>75° | 978'030<br>978'376<br>979'321<br>980'616<br>981'914<br>982'867 | '032<br>'422<br>'400<br>'706<br>'992<br>'911 | *036<br>*471<br>*481<br>*797<br>*068*<br>*952 | *044<br>*523<br>*563<br>*887<br>*142<br>*990 | *055<br>*577<br>*646<br>*977<br>*215<br>*026* | *069<br>*634<br>*730<br>*066*<br>*285<br>*058 | •086<br>•693<br>•815<br>•155<br>•354<br>•088 | ·107<br>·754<br>·902<br>·244<br>·420<br>·115 | *130<br>*818<br>*989<br>*331<br>*485<br>*138 | *156<br>*884<br>*077*<br>*418<br>*547<br>*159 | •186<br>•952<br>•166<br>•564<br>•566<br>•176 | *218<br>*022*<br>*255<br>*588<br>*663<br>*190 | *253<br>*094<br>*345<br>*672<br>*718<br>*201 | *291<br>*168<br>*435<br>*754<br>*770<br>*209 | *332<br>*244<br>*525<br>*835<br>*820<br>*214 |
|                                       |                                                                |                                              |                                               |                                              |                                               |                                               |                                              |                                              |                                              |                                               |                                              |                                               |                                              |                                              |                                              |

T. H. L.

## THE EARTH

#### SIZE AND SHAPE OF THE EARTH

The spheroid of revolution which most nearly approximates to the earth, has the following dimensions :-- [I kilom. = '6214 mile.]

| Observer. Eq                                                                                                                                                                              | uatorial :                                                                                                                                                                                                                  | radius, a.                                                                                                 | Polar radius, <i>b</i> .                                                                                                                                                                                                                                                                                                                                                         | Ellipticity, $(a-b)/a$ .<br>1/299'2<br>1/295'0<br>1/293'5<br>1/298'3<br>1/297'0 |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|--|--|--|
| Bessel, 1841 6<br>Clarke, 1866<br>" 1880<br>Helmert, 1906 * .<br>U.S. Survey, 1906 †                                                                                                      | ,377,397<br>8,206<br>8,249<br>8,200<br>8,388                                                                                                                                                                                | ,,                                                                                                         | 6,356,079 metres<br>584 "<br>515 "<br>818 "<br>909 "                                                                                                                                                                                                                                                                                                                             |                                                                                 |  |  |  |  |  |  |
| <ul> <li>"Die Grosse der Erde."</li> <li>† "The Figure of the Earth," 1909, and Supplement, 1910; U.S. Coast and Geodetic Survey.</li> <li>‡ 3963'339 miles. # 3949'992 miles.</li> </ul> |                                                                                                                                                                                                                             |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                 |  |  |  |  |  |  |
| MEAN DENSITY OF                                                                                                                                                                           | THE EAR                                                                                                                                                                                                                     | тн                                                                                                         | SUN                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |  |  |  |  |  |  |
| (See Poynting's "Mean<br>Earth," 18                                                                                                                                                       |                                                                                                                                                                                                                             | y of the                                                                                                   | The mean equatorial<br>solar parallax (Hinks,<br>1909) = 8".807                                                                                                                                                                                                                                                                                                                  |                                                                                 |  |  |  |  |  |  |
| Observer.                                                                                                                                                                                 |                                                                                                                                                                                                                             | Density.                                                                                                   | Whence mean distance<br>from earth to sun $=\begin{cases} 1.494 \times 10^{11} \\ metres \\ 9.282 \times 10^{7} \\ miles \end{cases}$                                                                                                                                                                                                                                            |                                                                                 |  |  |  |  |  |  |
| Common Balance Method.<br>Poynting, 1878 5'493<br>Richarz and Krigar-Menzel,<br>1898 5'505                                                                                                |                                                                                                                                                                                                                             |                                                                                                            | Mean time taken by<br>light to travel from<br>sun to earth = 498'2 secs.                                                                                                                                                                                                                                                                                                         |                                                                                 |  |  |  |  |  |  |
| Torsion Balance Me<br>Cavendish, 1798<br>Boys, <i>Phil. Trans.</i> , 18<br>Braun, 1896<br>Eötvos, 1896<br>Mean density of surface                                                         | <b>thod.</b><br>95 · · ·                                                                                                                                                                                                    | 5.45<br>5.527<br>5.527<br>5.534<br>2.65                                                                    | MOON<br>Mean distance from<br>earth to moon<br>Mass of the moon<br>(Hinks, 1909) $= \begin{cases} 60'27 \times earth's radius \\ radius \end{cases}$<br>Mass of the moon<br>(Hinks, 1909) $= \{ (1/81'53) \times earth's mass \}$<br>Inclination of moon's<br>orbit to ecliptic $= 5^{\circ} 8' 43''$                                                                            |                                                                                 |  |  |  |  |  |  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                      | $\begin{array}{c} 5002,280 \\ 83 \times 10^{21} \\ 8 \times 10^{27} \\ 8 \times 10^{27} \\ 7 \times 10^{21} \\ 5 \times 10^{18} \\ 7 \times 10^{18} \\ 5 \times 10^{5} \\ 1 \times 10^{24} \\ 5 \times 10^{24} \end{array}$ | metres <sup>3</sup> *<br>grams †<br>ons<br>cm. <sup>2</sup><br>cm. <sup>3</sup><br>cm.<br>cm. <sup>3</sup> | <b>Obliquity of the Ecliptic</b> to the equator = $23^{\circ} 27' 4'' \cdot 04$ in 1909, subject to a small fluctuation by nutation, and a slow continuous decline of $46'' \cdot 84$ per century.<br><b>Constant of aberration</b> of a star is theoretically equal to (Earth's orbital velocity)/(velocity of light)= $20'' \cdot 43 \pm '' \cdot 03$ (Renan and Ebert, 1905). |                                                                                 |  |  |  |  |  |  |
| <ul> <li>* Mean of Helmert a</li> <li>† Using Boys' and I</li> <li>density.</li> <li>‡ Nautical Almanac,</li> </ul>                                                                       | Braun's r                                                                                                                                                                                                                   | Survey.<br>esult for                                                                                       | <b>Constant of precession</b> , <i>i.e.</i> annual precessional increase of the longitude of a star = $50^{"} \cdot 2564 + " \cdot 0002225t$ , where <i>t</i> is the interval in years from 1900 (Newcomb).                                                                                                                                                                      |                                                                                 |  |  |  |  |  |  |

| ELEMENTS OF THE SOLAR SYSTEM<br>8".806 is taken as the equatorial horizontal solar parallax from the observations of<br>the asteroid Eros in 1900-1; 5.527 is adopted as the Earth's mean density (Boys,<br>1895; Braun, 1896). See Spencer Jones' "General Astronomy," or Russell,<br>Dugan, and Stewart's "Astronomy." [Pluto : mass <0.7, semi-major axis 39.52,<br>sidereal period 90737d, eccentricity of orbit 0.2486.] |                                                                                        |                               |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                                                                  |                                                                                      |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|
| Name.                                                                                                                                                                                                                                                                                                                                                                                                                         | Equatoria<br>Angular.*                                                                 | Miles.                        | ameter.<br>Earth $= 1$                                                          | Mass<br>Earth = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mean Density.<br>Earth = 1 Water =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                 | Gravity<br>at Surf.<br>Earth = 1                                 | No. of<br>Satellites.‡                                                               |  |
| Sun<br>Mercury<br>Venus .<br>Earth .<br>Mars<br>Jupiter .<br>Saturn .<br>Uranus .<br>Neptune                                                                                                                                                                                                                                                                                                                                  | , "<br>16 1'18<br>3'08<br>8'40<br>8'80<br>4'68<br>1 37'36<br>1 24'75<br>34'28<br>36'56 |                               | 109'2<br>'350<br>'955<br>1'000<br>'532<br>11'06<br>9'63<br>3'90<br>4'15         | 329,390<br>'04<br>'81<br>1.000<br>'106<br>314.50<br>94.07<br>14.40<br>16.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *25<br>0.70<br>*94<br>1.00<br>0.71<br>*25<br>*12<br>*24<br>*23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1'39<br>3.8<br>5'20<br>5'527<br>3'90<br>1'36<br>'63<br>1'34<br>1'28             | 27'61<br>'28<br>'91<br>I'00<br>'38<br>2'57<br>I'01<br>'95<br>'97 |                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                               | Inclina-                                                                               | Orbit.                        | Sider                                                                           | real Period.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                                                                  |                                                                                      |  |
| Name.                                                                                                                                                                                                                                                                                                                                                                                                                         | tion of<br>Equator<br>to Orbit.                                                        | Time of<br>Axial<br>Rotation. |                                                                                 | Earth =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Million<br>of Miles                                                             |                                                                  | an Julian<br>Days. Years.                                                            |  |
| Asteroids<br>Jupiter .<br>Saturn .<br>Uranus .                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                   | 5 9 7                         | 7723<br>9 1.000<br>4 1.523<br>2.55 to<br>5.202<br>9.538<br>5 19.190<br>5 30.070 | 0986     4       3315     7       0000     10       688     16       2*85     28       803     52       844     100       98     196       67     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | de's Law = (0+4) = (3+4) = (6+4) = (12+4) = (24+4) = (48+4) = (96+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (192+4) = (19 | 36.0<br>67.2<br>92.9<br>141.6<br>237 to 2<br>483.3<br>886.2<br>1782.8<br>2793.5 | 224<br>365<br>686<br>4332<br>10759<br>30685<br>60187             | 20 29.46<br>9 84.01                                                                  |  |
| Name.                                                                                                                                                                                                                                                                                                                                                                                                                         | Ellipticity<br>Planet.§                                                                | of Mean<br>Motio<br>Orb       |                                                                                 | ngitude o<br>prihelion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 | ination<br>Orbit to<br>liptic.                                   | Eccentricity<br>of Orbit.**                                                          |  |
| Mercury.<br>Venus ·<br>Earth ·<br>Mars ·<br>Jupiter ·<br>Saturn ·<br>Uranus ·<br>Neptune                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                  |                               | 32'4<br>7'7 I<br>8'2 I<br>26'5 3<br>59'I<br>0'5<br>42'2 I                       | *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       * | 112 47 12<br>73 29 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 | 0 10<br>23 37<br>0 0<br>51 1<br>18 42<br>29 39<br>46 22<br>46 45 | *205614<br>*006821<br>*016751<br>*093309<br>*048254<br>*056061<br>*047044<br>*008533 |  |

\* This is the angle subtended by the semi-diameter at a distance equal to the Earth's mean distance from the Sun.

† The inclination of the plane of the Sun's equator to the plane of the ecliptic.

The mean direct; R, retrograde. S The ellipticity = (a-b)/a, where a is the major axis and b the minor axis of the spheroid of revolution. The value given for the Earth is Helmert's (p. 22). Perihelion is the point in the orbit nearest the Sun. Longitude is the angular distance from the first point of Aries (see p. 3), measured along the ecliptic. A node is one of the two points at which a planet's orbit intersects the plane of the ecliptic. At the ascending node the planet passes from south to north of the ecliptic.

\*\* The eccentricity =  $\sqrt{(a^2 - b^2)/a}$ , where a and b are the major and minor axes of the orbit.

# THE STARS

#### EQUATION OF TIME

(+) means that the equation of time has to be added to the apparent solar time (*i.e.* sundial time) to give the mean solar or clock time (see p. 3). (M) = maximum or minimum. The values below vary by a few seconds from year to year. C = D + E, where C = clock time, D = dial time, and E = equation of time.

| Date.                                              | Equation of time. | Date.                                                 | Equation of time.           | Date.  | Equation of time.                    | Date.                                               | Equation of time.                                                      |
|----------------------------------------------------|-------------------|-------------------------------------------------------|-----------------------------|--------|--------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------|
| Jan. 1<br>" 16<br>Feb. 1<br>" 12<br>Mar. 1<br>" 16 | + 9 33<br>+ 13 37 | April 1<br>,, 16<br>May 1<br>,, 14<br>June 1<br>,, 15 | -2 57<br>-3 49 (M)<br>-2 27 | Aug.16 | + 6 18 (M)<br>+ 4 11<br>0 0<br>- 5 6 | Oct. 16<br>Nov. 3<br>" 16<br>Dec. 1<br>" 12<br>" 25 | m. s.<br>- 14 20<br>- 16 21 (M)<br>- 15 10<br>- 10 56<br>- 6 15<br>0 0 |

#### PARALLAXES OF STARS

The proper motion of a star is its real change of place arising from the actual motion of the star itself.

The **annual parallax** is the angle between the direction in which a star appears as seen from the earth and the direction in which it would appear if it could be observed from the centre of the sun.

A light-year is the distance that light travels in one year (see p. 84).

| Star and Magnitude.                                                                                                                                                                             | Proper motion  | Annual                                                                                                                                                                                                                                           | Dista                                                                                                                                                                                                   | nce.                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| bter and magnitude.                                                                                                                                                                             | per year.      | parallax.                                                                                                                                                                                                                                        | Sun's dist. = 1                                                                                                                                                                                         | Light-years.                                                    |
| <sup>a</sup> Centauri ('2)<br>21185 Lalande (7'5)<br>61 Cygni (4'8)<br>Sirius (-1'4)<br>Procyon ('5)<br>Altair ('9)<br>Aldebaran (1'1)<br>Capella ('2)<br>Vega ('1)<br>1830 Groombridge (6'4) . | *2<br>*4<br>*4 | $ \begin{array}{c}     " " " \\     .75 \pm .01 \\     .39 \pm .02 \\     .30 \\     .37 \pm .01 \\     .31 \\     .20 \pm .02 \\     .06 \pm .02 \\     .07 \pm .02 \\     .07 \pm .02 \\     .12 \pm .02 \\     .10 \pm .02 \\   \end{array} $ | $\begin{array}{c} \cdot 28 \times 10^{6} \\ \cdot 53 & \\ \cdot 69 & \\ \cdot 56 & \\ \cdot 56 & \\ \cdot 69 & \\ 1 \cdot 05 & \\ 3 \cdot 5 & \\ 3 \cdot 0 & \\ 1 \cdot 7 & \\ 2 \cdot 0 & \end{array}$ | 4·4<br>8·4<br>10·9<br>8·8<br>11<br>16·6<br>55<br>47<br>27<br>32 |
| Polaris (2 <sup>•</sup> 1)                                                                                                                                                                      | 0.0            | ·07 ± ·02<br>·080                                                                                                                                                                                                                                | 3 <sup>.0</sup> ,,<br>26 ,,                                                                                                                                                                             | 47<br>410                                                       |

| SYSTEMATIC M                                                    |                       |                        |                                                                |                                                                                     | STANDARD TIMES<br>Referred to Greenwich time,<br>(As in August, 1939.) |                                               |  |  |  |
|-----------------------------------------------------------------|-----------------------|------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------|--|--|--|
| The apparent<br>show drifts in two<br>positions of the<br>are:— | direct                | ions.                  | The as                                                         | tugal, Belgium, Spain <sup>4</sup><br>Ireland<br>Holland<br>Austria, Denmark, Ger-) | time<br>20 mins. fast                                                  |                                               |  |  |  |
|                                                                 | Stream I. Stre        |                        |                                                                | am II.                                                                              | many, Italy, Norway,<br>Switzerland                                    | 1 hour fast<br>2 hours fast                   |  |  |  |
| Computer.                                                       | <b>R</b> . <b>▲</b> . | Dec.                   | B.A.                                                           | Dec.                                                                                | Egypt, Turkey<br>Japan, Korea<br>Australia                             | 9 hours fast<br>8, 9, 9½, or 10<br>hours fast |  |  |  |
| Kapteyn, 1904 .<br>Eddington<br>Dyson                           | 85°<br>90°<br>94°     | - 11°<br>- 19°<br>- 7° | New Zealand<br>Canada and United<br>States<br>India and Ceylon | 111                                                                                 |                                                                        |                                               |  |  |  |

24

#### SCREWS

It is customary for British metal screws, of 1-inch diameter and above, to have a Whitworth thread, for smaller sizes a British Association thread. In the Whitworth thread the angle between the slopes is 55°, in the B.A. thread 47.5°. The **pitch** is the distance between adjoining crests (say) of the same thread measured

parallel to the axis of the screw. It is the reciprocal of the number of turns per inch or mm. as the case may be. The full diameter is the maximum over-all diameter.

Micrometer screws are made with some multiple or sub-multiple of 100 threads to the inch or mm.

"Woodscrews" of iron or brass are numbered as follows: No. o has a diameter of 'o5 inch, each succeeding number adding '014 inch to the diameter of the screw : this applies to all lengths. The length of countersunk screws is measured over all ; that of [I inch = 25'4 mm.] round-headed screws, from under the head.

| Full di-<br>ameter. t                                                                                                                                                                                       | Thread al                                                                                                                             |                     |                                                    | BRITISH ASSOCIATION. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                     |          |     |                                                                                                                                                                                                                                                                                                  |                                                     |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------|----------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|
|                                                                                                                                                                                                             | to inch.                                                                                                                              | Full di-<br>ameter. | Threads<br>to inch.                                | No.                  | Full di-<br>ameter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pitch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No.  | Full di-<br>ameter. | Pitch.   | No. | Full di-<br>ameter.                                                                                                                                                                                                                                                                              | Pitch.                                              |  |
| inch.<br>I 4<br>I 5<br>I 12<br>I 5<br>I 5<br>I 5<br>I 5<br>I 5<br>I 5<br>I 5<br>I 5 | 556677890                                                                                                                             | inch.               | 10<br>11<br>11<br>12<br>12<br>14<br>16<br>18<br>20 | 012345678            | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                     |          |     | mm.<br>·62<br>·54<br>·48<br>·42<br>·37<br>·33<br>·29<br>·25                                                                                                                                                                                                                                      | mm.<br>15<br>14<br>12<br>11<br>10<br>09<br>08<br>07 |  |
| MOMENTS OF INERTIA<br>M = mass of body. (See A. M. Worthington, " Dynamics of Rotation."                                                                                                                    |                                                                                                                                       |                     |                                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                     |          |     |                                                                                                                                                                                                                                                                                                  | ondon.)                                             |  |
|                                                                                                                                                                                                             | Bo                                                                                                                                    | dy.                 |                                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Axis of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rota | tion.               |          | M   | oment of                                                                                                                                                                                                                                                                                         | inertia.                                            |  |
| Rectar<br>a and                                                                                                                                                                                             | Uniform thin rod (length <i>l</i> )<br>Rectangular lamina (sides<br><i>a</i> and <i>b</i> )<br>Circular lamina (radius <i>r</i> )     |                     |                                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{cases} (1) Through centre, perpendicular to length (2) Through end, perpendicular to length (1) Through centre of gravity, perpendicular to plane (2) Through centre of gravity, parallel to side b (1) Through centre, perpendicular to plane (2) Any diameter M \frac{a^2}{12}M \frac{a^2}{1$ |      |                     |          |     |                                                                                                                                                                                                                                                                                                  |                                                     |  |
| Solid<br>length                                                                                                                                                                                             | h 7)                                                                                                                                  |                     |                                                    |                      | $\begin{cases} (1) \text{ Axis of cylinder} \\ (2) \text{ Through centre of gravity, per-pendicular to axis of cylinder} \\ (1) \text{ Axis of cylinder} \end{cases} M \frac{\frac{l^2}{2}}{M} M \frac{l^2}{R^2} M \frac{l^2}{R^2} M \frac{l^2}{R^2} M \frac{R^2}{R^2} M \frac{R^2}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                     |          |     |                                                                                                                                                                                                                                                                                                  | $\binom{2}{4}{r^2}$                                 |  |
| and in                                                                                                                                                                                                      | <b>Hollow cylinder</b> (external<br>and internal radii R and r;<br>length l)                                                          |                     |                                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ntre | of grav<br>axis     | ity, per |     | $\left(\frac{l^2}{12} + \frac{1}{2}\right)$                                                                                                                                                                                                                                                      | $\frac{2^2+1^2}{4}$                                 |  |
| Solid sphere (radius r)                                                                                                                                                                                     |                                                                                                                                       |                     |                                                    |                      | Thre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ough cer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ntre |                     |          | N   | $\left[\cdot\frac{2r^2}{5}\right]$                                                                                                                                                                                                                                                               |                                                     |  |
| Ancho<br>of rin                                                                                                                                                                                             | Hollow sphere (external and<br>internal radii R and $r$ )<br>Anchor ring (mean radius<br>of ring R; radius of cross-<br>section $r$ ) |                     |                                                    |                      | Through centre (1) Through centre, perpendicular to plane of ring (2) Any diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                     |          |     | $ \begin{array}{c} \operatorname{M}\left(\frac{2}{5} \cdot \frac{\mathrm{R}^{5} - r^{5}}{\mathrm{R}^{3} - r^{3}}\right) \\ \operatorname{M}\left(\mathrm{R}^{2} + \frac{3r^{3}}{4}\right) \\ \operatorname{M}\left(\frac{\mathrm{R}^{2} + \frac{5r^{2}}{2}}{\mathrm{R}^{3}}\right) \end{array} $ |                                                     |  |

# VOLUME CALIBRATION

#### VOLUME CALIBRATION OF VESSELS BY WATER OR MERCURY

Volume content of vessel at  $t^{\circ}$  C. =  $V_t = W_t v_t \equiv w_t(f)$ , where—

 $w_t$  = observed weight in grams (against brass weights in air) of contained water (or mercury) at  $t^{\circ}$  C.

W<sub>t</sub> = weight of such liquid in vacuo (i.e. corrected for buoyancy in air).

(f) is a factor which introduces the buoyancy and specific volume corrections. The following table of values of the factor (f) is based on tables on pp. 28 and 31.

| Temp. (t) of weighing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10° C.             | <b>11°</b>         | 12°                | 13°                | 14°                | 15°                | 16°                | 17°                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Value of $\{\mathbf{H}_{2}\mathbf{O} \\ \mathbf{factor} (f) \{\mathbf{H}_{g}\mathbf{O} \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                    |                    |                    |                    |                    |                    | 1.00226<br>.073777 |
| Temp. (/) of weighing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18°                | 19°                | 20°                | 21°                | 22°                | 23°                | 24°                | 25°                |
| Value of $\{\mathbf{H}_2\mathbf{O}, \mathbf{f}_2\mathbf{O}, \mathbf{H}_2\mathbf{O}, \mathbf{H}_2$ | 1.00244<br>.073790 | 1.00263<br>.073804 | 1.00283<br>.073817 | 1.00305<br>.073831 | 1.00327<br>.073844 | 1.00350<br>.073857 | 1.00375<br>.073871 | 1.00400<br>.073884 |

The above gives the volume content  $V_t$  of the vessel at the temperature of weighing,  $t^\circ$  C. At any other temperature, t', the volume  $V_{t'} = V_t \{1 + \gamma(t' - t)\} \equiv V_t(F)$ , where  $\gamma$  is the coefficient of cubical expansion of the material of the vessel. Values of the factor (F) for **glass vessels** ( $\gamma = :000025$ ) are tabulated below.

| ( <i>t'</i> - <i>t</i> ) | 2° C.   | <b>4</b> ° | 6°      | 8°      | - 2° C. | -4°     | -6°    | -8°    |
|--------------------------|---------|------------|---------|---------|---------|---------|--------|--------|
| Valueoffactor(F)         | 1.00002 | 1.00010    | 1.00012 | 1.00050 | ·99995  | •999990 | •99985 | •99980 |

**Example.**—Weight of water contained in a vessel at 10° C. = 10 grams : thence volume of vessel at 10° C. = 10 × 1'00133 c.cs. The same vessel, if of glass, would contain at 16° C., 10 × 1'00133 × 1'00015 = 10'0148 c.cs.

#### CAPILLARITY CORRECTIONS OF MERCURY COLUMNS

The height of the meniscus and the value of the capillary depression depend on the bore of the tubing, on the cleanliness of the mercury, and on the state of the walls of the tube. The correction is negligible for tubes with diameters greater than about 25 mms. The table below gives the amount of the correction (which has to be added to the height) for various diameters of glass tubing and meniscus heights. (Mendeléeff and Gutkowsky, 1877. See also Scheel and Heuse, Ann. d. Phys., 33, 1910.)

| Bore                                    |                                 | Height of meniscus in mms.                           |                                         |                                          |                                          |                                   |                                |                              | Bore                                        | Bore definition of meniscus in mm      |                                        |                                        |                                        | ıs.                                    |                                       |
|-----------------------------------------|---------------------------------|------------------------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------|--------------------------------|------------------------------|---------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------|
| tube.                                   | •4                              | ·6                                                   | •8                                      | 1.0                                      | 1.5                                      | 1.4                               | 1.6                            | 1.8                          | tube.                                       | ·8                                     | 1.0                                    | 1.2                                    | 1.4                                    | 1.6                                    | 1.8                                   |
| <sup>mm.</sup><br>4<br>5<br>6<br>7<br>8 | mm.<br>*83<br>*47<br>*27<br>*18 | mm.<br>1 <sup>·</sup> 22<br>·65<br>·41<br>·28<br>·20 | mm.<br>1`54<br>`86<br>`56<br>`40<br>`29 | mm.<br>1·98<br>1·19<br>·78<br>·53<br>·38 | mm.<br>2°37<br>1°45<br>°98<br>°67<br>°46 | mm.<br>1.80<br>1.21<br>.82<br>.56 | mm.<br>—<br>I'43<br>'97<br>'65 | mm.<br>—<br>—<br>I·13<br>·77 | <sup>mm.</sup><br>9<br>10<br>11<br>12<br>13 | mm.<br>*21<br>*15<br>*10<br>*07<br>*04 | mm.<br>*28<br>*20<br>*14<br>*10<br>*07 | mm.<br>'33<br>'25<br>'18<br>'13<br>'10 | mm.<br>'40<br>'29<br>'21<br>'15<br>'12 | mm.<br>*46<br>*33<br>*24<br>*18<br>*13 | mm<br>·52<br>·37<br>·27<br>·19<br>·14 |

26

 $v_t$  = volume of I gram of liquid at  $t^{\circ}$  C.

# REDUCTION OF BAROMETER READINGS TO 0° C.

Corrected height  $H_0 = H\left\{I - \frac{(\beta - \alpha)t}{(I + \beta t)}\right\}$ , where H and t are the observed height and temperature of the barometer,  $\beta = \cdot 0001818$  (Regnault), the coefficient of cubical expansion of mercury;  $\alpha = \cdot 000085$ , the coefficient of linear expansion of glass, or  $\cdot 0000184$  for brass. Hydrogen temperature scale. (After Broch, Inter. Bur. Weights and Measures.)

(In accurate barometry, the height of the mercury column is corrected to  $0^{\circ}$  C. (32° F.). Inch scales are corrected to  $62^{\circ}$  F., and mm. scales, as in the table below, to  $0^{\circ}$  C.

|                                                    |                                                                      |                                                                              | C                                                                    | orrection                                                            | in mms                                                               | . to be subtracted.                                                  |                                                                      |                                                                      |                                                                      |                                                                      |  |
|----------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--|
|                                                    |                                                                      | GLA                                                                          | SS SCAI                                                              | LE.                                                                  |                                                                      | BRASS SCALE.                                                         |                                                                      |                                                                      |                                                                      |                                                                      |  |
| Temp. (t).                                         | υ                                                                    | ncorrect                                                                     | ed heigh                                                             | t in mm                                                              | 5.                                                                   | υ                                                                    | ncorrect                                                             | ed heigh                                                             | t in mm                                                              | s.                                                                   |  |
|                                                    | 700                                                                  | 720                                                                          | 740                                                                  | 760                                                                  | 780                                                                  | 700                                                                  | 720                                                                  | 740                                                                  | 760                                                                  | 780                                                                  |  |
| 2° C.<br>4<br>6<br>8<br>10<br>12<br>14<br>16       | mm.<br>*24<br>*48<br>*73<br>*97<br>1*21<br>1*45<br>1*69<br>1*94      | *25<br>*49<br>*75<br>*99<br>1*25<br>1*49<br>1*74<br>1*99                     | *26<br>*51<br>*77<br>1*02<br>1*28<br>1*53<br>1*79<br>2*05            | *26<br>*53<br>*79<br>1*05<br>1*31<br>1*58<br>1*84<br>2*10            | *27<br>*54<br>*81<br>1*08<br>1*35<br>1*62<br>1*89<br>2*16            | mm.<br>'23<br>'46<br>'69<br>'91<br>1'14<br>1'37<br>1'60<br>1'82      | *24<br>*47<br>*71<br>*94<br>1*17<br>1*41<br>1*64<br>1*88             | *24<br>*48<br>*72<br>*97<br>1*21<br>1*45<br>1*69<br>1*93             | *25<br>*50<br>*74<br>*99<br>1*24<br>1*49<br>1*73<br>1*98             | *25<br>*51<br>*76<br>1*02<br>1*27<br>1*53<br>1*78<br>2*03            |  |
| 18<br>20<br>22<br>24<br>26<br>28<br>30<br>32<br>34 | 2'18<br>2'42<br>2'66<br>2'90<br>3'14<br>3'38<br>3'62<br>3'86<br>4'10 | 2'24<br>2'49<br>2'73<br>2'98<br>3'23<br>3'47<br>3'72<br>3'72<br>3'97<br>4'21 | 2'30<br>2'56<br>2'81<br>3'06<br>3'32<br>3'57<br>3'83<br>4'08<br>4'33 | 2'36<br>2'62<br>2'89<br>3'15<br>3'41<br>3'67<br>3'93<br>4'19<br>4'45 | 2'43<br>2'69<br>2'96<br>3'23<br>3'50<br>3'77<br>4'03<br>4'30<br>4'57 | 2.05<br>2.28<br>2.51<br>2.73<br>2.96<br>3.19<br>3.41<br>3.64<br>3.87 | 2'11<br>2'34<br>2'58<br>2'81<br>3'04<br>3'28<br>3'51<br>3'74<br>3'98 | 2.17<br>2.41<br>2.65<br>2.89<br>3.13<br>3.37<br>3.61<br>3.85<br>4.09 | 2'23<br>2'47<br>2'72<br>2'97<br>3'21<br>3'46<br>3'71<br>3'95<br>4'20 | 2'29<br>2'54<br>2'79<br>3'05<br>3'30<br>3'55<br>3'80<br>4'05<br>4'31 |  |

#### REDUCTION OF BAROMETER READINGS TO LAT. 45° AND SEA-LEVEL

It is a convention to take "g" at lat. 45° and sea-level as the standard value for "gravity." The corrections below result from the variation of "g" with latitude and height above sea-level (see p. 18). The barometer correction for **latitude** =  $\frac{H_0}{760}$  (C), has to be subtracted from the temperature—corrected barometer reading  $H_0$  for latitudes between 0° and 45°; and added for latitudes from 45° to 90°.

| Latitude | 0°          | 5°   | 10°  | 15°  | 20°  | 25°  | 30° | 35° | 40°  | 45° |
|----------|-------------|------|------|------|------|------|-----|-----|------|-----|
|          | 90°         | 85°  | 80°  | 75°  | 70°  | 65°  | 60° | 55° | 50°  | 45° |
| C        | mm.<br>1'97 | 1.94 | 1.85 | 1.40 | 1.21 | 1.52 | •98 | •67 | ·34* | .00 |

The correction of the barometer due to diminution of gravity with increasing height above sea-level amounts to about '24 mm. of mercury per 1000 metres above sea-level. The correction has to be subtracted from the observed reading.

• London, '45.

# WEIGHINGS: GAS VOLUMES

#### REDUCTION OF WEIGHINGS TO VACUO

28

The buoyancy correction  $= M\sigma(I/\Delta - I/\rho) = Mk$ , where M is the apparent mass in grams of the body in air,  $\sigma$  is the density of air (= '0012) in grams per c.c.,  $\Delta$  is the density of the body,  $\rho$  is the density of the weights. The correction is true to 4% for the following limits: 740 mm. press., 1° to 22°; 760 mm., 8° to 29°; 780 mm., 15° to 35°. If the correction is required more accurately, multiply the value of k given below by  $\sigma'/$ '0012, where  $\sigma'$  is the true density of the air for the temp. and press. at the time of the weighing (for  $\sigma'$ , see p. 34). The corrections for quartz weights are the same as for Al. + means cor<sup>n</sup>. to be added to observed weight.

| Density                                                                                               | Correction                                                                                                                                                                             | Factor (k) in                                                                                                                                                                           | Milligms.                                                                                                                                                                            | Density<br>of Body                                                                      | Correction 1                                                                                                                                       | Factor (k) in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Milligms.                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| of Body<br>weighed<br>Δ.                                                                              | Brass wgts.<br>$\rho = 8.4.$                                                                                                                                                           | Pt wgts.<br>$\rho = 21.5$ .                                                                                                                                                             | A1 wgts.<br>$\rho = 2.65.$                                                                                                                                                           |                                                                                         | Brass wgts. $\rho = 8.4$                                                                                                                           | Pt wgts.<br>$\rho = 21.5$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{l} \texttt{A1 wgts.}\\ \rho=2.65. \end{array}$                                                                                                                                                                                               |
| ·5<br>·55<br>·6<br>·65<br>·7<br>·75<br>·8<br>·85<br>·9<br>·95<br>1<br>1:1<br>1:2<br>1:8<br>1:4<br>1:5 | $\begin{array}{r} + 2.26 \\ + 2.04 \\ + 1.86 \\ + 1.70 \\ + 1.57 \\ + 1.46 \\ + 1.36 \\ + 1.27 \\ + 1.19 \\ + 1.12 \\ + 1.06 \\ + .95 \\ + .86 \\ + .78 \\ + .71 \\ + .66 \end{array}$ | $\begin{array}{r} + 2.34 \\ + 2.13 \\ + 1.94 \\ + 1.79 \\ + 1.66 \\ + 1.55 \\ + 1.44 \\ + 1.36 \\ + 1.28 \\ + 1.21 \\ + 1.14 \\ + 1.04 \\ + .94 \\ + .87 \\ + .80 \\ + .75 \end{array}$ | $\begin{array}{r} + 1.95 \\ + 1.73 \\ + 1.55 \\ + 1.39 \\ + 1.26 \\ + 1.15 \\ + 1.96 \\ + 1.15 \\ + 1.96 \\ + .81 \\ + .75 \\ + .64 \\ + .55 \\ + .47 \\ + .40 \\ + .35 \end{array}$ | 1.6<br>1.7<br>1.8<br>1.9<br>2.5<br>8<br>3.5<br>4<br>5<br>6<br>8<br>10<br>15<br>20<br>22 | $\begin{array}{r} + .61 \\ + .56 \\ + .52 \\ + .49 \\ + .46 \\ + .34 \\ + .26 \\ + .20 \\ + .16 \\ + .10 \\ + .01 \\02 \\06 \\08 \\09 \end{array}$ | $+ \frac{.69}{.65} + \frac{.62}{.58} + \frac{.54}{.54} + \frac{.34}{.29} + \frac{.24}{.19} + \frac{.14}{.000} + \frac{.000}{.000} + .00$ | $\begin{array}{r} + \cdot 30 \\ + \cdot 25 \\ + \cdot 21 \\ + \cdot 18 \\ + \cdot 15 \\ + \cdot 03 \\ - \cdot 05 \\ - \cdot 11 \\ - \cdot 15 \\ - \cdot 21 \\ - \cdot 25 \\ - \cdot 30 \\ - \cdot 33 \\ - \cdot 37 \\ - \cdot 39 \\ - \cdot 40 \end{array}$ |

REDUCTION OF GASEOUS VOLUMES TO 0° AND 760 MMS. PRESSURE

Corrected volume  $v_0 = \{v/(1 + 00367t)\} \cdot p/760$ , where v, t, and p are the observed volume, temp., and pressure (in mms. of mercury) of the gas respectively.  $g = 980^{\circ}62$  cms. per sec<sup>2</sup>. The coefficient 00367 observed by Regnault.

| Values of (1 + .00367t).                                                  |                                                                                                |                                                                                                |                                                                                                |                                                                                                |                                                                                                |                                                                                                |                                                                                                |                                                                                                |                                                                                                |                                                                                                |  |  |  |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|
| Temp. ( <i>t</i> ).                                                       | 0                                                                                              | 1                                                                                              | 2                                                                                              | 8                                                                                              | 4                                                                                              | 5                                                                                              | 6                                                                                              | 7                                                                                              | 8                                                                                              | 9                                                                                              |  |  |  |
| 0° C.<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100<br>110 | 1.0000<br>0367<br>0734<br>1101<br>1468<br>1835<br>2202<br>2569<br>2936<br>3303<br>3670<br>4037 | 1°0037<br>0404<br>0771<br>1138<br>1505<br>1872<br>2239<br>2606<br>2973<br>3340<br>3707<br>4074 | 1 0073<br>0440<br>0807<br>1174<br>1541<br>1908<br>2275<br>2642<br>3009<br>3376<br>3743<br>4110 | 1.0110<br>0477<br>0844<br>1211<br>1578<br>1945<br>2312<br>2679<br>3046<br>3413<br>3780<br>4147 | 1.0147<br>0514<br>0881<br>1248<br>1615<br>1982<br>2349<br>2716<br>3083<br>3450<br>3817<br>4184 | 1.0183<br>0550<br>0917<br>1284<br>1651<br>2018<br>2385<br>2752<br>3119<br>3486<br>3853<br>4220 | 1'0220<br>0587<br>0954<br>1321<br>1688<br>2055<br>2422<br>2789<br>3156<br>3523<br>3890<br>4257 | 1'0257<br>0624<br>0991<br>1358<br>1725<br>2092<br>2459<br>2826<br>3193<br>3560<br>3927<br>4294 | 1'0294<br>0661<br>1028<br>1395<br>1762<br>2129<br>2496<br>2863<br>3230<br>3597<br>3964<br>4331 | 1'0330<br>0697<br>1064<br>1431<br>1798<br>2165<br>2532<br>2899<br>3266<br>3633<br>4000<br>4367 |  |  |  |
|                                                                           | Values of p/760                                                                                |                                                                                                |                                                                                                |                                                                                                |                                                                                                |                                                                                                |                                                                                                |                                                                                                |                                                                                                |                                                                                                |  |  |  |
| Press.(p).                                                                | 0                                                                                              | 1                                                                                              | 2                                                                                              | 3                                                                                              | 4                                                                                              | 5                                                                                              | 6                                                                                              | 7                                                                                              | 8                                                                                              | 9                                                                                              |  |  |  |
| 700 mm.<br>710<br>720<br>730<br>740<br>750<br>760<br>770                  | '9211<br>'9342<br>'9474<br>'9605<br>'9737<br>'9868<br>1'0000<br>1'0132                         | '9224<br>'9355<br>'9487<br>'9618<br>'9750<br>'9882<br>1'0013<br>1'0145                         | ·9227<br>·9368<br>·9500<br>·9632<br>·9763<br>·9895<br>I·0026<br>I·0158                         | ·9250<br>·9382<br>·9513<br>·9645<br>·9776<br>·9908<br>I·0039<br>I·0171                         | ·9263<br>·9395<br>·9526<br>·9658<br>·9789<br>·9921<br>1·0053<br>1·0184                         | ·9276<br>·9408<br>·9539<br>·9671<br>·9803<br>·9934<br>1·0066<br>1·0197                         | '9289<br>'9421<br>'9553<br>'9684<br>'9816<br>'9947<br>1'0079<br>1'0211                         | '9303<br>'9434<br>'9566<br>'9097<br>'9829<br>'9961<br>1'0092<br>1'0224                         | '9316<br>'9447<br>'9579<br>'9711<br>'9842<br>'9974<br>1'0105<br>1'0237                         | '9329<br>'9461<br>'9592<br>'9724<br>'9855<br>'9987<br>I'0118<br>I'0250                         |  |  |  |

#### DENSITIES OF THE ELEMENTS

Average densities of liquid and solid elements in grams per c.c. at ordinary temperatures unless otherwise stated. For gaseous densities see pp. 17, 35. The density of a specimen may depend considerably on its state and previous treatment, e.g. the density of a cast metal is increased by drawing, rolling, or hammering.

| Element.          | Density.  | Element.            | Density.  | Element.          | Density. |
|-------------------|-----------|---------------------|-----------|-------------------|----------|
| Aluminium         | 2'70      | Indium              | 7'3       | Samarium          |          |
| Antimony          | 6.68      | Iodine              | 4'95      | Scandium          | (?)      |
| Argon (llq.)      | 1.4/-182° | Iridium             |           | Selenium, amorph. | 4.8      |
| Arsenic           | 5'73      | Iron (pure)         |           | " cryst           | 4'5      |
| Barium            | 3.75      | Krypton (liq.)      | 2.10      | " liq. • •        | 4.27     |
| Beryllium         |           | Lanthanum           |           | Silicon           |          |
| Bismuth           |           | Lead                |           | Silver            | 10.2     |
| Boron             | 2.2 (?)   | Lithium             |           | Sodium            | ·97 I    |
| Bromine           | 3.102/25° | Magnesium           |           | Strontium         | 2.54     |
| Cadmium           | 8.64      | Manganese           | 7'39      | Sulphur, rhombic  |          |
| Cæsium            | 1.87      | Mercury (see p. 24) | 13'56/15° | " monoclinic      |          |
| Calcium           | 1.22/29°  | Molybdenum          |           | " amorphous       |          |
| Carbon-           |           | Neodymium           |           | " liquid 113°     | 1.81     |
| Diamond           | 3.52      | Neon (liq.)         |           | Tantalum          | 16.6     |
| Graphite          | 2.3       | Nickel              |           | Tellurium         | 6.25     |
| Cerium            | 6.92      | Niobium             |           | Terbium           |          |
| Chlorine (liq.)   | 2.49/0°   | Nitrogen (liq.) .   | '79/-196  | Thallium          | 11.0     |
| Chromium          | 7.1       | Osmium              |           | Thorium           | 11.3     |
| Cobalt            | 8.6       | Oxygen (liq.)       |           |                   | 7.29     |
| Copper            | 8.93      | Palladium           |           | Titanium          | 4'5      |
| Erbium            | 4.77 (?)  | Phosphorus, red .   | 2'20      | Tungsten          | 19.3     |
| Fluorine (liq.)   |           | Platinum            | 1.83      | Uranium           | 18.7     |
| Gadolinium        |           |                     |           | Vanadium          |          |
| Gallium           |           | Potassium           |           | Xenon (liq.)      |          |
| Germanium         | 5.47      | Praseodymium .      |           | Ytterbium         | 5.5      |
| Gold              | 19.32     | Radium              |           | Yttrium           | 3.8 (?)  |
| Helium (liq.)     |           | Rhodium             | 12.44     | Zinc · · · ·      | 7.1      |
| Hydrogen (liq.) . | *07/B.P.  | Rubidium            | 1.232     | Zirconium         | 6:5      |
| >> >>             | '086/M.P. | Ruthenium           | 12.3      |                   |          |

The densities of the alkali metals Li, Na, K, Rb, Cs are due to Richards and Brink, 1907; of He at -268°.6, Onnes, 1908; of Ta, Nb, and Th, von Bolton, 1905, 1907, 1908; of Ca, Goodwin, 1904; of Rh and Ir, Holborn, Henning, and Austin, 1904; of Br, Andrews and Carlton, 1907.

#### DENSITIES OF COMMON SUBSTANCES

Average densities in grams per c.c. at ordinary temperatures. For densities of acids, alkalies, and other solutions, see pp. 32 et seq.; of "chemical compounds," p. 130; of gases, p. 35; of other minerals, p. 147.

| Substance.                                                                                                                                                         | Density.                                                                                             | Substance.                                                                                                                                                                           | Density.                                                                                               | Substance.                                                                                                                                                               | Density.                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Metals & Alloys.<br>Iron, cast<br>, wrought<br>, wire<br>Steel<br>Brass (ordy.)<br>Brass weights<br>Bronze (Cu, Sn) .<br>Coins (English)<br>, bronze †<br>, gold ‡ | 7'1-7'7<br>7'8-7'9<br>7'7<br>7'7-7'9<br>8'4-8'7<br><i>c</i> . 8'4<br>8'7-8'9<br><b>8'96</b><br>17'72 | Coins (English)<br>,, silver §<br>Constantan I<br>Duralumin<br>German silver I<br>Gunmetal<br>Magnalium **<br>Manganin ††<br>Phosphor bronze ‡‡<br>Platinoid §§<br>Pt (90), Ir (10). | 10'31<br>8'88<br>2'79<br>8'5-8'9<br>8'0-8'4<br><i>c</i> . 2<br>8'5<br>8'7-8'9<br><i>c</i> . 9<br>21'62 | Woods (seasoned).<br>Ash ; mahogany .<br>Bamboo<br>Beach ; oak ; teak<br>Box<br>Cedar<br>Ebony<br>Lignum vitæ .<br>Pitchpine ; walnut<br>Red pine (deal) .<br>White pine | ·6-·8<br>c. ·4<br>·7-·9<br>·9-1·1<br>·5-·6<br>1·1-1·3<br>1·2-1·3 |
| * c. 66 Cu, 34 Zn<br>since 1927, 50 Ag, 40<br>** c. 70 Al, 30 Mg.                                                                                                  | Cu, 5 Ni, 5<br>†† 84 Cu                                                                              | Zn (density 9.58).                                                                                                                                                                   |                                                                                                        | § Prior to 1921, 921 A<br>Ni. ¶ 60 Cu, 15<br>1 P. §§ Described                                                                                                           | Ni, 25 Zn.                                                       |

silver with a little tungsten.

# DENSITIES

| DENSITIES OF COMMON SUBSTANCES (contd.)                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Substance.                                                                                                                                                                                                                                                                                                                                     | Density.                                                                                                                     | Substance.                                                                                                                                                                                                                                                                               | Density.                                                                                                                                                                                              | Substance.                                                                                                                                                                                                                                                                                                                       | Density.                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
| Minerals, etc.<br>Agate ; slate<br>Asbestos<br>, board .<br>Carbon (see above)<br>Charcoal<br>Coal<br>, anthracite .<br>Coke (pieces)<br>, (in bulk)<br>Gas carbon<br>Emery<br>Granite<br>Marble<br>Marble<br>Marble<br>Pumice (natural) .<br>Quartz<br>Silica, fused<br>, transparent<br>, translucent<br>Sand (silver)<br>Sandstone ; kaolin | 3.0 $1.2$ $3-6$ $1.2-1.5$ $1.4-1.8$ $1.0-1.7$ $-6-8$ $1.9$ $4.0$ $2.5-3$ $2.5-2.8$ $c. 2$ $-4-9$ $2.66$ $2.21$ $2.07$ $2.63$ | Liquids.<br>Glycerine<br>Methylated spirit .<br>Milk<br>Naphtha<br>Oil, castor<br>, linseed<br>, lubricating .<br>, olive ; palm .<br>, paraffin<br>Petrol<br>Sea-water<br>Sea-water<br>Turpentine<br>Vinegar<br>Miscellaneous.<br>Amber<br>Bone<br>Butter, lard<br>Celluloid<br>Ebonite | -83<br>c. 1.03<br>-85<br>-97<br>-91-93<br>-90-92<br>-91-93<br>c8<br>-68-72<br>1.01-1.05<br>-87<br>1.02<br>-1.1<br>-1.02<br>-1.1<br>-1.02<br>-1.1<br>-1.02<br>-1.4<br>-2.0<br>-92-94<br>-1.4<br>-22-26 | Gelatine<br>Glass, flint<br>,, crown; window<br>,, optical<br>,, pyrex<br>Ice (Roth, 1908), 0°<br>,, (Vincent,'02),0°<br>Indiarubber (pure)<br>Ivory<br>Leather<br>Paper<br>Pitch<br>Porcelain<br>Resin<br>Red fibre<br>Snow (loose)<br>Tar<br>Wax, soft paraffin .<br>, hard ,<br>, white ; bees-,<br>, sealing .<br>, soft red | 2·9-4·5<br>2·4-2·6<br>(see p. 85.)<br>2·25<br>·9168<br>·9160<br>·91-·93<br>1·8-1·9<br>·85-1<br>·7-1·1<br>c. 1·1<br>2·2-2·4<br>c. 1·1<br>I·45<br>c. ·12<br>I·02<br>·87-·88<br>·88-·93<br>·95-·96<br>c. 1·8 |  |  |  |  |  |  |  |  |

#### DENSITY DETERMINATION CORRECTIONS

In the determination of the density of a body by weighing in water, the true density (corrected for air buoyancy and water density) is given by  $\Delta(D - \sigma) + \sigma$ , where  $\Delta$  is the uncorrected density of the body, D is the density of the water, and  $\sigma$  is the density of the air. The table below gives the correction to be applied to  $\Delta$ . D is taken as '9992 (correct to I part in 2000 between 10° and 18° C., see p. 31) and  $\sigma$  as '0012 (see p. 35). — means that the correction has to be subtracted from  $\Delta$ . (See Stewart and Gee, "Practical Physics," vol. i.)

| 4                                             | Corr.                                                              | 4                                             | Corr.                                                                     | ۵                                             | Corr.                                                                     | Δ                                             | Corr.                                                | 4                            | Corr.   | 4            | Corr.                                                |
|-----------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------|------------------------------|---------|--------------|------------------------------------------------------|
| 0.5<br>1.0<br>1.5<br>2.0<br>2.5<br>3.0<br>3.5 | + 0002<br>- 0008<br>- 0018<br>- 0028<br>- 0038<br>- 0048<br>- 0058 | 4.0<br>4.5<br>5.0<br>5.5<br>6.0<br>6.5<br>7.0 | - '0068<br>- '0078<br>- '0088<br>- '0098<br>- '0108<br>- '0118<br>- '0128 | 7.5<br>7.8<br>7.9<br>8.0<br>8.1<br>8.2<br>8.3 | - '0138<br>- '0144<br>- '0146<br>- '0148<br>- '0150<br>- '0152<br>- '0154 | 8.4<br>8.5<br>8.6<br>8.7<br>8.8<br>8.9<br>9.0 | 0156<br>0158<br>0160<br>0162<br>0164<br>0166<br>0168 | 10·0<br>11·0<br>12·0<br>13·0 | - '0268 | 17·0<br>18·0 | 0308<br>0328<br>0348<br>0368<br>0388<br>0408<br>0428 |

#### DENSITY OF DAMP AIR

The density of damp air may be derived from the expression  $\sigma = \sigma_d(H - o \cdot 378p)/H$ , where  $\sigma_d$  is the density of dry air at a pressure H mms. (see p. 34), H is the barometric height, and p is the pressure of water-vapour in the air (p. 49).

# HYDROMETERS

**Common :** Density = degrees/1000. **Baumé :** Density at  $15^{\circ} = 144 \cdot 3/(144 \cdot 3 - \text{Baumé degrees})$ . **Twaddell :** Density = 1 + (Twaddell degrees/200). **Sikes :** One degree = a density interval of  $\cdot 002$  on the average.

٦

| H.scale<br>and Die<br>pressure<br>The<br>(See Ch               | DENSITY OF WATER<br>In grams per millilitre.* Pure air-free water under 1 atmos. Temps. on constvol.<br>H.scale. Water has a maximum density at 3°.98 (Chappuis, 1897; Thiesen, Scheel<br>and Diesselhorst; De Coppet, 1903). The temp. $(t_m)$ of maximum density at different<br>pressures $(p)$ , measured in atmos., is given by $t_m = 3.980225(p - 1)$ .<br>The <b>specific volume</b> is the reciprocal of the density. [* 1 litre = 1000.028 c.cs.]<br>(See Chappuis, <i>Trav. et Mém. Bur. Intl.</i> , <b>13</b> , 1907.)<br>Heavy water has a max. density of 1.1059 at 11.6° C.<br>Density of water at $-10^\circ = .99815$ ; at $-5^\circ = .99930$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                        |                                     |                                |                                                                 |                 |               |                    |                  |  |  |  |  |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------|-------------------------------------|--------------------------------|-----------------------------------------------------------------|-----------------|---------------|--------------------|------------------|--|--|--|--|
| Temp.                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                  | 4                      | 6                                   | 8                              | 10                                                              | 12              | 14            | 16                 | 18               |  |  |  |  |
| 0° C.<br>20<br>40<br>60<br>80<br>100                           | 0° C.         '99987         '99997         '99997         '99988         '99973         '99953         '99927         '99897         '99862           20         '99823         '99780         '99732         '99681         '99626         '99505         '99440         '99371         '9930           40         '9922         '9915         '9907         '9898         '9890         '9881         '9872         '9862         '9853         '9843           60         '9832         '9822         '9811         '9801         '9789         '9778         '9767         '9755         '9743         '9731           80         '9718         '9706         '9693         '9680         '9667         '9653         '9640         '9626         '9612         '9598                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                        |                                     |                                |                                                                 |                 |               |                    |                  |  |  |  |  |
|                                                                | Density a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 150° =             | • •917 ; :             | at 200°                             | = •863;                        | at 250°                                                         | = '79;          | at 300°       | = '70.             |                  |  |  |  |  |
| In grai<br>Cha                                                 | ms per r<br>appuis, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n.l. H<br>Trav. et | ydrogen                | scale o                             | OF M<br>of temp.<br>tl., 16, 1 | For re                                                          |                 | ls, see p     | o. 158.            | (See             |  |  |  |  |
| Temp.                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                  | 4                      | 6                                   | 8                              | 10                                                              | 12              | 14            | 16                 | 18               |  |  |  |  |
| -20°C.<br>0<br>20<br>40<br>60<br>80                            | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                        |                                     |                                |                                                                 |                 |               |                    |                  |  |  |  |  |
| 100<br>300                                                     | 0<br>13·3518<br>12·875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 40<br>13·256<br>12·779 | 60<br>13·208<br>12·737              | 80<br>13·160                   | 100<br>13·113                                                   | 120<br>13.065   | 140<br>13.018 | 160<br>12·970      | 180<br>12·922    |  |  |  |  |
| In g<br>solution.<br>léeff's O                                 | rams pe<br>Hydr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | er c.c.<br>ogen so | % indi                 | ETHY<br>cates g<br>temp.<br>. Chem. | (Calcula                       | OHOL,<br>C <sub>2</sub> H <sub>5</sub> O<br>ated by<br>ct. 1904 | H in I<br>E. W. | oo gran       | ns of ac<br>from M | jueous<br>lende- |  |  |  |  |
| %                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                  | 2                      | 8                                   | 4                              | 5                                                               | 6               | 7             | 8                  | 9                |  |  |  |  |
| 0<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100 | 0         '9988         '9969         '9951         '9933         '9916         '9899         '9884         '9869         '9854         '9840           10         '9826         '9813         '9800         '9787         '9775         '9762         '9750         '9737         '9725         '9713           20         '9700         '9687         '9674         '9661         '9647         '9633         '9619         '9604         '9589         '9573           30         '9557         '9540         '9524         '9506         '9489         '9470         '9452         '9433         '9414         '9394           40         '9375         '9354         '9334         '9313         '9292         '9271         '9250         '9228         '9207         '9185           50         '9163         '9140         '9118         '9096         '9073         '9051         '9028         '9005         '8982         '8959           60         '8936         '8913         '8890         '8867         '8843         '8820         '8773         '8749         '8726           70         '8702         '8678         '8655         '8631         '8607         '8582         '8558< |                    |                        |                                     |                                |                                                                 |                 |               |                    |                  |  |  |  |  |
| For ot                                                         | her temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                        | At                                  | 22º C.                         |                                                                 |                 |               | 2; 60 %,           | •8895 ;          |  |  |  |  |

10.00

# DENSITIES : ACIDS

|                                                          | DENSITY OF HYDROCHLORIC ACID, HCI.Aq<br>Grams per c.c. at 15° C. (Lunge and Marchlewski, 1891.) |         |                       |      |         |         |                       |       |         |         |                       |  |  |  |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------|-----------------------|------|---------|---------|-----------------------|-------|---------|---------|-----------------------|--|--|--|
| Grams HCl in Dens. Grams HCl in Dens. Grams HCl in Dens. |                                                                                                 |         |                       |      |         |         |                       |       |         |         |                       |  |  |  |
| Dens.                                                    | 100 gm.                                                                                         | 1 litre | Change                |      | 100 gm. | 1 litre | Change                | Dens. | 100 gm. | 1 litre | Change                |  |  |  |
|                                                          | of Solu                                                                                         | ation.  | for $\pm 1^{\circ}$ . |      | of Solu | ation.  | for $\pm 1^{\circ}$ . |       | of Sola | ation.  | for $\pm 1^{\circ}$ . |  |  |  |
| 1.01                                                     | 2'14                                                                                            | 22      | .00016                | 1.08 | 16.12   | 174     | .00035                | 1.15  | 29.6    | 340     | .00052                |  |  |  |
| 1.02                                                     | 4'13                                                                                            | 42      | £1000°                | 1.09 | 18.1    | 197     | .00038                | 1.16  | 31.2    | 366     | '00054                |  |  |  |
| 1.03                                                     | 6.12                                                                                            | 64      | '00021                | 1.10 | 20'0    | 220     | '00040                | 1.17  | 33'5    | 392     | .00020                |  |  |  |
| 1.04                                                     | 8.10                                                                                            | 85      | '00024                | 1.11 | 21'9    | 243     | '00043                | 1.18  | 35'4    | 418     | .00028                |  |  |  |
| 1.02                                                     | 10.12                                                                                           | 107     | '00027                | 1.15 | 23.8    | 267     | *00045                | 1.19  | 37'2    | 443     | .00020                |  |  |  |
| 1.06                                                     | 12'19                                                                                           | 129     | '00030                | 1.13 | 25'7    | 291     | '00048                | 1.50  | 39.1    | 469     | .00000                |  |  |  |
| 1.07                                                     | 14.12                                                                                           | 152     | .00032                | 1.14 | 27.7    | 315     | .00020                |       |         |         |                       |  |  |  |

# DENSITY OF NITRIO ACID, HNO, . Aq

Grams per c.c. at 15° C. % N<sub>2</sub>O<sub>5</sub> = ·857 × % HNO<sub>3</sub>—by weight. (Lunge and Rey, 1891.)

| Dens.                                                                        | of Solution.                                                                 |                                                                  | Dens.                                                                                            | Dens.                                                                        | Grams I<br>100 gm.<br>of Solu                                                | 1 litre                                                            | Dens.<br>Change<br>for $\pm 1^{\circ}$ . | Dens.                                                                             | 100 gm.              | Grams HNO <sub>2</sub> in<br>100 gm. 1 litre<br>of Solution.                |                                                                                                  |  |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|
| 1.02<br>1.04<br>1.06<br>1.08<br>1.10<br>1.12<br>1.14<br>1.16<br>1.18<br>1.20 | 3.70<br>7.26<br>10.7<br>13.9<br>17.1<br>20.2<br>23.3<br>26.4<br>29.4<br>32.4 | 38<br>75<br>113<br>151<br>188<br>227<br>266<br>306<br>347<br>388 | *00022<br>*00028<br>*00034<br>*00040<br>*00045<br>*00051<br>*00057<br>*00062<br>*00068<br>*00074 | 1.22<br>1.24<br>1.26<br>1.28<br>1.30<br>1.32<br>1.34<br>1.36<br>1.38<br>1.40 | 35'3<br>38'3<br>41'3<br>44'4<br>47'5<br>50'7<br>54'1<br>57'6<br>61'3<br>65'3 | 430<br>475<br>521<br>568<br>617<br>669<br>725<br>783<br>846<br>914 | '00120<br>'00126                         | 1:42<br>1:44<br>1:46<br>1:48<br>1:50<br>1:504<br>1:508<br>1:512<br>1:516<br>1:520 | 97°5<br>98°5<br>99°2 | 991<br>1075<br>1168<br>1274<br>1411<br>1444<br>1470<br>1490<br>1504<br>1515 | 100137<br>100143<br>100149<br>100154<br>100160<br>100161<br>100162<br>100163<br>100164<br>100166 |  |

# DENSITY OF SULPHURIC ACID, H,SO, . Aq

|          | Grams H | .80, in  |          | Grams H | 1,80, in |          | Grams E           | L <sub>3</sub> 80, in |
|----------|---------|----------|----------|---------|----------|----------|-------------------|-----------------------|
| Density. | 100 gm. | 1 litre  | Density. | 100 gm. | 1 litre  | Density. | 100 gm.           | 1 litre               |
|          | of Sola | ation.   |          | of Solu | ition.   |          | of Solu           | tion.                 |
| 1.02     | 3.03    | 31       | 1.44     | 54'1    | 779      | 1.822    | 90'4              | 1647                  |
| 1.04     | 5.06    | 31<br>62 | 1.46     | 56.0    | 817      | 1.824    | 90.8              | 1656                  |
| 1.06     | 8.77    | 93       | 1.48     | 57.8    | 856      | 1.826    | 91'2              | 1666                  |
| 1.08     | 11.00   | 125      | 1.20     | 59'7    | 896      | 1.828    | 91'7              | 1676                  |
| 1.10     | 14'35   | 158      | 1.22     | 61.0    | 936      | 1.830    | 92'1              | 1685                  |
| 1.12     | 17'01   | 191      | 1.54     | 63'4    | 977      | 1.832    | 92.5              | 1695                  |
| 1.14     | 19.61   | 223      | 1.26     | 65'1    | 1015     | 1.834    | 93'0              | 1700                  |
| 1.16     | 22'19   | 257      | 1.28     | 66.7    | 1054     | 1.836    | 93.8              | 1723                  |
| 1.18     | 24'76   | 292      | 1.60     | 68.5    | 1096     | 1.838    | 94.6              | 1739                  |
| 1.20     | 27'3    | 328      | 1.62     | 70'3    | 1139     | 1.840    | 95.6              | 1759                  |
| 1.22     | 29.8    | 364      | 1.64     | 72.0    | 1181     |          |                   |                       |
| 1.24     | 32'3    | 400      | 1.66     | 73.6    | 1222     | 1.8402   | 95'9              | 176                   |
| 1.26     | 34.6    | 435      | 1.68     | 75'4    | 1267     | 1.8410   | 97'0              | 1780                  |
| 1.58     | 36.9    | 472      | 1.70     | 77.2    | 1312     | 1.8415   | 97.7              | 179                   |
| 1.30     | 39'2    | 510      | 1.72     | 78.9    | 1357     | 1.8410   | 98.2              | 1808                  |
| 1.82     | 41.2    | 548      | 1.74     | 80.7    | 1404     | 1.8402   | 98.7              | 1810                  |
| 1.84     | 43'7    | 586      | 1.76     | 82.4    | 1451     | 1.8400   | 99'2              | 1829                  |
| 1.36     | 45'9    | 624      | 1.78     | 84.5    | 1504     | 1.8895   | 99'4              | 1830                  |
| 1.38     | 48.0    | 662      | 1.80     | 86.9    | 1564     | 1.8390   | 99'7              | 1834                  |
| 1.40     | 50.1    | 702      | 1.81     | 88.3    | 1598     | 1.8385   | 99'9              | 183                   |
| 1.42     | 52.1    | 740      | 1.82     | 90'0    | 1639     |          | The second second |                       |

Grams per c.c. at 15° C. % SO<sub>3</sub> = '816 × % H<sub>2</sub>SO<sub>4</sub>—by weight. (Lunge and Isler, 1895.)

|                                                                                                                                                                                                                                        |                                                                   |              |                    |                     |                                  |                     | 00                            |       | DE                  | NSIT         | IES         | 5 : AI           |                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------|--------------------|---------------------|----------------------------------|---------------------|-------------------------------|-------|---------------------|--------------|-------------|------------------|------------------------------------|
|                                                                                                                                                                                                                                        |                                                                   |              | D                  | ENS                 |                                  |                     | AMMON<br>per c.c. a           |       |                     | HO . Ad      | 4           |                  |                                    |
|                                                                                                                                                                                                                                        | Grams                                                             | NH, i        | in .               |                     | 1                                | Gra                 | ms NH, in                     | n   . |                     |              | Gra         | ms NH,           | in                                 |
| Dens.                                                                                                                                                                                                                                  |                                                                   |              | _                  | Dens.<br>hange      | Dens                             | . 100               | gm. 1 litr                    |       | Dens.<br>hange      | Dens.        |             | gm. 1 li         | Dens.                              |
|                                                                                                                                                                                                                                        | of Sol                                                            |              | - fo               | $r \pm 1^{\circ}$ . |                                  |                     | Solution.                     |       | $r \pm 1^{\circ}$ . |              |             | Solution         | - for ± 1°                         |
| .000                                                                                                                                                                                                                                   |                                                                   | 1            |                    |                     |                                  |                     |                               |       |                     |              |             | 1                |                                    |
| ·996<br>·992                                                                                                                                                                                                                           | '91<br>1.84                                                       | 9'1          |                    | 00019               |                                  |                     |                               |       | 00031               | ·916<br>·912 | 0 0         |                  | 0.9 .00049<br>1.9 .00051           |
| .988                                                                                                                                                                                                                                   | 2.80                                                              | 27'7         | 1 .0               | 00021               | 1 948 13.31 126.2                |                     | 1 5                           | 00035 | .908                | 25.65 232.9  |             | 2.9 .00023       |                                    |
| ·984<br>·980                                                                                                                                                                                                                           | 3.80<br>4.80                                                      | 37'4         |                    | 00022               | 2 '944 14'46 1<br>3 '940 15'63 1 |                     |                               |       | 00037               | ·904<br>·900 | 26.         | 98 243<br>33 255 |                                    |
| .976                                                                                                                                                                                                                                   | 5.80                                                              | 56.6         | 5 .0               | 00024               | .986                             | 16                  | 82 157 9                      |       | 00041               | •896         | 29"         | 69 266           | 00059                              |
| ·972<br>·968                                                                                                                                                                                                                           | 6.80<br>7.82                                                      | 66'1<br>75'7 |                    | 00025               | ·932<br>·928                     |                     |                               |       | 00042               | *892<br>*888 | 31.         |                  | 00060<br>00062                     |
| .964                                                                                                                                                                                                                                   | 8.84                                                              | 85'2         | : '                | 00027               | .924                             | 20                  | 49 189'3                      | 3 .   | 00045               | •884         | 34.10 301.4 |                  | 1.4 .00064                         |
| .960                                                                                                                                                                                                                                   | 960 9.91 95.1 .00029 .050 51.200.1 .00047 .880 35.20 314.2 .00066 |              |                    |                     |                                  |                     |                               |       |                     |              |             |                  |                                    |
| DENSITY OF SODIUM HYDROXIDE, NaHO. Aq<br>Grams per c.c. at 18° C. The percentages indicate grams of NaOH in 100 grams<br>of solution. (Bousfield and Lowry, 1905.)                                                                     |                                                                   |              |                    |                     |                                  |                     |                               |       |                     |              |             |                  |                                    |
| %         Density.         %         Density.         %         Density.         %         Density.                                                                                                                                    |                                                                   |              |                    |                     |                                  |                     |                               |       |                     |              |             |                  |                                    |
| 0                                                                                                                                                                                                                                      | •998                                                              |              | 10                 |                     | 098                              | 20                  | 1.550                         |       | 30                  | 1.32         | 90          | 40               | 1.4314                             |
| 1234567                                                                                                                                                                                                                                | 1.0100 11 1.120<br>1.0213 12 1.131                                |              |                    |                     |                                  | 21 22               | I'231<br>I'242                |       | 31<br>32            | 1.33         |             | 41 42            | 1.4411<br>1.4508                   |
| 3                                                                                                                                                                                                                                      | 1.032                                                             |              | 13<br>14           | 1.1                 | 429                              | 23<br>24            | 1.253                         | 2     | 33<br>34            | 1.36         | 05          | 43 44            | 1.4604                             |
| 5                                                                                                                                                                                                                                      | 1.043                                                             | ŝ            | 15                 |                     | 1650 2                           |                     | 5 1.2751                      |       | 35                  | 1.3208       |             | 45               | 1'4699<br>1'4794                   |
| 6 7                                                                                                                                                                                                                                    | 1.0626                                                            |              | 16<br>17           |                     | 1761 20<br>1871 21               |                     | 1.286                         |       | 36<br>37            | 1.39<br>1.40 |             | 46 47            | 1.4890<br>1.4985                   |
| 8                                                                                                                                                                                                                                      | 1'0877                                                            | 7            | 18                 | 1.1                 | 1982 28                          |                     | 1'307                         | 6     | 38                  | 1'41         | 15          | 48               | 1.2080                             |
| 9                                                                                                                                                                                                                                      | 1.0083                                                            | 7            | 19                 | 1.5                 | 2092 29 1.3184                   |                     |                               | 4     | 39                  | 1'42         | 15          | 49               | 1.2174                             |
|                                                                                                                                                                                                                                        |                                                                   | DEN          | SIT                |                     |                                  |                     | M CARI                        |       |                     | -            | 0,.         | Aq               |                                    |
|                                                                                                                                                                                                                                        | Gr                                                                | ams I        | Na <sub>2</sub> CO | ), in               |                                  |                     | Grams N                       | a2C   | 0, in               |              |             | Grams            | Na <sub>2</sub> CO <sub>3</sub> in |
| Densit                                                                                                                                                                                                                                 | у. 100                                                            | ) gm.        | 11                 | litre               | Dens                             | ity.                | 100 gm.                       | 1     | litre               | Densit       | y.          | 100 gm           | . 1 litre                          |
|                                                                                                                                                                                                                                        |                                                                   | of Sol       | lution             | n.                  |                                  |                     | of Sol                        | utio  | n.                  |              |             | of S             | olution.                           |
| 1.007                                                                                                                                                                                                                                  |                                                                   | 67           |                    | 5.8                 | 1.06                             |                     | 5.71                          |       | 60'5                | 1.116        |             | 10.95            | 122'2                              |
| 1.014                                                                                                                                                                                                                                  |                                                                   | 33           | 13                 | 3'5                 | 1.06                             |                     | 6'37<br>7'12                  |       | 68·0<br>76·5        | 1.125        |             | 11.81            | 132'9<br>143'0                     |
| 1.029                                                                                                                                                                                                                                  | 2"                                                                | 76           | 28                 | 3.4                 | 1.08                             | 33                  | 7*88                          | 1     | 85'3                | 1.142        |             | 13.10            | 150'3                              |
| 1.036                                                                                                                                                                                                                                  |                                                                   | 43<br>29     | 35                 | .5                  | 1.08                             |                     | 8.62<br>9.43                  |       | 94'0<br>93'7        | 1.152        |             | 14.24            | 164.1                              |
| 1.052                                                                                                                                                                                                                                  |                                                                   |              |                    | 0                   | 1.10                             |                     | 10.19                         |       | 12.9                |              |             |                  |                                    |
|                                                                                                                                                                                                                                        | Change                                                            | of de        | ensity             | per I               | ° C. (                           | o <sup>o</sup> to g | 30°), o to                    | 7%    | = '000              | 2; 11 te     | 0 20        | % = '00          | 004.                               |
| Grai                                                                                                                                                                                                                                   |                                                                   |              | t 17               | '9° C.              | The                              | e pero              | UM CH<br>centages<br>ution. ( | indi  | icate g             | rams o       | fan         |                  | is CaCl <sub>2</sub>               |
| %                                                                                                                                                                                                                                      | Density                                                           |              | %                  | Dens                | sity.                            | %                   | Densit                        | у.    | %                   | Densi        | ty.         | %                | Density.                           |
| 1                                                                                                                                                                                                                                      | 1.002                                                             |              | 11                 |                     | 94                               | 21                  | 1.180                         |       | 81                  | 1.50         |             | 41               | 1.406                              |
| 3                                                                                                                                                                                                                                      |                                                                   |              |                    |                     |                                  | 23                  |                               |       | 33                  |              |             | 43               | 1.429                              |
| 3         1'024         13         1'112         23         1'209         33         1'316         43         1'429           5         1'041         15         1'131         25         1'229         35         1'338         1'429 |                                                                   |              |                    |                     |                                  |                     |                               |       |                     |              |             |                  |                                    |
| 1<br>3<br>5<br>7<br>9                                                                                                                                                                                                                  | 1'041<br>1'058<br>1'076                                           |              | 17<br>17<br>19     | 1.1                 | 150                              | 27<br>29            | 1.250                         |       | 37<br>39            | 1.36         | I           |                  |                                    |

D

# DENSITIES: SOLUTIONS, AIR

|                                                                                                                                                                                                                                                                          | DENSITIES OF SOME AQUEOUS SOLUTIONS                                  |                                                                      |                                                                               |                                                                      |                                                                      |                                                                                                                                      |                                                                      |                                                                |                                           |                                  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------|----------------------------------|--|--|--|
| Grams per c.c. at 18° C. The indicated % is the number of grams of anhydrous<br>substance in 100 grams of solution. (Kohlrausch, "Prakt. Phys.")                                                                                                                         |                                                                      |                                                                      |                                                                               |                                                                      |                                                                      |                                                                                                                                      |                                                                      |                                                                |                                           |                                  |  |  |  |
| Substance. 5% 10% 15% 20% 25% Substance. 5% 10% 15% 20%                                                                                                                                                                                                                  |                                                                      |                                                                      |                                                                               |                                                                      |                                                                      |                                                                                                                                      |                                                                      |                                                                |                                           |                                  |  |  |  |
| $\begin{array}{c} NaCl & .\\ NaNO_3 & .\\ Na\overline{A} & .\\ H_8PO_4 & .\\ ZnSO_4 & .\\ FeCl_3 & .\\ SrCl_2 & .\\ MgCl_2 & . \end{array}$                                                                                                                              | 1'034<br>1'033<br>1'025<br>1'027<br>1'051<br>1'130<br>1'044<br>1'042 | 1'071<br>1'068<br>1'051<br>1'054<br>1'107<br>1'175<br>1'093<br>1'086 | 1.109<br>1.105<br>1.078<br>1.083<br>1.167<br>1.226<br>1.146<br>1.130          | 1°148<br>1°144<br>1°105<br>1°114<br>1°232<br>1°278<br>1°202<br>1°176 | 1.190<br>1.185<br>1.132<br>1.145<br>1.305<br>1.331<br>1.256<br>1.225 | MgSO,<br>BaCl <sub>2</sub><br>NH,Cl.<br>CuSO,<br>KCl.<br>KNO <sub>3</sub><br>K <sub>2</sub> SO,<br>K <sub>2</sub> Cr <sub>2</sub> O, | 1'04<br>1'01<br>1'05<br>1'03<br>1'03                                 | 4 1.093<br>4 1.029<br>1 1.107<br>1 1.064<br>0 1.063<br>9 1.081 | 1.147<br>1.043<br>1.167<br>1.098<br>1.097 | 1.204<br>1.057                   |  |  |  |
| Substance.                                                                                                                                                                                                                                                               | 5%                                                                   | 10 %                                                                 | 15 %                                                                          | 20 %                                                                 | 25 %                                                                 | 30%                                                                                                                                  | 85 %                                                                 | 40%                                                            | 45 %                                      | 50%                              |  |  |  |
| $\begin{array}{c} \mathrm{KBr}, & \cdot \\ \mathrm{KI} & \cdot \\ \mathrm{K_2CO_3} & \cdot \\ \mathrm{LiCl}, & \cdot \\ \mathrm{CdSO_4} & \cdot \\ \mathrm{CdSO_4} & \cdot \\ \mathrm{AgNO_3} & \cdot \\ \mathrm{PbA_2} & \cdot \\ \mathrm{Sugar}^* & \cdot \end{array}$ | 1'035<br>1'036<br>1'044<br>1'027<br>1'049<br>1'042<br>1'036<br>1'018 | 1.073<br>1.076<br>1.091<br>1.056<br>1.103<br>1.089<br>1.075<br>1.039 | 1°114<br>1°120<br>1°140<br>1°085<br>1°161<br>1°161<br>1°140<br>1°118<br>1°060 | 1.157<br>1.168<br>1.191<br>1.115<br>1.224<br>1.196<br>1.163<br>1.081 | 1'204<br>1'218<br>1'244<br>1'147<br>1'295<br>1'255<br>1'212<br>1'104 | 1.273<br>1.299<br>1.181<br>1.372                                                                                                     | 1.307<br>1.332<br>1.356<br>1.217<br>1.457<br>1.394<br>1.322<br>1.152 | 1·365<br>1·397<br>1·415<br>1·255<br>1·477<br>1·386<br>1·177    | 1.429<br>1.468<br>1.477<br>               | 1.545<br>1.541<br>1.674<br>1.230 |  |  |  |
|                                                                                                                                                                                                                                                                          |                                                                      |                                                                      |                                                                               | - FOR                                                                |                                                                      |                                                                                                                                      |                                                                      | 1)1                                                            |                                           |                                  |  |  |  |

\* 60%, 1.287; [75%, 1.380 (supersaturated)].

# DENSITY OF DRY AIR AT DIFFERENT TEMPERATURES AND PRESSURES

Grams per c.c.; pressures in mm. of mercury at 0° C. lat.  $45^{\circ}$ ; g = 980.62 cms. per sec.<sup>2</sup>. These densities are calculated by the expression  $\frac{.001293}{(1 + .00367t)} \cdot \frac{H}{.760}$ , where .001293 is due to Leduc, 1898, and Rayleigh, 1893 (p. 35); and .00367 to Regnault. For density of damp air, see p. 30.

|                  |         |         | Pre     | Pressure in Millimetres (H). |         |         |         |          |  |  |  |  |  |  |
|------------------|---------|---------|---------|------------------------------|---------|---------|---------|----------|--|--|--|--|--|--|
| Temp. (/).       | 710     | 720     | 730     | 740                          | 750     | 760     | 770     | 780      |  |  |  |  |  |  |
| 0° C.            | .001208 | .001225 | .001242 | .001259                      | .001276 | .001293 | .001310 | '001 327 |  |  |  |  |  |  |
| 2                | 1001100 | .001216 | .001233 | .001250                      | .001267 | .001284 | .001300 | .001312  |  |  |  |  |  |  |
| 4                | .001100 | '001207 | '001224 | '001241                      | .001258 | '001274 | '001291 | '001 308 |  |  |  |  |  |  |
| 2<br>4<br>6<br>8 | '001182 | '001199 | '001215 | '001232                      | .001248 | '001265 | '001282 | '001298  |  |  |  |  |  |  |
| 8                | '001173 | .001100 | *001207 | .001553                      | '001240 | '001256 | '001273 | .001289  |  |  |  |  |  |  |
| 10               | .001165 | .001183 | 861100. | '001214                      | .001231 | '001247 | .001264 | '001280  |  |  |  |  |  |  |
| 12               | .001157 | .001173 | '001190 | *001206                      | '001222 | .001238 | .001255 | '001271  |  |  |  |  |  |  |
| 14               | '001149 | .001162 | 181100. | '001197                      | '001214 | '001230 | '001246 | '001262  |  |  |  |  |  |  |
| 16               | '00114I | 'COI157 | '001173 | 681100.                      | .001202 | '001221 | '001237 | '001253  |  |  |  |  |  |  |
| 18               | '001133 | .001149 | *001165 | 181100.                      | '001197 | .001513 | ·001229 | '001245  |  |  |  |  |  |  |
| 20               | '001125 | '001141 | .001157 | .001173                      | 981100  | .001205 | '001220 | .001236  |  |  |  |  |  |  |
| 22               | '001118 | .001133 | .001149 | .001162                      | 181100  | 901100  | '001212 | .001228  |  |  |  |  |  |  |
| 24               | 011100' | '001126 | '001141 | '001157                      | .001173 | '001188 | '001204 | '001220  |  |  |  |  |  |  |
| 26               | .001103 | 811100  | '001134 | '001149                      | '001165 | '001180 | '001196 | .001211  |  |  |  |  |  |  |
| 28               | '001095 | 111100. | .001126 | '001142                      | '001157 | .001173 | '001188 | '001203  |  |  |  |  |  |  |
| 80               | *001088 | .001103 | .001110 | .001134                      | .001149 | .001162 | .001180 | '001195  |  |  |  |  |  |  |

2.23

4.77

7'23

2.49

5'02

1.97

4.52 6.99

#### DENSITIES OF GASES

35

Only those gases for which accurate density determinations have been made are

included in this table (see also p. 17). Other gases will be found in the table below. For density of air under different temperatures and pressures, see p. 34. Densities are in grams per litre (1000'028 c.cs.; see p. 17) at o<sup>o</sup> C. under 760 mm. of mercury at o<sup>o</sup> C. and lat. 45<sup>o</sup> (g = 980'62), *i.e.* under a pressure of 1'01323 × 10<sup>6</sup> dynes per sq. cm. (After P. A. Guye, *Chem. News*, 1908.)

| Gas.                                                                                                                                                                                                                                                                                                                | Density and Observer.                                                                                                                                                                                                                                                                                                                                                                                                                                   | Accepted density.                                                                                                                      | Density<br>rel. to O                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Air $\cdots$ Oxygen, $O_2$ $\cdots$ Hydrogen, $H_2$ $\cdots$ Nitrogen, $N_2$ $\cdots$ Argon, A $\cdots$ Argon, A $\cdots$ Nitrous oxide, $N_2O$ $\cdots$ Nitric oxide, NO $\cdots$ Ammonia, $NH_3$ $\cdots$ Carbon monoxide, CO $\cdots$ Carbon dioxide, $CO_2$ $\cdots$ Hydrochloric acid, HCISulphur dioxide, SO2 | I'2927 L.; I'2928 R.<br>{I'4288 L.; I'42905 R.; I'42900 M.;}<br>I'42896 Gr.; I'4292 J.P.<br>o'08982 L.; O'08998 R.; O'089873 M.<br>I'2503 L.; I'2507 R.; I'2507 Gr.<br>I'7809 R.; I'7808 Ra.<br>I'9780 L.; I'9777 R.; I'9774 G.P.<br>I'3429 L.; I'3402 Gr.; I'3402 G.D.<br>O'7719 L.; O'77085 P.D.; O'7708 G.P.<br>I'2501 L.; I'2504 R.<br>I'9763 L.; I'9769 R.; I'9768 G.P.<br>I'6407 L.; I'6397 Gr.; I'6398 G.G.<br>2'9266 L.; 2'9266 J.P.; 2'9266 B. | Grams/litre.<br>1*2928<br>1*42900<br>0*08987<br>1*2507<br>1*7809<br>1*9777<br>1*3402<br>0*7708<br>1*2504<br>1*9768<br>1*6398<br>2*9266 | o'90469<br>1'00000<br>o'06289<br>o'87523<br>1'2463<br>1'3840<br>o'93786<br>o'5394<br>o'87502<br>1'3833<br>1'1475<br>2'0480 |

B., Berthelot; G.D., Guye & Davila; G.G., Guye & Gazarian; G.P., Guye & Pintza; Gr., Gray; J.P., Jacquerod & Pintza; L., Leduc; M., Morley; P.D., Perman & Davies; R., Rayleigh; Ra., Ramsay.

The densities below are all experimental values, and are relative to that of oxygen ( $O_2 = 16$ ) at 0° and 760 mms. at lat. 45° (see above).

| Ga                                            | lS.               |     | Rel.<br>lens. |    | Ga                | s.         |     | Rel.<br>dens.  |       | Gas.     |                     | Rel.<br>dens. |
|-----------------------------------------------|-------------------|-----|---------------|----|-------------------|------------|-----|----------------|-------|----------|---------------------|---------------|
| Acetylene,                                    |                   |     |               |    |                   |            |     | 1.98           |       |          | chloride            |               |
| Arsine, As                                    |                   |     |               |    |                   |            |     |                | NO    |          | avida               | · 33.45       |
| Boron fluor<br>Bromine, B                     |                   |     | 33.48         |    |                   | ic acid, I |     | 39.24          |       |          | oxide—<br>26°.7 C   |               |
| Butane, C,                                    |                   |     |               |    |                   | acid, H    |     | 10'32<br>63'36 |       |          | 390.8               | 35.62         |
| Carbon of                                     |                   |     | .910          |    |                   | selenide   |     | 03 30          | 11000 | "        | 60°.2               | 30.12         |
|                                               |                   | ani | 50.75         |    | -                 |            | a 1 | 40.47          | "     | "        | 80°.6               | 26.06         |
| " oxysul                                      | phide,            | cos | 30.47         |    | " sult            | hide, H    | .S  | 17:22          |       |          | 00°.1               | 24.33         |
| Chlorine, C                                   | Cl <sub>2</sub> . | 3   | 36.07         |    |                   | ride, H2   |     | 65.00          |       |          | 21°.5               | 23.46         |
| " mone                                        |                   |     |               |    | pton, K           |            |     | 41.5           | ,,(   | NO2)1    | 54°.0               | 22.88         |
| " dioxi                                       |                   |     |               |    |                   |            | 9)  | 8.03           |       |          | 83°.2               | 22.73         |
| Cyanogen,                                     |                   |     |               |    | thylami           |            |     |                |       | phine, F |                     | . 17.58       |
| Ethane, C                                     |                   |     | 15.22         | M  | H <sub>3</sub> NH | 2 • . • •  | •   | 15.64          | Phos  |          | chloro              |               |
| Ethylamin<br>C <sub>2</sub> H <sub>5</sub> NH |                   |     |               |    | thyl chl          | oriae,     | 2   | 0006           | 1     |          | e, PCl₂F<br>ie, POF |               |
| Ethyl chlo                                    |                   |     |               |    |                   | er, C.H    |     | 25.06          |       |          | ride, PF            |               |
| C <sub>2</sub> H <sub>4</sub> Cl              |                   |     | 32.13         |    |                   | ide, CH    |     | 17.67          |       |          | ride, PF            |               |
| Ethyl fluor                                   |                   |     |               |    |                   | fluori     |     |                |       | ylene, C |                     | . 21.69       |
| Ethylene,                                     | C.H.              |     | 14.27         |    |                   |            |     |                |       |          | ide, SiF            |               |
| Fluorine, H                                   | F2                |     |               | Ne | on, Ne            | (1910) .   |     | 10.82          |       |          |                     |               |
| Densit                                        | ies in p          |     |               |    |                   | RATED V    |     |                |       | (2       | Zeuner,             | 1890.)        |
| Atmos.                                        | 0                 | 0.2 |               | 1  | 1.2               | 2          | 2   | .5             | 3     | 3.2      | 4                   | 4.5           |

0.887

3.22 6.01

1.10

3.77

6.25

1'43

4'02

6.20

1'70

4'27

6.74

0.000

3.26

5.76

0.312

3.01

5'52

2.75

5'27

0

5 10

#### ELASTICITIES Young's Modulus, or Longitudinal Elasticity, E in dynes per sq. cm. Rigidity, Torsion Modulus, or Shear Modulus, n in dynes per sq. cm. Volume Elasticity, Cubic Elasticity, or Bulk Modulus, k in dynes per sq. cm. Compressibility (cubic), C = 1/k. Poisson's Ratio, $\sigma =$ lateral contraction per unit breadth/longitudinal extension per unit length. For a homogeneous isotropic substance— $n = \frac{E}{2(1+\sigma)} \cdot \cdot \cdot (a); \quad \sigma = \frac{E}{2n} - 1 \cdot \cdot \cdot (b); \quad k = \frac{E}{3(1-2\sigma)} \cdot \cdot \cdot (c)$ For an isotropic solid Poisson's Ratio must lie between $+\frac{1}{2}$ and -1, but for some materials it may, when deduced from E and *n*, exceed +1. (See Searle's "Elasticity.") **1** bar = $10^6$ dynes per sq. cm. = 987 atmos. = 1/1.013 atmos. = the pressure measured by 750.15 mms. of mercury at 0° C. sea-level, and latitude $45^\circ = 749.66$ mms. at 0° in London. The elasticities of a substance depend considerably upon its history. The extent of the agreement between the calculated and observed values of n and of $\sigma$ below gives an indication of the degree of isotropy of the metals used. (Grüneisen, Reichsanstalt, Ann. d. Phy., 1908.) ELASTICITIES OF METALS Young's Vol. Poisson's Ratio, o. Rigidity, n. Modulus, E. Elast. k. Compress? Metal at 18° C. C. per (see also below By static Calcd. bar By oscilln. Caled. by **Ob-**Caled. by and pp. 37, 38). method or by for-(calculated) method. served. formula (c). formula (a). longl. vibns. mula (b). 2.67 × 1011 7.46× 1011 1'33 × 10-6 Aluminium (W)\*. 7'05 × 1011 2'63 × 1011 '339 '310 Bismuth (C), pure. Cadmium (C), pure Copper (W), pure . Gold (W), pure . Iron (W), '1%C. . Steel (W), 1%C. . Lead (C), pure . Nickel (W) † . 3.10 ----1'20 .33 3'14 3'2 -4'99 1'92 '30 \_ 4'12 2.4 .74 4'55 2'80 12'3 4'55 '337 356 13.1 16.9 8.0 422 495 2.77 21'3 .280 16.1 .63 8.31 -----.287 .62 20'9 8.13 8.12 '287 16.4 1.62 '562 '446 ----5.00 2'0 17.6 7'70 20'2 .309 ----.57 Palladium (C), pure 11'3 .393 'IOI 17.6 5'11 4'04 '57 24.7 .387 Platinum (C), pure 16.8 6'10 6.04 .368 ·41 Silver (W), pure . 2.87 7.90 2.86 '379 .369 10'9 '92 Tin (C), pure . 5'43 '33 5'29 ----2'04 1.0 8.08 '358 Bronze (C) ‡. 3'43 2'97 '177 9'52 1'05 Constantan (W)§. .65 16.3 '325 6.11 6.11 '329 15'5 Manganin (W) . 12'4 .83 4.65 4.65 '329 .329 12.1 (C) means cast; (W) worked. \$ 85.7 % Cu, 7.2 % Zn, 6.4 % Sn. \* '5% Fe, '4% Cu. \$ 60% Cu, 40% Ni. || 84% Cu, 12% Mn, 4% Ni. The (experimental) results below are mostly for ordinary laboratory materials, chiefly wires. Substance. Young's Modulus, E. Rigidity, n. Volume Elast. &. Poisson's Ratio, o. S. 12.4-12.9 × 1011 S. 3'9-4 × 1011 S. Copper . . 14'3 × 1011 M. .26 Iron (wrought) . 7.7-8.3 19-20 14.6 c. '27 " (cast) . 10-13 3'5-5'3 G. 9.6 '23-'3I Steel . 19.5-20.6 7.9-8.9 18.1 M. '25-'33 Zinc (1 % Pb) . . . 8.7 § G. 3.8 '21 Brass (c. 66 Cu, 34 Zn). German silver \* . . . 9'7-10'2 c. 3'5 10.65 Μ. '34-'40 S. 11.6 4'3-4'7 \*37 Platinoid + . . . 3.60 13.0 S. S. 37 S. Phosphor bronzet . . S. 38 12'0 S. 4'36 Quartz fibre . 5.18 H. 1'4 3.0 ·10-·70 Rubber, soft vulcanized '46-'49 Sc. '00016 6.5-7.8 Jena Glasses, Crowns . 2.6-3.2 4'0-5'9 '20-'27 Flints 5.0-6.0 2'0-2'5 3.6-3.8 \*22-\*26 ., .. (G.) Grüneisen, 1907. (H.) Horton, 1905. (M.) Mallock, 1905. (S.) Searle, 1900. \* 60 Cu, 15 Ni, 25 Zn. (Sc.) Schiller, 1906. † German silver with a little tungsten. 1 92'5 Cu, 7 Sn, '5 P. § Pure Zn, 12'5 × 1011 dynes/cm2.

TENSILE STRENGTHS

| ELASTICITIES (contd.)                                                                                                                                      |                                            |                                                                                                                                 |                                                                                                                                            |                   |                                                                                                                          |                                                                           |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|
| Substance.                                                                                                                                                 | Young's<br>Modulus,<br>E.                  |                                                                                                                                 | ature coeffici<br>Elast <sub>15</sub> $\{1 - \alpha$                                                                                       |                   | Compressibility C. per<br>bar (i.e. 10 <sup>s</sup> dynes/cm. <sup>2</sup> )<br>(Buchanan, <i>Proc. R. Soc.</i> , 1904). |                                                                           |  |  |  |
|                                                                                                                                                            | dynes/cm. <sup>2</sup>                     | At 15° C.                                                                                                                       | a for E.*                                                                                                                                  | a for n 🕇         |                                                                                                                          | 200-300 bars<br>pp. 36, 38).                                              |  |  |  |
| Iridium   <br>Rhodium  <br>Tantalum<br>Invar .<br>90 Pt, 10 Ir<br>Duralumin<br>Silk fibre<br>Spider<br>thread<br>Catgut<br>Ice (-2°)<br>Quartz<br>Marble . | 18.6 (Bo.)<br>14.1<br>21.0<br>7.4<br>.65 ‡ | Aluminium<br>Copper<br>Gold<br>Iron<br>Steel<br>Platinum .<br>Silver<br>Tin<br>Brass<br>German sil<br>Phosphor-b<br>Quartzfibre | 3 <sup>.64</sup><br>4 <sup>.8</sup><br>2 <sup>.3</sup><br>2 <sup>.4</sup><br>.98<br>7 <sup>.5</sup><br><br>3 <sup>.7</sup><br>ver<br>ronze | 4.0<br>3.3<br>7.3 | Aluminium<br>Copper .<br>Gold .<br>Lead .<br>Magnesium<br>Platinum .<br>Flint glass<br>Germ.glass<br>tubing .<br>Steel   | *88<br>*80<br>2*8 (A.)<br>3*2<br>*56<br>3*0<br>2*57                       |  |  |  |
| Oak<br>Deal<br>Mahogany<br>Teak                                                                                                                            | 1.3<br>.9                                  | (Br.) Bridgm<br>Schaefer, 190                                                                                                   | an, 1909. (G                                                                                                                               | on, 1904 and      | 1907. • Wass                                                                                                             | v. Bolton, 1905.<br>smuth, 1906, and<br>minishes rapidly<br>gue.    Pure. |  |  |  |

#### TENSILE STRENGTHS OF MATERIALS

Tenacities or breaking stresses in dynes per sq. cm. The elastic limit is always exceeded before the breaking stress is reached. The process of drawing into wire seems to strengthen the material, and the finer the wire the greater is the breaking stress. (See Poynting and Thomson's "Properties of Matter.")

For crushing and shearing strengths, see Ewing's "Strength of Materials" or one of the Engineering "Pocket-books." For bursting strengths of tubing, see p. 48. To reduce to kilogrammes per sq. mm., it is sufficient to divide by 10<sup>8</sup>; to lbs. per

sq. inch, divide by  $7 \times 10^4$ ; to tons per sq. inch, divide by  $1.5 \times 10^8$ .

\* Along the grain.

# COMPRESSIBILITIES

#### COMPRESSIBILITIES OF ELEMENTS

Coefficient of compressibility  $C = \frac{I}{V} \cdot \frac{\delta V}{\delta p}$ , where  $\delta V$  is the change in volume of a volume V under a change of pressure  $\delta \phi$  (temp. constant). See also pp. 26–27

volume V under a change of pressure  $\delta p$  (temp. constant). See also pp. 36, 37.

The values of C below are per bar (*i.e.*  $10^8$  dynes per sq. cm.). To express as compressibility per atmosphere, increase C by  $\frac{1}{80}$  of its value. Room temp. Pressure range, 100-500 bars. Based on compressibility of mercury =  $0^{\circ}_{0.371}$  per bar. The results show a periodic relation with atomic weight. See Richards, *Journ. Chem. Soc.*, 1911; and Bridgman, *Proc. Nat. Acad. Sci.*, 1915 et seq.

| Element.                                                              | C | Element.                                                  | C                                                                                                  | Element.                                          | C                                                                                                        | Element.                              | C                                                                            |
|-----------------------------------------------------------------------|---|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------|
| Al<br>Sb<br>As<br>Bi<br>Br<br>Cd<br>Cs<br>Ca<br>C,diamond<br>graphite |   | Cl (liq.).<br>Cr<br>Cu<br>Au<br>I<br>Fe<br>Pb<br>Li<br>Mn | 95×10 <sup>-6</sup><br>'7 "<br>'54 "<br>'47 "<br>13 "<br>'40 "<br>2'2 "<br>8'8 "<br>2'7 "<br>'67 " | Hg<br>Mo<br>Pd<br>P, red .<br>Pt<br>K<br>Rb<br>Se | 3'71×10 <sup>-6</sup><br>'26 "<br>'27 "<br>'38 "<br>9'0 "<br>20'3 "<br>'21 "<br>31'5 "<br>40 "<br>11'8 " | Si<br>Ag<br>Na<br>S<br>Tl<br>Sn<br>Zn | *16×10 <sup>-6</sup><br>*84 "<br>15'4 "<br>12'5 "<br>2'6 "<br>1'7 "<br>1'5 " |

#### COMPRESSIBILITIES OF LIQUIDS

C = compressibility per bar (*i.e.* $10<sup>6</sup> dynes per cm.<sup>2</sup>). To express as compressibility per atmosphere, increase C by <math>\frac{1}{80}$  of its value.

As the pressure increases C becomes less. In general a rise in temperature increases the compressibility of a liquid; but water, however, shows a minimum value of C at about 50° C. (Amagat). The compressibility of a solution diminishes as the concentration increases (see Poynting and Thomson's "Properties of Matter," and Bridgman's" The Physics of High Pressure ").

Where the limits of pressure are not given, they are—for Amagat, 8-37 atmos.; for Röntgen, 8 atmos.; for Richards, 100-200 atmos.

| Liquid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Temp.                                                                                           | Comp. C per<br>bar.                                                                                                                               | Liquid.                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Temp.                                                   | Comp. C per<br>bar.                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water, 1-25 atmos. (A.)<br>900-1000 ,, (A.)<br>900-1000 ,, (A.)<br>2500-3000 ,, (A.)<br>Sea-water (Grassi, 1851)<br>Mercury (A.)<br>, (Ri.)<br>Methyl alcohol, $CH_3OH$<br>(A.)<br>Ethyl alcohol, $CH_3OH$<br>(A.)<br>Ethyl alcohol, $CH_3OH$<br>(A.)<br>Ethyl alcohol, $CH_3OH$<br>(A.)<br>Propyl alcohol, (Ba.)<br>Propyl alcohol, (C, H, OH<br>Butyl alcohol, C, H, OH<br>(R.)<br>Butyl alcohol, (R.)<br>Amyl alcohol, (R.)<br>Amyl alcohol, (R.)<br>C_8H_{11}OH . (R.)<br>Chloroform (Ri.) | 15<br>198<br>14·2<br>20<br>15<br>14·7<br>0<br>310<br>17·7<br>17·8<br>17·4<br>17·9<br>17·7<br>20 | $48.9 \times 10^{-6}$ $36.3$ $55.4$ $25.8$ $43.1$ $3.82$ $3.71$ $102.7$ $102.7$ $76$ $4147$ $95.8$ $101.7$ $88.9$ $96.8$ $89.4$ $9.4$ $9.4$ $3.4$ | Carbon bisulphide (A.)<br>Ether, 1-50 atmos. (A.)<br>900-1000 , (A.)<br>, (A.)<br>Methyl acetate . (A.)<br>Ethyl acetate . (A.)<br>Ethyl acetate . (A.)<br>, bromide . (A.)<br>, chloride . (A.)<br>Acetic acid, 1-16 atm.<br>(C. & S.)<br>Glycerine, $C_3H_{\delta}(OH)_3$<br>(Q.)<br>Olive oil . (Q.)<br>Paraffin oil (de Metz,<br>1890)<br>Petroleum (Martini) .<br>Pentane, $C_5H_{12}$ . (G.)<br>Benzene, $C_6H_6$ . (R.)<br>Turpentine, $C_{10}H_{13}$ (Q.) | 0<br>20·5<br>20·5<br>14·8<br>16·5<br>20<br>17·9<br>19·7 | 85.9       "         145.2       "         64.2       "         142.2       "         95.8       "         102.7       "         291.3       "         151.1       "         40.2       "         24.8       "         62.5       "         61.9       "         68.7       "         314       "         90.8       "         78.14       " |
| (A.) Amagat, Compto                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s Rendi                                                                                         | 1884-93 ; (1                                                                                                                                      | B.) Bartoli, 1896 ; (Ba.) Ba                                                                                                                                                                                                                                                                                                                                                                                                                                      | rus, 189                                                | I; (C. & S.),                                                                                                                                                                                                                                                                                                                                |

(A.) Amagat, Comptes Kendus, 1884-93; (B.) Bartoli, 1896; (Ba.) Barus, 1891; (C. & S.), Colladon and Sturm, 1827; (G.) Grimaldi, 1886; (Q.) Quincke, Wied. Ann., 19, 1883; (R.) Röntgen, Wied. Ann., 44, 1891; (Ri.) Richards, 1907.

38

#### VISCOSITIES OF LIQUIDS

If two parallel planes are at unit distance apart in a fluid, and one of them is moving in its own plane with unit velocity relatively to the other plane, then the tangential force exerted per unit area on each of the planes is equal to the viscosity. The dimensions of a viscosity are  $ML^{-1}T^{-1}$ .

For the capillary-tube method of determining viscosities, Poiseuille's formula is, Viscosity  $\eta = \frac{\pi / r^4 t}{8 l V}$ , where p is the pressure difference between the two ends of the tube, r the radius of the tube, l its length, V the volume of liquid delivered in a time t.

VISCOSITY OF WATER

Determined by an efflux method and corrected for kinetic energy of outflow. (Hosking, *Phil. Mag.*, 1909.) Heavy water is about 30% more viscous at 20° C. than ordinary water.

| Temp.                  | Viscosity.                                     | Temp.                    | Viscosity.                           | Temp.                    | Viscosity.                           | Temp.                           | Viscosity.                           |
|------------------------|------------------------------------------------|--------------------------|--------------------------------------|--------------------------|--------------------------------------|---------------------------------|--------------------------------------|
| 0° C.<br>5<br>10<br>15 | c.g.s.<br>'01793<br>'01522<br>'01311<br>'01142 | 20° C.<br>25<br>30<br>40 | *01006<br>*00893<br>*00800<br>*00657 | 50° C.<br>60<br>70<br>80 | *00550<br>*00469<br>*00406<br>*00356 | 90° C.<br>100<br>124 *<br>153 * | .00316<br>.00284<br>.00223<br>.00181 |

\* de Haas, 1894.

VISCOSITY OF MERCURY

(Koch, 1881.)

| Temp.              | - 20° €. | 0°    | 20°   | 50°   | 100°  | 200°  | 300°  |
|--------------------|----------|-------|-------|-------|-------|-------|-------|
| Viscosity (c.g.s.) | .0186    | .0169 | .0126 | .0141 | .0122 | 1010. | .0093 |

| VISCOSITIES | OF  | VARIOUS | LIOUIDE |
|-------------|-----|---------|---------|
| VIGCUGITIEG | UF. | VARIOUS | LIUUIDA |

| Substance.                                                   | 0° C.   | 10°        | 20°      | 80°      | 40°       | 50°     | 60°        | 70°    |
|--------------------------------------------------------------|---------|------------|----------|----------|-----------|---------|------------|--------|
|                                                              |         |            | 1        |          |           |         |            |        |
| Markel shakel CH O                                           | c.g.s.  |            |          |          |           |         |            |        |
| Methyl alcohol, CH <sub>4</sub> O                            | .00813  | •00686     | .00201   | .00212   | .00420    | .00396  | .00349     | -      |
| Ethyl " C <sub>2</sub> H <sub>6</sub> O                      | '0177   | .0145      | .0110    | .00989   | .00822    | *00697  | .00201     | .00204 |
| Propyl " C <sub>8</sub> H <sub>8</sub> O                     | .0388   | .0292      | .0225    | .0128    | .0140     | .0113   | .00010     | .00727 |
| Isopropyl                                                    | .0456   | .0324      | .0237    | .0175    | .0133     | .0103   | .00804     | .00042 |
| Ether $(C_2H_\delta)_2O$ .                                   | .00286  | .00258     | .00234   | '00212   | .00192    | -       | .00166     | -      |
| Chloroform, CHCl <sub>3</sub> .                              | '00700  | .00626     | .00564   | '00511   | .00465    | .00426  | .00300     | -      |
| Carbon tetrachloride .                                       | .0132   | .0113      | .00969   | .00841   | .00738    | .00623  | .00283     | .00524 |
| " bisulphide                                                 | .00429  | .00306     | .00362   | .00345   | .00310    | -       | -          | -      |
| " dioxide (liq.) .                                           | -       | .00082     | '00071   | .00023   | -         | -       | -          | -      |
| Benzene, C.H.                                                | .00905  | .00759     | .00649   | .00562   | .00495    | .00432  | .00300     | '00351 |
| Aniline, C <sub>6</sub> H <sub>5</sub> NH <sub>2</sub> .     |         | .0655      | .0440    | .0319    | '0241     | .0189   | .0126      | -      |
| Glycerine, C <sub>3</sub> H <sub>6</sub> (OH) <sub>3</sub>   | 46.0    | 21'0       | 8.2      | 3.2      | -         | -       | -          | -      |
| Bromine                                                      | '0126   | 1110       | .00993   | .00808   | .00812    | .00746  | -          | -      |
| Turpentine, dens. = '87                                      | 0225    | .0128      | '0149    | .0122    | .0102     | .00926  | .00851     | .00728 |
| Pentane (n), $C_5H_{12}$ .                                   | .00283  | .00255     | .00535   | '00212   | -         |         | -          | -      |
| Hexane (n), C <sub>6</sub> H <sub>14</sub> .                 | .00396  | .00322     | .00320   | .00290   | .00264    | '0024I  | '00221     |        |
| Formic acid, HCO <sub>2</sub> H                              | -       | '0224      | '0178    | .0146    | .0125     | .0103   | .0080      | *0077  |
| Acetic acid, CH <sub>3</sub> CO <sub>2</sub> H               | -       | -          | .0122    | '0104    | '0090     | .0079   | .0020      | .0062  |
| Propionic acid, C <sub>s</sub> H <sub>6</sub> O <sub>2</sub> | 0152    | .0129      | 0110     | .0096    | '0084     | .0072   | .0067      | ·0060  |
| Butyric " C4H8O2                                             | .0228   | .0182      | .0124    | .0130    | .0115     | '0097   | .0082      | '0076  |
| Isobutyric " "                                               | .0188   | .0157      | .0131    | .0113    | .0008     | .0086   | .0076      | '0068  |
| Methyl formate                                               | .00429  | .00384     | .00342   | .00312   | -         | -       |            | -      |
| Ethyl "                                                      | .00202  | .00448     | '00402   | .00365   | .00328    | .00299  |            | -      |
| Methyl acetate                                               | .00428  | .00425     | .00381   | .00344   | '00312    | .00284  | -          |        |
|                                                              |         |            |          |          |           |         |            |        |
| Machine oil, c. 1/19                                         | ; olive | oil, '90/1 | 5° ; par | fin oil. | c. '02/10 | : rape  | nil. 1.6/2 | 00     |
|                                                              |         |            | 5 / Fair |          | 0-119     | , super | 1 1 0/2    |        |

# VISCOSITIES

#### RELATIVE VISCOSITIES OF SOME AQUEOUS SOLUTIONS

Strength of solutions 1 normal. Viscosities relative to that of water at same temp. For a complete list, see "International Critical Tables".

| Substance.          | Temp.  | Relative<br>Viscosity. | Substance.           | Temp.    | Relative<br>Viscosity. |
|---------------------|--------|------------------------|----------------------|----------|------------------------|
| Ammonia             | 25° C. | 1.02                   | Potassium chloride . | 17°-6 C. | -98                    |
| Ammonium chloride . | 17·6   | .98                    | Potassium iodide     | 17-6     | -91                    |
| Calcium chloride    | 20     | 1.31                   | Sodium hydrate       | 25       | 1-24                   |
| Hydrochloric acid . | 25     | 1.07                   | Sulphuric acid       | 25       | 1-09                   |

#### VISCOSITIES OF SOLIDS

Venice turpentine \* at 17°·3, 1300, c.g.s. Pitch † at 0°, 51  $\times$  10<sup>10</sup>; at 15°, 1·3  $\times$  10<sup>10</sup>. Glacier ice, ‡, 12  $\times$  10<sup>13</sup>.

Shoemaker's wax † at 8°, 4.7  $\times$  10<sup>6</sup>. c.g.s. Soda glass † at 575°, 11  $\times$  10<sup>12</sup>. Golden Syrup (Lyle), 1400/12°.

\* R. Ladenburg, 1906.

‡ Deeley, 1908. † Trouton and Andrews, 1904.

VISCOSITY OF AIR

Precision determinations of the viscosity of air,  $\eta$ , have been carried out using either the rotating cylinder or the capillary tube method. The results of careful determinations by these methods are tabulated below. Weighted mean (using the weights shown),  $\eta_{23} = (1830 \cdot 0)$  $\pm$  2.5)  $\times$  10<sup>-7</sup> c.g.s. units.

Temperature Variation .- The linear relation-

#### $\eta_{23} = \eta_t + 4.93 \times 10^{-7} (23 - t)$

has generally been used to reduce observations of  $\eta$  to 23° C., but this is not correct. Suther-land's expression  $\eta_{\theta} = \eta_{273}(273 + c)/(\theta + c) \cdot (\theta/273)^{3/2}$  is accurate over a wide range of temperature, and using the mean of recent experimental determinations of c, namely, c = 117, the value of the temperature coefficient of the viscosity of air at  $23^{\circ}$  C. is  $4.83 \times 10^{-7}$  c.g.s. units and not 4.93 × 10-7 c.g.s. units as is generally assumed.

| Rotating                                                   | Cylinder Method.                                                                            | Capillary Tube Method. |                                   |                              |                                                 |         |  |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------|-----------------------------------|------------------------------|-------------------------------------------------|---------|--|
| Observer.                                                  | Date. $\eta_{23} \times 10^7$ c.g.s.                                                        | Wt.                    | Observer.                         | Date.                        | $\eta_{23} 	imes$ 10 <sup>7</sup> c.g.s.        | Wt.     |  |
| Bearden<br>Houston<br>Kellstrom<br>Harrington<br>Silchrist | 1939 1838.8±.06<br>1937 1829.2±2.5<br>1937 1832.6±3.0<br>1916 1822.6±0.7<br>1913 1825.7±1.3 | 4 3 2 H H              | Rigden<br>Bond<br>Rapp<br>Maxwell | 1938<br>1937<br>1913<br>1916 | 1830-0±-69<br>1834-6±-8<br>1822-7±1-8<br>1827-3 | 2 1 1 1 |  |
| Mean                                                       | 1830-6                                                                                      |                        | Mean                              |                              | 1829.7                                          |         |  |

#### VISCOSITY OF AIR AT 23° C.

#### VISCOSITIES OF GASES AND VAPOURS

Clerk Maxwell showed in 1860 that, on the basis of the kinetic theory, the coefficient of viscosity of a gas would be independent of the pressure, and would vary as the square root of the absolute temperature. The first relation is true except at very low pressures; the second deduction is not supported by experiment.

Of the formulæ connecting gaseous viscosity  $(\eta)$  and temperature (t), there are the convenient but only approximate relation of O. E. Meyer,  $\eta_t = \eta_0$   $(\mathbf{1} + at)$ , where a is a const.; and the less manageable but accurate formula of Sutherland (*Phil. Mag.* **31**, 1893), who, by taking account of the effects of molecular forces in bringing about collisions which otherwise would have been avoided, derived the expression  $\eta_t = \eta_0 \frac{273 + C}{\theta + C} \cdot \left(\frac{\theta}{273}\right)^{\frac{3}{2}}$ , where  $\theta$  is the absolute temperature, and C is Sutherland's constant. The formula only holds for temps. above the critical, and for pressures such that Boyle's law is approximately obeyed. Sutherland's relation is thus of the form (which lends itself to graphical treatment),  $\theta = \frac{K\theta^{3/2}}{2}$ - - C, where K is a constant. (See Fisher, *Phys. Rev.*, 1907, 1909 *et seq.*; O. E. Meyer's "Kinetic Theory of Gases," and Loeb's "Kinetic Theory of Gases.") The values below are for dry gases.

|                                  | visco                                                                                                                                                                             | DSIT | IES                                | OF                               | GASES                                | S AND VAL                                  | POURS                                                                                    | (con | td.)                                  |                                    |                     |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------|----------------------------------|--------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------|------|---------------------------------------|------------------------------------|---------------------|
| Gas or Vapour.                   | Temp.º C.                                                                                                                                                                         | . 7  | η.                                 | Obs                              | erver.                               | Gas or Vapour.                             | Temp. °C.                                                                                |      | η.                                    | Obse                               | rver.               |
| Hydrogen .                       | -21<br>0<br>15                                                                                                                                                                    |      | 10 <sup>-6</sup><br>82<br>86<br>89 | Breite                           |                                      | Nitrous oxide                              | -21<br>0<br>100                                                                          | 1    | 10 <sup>-6</sup><br>125<br>137<br>184 | v. Ober<br>Smith,                  |                     |
| Oxygen                           | 99<br>302<br>0                                                                                                                                                                    | 1    | 106<br>139<br>192                  | ,,<br>Mean                       |                                      | Sulphur<br>dioxide<br>Hydrogen<br>sulphide | 0<br>18<br>0<br>100                                                                      |      | 117<br>125<br>118<br>161              | "<br>Rankir<br>Smit                | ie &                |
| Nitrogen                         | $     \begin{array}{r}       15 \\       100 \\       -78 \\       0     \end{array} $                                                                                            | 1    | 198<br>248<br>127<br>167           | M., 19<br>T. & I<br>Mean         | 104<br>B., '29                       | Carbon<br>monoxide                         | -78<br>0<br>100                                                                          |      | 126<br>166<br>208                     | Smit<br>T. & B<br>Smith,<br>T. & B | '21<br>., '29       |
| Helium                           | $     \begin{array}{r}       15 \\       100 \\       -258     \end{array} $                                                                                                      | 1    | 174<br>213<br>27                   | **<br>**                         |                                      | Carbon<br>dioxide                          | $     \begin{array}{r}       100 \\       -78 \\       0 \\       15     \end{array} $   |      | 212<br>103<br>137<br>144              | Smith,<br>Vogel,<br>Mean<br>Smith, | '14<br>'22          |
| Neon                             | 0<br>15<br>185<br>15                                                                                                                                                              | 1    | 189<br>197<br>270<br>312           | ,,                               | tze, '01<br>ine, '10                 | Methane .<br>Ethylene .                    | $     \begin{array}{r}       100 \\       302 \\       20 \\       -21     \end{array} $ | 1 3  | 184<br>268<br>108<br>89               | Breiter<br>Mean<br>Breiter         |                     |
| Argon                            | 0<br>15<br>184                                                                                                                                                                    |      | 210<br>221<br>322                  | Schul                            | tze, '01<br>ine, '10                 | Alcohol (vap.)                             | 0<br>15<br>99 <sup>.3</sup><br>100                                                       |      | 97<br>102<br>128<br>109               | "<br>Rappe                         | (1901)<br>,,        |
| Krypton<br>Xenon<br>Chlorine     | 15<br>15<br>13<br>99                                                                                                                                                              | 1    | 246<br>222<br>129<br>168           | 21<br>11                         | '12                                  | Ether (vap.)                               | 212·5<br>100<br>212·5                                                                    |      | 142<br>97<br>123                      | "<br>"<br>Breiter                  | (0101)<br>**        |
| Water (vap.) .<br>Mercury (vap.) | 0<br>100<br>100<br>0                                                                                                                                                              | 1    | 87<br>120<br>127<br>162            | Sheye<br>B. & I<br>Smith<br>Koch | rer, '25<br>L., '30<br>1, '24<br>'83 | Chloroform<br>(vap.)<br>Benzene            | 0<br>17·4<br>61<br>0                                                                     |      | 99<br>103<br>189<br>70                | Mean                               | (1901)<br>,,        |
| mercury (rup)                    | 300<br>380                                                                                                                                                                        | 1    | 532<br>656                         | **                               |                                      | (vap.)                                     | 16<br>100                                                                                |      | 74<br>94                              | Nasini                             | '29                 |
| B. and                           | B. and L., Braune and Linke; M., Markowski; T. and B., Trautz and Baumann.<br>TEMPERATURE COEFFICIENTS OF VISCOSITY<br>Based largely on W. J. Fisher's computations (ref. above). |      |                                    |                                  |                                      |                                            |                                                                                          |      |                                       |                                    |                     |
| Gas or Vaj                       | our.                                                                                                                                                                              |      | herlan<br>Consts                   |                                  | Meyer's<br>Const. a                  |                                            | pour.                                                                                    |      | const                                 | and's<br>ts.                       | Meyer's<br>Const. a |
|                                  |                                                                                                                                                                                   | C    | 1                                  | K                                |                                      | 1                                          |                                                                                          | C    |                                       | K                                  |                     |
| Air<br>Hydrogen                  |                                                                                                                                                                                   | 72   | 150 × 66                           | 10 <sup>-7</sup>                 | ·00273                               | Water (vap.) 650 -                         |                                                                                          |      |                                       | -                                  |                     |

SIZE, VELOCITY, AND FREE PATH OF MOLECULES

99

00283

.00269

,,

,,

23

,,

,,

22

- $\rho$  = density of gas in gms./c.c. at o° C. N = number of molecules of gas per c.c. at o° C. and 76 cms. and 76 cms.
- p = 1 atmos. = 1.0132 × 10<sup>6</sup> dynes/cm.<sup>2</sup>

127 175

110 143

80 148

56 220

170 207

188 240

 $\theta$  = absolute temperature.

٠

.

.

R = gas constant.

Oxygen . .

Nitrogen .

Helium . .

Neon. .

Krypton.

Argon

- b = b of Van der Waals' equation (p. 43).
- k = thermal conductivity of gas (p. 61).  $c_v =$  specific heat at const. volume (p. 68).

 $\eta =$ viscosity of gas (p. 40).

240 158

313 172

226 106

454 159

.00269

00350

00345

00350

,,

.,,

,,

"

...

 $\sigma$  = molecular diameter in cms.

Carbon monoxide 102 135

dioxide .

Nitrous oxide. .

Chloroform (vap.)

pp

Ethylene . .

- m = mass of a single molecule (in grams).
- G = square root of mean square molecular vel. (cm./sec. at o° C.).
- n = mean molecular velocity (cm./sec.).L = length of mean free path in cms.

Assuming a Maxwell-Boltzmann distribution of velocities-

 $G = \sqrt{3p/(Nm)} = \sqrt{3p/\rho} = \sqrt{3R\theta}$ 

$$n = 4G/\sqrt{6\pi} = .921G$$

$$L = n/(310\Omega) = 2.02n/N$$

Collision frequency =  $\Omega/L = 5 \times 10^9$  per sec. for O<sub>2</sub>

# SIZE, VELOCITY, AND FREE PATH OF MOLECULES (contd.)

#### MOLECULAR SIZE

The molecular diameter  $\sigma$  has been calculated by the following formulæ :— 1. The **viscosity**  $\eta$  of a gas is a function of the size of its molecules.

$$\eta = 44\rho\Omega/(\sqrt{2N\pi\sigma^2})$$
 . . Jeans :  $\sigma = \{0.912\rho G/(N\eta)\}^{\frac{1}{2}}$ 

The thermal conductivity, k = 1.6ηcv = '158ρΩcv/Nσ<sup>2</sup>

: 
$$\sigma = \{ 146\rho G_{cv}/(Nk) \}^{\frac{1}{2}}$$

3. Van der Waals',  $b = 2\pi N \sigma^3/3$  :  $\sigma = \{3b/(2\pi N)\}^3$ 

4. Limiting density, *i.e.* density D of densest known form.  $\sigma = \{6\rho/(\pi DN)\}$ 

The values of  $\rho$  and  $\eta$  used in calculating G and L below are given on pp. 35, 41. The values of  $\sigma$  tabulated are mostly taken from Jeans' "Dynamical Theory of Gases," or Rudorf (*Phil. Mag.*, 1909, p. 795). Jeans takes  $N = 4 \times 10^{19}$ , while in the table following, the more recent value  $2.75 \times 10^{19}$  has been used. Molecular diameters also follow from the properties of monomolecular films on liquids (see Langmuir).

| Gas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a                                                                                                                                                                                                                                                                                                                                                                                                         | Mean free                                                                                                                                                                                                                              | Mole                                                                                                                      | cular diamete                                                                                                                           | er o deduced                                                                                                                                      | from                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| uas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G at 0° C.                                                                                                                                                                                                                                                                                                                                                                                                | path, L.                                                                                                                                                                                                                               | η                                                                                                                         | k                                                                                                                                       | Ъ                                                                                                                                                 | Lt. $\rho$ [ = D]                                                                                                                                 |
| Hydrogen, H <sub>2</sub> .<br>Helium, He<br>Nitrogen, N <sub>2</sub><br>Oxygen, O <sub>2</sub><br>Neon, Ne<br>Argon, A<br>Krypton, Kr<br>Xenon, Xe<br>Chlorine, Cl<br>Methane, CH <sub>4</sub><br>Ethylene, C <sub>2</sub> H <sub>4</sub><br>Carbon mon-<br>oxide, CO<br>Carbon di-<br>oxide, CO<br>Carbon di-<br>oxide, CO<br>Mitrico soxide,<br>N <sub>2</sub> O<br>Nitrico soxide,<br>NO<br>Sulph. hydro-<br>gen, H <sub>2</sub> S<br>Sulph. dioxide,<br>SO <sub>2</sub><br>Hydrochloric<br>acid, HCl<br>Water, H <sub>2</sub> O | 13.11       "         4.93       "         4.61       "         5.61       "         2.28       "         3.07       "         6.48       "         4.88       "         4.93       "         3.07       "         6.48       "         4.93       "         3.92       "         3.92       "         4.76       "         4.76       "         4.444       "         3.222       "         4.30       " | cm.<br>18'3 × 10 <sup>-6</sup><br>28'5 "<br>9'44 "<br>9'95 "<br>19'3 "<br>10'0 "<br>9'49 "<br>5'61 "<br>4'57 "<br>9'27 "<br>6'29 "<br>6'29 "<br>6'29 "<br>6'29 "<br>6'95 "<br>6'10 "<br>9'06 "<br>5'90 "<br>4'57 "<br>6'86 "<br>7'22 " | 2·18 "<br>3·50 "<br>3·39 "<br>3·36 "<br>4·96 "<br>4·96 "<br>4·96 "<br>4·55 "<br>3·50 "<br>4·18 "<br>4·27 "<br>3·40 "<br>- | cm.<br>2'40 × 10 <sup>-8</sup><br>3'31 "<br>3'11 "<br>4'68 "<br>3'31 "<br>4'68 "<br>3'31 "<br>4'32 "<br>4'20 "<br>3'40 "<br>-<br>-<br>- | cm.<br>2'32 × 10 <sup>-8</sup><br>2'30 "<br>3'53 "<br>2'86 "<br>3'14 "<br>3'42 "<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | cm.<br>2·92 × 10 <sup>-8</sup><br>4·34 "<br>2·97 "<br>2·79 "<br>4·43 "<br>4·93 "<br>4·93 "<br>4·93 "<br>5·26 "<br>4·42 "<br>4·58 "<br>-<br>-<br>- |
| water, H <sub>2</sub> O .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.08 "                                                                                                                                                                                                                                                                                                                                                                                                    | 7.22 ,,                                                                                                                                                                                                                                | 4.09 "                                                                                                                    | -                                                                                                                                       | -                                                                                                                                                 | 3.45 "                                                                                                                                            |

The formulæ above assume the molecules to be spherical. Sutherland (*Phil. Mag.*, 1910), adopting his formula (see p. 40) for the variation of  $\eta$  with temp., obtains the following values of  $\sigma$ . Unit,  $10^{-8}$  cm.

|      |      |      | and the second s |      |      |      |      | second in the second second |      | Cl <sub>2</sub> |
|------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|-----------------------------|------|-----------------|
| 2.17 | 1.92 | 2.66 | 2.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.95 | 3.33 | 2.29 | 2.74 | 2.90                        | 3.31 | 3.76            |

#### CRITICAL DATA AND VAN DER WAALS' CONSTANTS

**Critical temperature**,  $\theta_{e}$ , is the highest temperature at which a gas can be liquefied by subjecting it to pressure.

Critical pressure, po, is the pressure (of gas and liquid) at the critical temperature. Critical volume, ve, is here defined as the ratio of the volume that a gas has at the critical temp. and press. to that which it would have at o° C. and 760 mms., i.e. it is the volume of gas at  $\theta_e$  and  $p_e$  which at N.T.P. would have unit volume. Some writers take the critical volume to be the specific volume (c.cs. per gram) at  $\theta_o$  and  $p_e$ 

Most of the characteristic equations of state which have been proposed for gases take the form  $(p + a/v^2)(v - b) = R\theta$ , where p is the pressure, v the volume,  $\theta$  the absolute temperature of the gas, and R is the "gas constant." *a* expresses the mutual attraction of the molecules. The "covolume" *b* is proportional to the space occupied by the molecules : O. E. Meyer takes  $b = 4\sqrt{2}$  (volume of molecule). Van der Waals assumes a is constant : if this were true the constant volume and thermodynamic scales of temperatures would agree-they do not, however (see p. 54). Joule and Thomson, Clausius, Amagat, and Berthelot, among others, regard a as a function of  $\theta$  (e.g.  $a \propto 1/\theta$ ), and b as constant.

Assuming with Van der Waals that a and b are constants, the equation can be regarded as a cubic in v, which has its three roots equal at the critical point, whence  $a = 27 R^2 \theta_o^2 / (64 p_c)$ , and  $b = R \theta_c / (8 p_c)$ .

as I,  $R = pv/\theta = 1/273$ . In these units, b is in terms of the volume of the gas at o° C. and I atmos. Taking pressures in atmos., and the volume of the gas at o° C. and I atmos.

**Example.**—For CO<sub>2</sub>  $p_e = 73$  atmos. and  $\theta_e = 273 + 31^{\circ}I = 304^{\circ}I$ , whence  $b = 304.1/(8 \times 273 \times 73) = 00191$  of the volume of the gas at 0° C. and 1 atmos. See Preston's "Heat," Nernst's "Theoretical Chemistry," Young's "Stoichio-

metry," Berthelot (Trav. et Mém. Bur. Intl., 1907). \* Indicates calculated values.

| Substance.                                                                                       | C          | ritical        |                 | Van der | Waals'  | Observer.                        |
|--------------------------------------------------------------------------------------------------|------------|----------------|-----------------|---------|---------|----------------------------------|
| Bubstance.                                                                                       | Temp. 0.   | Press.p.       | Vol. v.         | 8.      | b.      | Observer.                        |
| Undrease                                                                                         | -239°.9C.  | atmos.<br>12'8 | ·00264*         | .00042  | .00088  | Mean value                       |
| Hydrogen                                                                                         | -118       | 50             | .00426*         |         | 00142   | v.Wroblewski, '85                |
| Oxygen                                                                                           | - 146      | 33             | .00517*         |         | 00165   |                                  |
| Air                                                                                              | - 140      | 39             | .00468*         |         | 00156   | Olszewski, '84                   |
| Helium.                                                                                          | - 268      |                |                 | 0000615 | .000005 | Mean value                       |
| Neon                                                                                             | - 228.7    | 26.9           | _               |         |         |                                  |
| Argon                                                                                            | -122       | 48.0           | .00404*         | 00250   | .00135  | Mean value                       |
| Krypton                                                                                          | -62.5      | 54'3           | .00532*         |         | .00178  | Ramsay and                       |
| Xenon                                                                                            | 14.7       | 57.2           | .0009*          | 81800   | 00230   | Travers, 1900                    |
| Chlorine                                                                                         | 146        | 76             | .00615*         | 01063   | .00205  | Mean value                       |
| Bromine                                                                                          | 302        | 131*           | .00605          | 01434   | '00202  | Nadejdine, '85                   |
| Water                                                                                            | 374        | 218.5          | 00248           | 0110    | 00136   | Keyes & Smith,                   |
| Hydrochloric acid                                                                                | 52'3       | 86             | .0052*          | 00697   |         | Dewar, 1884 ['31                 |
| Carbon monoxide                                                                                  | - 141'1    | 35'9           | .00202*         |         | 80100   | v.Wroblewski, '83                |
| Carbon dioxide                                                                                   | 31.1       | 73             | .0066           | .00212  |         | Andrews, 1869                    |
| Carbon bisulphide                                                                                | 273        | 72.9           | .0000           | 02316   |         | Battelli, 1890                   |
| Ammonia, NH <sub>3</sub>                                                                         | 130        | 115.0          | .00481*         |         |         | Dewar, 1884                      |
| Nitrous oxide, N <sub>2</sub> O .                                                                | 38.8       | 77'5           | .00436          | 00710   |         | Villard, 1894                    |
| Nitric oxide, NO                                                                                 | -93'5      | 71.2           | '00347*         | 00257   |         | Olszewski, '85                   |
| Nitrogen tetroxide, NO2                                                                          | 171.2      | 147*           | 00413           |         |         | Nadejdine, '85                   |
| Sulphuretted hydrogen                                                                            | 100        | 88.7           | .00578*         | 88800   | .00193  | Olszewski, '90                   |
| Sulphur dioxide                                                                                  | 155.4      | 78.9           | ·00745*         | 01316   | 00249   | Sajotschewsky,'78                |
| Methane, CH4                                                                                     | -82        | 46             | .00488*         | 00357   | .00165  | Mean value                       |
| Acetylene, C <sub>2</sub> H <sub>2</sub>                                                         | 36.5       | 61.6           | ·0069*          | 008800  | .00230  | Mackintosh, '07                  |
| Ethylene, C <sub>2</sub> H <sub>4</sub>                                                          | IO         |                | ·00752*         | 00877   | 00251   | Olszewski, '95                   |
| Ethane, C <sub>2</sub> H <sub>6</sub>                                                            | 34         | 50'2           | .00839*         | 01060   | 0028    |                                  |
| Ethylalcohol, C2H3OH                                                                             | 243        | 62.7           | 0071            | 02407   | 00377   | Ramsay & Young,<br>Battelli, '92 |
| Ether $(C_2H_5)_2O$                                                                              | 197<br>260 | 35.8           | 0158            | 03496   | 00002   | Sajotschewsky,'78                |
| Chloroform, CHCl, .                                                                              | 425.6      | 54.9           | ·0133<br>·0183* |         | 00445   | Guye & Mallet, '02               |
| Aniline, C <sub>6</sub> H <sub>5</sub> NH <sub>2</sub><br>Benzene, C <sub>6</sub> H <sub>6</sub> | 288.5      | 52'3<br>47'9   |                 |         | 00537   | Young, 1900                      |
| Denzene, Corre                                                                                   | 2003       | 4/9            | 0101            | 05/20   | 00337   | 100mB) 1900                      |

|                                                                                                                                                                            | DIFFUSION OF GASES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                           |                                                                                                                                                    |          |                                                     |                                                                                      |                                                      |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------|--|--|--|
| unit area<br>are cm. <sup>2</sup><br>roughly<br>I atmosp                                                                                                                   | <b>The Coefficient of diffusion</b> , D, is the mass of the "diffusing" gas which crosses<br>unit area in unit time under unit concentration gradient; the dimensions of the coefficient<br>are cm. <sup>2</sup> sec. <sup>-1</sup> . D is inversely proportional to the total pressure of the two gases, and<br>roughly proportional to the square of their absolute temperature. Total pressure<br>I atmosphere. H <sub>2</sub> —O <sub>2</sub> implies that H <sub>2</sub> is diffusing into O <sub>2</sub> .<br>(See Jeans' "Kinetic Theory of Gases" and Kennard's "Kinetic Theory," 1938.) |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                           |                                                                                                                                                    |          |                                                     |                                                                                      |                                                      |  |  |  |
| Gases. t° C. D Gases. t° C. D Gas (Winkelmann). t° C. D into                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                           |                                                                                                                                                    |          |                                                     |                                                                                      |                                                      |  |  |  |
|                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                           |                                                                                                                                                    |          | Air.                                                | C02                                                                                  | H,                                                   |  |  |  |
| $\begin{array}{c} H_2 - O_2 \\ H_2 - O_2 \\ H_2 - CH_4 \\ H_2 - CO_2 \\ H_2 - CO_2 \\ H_2 - C_2 H_4 \\ H_2 - C_2 H_4 \\ H_2 - N_2 O \\ O_2 - N_2 \\ O_2 - H_2 \end{array}$ | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 681, O.<br>625, O.<br>649, O.<br>538, O.<br>483, O.<br>535, O. | $CO - H_2 \cdot CO - C_2 H_4$<br>$CO_2 - CO - CO_2 - CO - CO_2 - CO - CO_2 - CO_2 - CO_2 - CO_2 - CH_4$<br>$CO_2 - CH_4 - CO_2 - CH_4 - CO_2 - O_2 \cdot CO_2 - N_2 O - CO_2 - M_2 - CO_2 - M_2 - CO_2 - M_2 - CO_2 - M_2 - M_2$ | 0 000000 | '142, L.<br>'146, O. ; '16, L.            | Formic acid .<br>Acetic<br>Propionic acid<br>Butyric acid .<br>Isobutyric acid<br>Me. alcohol .<br>Et. " .<br>Propyl alcohol<br>Butyl " .<br>" " " | 00000000 | 106<br>082<br>053<br>07<br>132<br>102<br>080<br>068 | ·088<br>·071<br>·058<br>·037<br>·047<br>·088<br>·068<br>·068<br>·058<br>·048<br>·088 | '404<br>'326<br>'201<br>'271<br>'500<br>'378<br>'315 |  |  |  |
| $H_{2}O-CO$ $H_{2}O-Air$ $H_{2}O-Air$ $H_{2}O-Air$ $H_{2}O-Air$                                                                                                            | 8<br>15<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *239, G.<br>*246, G.<br>*248, G.                               | CS <sub>2</sub> —Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17       | <sup>•178, O.</sup><br>•66, Sc.<br>•1, S. | Benzene<br>Me. acetate .<br>Et. formate .<br>Et. acetate .<br>Et. butyrate .<br>Et.iso-butyrate                                                    | 0000     | ·084<br>·085<br>·071<br>·057                        | ·057<br>·049<br>·041                                                                 | ·328<br>·336                                         |  |  |  |

G., Guglielmo, 1884; H., Houdaille, 1896; L., Loschmidt, 1870; O., v. Obermayer, 1887; S., Stefan, 1879; Sc., Schulze, 1897.

### DETERMINATION OF ALTITUDES BY THE BAROMETER

Babinet's formula (*Compt. Rend.*, 1850) is, Altitude =  $\frac{C(H_1 - H_2)}{H_1 + H_2}$ , where  $H_1$  = barometer reading at lower station,  $H_2$  at upper station. If altitudes are in metres, and barometric heights in mms.,

$$C = 32(500 + t_1 + t_2)$$

where  $t_1$  and  $t_2$  are the corresponding station temperatures (° C.).

In the table below the mean temperature,  $(t_1 + t_2)/2$ , is taken as 10° C., and the barometric height at sea-level as 760 mm., so that altitudes are in metres above sea-level. The values are of course only approximate. Babinet's formula is not applicable to very great altitudes.

| Altitude | 0   | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| metres.  | mm. |
| 0        | 760 | 751 | 742 | 733 | 724 | 716 | 707 | 699 | 690 | 682 |
| 1000     | 674 | 666 | 658 | 650 | 642 | 635 | 627 | 620 | 612 | 605 |

#### THICKNESS OF THIN METAL FOIL

Approximate thickness of the thinnest beaten metal leaf at present commercially obtainable. Unit 10<sup>-6</sup> cm.

| Metal     | Al | Cu | Au | Pt | Ag | Dutch metal. | (Cigarette paper.) |
|-----------|----|----|----|----|----|--------------|--------------------|
| Thickness | 20 | 34 | 8  | 25 | 21 | 70           | 2500               |

#### DIFFUSION OF GASES

#### SURFACE TENSIONS

In dynes per cm. (A) indicates liquid in contact with air, (V) indicates liquid in contact with its vapour. The surface tension of a liquid varies somewhat with the age (and contamination) of the surface. **Temperature variation**. It follows from Eötvos' rule, that the surface tension T at temp. t is approximately proportional to  $(t_e - t)$ , where  $t_e$  is the critical temp., the constant of proportionality being much the same for chemically similar substances. The surface tension at  $t_e$  is generally believed to be zero. See Poynting and Thomson's "Properties of Matter."

WATER (to = 374° C.)

| Surf. Tens.<br>T at 15° C.                                                                                    | Mothed                                                                                                                                      | Observer.                                                                                                                                                       | Temp. (t).                                | $T_t/T_{15}$                                                   | Temp. ( <i>t</i> ).                           | <b>T</b> <sub>t</sub> /T <sub>15</sub>            |
|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------|
| dynes per cm.<br>72.8 (A)<br>74.3 (A)<br>74.2 (A)<br>73.8 (A)<br>73.3 (A)<br>74.3 (A)<br>73.3 (A)<br>73.3 (A) | Vibrating jet<br>Vibrating jet<br>Capillary waves<br>Hanging drop<br>Tension of film<br>Capillary waves<br>Capillary tube<br>Capillary tube | Bohr., Phil. Trans.,'09<br>Pedersen, P. Trans.,'07<br>Kalähne, Ann. d. Phy.,<br>Sentis, 1897 ['02<br>Hall, 1893 ['93<br>Rayleigh, Phil. Mag.,<br>Volkmann, 1895 | 0° C.<br>10<br>15<br>20<br>30<br>40<br>50 | 1'030<br>1'010<br><b>1'000</b><br>'990<br>'970<br>'947<br>'925 | 60° C.<br>70<br>80<br>90<br>100<br>120<br>140 | ·901<br>·876<br>·851<br>·827<br>·80<br>·75<br>·70 |
| 71'4 (V)<br>77'6 (A)                                                                                          | Pull on ring                                                                                                                                | Ramsay & Shields, '93<br>Weinberg, 1892                                                                                                                         | Ramsay<br>n                               |                                                                | ds, '93 ;<br>Brunner                          | Volk-                                             |

| Heavy<br>(Cockett and | Water:    | $T_0 = 75.23;$ | $T_{20} = 72.80;$ | $T_{40} = 69.65;$ | $T_{60} = 66.16$ |
|-----------------------|-----------|----------------|-------------------|-------------------|------------------|
| (COCACIL and          | rerguson, | 1939).         |                   |                   |                  |

| Substance.                                                                                                                                                                                                                                                          |                                                                                                                 | Temp. (t).                                                                                                 | Surf.<br>Tens,                                                                                                            | Method,                                                                                                                                                                              | Observer.                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INORGANIC.<br>Cadmium<br>Gold<br>Lead<br>Mercury $(T_i=T_0-0.02t)$<br>Potassium<br>Sodium<br>Sulphur (M.P. 115°)<br>" (B.P.)<br>Liquid oxygen<br>" (B.P.)<br>Liquid oxygen<br>" (B.P.)<br>Liquid oxygen<br>"<br>"                                                   | N <sup>2</sup> A<br>CO <sup>2</sup> CO <sup>2</sup> CO <sup>2</sup> A<br>A A A A A A<br>A A A A A A A A A A A A | 320° C.<br>1130<br>350<br>20<br>58<br>90<br>160<br>250<br>445<br>-183<br>-196<br>-89.4<br>19.8<br>15<br>15 | dynes<br>cm,<br>630<br>1103<br>453<br>465<br>364<br>290<br>59<br>118<br>44<br>13'1<br>8'5<br>26'3<br>14'2<br>64'7<br>74'4 | Weight of drop<br>Curvature of drop<br>Weight of drop<br>Press. reqd. to bub-<br>ble air from cap.<br>tube thro' liquid<br>Capillary waves<br>"""<br>Capillary tube<br>Vibrating jet | Sauerwald, '31<br>Bircumshaw, '33<br>Quincke<br>Poindexter, '26<br>Zickendraht, '06;<br>and Quincke,<br>'08<br>Grunmach, 1906<br>"1904<br>Ramsay and<br>Shields, 1893<br>Pedersen, 1907<br>"1907 |
| CARBON COMPOUNDS.<br>Acetone, $(CH_s)_2CO$ .<br>Acetic acid, $CH_sCO_2H$ .<br>Alcohol—methyl, $CH_4O$<br>—ethyl, $C_2H_5OH$<br>$(T_t = T_0 - '092t)$ .<br>—propyl $(n)$ ,<br>$C_3H_7OH$<br>Aniline, $C_6H_5.NH_2$ .<br>Benzene, $C_6H_6$ .<br>$(T_t = T_0 - '146t)$ | V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V                     | 16.8<br>78.3<br>20<br>300<br>200<br>200<br>150<br>16.4<br>78.3<br>15<br>17.5                               | 23:3<br>15:9<br>23:5<br>1:16<br>23<br>5:2<br>22:0<br>9:5<br>23:8<br>18:7<br>43:0<br>29:2                                  | Capillary tube<br>""""""""""""""""""""""""""""""""""""                                                                                                                               | {Ramsay and<br>Shields, 1893<br>"""<br>"""<br>"""<br>"""<br>"""<br>"""<br>"""<br>"""<br>"""<br>"                                                                                                 |

# SURFACE TENSIONS

| Substance.                                                    |        | Temp. (t). | Surf.<br>Tens. | Method.           | Observer.                   |
|---------------------------------------------------------------|--------|------------|----------------|-------------------|-----------------------------|
| CARBON COMPOUNDS (contd.)                                     |        | 18-210-050 | dynes<br>cm.   | Ren All Strange   | 19 B. 19 19 19 19           |
| Butyric acid, C3H7CO2H                                        | v      | 15° C.     | 26.7           | Capillary tube    | (Ramsay and                 |
|                                                               | V      | 132        | 164            | 33 33             | Shields, 1893               |
| Carbon bisulphide                                             | V      | 19.4       | 33.6           | 37 37             | 33 33                       |
|                                                               | V      | 46.1       | 29'4           |                   | <b>31</b> 32                |
| Carbon tetrachloride                                          | V      | 20         | 25.7           | yy yy             | ** **                       |
|                                                               | V      | 250        | 1.03           | <b>37</b> 37      | 27 27 29                    |
| Chloroform, CHCl <sub>3</sub>                                 | A      | 15         | 27'2           | »» »»             | Kaye, 1905                  |
| Ether (ethyl), $(C_2H_5)_2O$ .                                | V      | 20         | 16.2           | <b>33 33</b>      | Jaeger, 1892                |
| $(T_t = T_0 - 115t)$ .                                        | V      | 150        | 2.9            | <b>39 3</b> 3     | "                           |
| Ethyl acetate,                                                | V<br>V | 20         | 23.6           | »» »»             | "                           |
| CH <sub>3</sub> CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | v      | 100        | 14             | »» »              | (Paman and                  |
| Formic acid, HCOOH .                                          | v      | 17<br>80   | 37.5           | 37 37             | Ramsay and<br>Shields, 1893 |
| Olive oil $(d/20^\circ = .91)$ .                              | Å      | 20         | 30.8           | Curvature of drop | Magie, 1888                 |
| Paraffin oil $(d = .847)$ .                                   | A      | 25         | 26.4           | Capillary tube    | Frankenheim,'47             |
| Propionic acid, C <sub>3</sub> H <sub>6</sub> O <sub>2</sub>  | v      | 16.6       | 26.6           |                   | (Ramsay and                 |
| riopionie acia, ogriçog                                       | v      | 132        | 15.5           | >> >>             | Shields, 1893               |
| Pyridine, C <sub>s</sub> H <sub>s</sub> N                     | v      | 17.5       | 36.7           | 17 F              | (Dutoit and Fri-            |
| ,,                                                            | V      | 91         | 26.5           | ··· ··            | derich, 1900                |
| Toluene, C6H5.CH5 .                                           | A      | 15         | 28.8           | Vibrating jet     | Pedersen, 1907              |
| Turpentine, C10H16                                            | A      | 15         | 27'3           | Capillary tube    | Kaye, 1905                  |

SURF. TENSIONS OF SOLUTIONS

The surface tension of aqueous salt solutions is generally grea than that of pure water. Dor (Phil. Mag., 1897) has shown

SURFACE TENSIONS AT INTER-LIQUID BOUNDARIES

| salt solutions is generally greate<br>than that of pure water. Dorse<br>( <i>Phil. Mag.</i> , 1897) has shown                              | y Liquids at 20° C.                                               | Surface<br>Tension T.                                                                                         | Observer.                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| $T_n = T + A \cdot n$<br>$T_n \text{ is the surf. tens. of a sol. } n$<br>m  gram - equivalents per litr<br>T  that of water at same temp. |                                                                   | dynes/cm.<br>33 <sup>.6</sup><br>29 <sup>.5</sup><br>12 <sup>.2</sup><br>20 <sup>.6</sup><br>4 <sup>8.3</sup> | Pockels, 1899<br>Quincke<br>"<br>Pockels, 1899 |
| Salt. A.                                                                                                                                   | Mercury-water<br>, alcohol§                                       | 427 *<br>399                                                                                                  | Gouy, 1908<br>Quincke                          |
| NaCl                                                                                                                                       | " chloroform†.                                                    | 399                                                                                                           | "                                              |
| $\frac{1}{2}(Na_2CO_3)$ 2'00<br>$\frac{1}{2}(K_2CO_3)$                                                                                     | <ul> <li>Diminishes with time.</li> <li>Density = '91.</li> </ul> | † 1<br>§ 1                                                                                                    | Density = $1.49$ .<br>Density = $.79$ .        |

(ZnSO,) . 1.89 1 ANGLES OF CONTACT BETWEEN GLASS AND LIQUIDS

Angles of contact vary largely with the freshness of the surfaces in contact.

| Liquid.                                                        | Angle.                           | Observer.                            | Liquid.                                              | Angle.                  | Observer.                 |
|----------------------------------------------------------------|----------------------------------|--------------------------------------|------------------------------------------------------|-------------------------|---------------------------|
| Mercury<br>Water<br>Water<br>Methyl alcohol .<br>Ethyl alcohol | 52° 40′ •<br>8°-9°<br>0° †<br>c° | Quincke<br>Wilberforce<br>Magie, '88 | Acetic acid<br>Benzene<br>Paraffin oil<br>Turpentine | 20°<br>0°<br>26°<br>17° | Magie, '88<br>"<br>"<br>" |
| Ether<br>Chloroform                                            | 16°<br>0°                        | >><br>>><br>>><br>>>                 | • For freshly for<br>† Glass q                       | med drop<br>uite clea   | p, 41° <b>5'.</b><br>     |

The angle of contact of water against different metals varies between 3° and 11°.

#### SIZE OF DROPS AND THICKNESS OF LIQUID FILMS

Reference may be made to the writings of J. J. Thomson ("Conduction of Electricity through Gases"), C. T. R. Wilson, Laby (*Phil. Trans. A*, 1908), Reinold & Rücker (*Phil. Trans.*, 1886), Lord Rayleigh, and Johonnot (*Phil. Mag.*, 1906).

#### RELATIVE HUMIDITY AND DEW-POINT

The relative humidity is the ratio (expressed as a percentage) of the water vapour actually present in unit volume, to that which the air would contain if saturated at the air temperature t. For all practical purposes, this is equal to the ratio of the pressure (p) of the vapour actually present (*i.e.* the saturation pressure at the dewpoint) to the saturation pressure at air temperature. For a table of saturation pressures, see p. 49.

#### CHEMICAL HYGROMETER

The values below are grams of water contained in a cubic metre (10<sup>6</sup> c.c.) of saturated air at 760 mm. total pressure. Calculated from Regnault's observations.

| Temp. | 0                              | 1     | 2                               | 3                               | 4 | 5              | 6              | 7           | 8 | 9                              |
|-------|--------------------------------|-------|---------------------------------|---------------------------------|---|----------------|----------------|-------------|---|--------------------------------|
|       | 4·84<br>9·33<br>17·12<br>30·04 | 18.14 | 5·54<br>10·57<br>19·22<br>33·45 | 5.92<br>11.25<br>20.35<br>35.27 |   | 12·71<br>22·80 | 13·50<br>24·11 | 14.34 25.49 |   | 8.76<br>16.14<br>28.45<br>48.2 |

#### WET- AND DRY-BULB HYGROMETER

Apjohn (1835), August (1825), and others, by making various assumptions (some of doubtful legitimacy) have derived formulæ of the type :

 $p_w - p = AH(t - t_w)[\mathbf{1} + B(kt - t_w)]$ 

Where  $t_w$  is the wet-bulb temperature, p the actual pressure, and  $p_w$  the saturation pressure at temperature  $t_w$ , H is the barometric pressure and A, B and k are constants. Thus the relative humidity is 100  $p/p_s$  where  $p_s$  is the saturation pressure at the dry-bulb temperature. (See Love and Sineat, *Proc. Roy. Soc.*, Victoria, **10**, 1, 1911; Whipple, *Proc. Phys. Soc.*, 1933; Arnold, *Phys. Rev.*, 1932.) The values of A in this formula depend on the speed of the air passing the wet bulb, appropriate values being shown below for the case where H is measured in mm. and t,  $t_w$  in Centigrade degrees.

A = 0.00068 for moving air, as in Assmann ventilated psychrometer. A = 0.00075 in a Stevenson screen as used by Meteorological Office. A = 0.0008 in open air with slight wind. A = 0.00084 in open air with no wind. A = 0.0001 in a small closed room.

The values below are based on tables issued by the Prussian Meteorological Office and by the National Physical Laboratory, both of which are for use with ventilated instruments.

| WET- AND | DRY-BULB | HUMIDITY | VALUES |
|----------|----------|----------|--------|
|----------|----------|----------|--------|

| Temperature. $0^{\circ} \cdot 5C.$ $1^{\circ} \cdot 0$ $1^{\circ} \cdot 5$ $2^{\circ} \cdot 0$ $3^{\circ} \cdot 0$ $3^{\circ} \cdot 0$ $5^{\circ} \cdot 0$ $6^{\circ} \cdot 0$ $7^{\circ} \cdot 0$ $-9^{\circ} C. +$ $85\%$ $71\%$ $73$ $59\%$ $46\%$ $29\%$ $3^{\circ} \cdot 0$ $3^{\circ} \cdot 5$ $4^{\circ} \cdot 0$ $5^{\circ} \cdot 0$ $6^{\circ} \cdot 0$ $7^{\circ} \cdot 0$ $-8$ $+$ $87$ $73$ $59\%$ $46\%$ $29\%$ $46\%$ $29\%$ $46\%$ $29\%$ $46\%$ $29\%$ $46\%$ $36$ $31$ $31$ $31$ $31$ $31$ $31$ $31$ $31$ $31$ $31$ $31$ $31$ $31$ $31$ $31$ $31$ $31$ $31$ $31$ $31$ $31$ $31$ $31$ $32\%$ $36$ $56$ $48$ $39$ $31$ $31$ $32\%$ $36$ $36$ $55$ $56$ $48$ $39$ $31$ $31$ $32\%$ $32\%$ $31$ $31$ $32\%$ $31$ $32\%$ $31$ $32\%$ $31$ $32\%$ $31$ $32\%$ $31$ $32\%$ $31$ $32\%$ $31\%$ $31$ $31$ $32\%$ $31\%$ $31\%$ $31\%$ $31\%$ $31\%$ $31\%$ $31\%$ $31\%$ $31\%$ $31\%$ $31\%$ $31\%$ $31\%$ $31\%$ $31\%$ $31\%$ $31\%$ $31\%$ $31\%$ $31\%$ $31\%$ $31\%$ $31\%$ $31\%$ $31\%$ $31\%$ $31\%$ $31\%$ $31\%$ $31\%$ $31\%$ $31\%$ $31\%$ | Dry-bulb                                   |                                                    | Wet-buib depression.                               |                                                     |                                        |                                  |                                  |                            |                      |          |     |           |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|----------------------------------------|----------------------------------|----------------------------------|----------------------------|----------------------|----------|-----|-----------|--|--|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                            | <b>4°</b> ∙0                                       | 5°.0                                               | 6°·0                                                | 7°∙0                                   |                                  |                                  |                            |                      |          |     |           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -8 + .<br>-6 + .<br>-4 + .<br>-2 •<br>24 • | 87<br>88<br>89<br>90<br>91<br>92<br>92<br>92<br>93 | 73<br>76<br>78<br>80<br>82<br>84<br>85<br>86<br>87 | 59%<br>64<br>67<br>70<br>73<br>76<br>78<br>79<br>81 | 52<br>57<br>61<br>65<br>68<br>70<br>73 | 46<br>52<br>56<br>60<br>63<br>66 | 36<br>42<br>48<br>52<br>56<br>60 | 39<br>45<br>49<br>53<br>57 | 31<br>37<br>42<br>47 | 29<br>35 | 23% | 18%<br>24 |  |  |

# HYGROMETRY

|                                                                  |                                                     | WET                              | - AND                                                      | DRY-B                                                     | ULB H                                                     | UMIDI                                    | TY VA                            | LUES (                                          | contd.)                            |                             |                       |                 |
|------------------------------------------------------------------|-----------------------------------------------------|----------------------------------|------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|------------------------------------------|----------------------------------|-------------------------------------------------|------------------------------------|-----------------------------|-----------------------|-----------------|
| Dry-bulb                                                         |                                                     |                                  |                                                            |                                                           |                                                           | Wet-bu                                   | alb dep                          | ression                                         | l.                                 |                             |                       |                 |
| Temperatur                                                       |                                                     | <b>1</b> °                       | <b>2</b> °                                                 | <b>3</b> °                                                | <b>4</b> °                                                | <b>5</b> °                               | <b>6</b> °                       | <b>8</b> °                                      | <b>10°</b>                         | 12°                         | 14°                   |                 |
| 15° C.<br>20<br>25                                               |                                                     | 90%<br>91<br>92                  | 80%<br>83<br>84                                            | 71%<br>74<br>77                                           | 61%<br>66<br>70                                           | 52%<br>59<br>63                          | 44%<br>51<br>57                  | 27%<br>37<br>44                                 | 12%<br>24<br>33                    | 12%<br>22                   | 12%                   |                 |
| 1                                                                |                                                     | <b>2</b> °                       | <b>4</b> °                                                 | <b>6</b> °                                                | <b>8</b> °                                                | <b>10°</b>                               | <b>12°</b>                       | <b>14°</b>                                      | <b>16°</b>                         | <b>18°</b>                  | 20°                   |                 |
| 30<br>35<br>40<br>45<br>50<br>55                                 |                                                     | 86<br>87<br>87<br>88<br>89<br>90 | 73<br>75<br>76<br>77<br>79<br>80                           | 61<br>64<br>66<br>67<br>70<br>72                          | 50<br>53<br>56<br>59<br>61<br>64                          | 39<br>44<br>47<br>51<br>53<br>56         | 30<br>35<br>39<br>43<br>46<br>49 | 21<br>27<br>32<br>36<br>40<br>42                | 13<br>20                           | 5<br>13                     | 7                     |                 |
|                                                                  |                                                     | <b>2</b> °                       | <b>4</b> °                                                 | <b>6</b> °                                                | <b>8</b> °                                                | 10°                                      | 15°                              | 20°                                             | 25°                                | 30°                         | 35°                   | <b>40°</b>      |
| 60<br>70<br>80<br>90<br>100                                      |                                                     | 90<br>91<br>92<br>92<br>93       | 81<br>83<br>85<br>86<br>86                                 | 73<br>76<br>78<br>79<br>80                                | 65<br>69<br>71<br>73<br>74                                | 58<br>62<br>65<br>67<br>69               | 42<br>47<br>51<br>54<br>56       | 30<br>35<br>40<br>43<br>46                      | 19<br>25<br>30<br>33<br>37         | 17<br>21<br>25<br>29        | 15<br>19<br>22        | 10<br>14<br>17  |
|                                                                  |                                                     |                                  |                                                            | WET-B                                                     | ULB IC                                                    | E CON                                    | ERED                             | •                                               |                                    |                             |                       | -               |
| Dry-bulb                                                         |                                                     |                                  |                                                            |                                                           | W                                                         | et-bulb                                  | depres                           | sion.                                           |                                    |                             |                       |                 |
| Temperature.                                                     | - <b>0</b> °                                        | 1C.                              | 0.0                                                        | 0°•5                                                      | 10.0                                                      | D 1°                                     | 5 2                              | ••0                                             | 2.5                                | 3°.0                        | 3°.5                  | <b>4°</b> •0    |
| -18° C.<br>-16<br>-14<br>-12<br>-10<br>-8<br>-6<br>-4<br>-2<br>0 | 6.<br>67<br>71<br>77<br>83<br>90<br>99<br>95<br>100 | I<br>7<br>3<br>5<br>5<br>8       | 62%<br>66<br>69<br>75<br>82<br>89<br>94<br>97<br>98<br>100 | 47%<br>51<br>56<br>62<br>68<br>75<br>81<br>85<br>88<br>90 | 33°<br>37<br>42<br>49<br>55<br>62<br>68<br>74<br>78<br>80 | (24)<br>30<br>41<br>48<br>50<br>68<br>71 |                                  | 17%<br>24<br>30 (<br>36<br>45<br>53<br>58<br>52 | 17)%<br>25<br>34<br>42<br>48<br>53 | 16%<br>25<br>32<br>39<br>44 | 16%<br>24<br>31<br>37 | 17%<br>24<br>31 |

\* The relative humidity is here defined as the ratio of the actual moisture content per unit volume to that which the air would hold when in equilibrium with water (not ice) at the dry-bulb temperature.

#### BURSTING STRENGTHS OF GLASS TUBING

Bursting pressures in atmospheres for German soda glass tubing. Most glasstubing is in a state of considerable strain, and a factor of safety of not less than two should usually be employed. (Roebuck, *Phys. Rev.*, 1909; and Onnes and Braak, *Kon. Ak. Wet.*, Amsterdam, 1908.) Ordinary boiler water-gauge glasses stand between 12 and 24 atmospheres.

| Thickness   | Bore.  |     |     |     |     |     |            |  |  |  |  |  |
|-------------|--------|-----|-----|-----|-----|-----|------------|--|--|--|--|--|
| of Wall.    | 1 mm.  | 2   | 3   | 4   | 5   | 6   | 7          |  |  |  |  |  |
| 1 mm.       | atmos, | 310 | 280 | 230 | 220 | 150 | 190        |  |  |  |  |  |
| 2<br>3<br>4 | 570    |     | 340 | -   | 330 | 240 | 220        |  |  |  |  |  |
| 3           | 560    | 420 | 460 | 400 | -   | -   | 230<br>280 |  |  |  |  |  |
| 4           |        | 450 |     | 400 | 310 | 320 | 280        |  |  |  |  |  |

48

#### VAPOUR PRESSURES

Inter- and Extrapolation of Vapour Pressures.—The Kirchhoff-Rankine-Dupré formula,  $\log p = A + B/\theta + C \log \theta$ , where p is the vapour pressure,  $\theta$  the absolute temperature, and A, B, C are constants, is accurate and convenient (e.g. see p. 50). For values of A, B, C, see Juliusburger, Ann. d. Phys., p. 618, 1900.

Ramsay and Young's Method.—If two liquids, one at absolute temperature  $\theta$ and the other at  $\theta'$ , have the same vapour pressure, the ratio  $\theta/\theta'$ , when plotted against  $\theta$ , gives a straight line. This method may be used to find roughly the vap. press. of a substance at any temperature when only its boiling-point is known.

Interpolation by Logarithms.—The curve of vapour pressure (p) against temp. (t) is approximately hyperbolic, and thus  $\log p$  plotted against t gives a graph of slight curvature, which over 10° intervals of t may, for approximate work, be regarded as a straight line: thus the following method of interpolation :—

Example .- Required vap. press. of water at 15°, given

| 1   | \$   | log ⊅ | $\frac{^{\circ}964 + 1^{\circ}243}{2} = 1^{\circ}104 = \log 12.7 ; i.e. \ p \ at \ 15^{\circ} = 12.7,$ actually it is 12.8. |
|-----|------|-------|-----------------------------------------------------------------------------------------------------------------------------|
| 10° | 9'2  | '964  |                                                                                                                             |
| 20° | 17'5 | 1'243 |                                                                                                                             |

#### VAPOUR PRESSURE OF ICE

In mms. of mercury at o<sup>o</sup> C.; g = 980.62 cms. per sec.<sup>2</sup>; hydrogen (const. vol.) scale of temps. (Scheel, and Heuse, Reichsanstalt Ann. d. Phys., 1909.)

| Temp        | −50° C.  | -40° | - 30° | -20° | -10°  | -5°   | -2°   | <b>0</b> ° |
|-------------|----------|------|-------|------|-------|-------|-------|------------|
| Vap. press. | .030 mm. | •096 | •288  | •784 | 1.963 | 3.022 | 3.885 | 4*579      |

#### (SATURATED) VAPOUR PRESSURE OF WATER

In mms. of mercury at 0° C.; g = 980.67 cms. per sec.<sup>2</sup> Thermodynamic scale of temp. (see p. 53). From  $-20^{\circ}$  to 0° the observations are due to Scheel and Heuse (v. ice); from 0° to 50°, to Thiesen and Scheel; from 50° to 200°, to Holborn and Henning, Reichsanstalt (*Ann. d. Phys.*, 26, 833, 1908). For vapour pressures at temps. near 100° see also the table of boiling-points on next page.

| vap. press. at $-20^{\circ}$ C., '900 mm.; $-10^{\circ}$ , $2^{\circ}100$ ; $-5^{\circ}$ , $3^{\circ}171$ ; $-2^{\circ}$ , $3^{\circ}958$ ; $-1^{\circ}$ , $4^{\circ}258$ . |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Temp.                                                    | 0                                                                   | 1                                                                                                   | 2                                                                         | 8                                                                | 4                                                               | 5                                                                 | 6                                                                    | 7                                                | 8                                                          | 9                                                                            |  |
|----------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------|--|
| 0° C.<br>10<br>20<br>30                                  | 4'57<br>9'20<br>17'51<br>31'71                                      | 5 9.840                                                                                             | 19'79<br>35'53                                                            | 5.681<br>11.226<br>21.02<br>37.59                                | 6.097<br>11.980<br>22.32<br>39.75                               | 6.541<br>12.779<br>23.69<br>42.02                                 | 7'011<br>13'624<br>25'13<br>44'40                                    | 7.5<br>14.5<br>26.6<br>46.9                      | 17 15'46                                                   | 0 16.456<br>29.94                                                            |  |
|                                                          | 0                                                                   | 2                                                                                                   | 4                                                                         | 6                                                                | 8                                                               | 10                                                                | 12                                                                   | 14                                               | 16                                                         | 18                                                                           |  |
| 40<br>60<br>80<br>100<br>120<br>140<br>160<br>180<br>200 | 55°1<br>149°2<br>355°1<br>760°C<br>148<br>270<br>463<br>751<br>1164 | 163 <sup>.6</sup><br>384 <sup>.9</sup><br>815 <sup>.9</sup><br>9 1586<br>9 2866<br>3 4874<br>4 7866 | 68.05<br>179.1<br>416.7<br>875.1<br>1687<br>3030<br>5124<br>8230<br>12653 | 75'43<br>195'9<br>450'8<br>937'9<br>1795<br>3202<br>5384<br>8608 | 83°50<br>214°0<br>487°1<br>1004<br>1907<br>3381<br>5655<br>8999 | 92.30<br>233.5<br>525.8<br>1074.5<br>2026<br>3569<br>5937<br>9404 | 101'9<br>254'5<br>567'1<br>1149<br>2150<br>3764<br>6229<br>9823<br>— | 112<br>277<br>611<br>12<br>22<br>39<br>65<br>102 | 1 301.3<br>0 657.7<br>27 131<br>80 241<br>68 418<br>33 684 | 327 <sup>2</sup><br>707 <sup>3</sup><br>0 1397<br>6 2560<br>1 4402<br>8 7175 |  |
|                                                          |                                                                     | 1                                                                                                   |                                                                           | (Bat                                                             | telli, 18                                                       | 92.)                                                              |                                                                      |                                                  |                                                            |                                                                              |  |
|                                                          |                                                                     |                                                                                                     |                                                                           |                                                                  | -                                                               |                                                                   |                                                                      |                                                  |                                                            |                                                                              |  |
| Temp                                                     | . 1                                                                 | 220° C.                                                                                             | 240°                                                                      | 260°                                                             | 280°                                                            | 800                                                               | ° 32                                                                 | 0°                                               | 340°                                                       | 360°                                                                         |  |
| Vap. Pres                                                | Vap. Press. 17,380 mm.                                              |                                                                                                     |                                                                           | 35,760                                                           | 50,60                                                           | o 67,6                                                            | 20 88,                                                               | 340                                              | 113,830                                                    | 141,870                                                                      |  |
|                                                          | Interpolate logs of vapour pressures as explained above.            |                                                                                                     |                                                                           |                                                                  |                                                                 |                                                                   |                                                                      |                                                  |                                                            |                                                                              |  |

E

# VAPOUR PRESSURES

#### BOILING-POINT OF WATER UNDER VARIOUS BAROMETRIC PRESSURES

International scale of temp. Pressures in mm. Hg at 0° C.; g = 980.665 cm. per sec.2 (Moser, 1932.) Heavy water boils at 101.42° C.; v.p. at 100° C. = 721.6 mm.

| Barometric<br>Height, | 0              | 1          | 2          | 3    | 4    | 5    | 6    | 7    | 8    | 9    |
|-----------------------|----------------|------------|------------|------|------|------|------|------|------|------|
| 680 mm.               | ° C.<br>96·910 | 050        | 000        | 031* | 071* | 111* | 151* | 191* | 231* | 271* |
| 690                   | 97.311         | 950<br>351 | 990<br>391 | 431  | 471  | 510  | 550  | 590  | 630  | 669  |
| 700                   | 97.709         | 748        | 788        | 827  | 866  | 906  | 945  | 984  | 023* | 062* |
| 710                   | 98.102         | 141        | 180        | 219  | 258  | 296  | 335  | 074  | 413  | 451  |
| 720                   | 98.490         | 529        | 567        | 606  | 644  | 683  | 721  | 759  | 798  | 836  |
| 730                   | 98.874         | 912        | 950        | 989  | 027* | 065* | 102* | 140* | 178* | 216* |
| 740                   | 99.254         | 292        | 329        | 367  | 405  | 442  | 480  | 517  | 554  | 592  |
| 750                   | 99.629         | 666        | 704        | 741  | 778  | 815  | 852  | 889  | 926  | 963  |
| 760                   | 100.000        | 037        | 074        | 110  | 147  | 184  | 220  | 257  | 294  | 330  |
| 770                   | 100.367        | 403        | 439        | 476  | 512  | 548  | 584  | 620  | 657  | 693  |
| 780                   | 100.729        | 765        | 801        | 836  | 872  | 908  | 944  | 980  | 015* | 051* |

\* For entries marked with an asterisk, the integral number advances by I degree C.

#### VAPOUR PRESSURE OF MERCURY

In mms. of mercury at 0° C. Reduced from the observations of Hertz, Ramsay and Young, Callendar and Griffiths, Pfaundler, Morley, Gebhardt, Cailletet, Colardeau, Rivière. For interpolation from 15° to 270°.

 $\log p = 15^{2}4431 - 3623^{9}32/\theta - 2^{3}67233 \log \theta \cdot \cdot \cdot \cdot \cdot \cdot \cdot (A)$ From 270° to 450°

$$\log p = 10'04087 - 3271'245/\theta - '7020537 \log \theta$$

 $\frac{\delta p}{\delta \ell}$  at the boiling-point = 13.6 mm. per degree (Laby, *Phil. Mag.*, Nov., 1908).

| Temp.                        | Vap.<br>Press.                                           | Temp. | Vap.<br>Press.                                       | Temp.                          | Vap.<br>Press.                                 | Temp.                                      | Vap.<br>Press.                                                        | Temp.                            | Vap.<br>Press.                          |
|------------------------------|----------------------------------------------------------|-------|------------------------------------------------------|--------------------------------|------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------|----------------------------------|-----------------------------------------|
| 0° C.<br>5<br>10<br>15<br>20 | mm.<br>*00016*<br>*00026*<br>*00043*<br>*00069<br>*00109 | 30    | mm.<br>'00168<br>'00257<br>'00387<br>'00574<br>'0122 | 60°<br>80<br>100<br>150<br>200 | mm.<br>·0246<br>·0885<br>·276<br>2·88<br>17·81 | 250°<br>800<br>356· <b>7</b><br>400<br>450 | mm.<br>75 <sup>.8</sup> 3<br>248 <sup>.6</sup><br>760<br>1566<br>3229 | 500°<br>600<br>700<br>800<br>880 | atmos.<br>8<br>22'3<br>50<br>102<br>162 |

· Extrapolated by formula A.

#### VAPOUR PRESSURE OF ETHYL ALCOHOL

Vap. press. in mms. of mercury at 0° C. Calculated by Bunsen from Regnault's results (1862), which are in good agreement with the mean of those of Ramsay and Young (1886), and Schmidt (1891). Regnault, Vapour press. at -20°, 3'34 mm.; at -10°, 6'47 mm.

| Temp.                                                         | 0                              | 1                      | 2                     | 8                     | 4                     | 5                    | 6                     | 7                     | 8                     | 9                          |  |
|---------------------------------------------------------------|--------------------------------|------------------------|-----------------------|-----------------------|-----------------------|----------------------|-----------------------|-----------------------|-----------------------|----------------------------|--|
| 0° C.<br>10<br>20<br>30                                       | 12.73<br>24.08<br>44.0<br>78.4 | 13.65<br>25.59<br>46.7 | 14.6<br>27.19<br>49.5 | 15°59<br>28°9<br>52°5 | 16.62<br>30.7<br>55.7 | 17.7<br>32.6<br>59.0 | 18.84<br>34.6<br>62.5 | 20°04<br>36°8<br>66°2 | 21.31<br>39.0<br>70.1 | 22.66<br>41.4<br>74.1<br>— |  |
| (Ramsay and Young, 1886.)                                     |                                |                        |                       |                       |                       |                      |                       |                       |                       |                            |  |
| Temp.                                                         | 30° C.                         | 40°                    | 50°                   | 60°                   | 70°                   | 80°                  | 100°                  | 120°                  | 140°                  | 160°                       |  |
| Press. 78'I mm. 133'4 219'8 350'2 541 812 1692 3220 5670 9370 |                                |                        |                       |                       |                       |                      |                       |                       |                       |                            |  |
| Interpolate logs of vapour pressures as explained on p. 49.   |                                |                        |                       |                       |                       |                      |                       |                       |                       |                            |  |

### VAPOUR PRESSURES OF ELEMENTS

p = vapour pressure in mms. of mercury at 0° C. lat. 45° and sea-level (g = 980.62) (*i.e.* I mm. Hg = 1333.2 dynes per sq. cm.). If followed by *at.*, p is in atmospheres;  $\theta$  = absolute temp. (A.); t = temp. in °C.; (s) solid; (l) liquid. The thermometry is in many cases somewhat dubious.

| Interpolate logs of vapour pressures as explained on p. 49. |                  |                                               |                               |                                |                                 |                                  |                            |                       |                        |                  |
|-------------------------------------------------------------|------------------|-----------------------------------------------|-------------------------------|--------------------------------|---------------------------------|----------------------------------|----------------------------|-----------------------|------------------------|------------------|
| Argon                                                       | tp               | -121° C.<br>50'6 at.                          | -128.6<br>38.0                | -129.6<br>35.8                 | -134·4<br>29·8                  | -135·1<br>29'0                   | -136·2                     | -138.8                | -139·1<br>23·7         | Ξ                |
| Argon                                                       | θ<br>θ<br>θ<br>p | 78°.9 A.<br>110°.5 A.<br>148°.9 A.<br>300 mm. | 86·9<br>121·3<br>163·9<br>760 | 97·9<br>135·2<br>182·9<br>2000 | 107·3<br>147·3<br>199·6<br>4000 | 155 <sup>.</sup> 6<br><br>40,200 | = crit.<br>210.5<br>41,240 | = crit.<br>287.8      | temp.<br>= crit.       | temp.            |
| Bromine                                                     | P L P            | -16° 6 C.<br>20 mm.                           | -12 0<br>30                   | -5·0<br>50                     | 8·2<br>100                      | 16·9<br>150                      | 23·4<br>200                | 43,500<br>40.5<br>400 | 51·9<br>600            | 58·7<br>760      |
| Chlorine                                                    | t<br>p           | -80° C.<br>62'5 mm.                           | -60°<br>210                   | -40<br>560                     | -34·6<br>760                    | -20<br>1.84 at.                  | 0<br>3.66                  | <b>10</b><br>4'95     | 20<br>6.62             | 30<br>8·75       |
| Iodine (Baxter, Hickey,<br>& Holmes, 1907)                  | t p              | 0° C.<br>'03 mm.                              | 15<br>•131                    | 80<br>•469                     | 55<br>3.08                      | 85<br>20                         | 117<br>100                 | 137<br>200            | 160·9<br>400           | 185·8<br>760     |
|                                                             |                  | -258°C.<br>103·5 mm.<br>108·7 mm.             | -257<br>166.7<br>174.0        | -256<br>250.5<br>261.7         | -255<br>365.0<br>381.7          | -254<br>515.5<br>534:5           | -253<br>708·2<br>732·9     | -252·75               | 252·87<br>760          |                  |
| Helium                                                      | θ<br>p           | 0°•90 A.<br>0.05 mm.                          | 1·54<br>5·0                   | 2.64<br>100                    | 4·22 3<br>760 8                 | Neon (Tr                         | avers d                    | 2.4 m                 | A.(s)20.<br>m. 12.8    | 4(s) He<br>Scale |
| Mercury                                                     |                  | See p. 50.                                    |                               |                                | 1                               | Ra. Ema                          | nation                     | See                   | p. 117.                |                  |
|                                                             | 0<br>P           |                                               | 67·8<br>200                   | 72·4<br>400                    | 77·3<br>760                     | 80<br>1013                       | 83<br>1386                 | 86<br>1880            | 89<br>2465             | 91<br>2916       |
| Oxygen (Jaquerod, Travers,<br>& Senter, 1902)               | P                |                                               | 82·1<br>300                   | 84·4<br>400                    | 86·3<br>500                     | 87·9<br>600                      | 89·3<br>700                | 90·1<br>760           | 90.6<br>800            | H. Scale         |
| Phosphorus                                                  | tP               |                                               | 170<br>173                    | 180<br>204                     | 200<br>266                      | 209<br>339                       | <b>219</b><br>359          | 226<br>393            | 230<br>514             | 287·3<br>760     |
| Sulphur (Ruff & Graff, 'o8;<br>B, 1899; C., 1899)           |                  | 50° C.<br>'0003 mm.                           | 100<br>•0089                  | 147<br>192                     | 211<br>3 <sup>·14</sup>         | 400<br>c. 372                    | 444.6<br>760               |                       | = 0°·09/n<br>(see p. 5 |                  |

#### VAPOUR PRESSURES OF COMPOUNDS

| -      |                        |                                                        |                                                        |                                                        |                                                       | -                                                     |                                                       |                                                       |                                                       |
|--------|------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| tp     | -73°.3 C.<br>1.8 at.   | -45·5<br>6·3                                           | -23·3                                                  | -3·9<br>23·1                                           | 4·0<br>29·8                                           | 9·2<br>33·9                                           | 13·8<br>37·7                                          | 22·0<br>45 <sup>.7</sup>                              | 83·4<br>58·8                                          |
| t p    | -25° C.<br>4'93 at.    | -15<br>6·84                                            | -5<br>9'3                                              | 0<br>10 <sup>.</sup> 8                                 | 10<br>14·3                                            | 30<br>23.7                                            | 50<br>36.6                                            | 60<br>44 <sup>.</sup> 4                               | 70<br>53°1                                            |
| tp     | -30° C.<br>'39 at.     | -20<br>.63                                             | -10<br>1.00                                            | 0                                                      | 10<br>2°26                                            | 20<br>3 <sup>.24</sup>                                | 30<br>4'52                                            | 40<br>6·15                                            | 50<br>8·19                                            |
| t<br>p | -80° C.<br>35°2 mm.    | -77.6<br>44.1                                          | -70·4<br>74'9                                          | -64·4<br>116·0                                         | -60·8<br>157·6                                        | -54·4<br>239·5                                        | -46·2<br>403·5                                        | -39.8<br>568.2                                        | -33 0<br>761                                          |
| t<br>p | -80° C.<br>1'9 at.     | -60<br>5 <sup>.05</sup>                                | -40<br>11'0                                            | -20<br>23.1                                            | -10<br>28·9                                           | 0<br>36·1                                             | 10<br>44 <sup>.</sup> 8                               | 20<br>55'3                                            | 40<br>83 <sup>.</sup> 4                               |
| tp     | -176.5°C.<br>'024 at.  | -167<br>'182                                           | -138<br>5'4                                            | -129<br>10 <sup>.6</sup>                               | -119<br>20 0                                          | -110<br>31.6                                          | -105<br>41'0                                          | -100·9<br>49'9                                        | -97·5<br>57·8                                         |
| t p    | -9° C.<br>94°3 mm.     | -7<br>104·3                                            | -2<br>129.1                                            | 0<br>144 <sup>.5</sup>                                 | 10<br>215 0                                           | 16<br>283.5                                           | 20<br>329'5                                           | 80<br>462                                             | Ξ                                                     |
|        | It p t p t p t p t p t | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

Interpolate logs of vapour pressures as explained on p. 49.

# VAPOUR PRESSURES

|                                                                                                                 | POUR Plerpolate log       |                    |                  |                        |              |                         |                          |                |                    |
|-----------------------------------------------------------------------------------------------------------------|---------------------------|--------------------|------------------|------------------------|--------------|-------------------------|--------------------------|----------------|--------------------|
|                                                                                                                 | t -180°C.(s<br>p 2.5 mm.  | r) -100 (s)<br>119 | -80 (s)<br>657   | -65 (s)<br>2100        | -56·4 3910   | -65 (/)<br>2508         | -40 ( <i>l</i> )<br>7510 | -20 (/) 14,830 | -10 (/)<br>19,630  |
|                                                                                                                 | t -20° C.<br>P 47'3 mm.   | -10<br>79'4        | 0<br>128         | 10<br>198              | 20<br>298    | 40<br>618               | 60<br>1164               | 80<br>2033     | 100<br>3325        |
| Chloroform, CHCl,<br>(Regnault, 1862)                                                                           | t 20° C.<br>p 160'5 mm    | 80<br>. 248        | <b>40</b><br>369 | 50<br>535              | 60<br>755    | 70<br>1042              | 80<br>1408               | 90<br>1865     | 100<br>2429        |
| 10 011                                                                                                          | t -20° C.<br>p 9.8 mm.    | -10<br>18·47       | 0<br>32'9        | 10<br>56               | 20<br>91     | 40 215                  | 60<br>447                | 80<br>843      | 100<br>1467        |
|                                                                                                                 | t -90° C. (s<br>p '69 at. | r) -85 (s)<br>1.00 | -81<br>1.25      | -70 2.22               | -50<br>5'3   | -23·8<br>13·2           | 0 26.05                  | 20·2<br>42·8   | 86·5<br>61·6 (M.)  |
| Benzene, C.H                                                                                                    | t -10° C.<br>P 14.8 mm.   | 0 26.5             | 10<br>45'4       | 20<br>74 <sup>.6</sup> | 40<br>181°1  | 60<br>389               | 80<br>754                | 100<br>1344    | 120<br>2238        |
| (TF 1.11 0.01                                                                                                   | t 101°.9 C<br>p 50 mm.    | · 119·4            | 138·7<br>200     | 151·5<br>300           | 161·1<br>400 | 168·7<br>500            | 175·0<br>600             | 180·8<br>700   | 183·9<br>760       |
| Bromnaphthalene<br>C <sub>10</sub> H, Br (Ra. & Y., 1885)                                                       | t 215° C.                 | 220                | 230<br>236.0     | 240<br>303'4           | 250<br>386.4 | 260<br>487.4            | 270<br>608.8             | 275<br>677.9   | 280·4<br>760       |
|                                                                                                                 | t -10° C.                 | 0                  | 17<br>78·3       | 20<br>88·7             | 80<br>150    | 50<br>381.7             | 80<br>1238               | 120<br>4342    | 150<br>9361        |
| n. propyl alcohol, †,C,H,OH                                                                                     | t 0° C.                   | 10<br>7.8          | 17<br>12'4       | 80<br>28·2             | 40<br>51.4   | 60<br>157               | 80<br>389                | 100<br>843     | 120<br>1668        |
| Iso-butyl alcohol †<br>C,H,OH (Ri., '86; S., '91)                                                               | t 10° C.                  | 17 6.8             | 20<br>8·1        | 40<br>30°3             | 60<br>94'2   | 80<br>245               | 100<br>569               | 108<br>760     | 120<br>1195        |
| Iso-amyl alcohol †<br>C <sub>s</sub> H <sub>11</sub> OH (Ri., '86 ; S., '91)                                    | t 17º C.                  | 30                 | 40<br>9'33       | 50<br>17'4             | 60<br>32'0   | 80<br>151               | 100<br>234               | 120<br>522     | 130<br>741         |
| Formic acid, † CH2O2                                                                                            | t 0° C.<br>p 10'2 mm.     | 10                 | 17<br>26'3       | 20<br>31.6             | 80<br>51'3   | 40<br>79'4              | 70<br>266                | 80<br>373      | 101<br>760         |
| Acetic acid, † C211,O2<br>(Ra. & Y.; Ri., '86; S., '91)                                                         | t 17º C.                  | 80<br>20'6         | 50<br>56·2       | 70<br>133              | 90<br>288    | 110<br>582              | 130<br>1058              | 150<br>1847    | 200<br>5905        |
|                                                                                                                 | t 15° C.                  | 17 2'0             | 20<br>2.45       | 80<br>4'9              | 40<br>9'I    | 60<br>28·2              | 70<br>46·1               | 80<br>74'5     | 140<br>760         |
| Butyric acid, † C4H8O2 .<br>(Ra.&Y., '86; S. '91; K. '94)                                                       | t 17º C.                  | 20                 | 30<br>1'4        | 50<br>5'2              | 70<br>16·2   | 90<br>44 <sup>.</sup> 9 | 110                      | 130<br>245     | 150<br>497         |
| Iso-butyric acid, † C <sub>4</sub> H <sub>8</sub> O <sub>2</sub><br>(R., '86; S., '91; K., '94)                 | t 17º C.                  | 30                 | 50<br>8·2        | 70<br>25·1             | 90<br>67.6   | 110<br>162              | 130<br>347               | 150<br>684     | 153·5<br>760       |
| Methyl formate †<br>CHO <sub>2</sub> CH <sub>3</sub> (Y. & T., '93).                                            | t -20° C.                 | -10                | 0<br>195         | 10<br>309              | 20<br>476    | 40<br>1029              | 60<br>1990               | 80<br>3497     | 100<br>5782        |
| Methyl butyrate †<br>C <sub>4</sub> H <sub>7</sub> O <sub>2</sub> ·CH <sub>3</sub> (Y. & T., '93)               | t -10° C                  | 0                  | 10<br>13.8       | 20<br>24.5             | 40 69.2      | 60<br>167.5             | 80<br>361                | 100<br>701     |                    |
| Western Land and A                                                                                              | t -10° C.                 | 0                  | 10<br>22'4       | 20<br>38.9             | 40           | 60<br>244               | 80<br>505                | 100<br>956     | 120<br>1660        |
|                                                                                                                 | t -20° C.                 | -10<br>12'9        | 0 24.3           | 10<br>42.7             | 20<br>72.8   | 40<br>186               | 60<br>415                | 80<br>833      | 100<br>1515        |
| Ethyl propionate †<br>C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> .C <sub>2</sub> H <sub>4</sub> (Y.& T., '93) | t -10° C.                 | 0 8.3              | 10<br>15'5       | 20 27.7                | 40<br>77'9   | 60<br>188.0             | 80<br>403.6              | 100<br>785     | 120<br>1388        |
|                                                                                                                 | t -10° C.                 | 0 7.4              | 10<br>13'9       | 20·<br>25·1            | 40<br>70'8   | 60<br>172               | 80<br>373                | 100<br>724     | 120<br>1288        |
| Ethyl ether, (C2H4)2O .                                                                                         | t -10° C.<br>p 112'3 mm   | 0                  | 10<br>290'8      | 20<br>439.8            | 40<br>921    | 60<br>1734              | 80                       | 100<br>4855    | 193·8   <br>27,060 |
|                                                                                                                 | rpolate log               |                    | ur press         | sure as                | explain      | ed on p                 | • 49•                    |                |                    |

Extrapolated.
† The vapour pressures here given have been graphically interpolated from the observers' values. B., Bodenstein; C., Callendar; D., Dewar; F., Faraday; K., Kahlbaum; M., Mackintosh; R., Regnault; Ra. and Y., Ramsay and Young; Ri., Richardson; S., Schmidt; Y. and T., Young and Thomas.
‡ Triple point. || Critical temp.

# 53 INTERNATIONAL TEMPERATURE SCALE

# THE INTERNATIONAL SCALE OF TEMPERATURE

The ideal scale of temperature is one that can be defined without reference to the physical properties of any particular material, and in this connection Lord Kelvin showed long ago the theoretical advantages of the thermodynamic (absolute) scale. Accordingly the thermodynamic Centigrade scale is recognised as the fundamental scale to which all temperature measurements should ultimately be referable.

The thermodynamic scale is, however, only susceptible of direct practical realisation through the medium of the gas thermometer, and the experimental difficulties are such that, on the joint proposals of the Reichsanstalt, the Bureau of Standards and the National Physical Laboratory, the International Committee of Weights and Measures adopted in 1927 a practical scale of temperature designated as the **International Temperature Scale**. This scale conforms with the thermodynamic scale as closely as is possible with present knowledge, and is designed to be definite, conveniently and accurately reproducible, and to provide means for uniquely determining any temperature within the range of the scale, thus promoting uniformity in numerical statements of temperature.

The necessity of repeating gas thermometer experiments for obtaining standard temperatures is obviated by basing the International Temperature Scale on a number of basic fixed and reproducible equilibrium temperatures (to which definite numerical values are assigned on the thermodynamic scale through the medium of gas thermometer observations), and upon the use of selected interpolating instruments calibrated according to a specified procedure.

The basic fixed points, and the numerical values assigned to them for the pressure of one standard atmosphere, are given in the following table, together with formulæ which represent the temperature  $(t_p)$  as a function of vapour pressure  $(\phi)$  over the range 680 mm. to 780 mm. of mercury. Interpolation between these fixed points is carried out (a) by platinum resistance thermometry from  $-190^{\circ}$  to  $0^{\circ}$  and from  $0^{\circ}$  to  $660^{\circ}$  C.; (b) by platinum platinum-rhodium thermocouples from  $660^{\circ}$  to  $1063^{\circ}$  C.; and (c) above  $1063^{\circ}$  C. by optical pyrometry.

#### Basic Fixed Points of the International Temperature Scale.

| — 182 <sup>.</sup> 97 <sup>•</sup> C.                  | <ul> <li>(a) Temperature of equilibrium between liquid and gaseous oxygen at the pressure of one standard atmosphere. (Oxygen point)</li> <li>t<sub>p</sub> = t<sub>760</sub> + 0.0126(p-760)-0.000065(p-760)<sup>2</sup></li> </ul>                                                                                                                                                          |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0'000° C.                                              | (b) Temperature of equilibrium between ice and air-saturated water at normal atmospheric pressure. (Ice point)                                                                                                                                                                                                                                                                                |
| 100'000° C.                                            | (c) Temperature of equilibrium between liquid water and its vapour at the pressure of one standard atmosphere. (Steam point) $t_p = t_{760} + 0.0367(p-760) - 0.000023(p-760)^2$                                                                                                                                                                                                              |
| 444 <sup>.</sup> 60° C.                                | (d) Temperature of equilibrium between liquid sulphur and its vapour at the pressure of one standard atmosphere. (Sulphur point) $t_p = t_{760} + 0.0909 (p - 760) - 0.000048 (p - 760)^2$                                                                                                                                                                                                    |
| 960 <sup>.</sup> 5 <sup>°</sup> C.                     | (e) Temperature of equilibrium between solid silver and liquid silver at normal atmospheric pressure. (Silver point)                                                                                                                                                                                                                                                                          |
| 1063° C.                                               | (f) Temperature of equilibrium between solid gold and liquid gold at normal atmospheric pressure. (Gold point)                                                                                                                                                                                                                                                                                |
| ubject to a<br>dynes/cm. <sup>2</sup> .<br>the equili- | Standard atmospheric pressure is defined as the pressure due to a<br>mercury 760 mm. high having a mass of 13'5951 grammes per cm. <sup>3</sup> , s<br>gravitational acceleration of 980'665 cm./sec. <sup>2</sup> , and is equal to 1.013.250<br>A number of secondary fixed points are also specified ranging from<br>brium point of solid carbon dioxide to the melting point of tungsten. |

and 59. (See N.P.L. Annual Report for 1928, p. 31.)

2

# GAS THERMOMETRY

#### GAS THERMOMETRY

The thermodynamic scale of temperature is realized by the aid of the gasthermometer, together with a knowledge of the equation of state of the gas used. In particular, the position of the zero of the Centigrade scale on the absolute scale is determined in this way.

| THERMODYNAMIC | TEMPERATURE | OF THE | ICE-POINT |
|---------------|-------------|--------|-----------|
|               |             |        |           |

| Method.                          | H <sub>2</sub> | N <sub>2</sub> | Air.   | C02    | He           | Computer.                         |
|----------------------------------|----------------|----------------|--------|--------|--------------|-----------------------------------|
| Joule-Thomson effect             | 273.14         | 273.00         | 0      | 273.05 | 0            | Callendar, 1903                   |
| Extrapolation to zero pressure . | 273.07         | 273.09         | -      |        | -            | Berthelot and Chap-<br>puis, 1907 |
| Joule-Thomson effect             | 273.05         | -              | 273.19 | 273.10 | -            | Berthelot, 1907                   |
| Extrapolation to zero pressure . |                | -              | -      |        | 273.16       | Heuse & Otto, 1930                |
| ,,, ,,                           |                |                | -      |        | 273.16       | Roebuck, 1936                     |
| " "                              | -              | -              | -      | -      | 273.14       | Keesom and Tuyn,<br>1936          |
| ıı ıı                            | -              |                | -      | -      | 273.17       | Kinoshita and Oishi,<br>1937      |
| >> >>                            | -              | -              | -      | -      | 273·16<br>to |                                   |
|                                  |                |                |        |        | 273.17       |                                   |
|                                  | Probab         | le Mea         | n 273  | 16°.   |              |                                   |

#### PLATINUM THERMOMETRY

#### TO REDUCE PT-SCALE TEMPS. (tpt) TO INTERNATIONAL SCALE TEMPS. (t)

The interpolation formula for use with the platinum resistance thermometer for temperatures above 0° C. is  $R_t = R_0(I + At + Bt^2)$ . For ease in computation, Callendar adopted the following method. The temperature is first calculated on the "platinum scale"  $(t_{pl})$ by assuming the linear relation  $R_{pt} = R_0(I + at_{pl})$  between temperature and resistance. The difference-coefficient,  $\delta$ , is then introduced to correct to the parabolic relation by means of the formula  $t - t_{pl} = \delta .t(t - 100)10^{-4}$ . For temperatures between 0° C. and  $- 190^{\circ}$  C. the interpolation formula is  $R_t = R_0[I + At + Bt^2 + C(t - 100)10^{-4} + \beta .t^3(t - 100)10^{-8}$ . The three constants of the quadratic law are determined by calibration at the ice, steam and sulphur points. These values are also used in the low-temperature law, the additional constant being obtained by calibration at the boiling point of liquid oxygen. Pure platinum has a mean value of a over the range 0° to 100° C. of about 0.00392, while  $\delta$  lies between 1.49 and 1.495. Impure platinum has usually a high value of  $\delta$ . Platinum thermometers are suitable for use at temperatures up to 1100° C. See Ezer Griffiths' "Methods of Measuring Temperature" (Griffin).

The use of the different formulæ involves the use of a series of successive approximations. The use of the following table for a first approximation will shorten the work when high accuracy is required, and, above  $-40^{\circ}$  C., will give sufficiently accurate results for most purposes without calculation.

| Pt Temps.                                       | 0                                                                                             | 20 | 40                                                        | 60                                                           | 80                                             | 100                                                             | 120                                                      | 140                                                                                      | 160                                        | 180                                                        |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------|----|-----------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------|
| -200°<br>0<br>+200<br>400<br>600<br>800<br>1000 | $ \begin{array}{c} t \\ 0^{\circ} \\ 203.1 \\ 420.2 \\ 654.4 \\ 910.8 \\ (1197) \end{array} $ |    | 39.64<br>245.4<br>465.5<br>703.7<br>965.3                 | 59.64<br>266.7 2<br>488.5 5<br>728.7 7<br>993.0<br>(1290) (1 | 79·76<br>88·1<br>11·6<br>54·0<br>1021<br>1323) | t<br>-97°°0<br>100<br>309°8<br>534'9<br>779'4<br>1050<br>(1355) | 1<br>-77°·84<br>120·4<br>331·5<br>558·4<br>805·2<br>1078 | 140 <sup>.9</sup><br>353 <sup>.4</sup><br>582 <sup>.1</sup><br>831 <sup>.2</sup><br>1107 | 161·5<br>375·5<br>606·0<br>857·4<br>(1137) | t<br>-19°.65<br>182:3<br>397.8<br>630:1<br>884:0<br>(1167) |
| t<br>-40°C.                                     | t<br>                                                                                         | t  | $ \begin{array}{c c}                                    $ | l t                                                          | -0°                                            | t<br>•06 60<br>12 70                                            | t<br>00° C.                                              | ∆t<br>-0°·30<br>-0·42                                                                    | t<br>900° C.<br>1000<br>1100               |                                                            |

VALUES OF t FOR  $\delta = 1.50$ 

# 55 ELECTRICAL THERMOMETRY

#### HIGH TEMPERATURES

See Burgess and Le Chatelier's "High Temperature Measurements, 1912," and "Pyrometric Practice" (Technological Paper 170 of the Bureau of Standards, 1921).

For the measurement of high temperatures (say above 1550° C., which is about the present upper experimental limit of the gas scale) the instruments in general use are thermojunctions and optical or radiation pyrometers. Pt thermo-couples may be used with precautions up to 1700° C. At higher temperatures optical pyrometers afford the most reliable means.

#### THERMO-ELECTRIC THERMOMETRY

The International Temperature Scale between  $660^{\circ}$  and  $1063^{\circ}$  is defined by means of a platinum, platinum 10% rhodium thermo-couple, the relation between e.m.f. and temperature being given by a quadratic law determined by observations at the melting points of antimony, silver, and gold. Thermo-couples of platinum, platinum 13% rhodium are also in common use. Among base metal thermo-couples standard values have been given for the chromel, alumel couple up to temperatures as high as 1400° C., but the life of all thermo-couples is shortened and constancy impaired by exposure to the highest temperatures for considerable periods. The figures given in the table below for the platinum couples and the chromel, alumel couples are taken from the standard values given by the National Bureau of Standards (U.S.A.), while those for copper-constantan \* and iron-constantan \* are the averages of values which have been determined from time to time at the National Physical Laboratory. Individual couples of the latter may show variations up to 10%. All values are given for a cold junction temperature of 0° C. For accurate work, an actual calibration of the batch of wire in use should be made.

E.M.F.'S OF COMMON THERMO-COUPLES IN MILLIVOLTS (10-3 VOLT)

| Temp.   | Pt. Pt<br>-10% Rh. | Pt, Pt<br>-13% Rh. | Chromel-<br>Alumel. | Iron-<br>Constantan.* | Copper-<br>Constantan.* |
|---------|--------------------|--------------------|---------------------|-----------------------|-------------------------|
| 100° C. | 0.64               | 0.65               | 4·1                 | 5                     | 4                       |
| 200     | 1.44               | 1.46               | 4·1<br>8·1          | 5                     | 9                       |
| 800     | 2.32               | 2.39               | 12.2                | 16                    | 15                      |
| 400     | 3.25               | 3.40               | 16.4                | 22                    | (21)                    |
| 500     | 4.22               | 4.45               | 20.6                | 27                    |                         |
| 600     | 5.22               | 5.56               | 24.9                | 33                    | -                       |
| 700     | 6.26               | 6.72               | 29.1                | 39                    |                         |
| 800     | 7.33               | 7.93               | 33.3                | 45                    |                         |
| 900     | 8.43               | 9.18               | 37.4                | -                     | -                       |
| 1000    | 9.57               | 10.42              | 41.3                | -                     | -                       |
| 1100    | 10.74              | 11.81              | 45.1                |                       |                         |
| 1200    | 11.92              | 13.18              | 48.8                |                       |                         |
| 1300    | 13.12              | 14.56              | 52.4                |                       |                         |
| 1400    | 14.31              | 15.94              | 55.8                | -                     |                         |
| 1500    | 15.50              | 17.32              |                     | -                     | -                       |
| 1600    | 16.67              | 18.68              | -                   |                       |                         |
| 1700    | 17.83              | 20.02              | —                   | -                     | -                       |

\* Constantan (or Eureka) : 60% Cu, 40% Ni.

THERMOE.M.F.'S AGAINST PLATINUM IN MICRO VOLTS (10-6 VOLT)

One junction at 0° C. The current flows across the other junction from the metal with the (algebraically) smaller value to the other metal.

| Metal.                                                                                  | -190°                                             | $+100^{\circ}$                                    | Metal.                                                                                     | -190°                 | +100°                          | Metal.                                                                                  | -190°            | +100°                                                                                            |
|-----------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------|--------------------------------|-----------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------|
| Aluminium<br>Antimony<br>Bismuth .<br>Cadmium .<br>Cobalt .<br>Copper .<br>Gold<br>Iron | $+ 390 \\+ 12300 \\- 60 \\- 200 \\- 120 \\- 2900$ | $+4700 \\ -6500 \\ +900 \\ -1520 \\ +740 \\ +730$ | Lead .<br>M a g n e-<br>sium .<br>Mercury<br>Nickel .<br>P a l l a -<br>dium .<br>Silver . | +330<br>+2220<br>+790 | $+ 410 \\ 0 \\ -1640 \\ - 560$ | Tantalum .<br>Tin<br>Zinc<br>Brass<br>Constantan*<br>German sil-<br>ver †<br>Manganin ‡ | +200<br>-120<br> | $ \begin{array}{r} + 330 \\ + 410 \\ + 750 \\ c.+ 400 \\ - 3440 \\ c 1000 \\ + 570 \end{array} $ |
| * Eurek                                                                                 | a, 60 Cu,                                         | 40 Ni.                                            | † 60 Ci                                                                                    | u, 15 Ni,             | 25 Zn.                         | ‡ 84 Cu                                                                                 | , 4 Ni, 1        | 2 Mn.                                                                                            |

# RADIATION AND OPTICAL PYROMETRY

#### RADIATION AND OPTICAL PYROMETRY

Most total radiation thermometers depend upon the Stefan-Boltzmann law,  $E = \sigma(\theta^4 - \theta_0^4)$ , where E is the total energy (all wave-lengths) radiated per sec. by a black body at absolute temp.  $\theta$  to surroundings at absolute temp.  $\theta_0$ , and  $\sigma$  is a const. ( $\sigma = 5.7 \times 10^{-12}$  watts per cm.<sup>2</sup> per 1°—see p. 128). Optical pyrometers using monochromatic light depend on Wien's equation connecting the temperature with the intensity of some particular wave-length of light emitted (p. 128). The Wien equation is, Intensity  $I = c_1 \lambda^{-5} e^{-c_2/\lambda \theta}$ , where  $\lambda$  is the wavelength,  $\theta$  is the "black body" temp. on the absolute scale,  $c_1$  and  $c_2$  are constants, and e is the base of the Napierian logarithms. Both equations give results which agree very accurately with the gas scale over the calibrated range up to  $1550^{\circ}$  C.

The "black body" temperature of a radiating substance is the temperature at which an ideal black body would emit radiation of the same intensity as that from the substance, the radiation considered being of some particular wave-length. A perfectly black body absorbs all the radiation which falls upon it; it is destitute of reflecting power. An enclosure of uniform temperature, viewed through a small aperture, acts as a black body. When black body conditions are not realized, the observed temperature will be lower than the true temperature and a correction dependent on the emissivity ( $\epsilon$ ) of the object on which the pyrometer is sighted must be added to the observed temperature. The relation between observed ( $\theta_{obs}$ ) and true temperature is given by the equation  $\theta_{obs}^4 = \epsilon . \theta^4$  for a total radiation pyrometer, and by the equation  $1/\theta - 1/\theta_{obs} = \lambda \log \epsilon_{\lambda}/6219$  for an optical pyrometer using light of effective wave-length  $\lambda$ .

|                                                                            |                                                                                           |                                                                |                                                               |                                                              |                                                            | Cor                                                      | rectio                                                | ons (° (                                                            | C.).                                                               |                                                                    |                                                                    |                                                                   |                                                               |                                                          |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|
| Obs.<br>Temp.<br>(° C.).                                                   | Optical Pyrometer<br>$(\lambda = 0.65\mu, c_2 = 1.432 \text{ cm. deg.}).$<br>$\epsilon =$ |                                                                |                                                               |                                                              |                                                            | Total Radiation Pyrometer. $\epsilon =$                  |                                                       |                                                                     |                                                                    |                                                                    | eter.                                                              |                                                                   |                                                               |                                                          |
|                                                                            | 0.3                                                                                       | 0.4                                                            | 0.2                                                           | 0.6                                                          | 0.7                                                        | 0.8                                                      | 0.9                                                   | 0.3                                                                 | 0.4                                                                | 0.2                                                                | 0.6                                                                | 0.7                                                               | 0.8                                                           | 0.9                                                      |
| 600<br>800<br>1000<br>1200<br>1400<br>1600<br>1800<br>2000<br>2500<br>3000 | 44<br>67<br>95<br>129<br>169<br>214<br>265<br>322<br>495<br>713                           | 34<br>50<br>71<br>96<br>125<br>159<br>196<br>238<br>362<br>516 | 26<br>37<br>53<br>71<br>93<br>117<br>145<br>176<br>266<br>377 | 18<br>27<br>39<br>52<br>67<br>85<br>105<br>127<br>190<br>269 | 13<br>19<br>27<br>36<br>46<br>58<br>72<br>87<br>131<br>183 | 8<br>12<br>17<br>22<br>28<br>35<br>44<br>53<br>78<br>110 | 4<br>6<br>8<br>10<br>13<br>17<br>20<br>25<br>38<br>53 | 306<br>377<br>447<br>517<br>587<br>657<br>728<br>798<br>974<br>1149 | 224<br>276<br>328<br>379<br>431<br>482<br>354<br>586<br>714<br>842 | 165<br>203<br>241<br>279<br>316<br>354<br>392<br>430<br>525<br>618 | 119<br>146<br>173<br>200<br>228<br>256<br>282<br>309<br>378<br>445 | 81<br>100<br>119<br>137<br>157<br>174<br>194<br>212<br>259<br>305 | 49<br>60<br>72<br>82<br>94<br>105<br>117<br>128<br>156<br>183 | 23<br>29<br>34<br>39<br>45<br>50<br>55<br>63<br>74<br>86 |

#### EMISSIVITY CORRECTIONS FOR OPTICAL AND RADIATION PYROMETERS

#### AVERAGE EMISSIVITIES AT WAVE-LENGTH 0.65µ

The emissivity at a given wave-length varies slightly with temperature. The values in the following table may be taken as accurate to within  $\pm 0.05$ .

|                                                                                             | Emissiv              | vity (0.65µ).           |                                                                           |                                       | Emissivi                                                 | ty (0.65µ).                               |
|---------------------------------------------------------------------------------------------|----------------------|-------------------------|---------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------|-------------------------------------------|
| Material.                                                                                   | Solid.               | Liquid.                 | Materia                                                                   | al.                                   | Solid.                                                   | Liquid.                                   |
| Carbon<br>Copper<br>,, (oxidized)<br>Gold<br>Iridium<br>Iron<br>,, (oxidized) .<br>Nichrome | . 0·I                | 0·15<br>0·2<br>0·35<br> | ,, (oxidi<br>Palladium<br>Platinum.<br>Rhodium<br>Silver<br>Slag (average | · · · · · · · · · · · · · · · · · · · | 0.35<br>0.9<br>0.35<br>0.35<br>0.3<br>0.1<br>0.6<br>0.45 | 0.35<br>0.35<br>0.3<br>0.3<br>0.65<br>0.7 |
|                                                                                             | TEMPERA              | TURE AND C              | OLOUR OF HO                                                               | T OBJEC                               | TS                                                       |                                           |
| Appearance .                                                                                | Red—just<br>visible. | Dull Red.               | Cherry Red.                                                               | Orang                                 | e.                                                       | White.                                    |
| Temperature .                                                                               | c. 550° C.           | c. 700°                 | c. 900°                                                                   | c. 1100                               | ° c. 140                                                 | oo° upwards                               |
| Temp. o                                                                                     | of positive cra      | ter of electric         | arc 3400° C.;                                                             | under pre                             | essure 3600                                              | »° C.                                     |

# MERCURY THERMOMETRY

#### MERCURY THERMOMETRY

Details of the technique of mercury in glass thermometry for work of high precision will be found in Guillaume's "Thermométrie de Précision" (Paris, 1889), Higgins's "Thermometry" (Roy. Soc. Arts, 1926), and "The Dictionary of Applied Physics" (Macmillan).

#### CORRECTIONS TO REDUCE MERCURY-IN-GLASS SCALE TEMPS. TO GAS SCALE TEMPS.

The values for verre dur are given by the Bureau International des Poids et Mesures, and those for the Jena glasses by Grützmacher. The French glass, verre dur, was used by Tonnelot of Paris for the manufacture of the original standard mercury thermometers of the International Bureau. Later thermometers of this type were made by Baudin. Jena 16" may be identified by the presence of a thin red line embedded in the glass. Jena 59" is a boro-silicate glass (p. 85), and has now been superseded by Jena 2954", which is identified by a thin black line.

| Temp.                                                              | Verre Dur.                                                                                                                                                                | Jena 16'".                                                                                                                                | Jena 59'".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                     | Verre Dur.                                                                                                                                                                          | Jena 16'".                                                                                                                                              | Jena 59'".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| remp.                                                              | $t_{\rm H} - t_{\rm V,D.}$                                                                                                                                                | t <sub>H</sub> -t <sub>16</sub>                                                                                                           | t <sub>B</sub> -t <sub>59</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Temp.                                                               | $t_{\rm N} - t_{\rm V,D.}$                                                                                                                                                          | $t_{\rm N} - t_{16^{\prime\prime\prime}}$                                                                                                               | t <sub>N</sub> -t <sub>59</sub> "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $-20^{\circ} \\ 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 60 \\ 70 \\ 80$ | $ \begin{array}{c} + ^{\circ} \cdot 17 \\ 0 \\ - \cdot 05 \\ - \cdot 08 \\ - \cdot 10 \\ - \cdot 11 \\ - \cdot 10 \\ - \cdot 09 \\ - \cdot 07 \\ - \cdot 05 \end{array} $ | $+^{\circ} \cdot 19$<br>0<br>$- \cdot 06$<br>$- \cdot 09$<br>$- \cdot 11$<br>$- \cdot 12$<br>$- \cdot 11$<br>$- \cdot 08$<br>$- \cdot 06$ | $+ {}^{\circ} \cdot 10 \\ 0 \\ - {}^{\circ} \cdot 02 \\ - {}^{\circ} \cdot 04 \\ - {}^{\circ} \cdot 04 \\ - {}^{\circ} \cdot 04 \\ - {}^{\circ} \cdot 03 \\ - {}^{\circ} \cdot 02 \\ - {}^{\circ} \cdot 01 \\ - {}^{\circ} \cdot 00 \\ - {}^{\circ}$ | 110°<br>120<br>130<br>140<br>150<br>160<br>170<br>180<br>190<br>200 | $ + {}^{\circ} \cdot 04 + {}^{\circ} \cdot 06 + {}^{\circ} \cdot 07 + {}^{\circ} \cdot 07 + {}^{\circ} \cdot 03 - {}^{\circ} \cdot 04 - {}^{\circ} \cdot 09 - {}^{\circ} \cdot 13 $ | $+^{\circ} \cdot 03$<br>+ $\cdot 05$<br>+ $\cdot 07$<br>+ $\cdot 100$<br>+ $\cdot 100$<br>+ $\cdot 100$<br>+ $\cdot 08$<br>+ $\cdot 02$<br>- $\cdot 04$ | $ \begin{array}{r} - & \circ \cdot & \circ & \circ \\ - & \cdot & \circ & \circ & \circ \\ - & \cdot & \circ & \circ & \circ \\ - & \cdot & \circ & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & \circ \\ - & \cdot & 1 & \circ & 0 \\ - & \cdot & 1 & \circ & 0 \\ - & \circ & 1 & \circ & 0 \\ - & \circ & 1 & \circ & 0 \\ - & \circ & 1 & \circ & 0 \\ - & \circ & 1 & \circ & 0 \\ - & \circ & 1 & \circ & 0 \\ - & \circ & 1 & \circ & 0 \\ - & \circ & 1 & \circ & 0 \\ - & \circ & 1 & \circ & 0 \\ - & \circ & 1 & \circ & 0 \\ - & \circ & 1 & \circ & 0 \\ - & \circ & 1 & \circ & 0 \\ - & \circ & 1 & \circ & 0 \\ - & \circ & 1 & \circ & 0 \\ - & \circ & 1 & \circ & 0 \\ - & \circ & 1 & \circ & 0 \\ - & \circ & 1 & \circ & 0 \\ - & \circ & 1 & \circ & 0 \\ - & \circ & 1 & \circ & 0 \\ - & \circ & 1 & \circ & 0 \\ - & \circ & 1 & \circ & 0 \\ - & \circ & 1 & \circ & 0 \\ - & \circ & 1 & \circ & 0 \\ - & \circ & 1 & \circ & 0 \\ - & \circ & 1 & \circ & 0 \\ $ |
| 90<br>100                                                          | - ·03<br>0                                                                                                                                                                | 03<br>0                                                                                                                                   | 0,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 250<br>300                                                          | =                                                                                                                                                                                   | - ·63<br>- 1·91                                                                                                                                         | - 1.7<br>- 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

DEPRESSION OF ZERO OF MERCURY THERMOMETERS

After a mercury thermometer has been heated the zero suffers a temporary depression. When the thermometer has been calibrated as an absolute instrument, it is therefore necessary to make an observation of the zero immediately after reading the temperature. If, however, the thermometer has been calibrated by comparison with standard thermometers, as is done at the National Physical Laboratory and other standardising institutions, this procedure is not necessary. After heating to 100° C. the zero depression of a verre dur thermometer is about 0.11° C., while the more modern glasses (Powell's blue stripe, Tomey's double blue stripe, Jena 16''', 59''', and 2954''', and Fischer's Gege-Eff) show a depression of about 0.04° C. after 100° C. Early samples of Jena 16''', however, show a depression after 100° C. of about 0.07° C. These mean values should not be utilised for accurate work. For other temperature rises, the consequential zero depressions may be taken as proportional to the depression after 100° C.

#### STEM EXPOSURE OR EMERGENT COLUMN CORRECTION

Whenever possible a mercury thermometer should be used so that the whole of the mercury column is exposed to the temperature to be measured. If this cannot be done, the thermometer will read low by an amount depending on the length and temperature of the exposed column. The correction to be added (if the thermometer has been calibrated for total immersion) is equal to

#### $na(t-t_{\bullet})$

where n is the length of exposed column in degrees, a is the coefficient of apparent expansion of mercury in glass, t the temperature of the bulb, and  $t_s$  the mean temperature of the exposed column. On the Centigrade scale, a may be taken as 0.00016, and on the Fahrenheit scale as 0.00009. In general, this correction cannot be determined to a greater accuracy than about 10% owing to the difficulty of measuring the temperature of the exposed column. For this purpose a "thread thermometer" may be used. This thermometer has a long bulb of capillary tubing, and is selected so that the length of the bulb is approximately equal to that of the exposed column alongside which it is placed. Alternatively a series of auxiliary thermometers of ordinary type may be used. The lowest of these should be placed quite close to the point at which the thermometer stem leaves the region of which the temperature is being measured, and the others at intervals not exceeding 10 cm. along the stem. The mean of the readings of all the auxiliary thermometers should be taken. Thermometers which are graduated for use at a specified fixed immersion only need correction when the stem temperature departs from the normal value.

### MELTING AND BOILING POINTS OF THE ELEMENTS

For melting and boiling points of chemical compounds, see p. 130; of fats and waxes, see p. 60. The melting points of a number of elements are adopted as basic and secondary fixed points in the International Temperature Scale (p. 53, where an account of temperature measurements will be found).

| Element.               | Melting<br>Point. | Observer.                                                | Boiling<br>Point.            | Observer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------|-------------------|----------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aluminium .            | 660° C.           | Edwards, 1925                                            | > 2200 °C.                   | Wartenberg, 1908                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Antimony .             | 630.5             | Roeser, Schofield and Moser,                             | 1800<br>1645                 | Greenwood, 1911<br>Kohlmeyer, 1932                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Argon                  | -189.3            | <sup>1933</sup><br>Simon, Ruhemann and<br>Edwards, 1930  | - 185.8                      | Henning, 1915                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Arsenic                | volatilizes       |                                                          | ${ {sublimes} \atop {450} }$ | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Barium                 | 704               | Hoffman and Schulze, 1935                                | 1140 (?)                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Beryllium .<br>Bismuth | 1281<br>269       | Sloman, 1932<br>Awbery and Griffiths, 1926               | 1500 (?)<br>1560             | Leitgebel, 1931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                      | 2000 to 2500      | Weintraub, 1909                                          | [sublimes]                   | Lengeber, 1931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Boron<br>Bromine       |                   |                                                          | 1 3500 (?) ∫<br>58·80        | Bouzat and Leluan, 1924                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Cadmium.               | -7·3<br>320·9     | Baker, 1923<br>Day and Sosman, 1912                      | 767                          | Leitgebel, 1931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cæsium                 | 28.45             | Rengade, 1914                                            | 670                          | Ruff and Johanssen, 1905                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Calcium<br>Carbon      | 851               | Hoffmann and Schulze,1935                                | 1175                         | Ruff and Hartmann, 1924<br>Kohn and Guckel, 1924                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Cerium                 | 3500<br>815       | Fajans, 1924<br>Billy and Trombe, 1931                   | 3927<br>1400 (?)             | Kohn and Gucker, 1924                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Chlorine               | -103              | Graff, 1933                                              | -33.95                       | Harteck, 1928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Chromium .             | 1830              | Adcock, 1931                                             | 2260                         | Baur and Brunner, 1934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Cobalt                 | 1490              | Day and Sosman, 1910                                     | 3467                         | Warmuth, 1928<br>Ruff and Konschak, 1926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Copper                 | 1084·3<br>1082·8  | Holborn and Day, 1900<br>Day and Sosman, 1910            | 2360                         | Kull and Konschak, 1920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| " · ·                  | 1083              | Waidner and Burgess, 1910                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fluorine               | -223              | Moissan and Dewar, 1903                                  | -188                         | Claussen, 1934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Gallium<br>Germanium . | 29.78             | Roeser and Hoffmann, 1934<br>Dennis, Tressler and Hance, | 2300                         | Harteck, 1928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Germanium .            | 958.5             | 1933                                                     |                              | A DESCRIPTION OF THE PARTY OF T |
| Gold                   | 1062.9            | Holborn and Day, 1899                                    | 2360                         | Ruff and Konschak, 1926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ,,                     | 1062.8            | Day and Sosman, 1911                                     | Lake Star                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hafnium                | 1062·8<br>2227    | Wensel and Roeser, 1936<br>de Boer and Fast, 1930        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Helium                 | 272.0             | Keesom, 1926                                             | -268.98                      | K. Onnes and Weber, 1915                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Hydrogen .             | -259              | Keesom and Lisman, 1932                                  | -252.75                      | Keesom, van der Bijl and<br>Horst, 1931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TT                     |                   | D11 11 C H H                                             | -252.78                      | Heuse and Otto, 1931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Heavy hydro-           | (121 mm.)         | Brickwedde, Scott, Urey<br>and Wahl, 1934                | -249.7                       | Brickwedde, Scott, Urey and<br>Wahl, 1934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Indium<br>Iodine       | 156·4<br>113·7    | Roth, Meyer & Zeumer, 1933<br>Kracek, 1931               | > 1400<br>184.4              | Thiel, 1904<br>Drugmann and Ramsay, 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Iridium                | 2454              | Henning and Wensel, 1933                                 | 2550 (?)                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Iron                   | 1527              | Jenkins and Gayler, 1930                                 | 3235                         | Millar, 1925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Krypton .              | - 156.6           | Allen and Moore, 1931                                    | -152.9                       | Allen and Moore, 1931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Lanthanum .<br>Lead    | 812<br>327·4      | Rolla, 1933<br>Natl. Phys. Lab., 1931                    | 1755                         | Fischer, 1934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Lithium                | 186               | Kahlbaum, 1900                                           | > 1400                       | Ruff and Johanssen, 1905                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Magnesium .            | 659               | Haughton and Payne, 1934                                 | 1107                         | Hartmann and Schneider,<br>1929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Manganese .            | 1242              | Gayler, 1927                                             | 1900                         | Millar, 1925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Mercury<br>Molybdenum. | -38.86            | Natl. Phys. Lab., 1931                                   | 356.7                        | Callendar, 1899                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Neodymium .            | 2622<br>840       | Worthing, 1925<br>Muthmann and Weiss, 1904               | c. 3560                      | van Liempt, 1920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Neon                   | -248.7            | Simon, Ruhemann and Ed-<br>wards, 1930                   | -246.3                       | K. Onnes and Crommelin,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Nickel                 | 1455              | Wensel and Roeser, 1930                                  | 3075                         | Millar, 1925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Niobium .              | 1950              | Bolton, 1907                                             | -                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Niton                  | -71               | Gray and Ramsay, 1910                                    | -62                          | Gray and Ramsay, 1910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Niton                  | 1950<br>-71       | Gray and Ramsay, 1910<br>* Deuterium.                    | -62                          | Gray and Ramsay, 1910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

# 59 MELTING AND BOILING POINTS

| MELTING AND BOILING POINTS OF THE ELEMENTS (contd.) |                          |                                                                         |                      |                                                             |
|-----------------------------------------------------|--------------------------|-------------------------------------------------------------------------|----------------------|-------------------------------------------------------------|
| Element.                                            | Melting<br>Point.        | Observer.                                                               | Boiling<br>Point.    | Observer.                                                   |
| Nitrogen<br>Osmium                                  | - 210.02° C.<br>2700 (?) | Giauque and Clayton, 1933                                               | — 195·84° C.         | Giauque and Clayton, 1933                                   |
| Oxygen                                              | -219·I<br>-218·8         | Clusius, 1929<br>Giauque and Johnston, 1929                             | - 182.96<br>- 182.98 | Heuse and Otto, 1931<br>Keesom, v.d. Horst and Jan-         |
| ,, · · ·<br>Ozone                                   | -251.4                   | Riesenfeld, 1923                                                        | -111.2               | sen, 1929<br>Briner and Biedermann, 1933                    |
| Palladium .                                         | 1549<br>1553-6           | Day and Sosman, 1910<br>Natl. Bur. Standards, 1929                      | -                    | _                                                           |
| " · ·                                               | 1554.5                   | Jaeger and Veenstra, 1934<br>Natl. Phys. Lab., 1936                     |                      |                                                             |
| Phosphorus .<br>Platinum .                          | 44·I<br>1773·5           | Hulett, 1899<br>Natl. Bur. Standards, 1931                              | 279<br>4300 (?)      | Jolibois, 1910                                              |
| ,,                                                  | 1773.2                   | Natl. Phys. Lab., 1934                                                  | 4300 (1)             | -                                                           |
| ,, · · ·<br>Potassium .                             | 1773·8<br>63·6           | PhysTech. Reichsanstalt,<br>1934<br>Edwardson and Egerton,              | 758                  | Ruff and Johanssen, 1905                                    |
| Præsodymium                                         |                          | 1927<br>Muthmann and Weiss, 1904                                        | 730                  | Run and Jonanssen, 1905                                     |
| Radium<br>Rhenium .                                 | 940<br>960 (?)           | -                                                                       | Ξ                    |                                                             |
| Rhodium .                                           | 3167<br>1966<br>1966     | Agte, Heyne & Moers, 1930<br>Roeser and Wensel, 1934<br>Schofield, 1939 | 2500 (?)             |                                                             |
| Rubidium .<br>Ruthenium .                           | 39.0                     | Rengade, 1913                                                           | 696<br>2520 (?)      | Ruff and Johanssen, 1905                                    |
| Samarium .<br>Selenium .                            | > 1900 (?)<br>> 1350     | -<br>Parman sass                                                        | 684.8                | de Selincourt, 1940                                         |
| Silicon<br>Silver                                   | 220<br>1415              | Berger, 1914<br>Gayler, 1938                                            | 2392                 | Ruff and Konschak, 1927                                     |
| ,,                                                  | 960*5<br>960*6<br>960*5  | Holborn and Day, 1899<br>Day and Sosman, 1911                           | 2152                 | Fischer, 1934                                               |
| " :                                                 | 960.5                    | Roeser and Dahl, 1933<br>Roeser, Schofield and Moser,                   |                      |                                                             |
| Sodium<br>Strontium .                               | 97.6<br>771              | 1933<br>Ezer Griffiths, 1914<br>Hoffman and Schulze, 1935               | 878<br>1366          | Ruff and Johanssen, 1905<br>Hartmann and Schneider,<br>1929 |
| Sulphur                                             | 114.6<br>(rhombic)       | Farr and McLeod, 1928                                                   | 444.58*<br>(c.v.N.)  | Day and Sosman, 1912                                        |
| - Internet                                          | 119-120<br>(monoclinic)  |                                                                         | 444.63*<br>(c.p.N.)  | Chappuis, 1914                                              |
| Tantalum .                                          | 2996                     | Malter and D. Langmuir,                                                 | -                    |                                                             |
| Tellurium .<br>Thallium .                           | 452°0<br>302°5           | Simek and Stehlick, 1930<br>Roth, Meyer and Zeumer,<br>1933             | 1390<br>1457         | Deville and Troost, 1880<br>Leitgebel, 1931                 |
| Thorium<br>Tin                                      | 1680 to 1730<br>231.86   | Thompson, 1933<br>Natl. Phys. Lab., 1931                                | 2270                 | Greenwood, 1909                                             |
| Titanium .                                          | 1800                     | Burgess and Waltenberg,<br>1913                                         | In The second        | -                                                           |
| Tungsten .<br>Uranium                               | 3387<br>1689             | Pirani, 1923<br>Driggs and Liliendahl, 1930                             | 4830                 | van Liempt, 1920                                            |
| Vanadiumi .                                         | 1720                     | Burgess and Waltenberg,<br>1913                                         | -                    | -                                                           |
| Xenon<br>Zinc                                       | -111.8<br>419.5          | Clusius and Riccoboni, 1937<br>Roeser, Schofield and Moser,             | - 108.0              | Clusius and Riccoboni, 1937                                 |
| Zirconium .                                         | 1857                     | 1933<br>de Boer, 1930                                                   | 913                  | Fischer, 1934                                               |
|                                                     |                          | A Company and a second                                                  | 1 Acres 1            | The second second                                           |

\* Corrected by Berthelot to the thermodynamic scale.

Alloys.—Brass, M.P. 800-1000° C.; Cast Iron, M.P. c. 1100° C.; Duralumin, M.P. 650° C.; German Silver, M.P. 1000-1100° C.; Nichrome, M.P. c. 1500° C.; Phosphor Bronze, M.P. c. 1000° C

# BOILING POINTS

### EFFECT OF PRESSURE ON BOILING POINTS

 $\delta p/\delta t$  is given as mm. Hg per degree C. for pressures not very far removed from 760 mm.

The boiling point in absolute degrees C. of a substance under 760 mm. = t + c(760 - p)(t + 273), where c is a constant for the substance, and t is the B.P. in degrees C. at the pressure p mm. The constant c is the same for chemically similar substances.

(See Young, "Fractional Distillation.")

| Substance.                                                                         | δ <b>¢</b>  δt                                | e                                                         | Substance.                                                                                  | 8p/8t                                    | 6                                                          | Substance.                                                                | 8p/81                                        | e                                                            |
|------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------|
| Hydrogen<br>Oxygen<br>Carbon dioxide<br>Water†<br>Mercury<br>Nitrogen<br>Sulphur * | 230<br>77<br>55<br>27'2<br>13'6<br>92<br>11'0 | × 10 <sup>-6</sup><br><br>146<br><br>99<br>118<br><br>114 | CCl <sub>4</sub><br>Pentane, n<br>Alcohol, methyl<br>,, ethyl.<br>,, amyl.<br>Ether, ethyl. | 23<br>25.8<br>29.6<br>30.3<br>25<br>26.9 | × 10 <sup>-6</sup><br>123<br>125<br>100<br>94<br>98<br>121 | Benzene<br>Toluene<br>Aniline<br>Naphthalene .<br>Benzophenone<br>Acetone | 23.5<br>21.7<br>19.6<br>17.1<br>15.8<br>26.4 | × 10 <sup>-6</sup><br>121<br>120<br>112<br>119<br>109<br>115 |

\*  $tp = t_{760} + \cdot 0910(p - 760) - \cdot 0_449(p - 760)^2$ , Mueller & Burgess, 1919. See also p. 53. + See also pp. 50, 53.

#### MELTING, FREEZING, AND BOILING POINTS OF FATS AND WAXES

At 760 mm. pressure.

(See Lewkowitsch's treatise.)

| Substance.            | M.P.           | F.P.        | Substance.                                        | M.P.          | F.P.        | Substance.                                 | M.P.                   | B.P.                                         |
|-----------------------|----------------|-------------|---------------------------------------------------|---------------|-------------|--------------------------------------------|------------------------|----------------------------------------------|
| Lard<br>Tallow, beef. | 36-40<br>40-45 | 27-30 27-35 | Beeswax<br>Spermaceti .<br>Stearin<br>Naphthalene | 42-49<br>71.6 | 42-47<br>70 | Paraffin wax,<br>Soft<br>Hard<br>Olive oil | ° C.<br>38-52<br>52-56 | ° C.<br>350-390<br>390-430<br><i>c</i> . 300 |

### THERMAL CONDUCTIVITIES

The thermal conductivity, k, is given below as the number of (gram) calories conducted per sq. cm. per sec. across a slab of the substance I cm. thick, having a temp.-gradient of 1° C. per cm., *i.e.* calorie cm.<sup>-1</sup> sec.<sup>-1</sup> temp.<sup>-1</sup>. To reduce to pound-calories per sq. inch per sec. across a slab I inch thick with a temp.-gradient of 1° C. per inch, the values below must be multiplied by 0.0056. (See Callendar, "Conduction of Heat," *Encyc. Brit.*; Schofield, "Glazebrook's Dictionary of Applied Physics," Vol. I.; and Geiger and Scheel's "Handbuch der Physik.")

#### METALS AND ALLOYS

k for most pure metals decreases with rise of temperature; the reverse appears to be true for alloys. If  $\kappa$  be the electrical conductivity and  $\theta$  the absolute temp., then  $k/(\kappa\theta)$  is very approximately a constant for pure metals. (See Hume-Rothery, "The Metallic State.") The electrical conductivity of the same specimen of many of the substances below will be found on p. 92.

T. H. L.

| Substance.         Temp.         Cond. k.         Observer.         Substance.         Temp.         Cond. k.         Observer.           Metals         -160 $514$ Lees, "a         "a"         Nickel.         -160         129         Lees, "a           "a"         18 $504$ $P.T.$ , "a         "a"         Nickel.         -160         129         Lees, "a           "a"         18 $480$ J. & D.,         "a"         Nickel.         -160         129         Lees, "a           "a"         100         '492         J. & D.,         "a"         100         138         1900           "a"         100         '492         J. & D.,         "a"         100         132         J. & D.,           "a"         100         '044         Lorenz,         Platinum.         18         '166         J. & D.,           "a"         100         '0161         1900         "a"         18         '974         1908           "a"         160         '29         Lees, '08         "a"         100         '145         1900           "a"         160         '1900         "a"         18         '152         J. & D.                                                                                                                     |                |        | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ETALS AND  | ALLOYS (contd.)   |       |                                |              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------|-------|--------------------------------|--------------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Substance.     | Temp.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                   | Temp. | Cond. k.                       | Observer.    |
| Matcals-       -160       '514       Lees,<br>P.7., '08       Nickel.       -160       '129       Lees, '08         n       18       '504       P.7., '08       Nickel.       "(97%)       100       '138       '142       J. & D.,<br>'18       '160       J. & D.,<br>'n'       Nickel.       -160       '129       Lees, '08       J. & D.,<br>'n'       '100       '138       '142       J. & D.,<br>'n'       '18       '164       J. & D.,<br>'n'       '18       '164       J. & D.,<br>'n'       '18       '160       '138       '168       J. & D.,<br>'n'       '1900       '182       J. & D.,<br>'n'       '1900       '182       J. & D.,<br>'n'       '1900       '18       '160       '173       J. & D.,<br>'n'       '1900       '18       '160       '192       Lees, '08       'n'       '18       '160       '192       Lees, '08       'n'       '100       '1900       '1900       '1900       '1900       '1900       '1900       '1900       '1900       '1900       '1900       '1900       '1900       '1900       '145       J. & D.,<br>'100       '145       J. & D.,<br>'100       '145       J. & D.,<br>'1900       '160       '160       '160       '170       '18       '160       '170       '18       '160       '170 |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                   | C.    |                                |              |
| "18'480<br>(492)J. & D.,<br>(1900)Palladium18'168<br>(100)J. & D.,<br>(182)Antimony.0044<br>(492)Lorenz,<br>(188)'1900)"'182<br>(188)100'182<br>(1900)J. & D.,<br>(1900)Bismuth-186<br>(1902)'1881<br>(1900)'181<br>(1900)'100'173<br>(1900)'1900)''18<br>(1902)'1881<br>(1900)''''''''''''100<br>(1902)''''''''''''Cadmium, pure<br>"-160<br>(100)''''''''''''''100<br>''''''''''''''''''''100<br>''''''''''''''''''''''''100<br>''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | 1 - 24 | 1.1991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | Nickel            |       |                                |              |
| "18'480<br>(492)J. & D.,<br>(1900)Palladium18'168<br>(100)J. & D.,<br>(182)Antimony.0044<br>(492)Lorenz,<br>(188)'1900)"'182<br>(188)100'182<br>(1900)J. & D.,<br>(1900)Bismuth-186<br>(1902)'1881<br>(1900)'181<br>(1900)'100'173<br>(1900)'1900)''18<br>(1902)'1881<br>(1900)''''''''''''100<br>(1902)''''''''''''Cadmium, pure<br>"-160<br>(100)''''''''''''''100<br>''''''''''''''''''''100<br>''''''''''''''''''''''''100<br>''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Aluminium * .  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lees,      | " {97%}           |       |                                |              |
| "100'492 $  1900'  $ "100'182 $  1900'  $ Antimony.0'044  Lorenz,<br>188  Iamuslimetic construction18'166  J. & D.,<br>1900'Bismuth-186'025M, 1907Silver, pure-160''173  1900'"100'0161  J. & D.,<br>1900''1900'"-160''192  Lees, '08"-160'239Lees, '08''''100'''''"-160'1079Lees, '08''''''''''"-160'1079Lees, '08''''''''''"-160'109''''''''''''''"100''''''''''''''''''"100''''''''''''''''''''"''100'''''''''''''''''''''"'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' <td>37 .</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37 .           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                   |       |                                |              |
| Antimony.0 $044$<br>$100$ Lorenz,<br>$188$ Platinum.18 $166$<br>$100$ J. & D.,<br>$1900$ Bismuth-186 $025$<br>$18$ M, 1907<br>$1900$ Silver, pure160 $998$<br>$188$ Lees,<br>$1908$<br>$1, 222$<br>$1, 220$ N. 1907<br>$1900$ Silver, pure160 $998$<br>$188$ Lees,<br>$100$ $1902$<br>$1900$ ".100 $0161$<br>$1900$ $1900$<br>$182222221, & D.,1898Lees, 081900.1009921900".18021619001900188Tin, pure1601921900".18918918100188100018810001001431900Tungsten.181551900Gold1810070319001900Tungsten.1810010001881000Iron, pure.10017617018114192019001920Alloys."100176192019001920Alloys."""""""""$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | " "            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | Palladium         |       |                                |              |
| "100 $^{\circ}040$ 1881""100 $^{\circ}173$ 1900Bismuth-186 $^{\circ}025$ M, 1907Silver, pure-160 $^{\circ}998$ Lees,"100 $^{\circ}0161$ 1900"18 $^{\circ}704$ 1908Cadmium, pure-160 $^{\circ}239$ Lees, $^{\circ}08$ "100 $^{\circ}921$ 1908"18 $^{\circ}2222$ J. & D.,"100 $^{\circ}922$ 190018"1002161900"-160 $^{\circ}192$ Lees, $^{\circ}08$ "-1601707Lees, $^{\circ}08$ "-160 $^{\circ}192$ Lees, $^{\circ}08$ "1002161900"138 $^{\circ}152$ Lees, $^{\circ}08$ "-1601707Lees, $^{\circ}08$ "-160 $^{\circ}122$ Lees, $^{\circ}08$ "100 $^{\circ}703$ 1900"-160 $^{\circ}252$ J. & D.,"1007031900"-160278Lees, $^{\circ}08$ "100 $^{\circ}703$ 1900""100262Iron, pure1001761934Lees, $^{\circ}8$ Al 85, Cu 12.17036"18'144J. & D.,(Al 797, Cu 66)170'39Griffiths,""100'1431900'170'411920""18'102'111Lees, $^{\circ}08$ 170'34Griffiths,""18'160                                                                                                                                                                                                                                                                                                                                                                                                    |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                   |       |                                |              |
| Bismuth $-186$ $025$ M., 1907Silver, pure $-160$ $998$ Lees, 1908n100 $0161$ 19001900nn18 $974$ 1908Cadmium, pure160 $239$ Lees, $08$ nn100 $992$ 1900n18 $222$ J. & D., $1900$ n118 $1000$ $992$ 1900n18 $222$ J. & D., $1900$ n118 $155$ J. & D.,n100 $239$ Lees, $08$ n100 $145$ 1900n18 $918$ J. & D.,Tungsten18 $155$ J. & D.,n100 $998$ 1000 $703$ 1000 $262$ 1900Gold18 $700$ J. & D.,n118 $265$ J. & D.,n100 $703$ 1934,N100 $262$ 1900Iron, pure100 $716$ $1934$ ,NN100 $262$ 1900Iron, pure100 $176$ $1934$ ,Al alloys.100 $262$ 1900n100 $743$ 1900 $2149$ Al alloys.100 $262$ 1900n100 $143$ 1900 $2170$ $38$ 19201900n100 $143$ 1900 $2170$ $38$ 1920n18 $144$ J. & D., $2170$ $36$ 170 $31$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Antimony       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | Platinum          |       |                                |              |
| n18 $0194$ J. & D.,n18 $974$ $1908$ Cadmium, pure160 $239$ Lees, $'08$ n100 $992$ $1900$ n18 $222$ J. & D.,Tin, pure .100 $992$ $1900$ n100 $216$ $1900$ n.100 $'92$ $12ees, '08$ n100 $216$ $1900$ n100 $'92$ $12ees, '08$ n100 $2216$ $1900$ n100 $'145$ $1900$ Copper, pure-160 $100$ $908$ $1000$ $200$ $278$ Lees, '08n100 $'938$ J. & D.,Tungsten.18 $'35$ Coolidgen100 $'703$ $1900$ $n$ 100 $'262$ $1920$ Iron, pure100 $'773$ $1900$ $n$ 100 $'262$ $1920$ Iron, pure100 $'176$ $1934$ $A1$ $alloys$ $170$ $'38$ $1920$ n $n$ $18$ $'144$ $J. & D.,$ $n$ $n$ $170$ $'36$ $Griffiths,$ n $n$ $102$ $'111$ $A1loys$ $n$ $170$ $'36$ $Griffiths,$ n $n$ $18$ $'144$ $J. & D.,$ $n$ $170$ $'36$ $Griffiths,$ n $n$ $18$ $'144$ $J. & D.,$ $n$ $n$ $170$ $'31$ $J920$ n                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D: " · · ·     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                   |       |                                |              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bismuth        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | Silver, pure      |       |                                |              |
| Cadmium, pure       -160       239       Lees, 'o8       ","       100       '992       1900         "       100       '216       1900       ","       -160       '192       Lees, 'o8         "       100       '216       1900       ","       -160       '192       Lees, 'o8         "       -160       '1079       Lees, 'o8       ","        18       '155       J.& D.,         "       100       '908       J.& D.,       Tungsten       18       '155       J.& D.,         "       100       '908       J.& D.,       ","       -160       '152       Lees, 'o8         "       100       '703       1900       ","       -160       '278       Lees, 'o8         ","       100       '703       1900       ","       -160       '262       1900         Iron, pure       100       '176       Powell,       Alloys       -100       '262       1900         ","       100       '172       Lees, 'o8       Al 88, Cu 12.       '170       '36       Griffiths,         ","       100       '143       1900       (Al 797, Cu 66)       '170       '31       1920 <td>"</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                              | "              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                   |       |                                |              |
| "18'222J. & D.,Tin, pure160'192Lees, 'o8"100'21619001900""18'155J. & D.,"-160100'908J. & D.,Tungsten .18'155J. & D.,"100'908J. & D.,Tungsten .18'35Coolidge"100'908J. & D.,Tungsten .18'35CoolidgeGold .18'700J. & D.,'1900"-160'278Lees, '08"100'703J. & D.,'1900"-160'262J. & D.,non, pure .100'176Powell,'1934Al alloys.'100'262J. & D.,""'14J. & D.,'144'1934Al alloys.'70'36Griffiths,""'14CallendarAl '144'1400'142'170'38'1220""'14Callendar'144'1920'170'34'170<'35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Codmium Duro   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | " ·               |       | the stand and the stand of the |              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Caumium, pure  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | Tin pure          |       |                                |              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                   |       | -                              |              |
| n18918J. & D.,<br>100Tungsten<br>2inc, pure1835Coolidge<br>Lees, 'o8Gold18700J. & D.,<br>100703J. & D.,<br>1900"18'278Lees, 'o8n100'703J. & D.,<br>19001900"100'262J. & D.,<br>1900Iron, pure. 100'703I 900"Alloys-<br>N100'262J. & D.,<br>1900n100'262J. & D.,<br>1900non, pure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |        | and the second se |            | » · ·             |       |                                |              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | copper, pare . |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | Tungsten          |       |                                |              |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | "              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                   |       |                                |              |
| n1007031900n1002621900Iron, pure100176Powell,<br>19341934Alloys-<br>Al alloys.1002621900nn160152Lees, '08Al 88, Cu 12.7036Griffiths,<br>1920nn1001431900(Al 797, Cu 6'6)<br>(Al 797, Cu 6'6)7039Griffiths,<br>1920nn54114Callendar(Al 83'8, Zn 13'5)<br>(Lees,<br>n7034Griffiths,<br>1920nn102111Lees,<br>102Hall<br>(Lees,<br>nLees,<br>(Ba's, 8, Zn 13'5)17034Griffiths,<br>170nn181151908Brass.1831nn18103J. & D.,<br>1900Brass160181nn18'083J. & D.,<br>1900Bronze,<br>(Eureka) ¶15'099Griffiths,<br>1908nn18'083J. & D.,<br>188''1311920'1311920n.18'083J. & D.,<br>188''1311920'1311920n18'08J. & D.,<br>1900'264'1311920n18'06nnn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gold "         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                   |       |                                |              |
| Iron, pure100 $\cdot 176$ Powell,<br>1934<br>Lees, 'o8<br>J. & D.,<br>1900Alloys.<br>Al alloys.70'36<br>170Griffiths,<br>1920"""160'152Lees, 'o8<br>Lees, 'o8<br>J. & D.,<br>1900Al 88, Cu 12.170'38<br>170J920"""100'143J900(Al 79'7, Cu 6'6)<br>(Zn 0'9, Sn 0'8)70'39<br>170Griffiths,<br>1920""*102'111<br>111Callendar<br>Lees,<br>1908(Al 83'8, Zn 13'5)<br>(Cu 2'770'34<br>170Griffiths,<br>1920""*160'113<br>113Lees,<br>Lees,<br>1908Duralumin .18'170'35<br>170'35<br>1920"""18'115<br>1908J908<br>BrassBrass160'181<br>1920"""100'107<br>19001900<br>1900Bronze,<br>Cu 89'4, Sn 9'6205'131<br>1908J920<br>1908"""18'083<br>1920J. & D.,<br>(Eureka) ¶100'064<br>1900J900""18'083<br>1900J. & D.,<br>(Eureka) ¶100'064<br>1900J900<br>1881""'100'376<br>1881H. F.<br>1881"'100'064<br>1900J881<br>Lees, '08<br>1881"'100'0148<br>1900'H. F.<br>180'''''''''''''-160'<br>180''''"'100'0148<br>1900''''''''' </td <td></td> <td></td> <td></td> <td></td> <td>"</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                 |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | "                 |       |                                |              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | Allovs-           |       |                                |              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Iron, pure     | 100    | .176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1034     | Al alloys.        |       | 1. 3000                        |              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | wrought .      | -160   | 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lees, '08  | (                 | 70    | .36                            | ) Griffiths, |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 J. & D., | Al 88, Cu 12. {   |       |                                |              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | (Al 79.7, Cu 6.6) | 70    |                                |              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cost +         | 54     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1          | [Zn 0'9, Sn 0'8]  | 170   |                                | 1920         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +              | 102    | 111.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Canendar   |                   | 70    |                                | ) Griffiths, |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |        | .149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | (Cu 2'7)          | 170   |                                | 1 1920       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,, steel (1%)  |        | .113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                   |       | 131                            | -            |
| ""100'107'1900Bronze,<br>Cu 89'4, Sn 9'615'099Griffiths,<br>131""-160'092Lees, '08Cu 89'4, Sn 9'6205'1311920""100'082J. & D.,<br>100'082I900Constantan<br>(Eureka) ¶100'064J. & D.,<br>1900Magnesium0 to<br>"'376 {Lorenz,<br>1881Is81"0'0641900Mercury0'0148<br>50H. F.<br>15'5'0201N. 1913"100'063J. & D.,<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | " " (C.)       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | Brass             |       |                                |              |
| Lead, pure $-160$ '092Lees, '08Cu 89'4, Sn 9'6205'1311920""18'083J. & D.,Constantan18'054J. & D.,""100'0821900Constantan100'0641900Magnesium0 to'376 {Lorenz,Is81"0'070Lorenz,"100'376 {Is81""100'0891881Mercury0'0148H. F.Manganin **-160'035Lees, '08"15'5'0201N. 1913""100'063J. & D.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | >> >> >>       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                   |       |                                |              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                   |       |                                |              |
| "100' $082$ 1900(Eureka) ¶100' $064$ 1900Magnesium0to"100' $376$ Lorenz,German Silver0' $070$ Lorenz,"100' $376$ H. F.Manganin **100' $089$ 1881Mercury0' $0148$ H. F.Manganin **-160' $035$ Lees, ' $089$ "50' $0189$ Weber, ' $79$ "18' $053$ J. & D.,"15'5' $0201$ N. 1913"100' $063$ 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lead, pure     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                   |       |                                |              |
| Magnesium       O to       376 {       Lorenz,       German Silver       O       '070       Lorenz,         "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13 39 • •      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                   |       |                                |              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |        | .082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | (Eureka) ])       |       |                                |              |
| Mercury 0 '0148 H. F. Manganin **160 '035 Lees, '08<br>50 '0189 Weber, '79 "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Magnesium      |        | 1:376 {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | German Silver .   |       |                                |              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Marquine · ·   |        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | Manganin #        |       |                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                   |       |                                |              |
| " · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | " ·               |       |                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,,             | 17     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R W 1013   | Platinoid .       | 18    | .060                           | Lees, '08    |
| • 99% Al. + 1% C., 2% Si, 1% Mn. ± 2% C., 3% Si, 1% Mn.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | 11     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                   |       |                                |              |

99% Al. † '1% C., '2% Si, '1% Mn. ‡ 2% C., 3% Si, 1% Mn.
 § 3'5% C., 1'4% Si, '5% Mn. # 70 Cu, 30 Zn. ¶ 60 Cu, 40 Ni. \*\* 84 Cu, 4 Ni, 12 Mn.
 A., Angström ; J. & D., Jaeger & Diesselhorst ; M., Macchia ; N., Nettleton ; R. W., R. Weber ; P.T., Phil. Trans.

In the case of a gas the thermal conductivity  $k = 1.603\eta c_v$ , where  $\eta$  is the viscosity, and  $c_v$  the specific heat at constant volume. Stefan, and Kundt and Warburg have found, in agreement with this formula, that k for air, hydrogen, etc., is constant between the pressures 76 cm. and  $\cdot 1$  cm. k increases with the temperature. (See Laby, P.R.S., 1934.)

| Gas.                                               | Temp. | Cond. k.                                         | Gas.      | Temp.               | Cond. k.                        | Gas.                  | Temp.         | Cond. k   | Gas.                          | Temp.           | Cond. k.                                                                            |
|----------------------------------------------------|-------|--------------------------------------------------|-----------|---------------------|---------------------------------|-----------------------|---------------|-----------|-------------------------------|-----------------|-------------------------------------------------------------------------------------|
| H <sub>2</sub><br>,,<br>,,<br>He<br>N <sub>2</sub> | 000   | 31.8, E.<br>41.3, K.M.<br>34.3, K.M.<br>5.81, D. | Air<br>Ö2 | 100°<br>0<br>0<br>8 | 7·55*<br>5·83, K.M.<br>3·89, S. | CO<br>CO <sub>2</sub> | 0<br>0<br>100 | 5.06, Sc. | N <sub>2</sub> O<br>,,,<br>NO | 100<br>8<br>203 | × 10 <sup>-5</sup><br>3·61, K.M.<br>5·06, W.<br>4·60, W.<br>1·85, Sc.<br>11·1, K.M. |

\*Mean. D., Dickins, 1934; E., Eckerlein, 1900; K.M., Kannuluik and Martin, 1934; S., Schwarze, 1903; Sc., Schleiermacher, 1889; W., Winkelmann, 1875.

THERMAL CONDUCTIVITIES

# THERMAL CONDUCTIVITIES

#### MISCELLANEOUS SUBSTANCES

The values below are at ordinary temperatures except where stated. They must be regarded as rough average values in the case of indifferent conductors. Nearly all liquids have very approximately the same conductivity. Temperatures are in °C.

|                                                                                                                                                |                      |                                                                                                                         |                                                                   |                                                                                                                       |                                                                                                                                                                      | and the second se |                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Substance.                                                                                                                                     | k                    | Substance.                                                                                                              | k                                                                 | Substance.                                                                                                            | k                                                                                                                                                                    | Substance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | k                                                                                          |
| Glass—<br>Crown; window .<br>Flint<br>Jena<br>Soda                                                                                             | 2, L.<br>1-2, L.     | Charcoal<br>Cement<br>Cotton<br>Cotton wool .<br>Cork, slab, o°                                                         | '7, L.<br>'55, L.<br>'06<br>'11, G.                               | Quartz,    axis<br>70° / ⊥ "<br>Silica, (60°<br>vitreous 240°<br>Rubber, Para.                                        | 12'9, K.<br>3'30, K.<br>3'64, K.<br>'45, L.                                                                                                                          | Slag wool, 0°.<br>Slate<br>Sulphur,<br>Rhombic, 20°<br>, Plastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4'7, L.<br>'65, K.                                                                         |
| Woods (dry)—<br>Mahogany<br>Oak, teak<br>Pine, walnut<br>Miscellaneous<br>Asbestos<br>Asbestos paper .<br>Bricks—<br>Diatoma-<br>ceous, 100° . | ·3<br>·6             | Diatomace-<br>ous earth, 0°)<br>Earth's crust†<br>Ebonite<br>Felt<br>Gas carbon .<br>Graphite‡.<br>Ice<br>Marble, white | 19, G.<br>4<br>42, L.<br>09<br>23, L.<br>10<br>300<br>5<br>71, L. | Alcohol, 25° .<br>Aniline, 20° .<br>C Cl <sub>4</sub> , 15° .<br>Glycerine, 20°<br>Turpentine, 13°<br>Vaseline, 25° . | <sup>•</sup> 22, L.<br>× 10 <sup>-4</sup><br>4 <sup>•</sup> 3, L.<br>4 <sup>•</sup> 12, K.<br>2 <sup>•</sup> 7<br>6 <sup>•</sup> 80, K.<br>3<br>4 <sup>•</sup> 4, L. | <b>Oils</b> —<br>Castor, 20 <sup>•</sup><br>,, 160 <sup>°</sup><br>Cylinder, 20 <sup>•</sup><br>,, 200 <sup>°</sup><br>,, 200 <sup>•</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | '4, K.<br>× 10 <sup>-4</sup><br>4'32, K.<br>4'02 "<br>3'66 "<br>3'39 "<br>4'05 "<br>3'76 " |
| ,, 500°<br>Fireclay, 600° .<br>1000° .<br>Cardboard                                                                                            | 3'0 D.H.<br>4'0 & C. | Paraffin wax.                                                                                                           | '3, L.<br>'6, L.                                                  | Water, 10° $50^{\circ}$                                                                                               | 14'7, K.<br>15'4, K.                                                                                                                                                 | Paraffin, 0°<br>, 120°<br>Transformer, 0°.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3'00 ,,<br>2'9 ,,<br>3'24 ,,<br>3'04 ,,                                                    |

\* Perp. to cleavage plane. † Average for igneous and sedimentary rocks; see Brit. Ass. Reports. D. H. & C., Dougill, Hodsman and Cobb, 1915; G., Ezer Griffiths, 1916; L., Lees, 1892 & 1898; K., Kaye and Higgins, 1928 and 1929. ‡ Acheson graphite.

#### COEFFICIENTS OF LINEAR EXPANSION OF SOLIDS

To represent accurately over any considerable range the variation of length (l) with temperature (t) requires for almost all solid substances a parabolic or cubic equation in t. But if the temperature interval is not large, a linear equation  $l_t = l_0(1 + \alpha t)$  may be employed; and this gives a definition of the mean coefficient of linear expansion  $(\alpha)$  over that temperature range. The coefficient of **cubical expansion** =  $3^{\alpha}$ .

There is little point in tabulating coefficients of higher-powered terms of t, since for a given specimen it is as a rule impossible without measurement to assume with any accuracy anything more definite than the average value of even the first power coefficient (a). Except in a few cases the linear coefficient as defined above increases with the temperature. The values of  $\alpha$  subjoined are per degree C., and except when some temperature is specified, for a range round and about 20° C. Some substances expand irregularly, and extrapolation of  $\alpha$  may therefore be dangerous. Interpolation of  $\alpha$  from the constituent metals must be employed with caution in the case of alloys. (See Geiger and Scheel's "Handbuch der Physik.")

| Element.                                                                                                           | a.                                                                                    | Obs.                                                                                | Element.                                                                                                                      | a.                                                                                               | Obs.                                                                                            | Element.                                                                                                                                                    | a.                                                                                             | Obs.                                                                                   |
|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Aluminium<br>Antimony<br>Bismuth<br>C. (diamond)<br>(gas car-<br>bon)<br>(graphite)<br>Cadmium<br>Cobalt<br>Cobalt | ~ 10 <sup>-6</sup><br>25.5<br>12<br>13.3<br>1.2<br>5.4<br>7.9<br>28.8<br>12.3<br>16.7 | V. '93<br>F. '69<br>Mean<br>F. '69<br>F. '69<br>F. '69<br>M.'66<br>T. '99<br>V. '93 | Gold<br>Iridium<br>Iron (cast) .<br>" (wrought)<br>Steel, 10'5 to<br>Lead<br>Magnesium .<br>Nickel<br>Palladium .<br>Platinum | × 10 <sup>-6</sup><br>13'9<br>6'5<br>10'2<br>11'9<br>11'6<br>29'1<br>25'4<br>12'8<br>11'7<br>8'9 | V. '93<br>B. '88<br>D. '02<br>H.D.'00<br>N.P.L.<br>Mean<br>V.' 93<br>T. '99<br>S. '03<br>B. '88 | Potassium .<br>Selenium, 40°<br>Silver<br>Sodium .<br>Sulphur .<br>Thallium, 40°<br>Tin<br>Tungsten, 27°<br>" <sup>2027°</sup><br>Zinc, 25 <sup>.8</sup> to | × 10 <sup>-6</sup><br>83<br>36.8<br>18.8<br>75<br>6.70<br>30*2<br>21.4<br>4.44<br>7*26<br>26.3 | H. '82<br>F. '69<br>V. '93<br>G. '15<br>F. '69<br>M. '66<br>W. '17<br>W. '17<br>N.P.L. |

# COEFFICIENTS OF EXPANSION

| COEFFICIENTS OF                                                                                                                  | F LIN | EAR E                                                                                                                                                                                             | XPANSION OF SOLIDS                                                                                                                                                                                                                                                                       | (contd                                                                                                                                                                                                                     | .)                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Substance.                                                                                                                       | a.    | Obs.                                                                                                                                                                                              | Substance.                                                                                                                                                                                                                                                                               | a.                                                                                                                                                                                                                         | Obs.                                                                                                                                                                      |
| Alloys—<br>Aluminium bronze Brass (ordy.) c. 66 Cu, 34 Zn<br>Bronze, 32 Cu. 2 Zn, 5 Sn §<br>Constantan (Eureka), 60<br>Cu, 40 Ni |       | N.P.L.<br>N.P.L.<br>B. '88<br>N.P.L.<br>Pf. '72<br>N.P.L.<br>St. '01<br>N.P.L.<br>N.P.L.<br>N.P.L.<br>N.P.L.<br>N.P.L.<br>N.P.L.<br>N.P.L.<br>Sm.<br>Sm.<br>Dl.<br>N.P.L.<br>F. '68<br>Sc.<br>Sc. | 8 K <sub>4</sub> O, 46 PbO<br>"Jena, 16 <sup>'''</sup> (see p. 78)<br>", 59 <sup>'''</sup> (see p. 78)<br>"Verre dur (see p. 78)<br>"typical soda<br>" pyrex<br>Granite<br>Gutta-Percha<br>Ice, -10° to o°<br>Iceland spar,    axis<br>" L axis<br>Marble, white Carrara,<br>15°, 1'4 to | 57<br>7'2<br>8'5<br>9'5<br>3'3<br>198<br>50'7<br>25'1<br>-5'6<br>3'5<br>4'4<br>7<br>5'7<br>2'8<br>3'1<br>3'4<br>3'5<br>3'4<br>3'5<br>3'5<br>4'4<br>7<br>5'5<br>3'5<br>3'5<br>3'5<br>3'5<br>3'5<br>3'5<br>3'5<br>3'5<br>3'5 | Sc.<br>7.S.S.<br>'96<br>C.'07<br><br>Ru.'82<br>Vn.'02<br>B.'88<br>B.'88<br>N.P.L.<br><br>S.'03<br>H.G.'01<br>Bd.'00<br>T.'02<br>B,'88<br>B.'88<br>B.'88<br>S.'07<br>C.'07 |

• See Guillaume's "Les Applications des Aciers au Nickel," 1904.  $\dagger$  Invar is obtainable in three qualities, with a range of coefficients of  $(-3 \text{ to } + 25) \times 10^{-6}$  at ordinary temperatures.  $\ddagger$  Used for international prototype metre (see p. 3).  $\S$  Used for Imperial Standard Yard (see p. 4). B. Benott; Bd. Bedford; C. Chappuis; D. Dittenberger; Dl. Daniell; F. Fizeau; G. Ezer Griffiths; II. Hagen; H.D. Holborn and Day; H.G. Holborn and Grüneisen; M. Matthiessen; N.P.L. National Physical Laboratory; Pf. Pfaff; R. Randall; Ru. Russner; S. Scheel; Sc. Schott; Sm. Smeaton; St. Stadthagen; T. Tutton; T.S.S. Thiesen, Scheel, and Sell; V. Voigt; Vl. Villari; Vn. Vincent; W. Worthing.

# COEFFICIENTS OF EXPANSION

# COEFFICIENTS OF CUBICAL EXPANSION OF GASES

64

The volume coefficient, a, at constant pressure is defined by  $v_t = v_0(1 + at)$ ; the pressure coefficient,  $\beta$ , at constant volume is defined by  $p_t = p_0(1 + \beta t)$ , where  $v_t$  and  $p_t$  are the volume and pressure respectively corresponding to  $t^o$ , the initial volume and pressure  $(v_0, p_0)$  being measured at  $o^\circ C$ . The values of both a and  $\beta$ depend on the initial pressure of the gas. If a gas obeys Boyle's law exactly,  $a = \beta$ .

**Comparison of rarefied gas, H**<sub>2</sub> and absolute temperature scales.— By graphically or otherwise extrapolating  $\alpha$  and  $\beta$  to zero pressure, they become equal (as we should expect, for rarefied gases should behave as ideal gases and obey Boyle's law), and we may write  $\alpha = \beta = \gamma$ . For example, Berthelot finds from Chappuis' data—

> For H<sub>2</sub>, mean  $\gamma = .00366207 = 1/273.07$  (see p. 54) N<sub>2</sub>,  $\gamma = .00366182 = 1/273.09$  (see p. 54)

Kelvin's absolute temperature scale agrees with the ideal gas scale, and therefore with the rarefied gas scale. Now, as will be seen below,  $\beta$  for  $H_2 = \gamma$  very nearly, and thus the constant-volume hydrogen scale of temperature may justifiably be taken as closely approximating to the thermodynamic scale.

| Gas.                                         | Temp.                                                          | po.                                                                                                                                                                                                                                                          | a.                                                    | Obs.                                                                                                                                                                                                                                                                                                     | Gas.                                                                                                    | Temp.  | po.                                                                                                                                                                                                            | β. | Obs.                                                                                                                                                                                                                         |  |
|----------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                              | AT C                                                           | ONSTANT                                                                                                                                                                                                                                                      | PRESSUR                                               | Ε.                                                                                                                                                                                                                                                                                                       | AT CONSTANT VOLUME.                                                                                     |        |                                                                                                                                                                                                                |    |                                                                                                                                                                                                                              |  |
| Holbor<br>J. P.,<br>K. R.,<br>Towns<br>M. N. | rn & He<br>Jacquer<br>Kuenen<br>hend, &<br>, Makov<br>vies; R. | em, Hg.<br>100-1<br>76<br>100<br>99.4<br>76<br>110.5<br>200 atm.<br>1000 ,,<br>1000 ,,<br>99.4<br>76 ,,<br>51.8<br>,,<br>99.8<br>,,<br>137.7<br>76<br>76/15°<br>76<br>t; C., C<br>emning; H<br>od & Perr<br>& Randal<br>& Joung;<br>ver & Nob,<br>, Regnault | .O., Heus<br>ot; K.,<br>1; K. T.<br>M., M<br>le; P. D | R., 1847<br>C., 1903<br>H. O., '29<br>R. M.<br>H. H., '21<br>A., 1890<br>A., 1890<br>A., 1890<br>A., 1890<br>H. O., '29<br>R., 1847<br>C., 1903<br>"<br>"<br>R., 1847<br>P.D., '06<br>R., 1847<br>P.D., '06<br>R., 1847<br>H. H., '21<br>H. H., '21<br>Keesom :<br>J., Keyes,<br>Melander ;<br>., Perman | "<br>"<br>H <sub>2</sub> ."<br>N <sub>2</sub> ."<br>O <sub>2</sub> ."<br>He<br>CO<br>CO <sub>2</sub> ." | C.<br> | cm, Hg.<br>·58<br>1·32<br>10·0<br>17–24<br>76<br>100·1<br>200<br>2000<br>23<br>99·4<br>100<br>109<br>65·4<br>99·4<br>66<br>18–23<br>98·0<br>99·4<br>51·7<br>76<br>23<br>51·8<br>99·8<br>99·8<br>24<br>76<br>76 |    | "<br>R., 1847<br>C., 1914<br>R., 1847<br>J. P.<br>H. O., 1929<br>C., 1907<br>O., 1908<br>K. T. J., '22<br>H. O., 1929<br>M. N., '03<br>J. P.<br>K., 1928<br>H. O., 1929<br>K. R., 1896<br>R., 1847<br>J. P.<br>C., 1903<br>" |  |

# MECHANICAL EQUIVALENT OF HEAT

#### COEFFICIENTS OF CUBICAL EXPANSION OF LIQUIDS

As with solids (see p. 62), if the temperature interval is not large, a linear equation  $v_t = v_0(1 + at)$  may be employed to show the relation between the volume (v) of a liquid and its temperature (t). The mean coefficient (a) thus defined increases in general with the temperature. The values of a subjoined are per °C., and for a range round 18°C. unless otherwise specified.

| Liquid.                                                                                                   | α.                                                                                                    | Liquid.                                                                                                                       | α.           | Liquid.                                                                                                   | a                                                                              | Liquid.                                                                                                                                                   | a.                                                       |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Acetic acid<br>Alcohol, me.<br>,, ethyl<br>,, amyl<br>Aniline<br>Benzene<br>CS <sub>2</sub><br>Chloroform | $\begin{array}{c} \times \ 10^{-5} \\ 107 \\ 122 \\ 110 \\ 93 \\ 85 \\ 124 \\ 121 \\ 126 \end{array}$ | Ether, ethyl .<br>Ethyl bromide<br>Glycerine .<br>Mercury (see<br>Methyl iodide<br>Oil, olive<br>" paraffin .<br>" " 20°–199° | 53<br>p. 31) | Pentane .<br>Toluene .<br>Turpentine .<br>Xylol (m) .<br>Water,5°–10°<br>,, 10–20<br>,, 20–40<br>,, 40–60 | 109<br>94<br>101<br>5 <sup>.</sup> 3<br>15 <sup>.</sup> 0<br>30 <sup>.</sup> 2 | Water,60-80<br><b>Solutions</b> -<br>CaCl <sub>2</sub> ,5 <sup>.8</sup> %<br>,, 4 <sup>0.9</sup> %<br>NaCl, 26% .<br>H <sub>2</sub> SO <sub>4</sub> ,100% | × 10 <sup>-5</sup><br>58·7<br>25·0<br>45·8<br>43·6<br>57 |

#### MECHANICAL EQUIVALENT OF HEAT

If W erg of work is completely converted into H calorie of heat, W = J. H, where J erg per calorie is the **mechanical equivalent of heat**.

If electrical energy is completely converted into thermal energy, then one of the relations

$$I^2Rt = J \cdot H$$
,  $EIt = J \cdot H$ ,  $E^2t/R = J \cdot H$ ,

applies, where J erg per calorie is the **electrical equivalent of heat**, and I e.m.u. is the current, R e.m.u. is the resistance, E e.m.u. the e.m.f. If the electrical units are the international ampere, ohm and volt J is in international joule per calorie (I international joule =  $I \cdot 00020$  joule).

For the variation of the specific heat of water with temperature see p. 66. Birge (1929) proposed a new expression for J as a function of temperature; it gives for the ratio of the 20° C. to the 15° C. calorie  $J_{20}/J_{15} = 0.999906$ .

**Direct determinations** of J have been made by Joule, Rowland, Laby and Hercus from 15° to 20° C. and by Reynolds and Moorby for the mean calorie, 1.3° to 100° C.

**Indirect electrical determinations.**—The value of the electrical units used in the older of these determinations is uncertain. The electrical equivalent of heat has been determined by Callendar and Barnes, by Jaeger and Steinwehr at the Reichsanstalt, and by Osborne, Stimson, and Ginnings at the National Bureau of Standards (*Journ. of Res.* 1939) at the instance of the Third International Conference on Steam Tables. The last and Birge (General Physical Constants, 1929) have given critical discussions of the value of J.

Values of  $J_{15}$  are given in the following table. **Mean value** here adopted of determinations (2), (4) and (5) is

| $J_{15} = 4.1852$ | : 107 e | rg per 1 | 15° calo | orie. |
|-------------------|---------|----------|----------|-------|
|-------------------|---------|----------|----------|-------|

| Observer. J <sub>15</sub> .                                |                  | Observer.                                                                                                                  | J <sub>15</sub> .          |
|------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Direct measurements—<br>(1) Rowland<br>(2) Laby and Hercus | 4·188<br>4·18526 | Electrical measurements—<br>(3) Callendar and Barnes<br>(4) Jaeger and Steinwehr<br>(5) Osborne, Stimson and Gin-<br>nings | 4·1834<br>4·1841<br>4·1858 |

Direct measurement, Reynolds and Moorby,

mean calorie 
$$1\cdot 3^{\circ} - 100^{\circ} = 4\cdot 1832 \cdot 10^{7}$$
 erg.

### International Steam Table calorie

1 I.T. calorie = 4.1860 int. joule = 4.1868. 10<sup>7</sup> erg.

T. H. L.

# SPECIFIC HEATS

# SPECIFIC HEAT OF WATER

Callendar and Barnes (*Phil. Trans.*, 1902) used an electrical method of determining the temperature variation of the specific heat of water. The specific heats below are reduced by Callendar ("Encyc. Brit.," Art. "Calorimetry ") from their results; they are relative to the specific heat at 20° C. on the C.P. nitrogen scale. The specific heat has a minimum at  $37.5^{\circ}$  C.

| Temp.                              | Specific<br>heat.                                        | Temp.                                | Specific<br>heat.                                           | Temp.                                | Specific<br>heat.                                       | Temp.                                   | Specific<br>heat.                                        | Temp.                        | Specific<br>heat.                    |
|------------------------------------|----------------------------------------------------------|--------------------------------------|-------------------------------------------------------------|--------------------------------------|---------------------------------------------------------|-----------------------------------------|----------------------------------------------------------|------------------------------|--------------------------------------|
| -5° C.<br>0<br>5<br>10<br>15<br>20 | 1.0158<br>1.0094<br>1.0054<br>1.0027<br>1.0011<br>1.0000 | 25° C.<br>30<br>35<br>40<br>45<br>50 | ·9992<br>·9987<br>·9983<br>·9982<br>·9983<br>·9983<br>·9987 | 55° C.<br>60<br>65<br>70<br>75<br>80 | ·9992<br>1·0000<br>1·0008<br>1·0016<br>1·0024<br>1·0033 | 85° C.<br>90<br>95<br>100<br>120<br>140 | 1.0043<br>1.0053<br>1.0063<br>1.0074<br>1.0121<br>1.0176 | 160° C.<br>180<br>200<br>220 | 1.0238<br>1.0308<br>1.0384<br>1.0467 |

Osborne, Stimson and Ginnings ( $\mathcal{J}$ . Res. Nat. Bur. St., 1939) by an electrical method obtain for C, for water the following values in abs. joule gm.<sup>-1</sup>.

| Temp.                  | <b>C</b> <sub>p</sub> .              | Temp.                    | <b>C</b> <sub>p</sub> .              | Temp.                    | $\mathbf{C}_p.$                      | Temp.                    | <b>C</b> <sub>p</sub> .              | Temp.                           | $\mathbf{C}_p$ .                               |
|------------------------|--------------------------------------|--------------------------|--------------------------------------|--------------------------|--------------------------------------|--------------------------|--------------------------------------|---------------------------------|------------------------------------------------|
| 0° C.<br>5<br>10<br>15 | 4·2177<br>4·2022<br>4·1922<br>4·1858 | 20° C.<br>25<br>30<br>35 | 4·1819<br>4·1796<br>4·1784<br>4·1782 | 40° C.<br>45<br>50<br>55 | 4·1786<br>4·1795<br>4·1807<br>4·1823 | 60° C.<br>65<br>70<br>75 | 4·1848<br>4·1868<br>4·1896<br>4·1928 | 80° C.<br>85<br>90<br>95<br>100 | 4·1964<br>4·2005<br>4·2051<br>4·2103<br>4·2160 |

Heavy water in terms of ordinary water = 1.000 at 20° C. (Cockett and Ferguson, 1940).

| Temperature   | 10° C. | 20° C. | 80°    | 40° *  | 50°    |  |  |  |  |
|---------------|--------|--------|--------|--------|--------|--|--|--|--|
| Specific heat | 1.0092 | 1.0065 | 1.0044 | 1.0032 | 1.0041 |  |  |  |  |
| · · ·         |        |        |        |        |        |  |  |  |  |

J. L.

Minimum at 41° C.

#### SPECIFIC HEAT OF MERCURY

In terms of the gram calorie at 15°.5 on the const. vol. H. scale. (Barnes and Cooke, Phys. Rev., 15, 1902.) Mercury has a minimum specific heat at 140° C. (Barnes, Brit. Ass. Rep., 1909.)

| Temp.         | 0° C. | 20°   | <b>40</b> ° | 60°   | 80°   | 100°    | 200°   |
|---------------|-------|-------|-------------|-------|-------|---------|--------|
| Specific heat | •0335 | •0333 | •0331       | ·0329 | ·0328 | (.0327) | (.032) |

## SPECIFIC HEATS OF THE ELEMENTS

For gases, see p. 68.

| Substance.      | Temperature. | Sp.<br>heat. | Observer.     | Substance.     | Temperature. | Sp.<br>heat. | Observer.      |
|-----------------|--------------|--------------|---------------|----------------|--------------|--------------|----------------|
| Aluminium .     | -240         | .0092        |               | Bromine, liqd. | 13° to 45°   | .107         | Andrews, '48   |
| ,, .            |              | •2096        |               | Cadmium .      | -165         | ·0491        | Griffiths, '14 |
|                 |              | ·282         | Richards, '93 |                | 0            | .0547        | !!             |
| Antimony .      | -186 to -79  | ·0462        | Behn, 1900    | Cæsium         | 0 to 26      | .048         | E. & G., 1900  |
|                 | 17 to 92     | .0508        | Gaede, 1902   | Calcium        | -185 to 20   | .157         | N. & B., 1906  |
| Arsenic, cryst. | 21 to 68     | .083         | B. & W., 1868 |                | 0 to 100     | ·149         | Be., 1906      |
| " amorph.       | 21 to 65     | .076         |               | Carbon-        |              |              |                |
| Barium          | -185 to 20   | .068         | N. & B., 1906 | Gas carbon     | 24 to 68     | .204         | B. & W., 1868  |
| Beryllium .     | 0 to 100     | .425         | N. & P., 1880 | Charcoal .     | 0 to 24      | .165         | H.F.Weber,'75  |
| Bismuth         | -186         | .0284        | Giebe, 1903   | ,, .           | 0 to 224     | .238         |                |
|                 | 22 to 100    | .0304        | W., 1896      | Graphite .     | -188         | .025         | Magnus, 1923   |
| Boron, amor.    |              | .307         | M. & G., 1893 | ,, .           | 11           | .160         |                |
| Bromine, solid  |              |              | Regnault, '49 | ,, .           | 277          | .133         | · ,,           |
|                 |              |              | 0 1 12        |                |              |              |                |
|                 |              |              |               |                |              |              |                |

| n i signanda ta                                                                                                                                                                                           | SPEC                                                                                                                                                                                                                                      | IFIO                                                                                                                                                                      | HEATS OF                                                                                                                                                                                                                                          | THE ELEMEN                                                                                                                                             | TS (contd.)                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Substance.                                                                                                                                                                                                | Temperature.                                                                                                                                                                                                                              | Sp.<br>heat.                                                                                                                                                              | Observer.                                                                                                                                                                                                                                         | Substance.                                                                                                                                             | Temperature.                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sp.<br>heat.                                                                                                                                            | Observer.                                                                                                                                                                                                                                                                                                                               |
| Carbon (contd.)<br>Graphite .<br>Diamond .<br>"""<br>Cerium<br>Chlorine, liqd.<br>Chromium<br>(1:4% Fe & Si)<br>Cobalt<br>Copper<br>"""<br>Didymium .<br>Gallium, solid<br>"liquid<br>Germanium .<br>Gold | 827° C.<br>186<br>22<br>53<br>827<br>0 to 100<br>0 to 24<br>-200                                                                                                                                                                          | ·440<br>·0025<br>·122<br>·136<br>·429<br>·045<br>·226<br>·067<br>·104<br>·112<br>·103<br>·123<br>·0035<br>·0909<br>·0952<br>·046<br>·079<br>·080<br>·074<br>·035<br>·0303 | Magnus, 1923<br>"<br>"<br>"<br>H., 1876<br>Knietsch<br>Adler, 1903<br>"<br>Tilden, 1903<br>"<br>"<br>Tilden, 1903<br>"<br>Nernst, 1912<br>Griffiths, '14<br>H., 1876<br>B., 1878<br>N. & P., 1887<br>N. & B., 1906<br>Voigt, 1893<br>Bunsen, 1870 |                                                                                                                                                        | 13 to 36<br>49 to 98<br>15 to 98<br>186 to 18<br>18 to 100<br>1230<br>23<br>27<br>10 to 97<br>0 to 100<br>22 to 62                                                                                                                                                                                                                                                                                                                                    | ·053<br>·059<br>·17<br>·202<br>·205<br>·17<br>·0293<br>·0324<br>·0461<br>·173<br>·0324<br>·0461<br>·173<br>·058<br>·061<br>·058<br>·061<br>·084<br>·095 | Behn, 1898<br>Regnault, 1849<br>Kopp, 1864<br>Person, 1847<br>Regnault, 1853<br>Behn, 1898<br>Tilden, 1903<br>C. & S., 1939<br>Regnault, 1862<br>Bunsen, 1870<br>B. & W., 1868<br>N. & B., 1906<br>Magnus, 1923<br>Nernst, 1912<br>Griffiths, '14<br>Tilden, 1903<br>Griffiths, '14<br>""                                               |
| Indium<br>Iodine<br>Iridium<br>Iron<br>Lanthanum .<br>Lead<br>Lithium<br>Magnesium .<br>Manganese .<br>Mercury<br>Molybdenum.<br>Nickel                                                                   | 9 to 98<br>-186 to 18<br>18 to 100<br>-133<br>0<br>97.6<br>0 to 1100<br>0 to 100<br>-250<br>0<br>300<br>0 to 19<br>0 to 100<br>-186 to -79<br>18 to 99<br>225<br>14 to 97<br>See preced<br>-185 to 20<br>15 to 91<br>0<br>500<br>19 to 98 | ·837<br>1·093<br>·189<br>·246<br>·281<br>·122                                                                                                                             | Regnault, 1840<br>Behn, 1898<br>Griffiths, '14<br>"<br>Harker, 1905<br>H., 1876<br>Griffiths, '14<br>Naccari, 1888<br>Be., 1906<br>Behn, 1900<br>Voigt, 1893<br>Stücker, 1905<br>Regnault, 1862                                                   | , rhombic<br>, liquid .<br>Tantalum<br>Tellurium, crys.<br>Thallium<br>Thorium<br>Thorium<br>, molten .<br>Titanium<br>Uranium<br>Vanadium<br>Zinc . : | $\begin{array}{c} 17 \text{ to } 45 \\ 119 \text{ to } 147 \\ -185 \text{ to } 20 \\ 58 \\ 15 \text{ to } 100 \\ -192 \text{ to } 20 \\ 20 \text{ to } 100 \\ 0 \text{ to } 100 \\ -186 \text{ to } -79 \\ 0 \\ 240 \\ -185 \text{ to } 20 \\ 0 \text{ to } 100 \\ 0 \text{ to } 440 \\ -185 \text{ to } 20 \\ 20 \text{ to } 100 \\ 11 \text{ to } 98 \\ 0 \text{ to } 98 \\ 0 \text{ to } 100 \\ -233 \\ 0 \\ 300 \\ 0 \text{ to } 100 \end{array}$ | ·0326<br>·028                                                                                                                                           | Kopp, 1865<br>Person, 1847<br>N. & B., 1906<br>v. Bolton, 1905<br>Fabre, 1887<br>Schmitz, 1903<br>Nilson, 1883<br>Behn, 1900<br>Griffiths, '14<br>Spring, 1886<br>N. & B., 1906<br>N. & P., 1887<br>N. & B., 1908<br>Regnault, 1840<br>Blümcke, 1885<br>Mache, 1897<br>Nernst, 1912<br>Griffiths, '14<br>Naccari, 1888<br>M. & D., 1873 |

B., Berthelot; Be., Bernini; B. & S., Bartoli & Stracciati; B. & W., Bettendorff & Wüllner; C. & S., Carpenter & Steward; D. & G., Defacqz & Guichard; E. & G., Eckardt & Graefe; H., Hillebrand; M. & D., Mixter & Dana; M. & G., Moissan & Gautier; N. & B., Nordmeyer & Bernouilli; N. & P., Nilson & Pettersson; W., Waterman.

# SPECIFIC HEATS

| In calories per g<br>pre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SPECIFIC HEATS OF GASES AND VAPOURS<br>In calories per gram per degree C. The values at const. pressure are normally at atmospheric<br>pressure. See Partington & Shilling, "The Specific Heats of Gases." |                                                                                                                                                                |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                                                                                                                                     |                                                                                                                                                                                                   |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Gas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Temp.                                                                                                                                                                                                      | Sp. ht.                                                                                                                                                        | Observer.                                                                                                                                                                                                                               | Gas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Temp.                         | Sp. ht.                                                                                                                                                             | Observer.                                                                                                                                                                                         |  |  |  |  |
| AT CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STANT PR                                                                                                                                                                                                   | ESSUR                                                                                                                                                          | E (cp)                                                                                                                                                                                                                                  | Ammonia, NH <sub>3</sub> .<br>Nitrous oxide, N <sub>2</sub> O<br>Nitric oxide, NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23-100<br>26-103<br>13-172    | ·520<br>·213<br>·232                                                                                                                                                | Wiedemann,<br>1876<br>Regnault, '62                                                                                                                                                               |  |  |  |  |
| Air (dry)          ,''       ,''         ,''       ,''         ,''       ,''         ,''       ,''         ,''       ,''         ,''       ,''         ,''       ,''         ,''       ,''         ,''       ,''         ,''       ,''         ,''       ,''         ,''       ,''         Oxygen          ,''       (liq.)         Oklorine          ,''       (liq.)         Chlorine          ,''       ''         Steam          ,''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20° C.<br>100<br>20-98<br>-102-17<br>-50<br>15<br>16<br>0<br>-200<br>20-440<br>20-800<br>-190<br>16<br>18<br>0<br>100<br>100<br>100                                                                        | *2417<br>*2430<br>*2366<br>*2372<br>*2372<br>*312<br>*127<br>3*42<br>*2350<br>*43<br>*2419<br>*2497<br>*347<br>*114<br>*250<br>*2010<br>*221<br>*4652<br>*4878 | Swann, 1909<br>H. & A., 1905<br>Witkowski,<br>"1896<br>S. & H., '19<br>* H. & H., '07<br>Alt, 1904<br>H. & A., 1905<br>Alt, 1904<br>Partington, '14<br>S. & H., '19<br>* H & H., '07<br>Swann, 1909<br>* H & H., '07<br>Brinkworth, '15 | N. peroxide, NO <sub>2</sub><br>H. <sub>2</sub> S<br>CS <sub>2</sub><br>Methane, CH <sub>4</sub> .<br>Ethylene, C <sub>2</sub> H <sub>4</sub> .<br>Benzene, C <sub>6</sub> H <sub>6</sub> .<br>Chloroform, CHCl <sub>3</sub><br>Me. alcohol, CH <sub>4</sub> O<br>Et. alcohol, CH <sub>4</sub> O<br>, ether, (C <sub>2</sub> H <sub>5</sub> ) <sub>2</sub> O<br>Turpentine, C <sub>10</sub> H <sub>16</sub><br>AT CONS<br>Air,† 1 atmos<br>Hydrogen ‡<br>Carbon dioxide § .<br>Argon<br>Nitrogen   <br>Water vapour<br>Carbon monoxide | 27-67<br>20-206<br>86-190<br> | 1.625<br>.245<br>.160<br>.530<br>.364<br>.299<br>.144<br>.458<br>.458<br>.453<br>.428<br>.506<br>DLUME<br>.1715<br>2.402<br>.1650<br>.0746<br>.175<br>.340<br>.1715 | B. & O., 1883<br>Regnault, '62<br>S. & H., '19<br>Wiedemann,<br>1877<br>Regnault, '62<br>W., 1876<br>Regnault, '62<br>(c <sub>r</sub> )<br>Joly, 1891<br>", 1894<br>Pier, 1909<br>"<br>Sherratt & |  |  |  |  |
| $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \\$ |                                                                                                                                                                                                            |                                                                                                                                                                |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                                                                                                                                     |                                                                                                                                                                                                   |  |  |  |  |
| Gas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Temp.                                                                                                                                                                                                      | Y                                                                                                                                                              | Observer.                                                                                                                                                                                                                               | Gas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Temp.                         | γ                                                                                                                                                                   | Observer.                                                                                                                                                                                         |  |  |  |  |
| Monatomic gase<br>Helium<br>Argon<br>Neon<br>Krypton<br>Xenon<br>Mercury vapour<br>Diatomic gases<br>Air (dry)<br>" "<br>" "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 0° C.<br>. 0<br>. 19<br>. 19<br>. 19<br>. 310<br>. 5-14<br>. 0<br>. 15<br>. 17                                                                                                                           | 1.63<br>1.667<br>1.642<br>1.689<br>1.666<br>1.666<br>1.666<br>1.402<br>1.401<br>1.401<br>1.402                                                                 | Ramsay, 1912<br>"<br>K. & W., 1876<br>L. & P., 1898<br>Stevens, 1905<br>Makower, '03<br>Brinkw'th,'25                                                                                                                                   | Nitric oxide, NO .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                             | 1.402<br>1.402<br>1.399<br>1.39<br>1.405<br>1.828<br>2.333<br>1.407<br>1.408<br>1.41<br>1.408<br>1.41<br>1.400<br>1.297<br>1.394                                    |                                                                                                                                                                                                   |  |  |  |  |
| B. & G., Behn &<br>S. & G., Sherratt &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Geiger ; F<br>Griffiths.                                                                                                                                                                                   | ., Fürst                                                                                                                                                       | enau; K. & W.,                                                                                                                                                                                                                          | Kundt & Warburg ; I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L. & P., L                    | ummer                                                                                                                                                               | & Pringsheim ;                                                                                                                                                                                    |  |  |  |  |

# SPECIFIC HEATS

| RATIO (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RATIO OF THE SPECIFIC HEATS FOR GASES AND VAPOURS (contd.) |                                                                                                                                                          |                                                                                                                                                       |                                                                                                                                                                                                                                  |       |                                                                                                                                                                       |                                                                                                                                            |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Gas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Temp.                                                      | 7                                                                                                                                                        | Observer.                                                                                                                                             | Gas.                                                                                                                                                                                                                             | Temp. | γ                                                                                                                                                                     | Observer.                                                                                                                                  |  |  |  |  |  |
| $\begin{array}{c} \textbf{Triatomic gases}\\ Ozone & & & & \\ Water vapour & & \\ Carbon dioxide & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$ | 20°<br>150<br>—<br>16-34<br>500                            | 1·29*<br>1·305<br>1·300<br>1·260<br>1·26<br>1·336<br>1·324<br>1·324<br>1·324<br>1·324<br>1·329<br>1·26<br>1·2<br>1·313<br>1·22<br>1·313<br>1·22<br>1·303 | L. & P., 1898<br>D. & G., 1924<br>F., 1908<br>Leduc, 1898<br>Natanson, '85<br>Capstick, '95<br>Müller, 1883<br>F., 1908<br>Capstick, '93<br>(Daniel & | Chloroform,<br>CHCl,<br>CCl,<br>Me. alcohol<br>" bromide<br>" chloride<br>" iodide<br>Et. alcohol<br>" " bromide<br>" chloride<br>" chloride<br>" chloride<br>" chloride<br>" chloride<br>" chloride<br>" chloride<br>" Chloride |       | 1'26<br>1'264<br>1'40<br>1'105<br>1'105<br>1'150<br>1'150<br>1'150<br>1'256<br>1'274<br>1'279<br>1'286<br>1'133<br>1'134<br>1'188<br>1'187<br>1'024<br>1'112<br>1'147 | Müller, 1883<br>Stephens, '02<br>Capstick, '95<br>Stevens, '02<br>Capstick, '93<br>"<br>"<br>Jaeger, 1889<br>Stevens, '02<br>Capstick, '93 |  |  |  |  |  |

\* Extrapolated; D. & G., Dixon & Greenwood; F., Fürstenau; L. & P., Lummer & Pringsheim; M. & F., Maneuvrier and Fournier.

# SPECIFIC HEATS OF VARIOUS BODIES

In most cases, the specific heats given must only be regarded as average values.

| Substance. | Temp.                                                                                                                 | Sp. ht.   | Substance.        | Temp.                                                                  | Sp. ht.  | Substance.                                                                                                                                                                                                      | Temp. | Sp. ht.                                    |
|------------|-----------------------------------------------------------------------------------------------------------------------|-----------|-------------------|------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------|
|            | °C<br>0<br>0<br>18<br>0-100<br>0<br>18<br>0<br>40<br>12<br>15<br>10<br>40<br>-20<br>0<br>15<br>18°<br>18-50<br>20<br> | Griffiths | & Williams, 1918. | 30<br>10-50<br>10-50<br>18°<br>18<br>20-100<br>Griffiths, I<br>N, & E. | Nernst & | " " Indiarubber Marble, white . NaCl (N & E) " " KCl (N & E) " " KCl (N & E) " " Paraffin wax . Porcelain    . Quartz, SiO <sub>2</sub> . Sand . Sand . Silica (fused) ¶ " " * Griffiths, Phil. * Eucken, 1912. |       | ·18<br>·174<br>·279<br>·19<br>·200<br>·248 |

# LATENT HEATS

# LATENT HEAT OF FUSION

The quantity of energy required to convert I gram of substance from solid into liquid without change of temperature.

|                         |                                                    | ICE                                                                                                                                                                                                                                                                                           |
|-------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Temp.                   | Lt. ht.                                            | Observer, etc.                                                                                                                                                                                                                                                                                |
| -6.5° C.<br>0<br>0<br>0 | cals,<br>76.03<br>79.59<br>80.02<br>79.77<br>79.67 | Pettersson, 1881.<br>Regnault, 1843, corrected.<br>Bunsen, 1870, with ice calorimeter.<br>Smith, <i>Phys. Rev.</i> , 1903 (in terms of 15° calorie = 4·184 joules,<br>taking Clark cell = 1·433 volts at 15° C.).<br>(333'5 joules) Osborne <i>N.B.S.</i> 1939 (I.T. calorie = 4·186 joules). |

| VARIOUS SUBSTANCES                                                                                             |                                     |                                                             |                                                                                                                                       |                                                              |                                                        |            |                                                          |                                                            |  |  |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------|------------|----------------------------------------------------------|------------------------------------------------------------|--|--|
| Substance.                                                                                                     | Temp.                               | Lt.ht.                                                      | Substance.                                                                                                                            | Temp.                                                        | Lt.ht.                                                 | Substance. | Temp.                                                    | Lt. ht.                                                    |  |  |
| Elements—<br>Aluminium †.<br>Antimony* .<br>Bismuth*<br>Cadmium .<br>Copper<br>Lead<br>Magnesium*<br>Mercury . | •C.<br>658<br>625<br>269<br>321<br> | cals.<br>92'4<br>24'3<br>13'0<br>14<br>43<br>5<br>46'5<br>3 | Palladium ·<br>Phosphorus ·<br>Platinum · ·<br>Potassium ·<br>Silver · · ·<br>Sodium (G.)<br>Sulphur · ·<br>Tin* · · ·<br>Zinc* · · · | 1550<br>44<br>1750<br>62<br>960<br>97.6<br>115<br>232<br>418 | 36<br>5<br>27<br>16<br>22<br>27.5<br>9<br>14.6<br>26.6 |            | °C.<br>-75<br>333<br>308<br>10'3<br>4<br>5'4<br>13<br>80 | cals.<br>108<br>45'3<br>25'5<br>24<br>44<br>30<br>42<br>35 |  |  |

#### LATENT HEAT OF VAPORISATION

Latent heats are given as the number of gram calories required to convert I gram of substance from liquid into vapour without change of temperature. The latent heat of vaporisation vanishes at the critical temperature.

Trouton's Rule.- The latent heat of vaporisation of I gramme molecule of a liquid divided by the corresponding boiling point (on the absolute scale) is a constant (C). C = 2I for substances of which both liquid and vapour are unassociated. If the liquid is associated, C > 21 (e.g. water, C = 26); if the vapour is associated, [See Nernst's "Theoretical Chemistry."] C < 21 (e.g. acetic acid, C = 15).

#### STEAM

Regnault's equation connecting latent heat and temperature takes no account of the temperature variation of the specific heat of water (see p. 66). The equation gives values which are too large at low temperatures. The equations of Griffiths, Henning, and Smith have been reduced and are here expressed in terms of the **I. T. calorie** = 4.186 joules (p. 65). Griffiths' and Smith's results rest further on an attributed value of 1.433 volts for the e.m.f. of the Clark cell at  $15^{\circ}$  C. See also next page.

[The critical temp. of water is about 374° C.]

| Observer.                                                                                                           | Temp. range<br>of expts. | Latent heat $L_t$ at $t^\circ C$ .                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Regnault, 1847 .<br>Griffiths, 1895 .<br>Henning, Ann.<br>d. Phys., 1906,<br>1909<br>Smith, Phys.,<br>Rev., 1907 .) | (100°-180°               | $ \begin{array}{l} \mathbf{L}_{t} = 606 \cdot 5 - 695t \\ \mathbf{L}_{t} = 598 \cdot 0 - 605t \\ \int \mathbf{L}_{t} = 599 \cdot 1 - 60t, \text{ to } 3\% \\ \text{ for } \mathbf{L}_{t} = 94 \cdot 2 (365 - t)^{3125}, \text{ to } \cdot 1\% \\ \mathbf{L}_{t} = 538 \cdot 71 - 6425(t - 100) - 63834(t - 100)^{3} \\ \mathbf{L}_{t} = 596 \cdot 9 - 580t \end{array} $ |

|                                                          | LATENT HEAT OF STEAM (contd.) |                     |                |            |                                             |                         |                             |                   |  |  |  |  |
|----------------------------------------------------------|-------------------------------|---------------------|----------------|------------|---------------------------------------------|-------------------------|-----------------------------|-------------------|--|--|--|--|
| In terms of<br>I. T. calorie.<br>(4 <sup>·</sup> 186 j.) | Regnault,<br>1847.            | Griffiths,<br>1895. | Joly,<br>1895. | Callendar, | Osborne,<br>Stimson &<br>Gin/ings,<br>1939. | Jakob &<br>Fritz, 1935. | Carlton<br>Sutton,<br>1917. | Mathews,<br>1917. |  |  |  |  |
| <b>L</b> <sub>0</sub>                                    | 606†                          | 598†                | -              | 595†       | 596.7                                       | 596.3                   | -                           | -                 |  |  |  |  |
| L <sub>100</sub>                                         | 537                           | 537.5 †             | 540‡           | 540        | 538.5                                       | 538.7                   | 538.88                      | 539.2             |  |  |  |  |

\* From sp. ht. of steam experiments and total heat formula.
 \* Extrapolated.
 \* By comparing L<sub>100</sub> (by steam calorimeter) with the mean specific heat of water between 12° and 100°.
 Callendar and Barnes' specific heat has been used (p. 66).

### LATENT HEATS OF VAPORISATION OF VARIOUS SUBSTANCES

The values below are for pure substances, and are due to Young, Proc. Roy. Dublin Soc., 1910. The precise calorie employed is not stated.

| Temp.                                                                                                             | SnCl <sub>4</sub> .                                                             | <b>C</b> C1 <sub>4</sub> .                | Pent-<br>ane (n).                                                   | Methyl                                                                                                                         | Ethyl<br>Alcohol. | Propy                                                            | Ethy:<br>ether                                                            |                                                                                                                                                                                                                                                                                    | ethyl     | Ethyl                                                                                                                                 | Propyl                              | Acetic<br>acid.                                                      | Ben-<br>zene.                                                                                   |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| C.<br>0°<br>20<br>40<br>60<br>80<br>100<br>120<br>140<br>160<br>180<br>200<br>240<br>260<br>280<br>Crit.<br>temp. | cals.<br>                                                                       | 35'40<br>32'61<br>29'45<br>25'56<br>20'07 | 69.94<br>64.48<br>56.58<br>47.42<br>35.01<br>24.68*                 | cals.<br>289'2<br>284'5<br>277'8<br>269'4<br>259'0<br>246'0<br>232'0<br>216'1<br>198'3<br>177'2<br>151'8<br>112'5<br>84'5†<br> | _                 | cals.<br>                                                        | 68:4<br>62:2<br>55:9<br>46:0<br>31:8<br>19:3<br>-                         | 2 4 3 4 5 2 2 4 3 7 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                          | cals.<br> | 12.03                                                                                                                                 | cals.<br>                           | 92'32<br>94'38<br>91'83<br>89'63<br>87'71<br>85'55<br>82'02<br>78'18 | 95'45<br>91'41<br>86'58<br>82'82<br>78'94<br>74'62<br>68'81<br>62'24<br>54'11<br>43'82<br>27'43 |
|                                                                                                                   | tance.<br>ry<br>horus<br>$H_2$ .<br>$O_2$ .<br>$N_2$ .<br>air .<br>Cl .<br>ne . | t<br>Temp<br>C.<br>358<br>316<br>287<br>  | o cals.<br>68<br>362<br>130<br>123<br>58<br>50<br>6, 50<br>67<br>46 | t. S<br>Liqu<br>,,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,                        | , CO              | e.<br>) .<br>1 <sub>3</sub> .<br>2 .<br>2 .<br>2 .<br>2 .<br>2 . | § At 23<br>Temp.<br>C.<br>-20°<br>0<br>22<br>-10<br>46<br>32°5<br>42<br>0 | cals<br>6;<br>34<br>5;<br>34<br>5;<br>34<br>5;<br>34<br>5;<br>34<br>5;<br>34<br>5;<br>34<br>5;<br>34<br>5;<br>34<br>5;<br>34<br>5;<br>34<br>5;<br>34<br>5;<br>34<br>5;<br>34<br>5;<br>34<br>5;<br>34<br>5;<br>5;<br>5;<br>5;<br>5;<br>5;<br>5;<br>5;<br>5;<br>5;<br>5;<br>5;<br>5; | nt.       | At 249°.<br>Substan<br>Chlorofor<br>Et. bromi<br>,, propic<br>,, iodide<br>,, forma<br>Am. alcol<br>Aniline .<br>Coluene<br>Furpentin | m .<br>de .<br>onate<br>te<br>nol . | At 275°<br>Temp.<br>C.<br>61°<br>38<br>100<br>71<br>50<br>131<br>    | C.<br>Lt. ht.<br>cals.<br>58<br>60<br>79<br>47<br>98<br>120<br>104<br>84<br>70                  |

# THERMOCHEMISTRY

#### THERMOCHEMISTRY

In thermochemistry the conservation of energy is assumed in accordance with experiment, and consequently (I) if a cycle of chemical change takes place so that the final state of the reacting substances is identical with the initial, then as much heat is absorbed as is given out, *i.e.* the total heat of the reaction is zero; (2) the heat of reaction only depends on the initial and final states of the reacting substances, and not on the intermediate stages. The results below are affected by, but have not been corrected for, any changes in the accepted values of the atomic weights since the experiments were carried out.

#### MOLECULAR HEAT OF FORMATION

The molecular heat of formation (H.F.) is the heat liberated when the molecular weight in grams of a compound is formed from its elements. When the state of aggregation of an element or compound is not given, it is the state in which it occurs at room temperature and pressure. A minus sign before an H.F. means that heat is absorbed in the building up of the compound.

**Unit**—the gram calorie (at 15° to 20° C.) per gm. molecule of compound. Aq = solution in a large amount of water. The reactions are at constant pressure.

**Example.**—H.F. of CuSO<sub>4</sub> = 183,000; of CuSO<sub>4</sub>. Aq = 198,800.  $\therefore$  the heat of solution of CuSO<sub>4</sub> = 198,800 - 183,000 = 15,800 cals. per gram mol.

(T., Thomsen, "Thermochemistry," trans. by Miss K. A. Burke; B., Berthelot, Ann. d. Chim. et d. Phys., 1878; T.B., mean of both these observers' values; N.P.L., Natl. Phys. Lab.; Rh., Roth; Ri., Rossini.) For organic compounds, see p. 74.

| Compound.                                                       | Mol. H.F. in<br>calories.                       | Compound.                                                                                                     | Mol. H.F. in<br>calories.             | Compound.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mol. H.F. in<br>calories.            |
|-----------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Non-Metals                                                      | × 10 <sup>3</sup>                               |                                                                                                               | × 103                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | × 10 <sup>3</sup>                    |
| HCl gas<br>HCl . Aq<br>HBr gas<br>HBr . Aq                      | 22.063 Ri.<br>39.3, T.<br>8.4, T.<br>28.6, T.B. | CO <sub>2</sub> , from<br>graphite<br>CO <sub>2</sub> from<br>diamond                                         | 94·20, Rh.<br>94·4 <sub>2</sub> , Rh. | (NH,)2SO,Aq<br>NH,OH.Aq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 72'4<br>283, T.B.<br>280'6<br>90, B. |
| Hl gas<br>Hl . Aq<br>HF .,                                      | -6·1, T.B.<br>+13·2, T.B.<br>+38·5              | B <sub>2</sub> O <sub>3</sub> ; amp. B.<br>SiO <sub>2</sub> Aq; crys.<br>As <sub>2</sub> O <sub>3</sub> . [Si | 180, B.<br>155, T.                    | BaO<br>Ba(OH) <sub>2</sub><br>BaCl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 126, T.<br>217, T.<br>197, T.        |
| $H_2O$ liq<br>$H_2O_2$ . Aq .<br>$H_2S$ from )                  | 68·313 Ri.<br>47·0                              | As <sub>2</sub> O <sub>5</sub><br>CCl <sub>4</sub> from<br>diamond }                                          | 219, T.<br>76, B.                     | $BaCl_2Aq$ $Bi_2O_3$ $BiCl_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 199'1, T.<br>20<br>91, T.            |
| rhombic S. §<br>NH <sub>3</sub><br>AsH <sub>3</sub>             | 2·7, T.<br>11·0 <sub>7</sub> , Rh.<br>-36·7     | CS <sub>2</sub> from                                                                                          | 91'4, T.<br>105, T.                   | $Cd(OH)_{2}$ · · ·<br>$Cd+O+H_{2}O$<br>$CdCl_{2}$ · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 93, T.                               |
| $SbH_3$ $SiH_4$ $SO_2$ from )                                   | -87, B.<br>25                                   | diamond &<br>rhombic S)<br>C <sub>2</sub> N <sub>2</sub> gas                                                  | - 19, B.                              | CdSO <sub>4</sub> .8/3H <sub>2</sub> O<br>on sol. in Aq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 222, T.<br>+2.66, T.                 |
| rhombic<br>S.<br>SO <sub>3</sub> liq. from                      | 70                                              | from diam)<br>H <sub>2</sub> SO <sub>4</sub> liq<br>H <sub>2</sub> SO <sub>4</sub> . Aq                       | 193, T.                               | $CdSO_4$ . Aq .<br>$Cs_2O_5$<br>$CaO_5$<br>, Moissan .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 232'7, T.<br>100<br>131, T.          |
| rhombic<br>S.<br>NgO.                                           | 103<br>19                                       | from rhombic<br>S)<br>HNO <sub>3</sub> liq                                                                    | 210, T.<br>41.6, B.                   | $Ca(OH)_2$ , $CaC_2$ . | 145<br>229<br>-7.25<br>170, T.       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$            | -21.6, T.<br>-21.4, B.<br>-1.7, B.              | HNO3. Aq .<br>HCN gas<br>from diam.                                                                           | 49<br>- 30.5<br>- 24.8                | $CaCl_2 Aq.$<br>$CaSO_4$<br>$CaCO_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 187'4, T.<br>318, T.<br>270, T.      |
| $N_2O_5 \text{ liq.}$ .<br>$P_2O_5 \text{ solid}$ .             | -7.6, B.<br>3.6, T.<br>369                      | HCN liq<br>H <sub>s</sub> PO, liq<br>Metals—                                                                  |                                       | $\begin{array}{c} Ca(NO_3)_2 \\ CoO \\ CoO \\ CoCl_2 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 202, B.<br>64<br>76'5, T.            |
| P <sub>2</sub> O <sub>5</sub> . Aq<br>CO from {<br>amorph. C. { | 405<br>29, T.                                   | $Al_2O_3 \cdot \cdot \cdot AlCl_3 \cdot \cdot \cdot$                                                          | 161                                   | CoSO <sub>4</sub> .7H <sub>2</sub> O<br>Co(NO <sub>3</sub> ) <sub>2</sub> .6H <sub>2</sub> O<br>CuO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 234, T.                              |
| CO from {<br>diamond }                                          | 26·1, B.                                        | Al <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> . Aq<br>NH <sub>4</sub> Cl                                    |                                       | CuCl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51.6                                 |

INORGANIC COMPOUNDS

HEATS OF FORMATION

|                                                       | INORGANIC COMPOUNDS (contd.)                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                         |                                   |                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Compound.                                             | Mol. H.F. in<br>calories.                                                                                                                                                                                   | Compound.                                                                                                                                                                                                                                                                                                                                                                                                 | Mol. H.F. in<br>calories.                                                                                                                                                                                               | Compound.                         | Mol. H.F. in<br>calories.                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$ | 183, T.<br>198.8, T.<br>- 2.75<br>8.8, T.<br>23, T.<br>64.6<br>196<br>240<br>236<br>96, T.<br>50.3, T.<br>62.4<br>83, T.<br>216, T.<br>105.5<br>97.9<br>140<br>111<br>94, T.<br>102.4<br>334, T.<br>112, T. | MgCl <sub>2</sub><br>MgSO <sub>4</sub><br>MgSO <sub>4</sub> . Aq<br>MnO<br>MnCl <sub>2</sub><br>Hg <sub>2</sub> O<br>HgCl<br>HgCl<br>HgCl <sub>2</sub><br>NiO<br>NiO<br>NiO<br>NiCl <sub>2</sub><br>NiSO <sub>4</sub> . Aq .<br>PtCl<br>KHO<br>KHO<br>KHO<br>KHO<br>KHO<br>KHO<br>KHO<br>KHO<br>KHO<br>KHO<br>KHO<br>KHO<br>KO <sub>3</sub><br>Ag <sub>2</sub> O<br>Ag <sub>1</sub> O <sub>3</sub> . Aq . | 302, T.<br>322<br>91<br>112<br>24'9, T.<br>21'1<br>175<br>31'3<br>53'2<br>59'7<br>74'5, T.<br>229, T.<br>59'4<br>97<br>104, B.T.<br>106, B.T.<br>107, 6, T.<br>119, B.T.<br>344, T.B.<br>5'9, T.<br>7, B.<br>28'7, T.B. | ZnSO,<br>ZnSO, Aq .<br>ZnSO 7H O) | 91 to 100<br>102'3, T.B.<br>112'2, T.B.<br>97'8, T.B.<br>111, T.B.<br>328'3, T.B.<br>272, T.B.<br>130, T.B.<br>217, B.<br>185, T.B.<br>196, T.<br>42'2, T.<br>48'6, T.<br>221, T.<br>70<br>81, T.<br>128<br>85'4, T.<br>97'3, T.B.<br>132<br>230'3, T.B.<br>248'7 |  |  |  |  |  |  |  |  |

#### MOLECULAR HEAT OF NEUTRALISATION

**Unit**—the gram calorie (at 15° to 20°) per gram molecule of base. Thus KOH. Aq + HCl. Aq = KCl. Aq + H<sub>2</sub>O + 13,750 calories. Thomsen (= T.) observed at 18° to 20° C., and the final dilution was 3600 gms. (7200 for Na salts) per gm. mol. of base. Berthelot (= B.) used at least 2000 gms. of H<sub>2</sub>O per 17 gms. of hydroxyl ion, - HO.

| Base.                                           | HCI                   | HF                | HNO,                 | HCN               | 12H2SO4           | ₿H,CO,                 | 1H,PO,                | 10xalie.                         |
|-------------------------------------------------|-----------------------|-------------------|----------------------|-------------------|-------------------|------------------------|-----------------------|----------------------------------|
|                                                 | × 10 <sup>3</sup>     | × 10 <sup>3</sup> | X 10 <sup>3</sup>    | × 10 <sup>3</sup> | × 10 <sup>3</sup> | × 10 <sup>3</sup>      | × 10 <sup>3</sup>     | × 10 <sup>3</sup>                |
| INaOH .                                         | 13'74,T.;             | 16.3'T.           |                      | 2.8               | 15.64, T.         | 10°1, T.;              | 14 <sup>.</sup> 8, T. | 13.8,T.                          |
| 2NaOH .                                         | 13'7, B.              |                   | 13.5, B.             | _                 | 31'38‡, T.        | 10'2, B.<br>20'2 §, T. | anu# T                | - 0.0 T                          |
|                                                 | 13.85, T.             | 16.4 †            | _                    | 2.93              | 15.64, T.         | 20 2 9, 1.             | 27·1*, T.             | 28-3,1.                          |
|                                                 | 137, T.;              |                   | 13.8, T.             | 2.8, T.           | 15.7, T.B.        | 10'I, B.               | -                     | 13.8,B.                          |
| INH OH                                          | 13.6, B.              |                   | TOTA T               | ma P              | TR                | 0. T .                 | D                     |                                  |
| INH,OH.                                         | 12'3, 1.;<br>12'4, B. | 15.2              | 12.3, T.             | гз, Б.            | 14'3, T.B.        | 8·4, T.;<br>5·3, B.    | 13.5, B.              | 12.2                             |
| ₫Ca(OH) <sub>2</sub>                            | 14'0, B.              | 18.4 +            | 13.9, B.             | 3.2               | 15.6, T.          | 9'3,† T.;              | -                     | -                                |
| 10-(011)                                        | T Pere                |                   | Deres D              |                   | T                 | 9.8,† B.               |                       |                                  |
| 1Sr(OH)2.                                       | 13.8, T.              | 17.8 †            | 13.9, B.             | 3.12              | 15.4, T.          | 10'4, T.B.             | -                     | -                                |
| Ba(OH)                                          | 13.9, B.              | 10.1              | 14'1,T.;<br>13'9, B. | 3.15              | 184, В.1.         | 11°0,†T.B.             | -                     |                                  |
| 1Mg(OH),                                        | 13.8, B.              | 15.2              | 13.8, T.             |                   | 15'3, B.T.        | 8.95,† B.              | _                     | -                                |
| <sup>1</sup> / <sub>2</sub> Cu(OH) <sub>2</sub> | 7'5, T.               | 10.1              | 7.6                  | - 1               | 9.2               | -                      | -                     | -                                |
|                                                 |                       |                   |                      |                   |                   |                        |                       |                                  |
| * 3NaOH g                                       | gives 34.0 ×          | 103, T.           | † Ba                 | se in soli        | id state.         | ‡ 1H,SO,               | . § 11                | H <sub>2</sub> CO <sub>3</sub> . |

# HEATS OF COMBUSTION

HEATS OF COMBUSTION AND FORMATION OF CARBON COMPOUNDS, COAL, ETC. Molecular heats of formation (H.F.) of organic compounds are deduced from their heats of combustion (H.C.), by subtracting the latter from the heat generated on burning the carbon and hydrogen contained in the compound. Experimental errors in the H.C. thus become magnified in the H.F. Heats of combustion determined by Thomsen are for the vapour of the compound at 18° C.; for the liquid the H.C. and H.F. would be greater by the latent heat of evaporation. Thomsen assumes H.F. of CO<sub>2</sub> from amorphous C as = 96,960 cal.; of water as 68,360 cal. per gm. molecule. For H.F. of inorganic compounds, see p. 72.

The International Union of Pure and Applied Chemistry has adopted as standard, the value  $771.2 \times 10^3$  for the H.C. of benzoic acid, with succinic acid (256.0) as secondary standard.

Unit-the gram calorie (at 15° to 20°) per gram molecule.

**Example.**—16 gms. of methane, CH4, give out 212,000 gram calories of heat when burnt at constant pressure, to water and CO2 at 18° C.

(T., Thomsen, "Thermochemistry"; B., Berthelot; R., Richards, 1915; Ri., Rossini, 1934.)

| Compound.                                                                                                                                                                                                                          | H.C.                                                                                                                                                                                                                                                    | H.F.                                                                                                         | Compound.                                                                                                                                                                                                  | H.C.                                                                                                                                                                                                                                                                                                                     | H.F.                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Methane, $CH_4$ Ethane, $C_2H_6$ Propane, $C_3H_8$ Acetylene, $C_2H_2$ Ethylene, $C_2H_4$ Benzene, $C_6H_6$ Naphthalene, $C_{10}H_8$ Naphthalene, $C_{10}H_8$ Naphthalene, $C_{10}H_8$ Me. alcohol, $CH_4O$ Me. chloride, $CH_3Cl$ | × 10 <sup>3</sup><br>212.79, Ri.<br>372.81, Ri.<br>530.57, Ri.<br>310 T.,314<br>333, T.<br>780, R.<br>1231<br>956, T.<br>173.61, Ri.<br>177, T.<br>107, T.<br>326.61, Ri.<br>660, T.<br>334, T.<br>282, T.<br>69.4, T.<br>225, T.<br>387, T.<br>241, T. | $ \begin{array}{r} 28.6 \\ 35.1 \\ -47.8 \\ -2.7 \\ -12.5 \\ - \\ -3.5 \\ 51.4 \\ 22.6 \\ 24.1 \end{array} $ | Pyridine, C <sub>6</sub> H <sub>6</sub> N.<br>Sugar, C <sub>12</sub> H <sub>22</sub> O <sub>11</sub> .<br>Coal gas per cub.<br>metre.<br>Coal (anthracite)<br>Coal (brown)<br>Coke<br>Paraffin oil<br>Wood | $\begin{array}{c} \times 10^{3} \\ 399, T. \\ 265, T. \\ 258, T. \\ 420, T. \\ 838, T. \\ 675, T. \\ 1350 \\ 4500 to \\ 6000 \\ 7.6 to \\ 8.4 \\ 4.7 \\ 6.9 \\ 9.8 \\ \left\{ \frac{3.9}{10} \right\} \\ 8.4 \\ 4.7 \\ 6.9 \\ 9.8 \\ \left\{ \frac{3.9}{10} \right\} \\ 5.86 \\ 5.66 \\ 5.67 \\ 8.12 \\ 5.9 \end{array}$ | × 10 <sup>3</sup><br>96.7<br>- 26<br>9.5<br>12.7<br>- 17.4<br>- 19.4<br><br>per gm.<br>"""""""""""""""""""""""""""""""""""" |

#### MOLECULAR HEAT OF DILUTION

The heat set free or absorbed on diluting a gram molecule of liquid with water is the molecular heat of dilution: thus on diluting HCl to (HCl, **300** H<sub>2</sub>O), 17,300 calories per 36.5 grams of HCl are set free; diluting 2NaCl,  $nH_2O(n = 20)$  to (2NaCl, **100**H<sub>2</sub>O) absorbs 1060 cal. per 2 × 58.65 gm. of NaCl. **Unit**—the gram calorie (at 15° to 20°) per gram molecule. (See Thomsen, "Thermochemistry.")

| HCl<br>n = 0                            | HNO <sub>3</sub><br>n = 0                                                                                            | H <sub>2</sub> 80,<br>n = 0 | NaH0<br>n = 3                                                                                                                                         | NH3*                                | $\begin{array}{c} 2 \text{NaCl} \\ \text{n} = 20 \end{array}$ | $2NaNO_3 \\ n = 12$ | Na <sub>2</sub> SO,<br>n = 50                    | $     2nCl_2 $ $     n = 5 $              | Zn(NO <sub>3</sub> ) <sub>2</sub><br>n = 10 |  |  |  |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------|---------------------|--------------------------------------------------|-------------------------------------------|---------------------------------------------|--|--|--|
| 1 5·37<br>2 11·36<br>5 14·96<br>50 17·1 | 56.6<br>107.32<br>207.46                                                                                             | 1 6.38<br>5 13.1<br>49 16.7 | H <sub>2</sub> O ×10 <sup>3</sup><br>5 2 <sup>.</sup> 13<br>7 2 <sup>.</sup> 9<br>9 3 <sup>.</sup> 1<br>25 3 <sup>.</sup> 26<br>200 2 <sup>.</sup> 94 | 1 1.26<br>3 385<br>5.8 21<br>9.5 02 | 100 - 1.00<br>200 - 1.31<br>400 - 1.41                        | 200 - 3 86          | 100665<br>200 - 1.13<br>400 - 1.38<br>800 - 1.48 | 10 1 85<br>20 3 15<br>50 5 32<br>100 6 81 | 20 1.15                                     |  |  |  |
|                                         | * Heat developed on diluting NH <sub>2</sub> .#H <sub>2</sub> O to NH <sub>3</sub> .200H <sub>2</sub> O (Berthelot). |                             |                                                                                                                                                       |                                     |                                                               |                     |                                                  |                                           |                                             |  |  |  |

# RADIATION CONSTANTS, c1, C1

#### ENERGY AND WAVE-LENGTH OF FULL RADIATION

The radiation from a full or black body radiator depends both in quality and quantity upon the temperature. The total energy radiated (of all wave-lengths), from unit area in unit time, is given by *Stefan's law*,  $E = \sigma \theta^4$ , where  $\sigma$  is Stefan's constant and  $\theta$  is the absolute temperature (see Optical Pyrometry, p. 56, and below).

The dependence of the quality on the temperature is expressed by Wien's displacement law,  $\lambda_m \theta = \text{const.}$ , where  $\lambda_m$  is the length of the particular waves which have maximum emissive power. Thus the emissive power  $E_m$  of the waves of length  $\lambda_m$ , varies as the 5th power of the temperature (absolute) :  $E_m \theta^{-6} = \text{const.}$ 

The emissive power of some particular wave-length  $\lambda$  is expressed accurately by

 $E_{\lambda} = c_1 \lambda^{-\delta} / (e^{c_2/\lambda \theta} - 1) \quad . \quad . \quad . \quad P lanck's formula$ 

where  $c_1 = 3.71 \times 10^{-5}$  erg.-cm.<sup>2</sup> sec.<sup>-1</sup>,  $c_2 = 1.433$  cm.-deg., and e is the base of Napierian logs. At low temperatures or for short wave-lengths ( $\lambda\theta < 3$  cm.-deg.) Planck's formula becomes (to  $\cdot 8\%$  at least)—

 $E_{\lambda} = c_1 \lambda^{-5} e^{-c_1/\lambda \theta}$  . . Wien's formula (see p. 57)

For long waves and high temperatures ( $\lambda \theta > 730$  cm. deg.), we have (to 1 % at least)-

 $E_{\lambda} = c_1 \lambda^{-4} \theta e^{-c_1/\lambda \theta}$ . . . . . Rayleigh's formula

References: Roberts' "Heat and Thermodynamics," Wensel, J. Res. Nat. Bur. St., 1939.

|                         | is DISPLACEMENT LAW<br>t. = A. (See above.) $\lambda$ is<br>ms.    | STEFAN'S LAW<br>Total radiation from a full radiate<br>$= \sigma \theta^4$ (see above). $\sigma$ is in erg cm. <sup>-2</sup> sec.<br>deg <sup>-4</sup> .                   |                                                                                                                                |  |  |  |  |
|-------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| A                       | Observer.                                                          | σ                                                                                                                                                                          | Observer.                                                                                                                      |  |  |  |  |
| ·2898<br>·2876<br>·2892 | Mendenhall, 1914, 1917<br>Michel, 1922<br>mean of all observations | $5.79 \times 10^{-5}$<br>$5.7 \times 10^{-5}$<br>$5.77 \times 10^{-5}$<br>$5.73 \times 10^{-5}$<br>$5.79 \times 10^{-5}$<br>$5.76 \times 10^{-5}$<br>$5.75 \times 10^{-5}$ | Mendenhall, 1929<br>Foote, 1918<br>Müller, 1929<br>Hoare, 1932<br>Kussmann, 1924<br>Hoffmann, 1923<br>mean of all observations |  |  |  |  |

See Wensel, J. Res. Nat. Bur. St., 22, p. 1189, 1939. Wensel gives 19 observations of o.

#### C1 AND C2

The determination of the constant  $c_2$  in Planck's equation has received considerable attention on account of its importance in optical pyrometry. A knowledge of  $c_1$  is not, however, necessary for such work.

 $c_2$  is given below in micron-degrees, *i.e.* 10<sup>-4</sup> cm. degrees.

|                  |               | C 2 |  |  |   | Observer.                                 |
|------------------|---------------|-----|--|--|---|-------------------------------------------|
| 14,320 n         | icron-degrees |     |  |  |   | Coblentz, 1920<br>Rubens and Michel, 1921 |
| 14,300           | ,,            |     |  |  |   | Rubens and Michel, 1921                   |
| 14,300<br>14,360 | ,,            |     |  |  | * | Wensel, 1939                              |

# SOLAR CONSTANT

### THE UNIVERSAL CONSTANT h

Planck's radiation law (above) may also be written-

$$\mathbf{E}_{\lambda} = 2\pi c^2 h \lambda^{-5} / (e^{ch/k \lambda \theta} - \mathbf{I})$$

where c is the velocity of light, k is Boltzmann's constant, and h is Planck's universal constant. Planck's constant on the quantum theory is the constant of proportionality connecting the energy of a quantum with the frequency of vibration (v), *i.e.* the energy of a quantum = hv.

h is intimately related with the several radiation constants, and may be determined by use of either of the following relations—

 $h = c_2 k/c$ ;  $h = 15 c_2^4 \sigma / 2\pi^5 c^2 = c_2^4 \sigma / (40.8026c^2)$ 

where  $\sigma$  is the Stefan-Boltzmann constant (above).

See Planck's constant, p. 128.

T. H. L., V. D. H.

## SOLAR CONSTANT AND TEMPERATURE OF SUN

The solar constant S is the energy received from the sun by the earth (at its mean distance) per sq. cm. in unit time, corrected for the loss by absorption in the earth's atmosphere.

The determination of the absorption loss is difficult; it is best derived from simultaneous observations at high and low stations.

Langley and Abbot ("Smithsonian Reports," 1903 et seq.) give the following relation between atmospheric absorption and wave-length :--

| <b>Wave-length</b> (Å.U. = $10^{-8}$ cm.) | 4000 | 6000 | 8000 | 10,000 | 12,000 |
|-------------------------------------------|------|------|------|--------|--------|
| Fraction transmitted                      | •49  | .74  | ·85  | -89    | .91    |

If R is the energy radiated in unit time from a sq. cm. of the sun's surface, then

$$R = \left\{ \frac{\text{(earth's solar distance)}^2}{8} \times S = \frac{928 \times 10^7}{2} \times S = 46000$$

sun's radius  $(^{3} = (4.33 \times 10^{5}) \times 5 = 40,0005$ 

Assuming the sun to be a full or black body radiator, its "effective" absolute temperature  $\theta$  may be deduced either from (1) Stefan's law,  $R = \sigma (\theta^4 - T^4)$ , where  $\sigma$  is Stefan's constant (see above) and T is the earth's absolute temperature, or (2) Wien's displacement law,  $\theta \lambda_m = \text{const.}$  (see above).

Langley and Abbot (ref. above) find the distribution of the energy of solar radiation among the different wave-lengths  $(\lambda)$  to be as follows :---

| Wave-length (Å.U.).                                         | 4000 | 4500 | 5000 | 5500  | 6000  | 7000 | 8000   | 10,000 | 12,000  | 14,500 | 21,000 |
|-------------------------------------------------------------|------|------|------|-------|-------|------|--------|--------|---------|--------|--------|
| Relative energy, E                                          | 15.3 | 18.4 | 19   | 16    | 14    | II   | 8.8    | 5.4    | 3.5     | 2      | -6     |
| $\lambda$ for E <sub>max</sub> = 4900 × 10 <sup>-8</sup> cm | . Ta | king | Wie  | n's d | ispla | ceme | nt lay | v to b | e exmax | = '29  | and    |

assuming the sun to be a full radiator, its temperature  $\theta = 5920^{\circ}$  absolute.

#### SOLAR CONSTANT AND TEMPERATURE OF THE SUN (contd.)

The values of S below are expressed in both (1) calories per min. per cm.<sup>2</sup>, and (2) watts per cm.<sup>2</sup> (I calorie per sec. = 4.18 watts). The sun's mean temp.  $\theta$  is in degrees C. absolute. Abbot and Fowle find the solar constant varies by about 8 %. (See Poynting and Thomson's "Heat;" Chree, *Nature*, 82, 2090; Report (1910) of the International Union for Solar Research; and "Smithsonian Reports.")

| Solar C                                          | onst.                      |                |                                                              |                       |
|--------------------------------------------------|----------------------------|----------------|--------------------------------------------------------------|-----------------------|
| cals.<br>min. <sup>-1</sup><br>cm. <sup>-2</sup> | watts<br>cm. <sup>-2</sup> | Sun's<br>Temp. | Account.                                                     | Observer.             |
| -                                                | -                          | Abs.<br>5770°  | Comparison with const. temp. Atmos.<br>absorp. taken as 29 % | Wilson, 1902          |
|                                                  | -                          | 5920           | Using Wien's displacement law (above)                        | Langley & Abbot, '03  |
| 2.25                                             | 154                        |                | Gorner Grat, Switzerland                                     | Scheiner, 1908        |
| -                                                | -                          |                |                                                              | Harker & Blackie, '08 |
| 2.38                                             | .166                       | 56301          | Mt. Blanc. Comparison with const. temp.                      | (Féry & Millochau     |
| _                                                | -                          | 5360 /         | Atmos. absorp., 9 % with zenith sun                          | (Féry, 1909           |
|                                                  | -                          | 5630           | Mt. Blanc. Atmos. absorp., 3'4 %                             | Millochau, 1909       |
| 2°I                                              | .146                       | 5860†          |                                                              | Abbot & Fowle, '09    |
| 2.1                                              | .146                       | 58601          | Review of previous work                                      | Bellia, 1910          |
| 1.925*                                           | .134                       | 5740†          | Mt. Wilson (6000 ft.) and Mt. Whitney<br>(14,500 ft.)        | Abbot, 1910           |

\* Mean value for period 1904-9 (Nature, 1911).

↑ Calculated from S, taking Stefan's const. as 5'7 × 10-12 watts cm.-2 sec.-1 deg.-4.

#### THE CRYOSCOPIC CONSTANT

The cryoscopic constant, K, would be the depression of the freezing-point of a solvent when the molecular weight in grams of any substance (which does not dissociate or associate) is dissolved in 100 grams of the solvent, supposing the laws for dilute solutions held for such a concentration (Raoult, 1882). Van't Hoff (1887) showed that  $K = R\theta^2/(100L)$ , where R = the gas constant (see p. 7),  $\theta$  the absolute freezing-point of the solvent, L its latent heat of fusion in ergs. **Example**.—For I gram-molecule of solute in 100 gms. of water—

$$K = 8.312 \times 10^{7} \times (273.1)^{7} / (79.67 \times 4.184 \times 10^{9}) = 18.00$$

(See Whetham's "Theory of Solution.")

|                                                                       | M.                                | Lat. ht.                                                                                     |                           | К      | Galacat                             | M.                   | Lat. ht.                                        |                              | К                                          |
|-----------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------|---------------------------|--------|-------------------------------------|----------------------|-------------------------------------------------|------------------------------|--------------------------------------------|
| Solvent.                                                              | pt.                               | (cals.)                                                                                      | Calcd.                    | Obsd.  | Solvent.                            | pt.                  | (cals.)                                         | Calcd.                       | Obsd.                                      |
| H <sub>2</sub> SO <sub>4</sub> .H <sub>2</sub> O<br>SbCl <sub>3</sub> | o° C.<br>8·4<br>73·2<br>17<br>- 6 | 79 <sup>.6</sup><br>31 <sup>.7</sup> , B.<br>13 <sup>.4</sup> , T.<br>43 <sup>.7</sup> , Pe. | 18.6<br>50<br>174<br>38.5 | 48, L. | Formic acid<br>Phenol<br>p. Xylol . | 5°5<br>8<br>40<br>16 | 30'1, F.<br>57'4, Pe.<br>24'9, P.W.<br>39'3, C. | 51°6<br>27°5<br>78°6<br>42°5 | 51'2, P.<br>28, R.<br>72'7, E.<br>43, P.M. |

\* Mean of six observers; A.R., Ampola and Rimatori, 1897; B., Berthelot; C., Colson; E., Eykman, 1889; F., Fischer; G., Griffiths (who used 0'0005 to 0'02 normal sugar solutions); L., Lespieau, 1894; P., Paternò, 1889; Pe., Pettersson; P.M., Paternò and Montemartini, 1894; P.W., Pettersson and Widman; R., Raoult; T., Tolloczko, 1899.

# VELOCITY OF SOUND

#### VELOCITY OF SOUND

The velocity of sound (longitudinal waves) in a body,  $V = \sqrt{E/\rho}$ , E being the elasticity, and  $\rho$  the density. In gases and liquids E is the adiabatic volume elasticity; in isotropic solid rods or pipes E is Young's Modulus. For gases  $V = \sqrt{\gamma P/\rho}$ , P being the pressure, and  $\gamma$  the ratio of the specific heat of the gas at constant pressure to that at constant volume. For values of  $\gamma$ , see p. 68.

For moderate temperature variations, the velocity of sound in gases is given by  $V_t = V_0(1 + \frac{1}{2}at) = V_0 + 61t$  in cms. per sec. for dry air (a = '00367).

The velocity of sound decreases with decreasing intensity down to the normal value and increases in the supersonic region. In gases in tubes the velocity increases with the diameter up to a limiting value for free space (K. & S.). The values below are for free space. Barton's "Sound" and Poynting and Thomson's "Sound" may be consulted. [I foot = 30.48 cms.]

| Substance.                                                                                                                                                                                                                                                                                                                                                                                                      | Temp.                                                                                                        | Velocity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observer.                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gases—<br>Air (dry) $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ | 0° C.<br>0<br>0<br>- 45.6<br>- 182.4<br>18<br>100<br>- 184.7<br>0<br>18<br>0<br>1000<br>18<br>0<br>18<br>110 | $\begin{array}{c} {\rm cms./sec.} \\ (3\cdot3133) \times 10^4 \\ 3\cdot308 \\ 3\cdot309 \\ 3\cdot309 \\ 3\cdot3129 \\ $ | Calcd. ( $\gamma = 1.401$ )<br>A. & L., 1921<br>Esclangon, 1919<br>Hebb, 1905<br>Greely, 1890<br>Cook, 1906<br>K. & S., 1933<br>""<br>1883<br>Töpler, 1908<br>K. & S., 1933<br>Stewart, 1931<br>Cook, 1906<br>Wullner, 1878<br>K. & S., 1933<br>Stewart, 1931<br>S. & G., 1934<br>K. & S., 1933<br>Treitz, 1903 |
| Liquids—<br>Water                                                                                                                                                                                                                                                                                                                                                                                               | 20<br>20<br>waves 18<br>8·4<br>0<br>3·5                                                                      | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Brillié, 1919<br>Wood, 1922<br>Threlfall & Adair, 1889<br>Martini, 1888<br>''                                                                                                                                                                                                                                   |

\* The range of speeds is given by varying intensities. A. & L., Angerer and Ladenberg; K. & S., Kaye and Sherratt; S. & G., Sherratt and Griffiths.

| Solid.                                                                                  | Velocity<br>cms./sec.                                                                                          | Solid.                                                                               | Velocity<br>cms./sec.                                                                                 | Solid.                                                   | Velocity<br>cms./sec.                                                                                                |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Aluminium<br>Cadmium<br>Cobalt<br>Copper<br>Gold<br>Iron (wrought)<br>" (cast)<br>Steel | 51'0 × 10 <sup>4</sup><br>23'1 ,,<br>47'2 ,,<br>39'7 ,,<br>20'8 ,,<br>49-51 ,,<br><i>c</i> . 43 ,,<br>47-52 ,, | Lead<br>Nickel<br>Platinum<br>Silver<br>Tin<br>Zinc<br>Glass (soda) .<br>" (flint) . | 12'3 × 10 <sup>4</sup><br>49'7 "<br>26'8 "<br>26'4 "<br>24'9 "<br>36'8 "<br>50-53 "<br><b>c. 40 "</b> | Deal (along<br>grain)<br>Fir ,,<br>Mahogany ,,<br>Oak ,, | c. $36^{\circ}5 \times 10^{4}$<br>$49^{-50}$ "<br>$42^{-53}$ "<br>$41^{-46}$ "<br>$40^{-44}$ "<br>c. $33$ "<br>5-7 " |

# SOUND

| SOUND AND<br>The <b>bel</b> (10 decibels)<br>intensity change, so t<br>have intensities $I_1$ and<br>$\log_{10}(I_1/I_2)$ bels.<br>The subjective quality<br>mess of a sound is measu<br>the intensity in free air<br>frequency 1000 cycles<br>judged by a normal of<br>source, to be as loud as<br>International scale, this<br>in decibels above a re<br>0.0002 dyne per sq. cm.<br>cally the equivalent loud<br>phons. | is a tenfold un<br>hat if two sou<br>$I_2$ , they differ<br>known as the $I_0$<br>ared by reference<br>of a pure ton<br>per sec., which<br>bserver facing<br>the sound. In<br>intensity. expre<br>ference "zero",<br>expresses num<br>ness of the soun | oud-<br>e of L<br>h is<br>the H<br>ssed<br>' of L<br>heri-<br>d in | Closed p<br>Open pi<br>ower limi<br>Upper limi<br>lighest pi<br>(piccolo<br>owest pi<br>(64-foot | t of audit<br>it of audit<br>tch in pia<br>tch in orc<br>d <sup>v</sup> )<br>tch in c<br>pipe) . | th L)<br>4L/3, 41<br>2L/2, 21<br>tion .<br>tion .<br>hestra<br>organs | 2/5, etc.<br>2/3, etc.<br>20,000 to<br>20,000 to<br>30,000<br>3520<br>4752<br>8 |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|
| give rise to the sensation<br>threshold of audibility, a<br>sensation of sound gives<br>pressure in dynes per sq.<br>given by Fletcher (1929),                                                                                                                                                                                                                                                                            | nd on the other<br>place to pain.<br>cm. at the ear<br>and by Sivian a                                                                                                                                                                                 | by the<br>The t<br>drum fo<br>and Whi                              | <i>threshola</i><br>able below<br>or both th<br>ite (1933).                                      | <i>l of feelin</i><br>w, which<br>resholds,                                                      | g, above<br>gives t<br>is based                                       | e which the<br>he R.M.S.<br>l on curves                                         |  |  |  |
| Frequency (cycles per                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                        | 32                                                                 | 64                                                                                               | 128                                                                                              | 256                                                                   | 512                                                                             |  |  |  |
| Pressure at { audibilit<br>threshold of { feeling                                                                                                                                                                                                                                                                                                                                                                         | I2 12 12                                                                                                                                                                                                                                               | 2<br>60                                                            | 0·15<br>200                                                                                      | 0·018<br>700                                                                                     | 0.0040<br>1260                                                        | 0 0.0010<br>2300                                                                |  |  |  |
| Frequency (cycles per                                                                                                                                                                                                                                                                                                                                                                                                     | sec.) <b>1024</b>                                                                                                                                                                                                                                      | 2048                                                               | 4096                                                                                             | 8192                                                                                             | 12,000                                                                | 20,700                                                                          |  |  |  |
| Pressure at { audibilit<br>threshold of { feeling                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                        | 0·00040<br>1000                                                    | 0.00057<br>400                                                                                   | 0.0020 <sub>5</sub><br>90                                                                        | 0.020<br>30.6                                                         | 10·0<br>10·0                                                                    |  |  |  |
| L, length; K, radius of                                                                                                                                                                                                                                                                                                                                                                                                   | TRANSVERSE VII<br>gyration of cros                                                                                                                                                                                                                     |                                                                    |                                                                                                  | The second second                                                                                | odulus;                                                               | ρ, density                                                                      |  |  |  |
| No. of Distance of I<br>Nodes. from one e                                                                                                                                                                                                                                                                                                                                                                                 | nd. × T.                                                                                                                                                                                                                                               | φ<br>P                                                             | No. of I<br>Nodes.                                                                               | istance of<br>from one                                                                           |                                                                       | $\propto \frac{K}{L^2} \sqrt{\frac{E}{\rho}}$                                   |  |  |  |
| $\begin{array}{c c c} \text{Both} & 2 & \cdot 224 \text{ L}; \cdot 7\\ \text{ends} & 3 & \cdot 132\text{ L}; \cdot 5\text{ L};\\ \text{free} & 4 & \left\{ \begin{array}{c} \cdot 094\text{ L}; \cdot 3\\ \cdot 644\text{ L}; \cdot 9 \end{array} \right. \end{array} \right.$                                                                                                                                            | ·868L 2·76<br>56L) 5·10                                                                                                                                                                                                                                | One<br>end<br>fixed                                                | 1 2                                                                                              |                                                                                                  | ·5L                                                                   | 1<br>6·27<br>17·5<br>34·4                                                       |  |  |  |
| FREQU                                                                                                                                                                                                                                                                                                                                                                                                                     | ENCY RATIO                                                                                                                                                                                                                                             | S OF                                                               | MUSICA                                                                                           | L SCAL                                                                                           | .E                                                                    |                                                                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                           | C D E F G A B c<br>Doh Ray Me Fah Soh Lah Te Doh                                                                                                                                                                                                       |                                                                    |                                                                                                  |                                                                                                  |                                                                       |                                                                                 |  |  |  |
| Natural scale $\begin{pmatrix} \frac{9}{8} & \frac{10}{9} & \frac{16}{15} & \frac{9}{8} & \frac{10}{9} & \frac{9}{8} & \frac{16}{15} \\ I & \frac{9}{8} & \frac{5}{4} & \frac{5}{8} & \frac{3}{2} & \frac{5}{3} & \frac{16}{5} & 2 \\ 24 & 27 & 30 & 32 & 36 & 40 & 45 & 48 \\ I & 000 & I & 125 & I & 250 & I & 333 & I & 500 & I & 667 & I & 875 & 2 & 000 \\ \end{pmatrix}$                                            |                                                                                                                                                                                                                                                        |                                                                    |                                                                                                  |                                                                                                  |                                                                       |                                                                                 |  |  |  |
| Equally tempered scale                                                                                                                                                                                                                                                                                                                                                                                                    | I'000 I'122                                                                                                                                                                                                                                            | 1.360                                                              | 1.335 1                                                                                          | .498 1.6                                                                                         | 82 1.88                                                               | 38 2'000                                                                        |  |  |  |
| Standard forks (König)<br>(marked c'=512 and so on)                                                                                                                                                                                                                                                                                                                                                                       | Standard forks (König) c' d' e' f' g' a' b' e"                                                                                                                                                                                                         |                                                                    |                                                                                                  |                                                                                                  |                                                                       |                                                                                 |  |  |  |
| For data on acoust                                                                                                                                                                                                                                                                                                                                                                                                        | AL ABSORPT<br>tical absorption<br>cs of Buildings,                                                                                                                                                                                                     | n and                                                              | transmis                                                                                         | sion by                                                                                          | materia                                                               | ls, see                                                                         |  |  |  |

"Acoustics of Buildings," by Davis & Kaye. (Bell.)

.

#### INTERNATIONAL CONCERT PITCH

The long overdue question of the standardization of concert pitch has assumed a new prominence in view of the requirements of international broadcasting. At an International Conference held in London in May 1939, it was agreed that the international standard of concert pitch should be based on a frequency of 440 cycles per second for the note A in the treble clef. Of late years there had been a general upward departure from the Vienna Standard of some 50 years ago, *i.e.* the French Diapason Normal (A = 435 c/s at a working temperature of 15° C.).

In connection with the international standard, the British Standards Institution makes the following recommendations :---

#### TEMPERATURE AND PITCH OF MUSICAL INSTRUMENTS

In view of the dependence of the pitch of nearly all musical instruments on temperature, such instruments should be constructed to be in accord with the international standard of concert pitch at a temperature of 20° C. (68° F.). For many countries this may be taken to be a fair average figure for the temperature of the air of a concert hall during a performance. The increasing employment of "air conditioning" for concert halls is an important factor in this connection.

In those cases where it is possible, instruments should be provided with adequate pitch-adjustments to allow the player to correct for the effects of such temperature variations as may occur during a concert. The following changes of pitch occur when musical instruments, as at present constructed, are subjected to moderate temperature changes :—

Flue Pipes of Wind Organs.—The flue pipes of wind organs have the largest temperature co-efficient of any musical instrument, the pitch rising by about 1 part in 500 for 1° C. rise in the temperature of the air (*i.e.* 1 part in 900 for 1° F. rise). For example, the international standard pitch of A = 440 at 20° C., corresponds to approximately 435 at 15° C. (59° F.)—which is the *Diapason Normal*.

**Reed Pipes of Wind Organs and Orchestral Wind Instruments** are, on the average, subject to about half the rise of pitch experienced by the flue pipes of the organ for the same temperature-rise of the surrounding air.

**Pianos**.—The pitch of pianos falls by about 1 part in 10,000 for 1° C. rise in temperature (*i.e.*, 1 part in 18,000 for 1° F. rise).

Electro-Acoustic Organs and similar instruments have a negligible temperature coefficient.

#### SUB-STANDARDS OF PITCH

When the proposed broadcast standard is not available, the use of suitable tuning forks as sub-standards of pitch is recommended on the score of reliability and convenience. Tuning forks, if of steel, drop in pitch by only about I part in 9,000 for I° C. rise in temperature (*i.e.* about I part in 16,000 for I° F. rise). Elinvar forks are to be preferred, in that they have a negligible temperature coefficient and are not liable to rust. Tuning forks are demonstrably superior in respect of temperature to the oboe, which is often used as an orchestral standard of pitch.

# VELOCITY OF LIGHT (See page 84)

#### PHOTOMETRIC STANDARDS

The unit of luminous intensity now generally adopted, except in some central European countries, is the International Candle (c), maintained by agreement between the national standardizing laboratories of Great Britain, France and the U.S.A. The candle-power (I) of a source in a specified direction is its luminous intensity expressed in candles. The mean spherical candle**power**  $(I_o)$  (m.s.c.p.) is the mean of the candle-powers measured in all directions about the source as origin. The **mean horizontal eandle-power**  $(I_n)$  is the mean of the candle-power measured in all directions in a horizontal plane, the source being in its normal burning position.

Light is radiant energy perceptible to the eye. A given amount of energy is differently evaluated by the eye according to its wave-length. The value assigned by the average human eye to a given amount of energy at wave-length  $\lambda$  is termed the relative visibility factor,  $K_{\lambda}$ , when the value of  $K_{\lambda}$  at the wave-length of maximum visibility is taken as unity. The values of  $K_{\lambda}$  adopted internationally are as follows :---

| λ<br><i>m</i> μ          | 0     | 10                                 | 20                                  | 30                                  | 40             | 50                                 | 60                                 | 70                      | 80                      | 90                       |
|--------------------------|-------|------------------------------------|-------------------------------------|-------------------------------------|----------------|------------------------------------|------------------------------------|-------------------------|-------------------------|--------------------------|
| 400<br>500<br>600<br>700 | 0.323 | 0.0012<br>0.503<br>0.503<br>0.0021 | 0.0040<br>0.710<br>0.381<br>0.00105 | 0.0116<br>0.862<br>0.265<br>0.00052 | 0.954<br>0.175 | 0.038<br>0.995<br>0.107<br>0.00012 | 0.060<br>0.995<br>0.061<br>0.00006 | 0.091<br>0.952<br>0.032 | 0·139<br>0·870<br>0·017 | 0·208<br>0·757<br>0·0082 |

| THE | RELAT | IVE V | ISIBILITY | FACTOR |
|-----|-------|-------|-----------|--------|
|-----|-------|-------|-----------|--------|

The time rate of passage, or emission, of radiant energy (*i.e.* radiant power), evaluated in accordance with the visibility factor as described above, is termed luminous flux (F). Thus the total luminous flux emitted by a source is a measure of its light-giving power without reference to distribution. The unit of luminous flux is the lumen and is the flux emitted within the unit solid angle by a uniform source of one candle-power. Since the total solid angle at a point is  $4\pi$ , the total flux emission from a source of m.s.c.p. equal to  $I_0$  is  $4\pi I_0$  lumens. Further it follows that the candlepower of a source in any direction is equal to the angular flux density in that direction expressed in lumens per unit solid angle, i.e.  $I = dF/d\omega$ .

The mechanical equivalent of light is the ratio of the radiant flux (in watts) to the luminous flux (in lumens) at the wave-length for which  $K_{\lambda}$  is a maximum. It is equal to 0.0016 watt per lumen, approximately (see H. E. Ives, "Opt. Soc. Am., J.," Vol. 9, 1924, p. 638). The illumination (E) of a surface is equal to the luminous flux it receives per unit area. The

British unit is the foot-candle (f.c.), equal to I lumen per square foot. The metric unit is the lux or metre-candle (m.c.), which equals I lumen per square metre. Hence I f.c.=10.76 lux or m.c.

The brightness (B) of a surface in a given direction is the luminous intensity per unit projected area in that direction. It is measured in candles per square inch, per sq. cm., etc. Alternatively brightness may be expressed in terms of the brightness of a perfectly diffusing surface (*i.e.* a surface having the same brightness whatever the direction in which it is viewed) emitting I lumen per square centimetre. This unit is termed the lambert, and its one-thousandth part, the millilambert, is frequently used in America as a unit of brightness. I candle per sq. cm. =  $\pi$  lamberts. I candle per sq. inch = 487 millilamberts.

|                                      | Brightness<br>(c/mm <sup>2</sup> ) | Brightness<br>Temperature [°K]. | Colour<br>Temperature [° K]. |  |
|--------------------------------------|------------------------------------|---------------------------------|------------------------------|--|
| Candle                               | 0.002                              | -                               | 1930                         |  |
| Paraffin flame (flat wick)           | 0.0125                             | 1500                            | 2055                         |  |
| ,, ,, (round wick)                   | 0.012                              | 1530                            | 1920                         |  |
| Acetylene (Kodak burner)             | 0.108                              | 1730                            | 2360                         |  |
| Welsbach mantle (low pressure) .     | 0.048-0.058                        | -                               |                              |  |
| " " (high pressure) .                | 0.25                               | -                               | -                            |  |
| Tungsten fil. lamp (vac. 7.9 l/w)* . | 1.22                               | 2150                            | 2400                         |  |
| " " " (gas-f. 12.9 l/w)              | 5.97                               | _                               | 2740                         |  |
| """"(" 15·2 l/w)                     | 7.72                               |                                 | 2810                         |  |
| """"(" 18·1 l/w)                     | 10.00                              | -                               | 2920                         |  |
| ,, ,, ,, ( ,, 21·2 l/w)              | 13.25                              | -                               | 3000                         |  |
| Mercury vapour (glass)               | 0.023                              | -                               | -                            |  |
| Arc crater (solid plane carbon) .    | 172                                | 3700 †                          | 3780                         |  |
| Clear blue sky                       | 0'004                              | <u> </u>                        | 12.000 to 24,000             |  |
| Zenith sun (at earth's surface)      | 1650                               | -                               | 5400                         |  |

AND

The brightness temperature is often termed the "black-body" temperature (see p. 57).

The colour temperature is the temperature of the black-body giving light of the same colour as that emitted by the source under consideration. See Walsh, "Photometry," p. 270 (Constable). It is to be noted that the Hefner candle = 0.90 int. candle. The system of photometric units used in Germany and some other countries is based on this unit (symbol HK). The units affected are (a) the candle, (b) the lumen, and (c) the meter-candle (I Meter-kerze = 0.9 m.c.).

1/w = lumens per watt; || λ = 0.665μ; † λ = 0.65μ.

## 82 GASEOUS REFRACTIVE INDICES

#### GASEOUS REFRACTIVE INDICES AND DISPERSIONS

Dispersion.—Cauchy's equation is  $n - I = A(I + B/\lambda^2)$ , where n is the refractive

index for the wave-length  $\lambda$ ; A and B are constants. B is the coefficient of dispersion. The refractivity (n-1)=A, when  $\lambda = \infty$ . The values of A and B are for wave-lengths measured in cms. The refractive indices are mostly for the sodium D line ( $\lambda = 5893 \times 10^{-8}$  cm.). The values of n are reduced to a standard density at o° and 760 mms. by assuming that  $(n-1)/\rho$  is a constant for each gas,  $\rho$  being the density. Cauchy's formula is in general inadequate over large dispersions. (See Cuthbertson Science Progress, 1008: and Proc. & Trans. Ray. Soc. for 1005 et see ) Cuthbertson, Science Progress, 1908; and Proc. & Trans. Roy. Soc. for 1905 et seq.)

| Gas or                                                                                                                                                                                                                     | Refractive<br>Index n for                                                                                                                                                                                      | Cauchy's                                                                                                                                                                                      | Constants.                                                                                                                                                                            |                                                                                                                                                                                                                                                                                | Observer.                                                                                                                        |                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Vapour.                                                                                                                                                                                                                    | Na D line.                                                                                                                                                                                                     | Δ.                                                                                                                                                                                            | B.                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                | 00501 1011                                                                                                                       |                                                                                   |
| Air<br>Hydrogen .<br>Helium<br>Neon<br>Argon<br>Krypton .<br>Xenon<br>Fluorine .<br>Fluorine .<br>Chlorine .<br>Bromine .<br>Iodine<br>Oxygen<br>Sulphur<br>Selenium .<br>Tellurium<br>Nitrogen .<br>Phosphorus<br>Arsenic | 1'0002918<br>1'0001384<br>1'000350<br>1'000671<br>1'0002837<br>1'0004273<br>1'000702<br>1'000195<br>1'000195<br>1'00192 †<br>1'000272<br>1'0019111<br>1'001565<br>1'002495<br>1'000297<br>1'001212<br>1'001552 | $ \begin{array}{c} 28.71 \times 10^{-6} \\ 13.58 \\ 3.48 \\ 6.66 \\ 27.92 \\ 41.89 \\ 68.23 \\ \\ - \\ 26.63 \\ \end{array} $                                                                 |                                                                                                                                                                                       | "Burton; Cuthbertson & Metcalfe, 1907<br>C. & M. Cuthbertson, 1909<br>Burton, 1907<br>C. & M. Cuthbertson, 1908<br>"Cuthbertson & Prideaux, 1906<br>Mascart, 1878<br>"Hurion, 1877<br>Rentschler, 1908<br>Cuthbertson & Metcalfe, 1908<br>"""""""""""""""""""""""""""""""""""" |                                                                                                                                  |                                                                                   |
| Zinc<br>Cadmium .<br>Mercury .                                                                                                                                                                                             | 1'002050<br>1'002675<br>1'000933                                                                                                                                                                               | 87.8 "                                                                                                                                                                                        | 22.65 "                                                                                                                                                                               | »<br>»<br>»                                                                                                                                                                                                                                                                    |                                                                                                                                  | 27<br>27<br>21                                                                    |
| Gas or Vap                                                                                                                                                                                                                 |                                                                                                                                                                                                                | nfor Obser                                                                                                                                                                                    | rver. G                                                                                                                                                                               | as or Vapour.                                                                                                                                                                                                                                                                  | Index n for<br>Na D line.                                                                                                        |                                                                                   |
| Sulph. hydro<br>Sulphur diox                                                                                                                                                                                               | 1'000<br>1'000<br>1'000<br>1'000<br>c acid 1'000<br>c acid 1'000<br>cid . 1'000<br>oxide 1'000<br>ide . 1'000<br>phide 1'001<br>gen 1'000<br>, 1'000                                                           | 250 Loren<br>377 Masca<br>373 Loren<br>515 Masca<br>297 "<br>444 "<br>570 "<br>906 Hurio<br>334 Masca<br>4498 Perrea<br>476 Masca<br>641 D.,<br>619 Masca<br>660 Walke<br>737 C. & M<br>783 " | nz, '74 cl<br>rt, '78 Pho<br>iz, '74 Pho<br>rt, '78 cl<br>" Pen<br>" Ace<br>on, '77 Eth<br>rt, '78<br>iu, '96 Ben<br>rt, '78<br>1826 Met<br>rt, '78<br>i, '03<br>1., '08 Chlo<br>Carl | vene, C <sub>6</sub> H <sub>6</sub> .<br>hyl fluoride<br>, chloride<br>, alcohol<br>roform, CHCl <sub>3</sub>                                                                                                                                                                  | 1'000441<br>1'001701<br>1'000606<br>1'000719<br>1'000674<br>1'001812<br>1'001765<br>1'000449<br>1'000865<br>1'000552<br>1'000552 | P. & M.<br>D., 1826<br>Mascart, '78<br>""""<br>"""""<br>""""""""""""""""""""""""" |

REFRACTIVE INDICES

### REFRACTIVE INDICES

Refractive indices, *n*, (against air) at 15° C. for various wave-lengths. The **temperature coefficient** given below is the change of refractive index per 1° C. rise of temperature for the case of the sodium D line.

The refractive indices are due chiefly to Gifford (*Proc. Roy. Soc.*, 1902, 1904, 1910); Rubens and Paschen (for the infra-red) and Martens (1902). The two Jena glasses are selected as typical. Other glasses are dealt with on p. 85.

| Wave-length in                                                                                                                                         | Cales                                                                | oar, 18°.                                                            | Jena g                                                               | glass.                                                               | Flu-<br>orite,                                                       | Quart                                                                                | z, 18°.                                                              | Fused                                                                | Rock                                                                 | Syl-<br>vin,                                                         | Water                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| Å.U. (10-8 cm.).                                                                                                                                       | ord.<br>ray.                                                         | ext.<br>ray.                                                         | Crown*                                                               | flint.†                                                              | CaF <sub>2</sub> .<br>18°.                                           | ord.<br>ray.                                                                         | ext.<br>ray.                                                         | silica.                                                              | salt,<br>18°.                                                        | KCÍ<br>18°.                                                          | at 20°.                                                              |
| Infra-red.                                                                                                                                             | I.                                                                   | I.                                                                   | I.                                                                   | I.                                                                   | I.                                                                   | 1.                                                                                   | I.                                                                   | I.                                                                   | 1.                                                                   | 1.                                                                   | 1.                                                                   |
| 223,000                                                                                                                                                | -                                                                    | -                                                                    | -                                                                    | -                                                                    | -                                                                    | -                                                                                    | -                                                                    |                                                                      | 3403                                                                 | 3712                                                                 | -                                                                    |
| 94,290                                                                                                                                                 | -                                                                    | -                                                                    | -                                                                    | -                                                                    | 3161                                                                 | -                                                                                    | -                                                                    | -                                                                    | 4983                                                                 | 4587                                                                 |                                                                      |
| 42,000                                                                                                                                                 | -                                                                    | -                                                                    | -                                                                    | -                                                                    | 4078                                                                 | 4569                                                                                 | -                                                                    | -                                                                    | 5213                                                                 | 4720                                                                 | -                                                                    |
| 21,720<br>12,560                                                                                                                                       | 6210                                                                 | 4746                                                                 | 4946                                                                 | 6153                                                                 | 4230                                                                 | 5180                                                                                 | 5261                                                                 | -                                                                    | 5262                                                                 | 4750                                                                 | 2210                                                                 |
|                                                                                                                                                        | 6388                                                                 | 4782                                                                 | 5042                                                                 | 6268                                                                 | 4275                                                                 | 5316                                                                                 | 5402                                                                 | -                                                                    | 5297                                                                 | 4778                                                                 | 3210                                                                 |
| Visible.<br>Li, (r) 6708<br>H, (C) 6563<br>Cd, (r) 6438<br>Na, (D) 5893<br>Hg, (g) 5461<br>Cd, (g) 5086<br>H, (F) 4861<br>Cd, (b) 4800<br>Hg, (v) 4047 | 6537<br>6544<br>6550<br>6584<br>6616<br>6653<br>6678<br>6686<br>6813 | 4843<br>4846<br>4847<br>4864<br>4879<br>4895<br>4907<br>4911<br>4969 | 5140<br>5145<br>5149<br>5170<br>5191<br>5213<br>5230<br>5235<br>5318 | 6434<br>6444<br>6453<br>6499<br>6546<br>6598<br>6637<br>6648<br>6852 | 4323<br>4325<br>4327<br>4339<br>4350<br>4362<br>4371<br>4369<br>4415 | 5415<br>5419<br>5423<br>5443<br>5462<br>5462<br>5482<br>5482<br>5497<br>5501<br>5572 | 5505<br>5509<br>5514<br>5534<br>5553<br>5575<br>5590<br>5594<br>5667 | 4561<br>4564<br>4568<br>4585<br>4602<br>4619<br>4632<br>4636<br>4697 | 5400<br>5407<br>5412<br>5443<br>5475<br>5509<br>5534<br>5541<br>5665 | 4866<br>4872<br>4877<br>4904<br>4931<br>4961<br>4983<br>4990<br>5097 | 3308<br>3311<br>3314<br>3330<br>3345<br>3360<br>3371<br>3374<br>3428 |
| Ultra-violet.<br>Sn 3034<br>Cd 2144<br>Al 1852                                                                                                         | 7196<br>8459                                                         | 5136<br>5600                                                         | 5552                                                                 |                                                                      | 4534<br>4846<br>5099                                                 | 5770<br>6305<br>6759                                                                 | 5872<br>6427<br>6901                                                 | 4869<br>5339<br>5743                                                 | 6085<br>7322<br>8933                                                 | 5440<br>6618<br>8270                                                 | 3581<br>4032                                                         |
| Temp. co-<br>efficient (D)                                                                                                                             | + •035                                                               | + '0,14                                                              | -*0 <sub>5</sub> 1                                                   | + '053                                                               | - '0 <sub>4</sub> I                                                  | - *0 <sub>5</sub> 5                                                                  | - •0 <sub>5</sub> 6                                                  | 023                                                                  | - '044                                                               | - °0 <sub>4</sub> 4                                                  | 0*8                                                                  |

\* Light barium crown. † Dense silicate flint.

n = 1.3692 for  $\lambda = 225,000$ .

#### REFRACTIVE INDICES

Refractive indices  $n_D$  (against air) at 15° C. for sodium D line ( $\lambda = 5893 \times 10^{-8}$  cm.).

| Substance.                                                                                                                                                          | 710                                                                    | Substance.                                                                                                                                                                                                   | 'nD                                                                                                            | Substance.                                                                                                                                                                 | nD                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Solids.<br>Alum (potash)<br>Cyanin<br>Diamond<br>Glass (see above<br>and p. 85)<br>Ice<br>Mica . 1°56 to<br>Ruby<br>Sugar<br>Topaz<br>Liquids.<br>Alcohol, methyl . | 1.456<br>1.71<br>2.417<br>1.31<br>1.60<br>1.76<br>1.56<br>1.63<br>1.33 | Alcohol, ethyl<br>, amyl<br>Aniline<br>Benzene<br>Bromoform<br>Canada balsam<br>Carb. bisulphide .<br>, tetrachloride<br>Chloroform<br>Ether, ethyl<br>Ethylene dibromide<br>Glycerine<br>Methylene iodide . | 1'362<br>1'41<br>1'590<br>1'504<br>1'591<br>1'53<br>1'632<br>1'464<br>1'449<br>1'354<br>1'540<br>1'47<br>1'744 | Monobrom benzene<br>""naphtha-<br>lene.<br>Nitrobenzene<br>Oil, cedar<br>"cloves<br>"cinnamon<br>"olive<br>"paraffin<br>Sulphuric acid<br>Turpentine<br>Water (see above). | 1.563<br>1.660<br>1.553<br>1.516<br>1.532<br>1.601<br>1.46<br>1.44<br>1.43<br>1.47<br>1.333 |

# VELOCITY OF LIGHT

#### DISPERSIVE POWERS

The dispersion  $\nu$  given below =  $(n_{\rm D} - 1)/(n_{\rm C} - n_{\rm F})$  where  $n_{\rm C}$ ,  $n_{\rm D}$ ,  $n_{\rm F}$  are the refractive indices corresponding to the red (C) H line (6563), the yellow Na (D) line (5893), and the green-blue (F) hydrogen line (4862).

| Substance.                                                         | ν              | Substance.                                                   | ν                          | Substance.                                                              | ν                      |
|--------------------------------------------------------------------|----------------|--------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------|------------------------|
| Solids.<br>Calcite, ord<br>,, ext<br>Fluorite<br>Glass (see p. 85) | 49<br>80<br>95 | Quartz, ord<br>,, ext<br>Fused silica<br>Rock salt<br>Sylvin | 70<br>68<br>69<br>43<br>44 | <b>Liquids.</b><br>Carb. bisulphide .<br>Alcohol<br>Turpentine<br>Water | 18·3<br>58<br>49<br>56 |

G. W. C. K.

### VELOCITY OF LIGHT

#### VELOCITY OF LIGHT IN VACUO

Methods.-T. W. toothed wheel; R. M. rotating mirror.

For ratio of e.s. to e.m. units, see p. 15.

Weighted mean of last three observations c = 299.774 + 11 km.sec.<sup>-1</sup>

| Date.                        | Author.                                                        | Method. | Vel. km.sec1.                                                                                                           | Date.                        | Author.                            | Method.                                      | Vel. km.sec1.                                                                                                           |
|------------------------------|----------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 1863<br>1875<br>1879<br>1883 | Fizeau<br>Foucault<br>C—H<br>Michelson<br>Newcomb<br>Michelson | R.M.    | $\begin{array}{r} 315,300\\ 298,100\pm 500\\ 299,990\pm 200\\ 299,970\pm 50\\ 299,860\pm 30\\ 299,853\pm 60\end{array}$ | 1924<br>1926<br>1928<br>1932 | Michelson<br>K and M<br>M, P and P | R.M.<br>R.M.<br>R.M.<br>R.M.<br>R.M.<br>R.M. | $\begin{array}{c} 299,901\pm84\\ 299,802\pm30\\ 299,796\pm4\\ 299,778\pm20\\ 299,778\pm11\\ 299,764\pm15\\ \end{array}$ |

C-H, Cornu-Helmert, K and M, Karolus and Mittelstædt; M, P and P, Michelson, Pease and Pearson.

#### VELOCITY OF HERTZIAN WAVES

Mercier (1923) using stationary waves on Lecher wires found  $c = 299,782 \pm 30$  km. sec.-1. V. D. H.

#### VELOCITY OF LIGHT IN LIQUIDS

| Liquid.      | Vel. in vacuo<br>Vel. in liquid | Refractive index<br>for Na D line. | Method.         | Observer.       |  |
|--------------|---------------------------------|------------------------------------|-----------------|-----------------|--|
| Water $CS_2$ | 1·330<br>1·758                  | 1·333/20°<br>1·627/20°             | Rotating mirror | Michelson, 1883 |  |

#### GLASS

The **raw materials** for the manufacture of glass are (1) silica—usually as sand or felspar; (2) salts of the alkali metals—Na<sub>2</sub>SO<sub>4</sub>, Na<sub>2</sub>CO<sub>3</sub>, or K<sub>2</sub>CO<sub>3</sub>; (3) salts of bases other than alkalies—red lead, limestone or chalk, BaCO<sub>3</sub> or BaSO<sub>4</sub>, MgCO<sub>3</sub>, ZnO, MnO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, As<sub>2</sub>O<sub>3</sub>, etc. In general, glasses rich in silica and lime are hard,

while glasses in which alkali, lead, or barium preponderate are soft. Hardness is, of course, also largely dependent on annealing. Ordinary "soft" (*i.e.* easily fusible) German glass is a soda-lime glass rather rich in alkali ; "hard" (refractory) glass is a potash-lime glass rather rich in lime. Jena combustion tubing is a borosilicate containing some magnesia.

**Thermometry Glasses.**—Glasses which contain **both** soda and potash to any extent give a large temporary zero depression (see p. 57). Data concerning *Verre* dur (71% SiO<sub>2</sub>, 12% Na<sub>2</sub>O,  $\frac{1}{2}$ % K<sub>2</sub>O, 14% CaO, 2% Al<sub>2</sub>O<sub>3</sub> and MgO), *Jena* 16<sup>'''</sup> (67% SiO<sub>2</sub>, 14% Na<sub>2</sub>O, 7% CaO, 12% ZnO, Al<sub>2</sub>O<sub>3</sub> and B<sub>2</sub>O<sub>3</sub>), *Jena* 59<sup>'''</sup> (72% SiO<sub>2</sub>, 12% B<sub>2</sub>O<sub>3</sub>, 11% Na<sub>2</sub>O, 5% Al<sub>2</sub>O<sub>3</sub>), will be found on p. 57.

**Optical Glasses.**—In building up achromatic lens systems a knowledge of the dispersion ( $\nu$ ) of each glass employed is essential. This is defined as the ratio of the deviation at a selected wave-length to the difference of deviations at two neighbouring wave-lengths. It thus depends on the colours selected; for visual work they are usually the red (C) line of hydrogen (wave-length  $\lambda_{\rm C} = 6563 \times 10^{-8}$  cm.), the yellow sodium (D) line ( $\lambda_{\rm D} = 5893$ ), and the green-blue (F) hydrogen line ( $\lambda_{\rm F} = 4862$ ). If  $n_{\rm C}$ ,  $n_{\rm D}$ ,  $n_{\rm F}$  are the corresponding refractive indices,  $\nu = (n_{\rm D} - 1)/(n_{\rm C} - n)$  for the brightest part of the visible spectrum.

**Flint glass**—a term which survives from times when ground flints were extensively employed in making the best glass—now always implies a dense glass which contains lead and has a high refractive index and dispersive power.

**Crown glass**, originally designating only lime-silicate glasses, is now applied generally to glasses having a low dispersive power.

**Optical Glasses.**—For ordinary flints and crowns  $\nu$  and n are roughly proportional, and this was true for all commercially available glasses prior to the advances initiated in 1881 by Abbe and Schott at Jena. They succeeded (e.g. by the addition of barium) in producing glasses which do not obey any such proportionality; e.g. the very valuable barium crown glasses (below) combine the high refractive index of a flint glass with the low dispersive power of a crown. In more recent years other manufacturers in this country and abroad have extended the variety of combinations possible. Such glasses have brought about the excellent achromatism and flatness of field which now obtain in photographic lenses and large telescopic objectives. The relative dispersions at the two ends of the spectrum can also be varied independently by the addition of suitable constituents : such control over the dispersion has made the modern microscope possible.

Some typical examples of British and Jena glasses are subjoined. For a complete list, see the catalogue of Chance Bros. The U.V. glasses are markedly transparent to ultra-violet light as far as about  $\lambda = 2880$ .

See p. 83, and Zschimmer's "History of the Jena Glass Works," Hovestadt's "Jena Glass," and Rosenhain's "Glass Manufacture" (with bibliography).

| Glass.                                   | n₂ <sub>D</sub>    | $\nu_{(\mathrm{C},\mathrm{D},\mathrm{F})}$ | Dens.         | Glass.               | n <sub>D</sub>     | $\nu_{(\mathrm{C},\mathrm{D},\mathrm{F})}$ | Dens          |
|------------------------------------------|--------------------|--------------------------------------------|---------------|----------------------|--------------------|--------------------------------------------|---------------|
| Crowns-                                  |                    |                                            | grms,<br>c,c, | Flints-contd.        |                    |                                            | grms.<br>c.c. |
| ci c | +1.4782            | 66                                         | 2.23          | U.V. flint           | +1.5329            | 76                                         |               |
| (Silicate) crown .                       | *1.5189            | 60                                         | 2.60          | Borosilicate flint . | +1.5753            | 46                                         | 2.90          |
|                                          | +1.5215            | 59                                         | 2.48          | 1                    | *1.5670            | 55                                         | 3.14          |
| U.V. crown                               | +1.2035            | 65                                         | 1-            | Barium flint . {     | *1.6226            | 40                                         | 3.63          |
| Fluor crown                              | †1·4645            | 66                                         | 2.28          |                      | *1.6683            | 36                                         | 3.98          |
| Borosilicate crown .                     | 1.2096             | 65                                         | 2.40          | m 1                  | *1.5149            | 57                                         | 2.59          |
| Barium crown                             | *1.5406<br>*1.5886 | 60<br>61                                   | 2.87          | Telescope flint .    | +1.5286            | 52                                         | 2.50          |
| Dense barium crown                       | *1.6123            |                                            | 3.31          |                      | *1.5302<br>*1.6224 | 51<br>36                                   | 2.56          |
| Dense barrum crown                       | +1.6385            | 55                                         | 3.69          |                      | *1.6509            | 34                                         | 3.89          |
| Flints-                                  | *1.5290            | 52                                         | 2.56          | Dense flint          | *1.7482            | 28                                         | 4.75          |
| (Silicate) flint                         | *1.5782            | 41                                         | 3.26          |                      | +1.9229            | 21                                         | 6.03          |
| 1                                        | 11.6489            | 34                                         | 3.87          |                      |                    |                                            |               |
|                                          |                    |                                            |               |                      |                    |                                            | -             |
| * Briti                                  | sh Optica          | Glass                                      |               | + Tone               | Glass,             |                                            |               |

# SPECTROSCOPY

#### SPECTROSCOPY

It is now agreed that the use of the diffraction-grating in fundamental work must be limited to interpolation between standard wave-lengths obtained by other means. The accepted standard lines are three in the spectrum of cadmium. Their wavelengths ( $\lambda$ ) obtained by interference methods, and measured (by direct comparison with the standard metre at Paris); in dry air at 15° C. (H-scale) and 760 mms. mercury pressure, are given below in tenth-metres (= 10<sup>-8</sup> cm. = 1 Ångström unit). (See Michelson's "Light Waves and their Uses.") [ $\mu = 10^{-4}$  cm.;  $m\mu = 10^{-7}$  cm.]

| Observer.                                                                                                                               | $\lambda$ Cd red.                                             | $\lambda$ Cd green. | $\lambda$ Cd blue.         |
|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------|----------------------------|
| Michelson and Benoit, 1894<br>Benoit, Fabry, and Perot, 1907<br>Watanabe and Imaizumi, 1928<br>Sears and Barrell, 1933<br>Kösters, 1934 | 6438·4700<br>6438·4702<br>6438·4682<br>6438·4708<br>6438·4708 | 5085-8218<br>       | 4799 <sup>.</sup> 9085<br> |

#### STANDARD LINES-IRON ARC SPECTRUM

Obtained by an interference method, and based on Benoît, Fabry, and Perot's value for the wave-length of the red line of cadmium. The wave-lengths below are given in tenth-metres ( $10^{-8}$  cm.), measured in dry air at  $15^{\circ}$  (H-scale) and 760 mms. mercury. (Buisson and Fabry, *Compt. Rend.*, 1907 and 1909.)

| 2373'737   | 2987.293 | 3724.379 | 4352.741   | 4878.226 | 5405.780    | 5952.739 |
|------------|----------|----------|------------|----------|-------------|----------|
| 2413.310   | 3030.122 | 3753.015 | 4375'935   | 4903.324 | 5434.530    | 6003.039 |
| 2435.159*  | 3075'725 | 3805'346 | 4427'314   | 4919'006 | 5455.616    | 6027.059 |
| 2506.904 * | 3125.661 | 3843.201 | 4466.554   | 4966.104 | 5497.521    | 6065.493 |
| 2528.516 * | 3175'447 | 3865.526 | 4494'572   | 5001.880 | 5506.783    | 6137'700 |
| 2562'541   | 3225.790 | 3906.481 | 4531'155   | 5012.072 | 5535'418    | 6191.269 |
| 2588.016   | 3271.003 | 3935.818 | 4547.854   | 5049.827 | 5569.632    | 6230.732 |
| 2628.296   | 3323.739 | 3977'745 | 4592.658   | 5083.343 | 5586.770    | 6265.147 |
| 2679.065   | 3370.789 | 4021.872 | 4602'944   | 5110.415 | 5615.658    | 6318.029 |
| 2714'419   | 3399'337 | 4076.641 | 4647.437   | 5127'364 | 5658.835    | 6335'343 |
| 2739.550   | 3445'155 | 4118.552 | 4678.855   | 5167.492 | 5709.396    | 6393.612 |
| 2778.225   | 3485'344 | 4134.685 | 4707.287   | 5192'362 | 5760.843 \$ | 6430.859 |
| 2813.290   | 3513.820 | 4147.677 | 4736.785   | 5232.958 | 5763.013    | 6494.994 |
| 2851.800   | 3556.879 | 4191'441 | 4754.046 † | 5266.568 | 5805.211 ‡  |          |
| 2874.176   | 3606.681 | 4233.615 | 4789.657   | 5302.316 | 5857.760 \$ | • Si.    |
| 2912.157   | 3640'391 | 4282.407 | 4823'521 + | 5324.196 | 5892.882 \$ | † Mn.    |
| 2941.347   | 3677.628 | 4315.089 | 4859.756   | 5371.498 | 5934.683    | ‡ Ni.    |

CHIEF ABSORPTION (FRAUNHOFER) LINES IN SOLAR SPECTRUM Rowland's wave-lengths corrected approximately by the use of Fabry and Perot's results, measured in tenth-metres (10<sup>-8</sup> cm.) in air at 20° and 760 mms. Owing to atmospheric absorption, the sun's spectrum extends only to about wave-length 3000.

| Line.                                                                                                                      | Subst.                                                                                                             | Rel.<br>Intens.                                                      | Line.                                                                                                                                       | Subst.                                                                    | Rel.<br>Intens.                                                        | Line.                                                                                                                                                                                                                | Subst.                                                  | Rel.<br>Intens.   |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------|
| 3047'5<br>3057'3<br>3059'0<br>O{3440'6<br>3441'0<br>3524'5<br>N 3581'2<br>3608'8<br>3618'7<br>M 3719'9<br>3734'8<br>3737'1 | Fe<br>Ti-Fe<br>Fe<br>Fe<br>Fe<br>Fe<br>Fe<br>Fe<br>Fe                                                              | 20<br>20<br>20<br>20<br>15<br>20<br>30<br>20<br>20<br>40<br>40<br>30 | L 3820'4<br>3825'8<br>3838'2<br>3859'8<br>K 3933'6<br>3961'5<br>H 3968'4<br>4045'8<br>4045'8<br>4063'6<br>(Hz) 4101'8<br>4226'7<br>G 4307'9 | Fe-C<br>Fe<br>Mg-C<br>Fe-C<br>Ca<br>Al<br>Ca<br>Fe<br>Fe<br>H<br>Ca<br>Fe | 25<br>20<br>25<br>20<br>1000<br>20<br>700<br>30<br>20<br>40<br>20<br>6 | $\begin{array}{c} (H_{y})4340'4 \\ F 4861'37 \\ b_{2} 5172'7 \\ b_{1} 5178'22 \\ E 5269'56 \\ (D_{3}5875'62)^{\dagger} \\ D_{2} 5889'97 \\ D_{1} 5895'93 \\ C 6562'8 \\ B 6867'3 \\ A 7661 \\ Z 8228 \\ \end{array}$ | H<br>H (\$)<br>Mg<br>Fe<br>He<br>Na<br>H (\$)<br>+<br>+ | 20<br>30<br>8<br> |
| * L<br>‡ 0                                                                                                                 | <ul> <li>Langley, 1900.</li> <li>Cxygen in earth's atmos.</li> <li>Emission line in chromosphere alone.</li> </ul> |                                                                      |                                                                                                                                             |                                                                           |                                                                        |                                                                                                                                                                                                                      |                                                         |                   |

#### EMISSION SPECTRA OF SOLIDS

For a fuller treatment of wave-lengths see Watts' "Index of Spectra" and appendices, Kayser's "Handbuch der Spectroscopie," Hagenbach and Konen's "Atlas of Emission Spectra," 1905. For recent work consult the Astrophysical *Journal*. The wave-lengths below are measured in tenth-metres (10<sup>-8</sup> cm.) in air at 15° C. and 760 mms. The visible spectrum colours are indicated—r, o, y, g, b, v. The brightest lines are emphasized and the approximate boundary of the ultraviolet region is indicated thus . . . . .

| ALUMINIUM             | CADMIUM                  | CALCIUM                           | MAGNESIUM                      | RADIUM                                     | SODIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------|--------------------------|-----------------------------------|--------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (arc).                | (contd.)                 | (contd.)                          | (contd.)                       | 1                                          | (NaCl in flame).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3083                  | 4413 6                   | 6122 0                            | 3832                           | 4683 v                                     | Fabry and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3093                  | 4678 <i>b</i>            | 6162 0                            | 3838                           | 4826 b                                     | Perot, 1902;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5-95                  | 4799·908 b               | 6440 0                            | 5168 g                         | 5210 g                                     | Rayleigh, 'o6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3944 2                | 5085·822 g               |                                   | (b2) 5178 g                    | 5360 g                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8962 v                | 5338 g                   | 6500 r                            | 5184 g                         | 3-332                                      | (D <sub>2</sub> )5889.9650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4663 b                | 5379 8                   | COPPER                            | 5529 y                         | 333                                        | (D <sub>1</sub> )5895.9320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5057 g                | 6438·470 r               |                                   |                                | 6210 0 <sup>3</sup>                        | STRONTIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5696 y                |                          | (arc in vacuo).                   |                                | 6216 0 <sup>3</sup><br>6228 0 <sup>3</sup> | (SrCl <sub>2</sub> in flame).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5723 y                | OÆSIUM                   | 1 abry and                        | (Mercury lamp).                | 0228 0                                     | Band spectr'm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BARIUM                | (CsCl in flame).         |                                   | Stiles, Astro.                 | 6250 03                                    | with lines at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (BaCl <sub>2</sub> in | 3611.8                   | 8248                              | Journ., 1909.                  | 6260 o <sup>3</sup>                        | 4607·5 b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| flame).               | 3617                     | 8274                              | 3126                           | 6269 o <sup>3</sup>                        | 6387 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Full of bands,        | 3877                     |                                   | 3131                           | 6285 o <sup>3</sup>                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| some diffuse,         | 0000                     | 4023 V                            | 3650                           | 6329 o <sup>3</sup>                        | THALLIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| and some              |                          | 4063 V                            | 4046.8 v                       | 6349 0                                     | (Tl or TlCl, in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| resolvable.           | 4555 b                   | 5105.543 g                        | 4078'I V                       | $(6530 r^3)$                               | flame).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3501                  | 4593 b                   | 5153·251 g<br>5218·202 g          | 4358.343 v2                    | to                                         | 5350.7 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                       | 5664 y<br>5845 y         | 5218 <sup>-</sup> 202 g<br>5700 y | 4916.4 bg                      | (6700 r <sup>3</sup><br>6653 r             | TIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3910 2                | 5045 y<br>6011 0         | 5782.090 y                        | 49597 g                        | 6653 r                                     | (spark).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3994 V                | 6213 0                   | 5782'159 y                        | 5460°742 g -                   | <sup>8</sup> Bands.                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 413I V                | 6724 r                   |                                   | $5769 \cdot 598 y^2$           | RUBIDIUM                                   | 3009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4554 6                | 6974 r                   | INDIUM                            | 5790.659 y <sup>2</sup>        |                                            | 3034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4934 g                |                          | (In(OH) <sub>2</sub> in           | 0.15                           | (RbCl in flame).                           | 3175<br>3262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5536 gy<br>5778 y     | CALCIUM                  | flame).                           | 6232.0 0                       | 3349                                       | 3283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5778 y<br>5854 y      | (CaCl <sub>2</sub> in    | 4102 v                            | <sup>2</sup> Fabry and         | 3351                                       | 3331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6142 0                | flame).                  | 4511 v                            | Perot, 1902,                   | 3587                                       | 3596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6497 r                | Bands pre-               |                                   | and Rayleigh,                  | 3592                                       | 3746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                       | dominate;                | IRON                              | 1906.                          | 4202 2                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BORON                 | line at                  | (see p. 79).                      | POTACOUL                       | 4202 v<br>4216 v                           | 4525 v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (Boric acid in        | 4227                     | LITHIUM                           | - POTASSIUM<br>(KCl in flame). | 5648 y                                     | 5563 y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| flame).               |                          |                                   |                                | 5724 y                                     | 5589 y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Diffuse<br>maxima at  | (Flame arc).             | (LiCl in flame).                  |                                | 6207 0                                     | 5799 y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       | 3362                     | 4132 V                            | 3447                           | 6298.7                                     | 6453 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4500 0                | 3644                     | 4602 b                            | 4044 v                         |                                            | ZINC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4700 b<br>4900 b      | (K) 3934 v               | 6104 0<br>6707.846 r <sup>1</sup> | 4047 v                         | SILVER                                     | (are in vacuo).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4900 0<br>5200 g      | (H) 3934 v<br>(H) 3968 v |                                   | 5802 y                         | (arc in vacuo).                            | 3036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5450 g                | (H) 3908 V<br>4227 V     | <sup>1</sup> Fabry and            | 7668 r                         | 3281                                       | 3072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5800 y                | 4303 6                   | Perot, 1902.                      | 7702 r                         | 3383                                       | 3345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6000 0                | 4303 b                   |                                   |                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | 4435 6                   | MAGNESIUM                         | RADIUM                         | 4055 V                                     | 4680.138 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CADMIUM               | 4455 0                   | (arc).                            | (RaBr <sub>2</sub> in          | 4212 V                                     | 4722.164 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (arc).                | 4586 b                   | 3091                              | flame).                        | 4669 b<br>5209.081 g 4                     | 4810.535 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3261                  | 4878 b                   | 3093                              | Runge and                      | F 105 100 1                                | 4912 b<br>4925 gb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3404                  | 5270 g                   | 3097                              | Precht, 1903.                  | 5472 g                                     | 0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3466                  | 5350 g                   | 3330                              | 3650                           | 54/2 g                                     | 6108 0<br>6362'345 0 <sup>6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3611                  | 5589 y                   | 3332                              | 3815                           | A CONTRACTOR OF THE OWNER                  | and a set of the set o |
| 3982 2                | 5595 y<br>5858 y         | 3337<br>3830                      | 1241                           | <sup>4</sup> Fabry and<br>Perot. 1002.     | <sup>5</sup> Fabry and<br>Perot 1002.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 39520                 | 30309                    | 3030                              | 434I V                         | Perot, 1902.                               | Perot, 1902.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       |                          | 1                                 | 1                              |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# EMISSION AND ABSORPTION SPECTRA

#### EMISSION SPECTRA OF GASES The gases are all in vacuum tubes (2-4 mms. press.) ; only the brightest lines are given. The visible spectrum colours are indicated-r, o, y, g, b, v. NITROGEN HYDROGEN CARBON NEON (contd.) ARGON. MONOXIDE or DIOXIDE (contd.) Elementary spec-Red spectrum 5858 y 5804 y trum. (small current 5882 0 (of common oc-5854 y density). 3750 5945 0 currence in 5906 0 3771 59760 4159 v many vacuum-5959 0 3798 6030 0 4192 v tube spectra). 60130 3836 60750 Numerous 4198 v 6069 0 3889 6096 0 bands shaded 4201 v With large cur-61290 towards violet . . . . 4259 6 rent densities, 3970 V 61430 edges at 4300 b N gives a line 4102 (ð) v 61640 4334 6 spectrum. 3590 (CN) 4340 (y) b 61820 4511 6 3884 (CN) (F) 4861 (B) gb 6217 0 OXYGEN 4703 b (C) 6563 (a) r . . . . 6267 0 Elementary line 5452 g 4123 V For very short 6305 0 spectrum. 5607 y 4216 (CN) v wave-lengths 63830 3919 50120 b 4393 (1030-1675) see 64020 6031 0 3973 b 4511 Lyman, Astro. 6507 r 60590 . . . . . . 4735 (C) b Fourn., 1906. 4070 V 4835 b NITROGEN Secondary spec-4072 V 5165 (C) Band spectrum g trum 4076 V 5198 (see Watson, from positive g 4415 6 column. 5610 y Proc. Roy. Soc., 5208 g Many bands 6079 0 1909). Diffuse maxima Blue spectrum all made up of KRYPTON AND (large current at fine lines. XENON density). 5335 g From 3000 to Brit. Ass. Rep., HELIUM 5440 g 4574 the edges 3583 1905. 61100 Rayleigh, 1908. occur at inter-. . . . . 61700 vals of about 60 NEON 4072 V 3188 There are three Ă.U. Baly, Phil. 4104 V other oxygen Other bands Trans., 1903. 3889 4228 V U spectra: con-Very rich in have edges at 4026 4331 0 V tinuous, band, red rays. 4648 6 4471.482 6 4348 6 and series 4666 b 3448 4426 b 4713.144 6 spectra. 4723 6 4921.930 gb 3473 4430 0 5015'680 g 48130 4431 6 3521 RADIUM EMANA-(D<sub>3</sub>) 5875.625 y 5340 g TION 4610 b 3594 Royds, Phil. 4806 b 6678.150 r 5614 y Mag., 1909. 7065.200 r 5765 y 5755 y The following values (all in tenth-metres) are of course only approximate :---Hertzian Waves. Infra-red. Red. Orange. Yellow. Green. Blue. Violet. Ultra-violet. 5880 3600 1014 - 4 × 107 31×106 7700 6470 600 5500 4920 4550

#### ABSORPTION SPECTRA

Among the enormous literature on absorption spectra, reference may be made to Kayser's "Handbuch der Spectroscopie," Baly's "Spectroscopy," Vogel's "Praktische Spectralanalyse," the writings of Prof. Hartley, Jones and Anderson's "Absorption Spectra of Solutions," 1909, Smiles' "Chemical Constitution and Physical Properties," and the British Association Reports of 1901 et seq.

Convenient substances which show good absorption spectra are-neodymium and praseodymium salts and didymium glass (which yield some extremely narrow absorption lines), iodine vapour, nitrogen peroxide, chlorine, chlorophyll, blood, and potassium permanganate solution.

# OPTICAL ROTATIONS

OPTICAL ROTATIONS OF PURE LIQUIDS AND SOLUTIONS  $A_i$  = the rotation in degrees (for light of some given wave-length) of the plane of polarization by a liquid when at the temperature  $t^{\circ}$  C.  $l_t$  = the length of the column of liquid in **decimetres** (*i.e.* 10 cms.). p = the number of grams of active substance in 100 grams of solution. q = (100 - p) = the percentage (by weight) of inactive solvent in the solution.  $p_t$  = the density in grams per c.c. of the liquid or solution at  $t^\circ$ .  $c_t = p \rho_t$  = the concentration expressed as grams of active substance per 100 c.cs. of solution at  $t^\circ$ .  $[a]_t$  = the specific rotation (at  $t^{\circ}$ ) =  $\frac{\text{rotation per decimetre of sol.}}{\text{grams of active substance per c.c. of sol.}}$ For a pure liquid  $[\alpha]_i = \frac{A_i}{l_{\alpha}}$ . For an active substance in solution  $[\alpha]_t = \frac{A_t}{L} / \left(\frac{p}{p+q}\rho_t\right) = \frac{100A_t}{L\phi_{t+q}} = \frac{100A_t}{L\phi_{t+q}}$ , since (p+q)=100.The rotation depends on the wave-length of the light used; it increases as the wave-length ( $\lambda$ ) diminishes ( $\alpha \propto \frac{1}{\lambda^2}$  approx.).  $\alpha$  also varies with the nature of the inactive solvent and with the concentration of the solution. The rotation is called positive or right-handed (dextro, d) if the plane of polarization appears to be rotated in an anti-clockwise direction when looking through the liquid away from the source of light. The contrary rotation is called lævo (1). The molecular rotation is the specific rotation multiplied by the molecular weight. [a] indicates that the specific rotation is measured at 20° C. using sodium (D) light. (See Landolt's "Optical Rotations of Organic Substances and their Practical Application.") Specific Rotation [a], Solvent. Conditions. **Optically** Active Substance.  $[a]_{20}^{p} = + 66.67 - .0095c$ Cane Sugar or Candy (d), water  $\epsilon = 4$  to 28  $t = 14^{\circ} \text{ to } 30^{\circ} \text{ C.} \quad \boxed{\left[\alpha\right]_{t}^{p} = \left[\alpha\right]_{20}^{p} \left\{1 - \frac{1}{20} - \frac{1}{20}\right\}}$ C12H22O11 (Landolt, 1888; Pellat, 1901)  $c = 9 \text{ to } 35 \quad [a]_{30}^{D} = -19^{\circ} 7 - 036c$ Invert Sugar(1),\* CeH12Oe water = I mol. of dextrose + I  $t = 3^{\circ} \text{ to } 30^{\circ} \text{ C.} \ [a]_{t}^{p} = [a]_{20}^{p} + \cdot 304(t - 20)$ mol. of levulose  $+ 00165(t - 20)^2$ (Gubbe, 1885)  $[\alpha]_{20}^{D} = +105^{\circ}2$  after 5.5 c = 9.1 Dextrose (d - glucose), water C6H12O6 mins. (a modifica-(Parcus and Tollens, tion) =  $+52^{\circ}5$  after 6 hrs. ( $\beta$  modification) 1890; Tollens, 1884)  $[\alpha]_{20}^{D} = +52^{\circ}.5 + .025p$ p = I to 18 water  $[\alpha]_{20}^{D} = -94^{\circ}.4 \text{ after 7 mins.}$ = -51°.4 after 7 hrs. p = 4l -**Glucose**, C<sub>6</sub>H<sub>12</sub>O<sub>4</sub> water (Fischer, 1890)  $\begin{bmatrix} \alpha \end{bmatrix}_{20}^{D} = -104^{\circ} \text{ after 6 mins.} \\ = -92^{\circ} \text{ after 33 mins.} \end{bmatrix}$ Levulose (1) (fruit sugar), c = IO water (Parcus and Tollens,  $[a]_{p}^{p} = -91^{\circ}.9 - .11 p$ p = 2 to 3I1890; Ost, 1891) water

• The molecular weight of cane-sugar is 342; which, after conversion to invert sugar, becomes 360. Hence the new concentration of the invert sugar solution is  $\frac{360}{442}c$ , where c is the number of grams of cane-sugar in 100 c.c.s. of the original solution.

# OPTICAL ROTATIONS

| Contract of the local data and the second data and                                                                                                                                                                                                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Optically Active Substance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Solvent.                     | Conditions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Specific Rotation $[\alpha]_t$                                                         |
| <b>Galactose</b> ( <i>d</i> ), C <sub>6</sub> H <sub>12</sub> O <sub>6</sub><br>(Meissl, 1880)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | water                        | p = 4  to  36<br>$t = 10^{\circ} \text{ to } 30^{\circ} \text{ C}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ [a]_t^0 = +83^{\circ}9 + 078p - 21t $                                                |
| Ordy. Tartaric acid $(d)$ ,<br>H <sub>2</sub> C <sub>4</sub> H <sub>4</sub> O <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | water                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $[a]_{20}^{D} = +15.06131c$                                                            |
| Potassium tartrate (d),<br>K <sub>2</sub> C <sub>4</sub> H <sub>4</sub> O <sub>6</sub><br>(Thomsen, 1886)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | water                        | c = 8 to 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ [\alpha]_{20}^{D} = + 27.14 + .0992c00094c^{2} $                                     |
| Rochelle salt (d),<br>KNaC <sub>4</sub> H <sub>4</sub> O <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | water                        | 1- C- 1 44-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $[a]_{20}^{D} = +29.730078c$                                                           |
| 1 - Turpentine, C10H16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | pure liquid                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $[\alpha]_{20}^{D} = -37^{\circ}$                                                      |
| (Gernez, 1864 ; Landolt,<br>1877)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vapour                       | at 761.7 mms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\left[\alpha\right]_{148}^{D} = -35^{\circ}5$ for mean yellow                         |
| alle parescantolit di Shiki di<br>Maria di Shika na sa sa sa sa sa sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | alcohol $(\rho_{20} = .796)$ | <i>q</i> = 0 to 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ [a]_{20}^{D} = -37^{\circ} - \cdot 00482q - \cdot 00013q^{2} $                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | benzene                      | q = 0 to 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $[a]_{20}^{D} = -37^{\circ} - \cdot 0265q$                                             |
| to sente als it is, and the sentence of the se | paraffin oil                 | Within wide lim<br>percer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | hits [a] <b>increases</b> with the ntage of paraffin.                                  |
| Quinine sulphate $(l)$ ,<br>$C_{20}H_{24}N_2O_2H_2SO_4$<br>(Oudemans, 1876)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | water                        | c about 1.6 % of<br>alkaloid<br>(calculated)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Salt $[\alpha]_{17}^{p} = -214^{\circ}$<br>Alkaloid $[\alpha]_{17}^{p} = -278^{\circ}$ |
| Nicotine (1), C10H14N2<br>(Landolt, 1877; Hein,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pure                         | $t = 10^{\circ}$ to $30^{\circ}$ C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\left[\alpha\right]_{20}^{D} = -162^{\circ}$                                          |
| 1898)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | benzene                      | ¢ = 8 to 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\left[\alpha\right]_{20}^{D} = -164^{\circ}$                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | water                        | p = 1 to 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $[\alpha]_{ab}^{D} = -77^{\circ}$                                                      |
| Ethyl malate (l),<br>(C <sub>2</sub> H <sub>s</sub> ) <sub>2</sub> C <sub>4</sub> H <sub>4</sub> O <sub>s</sub><br>(Purdie & Williamson, '96)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pure liquid                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $[\alpha]_{11}^{p} = -10^{\circ}.3 \text{ to } -12^{\circ}.4$                          |
| Camphor (d), C <sub>10</sub> H <sub>16</sub> O<br>(Landolt, 1877; Rim-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | alcohol                      | q = 45  to  91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $[a]_{20}^{D} = +54^{\circ}\cdot4 - \cdot135q$                                         |
| (Landold, 18/7; Kim-<br>bach, 1892)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | benzene                      | q = 47  to  90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\left[\alpha\right]_{20}^{\mathrm{D}} = +56^{\circ} - \cdot 166q$                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | and the second sec |                                                                                        |

# OPTICAL ROTATION AND WAVE-LENGTH

|                                                                                                   | Spe                                                | QUARTZ AT 20° C.          |                                             |                          |                                                                                                                        |                                          |  |  |  |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------|---------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|--|--|
| Wave-length (λ)<br>in 10 <sup>-s</sup> cm.                                                        | Cane-<br>sugar or<br>Candy in<br>H <sub>2</sub> 0. | Turpentine<br>(pureliq.). | Tartaric<br>acid in<br>$H_20$<br>(p = 41%). | Nicotine<br>(pure liq.). | Wave-length (λ)<br>in 10 <sup>-s</sup> cm.                                                                             | Rotation<br>for 1 mm.<br>thick-<br>ness. |  |  |  |
| <b>H</b> (C) 6563 (r)                                                                             | 52°.9                                              | - 29°.5                   | 7°.75                                       | -126°                    | Li 6708 (r)                                                                                                            | 16°.4                                    |  |  |  |
| Na (D) 5893 (0)                                                                                   | 66.2                                               | - 37                      | 8.86                                        | - 162                    | <b>H</b> (C) 6563 (r)<br><b>Na</b> (D) 5893 (o)                                                                        | 17'3<br>21'72*                           |  |  |  |
| <b>TI</b> 5351 (g)                                                                                | 81.8                                               | -45                       | 9.65                                        | - 207.5                  | $\begin{array}{ccc} \mathbf{T1} & 5351 (g) \\ \mathbf{H} (F) & 4861 (g) \\ \mathbf{H} (\delta) & 4102 (b) \end{array}$ | 26.53<br>32.7<br>47.48                   |  |  |  |
| <b>H</b> (F) 4861 (g)                                                                             | 100'3                                              | - 54.5                    | 9'37                                        | -253'5                   | ,                                                                                                                      | 4/ 40                                    |  |  |  |
| • For quartz at temperature $t^{\circ}$ , rotation = 21°.72 {I + 0.000147( $t$ - 20)} for D line. |                                                    |                           |                                             |                          |                                                                                                                        |                                          |  |  |  |

#### MAGNETIC ROTATION OF POLARIZED LIGHT

This effect was discovered by Faraday in 1845. The rotation per cm. per unit magnetic field—**Verdet's constant**,  $r = \alpha/(Hl)$ , where  $\alpha$  is the rotation in minutes for the substance in a magnetic field of H gauss, and l is the length of light-path parallel to the lines of force. r varies with the temperature and is roughly inversely proportional to the square of the wave-length of the light used. Films of Fe, Ni, and Co are exceptions to this rule.

If the light is travelling with the lines of force (*i.e.* from N. to S.), then the direction of rotation is positive, if the plane of polarization is rotated clockwise, to an observer looking in the direction in which the light is moving. If the light is reflected back on its path, the rotation is increased.

The **Molecular rotation**  $r_m = rM/d$ , where M is the molecular weight of the substance, and d is its density.  $r_m$  is an additive property in organic compounds (Perkin, *Journ. Chem. Soc.*, 1884).

The rotations below are for the sodium D line ( $\lambda = 5893 \times 10^{-8}$  cm.).

(For Voigt's theory of magneto-rotation, see Schusters, "Optics," 1909. See also Becquerel's papers in Compt. Rend., etc.)

| Substance.                                                                                              | Temp.                           | Rotation $r$ in mins. of arc.                                                                                   | Substance.                                                                                                                                     | Temp.                                                            | Rotation<br>relative<br>to Water.                                                                                                           |
|---------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| ","<br>Jena (phosphate crown<br>glass (heaviest flint .<br>FeCl <sub>3</sub> dens. = 1 <sup>.6</sup> 93 | 20<br>0<br>18<br>20<br>20<br>20 | + 01312, R.W.<br>+ 04347, R.W.<br>+ 04200, Ra.<br>+ 01368,* Bo.<br>+ 01664, Bo.<br>+ 1587,† Bo.<br>+ 0161, D.B. | Ethyl alcohol<br>n. propyl alcohol<br>Amyl(iso) alcohol<br>Ethyl bromide<br>" chloride<br>" iodide<br>Formic acid<br>Propionic acid<br>Benzene | 168<br>156<br>199<br>197<br>50<br>181<br>208<br>210<br>203<br>15 | *8637, P.<br>*9139, P.<br>*9888, P.<br>1*395, P.<br>1*035, P.<br>1*035, P.<br>2*251, P.<br>*7990, P.<br>*7976, P.<br>*8369, P.<br>2*062, B. |

\*  $\lambda = 6439$ . †  $\lambda = 2194$ . B., Becquerel; Bo., Borel, 1903; D.B., Du Bois, 1894; P., Perkin; Ra., Rayleigh, 1884; R.W., Rodger and Watson, 1896.

# METALLIC REFLECTION OF LIGHT

(The percentage of normally incident light reflected from different surfaces.) The column of figures (below) in the case of **speculum metal** (7 Cu, 3 Sn) reads 30% (for  $\lambda = 2510$ ); 51%, 56%, 64%, 67%, 71%, 89%, 94% (for  $\lambda = 140,000$ ).

| Wave-length $\lambda$                    | Cu.                                                                      | Au.                                           | Ni.                                           | Pt. Ag.                                       | Steel.                                        | Magna-                                        | Glass mirror.                                 |                                                     |          |                                       |
|------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------------|----------|---------------------------------------|
| in A.U. (1                               | .0-* cm.).                                                               | 101                                           |                                               |                                               |                                               | -0.                                           |                                               | lium.*                                              | Ag back. | Hg back                               |
| Ultra-<br>violet<br>Visible<br>Infra-red | 2,510<br>3,570<br>4,200<br>5,500<br>7,000<br>10,000<br>40,000<br>140,000 | 26%<br>27<br>33<br>48<br>83<br>90<br>97<br>98 | 39%<br>28<br>29<br>74<br>92<br>95<br>97<br>98 | 38%<br>49<br>57<br>63<br>69<br>72<br>91<br>97 | 34%<br>43<br>52<br>61<br>69<br>73<br>91<br>96 | 34%<br>74<br>87<br>93<br>95<br>97<br>98<br>99 | 33%<br>45<br>52<br>55<br>58<br>63<br>88<br>96 | 67%<br>81<br>83<br>83<br>83<br>83<br>84<br>89<br>92 |          | 73%†<br>71<br>73<br>, 31 Mg.<br>4500. |

#### DIOPTER

In applied optics the "power" of a lens or mirror is expressed in diopters. The number of diopters equals the reciprocal of the focal length expressed in metres.

# RESISTIVITIES

# ELECTRICAL RESISTIVITIES

Electrical specific resistances or resistivities in ohm-cms. Conductivities (in reciprocal ohms) are the reciprocals of resistivities. For a table of reciprocals, see p. 157.

#### METALS AND ALLOYS

The resistivity depends to some extent on the state of the metal. In general, cold drawing increases, while annealing diminishes the resistance. The winding of a wire into a coil increases its resistance.

For pure metals, the resistance is roughly proportional to the absolute temperature, and would apparently vanish not far from the absolute zero. This rule does not hold even approximately for alloys.

For wire resistances, see p. 94; for temperature coefficients, next page. The thermal conductivities of the same samples of many of the substances below will be found on p. 61.

| Substance.                         | Temp.      | Sp. Re.      | Observer.                                               | Substance.                                                                  | Temp.                                    | Sp. Re.                   | Observer.                               |
|------------------------------------|------------|--------------|---------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------|---------------------------|-----------------------------------------|
| Metals -                           | ° C.       | × 10-6       |                                                         | Metals (contd.)                                                             |                                          |                           |                                         |
| Aluminium* .                       | -160       | 0.81         | Lees, 'o8                                               | Platinum                                                                    | -203                                     | × 10 <sup>-6</sup><br>2.4 | D.&F., '96                              |
| ,,                                 | 18         | 3'21         | J. & D.,                                                | ,, · · · ·                                                                  | 18                                       | 11.0                      | J. & D.,                                |
|                                    | 100        | 4.13         |                                                         | ,,                                                                          | 100                                      | 14'0                      | 1900                                    |
| Antimony                           | 15         | 40.5         | Berget, '90                                             | Potassium                                                                   | 0                                        | 6.64                      |                                         |
| Bismuth                            | 18         | 119.0        | J. & D.,                                                | Rhodium                                                                     | 18                                       | 6.0                       | -                                       |
| · · · ·                            | 100        | 160.3        | 1 1900                                                  | Silver, 99'9 % .                                                            | -160                                     | 0.26                      |                                         |
| Cadmium,drawn                      | -160       | 2.72         |                                                         | "                                                                           | 18                                       | Contraction of the second | SP.T. 1908                              |
| 37                                 | 100        | 7'54<br>9'82 |                                                         | "                                                                           | 18                                       | 1.63                      |                                         |
| Calcium                            | 20         | 10'5         | M.&C.,'05                                               | Sodium                                                                      | 100                                      | 2.13                      |                                         |
| Chromium                           | 20         | 13.1         | Adcock,'31                                              | Strontium                                                                   | 20                                       | 4'74                      | B., 1904<br>M., 1857                    |
| Cobalt                             | 20         | 9.71         | R., 1901                                                | Tantalum                                                                    | 18                                       | 14.6                      |                                         |
| Copper, drawn.                     | -160       | 0.49         | Lees, 'o8                                               | Tellurium                                                                   | 20                                       | 21                        | M., 1858                                |
| 17                                 | 18         |              | J. & D.,                                                | Thallium, pure.                                                             | 0                                        | 17.6                      | D.&F., '96                              |
| "                                  | 100        | 2.36         |                                                         | Thorium                                                                     | 15                                       | 40'1                      | Bo., '09                                |
| " annealed                         | 18         | 1.20         | Mean<br>D.& F., '96                                     | Tin, drawn                                                                  | -160                                     | 3.2                       | Lees, '08                               |
| Gold                               | 18         |              |                                                         | "                                                                           | 18                                       | 11.3                      | } J. & D.,                              |
| "                                  | 100        | 2.42         |                                                         | Tungsten.                                                                   | 100                                      | 15'3                      | ) 1900<br>Mean                          |
| Iridium                            | 18         | 5'3          | , 1900                                                  | Zinc, pure                                                                  | -160                                     | 5.5                       | Lees, '08                               |
| Iron, pure                         | 50         | 11.2         | N.P.L.                                                  | ,                                                                           | 18                                       | 6.1                       | J. & D.,                                |
| " ("1%)                            | 18         | 12'0         | J. & D.,                                                | ,,                                                                          | 100                                      | 7.9                       | 1900                                    |
| " \C.f                             | 100        | 16.8         | 1900                                                    | Alloys-                                                                     |                                          | 1                         |                                         |
| " wrought .                        | -160       | 5'4          | Lees, '08                                               | Brass                                                                       | -160                                     | 4'1                       | Lces,                                   |
| " " <u>†</u> ·                     | 18         | 13.9         | } J. & D.,                                              | " ‡                                                                         | 17                                       | 6.6                       | 5 1908                                  |
| ", steel ('1%).                    | 100        | 18.8         | J. & D.,                                                |                                                                             | 18                                       | 6-9                       | Mean                                    |
| " steel 1%.                        | 100        | 19.9         | 1900                                                    | Constantan<br>(Eureka) § }                                                  | 18<br>100                                | 49.0                      | ] J. & D.                               |
| Lead, drawn .                      | -160       | 7'43         |                                                         | German silver                                                               | 18                                       | 49'I<br>16-40             | Mean                                    |
| ,,                                 | 18         | 20.8         | J. & D.,                                                | » » ·                                                                       | 0                                        | 26.6                      | Lorenz,                                 |
| ,,                                 | 100        | 27.7         | 1 1900                                                  |                                                                             | 100                                      | 27.6                      | 1881                                    |
| Lithium                            | . 0        | 8.4          | B., '04                                                 | Manganin ¶ .                                                                | -160                                     | 43.13                     |                                         |
| Magnesium                          | 0          | 4'35         | D. & F.                                                 | » · ·                                                                       | 18                                       | 44.20                     | 1 1908                                  |
| Mercury                            | 0          | 94.07        |                                                         | » · ·                                                                       | 18                                       | 42.05                     | } J. & D.,                              |
| Molybdenum .                       | 20<br>25   | 95°76<br>4'8 | ∫ p. 11. –<br>Mean                                      | Phosphor-bronze                                                             | 100                                      | 42.11                     |                                         |
| Nickel                             | -160       | 5'9          | Lees, '08                                               | Platinoid                                                                   | 18<br>-160                               | 5-10<br>32'5              | Mean<br>Lees,                           |
| » (97%) ·                          | 18         | 11.8         | J. & D.,                                                |                                                                             | 18                                       | 34.4                      | 1908                                    |
| " (Ni.) .                          | 100        | 157          | 1900                                                    | 90 Pt, 10 Rh                                                                | ō                                        |                           | D. & F., '96                            |
| Osmium                             | 20         | 9'5          | Blair, '05                                              | 67 Pt, 33 Ag .                                                              | 0                                        | 21.2                      | -, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| Palladium                          | 18         | 10.2         | J. & D.,                                                | Nichrome                                                                    | 20                                       | IIO                       | N.P.L.                                  |
| "                                  | 100        | 13.8         | ) 1900                                                  | Invar**                                                                     | 0                                        | 75                        | -                                       |
| § 60 Cu, 40 Ni.<br>B., Bernini ; H | So., Bolto | 62 C         | '1 % Mn.<br>Su, 15 Ni, 22<br>& F., Dewar<br>In & Chavan | ‡ 70 Cu, 30 Zn.<br>Zn. ¶ 8.<br>r & Fleming ; J. & J<br>ne ; R., Reichardt ; | **<br>4 Cu, 4 l<br>D., Jaege<br>P. T., 1 | Ni, 12 M<br>er and L      | Diesselhorst :                          |

#### ELECTRICAL RESISTIVITIES (contd.)

#### NON-METALS AND INSULATORS

The resistivities are in ohm-cms. at room temperatures unless otherwise stated. The values for insulators naturally vary widely, and the figures below are merely typical and are probably, in many cases, nothing more than the resistances of the surfaces. For a discussion of some electrical insulators, see Kaye, *Proc. Phy. Soc. Lond.*, 1911.

| Substance.                                                                                | Sp. Re. Substance. Sp. I |                                                                                                       | Sp. Re.                                                  | Substance.                                                                        | Sp. Re.                                                                                                                 |  |
|-------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|
| Gas carbon<br>Graphite<br>Diamond<br>C. lamp filament .<br>Selenium ‡ (1907)<br>Silicon § | .003                     | Sulphur, 70°<br>Ebonite<br>Glass, soda-lime *<br>, Jena, com-<br>bustion *<br>, conducting<br>, Pyrex | $2 \cdot 10^{15}$<br>5 \cdot 10^{11}<br>>2 \cdot 10^{14} | Guttapercha<br>Mica<br>Paraffin wax<br>Porcelain, 50°<br>Quartz<br>Fused silica * | $2.10^9$ 9.10 <sup>16</sup> 3.10 <sup>18</sup> 2.10 <sup>15</sup> 1 <sup>12</sup> .10 <sup>14</sup> >2.10 <sup>14</sup> |  |

National Physical Laboratory.
 † Phillips.

s. ‡ In dark.

§ Wick, 1908.

### TEMPERATURE COEFFICIENTS OF RESISTANCE

To represent accurately over any considerable range the variation of electrical resistance (R) with temperature (t) requires for almost all substances a parabolic or cubic equation in t. But if the temperature interval is not large, a linear equation  $R_t = R_0(1 + \alpha t)$  may be employed; and this gives a definition of the mean temperature coefficient ( $\alpha$ ) over that temperature range. The table of resistivities above will readily yield the associated values of  $\alpha$ . The coefficients given below are average ones.

| Substance.                                   | Temp.                                                                                                                                                                                                | a            | Substance.                          | Temp.          | a                                      |  |  |  |  |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------|----------------|----------------------------------------|--|--|--|--|
| Metals-                                      | 18-100                                                                                                                                                                                               | × 10-4<br>38 | Metals (contd.)—                    | 0-100          | × 10-4<br>40                           |  |  |  |  |
| Bismuth                                      | 18                                                                                                                                                                                                   | 42           | Tantalum                            | 0-100          | 33                                     |  |  |  |  |
| Cadmium                                      | 18-100<br>18                                                                                                                                                                                         | 40<br>42.8   | Tin                                 | 0-100<br>0-170 | 45<br>51                               |  |  |  |  |
| Cobalt                                       | 0-160                                                                                                                                                                                                | 33           | Zinc                                | 18-100         | 37                                     |  |  |  |  |
| Gold                                         | 18                                                                                                                                                                                                   | 40<br>62     | Alloys-                             |                |                                        |  |  |  |  |
| Steel                                        | 18<br>18                                                                                                                                                                                             | 16-42<br>43  | Brass                               | 18             | $10^{\ddagger}$<br>$(-4^{\dagger} to)$ |  |  |  |  |
| Mercury †                                    | 0-24                                                                                                                                                                                                 | 9.0          | Constantan (Eureka).                | 18             | 1+.1‡                                  |  |  |  |  |
|                                              | 0-100<br>0-1000                                                                                                                                                                                      | 62<br>27     | German silver<br>Manganin§          | 18<br>20       | 2'3-6                                  |  |  |  |  |
| Palladium<br>Platinum                        | 18-100<br>-100-0                                                                                                                                                                                     | 37<br>35     | Platinoid                           | 18<br>16       | 2'5<br>15                              |  |  |  |  |
|                                              | 0-100                                                                                                                                                                                                | 38           | 90 Pt, 10 Rh                        | 15             | 17                                     |  |  |  |  |
| Molybdenum (1910) .                          | 0-170                                                                                                                                                                                                | 50           | Platinum-silver (coils)<br>Nichrome | 16<br>20       | 2.4-3.3                                |  |  |  |  |
| • High conductivity<br>(N. P. L.), 1904. 1 N | • High conductivity annealed commercial. $\dagger R_t = R_0(1 + \cdot o_3 88t + \cdot o_8 1t^2)$ —Smith (N. P. L.), 1904. $\ddagger N. P. L.$ § Most samples of manganin have a zero temp. coeff. at |              |                                     |                |                                        |  |  |  |  |

(N. P. L.), 1904. \$ N. P. L. from 30° C. to 40° C.

# WIRE RESISTANCES

#### STANDARD WIRE GAUGE

The sizes of wires are ordinarily expressed by an arbitrary series of numbers. There are, unfortunately, four or five independent systems of numbering, so that the wire gauge used must be specified. The following are English Legal Standard wire gauge values. (See Foster's "Electrical Engineers' Pocket Book.")

| Size.  | Diameter. |       | Size.  | Diam | eter. | Size.  | Dian | ieter. |
|--------|-----------|-------|--------|------|-------|--------|------|--------|
| 8.W.G. | Mm.       | Inch. | 8.W.G. | Mm.  | Inch. | S.W.G. | Mm.  | Inch.  |
| 6      | 4.88      | .192  | 20     | .914 | ·036  | 34     | *234 | '0092  |
| 8      | 4.06      | .100  | 22     | .711 | ·028  | 36     | .193 | *0076  |
| 10     | 3.25      | .158  | 24     | .559 | '022  | 38     | .122 | *0060  |
| 12     | 2.64      | .104  | 26     | *457 | .018  | 40     | 122  | *0048  |
| 14     | 2.03      | ·080  | 28     | .376 | .0148 | 42     | 102  | *0040  |
| 16     | 1.63      | *064  | 30     | '315 | '0124 | 44     | .081 | *0032  |
| 18     | 1.55      | .048  | 32     | '274 | .0108 | 46     | ·061 | *0024  |

### WIRE RESISTANCES

Average values in ohms per metre at 15° C. The **safe currents** for copper (high conductivity annealed commercial) are calculated at the rate of about 270 amps./cm.<sup>2</sup> for No. 12 wire, 430 amps./cm.<sup>2</sup> for No. 22 wire, and 500 amps./cm.<sup>2</sup> for smaller diameters. Larger current densities than these are allowed in the revised "Wiring Rules" of the Institution of Electrical Engineers. Eureka is practically identical with constantan.

The average **temperature coefficient** of resistance of copper is '00428; of nickel, '0027; of manganin, '00001; of German silver, '00044; of Eureka, - '00002; of platinoid, '00025 per degree Centigrade. The values for the alloys may vary considerably. The **composition** of manganin is 84Cu, 4Ni, 12Mn; of German silver, 60Cu, 15Ni, 25Zn; of Eureka, c. 60Cu, 40Ni. Platinoid is said to be German silver with a little tungsten. For specific resistances, see p. 92.

|                | W.G. Ohmsper Safe Ohms<br>metre current. Per |                             | MANGA<br>NIN.         | GERMAN<br>SILVER.    |                |                       | PER.                   | MANGA<br>NIN.         | GERMAN<br>SILVER.    |
|----------------|----------------------------------------------|-----------------------------|-----------------------|----------------------|----------------|-----------------------|------------------------|-----------------------|----------------------|
| 8.W.G.         |                                              |                             | Ohms<br>per<br>metre. | Ohms per<br>metre.   | 8.W.G.         | Ohms<br>per<br>metre. | Safe<br>current.       | Ohms<br>per<br>metre. | Ohms per<br>metre.   |
| 12<br>14<br>16 | .0032<br>.0054<br>.0083                      | amps.<br>15'0<br>9'8<br>6'8 | °077<br>°131<br>°204  | .041<br>.070<br>.109 | 30<br>32<br>34 | •222<br>•293<br>•404  | amp.<br>'4<br>'3<br>'2 | 5°45<br>7°18<br>9°90  | 2'90<br>3'83<br>5'27 |
| 18<br>20<br>22 | *0148<br>*0260<br>*0435                      | 4.2<br>2.6<br>1.7           | ·361<br>·645<br>1·07  | *193<br>*345<br>*57  | 36<br>38<br>40 | ·590<br>·950<br>1·48  | ·15<br>·1<br>·06       | 14.5<br>23.2<br>36.3  | 7'74<br>12'4<br>19'4 |
| 24<br>26<br>28 | •070<br>•105<br>•155                         | 1·1<br>·7<br>·5             | 1.73<br>2.58<br>3.82  | .92<br>1.38<br>2.02  | 42<br>44<br>46 | 2°10<br>3°30<br>5°90  | .05<br>.03<br>.02      | 53'4<br>81'7<br>145'5 | 27.8<br>43.5<br>77.4 |

|                      |                              | EUREKA or CO                       | ONSTAN               | TAN.                         |                                  | PL                   | ATINOID                      | (Martin              | o's).                        |
|----------------------|------------------------------|------------------------------------|----------------------|------------------------------|----------------------------------|----------------------|------------------------------|----------------------|------------------------------|
| 8.W.G.               | Ohms<br>per<br>metre.        | 20° C. temp<br>rise caused<br>by   | 8.W.G.               | Ohms<br>per<br>metre.        | 20° C. temp<br>rise caused<br>by | <b>S.W.G</b> .       | Ohms<br>per<br>metre.        | s.w.G.               | Ohms<br>per<br>metre.        |
| 12<br>14<br>16<br>18 | *086<br>*146<br>*228<br>*405 | amps.<br>12'2<br>8'2<br>4'9<br>2'7 | 20<br>22<br>24<br>26 | '722<br>1'20<br>1'93<br>2'89 | amps.<br>1.5<br>77<br>33<br>1    | 20<br>22<br>24<br>26 | .622<br>1.03<br>1.67<br>2.50 | 28<br>30<br>32<br>34 | 3.69<br>5.25<br>6.81<br>9.55 |
|                      |                              | The fusing c                       | urrents              |                              | SES<br>wires mounte              | ed horiz             | ontally                      | 1 mun                | 1.100                        |
|                      | 1                            | Fusing current.                    | 1 amp.               | 3                            | 5 10                             | 20                   | 30                           | 40                   | 50                           |

28

41

24

38

21

33

37

47

18

28

16

25

14

23

13

22

S.W.G.

S.W.G.

Tin

Copper .

#### DIELECTRIC CONSTANTS

The inductivity, dielectric constant, or specific inductive capacity k of a material may be defined as—

(I) The ratio of the capacity of a condenser with the material as dielectric to its capacity when the dielectric is a vacuum.

(2) The square of the ratio of the velocity of electromagnetic waves in a vacuum to their velocity in the material. This ratio is dependent on the wave-length,  $\lambda$ , of the waves; in most cases k increases with  $\lambda$ . Unless otherwise stated, the inductivities below are for very long waves ( $\lambda = \infty$ ) and at room temperatures.

If  $\mu$  is the refractive index, then on Maxwell's theory of light,  $k = \mu^2$ , provided the frequency of the electrical oscillations is the same as that of the light vibrations. In practice we cannot find k for vibrations as rapid as those of the visible rays; the alternative is to obtain (by extrapolation) the refractive index for waves of very great wave-length, *e.g.* by the use of Cauchy's formula, p. 82. When such data are available Maxwell's relation is found to hold fairly exactly in the case of a number of gases and liquids, though there are many substances which provide marked exceptions.

In general, a rise of temperature diminishes the inductivity. The **temperature** coefficient a between  $t^{\circ}$  and  $T^{\circ}$  is defined by  $k_{T} = k_{t}\{1 - \alpha(T - t)\}$ . In the case of water Palmer (1903) finds that a increases slightly with the frequency of oscillation.

The **Clausius-Mossotti relation**  $\frac{k-1}{p(k+2)} = \text{const.} (p \text{ being the density})$  has been shown by Tangl (Ann. d. Phys., 1908) to hold from 1 to 100 atmos. in the case of H<sub>2</sub>, N<sub>2</sub>, and air.

| Substance.                                                                            | k.             | Substance.                      | k.       | Substance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.     | k.        |  |  |  |
|---------------------------------------------------------------------------------------|----------------|---------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|--|--|--|
| Solids-                                                                               |                | and Alaste of Idaal             | 6        | Service and the service of the servi |        |           |  |  |  |
| Calcite                                                                               |                | Bromine                         | 3.1      | Oil, paraffin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | 4.6-4.8   |  |  |  |
| Ebonite                                                                               | 7.5-7.7        | Carb. bisulphide .              | 2.62     | Paraffin, med                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | 2.2       |  |  |  |
| Fluorite                                                                              | 2.7-2.9<br>6.8 | , tetrachloride                 | 2.25/18° | Petroleum .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ···    | 2.0-2.2   |  |  |  |
| Glass, crown                                                                          | 5-7            | Chloroform, 18° .               | 5.0      | Toluene, $a =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | 2.4       |  |  |  |
| " heavy crown                                                                         | 7-9            | Ethyl acetate                   | 6        | Turpentine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | 2.2-2.3   |  |  |  |
| " flint                                                                               | 7-10           | ,, chloride                     | 10.0     | Vaseline oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 1.0       |  |  |  |
| " mirror                                                                              | 6-7            | , ether, $a = 005$              | 4.34     | Water, $\lambda = \infty$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | 81        |  |  |  |
| Gypsum                                                                                | 6.3            | Glycerine, $\lambda = 200$ .    | 39.1/15° | $\lambda = 360$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 3.32*     |  |  |  |
| Ice (-2°)                                                                             | 93.9           | Nitrobenzene                    | 37/17    | $\lambda = 120$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 2.79*     |  |  |  |
| Indiarubber                                                                           | 2'1-2'3        | Oil, castor                     | 4.6-4.8  | ,, a <sub>17</sub> =-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | - 19      |  |  |  |
| Marble                                                                                | 8.3            | ,, olive                        | 3.1-3.2  | Xylene, m, a:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | =:0.5  | 2.37      |  |  |  |
| Mica                                                                                  | 5.7-7          | ,, онте т т т                   | 3 - 3 -  | regione, m, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 035  | - 31      |  |  |  |
| Paper, dry                                                                            | 2-2.5          |                                 | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |           |  |  |  |
| Paraffin wax                                                                          | 2-2.3          | Substance.                      | Temp.    | k.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ohs    | erver.    |  |  |  |
| Pitch                                                                                 | 1.8            | Dubb tune of                    | Tomb.    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000    |           |  |  |  |
| Porcelain                                                                             | 4.4-6.8        |                                 |          | 76 cm. Hg.; $\lambda = \infty$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |           |  |  |  |
| Quartz                                                                                | 4.5            | Gases-                          |          | $70 \text{ cm}, \text{ Hg}, ; \Lambda = \infty$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |  |  |  |
| Resin                                                                                 | 1.8-2.6        | Air                             | o°C.     | 1.000594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C & 1  | H., 1927  |  |  |  |
| Rock salt                                                                             | 5.6            | ,,                              | 20       | 1.000528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Watso  | n, 1934   |  |  |  |
| Selenium (16°) .                                                                      | 6.1            | Hydrogen                        | 0        | 1.000265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Zahn,  |           |  |  |  |
| Shellac                                                                               | 3-3.7          |                                 | 25       | 1.000252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | n, 1931   |  |  |  |
| Silica, fused                                                                         | 3.5-3.6        | Helium                          | 25       | 1.000067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |           |  |  |  |
| Spermaceti                                                                            | C. 2'2         | Nitrogen                        | 25       | 1.000538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | 1934      |  |  |  |
| Sulphur                                                                               | 3.6-4.3        | Nitrous oxide, N <sub>2</sub> O | 25       | 1'00103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | 1934      |  |  |  |
| Sylvin                                                                                | 4'9            | Carbon monoxide.                | 25       | 1.000634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | 1934      |  |  |  |
| Vaseline                                                                              | 2'2            | ,, dioxide .                    | 25       | 1.000904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,,     | 1931      |  |  |  |
|                                                                                       |                | ,, bisulphide                   | 29       | 1.00200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S. & 1 | W., 1930  |  |  |  |
| Liquids-                                                                              | in the second  | Ethylene                        | 25       | 1.00132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Watso  | n, 1934   |  |  |  |
| Alcohol, methyl .                                                                     | 35.4/130.4     | Sulphur dioxide .               | 22       | 1.00818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Zahn,  |           |  |  |  |
| " ethyl                                                                               | 26.8/14°.7     | Ammonia                         | I        | 1.00713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | 1926      |  |  |  |
| amyl                                                                                  | 16.0/20°       | Alcohol, methyl .               | 100      | 1.0057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pohrt, |           |  |  |  |
| Aniline, $a = 004$ .                                                                  | 7.21           | ,, ethyl                        | 100      | 1.0078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | les, 1932 |  |  |  |
| Benzene, $a = 0_{37}$ .                                                               | 2.29/18°       | Benzene                         | 100      | 1.00327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | 1913.     |  |  |  |
| C. & H., Carman and Hubbard ; S. and W., Schwingel and Williams.<br>* Beaulard, 1908. |                |                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |  |  |  |

# IONIC DISSOCIATION

#### IONIC DISSOCIATION THEORY

On the Dissociation Theory (Arrhenius, 1887), the solute is dissociated into electrically positive cathions and negative anions. For example, KCl in water exists as KCl, K<sup>+</sup>, Cl<sup>-</sup>; sulphuric acid as H<sub>2</sub>SO<sub>4</sub>, H<sup>+</sup>, H<sup>-</sup>, SO<sub>4</sub><sup>++</sup>, HSO<sub>4</sub><sup>+</sup>. Pro-bably, in many cases, these ions are attached to molecules of solvent. **The degree** of dissociation  $\alpha = (number of dissociated solute molecules)/(total number of$ solute molecules). a is deduced from the osmotic pressure of the solution, and from its electric conductivity at different dilutions. The osmotic pressure is determined (1) directly, (2) from the raising of the boiling-point, and (3) from the depression of the freezing-point of the solvent by the presence of the solute. The equivalent conductivity (A) for different concentrations of any dilute solution is assumed to be proportional to the number of ions present. A approaches asymptotically a limiting conductivity  $(\Lambda_{\infty})$  for extreme dilutions, a state of things when, on this theory, the solute is completely dissociated.  $\Lambda_m/\Lambda_{\infty} = \alpha$  for the equivalent concentration m. The cathion and anion with their charges +e and -e (for monovalent ions) move in unit electric field in opposite directions with speeds or mobilities  $u_+$  and  $u_-$ . The electrolytic current also obeys Ohm's Law, so that  $X\kappa = (u_+ + u_-)ne$ (Kohlrausch, 1879), where X is the potential gradient in volts per cm., n the number of +ive or -ive ions per c.c.,  $\kappa$  the conductivity of the solution in ohm<sup>-1</sup> cm.<sup>-1</sup>. This becomes  $u_+ + u_- = 1.037 \times 10^{-5} \Lambda$  cm./sec., since  $\kappa/n = \Lambda/N$ , and Ne = 96,740 coulombs per gm. equivalent of ions.

The mobility of electrolytic ions has been directly observed by Lodge (1886), Whetham, Orme Masson, and D. B. Steele. The ratio  $u_{-}/(u_{+} + u_{-}) \equiv n$  is for the negative ion, the **migration ratio** or transport number of Hittorf (1853-9). *n* can be determined, when complex ions are absent, from the change of concentration at the anode and cathode during electrolysis. The **mobility** of certain organic ions is approximately inversely proportional to their linear dimension *a* (Laby and Carse). The existence of this relation of Ohm's Law and of a relation between the viscosity ( $\eta$ ) of the solvent and the ionic mobilities (Kohlrausch, Hosking, and Lyle) indicates that the motion of the ion through the solution may follow Stokes' Law ( $v = F/6\pi\eta a$ , where F is the driving force), with the numerical constant,  $6\pi$ , possibly changed.

In the theory of Debye and Hückel complete dissociation is assumed, and the variations in conductivity and osmotic pressure are traced to the electrostatic and viscous forces acting on the cluster of molecules which surrounds each ion. (See Davies' "Conductivity of Solutions", Falkenhagen's "Electrolytes" and Newman's "Electrolytic Conduction.")

#### MIGRATION RATIOS

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | Solute.                                                          | ℓ°C.                | Conc. m.                                           | Ratio n.                                                                                                               | Solute.                                                                                                                                   | ¢°€.                           | Conc. m.                                    | Ratio n.                                                                 | Solute.                                                                                     | ℓ°C.               | Conc. m.                                               | Ratio n.                                   |
|---------------------------------------------------------|------------------------------------------------------------------|---------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------|--------------------------------------------|
|                                                         | KBr .<br>KI<br>KNO <sub>3</sub> .<br>NaCl .<br>NaNO <sub>3</sub> | 25<br>8<br>18<br>19 | ('03 to)<br>('01 )<br>'05<br>'1<br>('03 to)<br>'05 | <sup>•</sup> 504, B.<br><sup>•</sup> 505, Be.<br><sup>•</sup> 497, H.<br><sup>•</sup> 604, B.<br><sup>•</sup> 629, Be. | NH <sub>4</sub> Cl<br>TlCl<br>CaCl <sub>2</sub> .<br>SrCl <sub>2</sub> .<br>BaCl <sub>2</sub> .<br>MgCl <sub>2</sub><br>ZnSO <sub>4</sub> | 20<br>22<br>21<br>18<br>21<br> | ·01<br>·005<br>·01<br>·05<br>·05<br>·12 to) | 507, Be.<br>516, Be.<br>562, S.D.<br>56, Be.<br>55<br>615, Be.<br>64, H. | HCl<br>HNO <sub>3</sub><br>H <sub>3</sub> SO <sub>4</sub><br>KOH<br>NaOH<br>NH <sub>3</sub> | 10<br>18<br>11<br> | ('05 to)<br>('05 to)<br>'25<br>'05<br>'1<br>'04<br>'05 | 159, N.S.<br>17<br>17, Be.<br>74<br>8, Be. |

Hittorf's migration ratio or transport number of the anion,  $n = u_{-}/(u_{+} + u_{-})$ ; m = equivalent concentration per litre;  $t^{\circ}$  = temp. of observation.

B., Bogdan; Be., Bein; H., Hittorf; L.N., Löb and Nernst; M., Metelka; N.S., Noyes and Sammet; S.D., Steele and Denison.

# 97 CONDUCTIVITY OF SOLUTIONS

# ELECTRICAL CONDUCTIVITY OF SOLUTIONS

 $\kappa_{18} =$  specific electric conductivity (in ohms<sup>-1</sup> cm.<sup>-1</sup>) of the solution at 18° C.

p = mass of anhydrous solute per 100 gms. of solution.

 $\eta$  = the number of gm. equivalents in 1 c.c. of solution. Gm. equiv. per litre = 1000\eta. To find  $\eta$  note that  $\kappa/\Lambda = \eta$ .

v = volume in litres containing one gm. equivalent of solute = 1/1000 $\eta$ . **A** = equivalent conductivity =  $\kappa/\eta$ , = the conductivity in reciprocal ohms of I gm. equiv. in solution between electrodes I cm. apart. The chemical

TRATER COLUTIONS

equiv. of, for example, " $1/2CaCl_2$ " is 111/2. Temp. coefficient =  $(d\kappa/dt)/\kappa_{18}$ . (See Kohlrausch and Holborn, "Das Leitver-mögen der Elektrolyten" (Teubner).) K = Kohlrausch; G = Grotrian.

|               | CONCENTRATED SOLUTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |                         |          |                     |                                 |          |          |                           |                                 |                  |                |                      |                                 |                         |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------|----------|---------------------|---------------------------------|----------|----------|---------------------------|---------------------------------|------------------|----------------|----------------------|---------------------------------|-------------------------|
| 8%            | ĸ18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\Lambda = \frac{\kappa}{\eta}$ | Temp.<br>coef.          | 2%       | K18                 | $\Lambda = \frac{\kappa}{\eta}$ | Temp.    | 2%       | ĸ <sub>18</sub>           | $\Lambda = \frac{\kappa}{\eta}$ | Temp.            | 2%             | к <sub>18</sub>      | $\Lambda = \frac{\kappa}{\eta}$ | Temp.<br>coef.          |
| 1             | KC1 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                         | 1 C      | 1Cl <sub>2</sub> (0 | .) (conto                       |          |          | 1 HC                      | l (K.).                         |                  | 1 H            | 2804 (K              | .) (contd                       | .).                     |
| 5<br>10<br>15 | .0690<br>.1359<br>.2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 95'2                            | '0<br>201<br>188<br>179 | 30<br>50 | ·0282<br>·0137      | 6.5<br>1.49                     |          | 5        | 6302                      | 281.0                           | '0<br>158<br>156 | 70<br>80<br>90 | ·216<br>·110<br>·107 | 9.4<br>3.9<br>3.22              | °0<br>256<br>349<br>320 |
| 20            | .2677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 88.9                            | 168                     |          | 1 AgN               | $0_{3}(K.)$                     | 0        | 20<br>30 |                           | 126.2                           | 154              | 100            | 0157                 | -                               | 031                     |
| 21            | 2810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 87.5                            | 166                     | 5        | .0256               | 83.4                            | 218      |          |                           |                                 |                  |                |                      | (K.).                           |                         |
| 1             | NaCl (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (K.G.)                          | ).                      | 10<br>15 | ·0476<br>·0683      | 74'3<br>67'9                    | 217 215  | 1        | 1 HNO, (K.G.). 4'2'1464 I |                                 |                  |                |                      | .00                             | '0<br>187               |
| -             | 5 0672 76 217 60 '1565 450 2101 31'1                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                         |          |                     |                                 |          |          | HAU,                      | (A.U.)                          |                  |                | 272                  | 188<br>169                      | 186                     |
| 10            | 1211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 66.2                            | 214                     |          |                     | -                               | 209      |          | .312                      | 307                             | 147              | 12.0           | ·376<br>·456         | 150<br>131                      | 188                     |
| 15            | 20 1957 499 216 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                         |          |                     |                                 |          |          | ·542<br>·690              | 257<br>211                      | 142<br>137       |                | 543                  | 81                              | 221                     |
| 25            | 25 2135 42.0 227 5 0552 71.0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                         |          |                     |                                 |          |          | .768                      | 169                             | 137              | 42.0           | '421                 | 39                              | 283                     |
| 26.4          | 26.4 2156 39.8 233 10 1010 63.1 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                         |          |                     |                                 |          |          | ·782<br>·634              | 133<br>61                       | 139              |                | 1 Na0                | H (K.).                         |                         |
| 1             | CaCl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (K.G.                           | ).                      | 30       | .2292               | 43.1                            | 191      | 62       | .496                      | 36.4                            | 157              | 2.2            | .109                 | 170                             | °0<br>194               |
| 5             | 0643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 68.6                            | '0<br>213               |          | 1 CuS               | 0, (K.).                        |          |          | H.S                       | 0, (K.).                        |                  | 5              | 197                  | 149                             | 201                     |
| IO            | 1141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 58.3                            | 206                     | 2.5      | 0100                | 34.0                            | 0<br>213 | -        | 1                         | 1                               | 1.0              | 10<br>15       | ·312<br>·346         | 112<br>79                       | 217<br>249              |
| 15            | 1505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 | 202                     | 5        | .0189               | 28.7                            | 216      | 5        | 208                       | 198                             | 121              | 20<br>30       | ·327<br>·202         | 53<br>20                        | 299<br>450              |
| 25            | 1781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32.1                            | 204                     | 10       | 0320                |                                 | 218      |          | ·391<br>·543              | 180<br>161                      | 128<br>136       | 40             | .116                 | 8·1                             | 65                      |
| 30            | 1658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 | 216                     | -        | 1                   | 0, (G.).                        | 1 -      | 20       | 653                       | 140<br>119                      | 145<br>154       |                | 1 NH,                | ( <b>K</b> .).                  |                         |
|               | 1 CdCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (Q.)                            |                         | -        | T                   | 1                               | 0.       | 30       | 739                       | 99                              | 162              |                |                      |                                 | 0                       |
|               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                               | 0.1                     | 5        | '0043<br>'0146      |                                 | 210      |          | ·724<br>·680              | 80<br>64                        | 170              |                | 00025                | 4.25                            | 246<br>238              |
| 1 10          | I 0055 50 I 222 25 0430 I38 223 50 540 38 193 8 00104 23 262                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                         |          |                     |                                 |          |          |                           |                                 |                  |                |                      |                                 |                         |
|               | STANDARD SOLUTIONS FOR CALIBRATING CONDUCTIVITY VESSELS                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                         |          |                     |                                 |          |          |                           |                                 |                  |                |                      |                                 |                         |
| KC<br>ten     | $\kappa_{18}$ for the <b>purest water</b> in a vacuum = '04 × 10 <sup>-6</sup> ohms <sup>-1</sup> cm. <sup>-1</sup> (Kohlrausch<br>and Heydweiller); $\kappa_{18}$ for <b>conductivity water</b> in air is about 10 <sup>-6</sup> ohms <sup>-1</sup> cm. <sup>-1</sup> ;<br>KCl I <i>n</i> = normal KCl = 74'59 gm./litre at 18° C.; NaCl sat. = saturated NaCl at<br>temp. <i>t</i> . of experiment. <b>Unit</b> —ohm <sup>-1</sup> cm. <sup>-1</sup> . (See Kohlrausch, Holborn, and<br>Diesselhorst.) |                                 |                         |          |                     |                                 |          |          |                           |                                 |                  |                |                      |                                 |                         |

| Solution.          | 0° C. | 8°     | 12°   | 16°     | 20°     | 24°     |
|--------------------|-------|--------|-------|---------|---------|---------|
| NaCl, sat          | 00152 | *1688  | 1872  | *2063   | *2260   | *10984  |
| KCl, 1 <i>n</i> .  |       | *07954 | 08689 | *09441  | *10207  | *10984  |
| KCl, 1/10 <i>n</i> |       | *00888 | 00979 | *01072  | *01167  | *01264  |
| KCl, 1/50 <i>n</i> |       | *00190 | 00209 | *00229  | *00250  | *00271  |
| KCl, 1/50 <i>n</i> |       | *00097 | 00107 | *001173 | *001278 | *001386 |

# CONDUCTIVITY OF SOLUTIONS

EQUIVALENT ELECTRIC CONDUCTIVITY A OF DILUTE AQUEOUS SOLUTIONS Extrapolated numbers are indicated by (). A for infinite dilution is given under "O." Observers: inorganic solutes, Kohlrausch; organic, Bredig, Zeit. Phys. Chem., 1894.

| Solute                                                                                             | Gm. ea                                                                                                                                                                                                                                                                                                                                                                                                     | quiv. per                           | litre = 1                                                                                                                | 1000η.                                                           | 1                          | Solute at                                                                                                                                           | Gm. eq                                                                                | uiv. p                   | er litr                                                  | • = 1                                              | 000 <b></b> η.                                     |                   |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------|
| at 18° C.                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                          | ·0001                               | •01                                                                                                                      | •5                                                               |                            | 18° C.                                                                                                                                              | ·0001                                                                                 | ·000:                    | 8                                                        | ·01                                                | .5                                                 |                   |
| KCl .<br>KBr .<br>KI<br>KF .<br>KSCN<br>KNO <sub>3</sub> .<br>NaCl .<br>NaF .<br>NaNO <sub>3</sub> | KBr         132'3         131           KI         131'0         129           KF         111'3         110           KSCN         121'3         120           KNO3         126'5         125           NaCl         109'0         108           NaF         90'15         89           NaNO3         105'3         104           LiCl         98'9         98           AgNO3         115'8         115'8 |                                     |                                                                                                                          | 102<br>105<br>106<br>83<br>957<br>892<br>805<br>605<br>7450      | 2 - 2 - 2 - 2              | BaCl <sub>2</sub> .<br>MgCl <sub>2</sub> .<br>ZnSO <sub>4</sub> .<br>CdNO <sub>3</sub> .                                                            | 115'2<br>111'7<br>[117/'<br>109'4<br>109'5<br>[100/'<br>109'9<br>120'7                | 108.                     | 1<br>9<br>5<br>9                                         | 03<br>99<br>07<br>98'1<br>72'8<br>96<br>71'7<br>03 | 74°<br>62°<br>77°<br>69°<br>63°<br>53°             | 735               |
| AgNO <sub>3</sub><br>CsCl .                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                            | 98.1<br>115.0<br>132.3              | 99°2<br>108<br>125                                                                                                       | 70'7                                                             |                            |                                                                                                                                                     | ·001                                                                                  | ·002                     | 8                                                        | •01                                                | •5                                                 |                   |
| RbCI .<br>NH,CI<br>TICI .                                                                          | <br>131'5                                                                                                                                                                                                                                                                                                                                                                                                  | 132'3<br>129'2<br>130'3             | 125<br>122<br>120                                                                                                        | 101                                                              | H                          | Acids.<br>ICl<br>INO <sub>8</sub> .<br>H <sub>2</sub> SO <sub>4</sub> .<br>H <sub>3</sub> PO <sub>4</sub> .                                         | (377)<br>(375)<br>361<br>(106)                                                        | 376<br>374<br>351<br>102 | 3                                                        | 70<br>68<br>08<br>85                               | 327<br>324<br>205                                  |                   |
|                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                                                                                                                          |                                                                  | K                          | Alkalies.<br>COH .<br>NaOH .<br>IH <sub>3</sub>                                                                                                     | (234)<br>53/ <sup>.0002</sup>                                                         | (233<br>204<br>38/*00    | 5 2                                                      | 28<br>03.4<br>9.6                                  | 197<br>174<br>1*                                   | 35                |
| Solut                                                                                              | e at 25° C                                                                                                                                                                                                                                                                                                                                                                                                 | .                                   | Λ <sub>1024</sub>                                                                                                        | Λ                                                                |                            | Solute                                                                                                                                              | e at 25° C.                                                                           | 1                        | Λ <sub>102</sub>                                         |                                                    | Λ                                                  |                   |
| -Meth<br>-Ethy<br>-Dime                                                                            | ate<br>bionate<br>rate .                                                                                                                                                                                                                                                                                                                                                                                   | ::                                  | 98.1<br>85.7<br>81.0<br>77.4<br>77.7<br>125.1<br>114.3<br>117.5<br>109.2                                                 | 100°<br>87'<br>83'<br>79'<br>80'<br>127'<br>117'<br>120'<br>111' | 5 5 9 1 8 0 3              | -Propy<br>(CH <sub>3</sub> ),P<br>(C <sub>2</sub> H <sub>5</sub> ),I<br>(CH <sub>3</sub> ),A<br>(CH <sub>3</sub> ),A<br>Hydroch<br>-Anilin<br>-Meth | sCl                                                                                   |                          | 107"<br>98'<br>105'<br><u>A234</u><br>100"<br>99'<br>97' | 4<br>3<br>5<br>3<br>4                              | 110'3<br>109'8<br>100'8<br>108'2<br>108'2<br>108'2 | 3                 |
|                                                                                                    | m = volution                                                                                                                                                                                                                                                                                                                                                                                               | ume in                              | litres in                                                                                                                | n which                                                          |                            |                                                                                                                                                     | ON-AQUEO<br>valent is                                                                 |                          |                                                          |                                                    | e Tow                                              | ver,              |
| Sol-<br>vent.                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                            | ° C. v                              | Δ                                                                                                                        | v                                                                | Λ                          | Solvent.                                                                                                                                            | Solute.                                                                               | 1° C.                    | v                                                        | ۸                                                  | v                                                  | Λ                 |
| HČN<br>SO <sub>1</sub> Ag                                                                          | $(NO_3 - KI)$<br>$(H_3)_3I$<br>(KI)<br>$(L_2H_3)_4I$                                                                                                                                                                                                                                                                                                                                                       | 15<br>0 39<br>0 51<br>0 102<br>0 51 | 0 317 <sup>.6</sup><br>)4 188<br>)2 298<br>(2 327<br>24 112 <sup>.5</sup><br>(2 157 <sup>.1</sup><br>50 63 <sup>.2</sup> | 192<br>1024<br>1024<br>2048<br>1024                              | 110<br>308<br>332<br>134.5 | Formic<br>acid<br>Acetone<br>"                                                                                                                      | N(C <sub>2</sub> H <sub>5</sub> ),<br>{ KCl<br>HCl<br>KI<br>LiCl<br>AgNO <sub>3</sub> | 25<br>25<br>18<br>18     | 750<br>256<br>5.86<br>1157<br>10<br>288                  | 58<br>32.8<br>155<br>49.8                          | 1500<br>512<br>46.9<br>2315<br>13.8<br>576         | 61<br>33°2<br>163 |

#### MOBILITIES OF IONS IN LIQUIDS

The mobility of the anion =  $u_{-} = 1.037 \times 10^{-5} \text{ An.}$  (n = Hittorf's number.) **Example.**—For KCl,  $\Lambda_{\infty} = 130^{\circ}1$ , n = .505,  $\therefore u_{-} = 1.037 \times 10^{-5} \times .505 \times 130^{\circ}1 = 6.8 \times 10^{-4} \text{ cm./sec.}$  for Cl ions at 18°. Observers, Kohlrausch and Bredig ; the latter's values have been multiplied by  $1.1 \times 10^{-5}$  to bring them to cm./sec. **Unit**—10<sup>-6</sup> cm./sec. \*  $\frac{1}{2}$  Ca, etc. : the actual ionic velocity of the divalent ions is half the value stated here; these values, however, fit the equations given on p. 96.

| Ion.                                       | # 18°.                     | Ion. | # 18°.               | Ion.                                             | # <b>18</b> °.   | Ion.              | u 18°.             | Ion.   | # 25°.               | Ion.                                                                                                      | # 25°. |
|--------------------------------------------|----------------------------|------|----------------------|--------------------------------------------------|------------------|-------------------|--------------------|--------|----------------------|-----------------------------------------------------------------------------------------------------------|--------|
| H .<br>Li .<br>Na .<br>K .<br>Rb .<br>Cs . | 34.6<br>45.2<br>67<br>70.5 | TI.  | 68·4<br>53·7<br>53·6 | Zn* .<br>Cu* .<br>Ag .<br>Cd* .<br>Pb* .<br>OH . | 49<br>56<br>49'2 | Cl .<br>Br .<br>I | 67.8<br>70<br>68.8 | CH.CO. | 42°1<br>37°7<br>33°8 | $ \begin{array}{c} C_2H_5H_3N\\ (C_2H_6)_4P\\ C_9H_6H_3N\\ aniline\\ C_6H_6HN\\ (CH_3)_4As. \end{array} $ | 39'5   |

#### DIRECTLY OBSERVED MOBILITIES

Deduced from the observed movement of an ionic boundary. m = equivalent Unit-10<sup>-6</sup> cm./sec. at 18°C. (See Denison and Steel, Phil. concentration. Trans., 1906.)

| Ion. | m  | 14   | Ion. | m | u    | Ion. | m  | 14 | Ion. | m  | 24   | Ion. | m  | 24   | Ion. | m  | u    |
|------|----|------|------|---|------|------|----|----|------|----|------|------|----|------|------|----|------|
| K    | •5 | 55'3 | Na   | I | 31.8 | Ba   | •5 | 33 | Mg   | .2 | 16.7 | CI   | •5 | 52.9 | so,  | .2 | 30.4 |

#### ELECTROMOTIVE FORCES AND RESISTANCES OF CELLS

The E.M.F.'s given are for cells on open circuit, and are only approximate ; in the case of primary batteries they refer to freshly made up cells. The internal resistances quoted are only typical; they vary very widely in practice. With many primary cells the E.M.F. drops and the internal resistance increases as the cell ages. Nearly all modern dry cells are modified Leclanché batteries.

(See Slingo and Brooker's "Electrical Engineering.")

| Cell.              | Description.                                                                                                                     | E.M.F.         | Resistance. |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|
| Bichromate         | Zn and C in t well strong U SO and                                                                                               | Volts.         | Ohms.       |
| Dicinomate         | Zn and C in 1 vol. strong H <sub>2</sub> SO <sub>4</sub> and<br>20 vols. sat. K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> sol. | <i>c</i> . 2'0 | very low    |
| Bunsen             | Zn in I vol. H <sub>2</sub> SO, and I2 vols. H <sub>2</sub> O;<br>C in strong HNO,                                               | 1.8-1.9        | -           |
| Clark (see p. 15). | Zn amalgam and Hg in sat. ZnSO, sol.                                                                                             | 1.433          | 6. 500      |
| Daniell            | Zn in ZnSO, sol. or H <sub>2</sub> SO, (1 to 12);<br>Cu in sat. CuSO, sol.                                                       | 1.02-1.08      | c. 4        |
| Grove              | Like Bunsen with Pt instead of C                                                                                                 | 1.8-1.0        | -           |
| Leclanché          | Zn and C in NH <sub>4</sub> Cl, C, and MnO <sub>2</sub>                                                                          | C. 1.5         | 0.22-4      |
| Secondary          | Pb and PbO <sub>2</sub> (etc.) in $H_2SO_4$ of density<br>1.2                                                                    | 2.5-1.9        | negligible  |
| Tucker             | "Hygroscopic cell." Zn and C with<br>sat. CaCl <sub>2</sub> sol.                                                                 | 1.4            | -           |
| Weston (see p. 15) | Cd amalgam and Hg in sat. CdSO <sub>4</sub> sol.                                                                                 | 1.018          | c. 500      |

#### MAGNETIC INDUCTION

The magnetic induction B and intensity of magnetization J, as well as the magnetizing force H on which they depend, are vectors, and may be measured in lines per sq. cm., where the unit is so chosen that  $4\pi$  lines start from unit magnetic pole. In the case of H, I line per sq. cm. is called an Oersted, whilst for B it is a Gauss. On division by H, the relation  $B = H + 4\pi J$  becomes  $\mu = I + 4\pi\kappa$ , where  $\mu(=B/H)$  is the **permeability** and  $\kappa(=J/H)$  the **susceptibility** of the material. On taking a c.c. of the material through a cycle, the energy dissipated as heat (the

On taking a c.c. of the material through a cycle, the energy dissipated as heat (the **hysteresis** loss) is  $(4\pi)^{-1}\int H \cdot dB$ , the induction remaining when H vanishes is the **remanence**  $B_r$  and the negative magnetizing force needed to reduce B to zero is the **coercive force**. The coercive force for a cycle which proceeds to saturation is called the **coercivity**  $H_c$ .

The magnetic properties of a material depend on such factors as history, state of strain, temperature, grain-size, and perfection of the crystals.

As high purity is approached, the properties of iron become very sensitive to the last traces of impurity; less than 0.01% of oxygen or carbon alters the permeability by a factor as large as two. The maximum permeability of iron has increased with each improvement in its preparation, the highest value so far recorded being 280,000. (Cioffi, 1934.)

For materials which are not ferromagnetic, the susceptibility depends very much on the purity, and especially on the freedom from iron. For diamagnetic substances ( $\kappa$  negative), it is in general independent of the temperature and of the field. For paramagnetic substances, Curie's law is  $\chi = A/T$  where  $\chi$  is the mass susceptibility  $\kappa/\rho$ ,  $\rho$  being the density and T the absolute temperature. Ferromagnetic substances become paramagnetic above their critical temperatures, and then follow the Weiss law  $\chi_m = C_m/(T - T_o)$ , which also applies more accurately than Curie's law to paramagnetics. In this formula,  $\chi_m$  refers to one gm. molecule of the substance, and  $C_m$  is then known as Curie's constant. (References : Wilson, "Modern Physics"; Stoner, "Magnetism and Atomic Structure"; Spooner, "The Testing and Properties of Magnetic Materials.")

#### CURIE POINTS OF FERROMAGNETIC MATERIALS

The Curie point is the temperature at which a substance ceases to be ferromagnetic, and becomes paramagnetic. It is approximately equal to the constant  $T_o$  in Weiss' law.

| Pure Metal. | Curie Point. | Alloy.                                                                                                          | Curie Point.              |
|-------------|--------------|-----------------------------------------------------------------------------------------------------------------|---------------------------|
| Iron        | 1150         | Nickel-iron (Fe 70%, Ni 30%)<br>Permalloy (Fe 22%, Ni 78%)<br>Nickel-copper (Thermalloy, Thermo-<br>perm, etc.) | 70° C.<br>550<br>10 to 70 |

#### PROPERTIES OF FERROMAGNETIC MATERIALS

(Since the properties may vary considerably from specimen to specimen, the values below are only to be regarded as typical of the materials mentioned.)

| Induction B (Gause) |          |                                                                                     |                                                      |                                                       |                                                       |                                                      | Hc                                                    | Br                                                                                                                                                                                                                                                   | Hysteresis<br>loss                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                               |
|---------------------|----------|-------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     |          | Induc                                                                               | tion B                                               | (Gauss)                                               | ).                                                    |                                                      | (Oer-<br>sted).                                       | (Gauss).                                                                                                                                                                                                                                             | Joule<br>/kg/<br>Cycle                                                                                                                                                                                                                                                                                                                                    | at<br>B <sub>max.</sub>                                                                                                                                                                                                                                                                                                                       |
| H=                  | 0.2      | 1.0                                                                                 | 2                                                    | 5                                                     | 20                                                    | 50                                                   |                                                       |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                               |
|                     |          |                                                                                     |                                                      |                                                       |                                                       |                                                      | 0.25                                                  | 10 800                                                                                                                                                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                      | 10 000                                                                                                                                                                                                                                                                                                                                        |
|                     | 7500     | 10,200                                                                              | -                                                    | 10,200                                                | -                                                     | 17,100                                               | 0.35                                                  | 10,000                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                      | 10,000                                                                                                                                                                                                                                                                                                                                        |
|                     | 14.500   | 15.100                                                                              | 15.400                                               | -                                                     |                                                       | -                                                    |                                                       |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                               |
|                     |          |                                                                                     |                                                      |                                                       | 15,200                                                | -                                                    | 0.9                                                   | 13,000                                                                                                                                                                                                                                               | 0.04                                                                                                                                                                                                                                                                                                                                                      | 10,000                                                                                                                                                                                                                                                                                                                                        |
|                     | 400      | 4200                                                                                | 12,000                                               | -                                                     | -                                                     | -                                                    |                                                       |                                                                                                                                                                                                                                                      | 610                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                               |
| 1000                |          |                                                                                     |                                                      |                                                       |                                                       |                                                      |                                                       |                                                                                                                                                                                                                                                      | () in the                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                               |
|                     | -        |                                                                                     |                                                      |                                                       |                                                       |                                                      |                                                       | 5,500                                                                                                                                                                                                                                                | p L http://                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                               |
| H                   |          |                                                                                     |                                                      |                                                       |                                                       | 20,400                                               |                                                       |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                               |
|                     |          |                                                                                     |                                                      |                                                       |                                                       |                                                      |                                                       | 10,500                                                                                                                                                                                                                                               | These is                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                               |
|                     |          |                                                                                     |                                                      |                                                       | _                                                     |                                                      |                                                       | 10                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                               |
|                     |          |                                                                                     |                                                      |                                                       | 18,900                                                | and the second                                       |                                                       | 1000                                                                                                                                                                                                                                                 | Constants.                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                               |
|                     | H=<br>H= | $H = \frac{14,500}{2000}$ $H = \frac{2.5}{900}$ $H = \frac{10}{12,400}$ $I_{0,000}$ | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | Induction B (Gauss).(Oer-sted). $H=$ 0.51.0252050750010,200—16,200—17,1000.3514,50015,10015,400———2000700010,50013,00015,200—0.9400420012,000———0.9H=2.520501002005009006800900010,50012,20014,2005H=1050100300512,40016,30017,70019,80010,00016,800 | Induction B (Gauss).(0er-sted).H= $0.5$ $1.0$ $2$ $5$ $20$ $50$ $7500$ $10,200$ $ 16,200$ $ 17,100$ $0.35$ $10,800$ $14,500$ $15,100$ $15,400$ $    2000$ $7000$ $10,500$ $15,200$ $ 0.9$ $13,000$ $14,500$ $15,100$ $15,400$ $                                                                                                                        -$ | Induction B (Gauss). $H_c$<br>(Oer-<br>sted). $B_r$<br>(Gauss). $10$<br>Joule<br>/kg/<br>CycleH= 0.51.02520507500 10,200-16,200-17,1000.3510,8007500 15,100 15,4002000 7000 10,500 13,000 15,200400 4200 12,000H=2.52050100200500900 6800 9000 10,500 12,200 14,20055,5005,500H=105010030010,50012,400 16,300 17,700 19,80010,50010,50010,500 |

# MAGNETISM

| PROPERTIES OF FERROMAGNETIC MATERIALS-contd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                   |                     |                                 |                     |                      |         |                               |                        |                         |                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|---------------------|---------------------------------|---------------------|----------------------|---------|-------------------------------|------------------------|-------------------------|--------------------------|
| (arg and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                   |                     |                                 |                     |                      |         | H <sub>c</sub> B <sub>r</sub> |                        | Hyste                   |                          |
| Material.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                   | Induct              | tion B (                        | Gauss).             |                      |         | (Oer-<br>sted).               | (Gauss).               | Joule<br>/kg/<br>Cycle. | at<br>B <sub>max</sub> . |
| Dynamo steel<br>Silicon steels—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H=<br>H= | 15,800            | 50<br>16,500<br>1.0 | 100<br>17,500<br>2.0            | 200<br>19,000<br>10 | 500<br>21,000<br>50  | 100     | 0.8                           | 11,000                 | 0.04                    | 20,000                   |
| 2·5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H=       | 4500<br>0·02      | 9000                | 10,500<br>10,000<br><b>0.10</b> | 14,000<br>0·40      | 15,300<br><b>1·0</b> | 17,900  | o·8                           | 8,000                  | 0.025<br>0.015          | 10,000<br>10,000         |
| Permalloy (22% Fe,<br>78% Ni)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 500               | 1850                | 4200                            | 9500                | 10,300               |         | 0.1                           | 8,000                  | 0.005                   | 9,000                    |
| Hypernik *—(50% Fe,<br>50% Ni)<br>(65% Fe, 35% Ni) .<br>(72% Fe, 28% Ni) .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3123     | 180               | 1800                | 1100                            | -                   | 11,300<br>2200       | 7000    | 0.4                           | 8,000                  | 0.01                    | 10,000                   |
| (72% Fe, 25% N1) .<br>Mumetal (73% Ni, 22%<br>Fe, 5% Cu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.05     |                   |                     | etic (µ≤                        |                     | H.F.OO               | 8100    | 0.02                          |                        | 0.001                   | 5,000                    |
| Isoperm (Fe with 40 to<br>50% Ni and Al or Cu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | µ (of    | f the $e^{200}$   | order 6             | 0) vari                         | es only             | 7500                 | up to   | 0.17                          |                        | 0001                    | 5,000                    |
| 1040 alloy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 0.001<br>36       | 0.01<br>800         | 0.02<br>2600                    | 0·1<br>4900         |                      | 10      | 0.011                         | 3,000                  | 0.0002                  | 5,000                    |
| Perminvar (45% Ni, 30%<br>Fe, 25% Co)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H=       |                   | 20                  | 50                              | 2100<br>100         | 8600                 | 11,000  | 1.8                           | 3,500                  | 1                       |                          |
| Cobalt iron (65% Fe,<br>35% Co).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1        |                   |                     |                                 |                     | 25,200               |         | 0.48                          | _                      | 0.012                   | 10,000                   |
| Annealed carbon steel<br>(1% C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                   | 10,600              |                                 |                     | 19,000               | _       | 7.5                           | 10,000                 |                         |                          |
| Magnet steel (0.9% C) .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 200               | 900                 | _                               | 11,700              | 16,600               | _       | 65                            | 8000 to                |                         |                          |
| Tungsten steel (5 to 6%<br>W, 0.8% C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | _                 | _                   | _                               | _                   | _                    | _       | {60<br>to                     | (11,000<br>9,500<br>to |                         |                          |
| Chrome steel (2% Cr,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                   |                     |                                 |                     |                      |         | (80.                          | 9,500                  |                         |                          |
| 1% C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | 100               | 500                 | 1000                            | 2000                |                      |         | 65                            | to<br>10,500           |                         |                          |
| K.S. steel (35% Co, 7%<br>W, 2% Cr, 0.6% C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                   |                     | 16,000                          |                     |                      |         | 240                           | 10,000                 | Distance                |                          |
| New K.S. steel (25% Co,<br>15% Ni, 60% Fe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | _                 | _                   |                                 | _                   |                      |         | {up to<br>800                 | 6,000                  | lacas                   |                          |
| M.K. steel (65% Fe, 25%<br>Ni, 10% Al)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -        | _                 | _                   | _                               | _                   |                      |         | up to                         | { 3,000<br>to          |                         |                          |
| and he also said the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H=       | 5                 | 10                  | 20                              | 50                  | 100                  |         | 1000                          | 17,000                 |                         |                          |
| Heusler alloy (61% Cu,<br>27% Mn, 13% Al)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H=       | 800<br><b>0·4</b> | 2300<br><b>0·8</b>  | 3200<br>1·2                     | 3800<br>5           | 100                  | 1000    |                               | 2,550                  |                         |                          |
| Nickel         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         . <td></td> <td>200</td> <td>400</td> <td>600<br/>—</td> <td>3500<br/>500</td> <td></td> <td>7000</td> <td>5·5<br/>12</td> <td>2,800<br/>3,400</td> <td>0.07</td> <td>4,000</td> |          | 200               | 400                 | 600<br>—                        | 3500<br>500         |                      | 7000    | 5·5<br>12                     | 2,800<br>3,400         | 0.07                    | 4,000                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *        | Also              | known               | as Inva                         | riant a             | nd Hyp               | oerm 50 | ).                            |                        |                         |                          |

Also known as Invariant and Hyperm 50.

STEINMETZ'S COEFFICIENT Values of  $\eta$  in Steinmetz's formula  $\eta B_{max}^{1'6}$  for the hysteresis loss in ergs per c.c. per cycle.  $B_{max}$  is the maximum value of the induction.

| Substance.                                                                                                             | η                               | Substance.                         | η                            |
|------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------|------------------------------|
| $3\frac{1}{2}\%$ Silicon iron (Stalloy)<br>Good transformer iron<br>Dynamo cast steel<br>High carbon steel, hardened . | -0007<br>-0011<br>-0026<br>-025 | Grey cast iron<br>Nickel<br>Cobalt | •013<br>•012 to •038<br>•012 |

# TERRESTRIAL MAGNETISM

|                                                                                                                                                                                                                  | MAGNETIC SUSCEPTIBILITIES OF ELEMENTS AND COMPOUNDS<br>(For Elementary gases, the values are per c.c.; for solids, per gm.)                                                                                                                     |                                                                                                        |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                       |                                                                                                                                                        |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Gas.                                                                                                                                                                                                             | к                                                                                                                                                                                                                                               | Observer.                                                                                              | Substance.                                                                                                                                                                                                                                                                | x                                                                                                                                                                                                     | Observer.                                                                                                                                              |  |  |  |  |  |  |  |  |
| Argon<br>Hydrogen<br>Helium<br>Nitrogen<br>Neon<br>Oxygen<br>Air                                                                                                                                                 | $ \begin{array}{r} -0.75 \times 10^{-9} \\ -0.164 \\ -0.078 \\ -0.49 \\ -0.28 \\ 139 \\ 28.7 \\ \end{array} $                                                                                                                                   | Hector, 1924<br>Wills, 1898<br>Hector, 1924<br>,,<br>Soné, 1919<br>,,                                  | (anhydrous)<br>Copper sulphate<br>(anhydrous)<br>Manganese<br>oxide MnO<br>Manganese                                                                                                                                                                                      | 9·10×10 <sup>-6</sup><br>8·6<br>76<br>38                                                                                                                                                              | Ishiwara, '14<br>Fetis, 1913<br>Honda and<br>Soné, 1913<br>"                                                                                           |  |  |  |  |  |  |  |  |
| Substance.Silver.Aluminium.Gold.Bismuth.Carbon (Diamd.)Copper.Mercury.Potassium.Platinum.Sulphur.Tungsten.Water.H <sub>2</sub> SO <sub>4</sub> .NH <sub>3</sub> (gas).CO <sub>2</sub> (gas).Silica.Nitric oxide. | $\begin{array}{r} \chi \\ \hline -0.20 \times 10^{-6} \\ 0.65 \\ -0.15 \\ -1.38 \\ -0.49 \\ -0.09 \\ -0.09 \\ -0.19 \\ 0.52 \\ 1.10 \\ -0.49 \\ 0.33 \\ -0.72 \\ -0.49 \\ 0.33 \\ -0.72 \\ -0.44 \\ -1.1 \\ -0.42 \\ -0.49 \\ 48.7 \end{array}$ | Observer.<br>Honda, 1912<br>,,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>, | dioxide<br>Manganese<br>chloride<br>Ferric hydroxide<br>Ferric chloride .<br>Nickel oxide .<br>Sodium chloride<br>Cæsium chloride<br>Potassium<br>ferricyanide<br>K <sub>3</sub> Fe(CN) <sub>6</sub><br>Methane .<br>Ethylene .<br>Glycerine .<br>Ebonite .<br>Paraffin . | $   \begin{array}{r}     107 \\     157 \\     101 \\     86 \\     54 \\     -0.50 \\     -0.36 \\     7.08 \\     -2.5 \\     -1.6 \\     -0.54 \\     0.6 \\     -1 \\     -0.6 \\   \end{array} $ | Ishiwara, '14<br>Meyer, 1899<br>Ishiwara, '14<br>Wilson, 1921<br>Ishiwara, '14<br>Pascal, 1913<br>Ishiwara, '14<br>Mean<br>Meslin, 1906<br>Wills, 1898 |  |  |  |  |  |  |  |  |

#### TERRESTRIAL MAGNETIC CONSTANTS

Magnetic observatories no longer remain in large cities owing to electric tram disturbances, and thus many of the places for which reliable data exist are not generally known. The general locality of the station is indicated in many cases below.

Magnetic constants obtained in most physical laboratories are usually abnormal owing to the proximity of iron in some form.

Much of the data below is derived from the Reports of Kew Observatory, and the publications of the United States Coast and Geodetic Survey.

A W declination means that the N-seeking end of the magnetic needle points west of true north; a N inclination means that the same end of the needle points downwards. H and V are the horizontal and vertical components of the earth's magnetic field. The axis of the doublet which best represents the earth's field does not coincide with the line joining the magnetic poles; it intersects the surface at about 78° 32' and 69° 08'. See Chree, "Terrestrial Magnetism," Encyc. Brit., 11th edit., 1911; and "Studies in Terrestrial Magnetism" (Macmillan). Also the article in Glazebrook's "Dictionary of Applied Physics."

| Place.                                                                                | Latitude.                                   | Longitude.                         | Year.                        | Declination.                             | Inclination.                             | н.                              | <b>v</b> .                      |  |  |  |
|---------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------|------------------------------|------------------------------------------|------------------------------------------|---------------------------------|---------------------------------|--|--|--|
| North magnetic pole .<br>South magnetic pole* .<br>British Isles—                     | ° '<br>70 5 N<br>72 25 S                    | 96 45 W<br>154 E                   | 1908                         | • •                                      | °'<br>90 0 N<br>90 0 S                   | c.g.s.<br>o<br>o                | c.g.s.                          |  |  |  |
| Aberdeen (University) .<br>Eskdalemuir (Dumfries)<br>Falmouth (Cornwall) .<br>Abinger | 57 9 N<br>55 19 N<br>50 9 N<br>51 11 N      | 2 7 W<br>3 12 W<br>5 5 W<br>0 23 W | 1909<br>1920<br>1912<br>1933 | 16 34 W<br>16 49 W<br>17 24 W<br>11 52 W | 70 39 N<br>69 40 N<br>66 27 N<br>66 39 N | •163<br>•1671<br>•1880<br>•1852 | ·464<br>·4509<br>·4312<br>·4290 |  |  |  |
| *                                                                                     | * Mawson and David (with Shackleton), 1908. |                                    |                              |                                          |                                          |                                 |                                 |  |  |  |

102

TERRESTRIAL MAGNETISM

| TERRE                                                                                                                                                                                                            | TERRESTRIAL MAGNETIC CONSTANTS (contd.)                                                        |                                                                                                   |                                                                      |                                                                                            |                                                                                                |                                                                      |                                                                      |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--|--|--|--|
| Place.                                                                                                                                                                                                           | Latitude.                                                                                      | Longitude.                                                                                        | Year.                                                                | Declination.                                                                               | Inclination.                                                                                   | H.                                                                   | ٧.                                                                   |  |  |  |  |
| British Isles—contd.<br>Kew<br>Leeds (University)<br>St. Helier (Jersey)<br>Stonyhurst (Lancs.) .<br>Valencia (S. W. Ireland)                                                                                    | ° '<br>51 28 N<br>53 48 N<br>49 12 N<br>53 51 N<br>51 56 N                                     | • • •<br>• 19 W<br>1 33 W<br>2 5 W<br>2 28 W<br>10 15 W                                           | 1918<br>1909<br>1907<br>1924<br>1920                                 | • ,<br>14 50 W<br>18 2 W*<br>16 27 W<br>15 05 W<br>19 18 W                                 | ° '<br>66 58 N<br>68 35 N<br>65 35 N<br>68 42 N<br>68 5 N                                      | c.g.s.<br>•1843<br>•176<br>•1728<br>•1784                            | c.g.s.<br>•4336<br>•449<br><br>•4428<br>•4435                        |  |  |  |  |
| Africa—<br>Cape Town<br>Helvan (Cairo)<br>Mauritius                                                                                                                                                              | 33 56 S<br>29 52 N<br>20 6 S                                                                   | 18 29 E<br>31 21 E<br>57 33 E                                                                     | 1885<br>1913<br>1923                                                 | 30 15 W<br>2 17 W<br>10 49 W                                                               | 56 0 S<br>40 48 N<br>52 34 S                                                                   | ·199<br>·3003<br>·2298                                               | ·295<br>·2592<br>·3002                                               |  |  |  |  |
| America—<br>Agincourt (Toronto) .<br>Cheltenham (Maryland)<br>Fairhaven (Mass.)<br>Goat Island (California)<br>Ithaca (New York)<br>Rio de Janeiro<br>Santiago (Chili)<br>Sitka (Alaska)<br>Waukegan (Chicago) . | 43 47 N<br>38 44 N<br>41 37 N<br>37 49 N<br>42 27 N<br>22 55 S<br>33 27 S<br>57 3 N<br>42 21 N | 79 16 W<br>76 50 W<br>70 54 W<br>122 22 W<br>76 28 W<br>43 11 W<br>70 42 W<br>135 20 W<br>87 51 W | 1924<br>1925<br>1908<br>1909<br>1925<br>1906<br>1906<br>1916<br>1908 | 7 06 W<br>6 39 W<br>12 27 W<br>17 53 E<br>8 59 W<br>8 55 W<br>14 19 E<br>30 24 E<br>2 39 W | 74 44 N<br>71 00 N<br>73 8 N<br>62 11 N<br>73 37 N<br>13 57 S<br>30 12 S<br>74 26 N<br>72 46 N | *1575<br>*1887<br>*1736<br>*2525<br>*1640<br>*2477<br>*1559<br>*1830 | ·5773<br>·5480<br>·5724<br>·4786<br>·5580<br>·0616<br>·5597<br>·5898 |  |  |  |  |
| Asia—<br>Alibag (Bombay)<br>Barrackpore (Calcutta).<br>Hong Kong                                                                                                                                                 | 18 39 N<br>22 46 N<br>22 18 N                                                                  | 72 52 E<br>88 22 E<br>114 10 E                                                                    | 1922<br>1914<br>1924                                                 | 0 32 E                                                                                     | 25 05 N<br>30 59 N<br>30 43 N                                                                  | ·3697<br>·3740<br>·3729                                              | ·1730<br>·2246<br>·2216                                              |  |  |  |  |
| Australasia—<br>Christchurch (N.Z.) .<br>Honolulu (Hawaii)<br>Melbourne<br>Sydney                                                                                                                                | 43 32 S<br>21 19 N<br>37 50 S<br>33 52 S                                                       | 172 37 E<br>158 4 W<br>144 58 E<br>151 12 E                                                       | 1923<br>1925<br>1916<br>1885                                         | 10 02 E<br>8 7 E                                                                           | 68 12 S<br>39 26 N<br>67 49 S<br>62 30 S                                                       | ·2221<br>·2871<br>·2300<br>·268                                      | ·5553<br>·2361<br>·5640<br>·515                                      |  |  |  |  |
| Europe—<br>Arctic ((Norway) .<br>Regions ((Spitzbergen)<br>Odessa<br>Pawlowsk (Petrograd) .<br>Potsdam<br>Rude Skov (Copenhagen<br>Uccle (Brussels)<br>Val Joyeux (Paris)                                        | 69 56 N<br>77 41 N<br>46 26 N<br>59 41 N<br>52 23 N<br>55 51 N<br>50 48 N<br>48 49 N           | 22 58 E<br>14 50 E<br>30 46 E<br>30 29 E<br>13 4 E<br>12 27 E<br>4 21 E<br>2 1 E                  | 1903<br>1903<br>1910<br>1924<br>1923<br>1921<br>1916<br>1922         | 10 55 W<br>3 36 W<br>3 16 E<br>6 57 W<br>7 45 W<br>12 28 W                                 | 76 21 N<br>80 8 N<br>62 27 N<br>71 08 N<br>66 36 N<br>69 07 N<br>66 3 N<br>64 40 N             | ·1258<br>·0942<br>·2171<br>·1582<br>·1856<br>·1710<br>·1897<br>·1966 |                                                                      |  |  |  |  |

\* 1907.

SECULAR CHANGES AT GREENWICH †

| Year.                                | Decln.                                                   | Incln.                                                     | Year.                                          | Decln.                                                               | Incln.                                                                                                           | Н.                                                        |
|--------------------------------------|----------------------------------------------------------|------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 1580<br>1660<br>1720<br>1815<br>1851 | • /<br>11 17 E<br>• • •<br>13 • W<br>24 27 W*<br>22 18 W | ° '<br>72 O N<br>73 I5 N<br>74 40 N*<br>70 30 N<br>68 40 N | 1875<br>1907<br>1919<br>1925<br>1925†<br>1933† | ° '<br>19 21 W<br>16 0 W<br>14 18 W<br>13 10 W<br>13 23 W<br>11 52 W | <ul> <li>67 42 N</li> <li>66 56 N</li> <li>66 53 N</li> <li>66 51 N</li> <li>66 35 N</li> <li>66 39 N</li> </ul> | 0.1797<br>0.1855*<br>0.1845<br>0.1845<br>0.1860<br>0.1852 |
| * Maxir                              | 1214                                                     | Replaced sinc                                              | 1933†                                          | 11 52 W                                                              | 66 39                                                                                                            | N                                                         |

# SPARKING POTENTIALS

#### SPARKING POTENTIALS

The work of Peek and others has shown that a spark gap between spherical electrodes of equal size is a convenient means of measuring high voltages. The spark between points is now generally discredited for high voltages on account of its inconsistent dependency on atmospheric humidity and frequency of discharge. By reason of its time-lag, its readings may be 300 or 400 per cent. in error, in the case of high frequency steep impulses.

On the other hand, frequency and wave shape have no appreciable effect in the case of the sphere gap, and the effects of variation in the atmospheric conditions are well known, and can be readily corrected for.

The size of the spheres is important. A good rule is not to use a gap bigger than the diameter of either of the balls, though some latitude may be permitted in this direction. The main point is to avoid the break-down discharge being preceded by brush-discharge or corona, otherwise a pulsating discharge will, in general, give gap readings much too high.

With the above precaution, a sphere gap is capable of measuring (peak) voltages from say, 10,000 volts to 500,000 to an accuracy of about 2 per cent.

The table below is based on Dr. A. Russell's formula, and incorporates the latest results of the American Institute of Electrical Engineers (1918). It includes also for convenience a column of figures for a needle point gap (No. 00 new sewing needles), which furnish a rough notion of the voltages for an instrument which is still much used. The A.I.E.E. recommend that for voltages above 70,000 (and preferably above 40,000) a sphere gap should always be employed.

The gap should not be exposed to any extraneous ionizing influence, such as an arc or an adjacent spark, nor should the gap be enclosed. The first spark is the one for which the reading should be taken.

#### SPARK-GAP VOLTAGES AT 760mm. PRESSURE AND 25° C.

Where any gap is being used outside its recommended limits, the figures are shown in brackets. The blank spaces indicate that the gap is no longer suitable. The gaps are given to 3 significant figures for interpolation purposes.

| Kilo Volts      |                | Baut           | DIAMET   | ER OF SP       | HERES.         |                |                |
|-----------------|----------------|----------------|----------|----------------|----------------|----------------|----------------|
| (peak).         | Needle         | Points         | 2.5 cms. | 5 cms.         | 10 cms.        | 25 cms.        | 50 cms.        |
|                 | cms.           | inches,        | cms.     | cms,           | cms.           | cms.           | cms.           |
| 5               | gap.<br>(0'42) | gap.<br>(0'17) | (0'13)   | gap.<br>(0.15) | gap.<br>(0.15) | gap.<br>(0.16) | gap.<br>(0'17) |
| 10              | (0.85)         | (0.33)         | 0.27     | 0.29           | 0.30           | 0.32           | 0.33           |
| 15              | 1'30           | 0'51           | 0.42     | 0.44           | 0.46           | 0.48           | 0.20           |
| 20              | 1.75           | 0.69           | 0'58     | 0.00           | 0.62           | 0.64           | 0.67           |
| 25              | 2'20           | 0.87           | 0.76     | 0.77           | 0.78           | 0.81           | 0.84           |
| 30              | 2.69           | 1.00           | 0'95     | 0.94           | 0.95           | 0.08           | 1.01           |
| 35              | 3.50           | 1.50           | 1.12     | 1.15           | 1.15           | 1.12           | 1.18           |
| 40              | 3.81           | 1.20           | I'4I     | 1.30           | 1'29           | 1.35           | 1.32           |
| 45              | 4.49           | 1'77           | 1.08     | 1.20           | I'47           | 1.40           | 1.25           |
| 50              | 5.20           | 2'05           | 2'00     | 1.21           | 1.62           | 1.00           | 1.69           |
| 60              | 6.81           | 2.68           | 2.82     | 2.12           | 2'02           | 2'01           | 2.04           |
| 70              | 8.81           | 3'47           | (4.05)   | 2.68           | 2.42           | 2.37           | 2.39           |
| 80              | (11.1)         | (4.36)         | -        | 3.26           | 2.84           | 2'74           | 2.75           |
| 90              | (13.3)         | (5.23)         |          | 3'94           | 3.58           | 3.11           | 3.10           |
| 100             | (15.5)         | (6.10)         | -        | 4.77           | 3'75           | 3.49           | 3.46           |
| 110             | (17'7)         | (6.96)         | -        | 5.79           | 4'25           | 3.88           | 3.83           |
| 120             | (19.8)         | (7.81)         | _        | (7.07)         | 4'78           | 4.28           | 4'20           |
| 130<br>(contd.) | (22.0)         | (8.65)         | -        |                | 5'35           | 4.69           | 4.22           |

#### TABLE A.

SPARKING POTENTIALS

| Kilo Volta |        |         | DIAMET            | ER OF SI | HERES.  | Carloniquest g | Ture nee |
|------------|--------|---------|-------------------|----------|---------|----------------|----------|
| (peak).    | Needle | Points. | 2.5 cms.          | 5 ems.   | 10 cms. | 25 cms.        | 50 cms.  |
| (contd.)   | cms.   | inches. | cms.              | cms.     | cms.    | cms.           | cms.     |
|            | gap.   | gap.    | gap.              | gap.     | gap.    | gap.           | gap.     |
| 140        | (24'1) | (9.48)  | -                 |          | 5.97    | 5.10           | 4'94     |
| 150        | (26.1) | (10.3)  | -                 |          | 6.64    | 5'52           | 5.32     |
| 160        | (28.1) | (11.1)  |                   |          | 7:37    | 5.95           | 5'70     |
| 170        | (30.1) | (11.9)  |                   |          | 8.10    | 6.39           | 6.09     |
| 180        | (32.0) | (12.6)  |                   |          | 9.03    | 6.84           | 6.48     |
| 190        |        |         |                   |          | 10.0    | 7.30           | 6.88     |
|            | (33.9) | (13.3)  | 1 1 1 2 7 A 1 1 1 |          | 11.1    |                | 7.28     |
| 200        | (35.7) | (14.0)  | -                 |          |         | 7.76           |          |
| 210        | (37.6) | (14.8)  |                   |          | (12.3)  | 8.24           | 7.68     |
| 220        | (39.5) | (15.2)  |                   | -        | (13.7)  | 8.73           | 8.09     |
| 230        | (41.4) | (16.3)  | -                 |          | (15.3)  | 9'24           | 8.50     |
| 240        | (43.3) | (17.0)  |                   |          |         | 9.76           | 8.93     |
| 250        | (45.2) | (17.8)  | - 1               |          | -       | 10'3           | 9'34     |

#### AIR-DENSITY CORRECTION TO SPARKING POTENTIALS

Applicable only to sphere gaps. The following table gives the relative air density under different conditions. The figures are relative to dry air at 25° C. and 760 mm. pressure :

| Temp. | Press. 720mm. | Press. 740mm. | Press. 760mm. | Press. 780mm. |
|-------|---------------|---------------|---------------|---------------|
| 0° C. | 1.04          | 1.06          | 1.09          | I·12          |
| 10    | 1.00          | 1.02          |               | I·08          |
| 20    | 0·96          | 0·99          | 1.02          | 1.04          |
| 30    | 0·93          | 0·96          | 0.98          | 1.01          |

Within the limits of the above table, the correction factor for a sphere gap agrees substantially with the relative air density and so is small for normal conditions. Thus for a given length of spark gap, the tabulated kilovoltage in Table A must be multiplied by the appropriate correction factor.

# THE RÖNTGEN

The röntgen (r) is the quantity of X or gamma radiation such that the associated corpuscular emission per 0.001293 gramme of air produces, in air, ions carrying I electrostatic unit of quantity of electricity of either sign (0.001293 gramme is the mass of I c.c. of dry atmospheric air at 0° C. and 76 cm. of mercury pressure).

#### LATTICE CONSTANTS OF CRYSTALS

A crystal may be considered as a lattice generated by the continued repetition in three dimensions of a unit cell which in general contains only a small number of atoms or molecules. The crystal belongs to one or other of the seven classes—cubic, tetragonal, hexagonal, rhombohedral, orthorhombic, monoclinic or triclinic—according as one or more of the ratios between the sides is unity or not, and the angles are or are not right angles. A crystal face is denoted by a triad of integers (h, k, l), and is parallel to planes making intercepts a/h, b/k, c/l, on the three sides a, b, c of the unit cell. The distance d between successive members of the family of planes (h, k, l) is given for the triclinic crystal by the formula

 $\frac{\mathbf{I}}{d^2} = \frac{\Sigma(h^2 \cdot b^2 c^2 \sin^2 a) + 2\Sigma[kl \cdot bca^2(\cos\beta\cos\gamma - \cos a)]}{[a^2 b^2 c^2(\mathbf{I} - \cos^2 a - \cos^2 \beta - \cos^2 \gamma + 2\cos a \cos\beta\cos\gamma]}$ 

where a, b, c;  $a, \beta, \gamma$  are the sides and angles of the unit parallelopiped.

105

# X-RAY SPECTRA

Among important values of d are  $2.8140 \times 10^{-8}$  cm. for the (200) planes of rocksalt and  $3.02904 \times 10^{-8}$  cm. for the cleavage face of calcite. Since comparative measurements of X-ray wave-lengths can be made with higher precision than that reached in determining d, a new unit of length, the X unit (approx.  $10^{-11}$  cm.) has been defined, such that d for calcite is exactly 3029.04 X.U. (See W. H. and W. L. Bragg, "The Crystalline State" (Bell).)

#### CHARACTERISTIC X-RAY SPECTRA

The characteristic line spectrum of an element consists of several groups—the K series, containing in general 5 main lines, the L series with at least 16 lines associated in three groups, the still more complicated M series, and finally the N and O series, which only occur in elements of high atomic number. The wave-lengths of a number of lines are given below in X.U., and are mainly due to Siegbahn. (See his book, "The Spectroscopy of X-rays.")

| At. | Ele-     |          | K series.      |               |                | Ls     | eries. |        |
|-----|----------|----------|----------------|---------------|----------------|--------|--------|--------|
| No. | ment.    | a2       | a <sub>1</sub> | β1            | a <sub>1</sub> | a2     | β1     | γ1     |
| 11  | Na       |          | 885            | 11504         |                |        |        |        |
| 12  | Mg       | 986      |                | 11594<br>9539 |                |        |        |        |
| 13  | Al       | 832      |                | 7965          | 1 m m          | _      |        |        |
| 14  | Si       |          | 7112.4         | 6754.5        | _              | -      |        |        |
| 15  | P        | 614      |                | 5792.1        |                | -      |        | _      |
| 16  | S        | 5361.3   | 5361.3         | 5021·I        | -              | - 1000 |        |        |
| 17  | Cl       | 4721.2   | 4718.2         | 4394.2        | -              | -      |        | 0      |
| 19  | K        | 3737.1   | 3733.68        | 3446.8        | -              | -      | -      | -      |
| 20  | Ca       | 3354.95  | 3351.69        | 3083.4        | -              | -      |        | _      |
| 21  | Si       | 3028.40  | 3025.03        | 2773.9        | -              | -      |        |        |
| 22  | Ti       | 2746.81  | 2743.17        | 2509.0        | -              | -      |        | -      |
| 23  | V        | 2502.13  | 2498.35        | 2279.7        | 242            | 00     |        | -      |
| 24  | Cr       | 2288.91  | 2285.03        | 2080.6        | 215            | 30     | 21190  | -      |
| 25  | Mn       | 2101.49  | 2097.51        | 1906.20       | 193            | 90     | 19040  |        |
| 26  | Fe       | 1936.012 | 1932.076       | 1753.013      | 175            | 80     | 17220  |        |
| 27  | Co       | 1789.19  | 1785.29        | 1617.44       | 159            | 40     | 15620  |        |
| 28  | Ni       | 1658.35  | 1654.50        | 1497.05       | 145            | 30     | 14240  | -      |
| 29  | Cu       | 1541.232 | 1537.395       | 1389.35       | 133            |        | 13030  | -      |
| 30  | Zn       | 1436.03  | 1432.17        | 1292.55       | 122            |        | 11960  | -      |
| 31  | Ga       | 1340.87  | 1337.15        | 1205.20       | 112            |        | 11010  |        |
| 32  | Ge       | 1255.21  | 1251.30        | 1126.71       | 104            |        | 10153  |        |
| 33  | As       | 1177.43  | 1173.44        | 1055.10       | 96             |        | 9395   |        |
| 34  | Se       | 1106.52  | 1102.48        | 990.13        | 89             |        | 8718   |        |
| 35  | Br       | 1041.66  | 1037.59        | 930.87        | 83             | 58     | 8109   | -      |
| 36  | Kr       | 9        | 78             | 875           | -              | -      | -      | -      |
| 37  | Rb       | 927.76   | 923.64         | 826.96        | -              |        | -      |        |
| 38  | Sr       | 877.61   | 873.45         | 781.30        |                | 48.6   | 6610.0 | -      |
| 39  | Y        | 831.32   | 827.12         | 739.19        |                | 35.7   | 6203.9 |        |
| 40  | Zr       | 788.51   | 784.30         | 700.28        |                | 56.7   | 5823.6 | 5373.8 |
| 41  | Nb       | 748.89   | 744.65         | 664.38        | 5712.0         | 5718   | 5480.3 | 5024.8 |
| 42  | Mo       | 712.805  | 707.831        | 630.978       | 5395.0 5401    |        | 5166.5 |        |
| 44  | Ru       | 646.06   | 641.74         | 571.31        | 4835.7         | 4843.7 | 4611.0 | 4172.8 |
| 45  | Rh       | 616.37   | 612.02         | 544.49        | 4587.8         | 4595.6 | 4364.0 | 3935.7 |
| 46  | Pd       | 588.63   | 584.27         | 519.47        | 4358.5 4366.6  |        | 4137.3 | 3716.4 |
| 47  | Ag<br>Cd | 562.67   | 558.28         | 496.01        | 4145.6         | 4153.8 | 3926.6 | 3514.9 |
| 48  | Ca       | 538.32   | 533.90         | 474.08        | 3947.8         | 3956.4 | 3730.1 | 3328.0 |
|     | 1        |          |                |               |                | 1      |        |        |

#### K AND L SERIES

|                                                                                                                                                     |                                                                                                                                                       |                                                                                                                                                                                            | K AN                                                                                                                                                                                                                                                         | ID L SERIE                    | S (contd.)                                          |                                                                                                                                                                                                                                                                       |                                                     |                                                                                                                                                                                                                                                                     |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| At.                                                                                                                                                 | Ele-                                                                                                                                                  |                                                                                                                                                                                            | K series.                                                                                                                                                                                                                                                    |                               | L series.                                           |                                                                                                                                                                                                                                                                       |                                                     |                                                                                                                                                                                                                                                                     |  |  |  |
| No.                                                                                                                                                 | ment.                                                                                                                                                 | a <b>s</b>                                                                                                                                                                                 | a1                                                                                                                                                                                                                                                           | β1                            | a1                                                  | a2                                                                                                                                                                                                                                                                    | β1                                                  | <i>γ</i> 1                                                                                                                                                                                                                                                          |  |  |  |
| $\begin{array}{r} 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 62\\ 63\\ 66\\ 66\\ 67\\ 68\\ 69\\ 71\\ 72\\ 73\\ 74\\ 75\\ 76\end{array}$ | In<br>Sn<br>Sb<br>Te<br>I<br>Xe<br>Cs<br>Ba<br>La<br>Ce<br>Pr<br>Nd<br>Sa<br>Eu<br>Gd<br>Tb<br>Dy<br>Ho<br>Er<br>Tw<br>Lu<br>Hf<br>a<br>W<br>Re<br>Os | 404.11<br>388.99<br>374.66<br>361.10<br>348.05<br>335.95<br>313.02<br>302.65<br>292.61<br>282.86<br>273.75<br>264.99<br>256.64<br>240.98<br>233.58<br>226.53<br>219.73<br>213.45<br>210.31 | 511.06<br>489.57<br>469.31<br>450.37<br>432.49<br>17<br>399.59<br>384.43<br>370.04<br>356.47<br>343.40<br>331.25<br>308.33<br>297.90<br>287.82<br>278.20<br>269.03<br>260.30<br>251.97<br>243.87<br>236.28<br>228.82<br>221.73<br>214.88<br>208.62<br>196.45 | 453.58<br>434.30<br>          | 3763.7<br>3592.2<br>3431.8<br>3282.0<br>3141.7<br>  | 3772:4<br>3601:1<br>3440:8<br>3291:0<br>3150:7<br>2895:6<br>2779:0<br>2668:9<br>2565:1<br>2467:6<br>2375:6<br>2205:7<br>2127:3<br>2052:6<br>1982:3<br>1915:6<br>1852:1<br>1791:4<br>1733:9<br>1678:9<br>1626:36<br>1577:04<br>1529:78<br>1484:38<br>1441:0<br>1398:66 | 3547.8<br>3377.9<br>3218.4<br>3070.0<br>2930.9<br>  | 3155·3<br>2994·9<br>2845·1<br>2706·5<br>2577·5<br>2342·5<br>2236·6<br>2137·2<br>2044·3<br>1956·8<br>1873·8<br>1723·1<br>1654·3<br>1588·6<br>1526·6<br>1469·7<br>1414·2<br>1362·3<br>1312·7<br>1264·8<br>1220·3<br>1176·5<br>1135·58<br>1096·30<br>1058·7<br>1022·96 |  |  |  |
| 77<br>78<br>79<br>80<br>81                                                                                                                          | Ir<br>Pt<br>Au<br>Hg<br>Tl                                                                                                                            | 195·50<br>190·04<br>184·83<br>                                                                                                                                                             | 190.65<br>182.23<br>179.96<br>                                                                                                                                                                                                                               | 168.5<br>163.70<br>159.02<br> | 1348.47<br>1310.33<br>1273.77<br>1238.63<br>1204.93 | 1359.8<br>1321.55<br>1285.02<br>1249.51<br>1216.26                                                                                                                                                                                                                    | 1155.40<br>1117.58<br>1081.28<br>1046.52<br>1042.99 | 988.76<br>955.99<br>924.61<br>894.6<br>865.71                                                                                                                                                                                                                       |  |  |  |
| 82<br>83<br>90<br>91                                                                                                                                | Pb<br>Bi<br>Th<br>Pa                                                                                                                                  | 174.00<br>170.04<br>165.25<br>136.8                                                                                                                                                        | 165.16<br>160.41<br>132.3                                                                                                                                                                                                                                    | 146.06<br>142.05<br>116.9     | 1204-93<br>1172-58<br>1141-50<br>954-05<br>930-9    | 1184.08<br>1153.01<br>965.85<br>942.7                                                                                                                                                                                                                                 | 980-83<br>950-02<br>763-56<br>740-7                 | 838.01<br>811.43<br>651.76<br>632.5                                                                                                                                                                                                                                 |  |  |  |
| 92                                                                                                                                                  | U                                                                                                                                                     | 130.95                                                                                                                                                                                     | 126.40                                                                                                                                                                                                                                                       | 111.87                        | 908.74                                              | 920.62                                                                                                                                                                                                                                                                | 718.51                                              | 613.59                                                                                                                                                                                                                                                              |  |  |  |

#### X-RAY ABSORPTION SPECTRA

The absorption of a beam of X-rays by any substance varies in a complex manner with the wave-length or frequency, and in particular, a number of discontinuities characteristic of the chemical elements are found. One of these occurs at a wavelength very slightly less than that of the  $K\beta_2$  emission line, and is known as the K absorption edge. X-rays of shorter wave-length than the absorption edge are strongly absorbed, whilst for those of longer wave-length, the absorption is only slight. Similarly, associated with the L emission spectrum, is a group of three L absorption edges, and with the M series, a group of five edges. The fact that the absorption suddenly increases on the higher frequency side of the edge, is in harmony with the explanation that the edges mark the points at which the quantum energy of the rays is just sufficient to remove an electron from the K, L, or M shell as the case may be.

# X-RAY SPECTRA

|                                                                                                                                       |                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                              | к                                                                                                                                                                                            | ABSORP                                                                                                                                                                | TION E                                                                                                                                       | DGE                                                                                                                                  |                                                                                                                                                         |                                                                                                                                                                                   |                                                                                                                                                                                |                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| At. No.                                                                                                                               | El.                                                                                                                                        | λ(Χ.υ.).                                                                                                                                                               | At. No.                                                                                                                                                                                      | El.                                                                                                                                                                                          | λ(X.U.).                                                                                                                                                              | At. No.                                                                                                                                      | El.                                                                                                                                  | λ( <b>X.U</b> .).                                                                                                                                       | At. No.                                                                                                                                                                           | El.                                                                                                                                                                            | λ(Χ.υ.).                                                                                                                                                                                            |
| 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28                                    | Mg<br>Al<br>Si<br>P<br>S<br>Cl<br>A<br>K<br>Ca<br>Sc<br>Ti<br>Va<br>Cr<br>Mn<br>Fe<br>Co<br>Ni                                             | 9496·2<br>7935·6<br>6731·0<br>5774·9<br>5008·8<br>4383·8<br>3865·7<br>3431·0<br>3064·3<br>2751·7<br>2491·2<br>2263·0<br>2065·9<br>1891·6<br>1739·4<br>1604·0<br>1483·9 | 29<br>30<br>31<br>32<br>33<br>34<br>35<br>37<br>38<br>39<br>40<br>41<br>42<br>44<br>45<br>46<br>47                                                                                           | Cu<br>Zn<br>Ga<br>Ge<br>As<br>Se<br>Br<br>Rb<br>Sr<br>Y<br>Zr<br>Nb<br>Mo<br>Ru<br>Rh<br>Pd<br>Ag                                                                                            | 1377.4<br>1280.5<br>1190.2<br>1114.6<br>1042.63<br>977.73<br>918.09<br>814.10<br>768.37<br>725.5<br>687.38<br>651.58<br>618.48<br>558.4<br>533.03<br>507.95<br>484.48 | 48<br>49<br>50<br>51<br>52<br>53<br>55<br>57<br>58<br>59<br>62<br>63<br>64<br>65<br>66                                                       | Cd<br>In<br>Sn<br>Sb<br>Te<br>I<br>Cs<br>Ba<br>La<br>Ce<br>Pr<br>Nd<br>Sa<br>Eu<br>Gd<br>Tb<br>Dy                                    | 463.13<br>442.98<br>423.94<br>406.09<br>389.26<br>373.44<br>330.70<br>318.14<br>306.26<br>295.1<br>284.58<br>264.4<br>254.8<br>246.2<br>237.6<br>230.1  | 67<br>69<br>70<br>71<br>72<br>73<br>74<br>75<br>76<br>77<br>78<br>79<br>80<br>81<br>82<br>83<br>90<br>92                                                                          | Ho<br>Tm<br>Yb<br>Lu<br>Hf<br>Ta<br>W<br>Re<br>Os<br>Ir<br>Pt<br>Au<br>Hg<br>Tl<br>Pb<br>Bi<br>Th<br>U                                                                         | $\begin{array}{c} 222.64\\ 208.5\\ 201.6\\ 195.1\\ 190.1\\ 183.6\\ 178.22\\ 173.5\\ 167.55\\ 167.55\\ 162.09\\ 157.70\\ 153.20\\ 148.93\\ 144.41\\ 140.49\\ 136.78\\ 112.70\\ (106.58) \end{array}$ |
|                                                                                                                                       |                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                              | L                                                                                                                                                                                            | ABSORPT                                                                                                                                                               | ION ED                                                                                                                                       | GES                                                                                                                                  |                                                                                                                                                         |                                                                                                                                                                                   |                                                                                                                                                                                |                                                                                                                                                                                                     |
| At. No.                                                                                                                               | El.                                                                                                                                        | L <sub>I</sub> .                                                                                                                                                       | L <sub>II</sub> .                                                                                                                                                                            | L                                                                                                                                                                                            | Observer.                                                                                                                                                             | At. No.                                                                                                                                      | El.                                                                                                                                  | L <sub>l</sub> .                                                                                                                                        | L <sub>II</sub> .                                                                                                                                                                 | L <sub>111</sub> .                                                                                                                                                             | Observer.                                                                                                                                                                                           |
| 37<br>38<br>39<br>40<br>41<br>42<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>8<br>59<br>62 | Rb<br>Sr<br>Y<br>Zr<br>Nb<br>Mo<br>Ru<br>Rh<br>Pd<br>Ag<br>Cd<br>In<br>Sn<br>Sb<br>Te<br>I<br>Xe<br>Cs<br>Ba<br>La<br>Ce<br>Pr<br>Nd<br>Sm | 5985<br>5571<br>5222<br>4857<br>4572<br>4290<br>                                                                                                                       | 6162<br>5737<br>5366<br>4712<br>4165<br>3932<br>3715<br>3506<br>3322<br>3140<br>2972<br>2822<br>2679<br>2548<br>2425<br>2307<br>2199<br>2099<br>2097<br>2099<br>2007<br>1920<br>1839<br>1699 | 6841<br>6362<br>5944<br>5561<br>5212<br>4904<br>4358<br>4118<br>3901<br>3693<br>3495<br>3316<br>3149<br>2991<br>2846<br>2714<br>2587<br>2468<br>2357<br>2254<br>2166<br>2073<br>1991<br>1841 | C.M.<br>C.M.<br>C.M.<br>C.M.<br>C.M.<br>D.L.<br>D.L.<br>C.M.<br>D.L.<br>C.M.<br>D.L.<br>C.L.<br>C.L.<br>C.L.<br>C.L.<br>C.L.<br>C.L.<br>C.L                           | 63<br>64<br>65<br>66<br>67<br>68<br>69<br>70<br>71<br>72<br>73<br>74<br>75<br>76<br>77<br>78<br>79<br>80<br>81<br>82<br>83<br>88<br>90<br>92 | Eu Gd<br>Tb<br>Dy Ho<br>Er<br>Tm<br>Yb<br>Lu<br>Hf<br>Ta<br>W<br>Re<br>Os<br>Ir<br>Pt<br>Au<br>Hg<br>Tl<br>Pb<br>Bi<br>Ra<br>Th<br>U | 1533<br>1418<br>1365<br>1315<br>1266<br>1220<br>1176<br>1136<br>1097<br>1057<br>1022<br>987<br>952<br>920<br>891<br>862<br>834<br>866<br>781<br>756<br> | 1623<br>1559<br>1498<br>1441<br>1387<br>1335<br>1285<br>1238<br>1194<br>1152<br>1110<br>1072<br>1034<br>998<br>965<br>932<br>901<br>870<br>842<br>813<br>788<br>670<br>629<br>592 | 1772<br>1706<br>1645<br>1587<br>1532<br>1480<br>1383<br>1388<br>1293<br>1252<br>1212<br>1174<br>1138<br>1104<br>1071<br>1038<br>1007<br>978<br>949<br>922<br>802<br>760<br>722 | N.<br>C.N.W.<br>C.N.W.<br>C.N.W.<br>E.<br>E.<br>C.<br>N.<br>Cr.<br>B.<br>Ck.<br>Ck.<br>S.<br>S.<br>D.P.<br>D.P.<br>D.Sh.<br>S.<br>B.<br>D.P.                                                        |

B., de Broglie, 1919; C., Coster, 1922; Ck., Cork, 1923; C.L., Chamberlain and Lindsay, 1927; C.M., Coster and Mulder, 1926; C.N.W., Costa, Nishina, and Werner, 1923; Cr., Crofutt, 1926; D.L., van Dyke and Lindsay, 1927; D.P., Duane and Patterson, 1920; D.Sh., Duane and Shimizu, 1919; E., Eddy, 1925; L., Lindsay, 1922; L.D., Lepape and Deauvillier, 1923; N., Nishina, 1925; S., Sandström, 1930.

108

# 109 RECOMBINATION AND DIFFUSION

.

| cha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | COEFFICIENTS OF RECOMBINATION a<br>a is given below in terms of 1000¢, where $e$ is the numerical value of the ionic<br>charge : $4.7 \times 10^{-10}$ in electrostatic units. For air, $\alpha = 3320e = 1.56 \times 10^{-6}$ cm. <sup>3</sup> sec <sup>-1</sup> .<br>Room temp. and pressure.                                                                                                                                                   |                           |                              |                        |                       |                                                               |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------|------------------------|-----------------------|---------------------------------------------------------------|--|--|--|
| Gas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Air.                      |                              | 0,                     | CO,                   | H <sub>2</sub>                                                |  |  |  |
| a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.42, T.; 3.38, Mc.; 3                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 <b>°2, L.; 3</b> °3, H  | .; 3 <sup>.</sup> 32 *, E.   | 3°38, T.               | 3°5, T.               | 3.02, T ; 2.94, Mc.                                           |  |  |  |
| Mc.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E., Erikson, P.M., 1909; H., Hendren, P.R., 1905; L., Langevin, A.C.P., 1902;<br>Mc., McClung, P.M., 1902; T., Townsend, P.T., 1899. * 17° C., 760 mm. Hg.                                                                                                                                                                                                                                                                                        |                           |                              |                        |                       |                                                               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | as. in atmos                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·2 ·5<br>0·21T. 0·517     | 1<br>F. 1.00 L. 1.           | 2 8<br>11 L. 0.97      | <b>5</b><br>L. 0.67L. | L., Langevin, '02.<br>H., Hendren, '05.<br>T., Thirkill, '13. |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ss. in cms                                                                                                                                                                                                                                                                                                                                                                                                                                        | 76 45                     |                              | 15 10                  | 5                     | 8.5 2 1                                                       |  |  |  |
| a (a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a (absolute values), H 3.3 2.65 2.07 1.75 1.55 1.31 1.25 1.15 1.00                                                                                                                                                                                                                                                                                                                                                                                |                           |                              |                        |                       |                                                               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a IN AIR AND TEMPERATURE<br>Air at constant density. (E., Erikson ; P., Phillips, <i>Electrician</i> , 1909.)                                                                                                                                                                                                                                                                                                                                     |                           |                              |                        |                       |                                                               |  |  |  |
| Tem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | p. °C179                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | 64 100 15                    |                        |                       | . 15º 100 155 176                                             |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ION<br>Rate of interdiffusio<br>for negative ions.                                                                                                                                                                                                                                                                                                                                                                                                | IC COEFFI                 | ICIENTS                      | OF DIFF                | USION I               |                                                               |  |  |  |
| Ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ization                                                                                                                                                                                                                                                                                                                                                                                                                                           | . Röntgen F               | Rays. B and                  | y Rays.                | ltra-violet<br>light. | Point discharge.                                              |  |  |  |
| D+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | at 76 cm                                                                                                                                                                                                                                                                                                                                                                                                                                          | . *028                    | .03                          | 2                      | -                     | ·0247, ·0216                                                  |  |  |  |
| D-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | at 76 cm                                                                                                                                                                                                                                                                                                                                                                                                                                          | . •043                    | *04                          | 3                      | •043                  | ·037, ·032                                                    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Air,                                                                                                                                                                                                                                                                                                                                                                                                                                              | GASES ION $CO_2$ , and hy |                              |                        |                       | an Parant                                                     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dry Gas. D                | + D- Mo                      | ist Gas. D             | + D- Ma               | bist Gas. D+ D-                                               |  |  |  |
| $\begin{array}{c} \operatorname{Air} \left\{ \begin{array}{c} dried \\ by \\ CaCl_{2} \end{array} \right\} \stackrel{\circ 028}{\circ} \circ 043 \stackrel{\circ 043}{\operatorname{H}_{2}} \left( \begin{array}{c} CO_{2} \\ by \\ CaCl_{2} \end{array} \right) \stackrel{\circ 023}{\circ} \circ 026 \stackrel{\circ 023}{\operatorname{H}_{2}} \circ 02$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                              |                        |                       |                                                               |  |  |  |
| AIR IONIZED BY & AND Y RAYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                              |                        |                       |                                                               |  |  |  |
| D+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Press. p. in cms.       77·2       55       40       30       20       Press. p. in cms.       77·2       55       40       80       20         D + at 15° C.       '0317       '042       '0578       '078       '118       D - at 15° C.       '0429       '0542       '078       '103       1'55         pD + ,,       2'45       2'31       2'31       2'34       2'36       pD - ,,       '0429       '0542       '078       '103       1'55 |                           |                              |                        |                       |                                                               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A.C.P., Ann. de C                                                                                                                                                                                                                                                                                                                                                                                                                                 | him. et de Phy<br>F       | s.; P.M., 1<br>P.T., Phil. 1 | Phil. Mag. ;<br>Trans. | : P.R., Ph            | ysical Review ;                                               |  |  |  |

# IONIC MOBILITIES

.

| temp.<br>Fo<br>Fo                             | MOBILITIES OF IONS IN GASESVelocities of ions are in cm. per sec. for unit field, or in cm. <sup>3</sup> sec. <sup>-1</sup> volt <sup>1</sup> attemp. and press. of room. $K_+ =$ mobility of positive ion, $K$ of negative.For moist air ( <i>i.e.</i> saturated with $H_2O$ ), $K_+ = 1^{\circ}37$ , $K = 1^{\circ}51$ .For dry air (dried by CaCl <sub>2</sub> ), $K_+ = 1^{\circ}36$ , $K = 1^{\circ}87$ . (Zeleny (air blastmethod), Phil. Trans., 1900.)For mobilities of natural ions in air, see p. 119.* Mean = $(K_+ + K)/2$ . |                                                                                    |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |       |        |           |      |                                      |                              |                |       |     |     |             |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|--------|-----------|------|--------------------------------------|------------------------------|----------------|-------|-----|-----|-------------|
| Dry<br>Gas.                                   | <b>K</b> +<br>76 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                    | Ioniz                                                                          | ation an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d Obser        | rver. | I      | Dry Gas.  | -    | K+<br>6 cm                           | K_<br>.Hg                    | Ionization and |       |     | d   |             |
| Air.<br>" " " " " " " " " " " " " " " " " " " | 6.7<br>5.9<br>5.09<br>1.6*<br>1.36<br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.93<br>1.70<br>1.78<br>1.87<br>7.43<br>7.9<br>8.3<br>6.31<br>1.80<br>1.85<br>1.14 | P.<br>X-ra<br>"<br>"<br>Poin<br>X-ra<br>"<br>Poin<br>X-ra<br>"<br>Poin<br>X-ra | int disch., Chattock,<br>P.M., 1899, 1901.<br>rays, Wellisch, 1915.<br>, Langevin,<br>A.C.P., 1903.<br>$SO_2 \dots O^{44}$<br>Phillips, P.R.S.<br>1906.<br>, Zeleny, Phil.<br>Trans., 1900.<br>int disch., Chattock.<br>rays, R u th e r ford,<br>P.M., 1897.<br>, Zeleny, 1900.<br>int disch., Chattock.<br>rays, R u th e r ford,<br>P.M., 1897.<br>, Zeleny, 1900.<br>int disch., Chattock.<br>rays, R u th e r ford,<br>P.M., 1897.<br>, Zeleny, 1900.<br>int disch., Chattock.<br>rays, R u th e r ford,<br>P.M., 1897.<br>, Zeleny, 1900.<br>int disch., Chattock.<br>rays, R u th e r ford,<br>P.M., 1897.<br>, Zeleny, 1900.<br>int disch., Chattock.<br>rays, R u th e r ford,<br>P.M., 1897.<br>, Zeleny, 1900.<br>int disch., Chattock.<br>rays, R u th e r ford,<br>P.M., 1897.<br>, Zeleny, 1900.<br>int disch., Chattock.<br>rays, Wellisch, '09.<br>int disch., Chattock.<br>Resource of the rays.<br>Acetone of the rays.<br>EL Solution of the rays.<br>Acetone of the rays.<br>EL Solution of the rays.<br>HCL and PRESSURE |                |       |        |           |      | y &<br>,'13.<br>rd.<br>,'09.<br>ord. |                              |                |       |     |     |             |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                  |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | -     | -      | in, A.C.  |      |                                      |                              | -              | 44.5  |     | -1  |             |
| Press                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.8                                                                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 76<br>1.40     | -     | -      | Press. c  | m.   | 7.5                                  |                              |                | 41.5  | 7   | -   | 142         |
|                                               | +<br>ir at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14 <sup>-8</sup>                                                                   |                                                                                | IONI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | с мов          | LITY  |        | D TEMPI   |      | TURE                                 | 9 7 3<br>E<br>s, <i>P.</i> 1 |                |       | -   | /   | 0.9         |
| Tem                                           | p. ° C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                    | 138°                                                                           | 126°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 110°           | 10    | 00°    | 75°       | 6    | 0°                                   | 12                           | >              | -6    | 4°  | -   | 179°        |
|                                               | <b>K</b> +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                    | 2'00                                                                           | 1.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.85           | I     | .81    | 1.62      | 1.   | 60                                   | 1.39                         |                | 0.9   | 45  | 0.3 | 235         |
| 1                                             | <b>K</b> _ 2.49 2.40 2.30 2.51 5.15 5.00 1.23 0.532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                    |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |       |        |           |      |                                      |                              |                |       |     |     |             |
|                                               | IONIC MOBILITIES IN LIQUIDS AND SOLIDS<br>Ionized by radium rays. (Bohm-Wendt and v. Schweidler, <i>Phys. Zeit.</i> , 1909;<br>Bialobjeski, <i>Compt. Rend.</i> , 1909.)                                                                                                                                                                                                                                                                                                                                                                 |                                                                                    |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |       |        |           |      |                                      |                              |                |       |     |     |             |
|                                               | Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | bstan                                                                              |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ( <b>K</b> + - | + K-  | )      |           | Sub  | stanc                                | е.                           |                | ł     | (X  | + + | <b>K</b> _) |
|                                               | Petroleum ether $3.8 \times 10^{-4}$ Ozokerite at $100^{\circ}$ $5.1 \times 10^{-4}$ Vaseline $5.3 \times 10^{-6}$ "       " $80^{\circ}$ $5.3 \times 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                           |                                                                                    |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |       |        |           |      |                                      |                              |                |       |     |     |             |
| A.                                            | C.P., J<br>Deutsc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ann.<br>h. Pl                                                                      | de Chi<br>hys. Ge                                                              | im. et de<br>sell.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Phys.,         | P.M   | r., P. | hil. Mag. | ; P. | <i>R.S.</i>                          | , Proc                       | . Ro           | y. So | c.; | V.D | .P.G.,      |

1

#### IONIC MOBILITIES AT HIGH TEMPS

K in cm. sec.<sup>-1</sup> per volt cm.<sup>-1</sup> for coal-gas flames in most instances. The ionic mobility is independent of the acid of the salt. Gold's and Wilson's values for K-agree the best with existing theory, which makes  $K_- = Xe\lambda/mu = 17,000$  at 1800° C. (Gold). X is the electric field per cm.,  $\lambda$  is the mean free path, and u the velocity of the corpuscle.

| Salt.                                          | Temp.                   | K+        | K-     | Observer.                                                     |
|------------------------------------------------|-------------------------|-----------|--------|---------------------------------------------------------------|
| Cs, Rb, K, Na, Li                              |                         | 62        |        | H. A. Wilson, P. T., 1899                                     |
| 1/20 normal KCl                                | Flame                   | 260       |        | Marx. Ann. der Phys.,<br>1900                                 |
| NaCl                                           | "Flame, c. 2000°        | 340       | 1800 ) | 1900                                                          |
| 1/16 normal Na salt .<br>Concentrated sols. of | <b>33</b> 33            | -         | 1280   | Moreau, Journ.de Phys.,<br>1903                               |
| alkalies                                       | Air at 1000°            | 80<br>7*2 | 26     | H. A. Wilson, P.T., 1899                                      |
| Ro Sr Cu                                       |                         | 3.8       | - }    | and P.M., 1906                                                |
| K, Na                                          | Flame, <i>c</i> . 1800° | -         | 8000   | Gold, P.R.S., 1907, ratio<br>of potential grad. to<br>current |
| К                                              | Flame, c. 1800°         |           | 13,000 | Poten. grad., and gas                                         |
| K <sub>2</sub> CO <sub>3</sub>                 | Bunsen burner           | -         | 9600   | velocity<br>H. A. Wilson, P.R.S.,<br>1909                     |
| Na                                             | Flame, <i>c</i> . 2000° |           | 1170   | Moreau, C.R., 1909                                            |

#### CONDENSATION OF VAPOURS

**Expansion** =  $v_2/v_1$ , where  $v_1$  is the volume of the gas before, and  $v_2$  the volume after expansion. **Supersaturation** of the vapour (at end of cooling by expansion) necessary for condensation = S = (density of vapour when drops are formed)/(density of saturated vapour at the same temp.). (See J. J. Thomson, "Conduction of Electricity through Gases.")

CONDENSATION ON NATURAL IONS AND MOLECULES

Dust-free gas saturated with water-vapour. (C. T. R. Wilson, P.T., '97, '99, '00.)

| Gas.                                    | Rain-<br>Conden         |                   |                      | Cloud-like<br>Condensation. |                                                                                                                                       | Rain-like<br>Condensation. |            | Cloud-like<br>Condensation. |                   |  |
|-----------------------------------------|-------------------------|-------------------|----------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------|-----------------------------|-------------------|--|
|                                         | $v_2/v_1$               | 8.                | $v_2/v_1$            | S.                          |                                                                                                                                       | v2/v1                      | <b>S</b> . | $v_2/v_1$                   | 8.                |  |
| Air<br>O <sub>2</sub><br>N <sub>2</sub> | 1'252<br>1'257<br>1'262 | 4'2<br>4'3<br>4'4 | 1.38<br>1.38<br>1.38 | 7'9<br>7'9<br>7'9           | $\begin{array}{c} \mathrm{CO}_2  \cdot  \cdot  \cdot \\ \mathrm{Cl}_2  \cdot  \cdot  \cdot \\ \mathrm{H}_2  \cdot  \cdot \end{array}$ | 1·365<br>1·3<br>—          | 4°2<br>3'4 | 1.535<br>1.45<br>1.38       | 7'3<br>5'9<br>7'9 |  |

#### CONDENSATION IN AIR IONIZED BY RONTGEN AND RADIUM RAYS (L., Laby, Phil. Trans., 1908; P., Przibram, Wien Ber., 1906.)

| Vapour and Observer.                                                                                                                                                                            | Ion.       | $v_{2}/v_{1}$                                                                | <b>S</b> .                                                           | Vapour and Observer.                                                                                                                                                                | Ion.                | $v_{2}/v_{1}$                                                               | 8.                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------|
| Water (C. T. R. Wilson)<br>Water (C. T. R. Wilson)<br>Et. acetate, L<br>Me. butyrate, L<br>Me. iso-butyrate, L<br>Propyl acetate, L<br>Et. propionate, L<br>Formic acid, L<br>Propionic acid, L | 1+++~+~~+~ | 1.25<br>1.31<br>1.48<br>1.33<br>1.35<br>1.31<br>1.41<br>1.78<br>1.44<br>1.34 | 4.15<br>5.8<br>8.9<br>5.3<br>5.2<br>5.0<br>7.8<br>25.1<br>9.3<br>9.4 | n-Butyric acid, L<br>iso-Butyric acid, L<br>iso-Valeric acid, L<br>Methyl alcohol, P<br>Ethyl alcohol, P<br>Propyl alcohol, P<br>iso-Butyl alcohol, P<br>iso-Amyl alcohol, P<br>""L | ~~~ + + ~ ~ + + + + | 1'38<br>1'36<br>1'22<br>1'25<br>1'17<br>1'18<br>1'2<br>1'22<br>1'18<br>1'54 | 15.0<br>13.3<br>6.0<br>3.1<br>2.3<br>3.0<br>3.6<br>5.5<br>4.1<br>3.0 |
|                                                                                                                                                                                                 |            | Phys.                                                                        |                                                                      | ., Compt. Rend. ; P.M., Phil                                                                                                                                                        |                     |                                                                             |                                                                      |

# FARADAY NE

#### THE FARADAY

The faraday, F, is the charge carried by I gm. molecule (mole) of electrolytic ions: F = NE, where N is the number of molecules per gm. molecule and E is the charge carried by an ion. For a monovalent ion E = e, where e is the electronic charge, and for a bivalent ion E = 2e.  $F = 2.89224 \pm .0003 \times 10^{14}$  e.s.u. mole<sup>-1</sup> = 96494 int. coulomb mole<sup>-1</sup> = 9648.0 e.m.u. mole<sup>-1</sup>.

Antecedent data:--I int. coulomb deposits '00111800 gm. Ag. At.Wt.Ag = 107.880.

#### Ne FOR GASEOUS IONS

N is the number of molecules per c.c. of **air** at room temp. and 76 cm. Hg; e is the ionic charge in E.S.U.,  $e_{-}$  for negative and  $e_{+}$  for positive ions.

| Ionization. | Ne_                                                  | Ne <sub>+</sub>               | Observer.                     |
|-------------|------------------------------------------------------|-------------------------------|-------------------------------|
| X rays      | ${}^{1\cdot23\times10^{10}}_{1\cdot24\times10^{10}}$ | 2·41×10 <sup>10</sup>         | Townsend, P.R.S., 1908, 1909. |
| Ra rays     |                                                      | 1·26 to 1·37×10 <sup>10</sup> | Haselfoot, P.R.S., 1909.      |

#### Ne CALCULATED

In E.S.U.,  $Ne = 3.04 \times 10^8 \times K/D = 3.04 \times 10^8 \times 1.40/0.028 = 1.52 \times 10^{10}$  for positive air ions at 76 cm. and room temp. For D and K, see pp. 109, 110.

| Gas.             | Ne <sub>+</sub>       | Ne_                   | Gas.              | Ne <sub>+</sub>       | Ne_                   |       | Ne <sub>+</sub>       | Ne_                   |
|------------------|-----------------------|-----------------------|-------------------|-----------------------|-----------------------|-------|-----------------------|-----------------------|
| Air              | 1.52.10 <sup>10</sup> | 1.26.10 <sup>10</sup> | H <sub>2</sub> .  | 1.50.10 <sup>10</sup> | 1.23.10 <sup>10</sup> | Mean{ | 1.42.10 <sup>10</sup> | 1.22.10 <sup>10</sup> |
| O <sub>2</sub> . | 1.62.10 <sup>10</sup> | 1.38.10 <sup>10</sup> | CO <sub>2</sub> . | 1.07.10 <sup>10</sup> | 1.02.10 <sup>10</sup> |       | 1.32                  | .10 <sup>10</sup>     |

#### NUMBER OF MOLECULES IN A GAS

N = the number of molecules in a **gram molecule** of gas (Perrin, *Compt. Rend.*, 1908; Perrin and Dabrowski, *C.R.*, 1909—by observations on colloidal particles). The theoretical value is

 $N = NE/e = 2.89224 \times 10^{14}/4.805 \times 10^{-10} = 6.022 \times 10^{23}.$ 

| Method.                               | Gum mastic.          | Gamboge.                | Method.                | Gum mastic.            | Gamboge.             |
|---------------------------------------|----------------------|-------------------------|------------------------|------------------------|----------------------|
| Counting by<br>ultra micro-<br>scope) | N=7.10 <sup>23</sup> | N=7.05.10 <sup>23</sup> | Brownian<br>movements} | N=7·3.10 <sup>23</sup> | N=7.10 <sup>23</sup> |

#### e/m FOR a-RAYS

e/m in E.M.U. gm.<sup>-1</sup>. The calculated value of e/m for a-ray is  $2F(1 - \beta^2)^{\frac{1}{2}}/(M_{He} - 2m) = 4823$  e.m.u. gm.<sup>-1</sup> where F is the faraday. The electrostatic and electromagnetic deflections of a-particles have been observed by Rutherford and Robinson (1914), giving e/m: 4820, 4830, 4824 for RaC, RaA and Rn respectively. Mean 4825 e.m.u. gm.<sup>-1</sup>.

#### WORK ( $\phi$ ) REQUIRED TO EXTRACT AN ELECTRON FROM A METAL

The work function  $\chi$  erg is the least energy which if added to that already possessed by the fastest electrons in the metal at absolute zero would enable them to escape. The thermionic work function,  $\phi$ , is found by determining Richardson's equation

 $i = a T^{\dagger} \epsilon^{-\phi/kT}$ 

for the thermionic current, i, as a function of T the absolute temperature. Calorimetric measurement also gives  $\phi$ .

Another expression for this current in agreement with observation is

 $i = AT^{2} \epsilon^{-\chi/kT}$ , A being tabulated below.

It follows from these relations

$$\chi = \phi - \frac{3}{2}k\mathrm{T},$$

where k is Boltzmann's constant, 1.381 × 10<sup>-16</sup> erg deg.<sup>-1</sup>. In e-volt  $\chi_{\nu} = \phi_{\nu} - T/7733$ .

 $1 e - V = e.10^{8}/c erg = 1.6019.10^{-12} erg = 7733 deg. per molecule.$ 

Einstein's expression for the **photoelectric effect** is  $h\nu = \frac{1}{2}mv^2 - \chi$ , and therefore the photoelectric work function is  $h\nu_0$ , where  $\nu_0$  is the minimum frequency to eject an electron at the absolute zero of temperature.  $\chi = h\nu_0 = hc/\lambda_0$  and  $\chi\nu = 12384.6/\lambda_0$ .  $\lambda_0$  in A unit.

**Reference :** Reimann, "Thermionic Emission," 1934, from which the following table is abstracted.

|          | A                                            | Work fu             | unction $\chi_{\nu}$ . |         | A                                                          | Work function $\chi_{\nu}$ .              |                     |  |
|----------|----------------------------------------------|---------------------|------------------------|---------|------------------------------------------------------------|-------------------------------------------|---------------------|--|
| Metal.   | amp.<br>cm. <sup>-2</sup> deg. <sup>-2</sup> | eg2 ionic. electric | Photo-<br>electric.    | Metal.  | $\substack{\text{amp.}\\\text{cm.}^{-2}\text{ deg.}^{-2}}$ | Therm-<br>ionic.                          | Photo-<br>electric. |  |
| Li<br>Na | _                                            | _                   | 2.28 volt              | Mo<br>W | 55                                                         | 4.15                                      | 4.15 vol            |  |
| K        | _                                            | _                   | 2·46<br>2·24           | Fe      | 60-100                                                     | 4·54<br>4·77                              | 4·54<br>4·77        |  |
| Rb       | -                                            |                     | 2.16-2.19              | Ni      | 1380                                                       | 5.03                                      | 5.01                |  |
| Cs       | 1.62                                         | 1.81                | 1.87-1.96              | Rh      |                                                            | 4.58                                      | 4.22                |  |
| Ba       | 60                                           | 2.11                | 1. Carrier 1.          | Pt      | 17,000                                                     | 6.27                                      | 6.30                |  |
| Zr       | 330                                          | 4.12                | -                      | Ag      |                                                            |                                           | 4.74                |  |
| Th       | 70                                           | 3.38                | - 1                    | Au      |                                                            |                                           | 4.90                |  |
| Ta       | 60                                           | 4.12                | 4.11                   | 1010 10 |                                                            | 12 10 10 10 10 10 10 10 10 10 10 10 10 10 |                     |  |

T. H. L., V. D. H.

ELECTRONIC e/m AND VELOCITY

 $m_0$  is the electromagnetic mass of the negative electron for infinitely small velocities, *m* the transverse mass for a velocity v;  $v/c = \beta$ , where c is the velocity of light. On the **theory of Lorentz** and the **relativity theory of Einstein** (A.d.P., 1905),  $m = m_0(1 - \beta^2)^{-1}$ .

| β                                                    | $m/m_0$                                                     | β                                    | $m/m_0$                                                     | в                                    | $m/m_0$                                                     | β                                    | $m/m_0$                                                     | β                            | $m/m_0$                                                     | β                                    | $m/m_0$                                                     | β            | $m/m_0$                          |
|------------------------------------------------------|-------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------|------------------------------|-------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------|--------------|----------------------------------|
| 0.01<br>0.05<br>0.10<br>0.20<br>0.25<br>0.30<br>0.32 | 1.045<br>1.001<br>1.005<br>1.020<br>1.033<br>1.048<br>1.056 | 0-36<br>0-38<br>0-40<br>0-42<br>0-44 | 1.063<br>1.072<br>1.081<br>1.091<br>1.102<br>1.114<br>1.126 | 0.50<br>0.52<br>0.54<br>0.56<br>0.58 | 1.140<br>1.155<br>1.171<br>1.188<br>1.207<br>1.228<br>1.250 | 0-64<br>0-66<br>0-68<br>0-70<br>0-72 | 1.274<br>1.301<br>1.331<br>1.364<br>1.400<br>1.441<br>1.487 | 0.80<br>0.82<br>0.84<br>0.86 | 1.538<br>1.598<br>1.667<br>1.747<br>1.843<br>1.960<br>2.105 | 0.91<br>0.92<br>0.93<br>0.94<br>0.95 | 2·294<br>2·412<br>2·552<br>2·721<br>2·931<br>3·203<br>3·571 | 0.98<br>0.99 | 4.113<br>5.025<br>7.089<br>22.36 |

# MAGNETIC DEFLECTION

### Hp AND v: MAGNETIC DEFLECTION

When negative rays of velocity v are deflected by a uniform magnetic field H (at right angles to their direction) into a circular path of radius  $\rho$ , then  $\rho H = m_0 v/e = v\phi(\beta)/(e/m_0)$ , where  $\phi(\beta) = (1 - \beta^2)^{-1}$  on Lorentz's theory (see above), and  $e/m_0 = 1.7589 \times 10^7$  e.m.u. gm.<sup>-1</sup>, v is in 10<sup>8</sup> cm. sec.<sup>-1</sup>.  $\rho$ H in gauss cm. **Example.**—If  $\rho H = 2114$  o gauss cm., then  $v = 2.3309 \times 10^{10}$  cm./sec. Reference for Table : Miss N. C. B. Allen, *Proc. Roy. Soc.* of Victoria (1918), recalculated using latest value of  $e/m_0$ .

|              |        |                                                                                                                |                  |        |        | 10001  |        |        |        |        |
|--------------|--------|----------------------------------------------------------------------------------------------------------------|------------------|--------|--------|--------|--------|--------|--------|--------|
| Ηρ           | 0      | 10                                                                                                             | 20               | 30     | 40     | 50     | 60     | 70     | 80     | 90     |
| 0            | 0      | 1.758                                                                                                          | 3.518            | 5.276  | 7.034  | 8.790  | 10.546 | 12.302 | 14.055 | 15.808 |
| 100          | 17.559 | 19.308                                                                                                         |                  | 22.799 | 24.541 | 26.282 | 28.019 |        | 31.515 | 32.215 |
| 200          | 34.94  | 36.65                                                                                                          | 38.37            | 40.87  | 41.79  | 43.20  | 45.20  | 46.90  | 48.60  | 50.28  |
| 300          | 51.97  | 53.64                                                                                                          | 55.31            | 56.98  | 58.64  | 60.30  | 61.95  | 63.59  | 65.23  | 66.86  |
| 400          | 68.49  | 70.10                                                                                                          | 71.72            | 73.33  | 74.93  | 76.52  | 78.11  | 79.68  | 81.25  | 82.82  |
| 500          | 85.37  | 85.92                                                                                                          | 87.47            | 89.00  | 90.53  | 92.05  | 93.56  | 95.07  | 96.55  | 98.04  |
| 600          | 99.53  | 100.00                                                                                                         | 102.45           | 103.01 | 105.35 | 106.79 | 108.22 | 109.64 | 111.05 | 112.46 |
| 700          | 113.85 | 115.24                                                                                                         | 116.18           | 117.99 | 119.35 | 120.70 | 122.05 | 123.38 | 124.71 | 126.03 |
| 800          | 127.33 | 128.63                                                                                                         | 129.93           | 131.20 | 132.47 | 133.74 | 135.00 | 136.23 | 137.47 | 138.70 |
| 900          | 139.91 | 141.13                                                                                                         | 142.33           | 143.52 | 144.70 | 145.88 | 147.05 | 148.21 | 149.36 | 150.49 |
| 1000         | 151.63 | 152.74                                                                                                         | 153.86           | 154.96 | 156.06 | 157.14 | 158.23 | 159.30 | 160.37 | 161.41 |
| 1100         | 162.46 | 163.50                                                                                                         | 164.53           | 164.55 | 166.56 | 167.57 | 168.57 | 169.54 | 170.53 | 171.50 |
| 1200         | 172.46 | 173.42                                                                                                         | 174.36           | 175.30 | 176.24 | 177.17 | 178.08 | 178.99 | 179.89 | 180.79 |
| 1300         | 181.68 | 182.55                                                                                                         | 183.42           | 184.28 | 185.14 | 185.99 | 186.84 | 187.66 | 188.49 | 189.31 |
| 1400         | 190.13 | 190.93                                                                                                         | 191.73           | 192.52 | 193.31 | 194.09 | 194.86 | 195.62 | 196.38 | 197.13 |
| 1500         | 197.88 | 198.62                                                                                                         | 199.34           | 200.07 | 200.79 | 201.51 | 202.22 | 202.93 | 203.62 | 204.29 |
| 1600         | 204.98 | 205.66                                                                                                         | 206.33           | 207.00 | 207.66 | 208.31 | 208.96 | 209.60 | 210.24 | 210.87 |
| 1700         | 211.49 | 212.11                                                                                                         | 212.72           | 213.34 | 213.94 | 214.54 | 215.14 | 215.73 | 216.32 | 216.89 |
| 1800         | 217.44 | 218.01                                                                                                         | 218.57           | 219.13 | 219.69 | 220.24 | 220.78 | 221.32 | 221.85 | 222.38 |
| 1900         | 222.90 | 223.42                                                                                                         | 223.94           | 224.45 | 224.96 | 225.46 | 225.96 | 226.45 | 226.94 | 227.43 |
| 2000         | 227.90 | 228.38                                                                                                         | 228.75           | 229.32 | 229.78 | 230.24 | 230.70 | 231.15 | 231.60 | 232.05 |
| 2100         | 232.47 | 232.91                                                                                                         | 233.35           | 233.78 | 234.21 | 234.63 | 235.04 | 235.47 | 235.88 | 236.29 |
| 2200         | 236.68 | 237.18                                                                                                         | 237.48           | 237.87 | 238.27 | 238.65 | 239.04 | 239.42 | 239.80 | 240.17 |
| 2300         | 240.53 | 240.90                                                                                                         | 241.27           | 241.64 | 242.00 | 242.35 | 242.70 | 243.06 | 243.40 | 243.75 |
| 2400         | 244.08 | 244.42                                                                                                         | 244.75           | 245.09 | 245.42 | 245.75 | 246.08 | 246.42 | 246.72 | 247.04 |
| 2500         | 247.35 | 247.76                                                                                                         | 247.97           | 248.27 | 248.88 | 249.18 | 249.48 | 249.48 | 249.78 | 250.07 |
| 2600         | 250.36 | 250.84                                                                                                         | 250.42           | 251.21 | 251.49 | 251.77 | 252.05 | 252.33 | 252.50 | 252.87 |
| 2700         | 253.13 | 253.40                                                                                                         | 253.66           | 253.92 | 254.18 | 254.43 | 254.69 | 254.95 | 255.19 | 255.44 |
| 2800         | 255.68 | 255.93                                                                                                         | 256.16           | 256.41 | 256.65 | 256.89 | 257.13 | 257.37 | 257.60 | 257.83 |
| 2900         | 258.06 | 258.28                                                                                                         | 258.51           | 258.73 | 258.96 | 259.18 | 259.40 | 259.61 | 259.83 | 260.04 |
| 38.0         | 0      | 100                                                                                                            | 200              | 300    | 400    | 500    | 600    | 700    | 800    | 900    |
| 3000         | 260.24 | 262.28                                                                                                         | 264.16           | 265.92 | 267.56 | 269.07 | 270.49 | 271.82 | 273.06 | 274.23 |
| 4000         | 275.31 | 276.33                                                                                                         | 277.29           | 278.19 | 279.05 | 279.84 | 280.60 | 281.32 | 281.99 | 282.63 |
|              | 283.22 | 283.80                                                                                                         |                  | 284.86 | 285.34 | 285.81 | 286.36 | 286.68 | 287.18 | 287.47 |
| 5000<br>6000 | 287.82 | 288.17                                                                                                         | 284·34<br>288·51 | 288.83 | 289.13 |        | 289.70 | 289.97 | 290.23 |        |
| 7000         |        | the second s |                  |        |        | 289.42 |        |        |        | 290.47 |
| 8000         | 290.70 | 290.93                                                                                                         | 291.15           | 291.36 | 291.56 | 291.75 | 291.94 | 292.12 | 292.30 | 292.46 |
|              | 292.02 | 292.78                                                                                                         | 292.93           | 293.08 | 293.22 | 293.35 | 293.48 | 293.60 | 293.72 | 293.84 |
| 9000         | 293.95 | 294.07                                                                                                         | 294.18           | 294.28 | 294.38 | 294.48 | 294.57 | 294.66 | 294.75 | 294.84 |

### v $\times$ 10<sup>-8</sup> cm./sec.

#### NUMBER OF *a*-PARTICLES FROM Ra

Number of a-particles from Ra without its radioactive product =  $3.62 \times 10^{10}$  per gm. per sec.

Reference : Rutherford, Chadwick and Ellis (1935).

# ATOMIC STOPPING POWERS

| Alpha-particles from Radium C' in gases at atmospheric pressure. (Taylor,<br>Phil. Mag., 1911; Bates, Proc. Roy. Soc., 1924.) |                           |                                                                          |                                                                                                       |                                                                                                          |                                                                                                                      |                                                                                                                                               |                                                                                                                                                  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| He.                                                                                                                           | H2.                       | Ne.                                                                      | А.                                                                                                    | Air.                                                                                                     | 02.                                                                                                                  | Kr.                                                                                                                                           | Xe.                                                                                                                                              |  |  |  |  |  |
| 39.7                                                                                                                          | 31.12                     | 11.9                                                                     | 7.5                                                                                                   | 6.97                                                                                                     | 6.29                                                                                                                 | 5.24                                                                                                                                          | 3.86                                                                                                                                             |  |  |  |  |  |
|                                                                                                                               | es from<br>; Bates<br>He. | es from Radium<br>; Bates, <i>Proc. R</i><br><b>He. H</b> <sub>2</sub> . | es from Radium C' in g<br>; Bates, <i>Proc. Roy. Soc.</i> ,<br><b>He. H</b> <sub>2</sub> . <b>Ne.</b> | es from Radium C' in gases at<br>; Bates, <i>Proc. Roy. Soc.</i> , 1924.)<br>He. H <sub>2</sub> . Ne. A. | es from Radium C' in gases at atmosp<br>; Bates, <i>Proc. Roy. Soc.</i> , 1924.)<br>He. H <sub>2</sub> . Ne. A. Air. | es from Radium C' in gases at atmospheric pr<br>; Bates, <i>Proc. Roy. Soc.</i> , 1924.)<br>He. H <sub>2</sub> . Ne. A. Air. O <sub>2</sub> . | es from Radium C' in gases at atmospheric pressure.<br>; Bates, Proc. Roy. Soc., 1924.)<br>He. H <sub>2</sub> . Ne. A. Air. O <sub>2</sub> . Kr. |  |  |  |  |  |

#### STOPPING POWERS OF MATERIALS

If a layer of air of density  $\rho$  and thickness *t* decreases the range of an *a* particle by the same amount as aluminium foil of density  $\rho_a$  and thickness  $t_a$ , then the **atomic stopping power**, S, of Al relative to air is given by  $S = 27t\rho/14\cdot4t_a\rho_a$ ) = (number of atoms per cm.<sup>2</sup> in air layer)/(number of atoms per cm.<sup>2</sup> in Al foil) (Bragg and Kleeman, *Phil. Mag.*, 1905; Bragg, *Phil. Mag.*, 1906).

| Material. | s. | Material. | S.           | Material. | s.           | Material. | s.           | Material.                                                         | s.   |
|-----------|----|-----------|--------------|-----------|--------------|-----------|--------------|-------------------------------------------------------------------|------|
|           |    | Sn<br>Pt  | 3·37<br>4·16 |           | 4·45<br>4·27 | N20 .     | 1·46<br>1·47 | C <sub>2</sub> H <sub>2</sub> .<br>Ethylene<br>Benzene<br>Methane | 3.37 |

#### NUMBER OF IONS MADE BY AN & PARTICLE

Total number of ions produced by the complete absorption of an *a* particle with various initial velocities. Observer assumed  $e = 4.65 \times 10^{-10}$  E.S.U. (Geiger, *Proc. Roy. Soc.*, 1909).

|                                        | Ra                   | RaEm                 | RaA                  | RaC                  | RaF      |
|----------------------------------------|----------------------|----------------------|----------------------|----------------------|----------|
| Range in air at $20^{\circ}$ C., 76 cm | 3.5 cm.              | 4.33                 | 4.83                 | 7.06                 | 3.86     |
| Number of ions                         | 1·53×10 <sup>5</sup> | 1.74×10 <sup>5</sup> | 1.87×10 <sup>5</sup> | 2·37×10 <sup>5</sup> | 1.62×105 |

#### IONS PRODUCED AT DIFFERENT VELOCITIES BY AN & PARTICLE

Number of ions made per mm. of path in **air** by an *a* particle from RaC at various distances from its source. Total number  $= 2 \cdot 20 \times 10^5$  (Rutherford, Chadwick, Ellis (Cambridge), 1930.

| Distance from RaC in cm                                   | 1    | 2    | 3    | 4    | 5    | 6    | 6.5  | 7    |
|-----------------------------------------------------------|------|------|------|------|------|------|------|------|
| Ions per mm. of path in air at $12^{\circ}$ C. and 76 cm. | 2480 | 2540 | 2680 | 2880 | 3440 | 4800 | 6000 | 4500 |

# RELATIVE IONIZATIONS

#### RELATIVE VOLUME IONIZATIONS FOR $\beta$ , $\gamma$ , AND X RAYS

Relative ionization = Ir = iP/Ip, where *i* is the amount of ionization per unit volume for the gas at a press. *p*, and I that for air at press. P, the other experimental conditions being the same. In the experiments with  $\gamma$  rays (column headed  $\gamma$ ),  $\beta$  rays would also be present. Observers: for  $\beta$  and  $\gamma$  rays, Kleeman, *P.R.S.*, 1907; X rays, C., Crowther, *P.C.P.S.*, 1909; *P.R.S.*, 1909; Mc., McClung, *P.M.*, 1904. I, for secondary  $\gamma$  rays is much the same as for X rays (see Kleeman, *P.R.S.*, 1909).

| Gas.        | β    | γ    | Hard X.   | Soft X.  | Gas.             | β    | γ    | Hard X. | Soft X. |
|-------------|------|------|-----------|----------|------------------|------|------|---------|---------|
| Air         | 1.00 | 1.00 | 1.00      | 1.00     | Me. alcohol .    | 1.69 | 1.75 | -       |         |
|             | 0.16 | 0.16 | 0.42      | 0.11     | Me. bromide      | 3.73 | 3.81 |         | 71, C.  |
| 0           | 1.17 | 1.10 | 1.17, Mc. | 1.3, Mc. | Me. iodide .     |      | 5.37 |         | 72      |
| NH3         | 0.89 | 0.90 | -         |          | Chloroform .     |      | 4.93 |         | 31.9    |
|             | 1.55 | 1.55 | -         |          | CCl <sub>4</sub> | 6.28 | 6.33 | 4.9     | 45.3    |
|             |      |      | 1.49, C.  | 1.57, C. | Et. aldehyde .   | 2.12 | 2.17 |         | -       |
|             | 1.86 | 1.71 | -         | -        | Et. bromide .    | 4.41 | 4.63 | 118     | 72, C.  |
|             | 2.25 |      |           | 7.97     | Et. chloride .   | 3.24 | 3.19 | 17.3,C. | 18, C.  |
| CS2         | 3.62 | 3.66 |           |          | Et. ether        | 4.39 | 4.29 |         | -       |
|             | 4.55 | 4.53 | -         |          | Et. iodide .     | 5.90 | 6.47 |         |         |
| Benzene .   | 3.95 |      |           |          | Ni. carbonyl .   | -    | 5.98 | 97, C.  | 89, C.  |
| Me. acetate | -    |      | 3.90, C.  | 4.95, C. | Hg dimethyl      |      | -    |         | 425, C. |

P.C.P.S., Proc. Camb. Phil. Soc. ; P.M., Phil. Mag. ; P.R.S., Proc. Roy. Soc.

RELATIVE IONIZATION PER UNIT VOLUME BY a RAYS

Relative ionization = (total ionization)  $\times$  (stopping power), Metcalfe, P.M., 1909.

For calculated **total ionization** when **Rontgen Rays** are completely absorbed in various gases, see Crowther, *Proc. Roy. Soc.*, 1909.

#### HEATING EFFECT OF RADIUM

Heat liberated by metallic Ra, Rn, etc., in cal. sec.<sup>-1</sup> gm.<sup>-1</sup>. The calculated total energy E of the radiations is  $E = \frac{1}{2}MQ\Sigma(1 + M/m)v^2 + E_1$ , where M is the mass of the *a*-particles, *m* the mass of the radium atom, *v* the velocity of each group present, Q the number of *a*-particles emitted per sec. by I gm. of radium and its products. E<sub>1</sub> is the energy of  $\beta$ - and  $\gamma$ -rays absorbed. Heating effect is independent of temperature and pressure.

**References :** Rutherford, Chadwick and Ellis, 1935. International Critical Tables.

| Product.     | a-ra                                           | ays.                                           | Pro-        | a-1                    | ays.       | 0                     | γ.                    |  |
|--------------|------------------------------------------------|------------------------------------------------|-------------|------------------------|------------|-----------------------|-----------------------|--|
|              | Cale.                                          | Obs.                                           | duct.       | Cale.                  | Obs.       | β.                    |                       |  |
| Ra ·<br>Rn · | $6.92 \times 10^{-3}$<br>$7.92 \times 10^{-3}$ | $7.00 \times 10^{-3}$<br>$8.28 \times 10^{-3}$ | RaB<br>RaC} | 11·17×10 <sup>-3</sup> | 10.42×10-3 | 1.75×10 <sup>-3</sup> | 2.61×10 <sup>-3</sup> |  |
| RaA .        | $8.67 \times 10^{-3}$                          | 8.86×10 <sup>-3</sup>                          | Total       | 34.68×10-8             | 34.56×10-3 | 1.75×10-3             | 2.01×10-3             |  |

#### HEAT EMISSION FROM RaEm, AND THORIUM

The  $6 \times 10^{-4}$  c.c. of **RaEm** (with its products) in equilibrium with 1 gm. Ra emit .75 of the .0328 calories emitted per sec. by the radium. Thus the total quantity of heat given out by 1 c.c. of RaEm during its whole life = .75 × .0328 ( $\lambda \times 6 \times 10^{-4}$ ) = 1.9 × 10<sup>7</sup> calories.

For old (mineral) **thorium** metal, the heat emitted is  $5 \times 10^{-9}$  calories per sec. per gm. (Pegram and Webb, *Phy. Rev.*, 1908).

| Γ in days.                                                                                                                                                                                                                                                                                                                                                                                                                                                       | the decay coefficient<br>Observer, et                                                                                                                                                 |                                                                                                                 | Γ in days.                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | bserver, etc.                                                                                             |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                       |                                                                                                                 |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                           |  |  |  |  |  |
| EQUILIBRIUM VOLUME OF RADIUM EMANATION<br>Final volume of radium emanation at 0° C. and 76 cm. Hg in equilibrium<br>with 1 gm. of metallic radium. <b>Theoretical</b> volume = (number of radium atoms<br>preaking up per sec.)/ $\lambda N = 3.62 \times 10^{10}/2.688 \times 10^{19} \times 2.097 \times 10^{-6} = 6.42$ c.c. $\times 10^{-4}$ .<br>Rutherford, "Radioactivity"). The volume of the emanation changes anomalously<br>after it is first formed. |                                                                                                                                                                                       |                                                                                                                 |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                           |  |  |  |  |  |
| Observed vo                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                       |                                                                                                                 | Observed vo                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C. P. 1000                                                                                                |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                       | ·58 cub. mm. Rutherford, P.M., 1908. ·58 cub. mm. Debierne, C.R., 1909.<br>·601 ,, Gray & Ramsay, J.C.S., 1909. |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                           |  |  |  |  |  |
| ATC                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Amar Tourn Sci .                                                                                                                                                                      |                                                                                                                 | + Roud . 1                                      | CS Journ (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Them Sci PM                                                                                               |  |  |  |  |  |
| Vapour                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Amer. Journ. Sci. ;<br>; C.G., Chem. Ges.<br>VAPOUR PF<br>pressure of liquid Ra<br>e, February, 1909 ; (                                                                              | C.R., Complete<br>RESSURE OF<br>aEm. in cm                                                                      | RADIUM E                                        | MANATION<br>ng-point, -71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ° C. (R., Ruther                                                                                          |  |  |  |  |  |
| Vapour<br>ord, Natur                                                                                                                                                                                                                                                                                                                                                                                                                                             | ; C.G., Chem. Ges.<br>VAPOUR PF<br>pressure of liquid Ra                                                                                                                              | C.R., Complete<br>RESSURE OF<br>aEm. in cm<br>G. & R., Gr                                                       | RADIUM E<br>. Hg; melti<br>ay and Ran           | manation<br>ng-point, – 71'<br>nsay, J.C.S., J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ° C. (R., Ruther<br>une, 1909.)                                                                           |  |  |  |  |  |
| Vapour<br>ord, Natur<br>emp. ° C.                                                                                                                                                                                                                                                                                                                                                                                                                                | ; C.G., Chem. Ges.<br>VAPOUR PF<br>pressure of liquid Ra<br>e, February, 1909 ; 9                                                                                                     | C.R., Complete<br>RESSURE OF<br>aEm. in cm.<br>G. & R., Gr                                                      | RADIUM E<br>Hg; melti<br>ay and Ran             | MANATION<br>ng-point, $-71^{\circ}$<br>nsay, $\mathcal{F}.C.S.$ , J<br>$M^{\circ}$ $-78^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ° C. (R., Ruther                                                                                          |  |  |  |  |  |
| Vapour<br>ord, Natur<br>emp. ° C.<br>ap. press. c                                                                                                                                                                                                                                                                                                                                                                                                                | ; C.G., Chem. Ges.<br>VAPOUR PF<br>pressure of liquid R:<br>e, February, 1909 ;<br>                                                                                                   | C.R., Complexessure of<br>aEm. in cm<br>G. & R., Gr<br>R12                                                      | RADIUM EI. Hg; meltiay and Ran $27^{\circ}$ -10 | MANATION<br>ng-point, $-71^{\circ}$<br>nsay, $\mathcal{F}.C.S.$ , J<br>$01^{\circ}$ $-78^{\circ}$<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C. (R., Rutherune, 1909.)<br>$-65^{\circ} = B.P$<br>76                                                    |  |  |  |  |  |
| Vapour<br>ord, Natur<br>emp. ° C.                                                                                                                                                                                                                                                                                                                                                                                                                                | ; C.G., Chem. Ges.<br>VAPOUR PF<br>pressure of liquid R:<br>re, February, 1909;<br>m. Hg<br>$G. \begin{vmatrix} -70^{\circ} \cdot 4 \\ ro \end{vmatrix} - \frac{-62^{\circ} = B}{r6}$ | C.R., Complexessure of<br>aEm. in cm<br>G. & R., Gr<br>R12                                                      | RADIUM EI. Hg; meltiay and Ran $27^{\circ}$ -10 | $ \begin{array}{c c} \text{MANATION} \\ \text{ng-point, -71'} \\ \text{nsay, } \mathcal{F}.C.S., J \\ \hline \begin{array}{c} \text{M}^{\circ} \\ \hline \end{array} \\ \hline \begin{array}{c} -78^{\circ} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} \text{25} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} \text{35} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} \text{35} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} \text{35} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} \text{35} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} $ | $^{\circ}$ C. (R., Ruther<br>une, 1909.)<br>$-65^{\circ} = B.P$<br>76<br>$^{\circ}2 + 104^{\circ}5$ crit. |  |  |  |  |  |

| Electron                  | s in Air.                   | X-rays in Air.                             |                                |  |  |  |
|---------------------------|-----------------------------|--------------------------------------------|--------------------------------|--|--|--|
| Author.                   | Mean energy for ionization. | Author.                                    | Mean energy for<br>ionization. |  |  |  |
| Schmitz<br>Eisl<br>Wilson | 45 volts<br>32 ,,<br>26 ,,  | Steenbeck<br>Gaertner<br>Crowther and Bond | 28 volts<br>36 ,,<br>42.5 ,,   |  |  |  |
| Mean                      | 34 ,,                       | Mean                                       | 35.5                           |  |  |  |

Ra IN ROCKS

#### EQUILIBRIUM ACTIVITIES IN MINERALS

Kelative activity of radioactive products in minerals. Boltwood ( $A.\mathcal{F}.S.$ , April, 1908) found U 2.22 times as active as the Ra alone in minerals (see McCoy and Ross,  $A.\mathcal{F}.S.$ ).

| <b>P</b> roduct   | υ | Io  | Ra  | RaEm. | RaA | RaB   | RaC | RaF | Ac  | Total. |
|-------------------|---|-----|-----|-------|-----|-------|-----|-----|-----|--------|
| Relative activity | I | •34 | •45 | .62   | •54 | .04 5 | .91 | •46 | •28 | 4.64   |

 $3'4 \times 10^{-7}$  gm. Ra is in equilibrium with 1 gm. U (Rutherford and Boltwood,  $A.\mathcal{J}.S.$ , 1906).  $7'3 \times 10^6$  gms. U equal in activity 1 gm. of Ra + its products to RaC. *i.e.* Ra just over 30 days old (corrected by Boltwood,  $A.\mathcal{J}.S.$ , 1908).

#### RADIUM AND THORIUM IN ROCKS

Rutherford and Soddy (*P.M.*, May, 1903) and W. E. Wilson (*Nature*, July, 1903) suggested that the heat liberated by radioactive changes is one of the sources of the Earth's heat. Thus the distribution of radium and thorium in the Earth's crust is of geophysical importance. Loss of heat from the Earth's surface = temperature gradient × thermal conductivity of crust × area of Earth's surface =  $(1/3200) \times '004 \times 5^{\circ}1 \times 10^{15} = 6 \times 10^{12}$  calories per sec. Now, elementary radium in radioactive equilibrium (*i.e.* whole U family) gives out  $6 \times 10^{-2}$  cal./sec. gm. (Rutherford §), and therefore  $1^{\circ}1 \times 10^{14}$  grms. of radium, or  $10^{14}/10^{27} = 10^{-13}$  gm. per c.c., throughout the Earth's volume would maintain it at a steady temperature. Thorium contributes  $5 \times 10^{-9}$  cal. /sec. gm. The **total heating effect** in calories per gram of rock per hour is for the lava indicated below by \*,  $30 \times 10^{-10}$ ; and for the rock indicated by †,  $2^{\circ}9 \times 10^{-10}$ ; for average igneous rock,  $11 \times 10^{-10}$ .

(See Strutt, Proc. Roy. Soc., 1906-7 ; Joly, "Radioactivity and Geology," 1909.)

| Pack ata                          | Obs.        | Ra         | Th          |
|-----------------------------------|-------------|------------|-------------|
| Bock, etc.                        | UDS.        | gm. per gn | 1. of rock. |
| Convert from the second for       | 2 m 2 1 2 3 | × 10-13    | × 10-5      |
| Igneous rocks                     | St., 1906   | 1.7        | - 10        |
| Sedimentary rocks                 | 51., 1900   | I'I        |             |
| Sandstone                         | E. M., 1907 | 16         |             |
| Clays                             |             | .79        |             |
| Devonian.                         | 73 F7       | I to 4     |             |
| Ordovician                        | """         | .9         |             |
| Lavas ejected since 1631*         | J., 1909    | 12'3       | 2'3         |
| Lava, Mount Erebus                | F. F., 1909 | 2.4        |             |
| 126 igneous rocks                 | J., 1909    | 7.01       | -           |
| 64 , , ,                          | other obs.  | 1'3        | 1'3         |
| Italian igneous rocks             | B., 1909    | mean       | 5           |
| Campbell and Auckland Islands,)   |             | 1 1.6      | igneous     |
| N.Z                               | F. F., 1909 | 1 .5       | sedimentary |
| St. Gothard Tunnel-               |             |            | 1           |
| granite                           | J., 1909    | 7.7        | 1.0         |
| schists and altered sedimentary)  | 33-2-2      |            |             |
| rocks                             | "           | 3.4 to 4.9 | '5 to 1'2   |
| Simplon Tunnel                    | "           | 7.6        | -           |
| Transandine Tunnel †              | Fl., 1910   | .8         | .56         |
| Calcareous and dolomitic European | ( J., 1910  | mean of 7  | 16          |
| rocks                             | 1 "         | 27 samples | <.02        |
| Deep-sea deposits-                |             |            |             |
| Globigerina ooze <sup>1</sup>     | "           | 7'2        | -           |
| Radiolarian ooze <sup>2</sup>     | **          | 36.7       | -           |
| Red clay <sup>3</sup>             | "           | 27         |             |

Extent :—<sup>1</sup> 50, <sup>2</sup> 2<sup>.</sup>5, <sup>3</sup> 51 million square miles. **†** 1000 teet below the surface. § Assuming that the heat due to each member of the family is proportional to the ionization it produces. Preliminary result. B., Blanc., P.M.; E.M., Eve and McIntosh, P.M.; F.F., Farr and Florance, P.M.; Fl., Fletcher; J., Joly, P.M.; S., Strutt (above). A.J.S., Amer. Journ. Sci.; P.M., Phil. Mag.

118

# ELECTRIC ARC

| In gr<br>Em. | ams per gram o                        | RADIUM IN<br>of sea-water. De                                        |         |                                       | amount of Ra                              |  |  |
|--------------|---------------------------------------|----------------------------------------------------------------------|---------|---------------------------------------|-------------------------------------------|--|--|
| Amount.      | Place.                                | Observer.                                                            | Amount. | Place.                                | Observer.                                 |  |  |
|              | <br>Mid. N. Atlantic<br>Atlantic<br>" | Strutt, P.R.S., '06<br>Eve, P.M., 1907<br>, 1909<br>Joly, P.M., 1908 | 14 ,,   | Nile<br>Mediterranean<br>Indian Ocean | Joly, P.M.,1908<br>,, ,, 1909<br>,, ", ", |  |  |

#### RADIUM EMANATION IN ATMOSPHERE

RaEm. per cubic metre of air, expressed in terms of the number of grams of radium with which it would be in equilibrium. The observers below absorbed the emanation by charcoal.

| RaEm. Place.                                  |                     | Observer.                                                        | RaEm.                                  | Place.            | Observer.                             |
|-----------------------------------------------|---------------------|------------------------------------------------------------------|----------------------------------------|-------------------|---------------------------------------|
| 24-27 × 10 <sup>-12</sup><br>60 "<br>86-200 " | Montreal<br>Chicago | Eve, <i>P.M.</i> , 1907<br>,, 1908<br>Ashman, <i>A.J.S.</i> ,'08 | 35–350×10 <sup>–12</sup><br>Mean 105 " | } Cam-<br>bridge{ | Satterly, <i>P.M.</i> , 1908 and 1910 |

#### MOBILITIES OF NATURAL IONS IN AIR

Mobility or speed K is in cm.<sup>2</sup> sec.-1 volt-1 at room temperature and 76 cm. (see p. 110). The ions are named from their velocities : the small ions are assumed to have the velocity of X-ray ions. (See Pollock, Science, 1909; Eve, Phil. Mag., 19, 1910; Lusby, Proc. Camb. Phil. Soc., 1910.)

| Ion.                  | Mean K.                      | Observer.    | Ion.                    | Mean K.                   | Observer.                                          |
|-----------------------|------------------------------|--------------|-------------------------|---------------------------|----------------------------------------------------|
| Small<br>Intermediate | {K+=1.4<br>{K-=1.4}<br>c. oi | Dangevin, og | Large<br>Large<br>Large | '0003<br>'0003*<br>'0008† | Langevin, <i>C.R.</i> ,'05<br>Pollock, 1908<br>""" |

\* Humidity, 19 grms. H<sub>2</sub>O per cubic metre. † '5 grm. H<sub>2</sub>O per cubic metre of air. Pollock, Austl. Ass. Adv. Sci., 1908.

#### ELECTRIC ARCS

Mrs. Ayrton's formula for carbon arcs,  $E = \alpha + \beta l + \frac{\gamma + \delta l}{i}$ , has been shown by

Guye and Zébrikoff (Compt. Rend., 1907) to hold for short stable arcs between metals. E is the voltage across the arc, i is the current in amperes, and I the length in mms. of the arc in air at atmospheric pressure. Mrs. Ayrton's formula does not hold for very long arcs, nor for cored carbons. For stability, an arc requires an external resistance R which must be less than  $\frac{\{E_x - (\alpha + \beta l)\}^2}{4(\gamma + \delta l)}$  ohms, where  $E_x$  is the

total available voltage; or E<sub>x</sub> must exceed  $\alpha + \beta l + 2\sqrt{R(\gamma + \delta l)}$ . If R is too small the arc hisses, in which case the current is independent of the voltage across the terminals. The constants for carbon refer only to the particular sizes and quality used by Mrs. Avrton.

(See J. J. Thomson, " Conduction of Electricity through Gases.")

| M                          | Leta | al.   |       | a                                         | β                                     | γ                                   | δ                                         | Metal.               | a                                | β                            | 7                        | 8                                |
|----------------------------|------|-------|-------|-------------------------------------------|---------------------------------------|-------------------------------------|-------------------------------------------|----------------------|----------------------------------|------------------------------|--------------------------|----------------------------------|
| C.<br>Fe<br>Ni<br>Co<br>Cu |      | ••••• | ••••• | 38.88<br>15.73<br>17.14<br>20.71<br>21.38 | 2.074<br>2.52<br>3.89<br>2.05<br>3.03 | 11.66<br>9.44<br>0<br>2.07<br>10.69 | 10°54<br>15°02<br>17°48<br>10°12<br>15°24 | Pd<br>Ag<br>Pt<br>Au | 21.64<br>14.19<br>24.29<br>20.82 | 3.70<br>3.64<br>4.80<br>4.62 | 0<br>11.36<br>0<br>12.17 | 21.78<br>19.01<br>20.23<br>20.97 |
| 4                          | .9.  | s.,   | A     | ner. Jour                                 | m.Sci.;                               | C.R., C.                            | mpt. Re                                   | nd.; P.M., Phil      | I. Mag.;                         | P.R.S.                       | , Proc. k                | loy. Soc.                        |

# ATOMIC CONSTANTS

#### GENERAL AND ATOMIC CONSTANTS

The following table contains a number of the general constants of physics. The basis of the values given below is explained on other pages of this book, referred to in the third column below.

**References:** Birge, "General Physical Constants" (*Rev. Mod. Phys.*, 1929), Birge's 1939 revision of his 1929 values, and Wensel (*J. Res. Nat. Bur. St.*, 1939).

| Symbol.                 | Quantity.                            | Page.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Value.                            |                     |  |  |  |
|-------------------------|--------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------|--|--|--|
|                         | Fundamental                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                     |  |  |  |
| е                       | Electron                             | 127       | 4.805±.001×10-10 e.s.u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 1.6020                          | 0×10-20 e.m.u.      |  |  |  |
| e/m                     | Electron                             | 128       | 5.2728±.0015×1017 e.s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | u. gm1 I.7                        | 589×107 e.m.u       |  |  |  |
|                         | a the for an internet with the start |           | 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   | [gm1                |  |  |  |
| h                       | Planck's action quantum              | 128       | $6.622 \pm .007 \times 10^{-27}$ erg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sec.                              |                     |  |  |  |
| C                       | Velocity of light                    | 84        | $2.99774 \pm .00011 \times 10^{10}$ cm. sec. <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                     |  |  |  |
| GN                      | Gravitation constant                 | 17        | 6.659±.006×10 <sup>-8</sup> gm. <sup>-1</sup> cm. <sup>3</sup> sec. <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |                     |  |  |  |
| N                       | Number of molecules per              |           | In the assessed for the second s |                                   |                     |  |  |  |
|                         | mole, Avogadro's number              | 112       | $6.0192 \pm .0014 \times 10^{23}$ mole. <sup>-1</sup> chemical scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |                     |  |  |  |
| k                       | Boltzmann's constant                 | 7         | 1.3813±.0002×10-16 er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                     |  |  |  |
| k<br>R<br>V             | Gas constant $= pv/T$                | 7         | 8.3142±.0010×10 <sup>7</sup> erg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | deg1 mole1                        | Chm. Sc.            |  |  |  |
| F                       | Volume perfect gas                   |           | 22415.2±.8 cm.3 mole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (g=980.005)                       |                     |  |  |  |
| F.                      | Faraday=Ne chem. sc.                 | 112       | 2.89224±.0003×1014 e.s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s.u. (gm. equiv.                  | .)-1                |  |  |  |
|                         | ", chem. sc.                         | 112       | 9648.0 e.m.u. (gm. equiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·.)-•                             |                     |  |  |  |
| i and                   | Specific Charge                      | 1 22 20   | LITTLE AND ADDITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |                     |  |  |  |
| $e/M_P$                 | $Proton = F/M_P$                     |           | 2.8712×1014 e.s.u. gm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | e.m.u. gm1          |  |  |  |
| e/M <sub>D</sub>        | Deuteron=F/M <sub>D</sub>            |           | 1.4359×1014 e.s.u. gm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | e.m.u. gm1          |  |  |  |
| e/M <sub>H</sub>        | Hydrogen in electrolysis             |           | 2.8692×1014 e.s.u. gm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | e.m.u. gm1          |  |  |  |
| $2e/M_{He}$             | a-ray                                |           | 1.4450×1014 e.s.u. gm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4820.4                            | e.m.u. gm1          |  |  |  |
|                         | Atomic Mass                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Physical scale                    | Chemical scale.     |  |  |  |
| $M_{\rm H^1}/m$         | H <sup>1</sup> atom : m. electron    |           | 1837.7 = e/(e/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a hyproat scale.                  | onomioar soule.     |  |  |  |
| m                       | Electron $= e/(e/m)$                 | 1111      | 9.113±.003×10-28 gm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ·0005486                          | .0005484            |  |  |  |
| M                       | Unit atomic mass=1/N                 | -         | 1.6613×10-23 gm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00027                           | 1.00000             |  |  |  |
| MP                      | Proton=M <sub>P</sub> /N             |           | 1.6734×10-24 gm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00758                           | 1.00731             |  |  |  |
| MH                      | Chemical hydrogen                    | 171       | 1.6746×10-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00827                           | 1.00800             |  |  |  |
| MH1                     | H <sup>1</sup> atom                  | 171       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00813                           | 1.00786             |  |  |  |
| MN                      | Neutron                              | 171       | 1.6756×10-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0089                            | 1.0086              |  |  |  |
| MH2                     | Deuterium                            | 171       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.01473                           | 2.01418             |  |  |  |
| M <sub>He</sub>         | Helium                               | 171       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.00389                           | 4.00281             |  |  |  |
| MAg                     | Silver                               | 171       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | 107.880             |  |  |  |
|                         | Spectroscopy                         | 2021      | OINTOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                     |  |  |  |
| R <sub>H</sub>          | Rydberg's number H <sup>1</sup>      | 129       | 109677·75±·01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                     |  |  |  |
| RHe                     | ,, ,, Не                             |           | 109722.403±.01 cm1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |                     |  |  |  |
| R.                      |                                      |           | $109737.43 \text{ R}_{\infty} = 2\pi^2 e^4 m/s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | h <sup>3</sup> c <sup>2</sup>     |                     |  |  |  |
| a                       | Fine structure const.                |           | 7.3002×10-3; 1/a=136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ·98={4#Re(e/m                     | 1)/c} <sup>-1</sup> |  |  |  |
| - Contraction           | Heat, Radiation                      | 11.01     | and the second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                     |  |  |  |
| To                      | Temperature Ice Pt.                  | 54        | 0° C.=273·16±·02° K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |                     |  |  |  |
| C <sub>1</sub>          | First radiation const.               | 54<br>75  | 3.77 × 10 <sup>-5</sup> erg. cm. <sup>2</sup> sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1                                |                     |  |  |  |
| C <sub>2</sub>          | Second radiation const.              | 75        | 1.4361 cm. deg.=ch/k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and the second second             |                     |  |  |  |
| $\lambda_m \mathbf{T}$  | Wien's law const.                    | 75        | $\cdot 2892$ cm. deg. $\lambda_m T \times 4 \cdot 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 065=c,                            |                     |  |  |  |
| a                       | Stefan's const.                      | 75        | 5.75×10-5 erg. cm2 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | eg.                               |                     |  |  |  |
| J <sub>15</sub>         | Mech. equiv. heat                    | 65        | 4.18526×107 erg. cal1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | at 15° C.                         |                     |  |  |  |
| J15                     | Elect. equiv. heat                   | 65        | 4.1850×107 erg. cal1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | at 15° C.                         |                     |  |  |  |
|                         | X-Rays                               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LOVER A - 12                      |                     |  |  |  |
| a18                     | Grating space calcite                | 127       | d18=3029.45 X unit (I )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | XU=1.00218×                       | 10-11 cm.)          |  |  |  |
| ρ <sub>18</sub>         | Density calcite                      |           | 2.71047±.00003 gm. cn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                     |  |  |  |
| $\phi(\beta)$           | Structure factor                     | Des. Str. | 1.09594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                     |  |  |  |
| a1                      | Grating space calcite                |           | 3029.04 X unit 1st order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | spectrum                          |                     |  |  |  |
|                         | ,, ,, quartz                         |           | 4244.92 ,, ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,,,                               |                     |  |  |  |
|                         | ,, ,, gypsum                         |           | 7579.06 ,, ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,,                                |                     |  |  |  |
|                         | ,, ,, mica                           |           | 0007.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                     |  |  |  |
| $\lambda g / \lambda c$ | X unit in cm.                        | 127       | 1 XU=1.00218×10 <sup>-11</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cm. $\lambda g / \lambda c = I$ . | 00218               |  |  |  |
|                         | Wavelength equivalent to             |           | The second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                     |  |  |  |
|                         | I eV energy for X-rays               | 126       | 12384.6×10 <sup>-8</sup> cm. abs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | volt-1                            |                     |  |  |  |
|                         |                                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T                                 | H. L., V. D. H      |  |  |  |
|                         |                                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                     |  |  |  |

#### RADIOACTIVITY

#### RADIOACTIVE ELEMENTS AND SERIES

**Rate of Decay.**—If N is the number of molecules of a radioactive element at a time t sec., then  $N = N_0 e^{-\lambda t}$ , where  $N_0$  is the initial number of atoms when t = 0. If T sec. is the period in which the number of atoms initially present decreases to one half (*i.e.*  $N/N_0 = \frac{1}{2}$ ), then  $\lambda T = .69315$ . (When T is in minutes, hours, days or years then  $\lambda T = 1.155 \times 10^{-2}$ ,  $1.925 \times 10^{-4}$ ,  $8.021 \times 10^{-6}$  or  $2.196 \times 10^{-8}$  respectively, where  $\lambda$  is the disintegration constant in sec.<sup>-1</sup>).

**Change of Atomic Mass and Number.**—In the radioactive disintegration of an atom either an  $\alpha$ - or  $\beta$ -particle is emitted from the nucleus. In the first case the mass of the atom A relative to  $O \equiv 16$  decreases by approximately four units and the nuclear charge +Ze decreases by 2e, that is the atomic number Z decreases by 2. In the second case the atomic mass A remains practically unchanged and the atomic number Z increases by one unit.

**Radioactive Series.**—Three radioactive families of elements have been found in nature; they are known as the thorium (A = 4n), the uranium (A = 4n + 2)and the actinium (A = 4n+3) families. The uranium series was early recognized to originate from UI, and the thorium series from thorium. There was some doubt as to the origin of the actinium series. Recently, however, the determination (by Grosse 1935) of the atomic weight of protactinium as 231 and the observation of the presence of an isotope of mass 235 (actino-uranium) in uranium (Dempster, 1935) have definitely proved the latter to be the parent element of the actinium

| Element.         | A     | z  | T                      | Ray.             | Element.       | A    | z  | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ray. |
|------------------|-------|----|------------------------|------------------|----------------|------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Uranium          |       | 22 | T Det Det Gale         |                  | Actinium       |      |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100  |
| Series           |       |    |                        |                  | Series (cont.) |      |    | and the second sec |      |
| л                | 238   | 92 | 4.6×10 <sup>9</sup> y. | a                |                | 223  | 88 | 11·2 d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a    |
| JX1              | 234   | 90 | 24.5 d.                | β                |                | 215  | 86 | 3.92 s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a    |
| JX11             | 234   | 91 | 1.14 m.                | α<br>β<br>β<br>β |                | 215  | 84 | $2 \times 10^{-3}$ s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a    |
| JZ               | 234   | 91 | 6.7 h.                 |                  |                | 211  | 82 | 36•0 m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | β    |
|                  | 234   | 92 | 3×10 <sup>5</sup> y.   | a                |                | 211  | 83 | 2.16 m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a,   |
| 0                | 230   | 90 | $8.5 \times 10^4$ y.   | a                |                | 211  | 84 | 10 <sup>-3</sup> s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a    |
| la               | 226   | 88 | 1590 y.                | a                |                | 207  | 81 | 4.76 m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | β    |
| ln               | 222   | 86 | 3.82 d.                | a                | AcD            | 207  | 82 | Stable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| RaA              | 218   | 84 | 3.05 m.                | a                |                |      |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| RaB              | 214   | 82 | 26.8 m.                | β                | Thorium        | 1.2  |    | 1 Pay and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
| RaC              | 214   | 83 | 19.7 m.                | β, a             | Series         | 1000 |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| RaC'             | 214   | 84 | 10 <sup>-6</sup> s.    | a                |                | 232  | 90 | 1.4×1010y.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a    |
| RaC"             | 210   | 81 | 1.32 m.                | β                |                | 228  | 88 | 6.7 y.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ββ   |
| RaD              | 210   | 82 | 22.3 y.                | β<br>β<br>β      |                | 228  | 89 | 6·13 h.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| laE              | 210   | 83 | 5.0 d.                 | β                |                | 228  | 90 | 1.90 y.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a    |
| taF              | 210   | 84 | 139 d.                 | a                |                | 224  | 88 | 3.64 d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a    |
| RaG              | 206   | 82 | Stable                 | 1 1 1 1 1 1 1    |                | 220  | 86 | 54.5 s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a    |
| - and the second | 1.4.4 |    |                        | 1000             |                | 216  | 84 | 0'14 S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a    |
| Actinium         |       |    |                        |                  | ThB            | 212  | 82 | 10.5 h.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | β    |
| Series           | mar . |    |                        |                  |                | 212  | 83 | 60.5 m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | α,   |
| LCU              | 235   | 92 | $7 \times 10^8$ y.     | a                | ThC'           | 212  | 84 | 10 <sup>-10</sup> s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a    |
| JY               | 231   | 90 | 24.6 h.                | β                | ThC"           | 208  | 81 | 3.1 m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | β    |
| ·a               | 231   | 91 | 3.2×104 y.             | a                | ThD            | 208  | 82 | Stable .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| le               | 227   | 89 | 13.5 y.                | β, a (?)         | K              | 40   | 19 | 10 <sup>13</sup> y.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ββ   |
| Ac               | 227   | 90 | 18.9 d.                | a                | Rb             | 87   | 37 | 4×10 <sup>11</sup> y.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | β    |
| AcK)             | 223   | 87 | 21 m.                  | β                | Sm             | 148  | 62 | 10 <sup>12</sup> y.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a    |

**Chemical properties** of the elements are the same as those of their isotopes which are :

#### RADIOACTIVITY (contd.)

series. The stable end product of each series is always an isotope of lead : Pb<sup>206</sup> for the uranium series, Pb<sup>208</sup> for the thorium series, Pb<sup>207</sup> for the actinium series. These three isotopes are also the main constituents of ordinary lead. The three series exhibit considerable similarity. The elements, RaC, ThC, AcC, exhibit a branching effect, emitting either an  $\alpha$ - or a  $\beta$ -particle. Another branching exists in the case of UXI, which emits  $\beta$ -particles to form UXII or UZ. The scheme of the transformations is then :

$$\operatorname{RaC}_{\beta}^{a} \xrightarrow{(0^{\circ}04^{\circ})}_{(99^{\circ}96^{\circ})} \operatorname{RaC''}_{a}^{\beta} \operatorname{RaD} \qquad \operatorname{ThC}_{\beta}^{a} \xrightarrow{(35^{\circ})}_{(65^{\circ})} \operatorname{ThC''}_{a}^{\beta} \operatorname{ThD} \\\operatorname{AcC}_{\beta}^{a} \xrightarrow{(99^{\circ}76^{\circ})}_{(0^{\circ}3^{\circ})} \operatorname{AcC''}_{AcC'}^{\beta} \operatorname{AcD} \qquad \operatorname{UX1}_{\beta}^{\beta} \xrightarrow{(99^{\circ}65^{\circ})}_{(0^{\circ}35^{\circ})} \operatorname{UX11}_{UZ}^{\beta} \operatorname{U11}_{\beta} \\\operatorname{UX1}_{\beta}^{\beta} \xrightarrow{(99^{\circ}55^{\circ})}_{(0^{\circ}35^{\circ})} \operatorname{UZ1}_{\beta}^{\beta} \operatorname{U11}$$

The numbers in brackets give the percentage of the atoms which disintegrate in the manner shown. Recently Perey, C. R. (1939) has shown a branching effect for Ac and suggests AC $\rightarrow a$  (0.6%) Ac.K and Ac $\rightarrow \beta$  (99.4%) R.Ac.

Three naturally occurring radioactive elements, not members of radioactive series, are K<sup>40</sup>, Rb<sup>87</sup> and Sm<sup>148</sup>. Their half periods are given in the above table.

V. D. H.

#### a-RAYS ENERGY AND RANGE

**References**:—Rutherford, Chadwick and Ellis, "Radiations from Radioactive Substances," Cambridge; Gamow, "Atomic Nuclei," Oxford; Briggs, *Proc. Roy. Soc.* 

**Initial Velocity, Energy and Range.**—The velocity, V cm. sec.<sup>-1</sup>, of the *a*-ray of RaC' (and other elements) has been measured by Briggs by deflection of the ray in a magnetic field, H oersted.

$$V = H\rho(e/m_0)(I - \beta^2)^{\frac{1}{2}}$$

where  $\rho$  cm. is the curvature of the a-ray path,  $e/m_0$  e.m.u. gm.<sup>-1</sup>, is the ratio of the charge to the rest mass of the particle and  $\beta = V/c$ . H $\rho$  (observed) = 3.99277.10<sup>5</sup> e.m.u. cm.  $e/m_0$  is calculated from the Faraday 9648.0 e.m.u. (gm. equiv.)<sup>-1</sup>,  $m_0 = 4.00173$  (chemical scale), giving  $e/m_0 = 4823$  e.m.u. gm.<sup>-1</sup> and  $V = 1.9215.10^9$  cm. sec.<sup>-1</sup>.

The energy,  $T_{\alpha}$  erg, of the  $\alpha$ -ray is given by  $T_{\alpha} = \frac{1}{2}(H\rho)^2 (e^2/m_0) (1-\beta^2/4-\beta^4/8)$ . In the table  $T_{\alpha}$  is in eV, where  $I eV = 1.6019 \times 10^{-12}$  erg. Briggs' observations are given in it to five or six figures.

| Element.                                                                                                                                     | R <sub>15</sub><br>cm.                                                               | $v \times 10^{9}$ cm./sec.                                                         | $	extsf{T}_{lpha} 	extsf{eV} 	extsf{eV} 	extsf{x} 	extsf{10}^{-6}.$                 | $	extsf{T}_{	op} eV 	imes 10^{-6}.$                                                 | Element.                                                                                                                                            | <b>R</b> <sub>15</sub><br>cm.                                                                                                                                   | $v \times 10^9$ cm./sec.                                                                               | $	extsf{T}_{lpha} eV \\ 	imes 10^{-6}$                                                     | $	extsf{T}_{	op} eV 	imes 10^{-6}.$                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| UI<br>UII<br>Io<br>Ra a <sub>0</sub> .<br>Rn<br>RaA .<br>RaC a <sub>0</sub> .<br>RaC 'a <sub>0</sub> .<br>RaF .<br>Th<br>RaTh a <sub>0</sub> | 2.68<br>3.24<br>3.16<br>3.26<br>4.01<br>4.62<br>4.04<br>6.87<br>3.81<br>2.57<br>3.90 | 1·41<br>1·51<br>1·52<br>1·6247<br>1·6987<br>1·63<br>1·9215<br>1·60<br>1·40<br>1·61 | 4.1<br>4.7<br>4.6<br>4.79<br>5.486<br>5.998<br>5.51<br>7.680<br>5.31<br>4.1<br>5.42 | 4.2<br>4.8<br>4.7<br>4.88<br>5.587<br>6.110<br>5.61<br>7.827<br>5.40<br>4.2<br>5.52 | $\begin{array}{c} ThX & . \\ Tn & . \\ ThA & . \\ ThC & a_0 \\ ThC' & a_0 \\ Pa. & . \\ RaAc & . \\ AcX & . \\ AcC & a_0 \\ AcC' & a_0 \end{array}$ | $\begin{array}{r} 4\cdot 24\\ 4\cdot 97\\ 5\cdot 60\\ 4\cdot 68\\ 8\cdot 53\\ 3\cdot 63\\ 4\cdot 7\\ 4\cdot 28\\ 5\cdot 66\\ 5\cdot 39\\ 6\cdot 5^2\end{array}$ | 1.6533<br>1.7382<br>1.8048<br>1.7053<br>2.0535<br>1.55<br>1.55<br>1.55<br>1.66<br>1.81<br>1.78<br>1.89 | 5.681<br>6.2818<br>6.774<br>6.044<br>8.776<br>4.98<br>6.05<br>5.72<br>6.83<br>6.61<br>7.43 | 5:785<br>6:398<br>6:902<br>6:161<br>8:945<br>5:06<br>6:14<br>5:82<br>6:95<br>6:74<br>7:58 |

# ELECTRONS IN ATOMS

#### a-RAYS ENERGY AND RANGE (contd.)

**Total disintegration energy**,  $T_T$  erg, of both *a*-ray and nucleus is given by  $T_T = T_a(I + m/M) = T_a(I + 4/M),$ 

where m/M is the ratio of the mass of the  $\alpha$ -ray to that of the nucleus after disintegration. It is approximately 4/M if M is the atomic mass of the latter.

**Range.**—R<sub>15</sub> cm. is the range of the α-ray in air at 15° C. and 76 cm. Hg.

**Geiger's relation.** The decrease in velocity of an *a*-ray in air is approximately given by Geiger's relation  $V^3 = a(R - x)$ , where *a* is a constant = 1.011  $\times$  10<sup>9</sup>, R cm. is the range in air, V cm. sec.<sup>-1</sup> the velocity of the particle at a distance *x* cm. from the source. This holds fairly closely for velocities between the initial velocity  $V_0$  and 0.75  $V_0$ .

**Geiger-Nuttall Rule.** There is an approximate relationship between the disintegration constant, sec.<sup>-1</sup> of a radioactive atom and R cm. the range in air of the a-ray which it emits, namely,  $\log \lambda = A + B \log R$ , A and B being constants, A varying slightly for each radioactive series.

**Magnetic spectra of** *a*-rays. Several groups of *a*-rays having definite energies from one disintegrating element were first observed by Rosenblum in 1930 for ThC and for RaC, AcC by Rutherford, Ward and Wynn Williams, 1930, and later for ThC', RaC', RaAc and An. The main group for each element is given in the foregoing table. The following table gives the energy of the group of *a*-ray and the  $\gamma$ -ray energies from ThC'. It shows that, when an *a*-particle of less energy than the maximum energy group is emitted, the nucleus is left in an excited state, and its excess energy is emitted as a quantum (or as several quanta) whose energy is the difference in energy of two *a*-rays.

| E        | lem | ent    |   | den | T <sub>1</sub> eV.                                                                                                                                                           | Energy difference.                                                                                                                                                                                                           | $h_{ u}$ for $\gamma$ -ray eV $	imes$ 10 <sup>-6</sup> .       |
|----------|-----|--------|---|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| a3<br>a4 | •   | ·<br>· | : | •   | $\begin{array}{c} 6 \cdot 200 \times 10^{6} \\ 6 \cdot 160 \times 10^{6} \\ 5 \cdot 872 \times 10^{6} \\ 5 \cdot 728 \times 10^{6} \\ 5 \cdot 708 \times 10^{6} \end{array}$ | $\begin{array}{c} a_{1}-a_{2}=0.400\times10^{6}\\ a_{1}-a_{3}=3.278\times10^{6}\\ a_{1}-a_{4}=4.724\times10^{6}\\ a_{5}-a_{2}=4.518\times10^{6}\\ a_{4}-a_{2}=4.324\times10^{6}\\ a_{3}-a_{2}=2.878\times10^{6} \end{array}$ | 0.399 %<br>3.267 %<br>4.709 %<br>4.511 %<br>4.317 %<br>2.869 % |

V. D. H.

#### ARRANGEMENT OF ELECTRONS IN ATOMS

In the following table the electrons in an atom are shown as arranged in shells and sub-shells. The number of electrons in an atom is equal to its atomic number Z, so that the nucleus with a positive charge Ze is surrounded by electrons of total negative charge Ze.

**Shells.** The electrons with the same principal quantum number n are said to form a shell. Proceeding from the nucleus outwards the shells are called K, L, etc. Thus if n = 1, 2, 3, 4, 5, 6, 7 the shell is the K, L, M, N, O, P and Q respectively. This nomenclature had its origin in X-ray spectroscopy in which a K series line is due to an electron transition from an outer to a K shell.

**Sub-Groups.** The electrons in a shell are arranged (according to convenient terminology) in sub-shells as shown below, where it is shown that L has 3, M has 5, N has 7, O has 5 and P has 5 sub-shells. The electrons in one sub-shell have the same energy, and the differences in the energy levels of the various sub-shells determine the frequency of the X-ray lines emitted by an atom.

**Quantum Numbers.** Quantum numbers used in the specification of the angular momentum of individual electrons and the assemblage of electrons in an atom are a development of those introduced by Bohr.

# ELECTRONS IN ATOMS

#### ARRANGEMENT OF ELECTRONS IN ATOMS (contd.)

**Principal quantum number** *n* in Bohr's theory of the H atom is  $ma^2\omega = n\hbar$ , and this leads to  $a_n = (\hbar^2/me^2Z)n^2 = \text{const. } n^2$ , where  $a_n$  is the radius of the *n*th orbit, and  $T_n$  (Kinetic Energy) =  $(\frac{1}{2}me^4Z^2/\hbar^2) \cdot 1/n^2$ , where  $\hbar = \hbar/2\pi$ ,  $\hbar$  being Planck's constant.

**Reduced quantum number** *l*. l = k - 1, where *k* is the azimuthal quantum number and is introduced to quantize the angular momentum of the electron in the elliptic orbit. k/n = minor axis/major axis of an orbit.

**Spin quantum number** s. The angular momentum of the spin of the electron is expressed  $s\hbar = \frac{1}{2}\hbar$ , and therefore  $s = \frac{1}{2}$ , and its contribution to the total angular momentum is  $s = \frac{1}{2}$ .

**Inner quantum number** j = l + s is the angular momentum of a single electron where l and s are vectors.  $j\hbar$  is the resultant angular momentum of the electron.

**Pauli Exclusion Principle** states that no two electrons can have all their four quantum numbers the same.

From the chemical property of the elements as shown in the periodic law, from interpretation of optical and X-ray spectra, and the vector theory of the hydrogen type of atom the electron structure of atoms given below has been deduced. The numerical distribution of electrons in shells of 2, 8, 18, 32, 18 which has been evident for some time is now accounted for by the system of quantum numbers.

**Symbols for electrons and spectral terms.** The symbols s = 0, p = 1,  $d = 2, f = 3, g = 4, h = 5, i = 6, k = 7 \dots$  are used to denote the value of l. This convention has its origin in Rydberg's formula for the sharp, principal, diffuse, and fundamental series of the alkali spectra. The value of the principal quantum number n is put in front of the symbol, e.g. 5d represents an electron where n = 5. When several electrons have the same values of n and l their number is denoted by a superscript, e.g.  $2p^3$  represents 3 electrons having n = 2, l = 1.

**Spectral Terms.** In several electron configurations, S is the vector sum of their spin moments s. L is the vector sum of their orbital angular momenta. Both L and S couple together to form J. This form of coupling is called Russell-Saunders coupling. As the spin for each electron is  $s = \frac{1}{2}$ , the resultant spin for x electrons can have all values up to x/2, differing by unity. L is obtained by combining two l's and then combining their resultant with a third, etc.

For L. . O I 2 3 4 5 6 7 ... Symbol . S P D F G H I K...

There are (2S + 1) values of J provided  $L \ge S$  and the number (2S + 1) is added as a superscript to the left side of the symbol representing L. The values of J are added as subscripts, e.g. <sup>3</sup>D is a spectral term having S = 1, L = 2. Possible values of J are 1, 2, 3. The symbol for the energy levels are <sup>3</sup>D<sub>1</sub>, <sup>3</sup>D<sub>2</sub>, <sup>3</sup>D<sub>3</sub>.

**References**:—Bohr, "Application of Quantum Theory of Atomic Structure," *Camb. Phil. Soc.*, 1924; Stoner, "Distribution of Electrons among Atomic Levels," *Phil. Mag.*, 1924; Main-Smith, "Chemistry and Atomic Structure," 1924; Bacher and Goudsmit, "Atomic Energy States" (1932); White, "Introduction to Atomic Spectra" (1934); Richtmeyer, "Introduction to Modern Physics" (1934).

T. H. L., V. D. H.

ARRANGEMENT OF ELECTRONS IN ATOMS (contd). POSSIBLE STATES OF A ONE-ELECTRON SYSTEM. Principal quantum number n . I 2 3 4 Orbital angular momentum 1 . 0 0 I I 0 I I 2 2 0 I I 2 2 3 3 Total angular momentum j . 늘 ł 32 32 312 53 Ŧ 붛 ł ÷ 32 3 200 53 ł ŧ Magnetic quantum number m . . ++++ +3 +3 +3 +5  $+\frac{1}{2}$ +3  $+\frac{3}{2}$ +5 +8  $+\frac{1}{2}$   $+\frac{1}{2}$  $+\frac{1}{2}$   $+\frac{1}{2}$ +1 to to to to to to to to to -1 1 12 늘 -1 -000 -046 ł -32 --32 -3 -32 Number of states 2 2 2 4 2 2 4 2 2 4 4 Total number of states . 8 18 2 Shell . K L M N . Sub-groups . I III I II III IV V V VI VII II I II III IV THE DISTRIBUTION OF ELECTRONS IN ORBITS CHARACTERIZED BY TOTAL QUANTUM NUMBER # n = 1 2 3 4 n = 1 2 3 4 5 6 n=1234567 Period I Period IV (contd.) Period VI (contd.) гН... 31 Ga . 28 18 3 63 Eu . 2 8 18 24 I 2 9 2 8 18 4 64 Gd 65 Tb 2 8 18 25 2 He 32 Ge . 2 2 . . . 9 33 As 56 2 8 18 28 18 26 2 . . 9 34 Se . 28 18 Period II 66 Dv 28 18 27 9 2 • 3 Li 35 Br . 2 8 18 78 67 Ho 2 8 18 28 2 I . 0 2 . 2 8 18 4 Be 36 Kr . 2 8 18 29 68 Er 2 2 9 2' . . 2 8 18 30 B 2 3 69 Tu 9 2 56 . . Period V 2 4 C 70 Yb 28 18 31 9 2 . . 7 N 8 O 8 I 2 8 18 37 Rb . 2 8 18 2 5 2 6 71 Lu 9 2 . . 32 . 38 Sr 2 8 18 8 2 72 Hf 2 8 18 32 10 2 . • . . 39 Y 2818 92 2 8 18 32 11 9 F 2728 73 Ta 2 . . . 10 Ne 40 Zr 74 W 2 8 18 10 2 2 8 18 32 12 2 . . 41 Nb . 75 Re 32 13 2818 12 I 2 8 18 2 . 2 8 18 Period III 42 Mo . 2 8 18 32 14 I 13 I 11 Na . . 43 Ma . 28 18 14 1 2 8 18 32 14 28 76 Os 2 I 44 Ru . 2 8 18 15 1 2 8 18 32 15 12 Mg . 28 2 I . Rh . 2 8 18 32 15 13 Al 28 2 8 18 16 1 77 Ir 2 . 3 45 32 16 14 Si 46 Pd . 2 8 18 28 4 18 2 8 18 I . . 2 8 18 18 1 2 8 18 P 28 78 Pt 56 32 17 47 Ag 15 . . . I . 48 Cd 16 S 28 2 8 18 18 2 2 8 18 32 18 . . . 2 8 18 18 3 2 8 18 32 18 28 17 Cl 78 49 In 79 Au I . . . . 2 8 18 18 4 2 8 18 32 18 28 50 Sn . 80 Hg 2 18 Ar . 32 18 2 8 18 18 5 2 8 18 18 6 81 TI 28 51 Sb . 18 3 . 2 8 18 Period IV 52 Te 82 Pb 32 18 . 4 .... • 53 I . 2 8 18 18 7 . 2 8 18 18 8 2 8 18 32 18 83 Bi 19 K 28 8 I 56 . . . 2 8 18 32 18 54 Xe 20 Ca 8 2 84 Po 28 . . 85 . 2 8 18 32 18 21 Sc 28 92 78 ----Period VI 86 Rn . 2 8 18 32 18 22 Ti 2 8 10 2 . . 2 8 18 18 8 1 55 Cs . 28 V II 2 23 . . 24 Cr 28 56 Ba 2 8 18 18 8 2 Period VII 13 I . • 2 8 13 2 25 Mn 28183218 81 57 La . 2 8 18 18 9 2 87 -. . . 58 Ce . 2 8 18 19 9 2 88 Ra 2 8 18 32 18 8 2 2 8 14 2 26 Fe . . . 59 Pr 89 Ac 28 28 28 18 32 18 27 Co 15 2 18 20 9 2 92 . . . . 90 Th 2 8 18 32 18 10 2 28 Ni 2 8 16 2 60 Nd . 2 8 18 21 9 2 d . . . 61 II . 2 8 18 22 9 2 62 Sa . 2 8 18 23 9 2 2 8 18 32 18 11 2 91 Pa 29 Cu . 28181 . . 2 8 18 32 18 12 2 92 U 30 Zn . 2 8 18 2 . . V. D. H., T. H. L.

x

125

# ELECTRONS IN ATOMS

# IONIZATION POTENTIAL

#### RESONANCE AND IONIZATION POTENTIALS

When an electron collides with an atom of gas for relative velocities below a certain value, the collision is elastic and the electron rebounds from the atom, but for higher velocities there is an absorption by the atom of the energy of the electron. In general there are two types of inelastic collision, one in which an electron in the atom undergoes an interorbital transition and the other in which an electron is removed from the atom. The work done, measured in electron volts, to ionize the atom is the *ionization potential*, and similarly the work to displace the electron is the *resonance potential*. The *first or principal ionizing potential* is the energy necessary to remove an electron from the lowest state of the atom so as to produce the lowest state of the ion from which it is built, e.g. the energy required to remove one of the electrons from the lowest state  $(I S^2 I S_0)$  of the helium atom is the first ionizing potential of helium. The second ionizing potential is the work done in removing the second electron in its lowest state from the atom. That is, for example, the work done in removing the remaining I S <sup>2</sup>S<sub>4</sub> electron from the helium atom. Ionizing potentials can be determined (1) by direct observation of the potential required to produce ionization, and (2) indirectly by determining from the convergence limit of the optical spectra the amount of energy given out when an electron drops from infinity to the normal position of the valence electron.  $Ve = (c^2 h/10^8)v$ volt e.s.u., where  $\nu$  cm.<sup>-1</sup> is the wave number of the spectral line, *i.e.* V = 1.2385  $\times$  10<sup>-4</sup>  $\times$   $\nu$  volt. Values given in the following table have been calculated by this method.

The meaning of the symbols is given on p. 124, under "Spectral Terms."

**References** :- Richtmeyer, "Introduction to Modern Physics"; Bacher and Goudsmit, "Atomic Energy States."

|                                                                |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     |                                                                                            | ELEN                                                                                                                                                                                                                                 | MENTS                                                               | 3                                                                 |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                | Ion. Pot.                                                                                             | Term.                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                     | Ion. Pot.                                                                                  | Term.                                                                                                                                                                                                                                |                                                                     | Ion. Pot.                                                         | Term.                                                                                                                                                                                                                                                                                                                                                                            |                                                                      | Term.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                               | Term.                                                                                                                                                                                                                                                                                                                                                                                                                         |
| H<br>He<br>Li<br>Be<br>B<br>C<br>N<br>O<br>F<br>Ne<br>Na<br>Mg | 13:584<br>24:564<br>5:39<br>9:32<br>8:31<br>11:27<br>14:54<br>13:60<br>18:67<br>21:56<br>5:14<br>7:64 | <sup>2</sup> S <sup>1</sup> / <sub>2</sub><br><sup>1</sup> S <sub>0</sub><br><sup>2</sup> S <sup>1</sup> / <sub>2</sub><br><sup>1</sup> S <sub>0</sub><br><sup>2</sup> P <sup>1</sup> / <sub>2</sub><br><sup>3</sup> P <sub>0</sub><br><sup>4</sup> S <sup>3</sup> / <sub>2</sub><br><sup>3</sup> P <sub>2</sub><br><sup>2</sup> P <sup>3</sup> / <sub>2</sub><br><sup>2</sup> S <sup>1</sup> / <sub>2</sub><br><sup>1</sup> S <sub>0</sub> | Ca<br>Sc<br>Ti<br>V<br>Cr<br>Mn<br>Fe<br>Co<br>Ni<br>Cu<br>Zn<br>Ga | 6.11<br>6.7<br>6.83<br>6.78<br>6.76<br>7.43<br>7.85<br>8.5<br>7.63<br>7.70<br>9.38<br>5.99 | $\frac{{}^{1}S_{0}}{{}^{2}D_{2}}^{3}F_{2}}{{}^{4}F_{2}}^{4}F_{2}}^{6}S_{2}}{{}^{6}S_{2}}^{6}S_{2}}$                                                                                                                                  | ¥<br>Zr<br>Cb<br>Mo<br>Ma<br>Ru<br>Rh<br>Pd<br>Ag<br>Cd<br>In<br>Sn | 6.5<br>6.94<br>7.37<br>7.7<br>8.3<br>7.56<br>8.98<br>5.78<br>7.32 | <sup>2</sup> D <sub>3</sub><br><sup>3</sup> F <sub>2</sub><br><sup>6</sup> D <sub>1</sub><br><sup>5</sup> F <sub>5</sub><br><sup>6</sup> D <sub>2</sub><br><sup>5</sup> F <sub>5</sub><br><sup>4</sup> F <sub>5</sub><br><sup>1</sup> S <sub>0</sub><br><sup>2</sup> S <sub>1</sub><br><sup>1</sup> S <sub>0</sub><br><sup>2</sup> P <sub>1</sub><br><sup>3</sup> P <sub>0</sub> | Ce<br>Pr<br>Nd<br>Il<br>Sa<br>Eu<br>Gd<br>Tb<br>Dy<br>Ho<br>Er<br>Tu | <sup>3</sup> H <sub>4</sub><br><sup>4</sup> K <sup>1</sup> <sub>2</sub> <sup>1</sup> ,<br><sup>5</sup> L <sub>6</sub><br><sup>6</sup> L <sup>1</sup> <sub>3</sub> <sup>1</sup> ,<br><sup>7</sup> K <sub>4</sub><br><sup>8</sup> H <sup>2</sup> <sub>2</sub><br><sup>9</sup> D <sub>2</sub><br><sup>8</sup> H <sup>1</sup> <sub>2</sub> <sup>5</sup> ,<br><sup>7</sup> K <sub>10</sub><br><sup>6</sup> L <sup>2</sup> <sub>4</sub> <sup>1</sup> ,<br><sup>5</sup> L <sub>10</sub><br><sup>4</sup> K <sup>1</sup> <sub>2</sub> <sup>1</sup> , | Os<br>Os<br>Ir<br>Pt<br>Au<br>Hg<br>Tl<br>Pb<br>Bi<br>Po<br>— | <sup>5</sup> D <sub>4</sub><br><sup>5</sup> F <sub>5</sub><br><sup>4</sup> F <sup>2</sup> <sub>2</sub><br><sup>3</sup> D <sub>3</sub><br><sup>1</sup> S <sub>0</sub><br><sup>2</sup> S <sup>1</sup> / <sub>2</sub><br><sup>1</sup> S <sub>0</sub><br><sup>2</sup> P <sup>1</sup> / <sub>2</sub><br><sup>3</sup> P <sub>0</sub><br><sup>4</sup> S <sup>3</sup> / <sub>3</sub><br><sup>3</sup> P <sub>2</sub><br><sup>2</sup> P |
| Al<br>Si<br>P<br>S<br>Cl<br>A<br>K                             | 5.98<br>8.15<br>10.3<br>13.01<br>15.75<br>4.34                                                        | ${}^{2}P_{1}^{1}$<br>${}^{3}P_{0}$<br>${}^{4}S_{2}^{3}$<br>${}^{3}P_{2}$<br>${}^{2}P_{2}^{3}$<br>${}^{1}S_{0}$<br>${}^{2}S_{1}^{1}$                                                                                                                                                                                                                                                                                                         | Ge<br>As<br>Se<br>Br<br>Kr<br>Rb<br>Sr                              | 8.11<br>10<br>9.5<br>11.85<br>14.00<br>4.176<br>5.690                                      | <sup>3</sup> P <sub>0</sub><br><sup>4</sup> S <sup>3</sup><br><sup>3</sup> P <sub>2</sub><br><sup>2</sup> P <sup>5</sup><br><sup>1</sup> S <sub>0</sub><br><sup>2</sup> S <sup>1</sup> / <sub>2</sub><br><sup>1</sup> S <sub>0</sub> | Sb<br>Te<br>I<br>Xe<br>Cs<br>Ba<br>La                               | 8.5<br>10<br>12.127<br>3.88<br>5.21                               | <sup>4</sup> S <sup>1</sup> <sub>3</sub> P <sup>2</sup> <sub>2</sub><br><sup>2</sup> P <sup>3</sup> <sub>2</sub><br><sup>1</sup> S <sup>0</sup> <sub>0</sub><br><sup>2</sup> S <sup>1</sup> <sub>2</sub><br><sup>2</sup> D <sup>3</sup> <sub>2</sub>                                                                                                                             | Yb<br>Lu<br>Hf<br>Ta<br>W<br>Re<br>Re                                | <sup>3</sup> H <sub>6</sub><br><sup>2</sup> D <sub>2</sub><br><sup>3</sup> F <sub>2</sub><br><sup>4</sup> F <sub>2</sub><br><sup>5</sup> D <sub>0</sub><br><sup>6</sup> S <sub>2</sub><br><sup>6</sup> D <sub>2</sub>                                                                                                                                                                                                                                                                                                                       | Rn<br>Ra<br>Ac<br>Th<br>Pa<br>U                               | $\frac{1S_{0}}{2S_{1}}$<br>$\frac{2S_{1}}{1S_{0}}$<br>$\frac{2D_{2}}{3F_{2}}$<br>$\frac{3F_{2}}{4F_{0}}$<br>$\frac{5D_{0}}{5D_{0}}$                                                                                                                                                                                                                                                                                           |

FIRST IONIZATION POTENTIALS AND LOWEST SPECTRAL TERMS OF THE ELEMENTS

#### V. D. H.

#### ELECTRONIC CHARGE

**Historical.**—The electronic charge, e e.s.u., was measured in 1897 by J. S. Townsend, and in 1898 by J. J. Thomson by finding the average charge in a cloud of drops. The total charge was found, and Stokes's law applied to obtain the average size and total number of drops. H. A. Wilson (1903) pointed out that if  $v_1$  is the velocity of a drop falling freely, and  $v_2$  its velocity when acted upon by a vertical electric field (X), then

$$\frac{4}{3}\pi a^{3}(\rho - \sigma)g = 6\pi\eta v_{1}a$$
, and

$$neX = 6\pi\eta(v_2 - v_1)a = \{162 \ \pi^2\eta^3 v_1(v_2 - v_1)^2/(\rho - \sigma)g\}^{\frac{1}{2}}$$

where ne is the charge of the drop.

126

#### ELECTRONIC CHARGE (contd).

Rutherford and Geiger (1908) counted the number, and measured the charge of a beam of a-rays. Regener, counting scintillations of a-rays, found in a similar experiment,  $e = 4.79 \times 10^{-10}$ . Perrin's (1908) observations of colloid particles verified Einstein's expression for Brownian motion, and gave Avogadro's number. Millikan, in 1917, applying Wilson's theory to single oil drops and correcting for the departure from Stokes's law, found  $e = 4.774 \times 10^{-10}$  e.s.u., but Bäcklin, in 1928, using a ruled grating to measure the wavelength of X-rays, found  $e = 4.794 \times 10^{-10}$ . This difference and other developments have given rise to much recent discussion of the fundamental atomic constants.

References :- Birge, " General Physical Constants," 1929.

**Precision Determinations**—Oil Drop Method.—The values of e tabulated below are calculated for  $\eta_{23} = (1830 \pm 2.5) \cdot 10^{-7}$  gm. cm.<sup>1</sup> sec.<sup>-1</sup> for the viscosity of air at 23° C. This is a weighted mean of nine recent determinations. The uncertainty in  $\eta$  gives rise to the main uncertainty in e measured by the oil drop method. The second entry below is found by a method in which the oil drop is laterally deflected by a horizontal electric field. The probable errors given are those of  $a_{01}$  in  $y = a_{11}x + a_{01}$  calculated by least square theory.

#### Oil drop method : Mean value $e = 4.804 \times 10^{-10}$ e.s.u.

| Observers.            | e. 10 <sup>10</sup> e.s.u. | Observers.                 | e. 10 <sup>10</sup> e.s.u.           |
|-----------------------|----------------------------|----------------------------|--------------------------------------|
| Millikan, 1917        | 4·799±0·004                | Ishida and others, 1937    | 4 <sup>.8</sup> 35                   |
| Laby and Hopper, 1940 | 4·802±0·001                | Bäcklin and Flemberg, 1936 | 4 <sup>.781</sup> ±0 <sup>.018</sup> |

**X-ray Method.**—The wavelength,  $\lambda_c$ . 10<sup>-11</sup> cm., of an X-ray line is measured using a ruled grating. Its wavelength,  $\lambda_c X$  unit, is also measured using a crystal grating, where the X unit is defined to be 1/3029.45 of the (100) grating space of calcite at 18° C.  $\lambda_c$ . 10<sup>-11</sup> cm. =  $\lambda_g$ . XU, therefore  $\lambda_c/\lambda_g = IXU/10^{-11}$  cm.

The mass of unit rhombohedron cell of a crystal is  $d_{18}\phi(\beta)\rho_{18}$ . It is also half the mass of the molecule of the crystal = M/2N = Me/2F, where  $\rho_{18}$  is the density and  $d_{18}$  the grating space of the crystal, N number of molecules per mole, F the Faraday. Therefore

$$e = 2d_{18}^{\circ}\phi(\beta)\rho_{18}\mathrm{F/M}$$

If  $d_{18} = 3029.45 \times 10^{-11}$  cm., then I XU =  $10^{-11}$  cm. and  $\lambda_c/\lambda_r = 1$  and  $e_0 = 4.77306 \times 10^{-10}$  e.s.u., and  $e = e_0(\lambda_z/\lambda_c)^3$ .

#### Mean value $e = (4.804_4 \pm 0.0007) \cdot 10^{-10}$ e.s.u.

| Observer.                                           | X-ray line.                                          | λg.                        | λς.                            | $\lambda g / \lambda c$ .                | e e.s.u.                                                                                                                                |
|-----------------------------------------------------|------------------------------------------------------|----------------------------|--------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Soderman<br>Bäcklin<br>Bearden, 1935 .<br>., 1931 . | Al K∝12<br>Al K∝12<br>Cu K∝1<br>Cu K∝1<br>Cu K, Cr K | 8340·1<br>8339·5<br>1540·6 | 8321·35<br>8321·35<br>1539·397 | 1.00225<br>1.00218<br>1.00208<br>1.00222 | $\begin{array}{c} 4 \cdot 805 \times 10^{-10} \\ 4 \cdot 804 \times 10^{-10} \\ 4 \cdot 803 \times 10^{-10} \\ 4 \cdot 805 \end{array}$ |

Mean of oil drop and X-ray methods  $e = 4.804 \times 10^{-10}$  e.s.u.

T. H. L., V. D. H.

#### SPECIFIC CHARGE OF THE ELECTRON

e/m for the electron. Methods : **Magnetic** and electrostatic deflection give relations of the form  $mv/e = H\rho$  and  $\frac{1}{2}mv^2/e = XR$ , which are solved for e/m.

**Spectroscopic methods.** Zeeman effect  $e/m = 4\pi c \cdot \Delta \lambda / H \lambda^2 \mu$ , where  $\Delta \lambda$  is the separation of the components of a triplet in magnetic field H oersted.

**Rydberg constant** of the atomic spectra can be found with high accuracy.  $e/m = F \cdot R_H(M_{He} - M_H - m)/(R_{He} - R_H)(M_{He} - m)(M_H - m)$  where F e.m.u. (gm. equiv.)<sup>-1</sup>, R cm.<sup>-1</sup>, Rydberg's constants for H and He and M is the mass of the H and He atoms, and m that of the electron relative to  $O^{16} = 16$ .

# CONSTANT h

| SPECIFIC CHARGE OF THE ELECTRON (contd.)<br>Mean value of $e/m = (1.7589_0 \pm .0005) \cdot 10^7 e.m.u.$ |                              |                              |                                                                                                                      |                         |                                      |                           |                                                                                                                                                                               |  |  |
|----------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Author.                                                                                                  | Date.                        | Method.                      | $e/m \times 10^{-4}$ .                                                                                               | Author.                 | Date.                                | Method.                   | $e/m \times 10^{-4}$ .                                                                                                                                                        |  |  |
| Houston .<br>S. and S.<br>Williams .<br>K. and H.                                                        | 1927<br>1935<br>1938<br>1934 | He-H<br>H-D<br>H-D<br>Zeeman | $1760 \cdot 1 \pm \cdot 8$<br>$1758 \cdot 1 \pm \cdot 4$<br>$1757 \cdot 9 \pm \cdot 4$<br>$1756 \cdot 9 \pm \cdot 7$ | P. and Ch.<br>Kirchner. | 1923<br>1930<br>1932<br>1937<br>1938 | Zeeman<br>Defn.<br>"<br>" | $\begin{array}{c} 1760 \cdot 5 \pm 1 \cdot 2 \\ 1761 \cdot 0 \pm 1 \cdot 0 \\ 1758 \cdot 8 \pm \cdot 9 \\ 1759 \cdot 7 \pm \cdot 4 \\ 1757 \cdot 1 \pm 1 \cdot 3 \end{array}$ |  |  |

S. and S., Shane and Spedding; K. and H., Kinsler and Houston; P. and Ch., Perry and Chaffee.

T. H. L., V. D. H.

#### PLANCK'S CONSTANT h

Planck's theory postulates that light of frequency,  $\nu$  sec.<sup>-1</sup>, is emitted in quanta of energy  $h\nu$  erg.

In experimental determinations of h the quantity measured  $A_1 \ldots$  etc., is a function of the natural constants, e, m and h. Thus  $A_1 = h/e$ ,  $A_2 = h/(em)^{\frac{1}{4}}$ ,  $A_3 = h/m$ ,  $A_4 = e^2/hm$ ,  $A_5 = me^4/h^3$ ,  $A_6 = e^4/h^3$ ,  $A_7 = e^2/h$ . (See J. Du Mond, *Phys. Rev.*, 56, 1939.)

**1. High Frequency Limit of X-ray Spectrum** h/e.—The highest frequency  $\nu$  of the continuous X-ray spectrum emitted by an X-ray tube to which a potential V is applied is  $h\nu = Ve$  by Einstein's photoelectric equation. Since

$$\nu\lambda = c \text{ and } n\lambda = 2d_n \sin \theta_n$$

 $h/e = 2Vd_n \sin \theta_n/cn$ , where  $\theta_n$  is

the angle of diffraction of the X-rays by a crystal. A number of precision measurements have been made by this method.

**2. Photoelectric effect** h/e.—Einstein's equation for the kinetic energy,  $\frac{1}{2}mv^2$  erg, of a photoelectron ejected by light of frequency,  $v \sec^{-1}$ , is  $Ve = \frac{1}{2}mv^2 = hv - \omega_0$ , where  $\omega_0$  is the work done by the electron in passing through the surface of the metal from which it is ejected, and V e.s.u. is the retardation potential of the ejected electron. Ve plotted against v gives a straight line of slope h.

**3. Excitation Potential** h/e.—When an electron of energy, Ve, collides with an atom (if the energy of the electron is sufficient) it may be absorbed by and excite the atom, which emits a light quantum,  $h\nu$ .

$$h\nu = Ve \text{ and } h/e = V/\nu.$$

Thermal Radiation Constants.—Planck's law for the radiation (see p. 75) may be written

$$E_{\lambda T} = c_1 \lambda^{-5} / (e^{c_2 \lambda T} - 1)$$

where  $c_1 = 2\pi c^2 h$ , and  $c_2 = ch/k = chF/Re$ . R = gas constant, F = faraday.

**4. Wien's Law** h/e.  $\lambda_m T = \text{const.}$ —Equating to zero the derivative with respect to  $\lambda$  of Planck's expression

$$\lambda_{\mathrm{m}}\mathrm{T} = c_{2}/5(\mathrm{I} - e^{-c_{2}/\lambda_{\mathrm{m}}\mathrm{T}}).$$

The solution of this equation is  $c_2 = 4.965 \lambda_m T$ . By observation  $\lambda_m T = .2892$  cm. deg. and  $c_2 = 1.4361$ . Therefore

$$h/e = 1.4361 \text{ R/Fc.}$$

5. Stefan-Boltzmann's Law  $e^4/h^3$ .—Integrating Planck's equation with respect to  $\lambda$ , Stefan's constant is

$$\sigma = (\pi^4/15) \cdot (c_1/c_2^4) = 40.803 \text{ R}^4 e^4/(\text{F}^4h^3c^2)$$

and therefore  $e^4/h^3 = \cdot 0245\sigma c^2 F^4/R^4$ .

By observation  $\sigma = 5.75 \cdot 10^{-5}$  erg. cm.<sup>-2</sup> sec.<sup>-1</sup>. (See Wensel, J. Res. Nat. Bur. St., 1939).

#### PLANCK'S CONSTANT h (contd.)

**6.** Compton Scattering of X-rays h/m.—The change of wavelength of X-rays when they are scattered in a direction making an angle  $\theta$  with their initial direction by a free electron is

$$\Delta \lambda = h(1 - \cos \theta)/mc.$$

 $\Delta\lambda$  and  $\theta$  are observed.

7. X-ray Photoelectrons  $e^2/hm$ .—X-rays of known energy  $h\nu_2$  incident on an atom eject photoelectrons from an electron shell in the atom of energy  $h\nu_1$ . The kinetic energy of the ejected electron is

$$\frac{1}{2}mv^2 = hv_2 - hv_1.$$

Its momentum is measured by magnetic deflection, and  $mv/e = H\rho$ . Therefore

$$r^2/hm = 2(\nu_2 - \nu_1)/(H\rho)^2$$

8. Rydberg's Constant  $\mathbb{R}_{\infty}$  me<sup>4</sup>/h<sup>3</sup>.—Rydberg's constant in Bohr's expression for the frequency of the lines in a hydrogen type of spectrum of an atom of large mass is

$$R_m = 2\pi^2 m e^4/ch^3$$

and  $R_A$  for an atom of mass  $M_A$  is  $R_A = R_{\infty}/(I + m/M_A)$ , where *m* is the mass of the electron.

R for  $H^1 = 109677.76$ , R,  $H^2 = 109707.39$ , R, He = 109722.40,  $R_{\infty} = 109737.42$  cm.<sup>-1</sup>. The value of h calculated from  $R_{\infty}$  is higher than that obtained by other methods. The difference is unexpectedly large.

**9. Electron Diffraction**  $h/(em)^{\dagger}$ .—Electrons of energy, Ve erg, produced by the action of an accelerating potential, V, have a wavelength,

$$\lambda = h/mv = h/\left\{2 em_0 V \left(1 + \frac{eV}{2m_0c^2}\right)\right\}^{\frac{1}{2}}$$

which is measured by diffraction in a crystal.  $m_0$  is the rest mass, and mv the momentum of the electron.

**10. Electron Diffraction** h/m.—The velocity and wavelength of the electron are measured.  $\lambda = h/mv$  and  $n\lambda = 2\alpha \sin \theta_n$ .

Omitting the value of h by Rydberg's constant the weighted mean is  $6.615 \pm .005 \times 10^{-27}$ . The mean of this and  $6.630 \pm .002 \times 10^{-27}$  is taken as the value of h, *i.e.*  $h = 6.622 \pm .007 \times 10^{-27}$  erg. sec. In the following table, the value of e is taken as  $4.805 \times 10^{-10}$  e.s.u.

| Method.                                                                                                                                      | Observers.                                                                                                                                                                         | Date.                                                                                                                              | <b>A</b> <i>n</i> <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $h 	imes 10^{27}$ .                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X-ray<br>,,<br>,,<br>Excitatn. Potl.<br>Photo. Effect .<br>Radiation<br>Electron Diff<br>Compton effect<br>Photoelectron .<br>Rydberg const. | Duane, Palmer and Yeh<br>Feder<br>Kirkpatrick and Ross<br>Schaitberger<br>Bollman and Du Mond<br>Wensel (summary)<br>"Sten von Frieson<br>Gnan<br>Ross and Kirkpatrick<br>Robinson | 1921<br>1929<br>1934<br>1935<br>1937<br>'26-'35<br>'28-'30<br>1939<br>1939<br>1939<br>1935<br>1934<br>1934<br>1934<br>1936<br>1940 | $ \begin{array}{c} k/e \ 1 \cdot 3752 \times 10^{-17} \\ k/e \ 1 \cdot 3753 \times 10^{-17} \\ k/e \ 1 \cdot 3755 \times 10^{-17} \\ k/e \ 1 \cdot 375 \times 10^{-17} \\ k/e \ 1 \cdot 374 \times 10^{-17} \\ k/e \ 1 \cdot 377 \times 10^{-17} \\ k/e \ 1$ | $\begin{array}{c} 6\cdot608\pm\cdot004\\ 6\cdot613\pm\cdot004\\ 6\cdot613\pm\cdot004\\ 6\cdot610\pm\cdot001\\ 6\cdot620\pm\cdot004\\ 6\cdot614\pm\cdot002\\ 6\cdot607\pm\cdot007\\ 6\cdot602\pm\cdot012\\ 6\cdot617\pm\cdot003\\ 6\cdot617\pm\cdot003\\ 6\cdot617\pm\cdot003\\ 6\cdot617\pm\cdot003\\ 6\cdot607\pm\cdot03\\ 6\cdot616\pm\cdot01\\ 6\cdot627\pm\cdot01\\ 6\cdot630\pm\cdot002\\ \end{array}$ |

References: Du Mond, Phys. Rev., 1939; Birge, Rev. Mod. Phys., 1929; Ladenburg, Ann. d. Phys., 1936; Wensel, Journ. of Res. N.B.S. (1939). T. H. L., V. D. H.

K

#### PHYSICAL CONSTANTS OF CHEMICAL COMPOUNDS

For properties of the elements, see: density, p. 29; melting and boiling points, p. 58. Metallo-organic compounds are given under "Organic Compounds," p. 139. Formulæ.—Hydrated forms (which are often crystalline) are indicated thus:

Cal<sub>2</sub>(and+6H<sub>2</sub>O); the properties given are for the anhydrous substance. Formula (Molecular) Weights are calculated with atomic weights for

Formula (Molecular) weights are calculated with atomic weights for 1920-21, except in the case of nitrogen where N = 14.01 is used.

**Densities.**—When no temp. is given, grams. per c.c. at 15° may be assumed. When preceded by "A" the numbers in this column are molecular weights calculated from observed densities relative to air of the substance in the vapour state, using the relation: molecular wgt. = 28.95 density rel. to air. For those gaseous densities known with accuracy, see p. 35. Other densities on pp. 29-35.

Melting and Boiling Points are for anhydrous substances at 760 mms. mercury unless some other conditions are specified. T = temp. of transition or pseudo-"melting" point of hydrated substance. Solubilities are given as grams of substance in 100 grams of water at the temp.

**Solubilities** are given as grams of substance in 100 grams of water at the temp. stated. "p" indicates grams per 100 grams of solution. "V" means volumes of substance at 0° and 760 mms. per 100 volumes of water at the temp. stated. "Soluble" infers solubility in either hot or cold water ; "insoluble" indicates solubility in neither. (See also pp. 145, 146.)

For more complete tables, see Van Nostrand's "Chemical Annual" and Biedermann's "Chemiker-Kalender" for current year; Dammer's "Handbuch der Anorganischen Chemie;" Beilstein's "Handbuch der Organischen Chemie;" Watts' "Dictionary of Chemistry:" F. W. Clarke's "Specific Gravities," and "International Critical Tables," Vol. 1.

| Substance and Formula.                                                                                                                                                                                                                                      | Formula<br>weight<br>(0 ==16).                                                                  | Density,<br>gms./c.c.                                                                                                  | Melting<br>Point,<br>° C.                                                                                        | Boiling<br>Point,<br>°C.                                     | Solubility<br>in Water.                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aluminium—<br>bromide, $Al_2Br_6(and + 12H_2O)$<br>chloride, $Al_2Cl_6(and + 12H_2O)$<br>iodide, $Al_2I_6(and + 12H_2O)$ .<br>nitrate, $Al(NO_3)_3 \cdot 9H_2O$ .<br>oxide, $Al_2O_3$ .<br>phosphate, $AlPO_4$ .<br>sulphate, $Al_2(SO_4)_3 \cdot 18H_2O$ . | 533'72<br>266'96<br>815'72<br>375'3<br>102'2<br>122'1<br>666'7                                  | at./temp.<br>2'54; A. 539<br>A. 270/400°<br>3'98; A.781'6<br>                                                          | at./mms.<br>97.5°<br>190°/1910<br>191°<br>T = 73°<br>2200°<br>infusible<br>dec. 770°                             | at./mms.<br>263°/747<br>182'7°/752<br>360°<br>dec. 134°<br>— | at./temp.<br>soluble<br>69/15°(\$)<br>soluble<br>v. soluble<br>insoluble<br>insoluble<br>36/20°                                                         |
| Potassium alum,<br>$Al_2(SO_4)_3K_2SO_4 \cdot 24H_2O$                                                                                                                                                                                                       | 949'0                                                                                           | 1.727/20°                                                                                                              | 84.2°                                                                                                            | ${}^{23H_2O}_{at \ 190}$                                     | 9 <sup>.6</sup> /15°<br>357/100°                                                                                                                        |
| Ammonium—<br>ammonia, $NH_3$                                                                                                                                                                                                                                | 17'03<br>77'08<br>247'1<br>97'96<br>114'1<br>53'50<br>444'0<br>152'2<br>145'0<br>196'1<br>80'05 | $\begin{cases} (\text{liq.}) \cdot 623/0^{\circ} \\ \text{A. } 17'28 \\ & - \\ & - \\ & \\ & \\ & \\ & \\ & \\ & \\ &$ | - 75 <sup>.5°</sup><br>89°<br>diss.<br>diss. 85°<br>diss. 35°°<br>decomp.<br>decomp.<br>diss.<br>decomp.<br>152° | -33'5°                                                       | see p. 145.<br>148/4°<br>soluble<br>{66/10°<br>128/100°<br>100/15°<br>{35/15°;<br>see p. 146.<br>°67/20°<br>decomp.<br>v. soluble<br>decomp.<br>200/18° |
| dec. or decomp. = deco                                                                                                                                                                                                                                      | mposes;                                                                                         | diss. = dissociate                                                                                                     | es; $\mathbf{v}_{\cdot} = \mathbf{v} \mathbf{e} \mathbf{r} \mathbf{y}$                                           | ; wh. = whit                                                 | te.                                                                                                                                                     |

#### INORGANIC COMPOUNDS

| INORGANIC COMPOUNDS (contd.)                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                     |                                           |                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     | COMPOUND<br>l heading, see 1                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                     |                                           |                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Substance and Formula.                                                                                                                                                                                                                                                                                       | Formula weight $(0 = 16)$ .                                                                                                                                                                                                         | Density,<br>gms./c.c.                                                                                                                                                                                                                                                                                                                                                                                                          | Melting<br>Point,<br>°C.                                                                                            | Boiling<br>Point,<br>°C.                  | Solubility<br>in Water.                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Bubstance and Formula.<br>Ammonium (contd.)—<br>nitrite, NH <sub>4</sub> NO <sub>2</sub>                                                                                                                                                                                                                     | (0 = 16). $64.05$ $142.1$ $228.2$ $193.1$ $132.14$ $76.12$ $360.0$ $226.6$ $297.5$ $123.2$ $501.0$ $288.4$ $304.4$ $320.4$ $332.36$ $336.6$ $400.7$ $314.7$ $181.3$ $132.0$ $170.0$ $77.98$ $328.8$ $455.7$ $709.6$ $197.9$ $229.9$ | at./temp.<br>1.69<br>1.502<br>-<br>$1.77/20^{\circ}$<br>$1.306/13^{\circ}$<br>$4.15/23^{\circ}$<br>$306/26^{\circ} A. 234$<br>$2.35/20^{\circ}$<br>$A. 124.5/15^{\circ}$<br>$\{4.85/26^{\circ}$<br>A. 509.5<br>5.2-5.7<br>4.07<br>3.8<br>2.6<br>4.65<br>$4.12/0^{\circ}$<br>$\{3.66/15^{\circ}\}$<br>$2.17/0^{\circ}; A.182$<br>2.7; A. 132<br>A. 78<br>$4.4/13^{\circ} A. 482$<br>3.93<br>$3.86/25^{\circ} A. 413$<br>3.9-4.2 | °C.<br>at./mms.<br>decomp.<br>decomp.<br><br><br><br><br><br><br>                                                   | ° C.<br>at./mms.<br>                      | in Water.<br>at./temp.<br>soluble<br>4/15°<br>58/0°<br>'03/15°<br>76/20°<br>162/20°<br>decomp.<br>816/15°<br>∞/72°<br>decomp.<br>20 V.<br>decomp.<br>20 V.<br>decomp.<br>36/100°<br>insoluble<br>insoluble<br>insoluble<br>decomp.<br>decomp.<br>decomp.<br>36/100°<br>insoluble<br>insoluble<br>insoluble<br>insoluble<br>1.7/16°<br>245/12°<br>103/15° |  |  |  |
| carbonate, BaCO <sub>3</sub><br>chloride, BaCl <sub>2</sub> . 2H <sub>2</sub> O<br>hydride, BaH <sub>2</sub><br>iodide, Bal <sub>2</sub><br>nitrate, Ba(NO <sub>3</sub> ) <sub>2</sub><br>oxide, BaO<br>, per-, BaO <sub>2</sub><br>sulphate, BaSO <sub>4</sub><br>Beryllium –<br>bromide, BeBr <sub>2</sub> | 333'2<br>197'4<br>244'3<br>139'4<br>391'2<br>261'4<br>153'4<br>169'4<br>233'4<br>168'9                                                                                                                                              | 3 <sup>.85/24°</sup><br>4 <sup>.3</sup><br>3 <sup>.1/24°</sup><br>4 <sup>.2/0°</sup><br>5 <sup>.150/25°</sup><br>3 <sup>.24/23°</sup><br>4 <sup>.7</sup> - 5 <sup>.5</sup><br>4 <sup>.96</sup><br>4 <sup>.476</sup> , 4 <sup>.33</sup>                                                                                                                                                                                         | anhy. 880°<br>1360° *<br>anhy. 960°<br>1200°<br>740°<br>575°<br>BaO <sub>1</sub> /450°<br>BaO/450°<br>1580°<br>601° | 2H <sub>1</sub> O/100°<br>diss. 1450°<br> | 103/15<br>:0022/18°<br>see p. 146.<br>decomp.<br>170/0°<br>5/0°<br>1.5/0°<br>insoluble<br>:0 <sub>3</sub> 23/18°<br>soluble                                                                                                                                                                                                                              |  |  |  |
| chloride, BeCl <sub>2</sub><br>sulphate, BeSO <sub>4</sub> . 4H <sub>2</sub> O<br>anhy. = anhydrous ; dec. or<br>v. =                                                                                                                                                                                        | 80°02<br>177'2<br>decomp. =<br>very ; ∞                                                                                                                                                                                             | I'7/I0°<br>= decomposes ; r<br>= soluble in all                                                                                                                                                                                                                                                                                                                                                                                | 400°<br>dec. r. ht.                                                                                                 | 2H <sub>2</sub> O/100°                    | v. soluble<br>44/30°                                                                                                                                                                                                                                                                                                                                     |  |  |  |

# PHYSICAL CONSTANTS

| INORGANIC COMPOUNDS (contd.)<br>For general heading, see p. 130.                                                                   |                                          |                         |                               |                          |                         |  |  |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------|-------------------------------|--------------------------|-------------------------|--|--|
| Substance and Formula.                                                                                                             | Formula<br>weight<br>(0=16).             | Density,<br>gms./c.c.   | Melting<br>Point,<br>°C.      | Boiling<br>Point,<br>°C. | Solubility<br>in Water. |  |  |
| Bismuth_                                                                                                                           |                                          | at./temp.<br>5.6        | at./mms.<br>219°              | at./mms.                 | at./temp.               |  |  |
| bromide, BiBr <sub>3</sub>                                                                                                         | 447.76 314.38                            | 4.6/11°; A. 328         | 219<br>227°                   | 453°<br>429°             | decomp.<br>decomp.      |  |  |
| nitrate, Bi(NO <sub>3</sub> ) <sub>3</sub> .5H <sub>2</sub> O.                                                                     | 484.11                                   | 2.8                     | 74°                           | 5H2O/80°                 | decomp.                 |  |  |
| oxide, Bi <sub>2</sub> O <sub>3</sub>                                                                                              | 464.0                                    | 8.8 - 9                 | 820-860°                      | -                        | insoluble               |  |  |
| sulphide, Bi <sub>2</sub> S,                                                                                                       | 512.18                                   | 7 - 7.8                 | decomp.                       |                          | insoluble               |  |  |
| Boron-                                                                                                                             |                                          | [ 1.43/0° ]             | - 107°                        | 18.2°                    | decomp.                 |  |  |
| chloride, BCl <sub>3</sub>                                                                                                         | 117.28                                   | (A.115.8/17°)           |                               |                          |                         |  |  |
| fluoride, $BF_3 \cdot \cdot$ | 67'9<br>69'8                             | A. 66.6<br>1.83/4°      | - 127°<br>577°                | - 101°                   | decomp.<br>16/102°      |  |  |
| Borax. See Sodium borate.                                                                                                          | 090                                      | 103/4                   | 5//                           |                          | 10/102                  |  |  |
| Boric acid, H <sub>3</sub> BO <sub>3</sub>                                                                                         | 61.9                                     | 1.43/15°                | 184-186°                      | H2O/100°                 | 4/18°                   |  |  |
| Cadmium-                                                                                                                           |                                          | 117-110/110             |                               | 806-812°                 | 18:0/2004               |  |  |
| bromide, CdBr <sub>2</sub>                                                                                                         | 272.24<br>183.32                         | 4.7-4.9/14°<br>4.05/25° | 571°<br>568°                  | 6. 900°                  | 48'9/18° p.<br>140/20°  |  |  |
| nitrate, Cd(NO <sub>3</sub> ) <sub>2</sub> 4H <sub>2</sub> O                                                                       | 308.48                                   | 2.4                     | 59'5°                         | T. 132°                  | 127/180                 |  |  |
| oxide, CdO                                                                                                                         | 128.4                                    | 6.9-8.1                 | -                             | -                        | insoluble               |  |  |
| sulphate, anhy. CdSO,                                                                                                              | 208.46                                   | 4'7/15°<br>3'05         | 10000                         | _                        | 59/23°<br>see p.146.    |  |  |
| Cæsium-                                                                                                                            | 10951                                    | 309                     |                               |                          | see printo.             |  |  |
| carbonate, Cs <sub>2</sub> CO <sub>3</sub>                                                                                         | 325.62                                   |                         | < red heat                    | dec. 610°                | v. soluble              |  |  |
| chloride, CsCl                                                                                                                     | 168.27                                   | 3'97/20°<br>2'7         | 646°                          | sublimes                 | 174/10°                 |  |  |
| hydroxide, CsOH                                                                                                                    | 133 <sup>.82</sup><br>149 <sup>.82</sup> | 4'02                    | decomp.<br><272'3°            | _                        | decomp.<br>soluble      |  |  |
| nitrate, CsNO <sub>3</sub>                                                                                                         | 194.82                                   | 3.636/22°               | 407°                          | decomp.                  | 15/100                  |  |  |
| Calcium-                                                                                                                           |                                          |                         |                               |                          |                         |  |  |
| bromide, CaBr <sub>2</sub>                                                                                                         | 199 91<br>100'07                         | 3'34/20°<br>2'7-2'9     | 760<br>dec. 825°              | c. 800°                  | 125/0°<br>0018 cold     |  |  |
| chloride, anhy. CaCl.                                                                                                              | 111.0                                    | 2.3/200                 | 780°                          | (4H2O/30°                | 63/10°                  |  |  |
| " hydr. CaCl. 6H.O.                                                                                                                | 219'1                                    | 1.65                    | 29                            | (6H2O/200°               | 96/0°                   |  |  |
| hydride, CaH                                                                                                                       | 42.08                                    | 1'7<br>2'08             | 4 0/100                       | -                        | decomp.                 |  |  |
| hydroxide, Ca(OH) <sub>2</sub>                                                                                                     | 74'09<br>293'91                          | 4'9/20°                 | H <sub>2</sub> O/580°<br>740° | c. 710°                  | see p.146.<br>192/0°    |  |  |
| nitrate, Ca(NO <sub>3</sub> ) <sub>4</sub> H <sub>2</sub> O                                                                        | 236.15                                   | 1.85                    | 561°                          | -                        | 54.8/18°                |  |  |
| oxide, CaO                                                                                                                         | 56.07                                    | 3.08                    | 6. 2000°                      | -                        | ·13/0°                  |  |  |
| phosphate, Ca <sub>3</sub> (PO <sub>4</sub> ).                                                                                     | 310.29                                   | 3°2<br>2°96             | 1550°<br>1360°                | -                        | .003008                 |  |  |
| Carbon-                                                                                                                            | .3013                                    |                         |                               |                          | - 140                   |  |  |
| Chloride, tetra-, CCl                                                                                                              | 153.84                                   | 1.2832/22°              | - 23.8°                       | 76.7°                    | insoluble               |  |  |
| oxide, sub- (1906), C <sub>3</sub> O <sub>2</sub>                                                                                  | 68.01<br>28.005                          | A. 28'001               | - 207°/100                    | 7°/761<br>- 191'1°       | see p.145.              |  |  |
| ", di-, CO <sub>2</sub>                                                                                                            | 44.005                                   | liq. 772/20° †          | -65°                          | -78·2°                   | see p.145.              |  |  |
| phosgene, COCl                                                                                                                     | 98.93                                    | 1.432/00                | -                             | 8·2°/756                 | -                       |  |  |
| sulphide, mono-CS                                                                                                                  | 41'07                                    | 1.6-1.83<br>1.292/0°    | - 110°                        | 46·2°                    | insoluble<br>'2/0°      |  |  |
| ", bi-, CS <sub>2</sub>                                                                                                            | 76.13                                    | 1 292/0                 | -110                          | 40 2                     | 2/0                     |  |  |
| chloride (cerous), CeCla                                                                                                           | 246.63                                   | 3.88/15°.5              | 848°                          | -                        | soluble                 |  |  |
| oxide (cerous), Ce <sub>2</sub> O <sub>3</sub>                                                                                     | 328.5                                    | 6.9-7                   | -                             | -                        | insoluble<br>insoluble  |  |  |
| ,, (ceric), CeO <sub>2</sub><br>sulphate (cerous),                                                                                 | 172.25                                   | 6.74                    |                               |                          | monuble                 |  |  |
| Ce <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> 8H <sub>2</sub> O<br>Chlorine—                                                     | 712.80                                   | 3.22                    | 8H2O/630°                     | -                        | 16.2/0°                 |  |  |
| oxide, mon-, $Cl_2O$                                                                                                               | 86.92                                    | {liq. 3.87<br>A. 87.05} | - 20°                         | - 5°                     | 200V/0°                 |  |  |
| * Forms malonic acid.                                                                                                              | † Behn,                                  | Ann. d. Phys.,          | 1900.                         | anhy. = anh              | ydrous ;                |  |  |
| dec. or decomp. = decor                                                                                                            | nposes; l                                | hydr. = hydrated        | d; liq. = liq                 | uid; $v. = ver$          | у.                      |  |  |
|                                                                                                                                    |                                          |                         |                               |                          |                         |  |  |

| PHYS | ICAL | CON | STA | NTS |
|------|------|-----|-----|-----|
|------|------|-----|-----|-----|

| INORGANIC COMPOUNDS (contd.)<br>For general heading, see p. 130.                                  |                              |                                          |                                   |                                                |                                |  |
|---------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------|-----------------------------------|------------------------------------------------|--------------------------------|--|
| Substance and Formula.                                                                            | Formula<br>weight<br>(0=16). | Density,<br>gms./c.c.                    | Melting<br>Point,<br>°C.          | Boiling<br>Point,<br>°C.                       | Solubility<br>in Water.        |  |
| Chlorine (contd.)—<br>oxide, di-, ClO <sub>2</sub>                                                | 67:46                        | at./temp.<br>1.5; A. 66.58               | at./mms.<br>- 76°                 | at./mms.<br>9 <sup>.</sup> 9 <sup>°</sup> /731 | at./temp.<br>20V/4°            |  |
| chloride (chromous), CrCl <sub>2</sub> .                                                          | 122.92                       | 2.75/14°                                 | -                                 | -                                              | v. soluble                     |  |
| " (chromic), CrCl <sub>3</sub> .                                                                  | 158.38                       | {2.76/15°<br>(A. 318/1200°}              | -                                 | c. 1300°                                       | slgtly sol.                    |  |
| oxide, $Cr_2O_3$                                                                                  | 152.0                        | 5'04                                     | c. 2060°                          | -                                              | insoluble                      |  |
| , tri-, $CrO_3$ sulphate, $Cr_2(SO_4)_3I5H_2O$ . Cobalt—                                          | 100'0<br>662'42              | 2°74<br>1°867/17°                        | 190° §<br>15H <sub>2</sub> O/100° | decomp.                                        | 62°1/0°( <i>p</i> )<br>120/20° |  |
| cobaltous chloride,<br>CoCl <sub>2</sub> (and+6H <sub>2</sub> O)                                  | 129.9                        | 2.94                                     | subl. c. 87°                      | _                                              | 29°5/0°                        |  |
| " hydrate, Co(OH)2                                                                                | 93.02                        | 3.6/15°                                  | -                                 | -                                              | insoluble                      |  |
| " oxide, CoO<br>" sulphate,                                                                       | 74.98                        | 5.2                                      | 2860°                             | -                                              | insoluble                      |  |
| CoSO4.7H2O                                                                                        | 281.14                       | 1.918/15°                                | 96.8°<br>sublimes                 | -                                              | 26/3°                          |  |
| cobaltic chloride, CoCl <sub>3</sub><br>, oxide, Co <sub>2</sub> O <sub>3</sub>                   | 165.35                       | 2.94<br>4.8-5.6                          | *895°                             |                                                | soluble                        |  |
| " sulphate, Co <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub><br>Columbium. See Niobium.<br>Copper— | 406.12                       |                                          | =                                 | -                                              | soluble                        |  |
| cuprous chloride, Cu <sub>2</sub> Cl <sub>2</sub> .                                               | 198.06                       | {3.7<br>A. 191/1690°}                    | 418°                              | c. 1000°                                       | insoluble                      |  |
| " oxide, Cu2O                                                                                     | 143.14                       | 5.8-6.1                                  | 1210°                             |                                                | insoluble                      |  |
| cupric chloride, CuCl <sub>2</sub>                                                                | 134.49                       | 3.02                                     | 498°                              | decomp.                                        | 75/17°                         |  |
| " nitrate, Cu(NO <sub>3</sub> ) <sub>2</sub> 3H <sub>2</sub> O                                    |                              | 2.17                                     | 114·5°                            | (dec. r. ht.)                                  | 60/25°(p)                      |  |
| " oxide, CuO                                                                                      | 79'57                        | 6.30-6.43                                | 1148°<br>(4H2O/100°)              | -                                              | insoluble                      |  |
| " sulphate, CuSO <sub>4</sub> 5H <sub>2</sub> O                                                   | 249.71                       | 2.28/15°                                 | (5HO2/240°)                       | dec. r. ht.                                    | see p.146.                     |  |
| Cyanogen, C <sub>2</sub> N <sub>2</sub>                                                           | 52.03                        | {liq. '866/17°<br>A. 52'32               | 39                                | -22°                                           | 4.5V/20°                       |  |
| Dcuterium oxide, <sup>2</sup> H <sub>2</sub> O<br>Erbium—                                         | 18.03                        | 1.1026/200                               | 3.80                              | 101.420                                        | 00                             |  |
| oxide, $Er_2O_3$<br>sulphate, $Er_2(SO_4)_3$                                                      | 383.4<br>767.71              | 8.6<br>3.18                              | infusible<br>dec. 950°            | =                                              | insoluble<br>23/20°            |  |
| <b>Gadolinium</b> —<br>sulphate, Gd <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub>                  | 602.78                       | 4.14/12°                                 | -                                 | -                                              | 2.3/34°                        |  |
| Gallium—<br>chloride, tri-, GaCl <sub>3</sub><br>Germanium—                                       | 176.48                       | A. 353/240°                              | 75'5°                             | 220°                                           | decomp.                        |  |
| chloride, tetra-, GeCl,                                                                           | 214.34                       | 1.89/180                                 | -                                 | 86°                                            | decomp.                        |  |
| oxide, di-, GeO <sub>1</sub> Glucinum. See Beryllium. Gold—                                       | 104.2                        | 4.70/18°                                 | -                                 | -                                              | *4/20°                         |  |
| chloride, AuCl <sub>3</sub><br>Hydrazine, NH <sub>2</sub> .NH <sub>2</sub><br>,, hydroxide,       | 303.58<br>32.05              | 1.01/15°                                 | 288°*<br>1°4°                     | dec. 180°<br>113°                              | 68<br>v. soluble               |  |
| NH4.H30                                                                                           | 50.07                        | 1.030/21°                                | <-40°                             | 119°                                           | v. soluble                     |  |
| Hydrobromic acid, HBr                                                                             | 80.93                        | { 2.157/-68.7°<br>A. 80.77 }             | - 86°                             | - 66·8°                                        | (221/0°<br>(130/100°           |  |
| Hydrochloric acid, HCl<br>Hydrocyanic acid, HCN                                                   | 36°47<br>27°02               | *929/0° †<br>*697/18°                    | - 112°<br>- 13 <b>·8</b> °        | - 84.1°<br>26.1                                | see p.145.                     |  |
| • Under chlorine at 1520 mm<br>§ Moissan,                                                         | 15. †<br>170-172°            | Rupert, 1909.<br>; $\infty = $ soluble i | dec. or dec<br>n all proportio    | omp. = deco                                    | mposes ;                       |  |

| INORGANIC COMPOUNDS (contd.)<br>For general heading, see p. 130.                                                            |                                           |                                                                                                  |                             |                          |                              |  |
|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------|--------------------------|------------------------------|--|
| Substance and Formula.                                                                                                      | Formula weight $(0 = 16)$ .               | Density,                                                                                         | Melting<br>Point,<br>°C.    | Boiling<br>Point,<br>°C. | Solubility<br>in Water.      |  |
| Hydrofluoric acid, HF                                                                                                       | 20'01                                     | at./temp.<br>{'988/15°}                                                                          | at./mms.<br>83°             | at./mms.<br>19.4°        | at./temp.<br>III/35°         |  |
| Hydriodic acid, HI                                                                                                          | 127.93                                    | $ \begin{array}{c} \text{(A. 20.04)} \\ \text{(2.799/-35.7°)} \\ \text{(A. 126.8)} \end{array} $ | - 50°6°                     | - 35.6°                  | {42,500<br>V/10°             |  |
| Hydrogen—<br>peroxide, H <sub>2</sub> O <sub>2</sub><br>selenide, H <sub>2</sub> Se                                         | 34'02<br>81'22                            | 1.458/0°<br>A. 81.20                                                                             | -2°<br>-64°                 | 80°2°/47<br>- 42°        | v. soluble<br>331V/13°       |  |
| sulphide, H2S                                                                                                               | 34.08                                     | {liq. '9<br>A. 34'10}                                                                            | - 83·8°                     | - 59°4° {                | 305V/15°<br>see p. 145.      |  |
| telluride, H <sub>2</sub> Te<br>Hydroxylamine, NH <sub>2</sub> OH<br><b>Iodine</b> —                                        | 129.52<br>33.03                           | A. 127'1<br>1'227/14°                                                                            | - 48°<br>33°                | 0<br>70°/60              | soluble<br>soluble           |  |
| trichloride, ICl <sub>2</sub><br>Iodic acid, HIO <sub>2</sub><br>Iron—                                                      | 233 <sup>.</sup> 3<br>175 <sup>.</sup> 93 | 3.11<br>4.63/0°                                                                                  | <sup>33°</sup><br>½H₃O/170° | dec. 25°                 | soluble<br>75/16°⊉.          |  |
| carbonyl, Fe(CO) <sub>5</sub>                                                                                               | 195.86                                    | ${1.4664/18^{\circ} \atop A. 188.2}$                                                             | - 19'7°                     | 102.7°/764               | -                            |  |
| ferrous chloride, FeCl <sub>s</sub><br>, oxide, FeO<br>, sulphate,                                                          | 126·8<br>71·84                            | 2.00/18°                                                                                         | 1419°                       | volatilizes              | 50/19°<br>insoluble          |  |
| FeSO <sub>4</sub> .7H <sub>2</sub> O<br>, amm.sulphate,FeSO <sub>4</sub>                                                    | 278.01                                    | 1.8988/14.4°                                                                                     | 64°                         | 6H <b>s</b> O/100°       | 20.8/10°                     |  |
| (NH4)2SO46H2O                                                                                                               | 392.14                                    | 1.862/12°                                                                                        | -                           |                          | { <sup>18/0°</sup><br>78/75° |  |
| oxide (magnetic), Fe <sub>3</sub> O <sub>4</sub>                                                                            | 231.22                                    | 5-5.4<br>( 2.804/10.8° )                                                                         | 1538°                       | -                        | insoluble                    |  |
| ferric chloride, FeCl <sub>2</sub>                                                                                          | 162.22                                    | A.324.2/320°                                                                                     | 301°                        | 315°                     | 537/100°                     |  |
| ,, nitrate, Fe(NO <sub>3</sub> ) <sub>3</sub> 9H <sub>2</sub> O<br>,, oxide, Fe <sub>2</sub> O <sub>3</sub><br>,, sulphate, | 404 <sup>.01</sup><br>159 <sup>.68</sup>  | 1.683/20°<br>5.2-5.3                                                                             | 47°2°                       | decomp.                  | v. soluble<br>insoluble      |  |
| $Fe_3(SO_4)_3(and + 9H_3O)$                                                                                                 | 399.86                                    | 3.092/18°                                                                                        | -                           | -                        | v.slgt.sol.                  |  |
| Lead-<br>acetate, Pb(C <sub>2</sub> H <sub>3</sub> O <sub>2</sub> ) <sub>2</sub> . 3H <sub>2</sub> O                        | 379.32                                    | 2.5                                                                                              | 3H:0/75°                    | 280°                     | 46/15°                       |  |
| carbonate, PbCO <sub>3</sub>                                                                                                | 267°20<br>278°12                          | 6.43<br>5.873/15°                                                                                | 447°                        | c. 900                   | decomp.<br>•7/0°             |  |
| iodide, Pbl                                                                                                                 | 461.04                                    | 6.12                                                                                             | 375°                        | 861-954                  | '04/0°                       |  |
| oxide, mon- (litharge), PbO.                                                                                                | 223.20                                    | 9.37, 8.74                                                                                       | 877°                        | -                        | '002/20°                     |  |
| ", red lead, Pb <sub>3</sub> O <sub>4</sub><br>", per- (brown), PbO <sub>2</sub> .                                          | 685.6<br>239.2                            | 9.09/12°<br>8.01-0.2                                                                             | dc.500°-530°<br>decomp.     | _                        | insoluble<br>insoluble       |  |
| sulphate, PbSO                                                                                                              | 303.26                                    | 6.23                                                                                             | 937°                        | -                        | .004/18°                     |  |
| carbonate, Li2CO3                                                                                                           | 73.88                                     | 2.11                                                                                             | 618-710                     | -                        | see p. 146.                  |  |
| chloride, LiCl                                                                                                              | 42'40                                     | 2-2.07                                                                                           | 614°                        | dec. w. ht.              | 72/0°                        |  |
| nitrate, $LiNO_3$                                                                                                           | 68.95<br>29.88                            | 2°3-2°4<br>2°10/15°                                                                              | <i>c</i> . 258° subl. 1000° | _                        | 35/0°<br>5/0°                |  |
| phosphate, LisPO4. H.O.                                                                                                     | 133.88                                    | 2.4/15                                                                                           | 857°                        | -                        | .04                          |  |
| sulphate, Li <sub>2</sub> SO <sub>4</sub>                                                                                   | 109.94                                    | 2.31/12°                                                                                         | 818-853°                    | -                        | 26/0°                        |  |
| carbonate, MgCO <sub>3</sub>                                                                                                | 84.32                                     | 3.04                                                                                             | dec. 350°                   |                          | .0I                          |  |
| chloride, MgCl <sub>2</sub> . 6H <sub>2</sub> O                                                                             | 203.34                                    | 1.26/12°                                                                                         | 2H20/100°                   | decomp.                  | 54/20°                       |  |
| nitrate, Mg(NO <sub>3</sub> ) <sub>2</sub> 6H <sub>2</sub> O                                                                | 256.44                                    | 1'464                                                                                            | 90°<br>c. 2800°             | 5H 0/330°                | 42/18° p.                    |  |
| phosphate, Mg3(PO4)2.4H2O                                                                                                   | 40°32<br>335°1                            | 3.2-3.7<br>1.64/15°                                                                              |                             | _                        | '00I<br>'02                  |  |
| sulphate, MgSO7H2O                                                                                                          | 246.49                                    | 1.678/16°                                                                                        | 5H2O/150°                   | -                        | 27/0°                        |  |
| atm. = atmospheres ; dc., dec.,                                                                                             |                                           | mp. = decompose<br>w. ht. = white                                                                |                             | iid; slgt. = sl          | lightly;                     |  |

| PHYSI | CAL | CON | STA | NTS |
|-------|-----|-----|-----|-----|
|-------|-----|-----|-----|-----|

| INORGANIC COMPOUNDS (contd.)<br>For general heading, see p. 130.                                                                                                                                                                                                      |                                                                  |                                                                                                                                                                                  |                                                                                                        |                                                    |                                                                                                          |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|
| Substance and Formula.                                                                                                                                                                                                                                                | Formula<br>weight<br>(0 = 16).                                   | Density,<br>gms./c.o.                                                                                                                                                            | Melting<br>Point,<br>°C.                                                                               | Boiling<br>Point,<br>°C.                           | Solubility<br>in Water.                                                                                  |  |
| Manganese—<br>carbonate, MnCO <sub>2</sub><br>chloride, MnCl <sub>2</sub> .4H <sub>2</sub> O<br>nitrate, Mn(NO <sub>3</sub> ) <sub>2</sub> .6H <sub>2</sub> O<br>oxide, -ous, MnO<br>, -ic, Mn <sub>2</sub> O <sub>3</sub><br>, tetr-, Mn <sub>3</sub> O <sub>4</sub> | 114'93<br>197'9<br>287'05<br>70'93<br>157'86<br>228'79<br>86'93  | at./temp.<br>3'1-3'7<br>1'91<br>1'82<br>5'1<br>4'3-4'8<br>4'7-4'9<br>4'7-5'0                                                                                                     | at./mms.<br>decomp.<br>T. 87 <sup>.6°</sup><br>T. 25 <sup>.8°</sup><br>1500°<br>O, 1080°<br>12 O, 535° | at./mms.<br>M.P. 650°                              | at./temp.<br>v. slgt. sol.<br>107/10°<br>54'5/11° p.<br>insoluble<br>insoluble<br>insoluble<br>insoluble |  |
| sulphate,* MnSO <sub>4</sub> 4H <sub>1</sub> O<br>Mercury—<br>mercurous chloride, HgCl .                                                                                                                                                                              | 223.05                                                           | 2'I<br>(6'48 and 7'2)                                                                                                                                                            | 18° and 30°†                                                                                           | M.P. 700°<br>382'5°                                | 111/54°                                                                                                  |  |
| " nitrate,<br>HgNO3.2H2O<br>" sulphate, Hg2SO4<br>mercuric bromide, HgBr1.                                                                                                                                                                                            | 298.64<br>497.26<br>360.44                                       | 4.78<br>-7.06/25°<br>5.74                                                                                                                                                        | decomp.<br>melts.<br>235°                                                                              | decomp.<br>subl. c. 322°                           | v. soluble<br>'2 cold<br>1/9°                                                                            |  |
| " chloride, HgCl <sub>2</sub> .<br>" iodide, red, HgI <sub>2</sub> .                                                                                                                                                                                                  |                                                                  | $\begin{cases} 5^{\circ}3-5^{\circ}5 \\ A. 283 \\ 6^{\circ}2-6^{\circ}3 \\ A. 452 \\ \vdots \\ $ | 287°<br>241-257°                                                                                       | 303-307°                                           | (5.4/20°(\$)<br>(see p.146.<br>.003/17°                                                                  |  |
| ", yellow, HgI,<br>", oxide, HgO<br>", sulphate, HgSO <sub>4</sub> .<br><b>Molybdenum</b> —                                                                                                                                                                           | 454 <sup>.</sup> 44<br>216 <sup>.</sup> 6<br>296 <sup>.</sup> 66 | 5'9-6'I<br>11'14<br>6'47                                                                                                                                                         | 241°<br>dec. r. ht.<br>dec. r. ht.                                                                     | 349°<br>—                                          | insoluble<br>'005/25°<br>decomp.                                                                         |  |
| chloride, $MoCl_{\delta}$<br>oxide, di-, $MoO_{2}$<br>, tri-, $MoO_{3}$<br><b>Nickel</b> —                                                                                                                                                                            | 273'3<br>128'0<br>144'0                                          | A. 275/350°<br>6'4/10°<br>4'696/26°                                                                                                                                              | 194°<br><br>759°                                                                                       | 268°<br>sublimes                                   | decomp.<br>insoluble<br>'2 cold                                                                          |  |
| carbonyl, Ni(CO) <sub>4</sub><br>chloride, NiCl <sub>2</sub><br>nitrate, Ni(NO <sub>3</sub> ) <sub>2</sub> .6H <sub>2</sub> O<br>sulphate, NiSO <sub>4</sub> .7H <sub>2</sub> O <sup>‡</sup> .<br><b>Niobium</b> —                                                    | 170'7<br>129'6<br>290'8<br>280'85                                | 1'318/17°<br>2'56<br>2'06/14°<br>1'98                                                                                                                                            | -25°<br>sublimes<br>56'7°<br>98-100°                                                                   | 43°<br>                                            | insoluble<br>35/0°(⊅)<br>48 <sup>.</sup> 5/18°⊅.<br>31 <sup>.</sup> 5/9°                                 |  |
| chloride, penta-, NbCls                                                                                                                                                                                                                                               | 270'4                                                            | {4 <sup>.</sup> 4 <sup>.</sup> -4 <sup>.</sup> 5<br>A. 278/360°}                                                                                                                 | 194°                                                                                                   | 240.2°                                             | decomp.                                                                                                  |  |
| nitric acid, HNO <sub>3</sub><br>nitrous oxide, N <sub>2</sub> O                                                                                                                                                                                                      | 63'02<br>44'02                                                   | ( A. 44 20 ] )                                                                                                                                                                   |                                                                                                        | 86°<br>- 89*8°                                     | ∞<br>{74V/15°<br>(see p. 145.                                                                            |  |
| nitric "NO<br>nitrogen trioxide, N <sub>2</sub> O <sub>3</sub><br>"peroxide, NO <sub>2</sub> to                                                                                                                                                                       | 30'01<br>76'02                                                   | A. 30'011<br>1'447/-2°                                                                                                                                                           | - 160'9°<br>- 102°                                                                                     | - 153°<br>42'7°/757                                | {5'IV/15°<br>(see p. 145.<br>soluble                                                                     |  |
| , pentoxide, N <sub>2</sub> O <sub>5</sub> ,<br>, oxychloride, NOCl.                                                                                                                                                                                                  | 46.01<br>108.02<br>65.47                                         |                                                                                                                                                                                  | - 10.8°<br>30°<br>- 60°                                                                                | 21.64°<br>dec. 45-50°<br>-5.6°/751                 | soluble<br>soluble<br>decomp.                                                                            |  |
| Osmium—<br>oxide, tetr-, $OsO_4$<br>Ozone, $O_3$                                                                                                                                                                                                                      | 254'9<br>48'00                                                   | A. 257.3<br>{'00214<br>A. 48:02}                                                                                                                                                 | 20°<br>dec. 270°                                                                                       | 100°<br>- 119°                                     | soluble<br>v.slgt.sol.                                                                                   |  |
| Palladium-<br>chloride, PdCl <sub>2</sub> . 2H <sub>2</sub> O                                                                                                                                                                                                         | 213.65                                                           | A. 48.03                                                                                                                                                                         | 501°                                                                                                   | -                                                  | soluble                                                                                                  |  |
| <ul> <li>The ordinary salt; also six</li> <li>Also anhy. and 6H<sub>2</sub>O.</li> <li>slgt. = slightly; subl. =</li> </ul>                                                                                                                                           | § Der                                                            | nsity, p. 35.                                                                                                                                                                    | '698/23'7                                                                                              | etween temps.<br>7°; r. ht. = re<br>all proportion | ed heat;                                                                                                 |  |

| INORGANIC COMPOUNDS (contd.)<br>For general heading, see p. 130. |                             |                          |                                              |                           |                             |  |
|------------------------------------------------------------------|-----------------------------|--------------------------|----------------------------------------------|---------------------------|-----------------------------|--|
| Substance and Formula,                                           | Formula weight $(0 = 16)$ . | Density,<br>gms./c.c.    | Melting<br>Point,<br>° C.                    | Boiling<br>Point,<br>°C.  | Solubility<br>in Water.     |  |
| Perchloric acid, HClO,                                           | 100'47                      | at./temp.<br>1'76/22°    | at./mms.<br>- 35°                            | at./mms.<br>19°/11        | at./temp.<br>soluble        |  |
| <b>Phosphorus</b> —<br>bromide, tri-, PBr <sub>s</sub>           | 270.8                       | 2.92/0° A. 281           | 1110                                         |                           | decomp                      |  |
| chloride, tri-, PCl <sub>3</sub>                                 | 137.42                      | 1 612/0° A. 141          | -41.5°<br>-112°                              | 175°<br>76°               | decomp.                     |  |
| " penta-, PCls                                                   | 208.34                      | A. 104.2/296°            | 148°                                         | 162°                      | "5<br>37                    |  |
| fluoride, tri-, PF3                                              | 88.04                       | A. 87.4                  | - 160°                                       | -95°                      | -                           |  |
| oxide, tri-, $P_4O_6$                                            | 220'2                       | liq. 1.94/28°            | 22.5                                         | 173°                      | soluble                     |  |
| , tetr., $P_2O_4$                                                | 126.1                       | 2.54/23°                 | >100°                                        | 6. 180°                   | "                           |  |
| ,, pent-, $P_4O_5$<br>Phosphine, $PH_3$                          | 142'I<br>34'06              | 2·39<br>A. 34·31         | 800°<br>                                     | subl. r. ht.<br>- 85°     | v. soluble<br>slgtly sol.   |  |
| liquid, P.H.                                                     | 66.11                       | 1.002-1.016              | <-10°                                        | 57/735                    | insoluble                   |  |
| Phosphonium chloride, PH, Cl                                     | 70.23                       | -                        | 26°                                          | sublimes                  | decomp.                     |  |
| Platinum-                                                        |                             |                          |                                              |                           |                             |  |
| chloride, tetra-, PtCl                                           | 337'04                      | -                        | decomp.                                      | -                         | v. soluble                  |  |
| Potassium—                                                       |                             |                          |                                              |                           |                             |  |
| bromide, KBr                                                     | 119.05                      | 2.76/20°                 | 733°                                         |                           | see p. 146.                 |  |
| carbonate, K <sub>2</sub> CO <sub>3</sub>                        | 138.2                       | 2'29                     | 909°±5                                       | dec. 810°                 | 89/0°                       |  |
| chlorate, KClO <sub>3</sub>                                      | 122.56                      | 2°34/17°<br>1°99/15°     | 357°                                         | dec. 400°                 | 3/0°                        |  |
| chromate, bi-, KgCrgO7                                           | 204.2                       | 2*69/4°                  | 790°<br>400°                                 | subl. w. ht.<br>dec. 500° | see p. 146.<br>5/0°         |  |
| cyanide, KCN                                                     | 65.11                       | 1.52/16°                 | red heat                                     | red heat                  | 122/103°                    |  |
| ferricyanide, K3Fe(CN)6                                          | 329.23                      | 1.8109/17°               | decomp.                                      |                           | 33/4°                       |  |
| ferrocyanide,                                                    |                             |                          | (3H20/60°)                                   |                           |                             |  |
| K <sub>4</sub> Fe(CN) <sub>6</sub> . 3H <sub>1</sub> O           | 422.38                      | 1*8533/17°               | { -80° }                                     |                           | 28/12°                      |  |
| hydroxide, KOH                                                   | 56.11                       | 2'04                     | 360'4°                                       | subl. w. ht.              | see p. 146.                 |  |
| iodate, KIO3                                                     | 214'02                      | 3.97/18°                 | 560°                                         | -                         | 8/20°                       |  |
| iodide, KI                                                       | 166.02                      | { 3.04/24° }             | 678°                                         | 1420°                     | { 127/0°                    |  |
| nitrate, KNO <sub>s</sub>                                        | 101.11                      | (A. 159/1320°)<br>2°1/4° | 337°                                         | dec. 400°                 | \see p. 146.<br>see p. 146. |  |
| permanganate, KMnO,                                              | 158.03                      | 2.70/10°                 | dec. 240°                                    |                           | 6.4/15                      |  |
| sulphate, K <sub>2</sub> SO <sub>4</sub>                         | 174.26                      | 2.66/20°                 | 1066.2°                                      | sublimes                  | 9'2/10°                     |  |
| " acid, KHSO,                                                    | 136.17                      | 2'24 * ; 2'61 †          | 200°                                         | decomp.                   | 36/0°                       |  |
| sulphocyanate, KCNS                                              | 97.18                       | 1.01                     | 173.8°                                       | -                         | 217/20°                     |  |
| Radium-                                                          | .00                         |                          |                                              |                           |                             |  |
| bromide, RaBr <sub>2</sub>                                       | 385.84                      |                          | 728°                                         |                           | soluble                     |  |
| Rubidium-                                                        | 22010                       |                          | 8000                                         | dec 540                   | w. coluble                  |  |
| carbonate, Rb <sub>2</sub> CO <sub>3</sub>                       | 230'9                       | 2.798/25°                | 837°<br>726°                                 | dec. 740°                 | v. soluble<br>84/10°        |  |
| sulphate, Rb2SO4                                                 | 266.96                      | 3.611/20°                | -                                            | -                         | 43/10°                      |  |
| Selenium-                                                        |                             | 0.00120                  |                                              |                           | 151-5                       |  |
|                                                                  | 229.32                      | 2'91/17°                 | -                                            | dec. c. 145°              | decomp.                     |  |
| oxide, SeO2                                                      | 111.5                       | 3.92/12°                 | 390°                                         | sub. c. 260°              | v. soluble                  |  |
| Selenious acid, H <sub>2</sub> SeO <sub>3</sub> .                |                             | 3'91/15'7°               | decomp.                                      |                           | **                          |  |
|                                                                  | 145.22                      | 2.92/12°                 | 58°                                          | 260°                      | 59                          |  |
| Silicon-                                                         |                             |                          | 0                                            |                           | 1                           |  |
| chloride, tetra-, SiCl <sub>4</sub>                              | 170'14                      | 1.20 A. 172              | - 89°<br>- 77° §                             | -65°/181 §                | decomp.                     |  |
| fluoride, SiF,                                                   | 104.3                       | A. 103'4                 | -11 8                                        | -03 /101 \$               | "                           |  |
| * Monoclinic.<br>amorph. = amorphous; cryst<br>heat; sub. or su  | . = crysta                  |                          | $\operatorname{comp.} = \operatorname{deco}$ |                           | . = red                     |  |

| INORGANIC COMPOUNDS (contd.)<br>For general heading, see p. 130.                                            |                                |                                    |                           |                          |                              |  |
|-------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------|---------------------------|--------------------------|------------------------------|--|
| Substance and Formula.                                                                                      | Formula<br>weight<br>(0 = 16). | Densit <b>y</b> ,<br>gms./c.c.     | Melting<br>Point,<br>° C. | Boiling<br>Point,<br>°C. | Solubility<br>in Water.      |  |
| Silicon (contd.)-                                                                                           |                                | at./temp.                          | at./mms.                  | at./mms                  | at./temp.                    |  |
| oxide (silica), amorph, SiO <sub>2</sub>                                                                    | 60'3                           | 2°2/16°                            | indefinite                | -                        | c. '001                      |  |
|                                                                                                             | 60'3                           | 2.6495/20°                         | 1780°                     |                          | insoluble                    |  |
| Silico chloroform, SiHCl <sub>3</sub> .                                                                     | 135.69                         | 1.65 A. 133.2                      | - 1.3°                    | 34°                      | decomp.                      |  |
| Silver-<br>bromide, AgBr                                                                                    | 187.8                          | 6.47/25°                           | 398°                      | dec. 700°                | 0,8/20°                      |  |
| chloride, AgCl                                                                                              | 143'34                         | ( 5.201 )                          | 450°                      |                          | '0315/20°                    |  |
|                                                                                                             |                                | (A. 165/1735°)                     | c. 540                    |                          | '0,3/21°                     |  |
| iodide, Agl                                                                                                 | 234.8                          | 5.67/25°<br>4.35/19°               | 218°                      | dec. r. ht.              | see p. 146.                  |  |
| sulphate, Ag <sub>1</sub> SO <sub>1</sub>                                                                   | 311.82                         | 5.4                                | 660°                      | decomp.                  | '77/17°                      |  |
| Sodium-                                                                                                     | 1                              |                                    |                           |                          |                              |  |
| borate (borax),                                                                                             |                                |                                    | red heat                  |                          | 52.3/100°                    |  |
| Na <sub>2</sub> B <sub>4</sub> O <sub>7</sub> . 10H <sub>2</sub> O<br>bromide, NaBr                         | 381.76                         | 1.694/17°<br>3.1                   | 765°                      | _                        | 77/0°                        |  |
| carbonate, Na <sub>2</sub> CO <sub>3</sub>                                                                  | 102.92                         | 2.4-2.2                            | 852°                      | decomp.                  | see p. 146.                  |  |
| ,, bi-, NaHCO3                                                                                              | 84.01                          | 2.2                                | CO2/270°                  | -                        | 8/10°                        |  |
| chloride, NaCl                                                                                              | 58.46                          | 2.12/20°                           | 801°<br>318°              | w. heat<br>w. heat       | see p. 146.<br>63'5/15°      |  |
| hydroxide, NaOH                                                                                             | 40'01<br>149'92                | 2°13<br>3°65/18°                   | 650°                      | w. neat                  | 178/20°                      |  |
| nitrate, NaNO2.                                                                                             | 85.01                          | 2.27/20°                           | c. 313°                   |                          | 73/0°                        |  |
| peroxide, Na2O2                                                                                             | 78.00                          | 2 80                               | decomp.                   | -                        | sol.; dec.                   |  |
| phosphate, di-,                                                                                             |                                |                                    | 38°                       | 3H .O/c.160°             | 9.3/20°                      |  |
| Na <sub>3</sub> HPO <sub>4</sub> . 12H <sub>3</sub> O<br>sulphate, anhy., Na <sub>2</sub> SO <sub>4</sub> . | 358.2                          | 1.22/16°<br>2.67/2.5°              | 883.2°                    | 511:072.100              | see p. 146.                  |  |
| , Na <sub>2</sub> SO <sub>4</sub> . 10H <sub>2</sub> O                                                      | 322'22                         | 1.492/20°                          | T.32°.383                 | 7H2O/150°{               | 5/0°                         |  |
|                                                                                                             | -                              | 1'594/15°                          | 7H 0/150°                 | decomp.                  | 50°6/32°7°<br>25/15°         |  |
| sulphite, Na <sub>2</sub> SO <sub>3</sub> .7H <sub>2</sub> O .<br>thiosulphate (hypo'),                     | 252.17                         | 1 594/15                           | /1120/150                 | decomp.                  | 25/15                        |  |
| Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> .5H <sub>2</sub> O                                            | 248.20                         | 1.73/17°                           | 32-48°                    | dec. 220°                | 60/10°                       |  |
| Strontium-                                                                                                  |                                |                                    |                           |                          |                              |  |
| bromide, SrBra                                                                                              | 247.46                         | 4°2/24°                            | 498-630°                  | COTION                   | 93/10°                       |  |
| carbonate, SrCO <sub>3</sub>                                                                                |                                | 3.6                                | (                         | CO1/1340°<br>4H2O/60°)   | *001/24°<br>{48/10°          |  |
| chloride, $SrCl_2$ (and + 6H <sub>2</sub> O)                                                                | 158.55                         | 3.02                               | 830° {                    | 6H 0/100°                | (see p.146.                  |  |
| nitrate, $Sr(NO_3)_2$                                                                                       | 211.65                         | 3/17°                              | dec. 645°                 |                          | 55/10°                       |  |
| oxide, $SrO$                                                                                                | 103.63                         | 4.45-4.6                           | 3000°<br>decomp.          | _                        | 35/0°<br>decomp.             |  |
| ", per-, SrO <sub>2</sub>                                                                                   | 119.63                         | *546<br>3*7-4                      | 1605°                     |                          | '011/18°                     |  |
| Sulphur-                                                                                                    | .03 09                         |                                    |                           |                          | a second second              |  |
| dioxide, SO <sub>2</sub>                                                                                    | 64.06                          | { <sup>1.434/0°</sup><br>A. 65.54} | - 76°                     | - 10.80                  | { 4730 V.<br>15°; p.<br>145. |  |
| trioxide, SO <sub>s</sub> a form                                                                            | 80.06                          | {1.923/20°}                        | 16.79°                    | 44.88°                   | decomp.                      |  |
| Sulphuretted hydrogen. See                                                                                  |                                | \A. 80.19 ∫<br>n sulphide.         |                           |                          |                              |  |
| Sulphuric acid, HaSO,                                                                                       | 98.076                         |                                    | 10'5°                     | dec. 40°                 | 00                           |  |
| Tellurium-                                                                                                  |                                |                                    |                           |                          |                              |  |
| chloride, TeCl <sub>1</sub>                                                                                 |                                | A. 199'5                           | 175°                      | 327°                     | decomp.                      |  |
| oxide, di., TeO <sub>2</sub>                                                                                | 159.5                          | 5.9/0°                             | dull r. ht.               | > 700°                   | '0007<br>insoluble           |  |
| ,,,,                                                                                                        | 175.5                          | 5.07/15°                           | decomp.                   |                          | insoluble                    |  |
| * Practically same                                                                                          | for ordin                      | ary table salt as                  | for pure salt             | (Harker).                |                              |  |

anhy. = anhydrous; dec. or decomp. = decomposes; hydr. = hydrated; r. ht. = red heat; w. ht. = white heat;  $\infty$  = soluble in all proportions.

| INORGANIC COMPOUNDS (conid.)<br>For general heading, see p. 130.                                                                                                                                              |                                                                                                        |                                   |                                                  |                                             |                                                                  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------|---------------------------------------------|------------------------------------------------------------------|--|
| Substance and Formula.                                                                                                                                                                                        | Formula weight $(0 = 16)$ .                                                                            | Density,<br>gms./c.c.             | Melting<br>Point,<br>°C.                         | Boiling<br>Point,<br>°C.                    | Solubility<br>in Water.                                          |  |
| Thallium—<br>carbonate, Tl <sub>2</sub> CO <sub>3</sub><br>chloride, tri-, TlCl <sub>3</sub><br>" mono-, TlCl<br>oxide (thallous), Tl <sub>2</sub> O<br>sulphate, Tl <sub>2</sub> SO <sub>4</sub><br>Thorium— | 468°0<br>310°38<br>239°46<br>424°0<br>504°06                                                           | at./temp.<br>7°I<br>7°02<br>6°77  | at./mms.<br>272°<br>25°<br>426°<br>>870°<br>632° | at./mms.<br>decomp.<br>708°-719°<br>decomp. | at./temp.<br>4/15<br>v soluble<br>'2/0°<br>v. soluble<br>4'7/15° |  |
| nitrate, $Th(NO_3)_4 \cdot 12H_2O$<br>oxide, $ThO_3 \cdot \cdot \cdot \cdot$                                                                                                                                  | 696·38<br>264·15                                                                                       | 9°87/15°                          | Ξ                                                | Ξ                                           | v. soluble<br>insoluble                                          |  |
| chloride (stannous), SnCl <sub>2</sub><br>" (stannic), SnCl <sub>4</sub> .<br>oxide (stannous), SnO<br>" (stannic), SnO <sub>2</sub><br><b>Titanium</b> —                                                     | 189 <sup>.</sup> 62<br>260 <sup>.</sup> 54<br>134 <sup>.</sup> 7<br>150 <sup>.</sup> 7                 | 2*279/0° A. 266<br>6*3<br>6*6-6*9 | 249°<br>-33°<br>dec. r. ht.<br>1130°             | 620°<br>114·1°<br>—                         | 270/15°<br>soluble<br>insoluble<br>"                             |  |
| chloride, tetra-, TiCl <sub>4</sub> oxide, di-, TiO <sub>2</sub>                                                                                                                                              | 189.94<br>80.1                                                                                         | 1.76/0° A. 198<br>3.7-4.2         | - 25°<br>1560°                                   | 136·4°                                      | decomp.<br>insoluble                                             |  |
| <b>Tungsten</b> —<br>chloride, hexa-, WCl <sub>6</sub><br>oxide, tri-, WO <sub>3</sub><br><b>Uranium</b> —                                                                                                    | 396.76<br>232.0                                                                                        | A. 379/350°<br>7'2                | 275°<br>red heat                                 | 347°                                        | "<br>"                                                           |  |
| oxide, di-, UO <sub>2</sub><br>,, (green), U <sub>2</sub> O <sub>8</sub><br>,, (yellow), UO <sub>3</sub><br>,, (black), U <sub>2</sub> O <sub>5</sub><br>Uranyl chloride, UO <sub>2</sub> Cl <sub>2</sub> .   | 270 <sup>.2</sup><br>842 <sup>.6</sup><br>286 <sup>.2</sup><br>556 <sup>.4</sup><br>341 <sup>.12</sup> | 10'9<br>7'3<br>5'1<br>8'4-9'2     | 2176°<br>decomp.<br>decomp.<br>fusible           | <br><br>decomp.                             | "<br>                                                            |  |
| " nitrate,<br>UO₂(NO₃)₂.6H₂O<br><b>Vanadium</b> —                                                                                                                                                             | 502.32                                                                                                 | 2,81                              | T. 59'5°                                         |                                             | 200                                                              |  |
| chloride, tetra-, VCl <sub>4</sub> oxide, pent-, V <sub>2</sub> O <sub>5</sub>                                                                                                                                | 192 <sup>.</sup> 84<br>182 <sup>.</sup> 0                                                              | 1.86 A. 193.7<br>3.357/18°        | - 18°<br>658°                                    | 154°                                        | soluble<br>o <sup>.</sup> 8/20°                                  |  |
| Zinc—<br>carbonate, ZnCO <sub>3</sub><br>chloride, ZnCl <sub>2</sub>                                                                                                                                          | 125'37<br>136'29                                                                                       | 4°4<br>2°91/25°<br>1°966          | CO <sub>2</sub> , 300°<br>262°                   | 730°<br>(7H <sub>2</sub> O at ) (           | 0'001/15°<br>330/10°<br>42/0°                                    |  |
| sulphate, ZnSO <sub>4</sub> . 7H <sub>2</sub> O .<br>sulphide, ZnS<br>Zirconium—                                                                                                                              | 287*54<br>97*43                                                                                        | 3.623/15° anhy.<br>4.0            | }6H2O/100°<br>1050°                              | (red heat.))<br>subl. 1180°                 | 80'8/100°<br>insoluble                                           |  |
| oxide, ZrO <sub>3</sub>                                                                                                                                                                                       | 122.6                                                                                                  | 5.1-2.2                           | c. 2500°                                         |                                             | 33                                                               |  |

anhy. = anhydrous; dec. or decomp. = decomposes; r. ht. = red heat; v. = very.

| FREEZING | MIXTURES |
|----------|----------|
|----------|----------|

| Parts by weight. Temp.                                                                                                              |                               | Parts by weight.                       | Temp.          |  |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------|----------------|--|
| I of NH <sub>4</sub> NO <sub>3</sub> , I of water<br>8 of Na <sub>2</sub> SO <sub>4</sub> , 5 of water<br>CO <sub>3</sub> and ether | - 15° C.<br>- 17°<br>- 78°35° | 2 of snow or crushed ice, 1 of<br>NaCl | - 18°<br>- 48° |  |

| ORGANIC COMPOUNDS<br>Formula (Molecular) Weight, Density, Melting and Boiling Points.<br>For general heading, see p. 130.                                                                                                                                                                                                                                                                                                                                                                                             |                                                               |                                                                            |                                                                                                   |                                                     |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|--|
| Substance and Formula.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Formula weight $(0 = 16)$ .                                   | Density,<br>gms./c.c.                                                      | Melting<br>Point, °C.                                                                             | Boiling<br>Point, °C.                               |  |  |
| Acetaldehyde, CH <sub>3</sub> . CHO<br>Acetic acid, CH <sub>3</sub> . COOH<br>Aceto-acetic ether, CH <sub>3</sub> CO . CH <sub>3</sub> CO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                | 44 <sup>.04</sup><br>60 <sup>.</sup> 04                       | at./temp.<br>*788/16°C.<br>1:05/20°                                        | at./mms.<br>- 123 <sup>.</sup> 6°<br>16 <sup>.</sup> 7°                                           | at./mms.<br>20'8°<br>118'5°, Y.                     |  |  |
| . C <sub>2</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 130°11<br>58°06                                               | 1.028/20°<br>.7900/15°                                                     | <-80°<br>-95°                                                                                     | 181°<br>56.5°                                       |  |  |
| Acetylene, $C_{2}H_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26.03                                                         | $\left\{ \begin{array}{c} .46/-7^{\circ} \\ A. 26.34 \end{array} \right\}$ | -81.5°/895*                                                                                       | -83.60                                              |  |  |
| Acrylic acid, CH <sub>2</sub> : CHCO <sub>2</sub> H<br>Alizarine, C <sub>6</sub> H <sub>4</sub> (CO) <sub>2</sub> C <sub>6</sub> H <sub>2</sub> (OH) <sub>2</sub><br>Allyl alcohol, CH <sub>2</sub> : CH . CH <sub>2</sub> OH<br>, chloride, CH <sub>2</sub> : CHCH <sub>2</sub> Cl<br>, thiocyanate, CH <sub>2</sub> : CHCH <sub>2</sub> CNS<br>Amyl acetate, C <sub>5</sub> H <sub>11</sub> . CH <sub>3</sub> CO <sub>2</sub><br>, alcohol (n.), CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> CH <sub>2</sub> OH | 72'05<br>240'13<br>58'06<br>76'52<br>99'13<br>130'15<br>88'12 | 1.062/16°<br>.8525/20°<br>.937/19°<br>1.017/10°<br>.879/20°<br>.812/20°    | 10°<br>290°<br>129<br>136·4<br>liquid<br>liquid<br>78·5                                           | 140°<br>430<br>96'7<br>46<br>161<br>148<br>137'8    |  |  |
| " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 88.12<br>88.12<br>88.12<br>93.10                              | ·825/0°<br>·825/0°<br>·814/15°<br>1·023/15°                                | liquid<br>liquid<br>-12°<br>-6.4°                                                                 | 129<br>118·5/753<br>102·5<br>183·9                  |  |  |
| Anisol, C <sub>6</sub> H <sub>5</sub> OCH <sub>3</sub><br>Anthracene, C <sub>6</sub> H <sub>4</sub> : C <sub>2</sub> H <sub>2</sub> C <sub>6</sub> H <sub>4</sub><br>Antimony trimethyl, Sb(CH <sub>3</sub> ) <sub>3</sub><br>Asparagine(1.)C <sub>2</sub> H <sub>3</sub> NH <sub>3</sub> CO <sub>2</sub> H.CONH <sub>3</sub><br>Benzaldehyde, C <sub>6</sub> H <sub>5</sub> CHO<br>Benzene, C <sub>6</sub> H <sub>6</sub> .                                                                                          | 108.1<br>178.15<br>165.29<br>132.1<br>106.08<br>78.08         | '9925/25°<br>1'15<br>1'52/15°<br>1'55/4°<br>1'05/15°<br>'87843/20°         | -37.2°<br>216<br>liquid<br>decomp.<br>-5.6<br>5.49                                                | 154<br>360<br>80.6<br>decomp.<br>179.5<br>80.2, Y.  |  |  |
| Benzoic acid, $C_6H_5$ . COOH<br>Benzophenone (a), $(C_6H_5)_2CO$<br>Benzoyl chloride, $C_6H_5COCl$<br>Benzyl alcohol, $C_6H_5CH_2OH$<br>Beryllium ethyl, $Be(C_2H_5)_2$                                                                                                                                                                                                                                                                                                                                              | 122.08<br>182.15<br>140.54<br>108.10<br>67.20                 | 1.26/21°<br>1.098/50°<br>1.212/20°<br>1.043/20°                            | $ \begin{array}{r}     5 49 \\     121'4 \\     48 \\     -1 \\     -15'3 \\     -1 \end{array} $ | 249°2<br>305°9<br>197<br>206°5<br>187               |  |  |
| Bismuth triethyl, $Bi(C_2H_5)_3$<br>Borneol (i.), $C_{10}H_{17}OH$<br>Bromo benzene, $C_6H_5Br$<br>Butane (n.), $CH_3$ . $CH_2$ . $CH_2$ . $CH_3$ .<br>Butyl alcohol (n.), $CH_3(CH_2)_2CH_3$ . OH                                                                                                                                                                                                                                                                                                                    | 295.15<br>154.19<br>157.0<br>58.10<br>74.10                   | 1.82<br>1.01<br>1.4948/20°<br>.60/0°<br>.813/20°                           | 210<br>-30.6<br>-135<br>-89.8                                                                     | 107/79<br>sublimes<br>156, Y.<br>'3<br>117.5        |  |  |
| ", ", (sec.),CH <sub>3</sub> CHOH.C <sub>2</sub> H <sub>5</sub><br>", carbinol (tert.),(CH <sub>3</sub> ) <sub>3</sub> C.CH <sub>2</sub> OH<br>", chloride, CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> Cl<br>", ether, (C <sub>4</sub> H <sub>9</sub> ) <sub>2</sub> O<br>Butyric acid (n.), CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub> COOH.                                                                                                                                                               | 88.12<br>92.55<br>130.18<br>88.07                             | *819/22°<br>*812/20°<br>*887/20°<br>*77/20°<br>*96/19°                     | 52<br>-123<br>-7.9                                                                                | 99'8<br>113<br>78<br>141<br>162'3                   |  |  |
| ", ", (iso), $(CH_3)_2CHCOOH$ .<br>Cacodylic acid, $(CH_3)_2AsO \cdot OH$ .<br>Caffeine, $C_8H_{10}N_4O_2 \cdot H_2O$ .<br>Camphor, $C_{10}H_{16}O$ .<br>Camphoric acid (d.), $C_8H_{14}(COOH)_3$ .                                                                                                                                                                                                                                                                                                                   | 88.07<br>138.03<br>212.18<br>152.19<br>200.18                 | ·950/20°<br>1·23/19°<br>·992/10°<br>1·19                                   |                                                                                                   | 154<br>sublimes<br>205'3<br>distin. CO <sub>2</sub> |  |  |
| Caproic acid, CH <sub>3</sub> (CH <sub>3</sub> ) <sub>4</sub> COOH<br>Carbolic acid. See Phenol.<br>Carbon bisulphide, CS <sub>2</sub><br>" oxysulphide, COS<br>" tetrachloride, CCl <sub>4</sub>                                                                                                                                                                                                                                                                                                                     | 116.13<br>76.13<br>60.07<br>153.85                            | •9220/20°<br>1•292/0°<br>2•104<br>1•5936/20°                               | -9.5<br>-112, H.<br>-138<br>-22.95                                                                | 202<br>46·2<br>47°<br>76·7, Y.                      |  |  |
| * Mackintosh, 1907; decomp. = decomp<br>Journ. de Phys., Jan., 1909. H. = Henni                                                                                                                                                                                                                                                                                                                                                                                                                                       | oses ; l. =                                                   | lævo-rotatory (:                                                           | see p. 89). 3                                                                                     | I., Young,                                          |  |  |

| ORGANIC C<br>For general                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | and the second se |                                                                                                                                                                            |                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Substance and Formula.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Formula weight $(0 = 16)$ . | Density,<br>gms./c.c.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Melting<br>Point, ° C.                                                                                                                                                     | Boiling<br>Point, ° C.                                                                                                                                                                                                          |
| Cellulose, $(C_{0}H_{10}O_{3})_{2}$<br>Chlor acetic acid, CClH <sub>2</sub> .COOH<br>, benzene, C <sub>8</sub> H <sub>5</sub> Cl<br>Chloral hydrate, CCl <sub>2</sub> .CH(OH) <sub>2</sub><br>Chloroform, CHCl <sub>2</sub><br>Chloroform, CHCl <sub>3</sub><br>Chrysene, C <sub>18</sub> H <sub>12</sub><br>Cineol, eucalyptol, C <sub>10</sub> H <sub>18</sub> O<br>Cinnamic acid, C <sub>6</sub> H <sub>8</sub> CH : CHCOOH<br>, aldehyde, C <sub>6</sub> H <sub>8</sub> CH : CHCOOH<br>, aldehyde, C <sub>6</sub> H <sub>8</sub> CH : CHCOOH<br>, aldehyde, C <sub>6</sub> H <sub>8</sub> CH : CHCHOO<br>Citric acid, (CO <sub>2</sub> HCH <sub>2</sub> ) <sub>2</sub> C(OH)CO <sub>2</sub> H<br>+ H <sub>2</sub> O<br>Collidine, a CH <sub>3</sub> .C <sub>8</sub> H <sub>3</sub> N.C <sub>9</sub> H <sub>8</sub><br>Coniine (d.), I : 2, C <sub>8</sub> H <sub>10</sub> N.C <sub>2</sub> H <sub>7</sub><br>Cresol (o.), CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> OH<br>Cyanogen, C <sub>2</sub> N <sub>2</sub><br>Cymene (p.), CH <sub>3</sub> .C <sub>6</sub> H <sub>4</sub> .C <sub>3</sub> H <sub>7</sub><br>Dextrin, C <sub>12</sub> H <sub>20</sub> O <sub>10</sub><br>Diacetyl, CH <sub>3</sub> CO.COCH <sub>3</sub><br>Dichlor acetic acid. CHCl <sub>2</sub> .COOH<br>Diethyl amine, (C <sub>2</sub> H <sub>5</sub> ) <sub>2</sub> NC <sub>6</sub> H <sub>5</sub><br>, ketone, C <sub>2</sub> H <sub>5</sub> COC <sub>2</sub> H <sub>5</sub><br>Dimethyl amine, (CH <sub>3</sub> ) <sub>2</sub> HN<br>, tartrate, (CH <sub>3</sub> ) <sub>3</sub> C <sub>4</sub> H <sub>4</sub> O <sub>6</sub><br>Dinitrobenzene (m.), C <sub>6</sub> H <sub>4</sub> (NO <sub>2</sub> ) <sub>2</sub><br>Diphenyl, C <sub>6</sub> H <sub>5</sub> .C <sub>6</sub> H <sub>5</sub><br>Diphenylamine, (C <sub>6</sub> H <sub>5</sub> ) <sub>2</sub> HN | 148.11                      | at./temp.<br>$1^{*}27 - 1^{*}61$<br>$1^{*}39/75^{\circ}$<br>$1^{*}1062/20^{\circ}$<br>$1^{*}90$<br>$1^{*}49887/15^{\circ}$<br>$9275/16^{\circ}$<br>$1^{*}247$<br>$1^{*}55/24^{\circ}$<br>$1^{*}542/18^{\circ}$<br>$953/22^{\circ}$<br>$849/25^{\circ}$<br>$1^{*}052/15^{\circ}$<br>$1^{*}14/0^{\circ}$<br>{liq. *866/17°<br>$A. 52^{*}3$<br>$852/25^{\circ}$<br>$1^{*}04$<br>$9734/22^{\circ}$<br>$1^{*}522/15^{\circ}$<br>$706/20^{\circ}$<br>$94/18^{\circ}$<br>$8231/12^{*}4^{\circ}$<br>$686/-6^{\circ}$<br>$1^{*}341/15^{\circ}$<br>$1^{*}546/17^{\circ}$<br>$1^{*}159$                                                                                                                        | at./mms.<br>-45.5 H<br>+47<br>-63.3<br>250<br>-2<br>133<br>-7.5<br>153<br>-2.5<br>30<br>liquid<br>-35<br>-73.5<br>-4<br>-40<br>-34<br>-42<br>-96<br>48<br>91<br>70.5<br>54 | at./mms.<br>186°<br>132, Y.<br>97'5<br>61'2<br>448°/760<br>176<br>300<br>129°/20<br>decomp.<br>180<br>170<br>190'1<br>dec.<br>-20'7<br>175<br>-<br>87'7<br>190<br>55'5<br>216<br>101'5<br>7'2<br>280<br>302'8/770<br>255<br>302 |
| Epichlorhydrine, $C_3H_5ClO$<br>Erythrite, $(CH_2OH . CHOH)_2$<br>Ethane, $CH_3 . CH_3$<br>Ether, $C_2H_5OC_2H_5$<br>Ethyl acetate, $CH_3CO_2 . C_3H_5$<br>aceto-acetate, $CH_3COCH_2CO_2$<br>$C_2H_5$<br>anine, $C_2H_5H_2N$<br>anine, $C_2H_5H_2N$<br>benzoate, $C_8H_5CO_2 . C_2H_5$<br>benzoate, $C_8H_5CO_2 . C_2H_5$<br>benzoate, $C_8H_5CO_2 . C_2H_5$<br>boutyrate, $C_3H_7 . COOC_2H_5$<br>chloride, $C_2H_5 . CN$<br>cyanide, $C_2H_5 . CN$<br>formate, $HCOOC_2H_5$<br>iodide, $C_2H_5I$<br>mercaptan, $C_2H_5SH$<br>mitrate, $C_2H_5NO_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 92'52<br>122'10             | 1'203/0°<br>1'45/17°<br>liq.'446/0°A.30<br>'7135/20°<br>'9005/20°<br>1'028/20°<br>'79360/15°<br>'699/8°<br>1'05/16°<br>1'45/15°<br>'879/20°<br>'921/0°A.64'22<br>'794/7°<br>'9226/20°<br>1'944/14°<br>'890/0°<br>'839/20°<br>1'116/15°                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -25°6<br>126                                                                                                                                                               | 116<br>330<br>88<br>34.6, Y.<br>77.1<br>181<br>78.3, Y.<br>16.6<br>211.2<br>38.4<br>120.6<br>12.5<br>97<br>54.3, Y.<br>72.3<br>110.1<br>36.2<br>87                                                                              |

dec. or decomp. = decomposes. H., Henning. Y., Young, Journ. de Phys., Jan., 1909. \* Other form - 40°.

| ORGANIC C<br>For general                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |                                                                                                                                                        |                                                                                                                                                |                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Substance and Formula.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Formula weight $(0 = 16)$ .                                             | Density,<br>gms./c.c.                                                                                                                                  | Melting<br>Point, ° C.                                                                                                                         | Boiling<br>Point, °C.                                                                              |
| Ethyl propionate, $C_2H_5CO_2C_2H_5$ .<br>, salicylate, $C_6H_4(HO)CO_2 \cdot C_2H_5$<br>, sulphide, $(C_2H_5)_2S \cdot \ldots \cdot$<br>, tartrate (d.), $C_4H_4O_8(C_2H_5)_2 \cdot \ldots$<br>, valeriate, $C_4H_9CO_2C_2H_5 \cdot \ldots$<br>Ethylene, $CH_2 : CH_2 \cdot \ldots \cdot$<br>, bromide, di-, $CH_2Br \cdot CH_2Br$<br>, chloride, di-, $CH_2CI \cdot CH_2CI$<br>, oxide, $<(CH_2)_2O \cdot \ldots \cdot$<br>Ethylidene chloride, $CH_3 \cdot CHCl_2 \cdot \ldots$                                                                                                      | 98.90<br>44.04<br>98.96                                                 | at./temp.<br>'8901/20°<br>I'138/15°<br>'837/20°<br>I'206/20°<br>'876/20°<br>{'565/-102'5°<br>A. 28'32<br>2'1838/18°<br>I'28/0°<br>'897/0°<br>I'186/12° | $ \begin{array}{c} \text{at./mms.} \\ -74'25 \\ 1'3 \\ -99'5 \\ 17 \\ - \\ \end{array} \\ -169 \\ 9'97 \\ -35'3 \\ -111 \\ -96'7 \end{array} $ | at./mms.<br>99'0°<br>231'5<br>92'6<br>280<br>144'5<br>- 102'7<br>131'6<br>83'7<br>13'5/746<br>59'9 |
| Eucalyptol, C <sub>10</sub> H <sub>18</sub> O<br>Eugenol, C <sub>6</sub> H <sub>3</sub> . (OH). OCH <sub>3</sub> . C <sub>8</sub> H <sub>5</sub><br>Fluor benzene, C <sub>6</sub> H <sub>5</sub> F<br>Formic acid, H. COOH<br>Formaldehyde, H. COH<br>Fructose (d.), CH <sub>2</sub> OH[CHOH] <sub>3</sub> CO-<br>CH <sub>2</sub> OH<br>Fumaric acid, (COOH.CH:) <sub>2</sub>                                                                                                                                                                                                           | 154'19<br>164'15<br>96'07<br>46'02<br>30'02<br>180'13<br>116'05         | ·927/20°<br>1·0620/25°<br>1·024/20°<br>1·218/20°<br>·815/-20°A.48<br>1·55/0°<br>1·625                                                                  | -2<br>liquid<br>-41.2<br>8.35°<br>-92<br>104<br>286                                                                                            | 176<br>247.5<br>85.2, Y.<br>100.5<br>-21<br>                                                       |
| Furfural, C <sub>4</sub> H <sub>3</sub> O. COH<br>Galactose (d.), CHO[CHOH] <sub>4</sub> CH <sub>2</sub> OH<br>Glucose (d.), CHO[CHOH] <sub>4</sub> CH <sub>2</sub> OH<br>+ H <sub>2</sub> O<br>Glutaric acid, COOH(CH <sub>2</sub> ) <sub>3</sub> COOH<br>Glycerine, OHCH <sub>2</sub> . CHOH. CH <sub>2</sub> OH<br>Glycocoll, glycine, CH <sub>2</sub> NH <sub>2</sub> COOH<br>Glycol, CH <sub>2</sub> OH. CH <sub>2</sub> OH<br>Glycollic acid, CH <sub>2</sub> OH. COOH<br>Clycoral CHO                                                                                            | 96'06<br>180'13<br>198'14<br>132'09<br>92'08<br>75'07<br>62'06<br>76'04 | 1.159/20°<br>1.159/20°<br>1.54-1.57<br>1.26/20°<br>1.161<br>1.125/25°                                                                                  | - 36'5<br>170<br>146<br>97'5<br>17<br><i>c</i> . 234<br>- 17'4<br>78                                                                           | 161<br>                                                                                            |
| Glyoxal, CHO . CHO<br>Glyoxalic acid, CHO . COOH+H <sub>2</sub> O .<br>Grape sugar. See Glucose.<br>Heptane (n.), CH <sub>3</sub> (CH <sub>2</sub> ) <sub>5</sub> CH <sub>3</sub> .<br>Hexane (n.), CH <sub>3</sub> (CH <sub>2</sub> ) <sub>4</sub> CH <sub>3</sub> .<br>, di-isopropyl, [(CH <sub>3</sub> ) <sub>2</sub> CH] <sub>2</sub> .<br>Hydrocyanic acid, HCN .<br>Indigo, C <sub>6</sub> H <sub>4</sub> $<_{\rm NH}^{\rm CO}>C:C<_{\rm NH}^{\rm CO}>C_6^{-1}$                                                                                                                  | 58.03<br>92.04<br>100.16<br>86.14<br>86.14<br>27.02                     | 1°14/20°<br>syrup<br>°6836/20°<br>°6595/20°<br>°6617/20°<br>°697/18°                                                                                   | -90.0<br>-94.3<br>-135<br>-14                                                                                                                  | 50'5°<br>with steam<br>98'4, Y.<br>69, Y.<br>58'1, Y.<br>26'1                                      |
| H <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 262.18<br>117.11<br>393.77<br>147.09<br>130.15<br>88.12                 | 1:35<br>4:08/17°<br><br>:8708/20°<br>:81/20°                                                                                                           | 390-2<br>52<br>119<br>201                                                                                                                      | subl. 156°<br>253-4<br>subl. & dec.<br>sublimes<br>140<br>131                                      |
| <ul> <li>isobutane, (CH<sub>3</sub>)<sub>2</sub>CHCH<sub>3</sub></li> <li>Isobutyl alcohol, (CH<sub>3</sub>)<sub>2</sub>CH . CH<sub>2</sub>OH</li> <li>maine, (CH<sub>3</sub>)<sub>2</sub>CH . CH<sub>2</sub>OH</li> <li>maine, (CH<sub>3</sub>)<sub>2</sub>CHCH<sub>2</sub>NH<sub>2</sub></li> <li>Isobutyric acid, (CH<sub>3</sub>)<sub>2</sub>CH . COOH</li> <li>Isopentane, (CH<sub>3</sub>)<sub>2</sub>CHCH<sub>2</sub>CH<sub>3</sub></li> <li>Isopropyl acetate, CH<sub>3</sub>COOCH(CH<sub>3</sub>)<sub>3</sub></li> <li>malcohol, (CH<sub>3</sub>)<sub>2</sub>HC(OH)</li> </ul> | 58'10<br>74'10<br>73'12<br>88'08<br>72'12<br>102'11<br>60'08            | *800/18°<br>*736/15°<br>*9516/20°<br>{ *6393/0°<br>*6196/20°<br>*917/0°<br>*789/20°                                                                    | $-134 \\ -145^{\circ} \\ -108'4 \\ -85'5 \\ -47 \\ -158'5 \\ -73'4 \\ -85'8$                                                                   | - 10'2<br>108'4<br>68<br>155'5<br>27'9<br>90-93<br>82'8                                            |
| d., dextro-rotatory (see p. 89) ; dec. or deco<br>Journ. de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | omp. = dee                                                              | composes ; subl.                                                                                                                                       |                                                                                                                                                |                                                                                                    |

| ORGANIC C<br>For general                                                                                            |                             |                                         |                             |                       |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------|-----------------------------|-----------------------|
| Substance and Formula.                                                                                              | Formula weight $(0 = 16)$ . | Density,<br>gms./c.c.                   | Melting<br>Point, °C.       | Boiling<br>Point, °C. |
|                                                                                                                     |                             | at./temp.                               | at./mms.                    | at./mms.              |
| Isopropyl amine, (CH <sub>3</sub> ) <sub>2</sub> CHNH <sub>2</sub><br>cyanide, (CH <sub>3</sub> ) <sub>2</sub> CHCN | 59.08                       | .690/18°                                | - 101'2                     | 33°                   |
| Isoquinoline, CeH4C3H3N.                                                                                            | 129'1                       | 1.008/30°                               | liquid<br>24 <sup>.</sup> 6 | 107-108<br>240        |
| Isovaleric acid, (CH3)2CHCH2COOH                                                                                    | 102 11                      | '931/20°                                | -51                         | 176.3                 |
| Lactic acid (i.), CH <sub>3</sub> CHOH . COOH .                                                                     | 90.06                       | 1.248/12                                | 18                          | 83/1 mm.              |
| Lactose. See Milk sugar.<br>Maleic acid, (COOH. CH:).                                                               | 116.05                      | 1.20                                    | 130                         | decomp.               |
| Malic acid (i.), COOH . CHOH . CH2-                                                                                 | 10.00                       | 1.60/200                                |                             |                       |
| Malonic acid, COOH. CH <sub>2</sub> . COOH.                                                                         | 134'07<br>104'05            | 1.60/20°                                | 130-1<br>132                | decomp.               |
| Maltose, $C_{13}H_{23}O_{11} + H_{3}O$                                                                              | 360.25                      | 1.24/17°                                | -                           |                       |
| Mercury methyl, (CH <sub>3</sub> ) <sub>3</sub> Hg                                                                  | 230.66                      | 3'07                                    | liquid                      | 96                    |
| Mesitylene, I: 3: 5, C <sub>6</sub> H <sub>3</sub> (CH <sub>3</sub> ) <sub>3</sub><br>Methane, CH <sub>4</sub> .    | 120.14<br>16.04             | •869/10°<br>liq. •416/-164°             | - 54'4<br>- 184             | 164.5                 |
| Methyl alcohol, CH3OH                                                                                               | 32'04                       | *7958/15°                               | - 94'9                      | 64'7, Y.              |
| , acetate, $CH_3COO: CH_3$                                                                                          | 74'06                       | .9367/16°                               | - 101.3                     | 57'1                  |
| " amine, CH <sub>3</sub> H <sub>2</sub> N                                                                           | 31.06                       | ${}^{699/-11^{\circ}}_{A. 32^{\circ}4}$ | -92.2                       | -6.7/756              |
| " borate, (CH <sub>3</sub> ) <sub>3</sub> BO <sub>3</sub>                                                           | 104.09                      | '94/0°                                  | -                           | 65                    |
| ,, chloride, $CH_3Cl$                                                                                               | 50°47<br>46°06              | '920/18° A.50'1<br>1'617 A. 46'8        | -91.2                       | -24'1                 |
| , ethyl ether, $CH_3$ . O. $C_2H_3$ .                                                                               | 60.08                       | -697                                    |                             | 7'9                   |
| , formate, HCOO.CH <sub>3</sub>                                                                                     | 60.04                       | '9745/20°                               | - 99'75                     | 31.9, Y.              |
| , iodide, CH <sub>3</sub> I<br>isobutyrate,(CH <sub>3</sub> ) <sub>2</sub> CHCOOCH <sub>3</sub>                     | 141.95                      | 2°285/15°<br>*8890/20°                  | -66'I<br>-84'7              | 42'3<br>92'3          |
| " mercaptan, CH <sub>3</sub> . SH                                                                                   | 48'10                       | .868                                    | - 130.5                     | 5.8/752               |
| " nitrate, CH3. NO3                                                                                                 | 77'04                       | 1'217/15°                               | liquid                      | 65 explodes           |
| ", nitrite, CH <sub>3</sub> . NO <sub>2</sub>                                                                       | 61'04<br>48'09              | .991/12°                                | - 26.5<br>gas               | -12                   |
| , propionate, $C_2H_5COO \cdot CH_4$ .                                                                              | 88.08                       | *9151/20°                               | -87.5                       | 79'7                  |
| " salicylate, C.H.(OH)COOCH3                                                                                        | 152.1                       | 1.185/12°                               | -8.3                        | 224                   |
| " sulphide, (CH <sub>3</sub> ) <sub>2</sub> S<br>Methylene bromide, CH <sub>2</sub> Br <sub>2</sub>                 | 62'11<br>173'86             | *845/21°                                | -83.2                       | c. 38<br>98.5         |
| Milk sugar, $C_{12}H_{22}O_{11} + H_2O$ .                                                                           | 360.25                      | 2°493<br>1°525/20°                      | - 52.8<br>203 dec.          | decomp.               |
| Morphine, $C_{17}H_{19}NO_3 + H_2O$                                                                                 | 303'26                      | 1'32                                    | 243-4                       | decomp.               |
| Naphthalene, $C_{\mathfrak{a}}H_{\mathfrak{4}}: C_{\mathfrak{4}}H_{\mathfrak{4}}$<br>Naphthol (a), $C_{19}H_7OH$    | 128'11<br>144'11            | 1°152/15°<br>1°224/4°                   | 80                          | 217.96<br>c. 279      |
| Naphthol (a), $C_{10}H_7OH$ .                                                                                       | 14411                       | 1 224/4                                 | 95<br>50                    | 300                   |
| Nicotine (l.), C10H14N2                                                                                             | 162.18                      | 1.01/20°                                | dec. 250°                   | 246.7/745             |
| Nitro benzene, $C_{\mathfrak{s}}H_{\mathfrak{s}}NO_{\mathfrak{s}}$                                                  | 123.08                      | 1°19868/25°<br>1°056                    | 5.67                        | 210.85                |
| ,, ethane, $C_{3}H_{3}NO_{3}$ , methane, $CH_{3}NO_{3}$                                                             | 61.04                       | 1°144/15°                               | <-50<br>-29'2               | 101'7                 |
| Octane (n.), CH <sub>3</sub> (CH <sub>2</sub> ) <sub>6</sub> CH <sub>3</sub>                                        | 114.18                      | ·7062/15°                               | - 56.6                      | 125.8, Y.             |
| Oleic acid, CH <sub>3</sub> (CH <sub>2</sub> ) <sub>7</sub> CH:CH(CH <sub>3</sub> ) <sub>7</sub> -                  | 282.38                      | ·891/12°                                |                             | 286/100               |
| Palmitic acid, CH <sub>3</sub> (CH <sub>2</sub> ) <sub>14</sub> COOH                                                | 256.34                      | ·846/7.6°                               | 14<br>62.6                  | 278/100               |
| Paraldehyde, (CH <sub>3</sub> . HCO) <sub>3</sub>                                                                   | 132.13                      | '994/20°                                | 10.2                        | 124                   |
| Penta methylene, (CH <sub>2</sub> )s                                                                                | 70'11                       | '751/20°                                |                             | 50.6                  |
| NH <sub>a</sub> (CH <sub>a</sub> ) <sub>b</sub> NH <sub>a</sub> · · · · · ·                                         | 102.16                      | '917/0°                                 | c. 15                       | 178                   |
| Pentane (n.), CH <sub>3</sub> (CH <sub>3</sub> ) <sub>8</sub> CH <sub>3</sub>                                       | 72.12                       | •6263/20°                               | - 131.5                     | 36·2°, Y.             |
| dec. or decomp. == decomposes; 1., lævo-<br>J                                                                       | rotatory (s<br>an., 1909.   | ce p. 89); Y., Y                        | oung, Journ.                | de Phys.,             |

| ORGANIC C<br>For general                                                                                                                                    |                             |                                |                       |                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------|-----------------------|------------------------|
| Substance and Formula.                                                                                                                                      | Formula weight $(0 = 16)$ . | Density,<br>gms./c.c.          | Melting<br>Point, °C. | Boiling<br>Point, ° C. |
|                                                                                                                                                             |                             | at./temp.                      | at./mms.              | at./mms.               |
| Phenetol, $C_{6}H_{5}OC_{3}H_{5}$                                                                                                                           | 122'12                      | °963/25°                       | - 34                  | 171                    |
| Phenol, C.H. OH                                                                                                                                             | 94'08<br>136'1              | 1.06/33°<br>1.23               | 42'7<br>76'5          | 181.5                  |
| " cyanide, CeHsCN                                                                                                                                           | 103.00                      | 1.008/17°                      | -17                   | 190                    |
| " hydrazine, C.H.HN. NH2 .                                                                                                                                  | 108.1                       | 1 098/20°                      | 19'35                 | 243'5                  |
| Phloroglucin, 1: 3: 5.C <sub>6</sub> H <sub>8</sub> (OH) <sub>8</sub> 2H <sub>2</sub> O                                                                     | 162.11                      | -                              | 218 anhy.             | sublimes               |
| Phthalic acid, o. $C_6H_4(COOH)_2$ .<br>, anhydride, $C_6H_4 < (CO)_2 > 0$                                                                                  | 166.09<br>148.07            | 1.20<br>1.23/4°                | 180-200<br>128        | 284                    |
| Picoline (a), CH <sub>2</sub> . C <sub>5</sub> H <sub>4</sub> N                                                                                             | 93.10                       | . '933/22°                     | -69.9                 | 129                    |
| Picric acid, 1: 2: 4:6, C.H.OH(NO2)3                                                                                                                        | 229'08                      | 1.262/10°                      | 122.5                 | explodes               |
| Pinene. See Turpentine.                                                                                                                                     |                             |                                |                       | - 1117                 |
| Propane, CH <sub>2</sub> . CH <sub>2</sub> . CH <sub>3</sub> Propionic acid, CH <sub>2</sub> . CH <sub>3</sub> . COOH .                                     | 44°08<br>74°06              | '535<br>'9870/20°              | - 187.8               | -44'I<br>140           |
| Propyl acetate (n.), CH3COO. C3H7.                                                                                                                          | 102.11                      | *8884/20°                      | -92'5                 | 101.6                  |
| " alcohol (n.), CH3CH3CH3. OH                                                                                                                               | 60.08                       | *804/20°                       | - 127                 | 97'2                   |
| " chloride (n.), CH 3CH 2CH 2CI .                                                                                                                           | 78.53                       | ·891/18°                       | - 122.8               | 46.5                   |
| " formate, H. COO. C <sub>3</sub> H <sub>7</sub><br>" iodide, CH <sub>3</sub> . CH <sub>2</sub> . CH <sub>2</sub> I                                         | 88'08<br>170'0              | *9058/20°<br>1*745/20°         | -92'9<br>-101'4       | 80'9, Y.<br>102        |
| Propylene, CH <sub>3</sub> . CH <sub>2</sub> . CH <sub>2</sub> I                                                                                            | 42.06                       | A.43'36                        | - 185'2               | - 50'2                 |
| Pseudo-cumene, I: 2: 4, C.H.(CH.).                                                                                                                          | 120'14                      | ·8748/20°                      | - 57'4                | 169.8                  |
| Pyridine, C <sub>s</sub> H <sub>s</sub> N                                                                                                                   | 79'08                       | ·985/15°                       | -42                   | 115.4                  |
| Pyrogallol (—ic acid, or "pyro"),<br>1:2:3, C.H.(OH):                                                                                                       | 126.08                      | 1.46/40°                       | 122                   | 203                    |
| Pyrrol, (CH) >NH                                                                                                                                            | 67'07                       | '967/21°                       | 133<br>liquid         | 293<br>131             |
| Quinoline, C.H. < CH · CH · CH · · · · ·                                                                                                                    | 129'11                      | 1'094/20°                      | - 22.6                | 241                    |
| Quinine, CaoHatNaOa                                                                                                                                         | 324.31                      | -                              | anhy. 174'9           | -                      |
| ,, sulphate, $(C_{20}H_{24}N_{2}O_{2})_{2}$ .<br>$H_{2}SO_{4} + 7H_{2}O$ .                                                                                  | 872.81                      | -                              | 205, dry              | -                      |
| <b>R</b> acemic acid, $(COOH \cdot CH(OH))_{2}$<br>+ $H_{2}O$                                                                                               | 168.08                      | 1.69/7°                        | 205                   | _                      |
| Rochelle salt (d.), KNaC, H,O. 4H,O                                                                                                                         | 282.22                      | 1.77                           | -                     | _                      |
| Rosaniline (p.), (C.H.NH2)3COH                                                                                                                              | 305.28                      | -                              | 188-9                 | -                      |
| Saccharin, C. H. COSO2> NH                                                                                                                                  | 183.12                      |                                | 220 dec.              | sublimes               |
| Salicylic acid, OH . C.H. COOH .<br>Sodium ethyl, NaC <sub>2</sub> H <sub>5</sub>                                                                           | 138°08<br>52°05             | 1.48/4°                        | 158/760<br>27         | sublines               |
| Stearic acid, CH <sub>3</sub> (CH <sub>2</sub> ) <sub>16</sub> COOH                                                                                         | 284.38                      | ·843/80°                       | 69.3                  | 291/100                |
| Stearine, $(C_{18}H_{35}O_2)_3C_3H_5$                                                                                                                       | 891.16                      | ·924/65°                       | 71-1.2                | - 1                    |
| Succinic acid, COOH(CH <sub>2</sub> ) <sub>2</sub> COOH .                                                                                                   | 118.07                      | 1.264/15°                      | 185                   | 235                    |
| Sugar, cane-, C <sub>12</sub> H <sub>22</sub> O <sub>11</sub> .<br>Sulphanilic acid (p.), NH <sub>2</sub> .C <sub>6</sub> H <sub>4</sub> .SO <sub>3</sub> H | 342.24                      | 1.2877/18°                     | 189                   |                        |
| $12H_{2}O$                                                                                                                                                  | 209.18                      | -                              | chars                 | -                      |
| Sulphonal, $(CH_3)_2C(SO_2C_2H_5)_2$<br>Tartaric acid (i. or meso), COOH-                                                                                   | 228.22                      | -                              | 125                   | 300 dec.               |
| [CHOH] <sub>2</sub> COOH.H <sub>2</sub> O                                                                                                                   | 168.08                      | 1.62                           | 142 anhy.             | -                      |
| " " $(d.), COOH(CHOH)_2$ -<br>COOH                                                                                                                          | 150'07                      | 1.76/7° P.                     | 170                   | -                      |
| " " (1.), COOH(CHOH) <sub>2</sub> -<br>COOH                                                                                                                 | 150.07                      | 1.76                           | 170                   | _                      |
| Terephthalic acid (p.), CeH4(COOH)2.                                                                                                                        | 166.09                      |                                | sublimes              | -                      |
| Terpenol (γ), C <sub>10</sub> H <sub>18</sub> O                                                                                                             | 154.19                      | -                              | 70                    | -                      |
| anhy. = anhydrous ; d. = dextro-rotator<br>l., lævo-rotatory (se                                                                                            | ry (see p. 8<br>ee p. 89) ; | 89) ; P., Perkin<br>Y., Young. | ; dec. = decon        | nposes ;               |

| ORGANIC COMPOUNDS (contd.)<br>For general heading, see p. 130.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Substance and Formula.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Formula<br>weight<br>(0 = 16).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Density,<br>gms./c.o.                                                                                                                                                                                                                                                                                                | Melting<br>Point, ° C.                                                                                                                                                                                                                                                                               | Boiling<br>Point, ° C.                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| Terpineol, a, $C_{10}H_{17}HO$<br>Tetrabromethylene, $CBr_{9}$ . $CBr_{9}$<br>Theobromine, $C_{7}H_{8}N_{4}O_{2}$<br>Thiooyanic acid, (HCNS)<br>Thiophene, (CH) <sub>4</sub> S<br>Thiourea, NH <sub>2</sub> . CS. NH <sub>2</sub><br>Thymol, 4: 1: 3, (CH <sub>3</sub> ) <sub>2</sub> : CH . C <sub>6</sub> H <sub>3</sub> -<br>(CH <sub>3</sub> )OH<br>Toluene, C <sub>6</sub> H <sub>5</sub> . CH <sub>3</sub><br>Toluene, C <sub>6</sub> H <sub>5</sub> . CH <sub>3</sub><br>Toluene, C <sub>6</sub> H <sub>5</sub> . CH <sub>3</sub><br>Toluidine (o.), CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> . NH <sub>2</sub><br>", (p.), CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> . NH <sub>2</sub><br>", (p.), CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> . NH <sub>2</sub><br>", (p.), CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> . NH <sub>2</sub><br>", (p.), CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> . NH <sub>2</sub><br>", (p.), CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> . NH <sub>2</sub><br>", (p.), CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> . NH <sub>2</sub><br>", (p.), CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> . NH <sub>2</sub><br>", (p.), CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> . NH <sub>2</sub><br>", (p.), CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> . NH <sub>2</sub><br>", (p.), CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> . NH <sub>2</sub><br>", (p.), CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> . NH <sub>2</sub><br>", (p.), CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> . NH <sub>2</sub><br>", (C <sub>4</sub> H <sub>5</sub> ) <sub>3</sub> As<br>", arsine, (C <sub>4</sub> H <sub>5</sub> ) <sub>3</sub> As<br>", arsine, (CH <sub>3</sub> ) <sub>3</sub> As<br>", arsine, (CH <sub>3</sub> ) <sub>3</sub> As<br>", bismuth, (CH <sub>3</sub> ) <sub>3</sub> Bi<br>", carbinol, (CH <sub>3</sub> ) <sub>3</sub> C. OH.<br>", phosphine, (CH <sub>3</sub> ) <sub>3</sub> Bi<br>", (NO <sub>3</sub> ) <sub>3</sub><br>Turpentine (pinene), C <sub>10</sub> H <sub>16</sub><br>", (NO <sub>3</sub> ) <sub>3</sub><br>", (m), ", (m | 154'19<br>343'69<br>180'14<br>59'08<br>84'11<br>76'12<br>150'16<br>178'82<br>92'10<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'12<br>107'13 | at /temp.<br>'936/20°<br><br>1'061/15°<br>1'42<br>'994/0°<br>1'314/0°<br>'866/20°<br>'999/20°<br>1'046/-<br>1'63/61°<br>'725/15°<br>1'15/17°<br>'812/15°<br>'673/0°<br>1'124<br>2'30/18°<br>'786/20°<br>>1<br>1'688<br>'865/15°<br>1'32<br>'943/20°<br>'8811/20°<br>'8658/20°<br>'8611/20°<br>1'182/18°<br>1'386/10° | at./mms.<br>35°<br>53<br>33°<br>5<br>-4°<br>18°<br>5°<br>-94'5<br>$a-21,\beta-15'5$<br>45<br>57'5<br>-114'8<br>liquid<br>liquid<br>liquid<br>121'2<br>-<br>132<br>-58'5<br>-28<br>-54<br>15<br>-28<br>-40<br>-28<br>-40<br>-28<br>-40<br>-28<br>-40<br>-40<br>-40<br>-40<br>-40<br>-40<br>-40<br>-40 | at./mma.<br>218°<br>100/15<br>subl.<br>200 dec.<br>84<br><br>232<br>78<br>111<br>1997<br>200'3<br>195<br>89<br>{140/736<br>dec.<br>127/744<br>3'5<br>52'8<br>110<br>82'9<br>41<br>decomp.<br>159<br>decomp.<br>186'4<br>142'6<br>139'8<br>138<br>118<br>46 |  |  |  |  |  |  |

dec. or decomp. = decomposes.

#### ELECTROCHEMICAL EQUIVALENTS

Faraday's laws of electrolysis are expressed by m = izt, where m is the mass in grammes of an ion liberated in t secs. by a current of i amperes; z is the electrochemical equivalent of the ion, *i.e.* the mass liberated by I ampere in I second.

chemical equivalent of the ion, *i.e.* the mass liberated by I ampere in I second. The exactness of Faraday's laws is obscured in many cases by secondary chemical reactions, and the values of the different electrochemical equivalents are practically always derived by calculation from that of silver, which has been accurately determined (see p. 11). Electrochemical equivalents are proportional to chemical equivalents.

Chemical equivalent = atomic weight of element

|          |  | - |     | - vale      | inc | y o  | re | lement for el | ecu  | roiyte used   |
|----------|--|---|-----|-------------|-----|------|----|---------------|------|---------------|
| Element. |  |   | Che | mical equiv | ale | ent. |    | z.            |      |               |
| Silver . |  |   |     | 107.88/1    |     |      |    | 0'0011183 g   | m. : | sec1 amp1     |
| Copper.  |  |   |     | 63.57/2     | •   |      |    | 0.0003295     | ,,   | **            |
| Hydrogen |  |   |     | 1.008/1     |     |      |    | 0'00001045    |      | " (see p. 112 |

L

#### SOLUBILITIES OF GASES IN WATER

#### AIR IN WATER

1000 c.cs. of water saturated with air at a pressure of 760 mms. contain the following volumes of dissolved oxygen, etc., in c.cs. at 0° and 760 mms. Winkler 1904.

|                                             | Temperature of Water.       |                             |                             |                             |                             |                                                                             |  |
|---------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------------------------------------------------------|--|
| 0° C.                                       | <b>5</b> °                  | 10°                         | 15°                         | 20°                         | 25°                         | 30°                                                                         |  |
| <br>c.cs.<br>10'19<br>19'0<br>29'2<br>34'9% | 8.9<br>16.8<br>25.7<br>34.7 | 7'9<br>15'0<br>22'8<br>34'5 | 7.0<br>13.5<br>20.5<br>34.2 | 6.4<br>12.3<br>18.7<br>34.0 | 5.8<br>11.3<br>17.1<br>33.8 | 5 <sup>.3</sup><br>10 <sup>.4</sup><br>15 <sup>.7</sup><br>33 <sup>.6</sup> |  |

#### GASES IN WATER

S indicates the number of c.cs. of gas measured at 0° and 760 mms. which dissolve in 1 c.c of water at the temperature stated, and when the pressure of the gas plus that of the water-vapour is 760 mms.

A indicates the same, except that the gas itself is at the uniform pressure of 760 mms. when in equilibrium with water. (For other values, see p. 130) See Constantes Physiques, 1913.

| Gas.                     | 0° C.         | 10°          | 15°   | 20°   | <b>30°</b> | 40°  | 50°   | 60°   |
|--------------------------|---------------|--------------|-------|-------|------------|------|-------|-------|
| Ammonia, A               | c.cs.<br>1300 | 910          | 802   | 710   | 595/28°    | _    | _     |       |
| Argon, A                 | .058          | '045         | .040  | .037  | '030       | .027 | -     |       |
| Carbon dioxide, A        | 1.713         | I'194        | 1.010 | .878  | .66        | .53  | .44   | .36   |
| Carbon monoxide, A       | .035          | .028         | '025  | .023  | '020       | .018 | .010  | '015  |
| Chlorine, S              | -             | 3.09         | 2.63  | 2'26  | 1.77       | 1.41 | 1'20  | 1.0   |
| Helium, A                | .0120         | '0144        | '0139 | .0138 | .0138      |      | '0140 |       |
| Hydrogen, A              | '0215         | .0198        | '0190 | .0184 | -          |      | -     | -     |
| Hydrochloric acid, S     | 506           | 474          | 458   | 442   | 411        | 386  | 362   | 339   |
| Nitrogen, A              | .0239         | .0196        | '0179 |       |            |      | .0106 | '0100 |
| Nitrous oxide, A         | 1.02/2°       | .88          | '74   | .63   |            | -    |       | -     |
| Nitric oxide, A          | .074          | .057         | '051  | '047  | '040       | '035 | ·031  | '029  |
| Oxygen, A                | .049          | .038         | '034  | '03I  | .026       | '023 | '021  | '019  |
| Sulphuretted hydrogen, A | 4.68          | 3'52         | 3.02  | 2.67  | -          | -    | -     | -     |
| Sulphur dioxide, S       | 79.8          | 3.22<br>56.6 | 47'3  | 39'4  | 27.2       | 18.8 | -     | -     |

Ne, '0147/20°; Kr, '073/20°; Xe, '1109/20° - Antropoff, 1910.

#### MUTUAL SOLUBILITIES OF LIQUIDS

The data for the uppermost layer of the two solutions in equilibrium are given in the first line in each case. The pressure in some cases exceeds one atmosphere. Numbers are grams per 100 grams of solution. (From data in Seidell's "Solubilities.")

| Liquids.                                                                                                                  | 0°C.       | 10 <sup>°</sup> | <b>2</b> Ô  | 30 <sup>°</sup>        | 40°          | 50 <sup>°</sup> | <b>6</b> 0 | 70 <sup>°</sup> 8 | 30 0        | 00 |
|---------------------------------------------------------------------------------------------------------------------------|------------|-----------------|-------------|------------------------|--------------|-----------------|------------|-------------------|-------------|----|
| {Water in ether; ethereal layer<br>Ether in water; aqueous layer                                                          | 1.0<br>1.5 | 1·1<br>8·7      | 1.2<br>6.5  | 1.3                    | 1'5<br>4'5   | 1.7<br>4.1      | 1.8<br>3.7 | 2.0 2<br>3.2 2    |             | _  |
| {Aniline (C <sub>6</sub> H <sub>5</sub> NH <sub>2</sub> ) in water ; aqueous layer<br>Aniline in water ; aniline layer    | -          | _               | 3°2<br>95'5 | -                      | 3°5<br>95    | -               | 3·8<br>95  | - 4               |             | 6  |
| {Phenol ( $C_{s}H_{s}OH$ ) in water; aqueous layer<br>Phenol in water; phenol layer                                       | _          | 7°5<br>75       |             |                        |              |                 |            | 33 <sup>.</sup> 4 | tem<br>68°. | p. |
| {Triethylamine in water ; amine layer<br>Triethylamine[N(C <sub>2</sub> H <sub>8</sub> ) <sub>3</sub> ]in aqueous layer   | 51.9)      | at<br>18°.6     |             | 97<br>5 <sup>.</sup> 8 |              |                 | 96<br>2°2  |                   |             |    |
| {CS <sub>2</sub> in methyl alcohol ; alcoholic layer .<br>CS <sub>2</sub> in CH <sub>2</sub> OH ; carbon bisulphide layer | -          | 45<br>98        | 51<br>97    |                        | 80°5<br>80°5 | } <sup>at</sup> | crit       | t. tem            | р.          |    |

#### SOLUBILITIES OF SOLIDS IN WATER

s = number of grams of anhydrous substance which when dissolved in 100 grams of water make a saturated solution at the temperature stated.

p = no. of grams of anhydrous substance per 100 grams of saturated **solution**. The formula given is that of the solid phase which is in equilibrium with the solution. (See Seidell's "Solubilities," New York, 1916, where the most complete and accurate data will be found for solubilities.) For other solutions, see p. 130.

| Substance.                                                                                |           | 0° <b>C</b> . | 10°                  | 15°    | 20°            | 40°                 | 60°              | 80°                | 100°          |
|-------------------------------------------------------------------------------------------|-----------|---------------|----------------------|--------|----------------|---------------------|------------------|--------------------|---------------|
| Am. chloride, NH4Cl                                                                       | s         | 29.4          | 33'3                 | 35.2   | 37'2           | 45.8                | 55'2             | 65.6               | 77'3          |
| Barium chloride,<br>BaCl <sub>2</sub> . 2H <sub>2</sub> O<br>Barium hydrate,              | s         | 31.6          | 33'3                 | 34.4   | 35'7           | 40.7                | 46.4             | 52.4               | 58.8          |
| Ba(OH) <sub>2</sub> .8H <sub>2</sub> O .                                                  | s         | 1.67          | 2.48                 | 3.23   | 3.89           | 8.22                | 20'9             | 101'4              | -             |
| Bromine (liquid), Br.                                                                     | s         | 4.22          | 3'4                  | 3.25   | 3'20           | -                   | -                | -                  | -             |
| Cadmium sulphate,                                                                         |           |               | -                    |        |                | - 0.4               | 0                |                    |               |
| CdSO <sub>4</sub> .8/3H <sub>2</sub> O .<br>Ca.hydrate, Ca(OH),                           | s<br>s    | 76.5          | 76.0                 | 76.3   | 76.6           | 78.5                | 83.7             | 69.7 °<br>'094     | 60.77*        |
| Copper sulphate,                                                                          | 3         | 105           | 1/0                  | 1/0    | 105            | 141                 | 110              | 094                | ·077          |
| CuSO4.5H2O                                                                                | s         | 14'3          | 17.4                 | 18.8   | 20'7           | 28.5                | 40'0             | 55'0               | 75'0          |
| Li. carbonate, Li <sub>2</sub> CO <sub>3</sub>                                            | s         | 1.24          | I'43                 | 1.38   | 1.33           | 1.12                | 1.01             | .850               | '720          |
| Merc.chloride, HgCl <sub>2</sub>                                                          | p         | 3.20          | 4.20                 | 5.00   | 5'40           | 9.30                | 14'0             | 23'1               | 38.0          |
| Potass. chloride, KCl                                                                     | 5         | 27.6          | 31.0                 | 32.4   | 34.0           | 40'0                | 45'5             | 51.1               | 56.7          |
| Potass.bromide, KBr                                                                       |           | 53'5          | 59'5                 | 62.5   | 65.2           | 75'5                | 85.2             | 950                | 104           |
| Potassium iodide, KI                                                                      | S         | 127.5         | 136                  | 140    | 144            | 160                 | 176              | 192                | 208           |
| Potassium hydrate,                                                                        |           |               |                      |        | and the second |                     |                  |                    |               |
| KOH.2H2O                                                                                  | 5         | 97'0          | 103                  | 107    | 112            | 138 \$              | -                | -                  | 178§          |
| Potass.nitrate, KNO3                                                                      | 5         | 13.3          | 20.9                 | 25.8   | 32             | 64                  | 110              | 169                | 246           |
| Silv. nitrate, AgNO <sub>8</sub><br>Sodium carbonate,                                     | s         | 122           | 170                  | 196    | 222            | 376                 | 525              | 669                | 952           |
| Na2CO3. 10H2O .                                                                           | 5         | 7'0           | 12.5                 | 16.4   | 21.2           | 46'1                | 46.0             | 45.8               | 45'5          |
| Sod. chloride, NaCl                                                                       | S         | 35.7          | 35.8                 | 35'9   | 36.0           | 36.6                | 37               | 38                 | 39.0          |
| Sodium sulphate,                                                                          | -         | 557           | 55-                  | 33.9   | 500            | 500                 | 51               | 50                 | 390           |
| Na2SO, 10H2O .                                                                            | 5         | 5'0           | 9.0                  | 13.4   | 19.4           | 49 1                | 45 1             | 44 1               | 421           |
| Strontium chloride,                                                                       |           | -             |                      |        |                |                     |                  |                    |               |
| SrCl <sub>2</sub> .6H <sub>2</sub> O                                                      | s         | 43            | 48                   | 50     | 53             | 65                  | 82               | 91‡                | 101 \$        |
| Succinic acid,                                                                            |           |               |                      |        |                |                     |                  |                    | 1.00          |
| (CH <sub>2</sub> ) <sub>2</sub> (COOH) <sub>2</sub> .                                     | s         | 2.80          | 4.20                 | 5.7    | 6.9            | 16.2                | 35.8             | 70.8               | 125           |
| Sugar (Cane),                                                                             |           |               |                      |        |                |                     |                  |                    |               |
| $\tilde{C}_{12}H_{22}O_{11}$                                                              | 5         | 179           | 190                  | 197    | 204            | 238                 | 287              | 362                | 487           |
|                                                                                           | _         |               |                      |        |                |                     |                  |                    |               |
| <ul> <li>Solid phase becomes</li> <li>Becomes SrCl<sub>2</sub>. 2H<sub>2</sub></li> </ul> | Cd<br>O a | SO4. H2       | O at 74°.<br>§ Becon | es KOH | + 1<br>        | Becomes<br>at 32°.5 | Na,SO,<br>and KO | at 32°.38<br>H.H.O | 8.<br>at 50°. |

Becomes Na, CO3. H, O at 35°.

| PERCENTAGE COMPOSI | TION O | F DRY AT | MOSPHERIC AIR |  |
|--------------------|--------|----------|---------------|--|
|--------------------|--------|----------|---------------|--|

(Ramsay, Proc. Koy. Soc., 1908; G. Claude, Compt. Rend., 1909.)

|                                                                                                                                                 | 0,            | A    | CO2        | Kr                      | Xe           | Ne             | He              |                |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------|------------|-------------------------|--------------|----------------|-----------------|----------------|--|--|--|
| By weight .<br>By volume .                                                                                                                      | 75°5<br>78°05 | 23.2 | 1·3<br>'95 | •046 to •4<br>•03 to •3 | °0414<br>°05 | ·0,26<br>·0,59 | .0386<br>.03123 | •0456<br>•0840 |  |  |  |
| Leduc, 1917, weight % Kr 14×10 <sup>-6</sup> , Xe 3×10 <sup>-6</sup> , Ne 8'4×10 <sup>-4</sup> , He 7×10 <sup>-5</sup> , H 7×10 <sup>-6</sup> . |               |      |            |                         |              |                |                 |                |  |  |  |

| The numb                       |                                     |                   |                | MINERAL HA                                         |                                                   | e of hard       | ness.            |
|--------------------------------|-------------------------------------|-------------------|----------------|----------------------------------------------------|---------------------------------------------------|-----------------|------------------|
| Hardness.                      | Mineral.                            | Hard              | ness.          | Mineral.                                           | Hardness.                                         | Min             | eral.            |
| 1                              | Talc                                | E                 | 5              | Apatite                                            | 9                                                 | Coru            | ndum             |
| 2                              | Rock salt                           | 6                 |                | Felspar                                            | 10                                                | Diam            | ond              |
| 3                              | Calcspar<br>Fluor spar              | 7                 |                | Quartz<br>Topaz                                    | c. 2.5                                            |                 | er-nail          |
|                                | Fluor spar                          |                   |                | TOPAL                                              | c. 6.5                                            | Penk            | nife             |
| See Da                         | na's "System                        | of Mine           | eralogy        | <pre>HARDNESS (</pre>                              | ices, 1892, 1                                     | 1899, and       | l 1909.<br>1909. |
| Name and                       | Formula.                            | Density.          | Hard-<br>ness. | Name and                                           | Formula.                                          | Density.        | Hard-<br>ness.   |
| Albite, Na2A                   |                                     | c. 2.6            | 6-7            | Mica (comm                                         | ion, Musco-                                       | 2.2-3.1         | 2-2.5            |
| Amber (foss                    |                                     | 1.08              | 2-2.2          | vite),                                             | (0:0                                              |                 | manager (1)      |
| Anhydrite, (                   |                                     | 2.8-2.9           | 3-3.5          | K <sub>2</sub> O.3Al <sub>2</sub> O <sub>3</sub> . |                                                   | 017 017         | 0.5              |
| Anorthite, C<br>Apatite,       | $a_2Al_4Si_4O_{16}$ .               | c. 2.7<br>2.9-3.2 | 6-7            | Mica (Biotit<br>mica)                              | e, magnesia                                       | 27-31           | 2.2-3            |
|                                | F,OH)(PO.).                         | -95-              | ,              | Monazite,* ((                                      | CeLaDi)PO.                                        | 5               | 5'2              |
| Aragonite, (                   |                                     | 2.93              | 3'5-4          | (1-16% Th                                          | )                                                 |                 |                  |
| Augite,                        |                                     | 3.5-3.2           | 5-6            | Nepheline,                                         | 1                                                 | 2.2-2.6         | 5.5-6            |
| Mg,Fe,G<br>Barytes, He         | Ca, Al silicate                     | 415               | 2-215          |                                                    | KeAlsSigOse                                       | 2:2-2:5         | 6-7              |
| Darytes, He                    | BaSO,                               | 4.2               | 3-3.2          | Orthoclase,                                        | KALSI O                                           | 3.3-3.5         | 6                |
| Beryl, Be <sub>3</sub> A       |                                     | 2.6-2.7           | 7-8            | Pitchblende,                                       | * UsOs with (                                     | 6.4             | )                |
| Bröggerite,"                   | a pitch-                            |                   | (2-8%          | oxides of H                                        | b, and Ca,                                        | (mas-           |                  |
|                                | ich contains                        | U)                | Th)            | Fe,Bi,Mn,                                          | Mg, Cu, Si,                                       | sive)           | 5.5              |
| thorium                        | anar Icoland                        | 2.6-2.7           |                | Al, etc. (2                                        | 5-80 % U ;                                        | 9'7<br>(cryst.) |                  |
| spar, CaC                      | spar, Iceland                       | 20-27             | c. 3           | 1-6 % Th)<br>Pyrites (iron                         | FeS.                                              | 4.8-5.1         | 6-6.5            |
| Carnallite,                    | ~,                                  | 1.6               | I              |                                                    | per), CuFeS,                                      | 4.1-4.3         | 3.5-4            |
| KĆl.                           | MgCl <sub>2</sub> 6H <sub>2</sub> O | 100               |                | Pyrolusite, M                                      | InO <sub>2</sub>                                  | 4.8-5           | 2-5.5            |
| Carnotite,*                    |                                     | (c. 55%           | (yel-          |                                                    |                                                   | 2.2-5-5.8       | 7                |
|                                | 2V2O8.3H2O                          | U)                | low)           | Rock salt, N                                       |                                                   | 2.1-2.5         | 2-2.5            |
| Celestine, S<br>Cerussite, P   |                                     | 3.9<br>6.4        | 3-3.5          |                                                    |                                                   | 4.2-4.3         | 6-6.5            |
| Chalcolite,*                   |                                     | 3.4-3.6           | 2-2.5          | Serpentine,                                        |                                                   | c. 2.6          | 3-4              |
| Cu(UO <sub>2</sub> )(I         | PO,)2.8H2O;                         | (48% U)           | -              | Spinel, MgO                                        | Al <sub>2</sub> O <sub>3</sub>                    | 3.5-3.6         | 8                |
| Cléveite *                     |                                     | (0. 60%           | (c. 4%         | Sylvine, KCl                                       |                                                   | 1.9-2           | 2                |
|                                | tains Th & Y                        | U)                | Th)            | Talc, H <sub>2</sub> Mg3                           | Si4012                                            | 2.2-2.8         | I                |
| Corundum,<br>Dolomite, C       |                                     | 3.9-4.2           | 9              | Thorianite,*                                       |                                                   | 8-9.7           | 7<br>(black      |
| Felspar, Al                    |                                     | 2.8-2.9           | 3.5-4          |                                                    | (4-10% U;<br>contains He                          |                 | cubes)           |
| Flint ; agat                   |                                     | 2.6               | c. 6           | Thorite,* Th                                       | SiO, (1-9%                                        | 4.6             | (tetra-          |
| Fluorspar, F                   | luorite, CaF2                       | 3-3.3             | 4              | U; 40-60%                                          | (Th)                                              |                 | gonal)           |
| Galena, Pbs                    |                                     | 7.4-7.6           | 2-3            | Tourmaline,                                        | hydrated si-                                      | 2.9-3.3         | 7-7.5            |
| Gypsum, Ca                     | Pb,Ca,U,silic                       |                   | 05% 0          | ) licate and l                                     | porate of Al,                                     |                 |                  |
| Hæmatite, 1                    |                                     | 2'3               | 1.5-2          |                                                    | or Fe or Mg                                       | (53%            | (yel-            |
| Hornblende                     |                                     | 2.9-3.4           | 5-6            |                                                    | As, 0,12H20                                       | U)              | low)             |
| Ca, Mg, Fe, I                  | Na, Al, silicate                    |                   | -              | Uraninite * -                                      | - crystalline                                     |                 | octahe-          |
| Kainite, Mg                    | SO KCI3H,O                          |                   | -              | pitchblende                                        |                                                   |                 | dra)             |
| Kaolin, H, A<br>Kieserite, M   |                                     | 2.2               | I              | Uranite lime                                       |                                                   | 3-3.3           | 2-2.5            |
|                                | Lithia mica),                       | 2.55              | 3 2.5-4        | (50% U)                                            | (PO <sub>4</sub> ) <sub>2</sub> 8H <sub>2</sub> O |                 |                  |
|                                | i,K,Na)2Al2-                        | 1 203             | - 54           | Willemite, Z                                       | n <sub>s</sub> SiO,                               | 4               | 5                |
| Si <sub>3</sub> O <sub>9</sub> |                                     |                   |                | Wolfram, (F                                        | e, Mn) WO4.                                       | 7.1-7.9         | 5-5.5            |
| Limestone,                     |                                     | 2.2-2.8           | -              | Wollastonite                                       | , CaSiO <sub>3</sub> .                            | 2.7-2.9         | 4.5-5            |
| Magnesite,                     | MgCO <sub>s</sub>                   | 6.3               | 3.5-4.         |                                                    | Cu, U arse-                                       |                 | (tetra-          |
| Magnetite, Meerschaum          | · · · · · · ·                       | 4.9-5.2<br>c. 2.6 | 5.5-6.         |                                                    | iO                                                | U)              | gonal)           |
|                                | iO, . 2H,0 .                        | 0.20              | 2-2.5          | Zincblende,                                        |                                                   | 4'7             | 7.5              |
|                                | . of any .                          |                   |                | Encorence,                                         |                                                   | 139-42          | 3.2-4            |

### GRAVIMETRIC FACTORS

### FACTORS FOR GRAVIMETRIC ANALYSIS

Calculated with atomic weights for 1938. **Example.**—I gram Al<sub>2</sub>O<sub>3</sub> is chemically equivalent to ·529I gram Al, or I gram Al is equivalent to 1/·529I Al<sub>2</sub>O<sub>3</sub>. A table of reciprocals is given on p. 157. (See Van Nostrand's "Chemical Annual," London.)

| 1 part by weight of                                     | is equivalent<br>(by weight) to                       | 1 part by weight of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | is equivalent<br>(by weight) to                                    |
|---------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Aluminium.                                              |                                                       | Calcium (contd.)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    |
| Al <sub>2</sub> O <sub>3</sub>                          | ·5291 Al                                              | $Ca_3(PO_4)_2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·5422 CaO                                                          |
|                                                         | 3.356 Al <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> | $Mg_2P_2O_7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.3034 Ca.(PO.).                                                   |
| Ammonium.                                               | 5 5 5 5 TH 2(00 4/3                                   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $2.1844 \text{ Ca}_3(\text{PO}_4)_2$                               |
| N                                                       | 1.216 NH3                                             | Carbon.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 1044 Oug(1 O4/2                                                  |
|                                                         | 1.288 NH4                                             | Carbon.<br>CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.4847 BaCO3                                                       |
|                                                         | 3.819 NH4Cl                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.4847 BaCO <sub>3</sub><br>2.2743 CaCO <sub>3</sub>               |
| йн <sub>3</sub>                                         | 20058 NH OH                                           | Chlowing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = 2/43 Callo3                                                      |
| Antimore                                                | 2.058 NH4OH                                           | Arcl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | inter Cl                                                           |
| Antimony.                                               | Lucas CL O                                            | AgCl<br>NaCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •2474 Cl                                                           |
| Sb                                                      | 1.1971 Sb <sub>2</sub> O <sub>3</sub>                 | Naci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •6066 Cl                                                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$    | 1.3285 Sb2O5                                          | Chromium.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                    |
| SD <sub>2</sub> O <sub>3</sub>                          | 1.1098 Sb2O2                                          | Cr <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ·6843 Cr                                                           |
| Sb <sub>2</sub> O <sub>4</sub>                          | ·7919 Sb                                              | $\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $ | 1.3158 CrO <sub>3</sub>                                            |
|                                                         | ·9480 Sb <sub>2</sub> O <sub>3</sub>                  | Cobalt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    |
|                                                         | 1.0520 Sb2O2                                          | $\begin{array}{c} \text{Cobart.} \\ \text{Co} & \cdot & \cdot & \cdot \\ \text{Co}_3\text{O}_4 & \cdot & \cdot & \cdot \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.2715 CoO                                                         |
| Arsenic.                                                |                                                       | $Co_3O_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·7342 Co                                                           |
| As <sub>2</sub> O <sub>3</sub>                          | ·7574 As                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·0330 COU                                                          |
|                                                         | 1.1618 As2O5                                          | Co(NO <sub>2</sub> ) <sub>3</sub> .(KNO <sub>2</sub> ) <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·1303 Co                                                           |
| As <sub>2</sub> O <sub>5</sub>                          | .6519 As                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·1657 CoO                                                          |
| MgNH4AsO4.1H2O                                          | ·3937 As                                              | (CoSO4)2. (K2SO4)3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·1416 Co                                                           |
|                                                         | ·5198 As203                                           | Copper.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    |
| " " "<br>Mg <sub>2</sub> As <sub>2</sub> O <sub>7</sub> | ·6039 As203                                           | Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1:2517 CuO                                                         |
| Mg-As-O-                                                | ·4826 As                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 2317 000                                                         |
| 82.10207                                                | ·6373 As2O3                                           | Fluorine.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 106- E                                                             |
| ,, · · ·                                                | ·7403 As2O3                                           | CaF <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·4807 F                                                            |
| Barium.                                                 | 1403 115205                                           | Glucinum. See                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    |
| BaCO.                                                   | thele Re                                              | Beryllium.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    |
| BaCO <sub>3</sub>                                       | ·6960 Ba                                              | Gold.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                    |
| BaŠO4                                                   | ·7770 BaO                                             | Au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5394 AuCl <sub>3</sub>                                           |
| Da504                                                   | ·5885 Ba                                              | Hydrogen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                    |
| ,,                                                      | ·6570 BaO                                             | Hydrogen.<br>H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | JULIO H                                                            |
| P                                                       | ·7256 BaO 2                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ing n                                                              |
| Beryllium.                                              |                                                       | Iodine.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IT LOT T                                                           |
| BeO                                                     | ·3605 Be                                              | AgI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -5405 1                                                            |
| Bismuth.                                                |                                                       | Iron.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.096 E.O                                                          |
| Bi<br>Bi <sub>2</sub> O <sub>3</sub>                    | 1.1148 B1203                                          | Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2865 FeO                                                         |
| B1203                                                   | ·8970 Bi                                              | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.4298 Fe <sub>2</sub> O <sub>3</sub>                              |
| BiÕČI                                                   | ·8024 Bi                                              | ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.0225 FeSO4                                                       |
| _ ,,                                                    | ·8946 Bi <sub>2</sub> O <sub>3</sub>                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> .6H <sub>2</sub> O |
| Boron.                                                  |                                                       | FeO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·7773 Fe                                                           |
| B <sub>2</sub> O <sub>3</sub>                           | ·3107 B                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.1114 Fe2O3                                                       |
| ,,                                                      | 2.7387 Na2B407.                                       | Fe <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.4510 FeCO3                                                       |
|                                                         | IoH <sub>2</sub> O                                    | .,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·9666 Fe <sub>3</sub> O <sub>4</sub>                               |
| Bromine.                                                |                                                       | CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.6324 FeO                                                         |
| AgBr                                                    | ·4255 Br                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.6324 FeCO3                                                       |
| Cadmium.                                                |                                                       | Lead.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                    |
| CdO                                                     | ·8754 Cd                                              | Pb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0772 PbO                                                         |
| Cæsium.                                                 |                                                       | PbSO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·6832 Pb                                                           |
| Cs                                                      | 1.060 Cs 20                                           | ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •7360 PbO                                                          |
| Cs <sub>2</sub> PtCl <sub>6</sub>                       | ·3916 Cs                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·7888 PbO 2                                                        |
|                                                         | ·4151 Cs20                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .7536 Pb304                                                        |
| Calcium.                                                |                                                       | Lithium.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                    |
| Ca                                                      | 1.374 CaO                                             | Li <sub>2</sub> CO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •1878 Li                                                           |
| CaCO <sub>3</sub>                                       | ·4076 Ca                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .4044 Li20                                                         |
|                                                         | ·5603 CaO                                             | Li <sub>3</sub> PO <sub>4</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •1797 Li                                                           |
|                                                         | 2.274 CaCO3                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·3869 Li20                                                         |
|                                                         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |
| CO <sub>2</sub>                                         | 1 = =/4 Cacog                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J. L                                                               |

## GRAVIMETRIC FACTORS

| FACTO                                                           | ORS FOR GRAVIN                        | ETRIC ANALYSIS                                                                                                                 | (contd.)                        |
|-----------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 1 part by weight of                                             | is equivalent<br>(by weight) to       | 1 part by weight of                                                                                                            | is equivalent<br>(by weight) to |
| Magnesium.                                                      |                                       | Potassium (contd.)                                                                                                             |                                 |
| MgO                                                             | .6032 Mg                              | K <sub>2</sub> SO,                                                                                                             | 1.1604 KNO3                     |
| $Mg_2P_2O_7 \cdot \cdot \cdot$                                  | ·2184 Mg                              | $\begin{array}{cccc} K_2SO_4 \ \cdot \ \cdot \ \cdot \ \cdot \ \cdot \\ K_2PtCl_6 \ \cdot \ \cdot \ \cdot \ \cdot \end{array}$ | •1608 K                         |
| ,,                                                              |                                       | Rubidium.                                                                                                                      |                                 |
| Manganese.                                                      |                                       | Rb <sub>2</sub> PtCl <sub>6</sub>                                                                                              | •2953 Rb                        |
| MnO                                                             | 1.1128 Mn <sub>2</sub> O <sub>3</sub> | Silicon.                                                                                                                       |                                 |
| Mn <sub>8</sub> O <sub>4</sub>                                  | •7203 Mn                              | SiO <sub>2</sub>                                                                                                               | •4672 Si                        |
|                                                                 | ·9301 MnO                             | Silver.                                                                                                                        |                                 |
| "                                                               | 1.0350 Mn <sub>2</sub> O <sub>3</sub> | AgCl<br>AgBr<br>AgI                                                                                                            | •7526 Ag                        |
|                                                                 | 1.1399 MnO <sub>2</sub>               | AgBr                                                                                                                           | •5744 Ag                        |
| Mercury.                                                        |                                       | AgI                                                                                                                            | •4595 Ag                        |
| Hg                                                              | 1.1208 HgS                            | ~                                                                                                                              |                                 |
| HgS                                                             | ·8966 Hg 20                           | Sodium.<br>$AgCl \dots$<br>$NaHCO, \dots$<br>$Na_2SO_4 \dots$<br>$N_2O_5 \dots$                                                | ·4078 NaCl                      |
|                                                                 | ·9310 HgO                             | NaHCO,                                                                                                                         | ·3690 Na.0                      |
| Nickel.                                                         | a series and                          | Na.SO                                                                                                                          | ·3238 Na                        |
| N1                                                              | 1.2726 NIO                            |                                                                                                                                | .4364 Na.0                      |
| Nitrogen.                                                       | a Para N. O                           | N.O                                                                                                                            | 1.5739 NaNOs                    |
| R                                                               | 3.8555 N 205                          | Strontium.                                                                                                                     |                                 |
| Phosphorus.                                                     | 11069 D                               | SrCO                                                                                                                           | •7019 SrO                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$            | *4308 P                               | SrSO,                                                                                                                          | •5641 SrO                       |
| $\operatorname{Mg}_{2}\operatorname{P}_{2}\operatorname{O}_{7}$ | 2/0/ P                                | Sulphur.                                                                                                                       |                                 |
| ·····                                                           | -0534 PO4                             | Sulphur.<br>BaSO,                                                                                                              | ·1460 H.S                       |
| Platinum.                                                       | ·6379 P <sub>2</sub> O <sub>5</sub>   | "                                                                                                                              | ·1373 S                         |
| K <sub>2</sub> PtCl <sub>6</sub>                                | •4016 Pt                              |                                                                                                                                | ·2744 SO.                       |
|                                                                 | ·6933 PtCl4                           | " · · · · · · · · · · · · · · · · · · ·                                                                                        | ·3430 SO3                       |
| Potassium.                                                      | 093311014                             | ,,                                                                                                                             | ·4115 SO4                       |
| AgCl                                                            | •5201 KCl                             | Tin.                                                                                                                           |                                 |
| AgCl                                                            | ·6337 KBr                             | SnO <sub>2</sub>                                                                                                               | •7877 Sn                        |
| AgI                                                             | ·7071 KI                              | TTananiam                                                                                                                      |                                 |
| AgCN                                                            | ·4863 KCN                             | $U_3O_8$                                                                                                                       | ·8480 U                         |
| KCl                                                             | ·5244 K                               | 0,0,                                                                                                                           | ·9620 UO,                       |
| KBr                                                             | ·3285 K                               | UŐ                                                                                                                             | ·8815 U                         |
| КОН                                                             | 1.2317 K2CO3                          | Zinc.                                                                                                                          |                                 |
| "                                                               |                                       | Zn                                                                                                                             | 1.2447 ZnO                      |
| K2SO4                                                           | ·5406 K 0                             | ZnO                                                                                                                            | ·8034 Zn [J. L.]                |
|                                                                 |                                       |                                                                                                                                |                                 |

### SOME BOILING-POINT MIXTURES

|            | -points under 760 mms. of mercury. Percentage compositions by weight. |
|------------|-----------------------------------------------------------------------|
| A large nu | imber of minimum boiling-point mixtures are known.                    |
|            | (Sidney Young, "Fractional Distillation," 1903.)                      |

|                                           |                                            | Mixture.                                                             | Boi                                                  | ling Points                                     | 5.                           | % of A                  | Ob-                                     |
|-------------------------------------------|--------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------|------------------------------|-------------------------|-----------------------------------------|
|                                           | Δ.                                         | B.                                                                   | ▲.                                                   | B.                                              | Mixt.                        | in mixt.                | server.                                 |
| Maximum<br>boiling-<br>point<br>mixtures. | Water<br>"<br>Me. ether                    | Nitric acid<br>Hydrochloric acid<br>Formic acid<br>Hydrochloric acid | 100                                                  | 86°<br>c. – 80<br>100 <sup>.</sup> 8<br>c. – 80 | 125°<br>110<br>107<br>- 2    | 32%<br>80<br>23<br>61   | Roscoe<br>"<br>Friedel                  |
| Minimum<br>boiling-<br>point<br>mixtures. | Water<br>Pyridine<br>Benzene<br>Me.alcohol | Ethyl alcohol<br>Water<br>Methyl alcohol<br>Acetone                  | 100<br>117<br>80 <sup>.</sup> 2<br>64 <sup>.</sup> 7 | 78'3<br>100<br>64'7<br>56'5                     | 78•1<br>92*5<br>58*3<br>55*9 | 4.4<br>59<br>60<br>13.5 | Y. & F.<br>G. & C.<br>Y. & F.<br>Pettit |
| G. 8                                      | & C., Goldsc                               | hmidt and Constan                                                    | ; Y. &                                               | F., Young                                       | and F                        | ortey.                  |                                         |

e-x

| e-*        |                                         |            |                   |                                         |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                |                                         |                                       | _     |      |      |        |             |      |       |        |
|------------|-----------------------------------------|------------|-------------------|-----------------------------------------|--------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|-----------------------------------------|---------------------------------------|-------|------|------|--------|-------------|------|-------|--------|
|            |                                         |            |                   |                                         | тн                 | E E                                      | XPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NENT  | TIAL           | 0-x                                     | r                                     |       |      |      |        |             |      |       |        |
|            | = 2'7                                   | 1828       | То                | deriv                                   |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | on p.          |                                         |                                       | 6931  | 15 = | = .5 |        |             |      |       |        |
|            |                                         |            |                   |                                         |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | an, Th         |                                         |                                       |       |      |      |        | ., 1        | 3, 1 | 88    | 3.)    |
|            |                                         | For v      | alues             | of x f                                  | from .             | 0000                                     | to .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 999.  |                |                                         | 1                                     | St    | ıbtı | ract | Di     | ffere       | nce  | s.    | -      |
| x          | 0                                       | ·001       | .002              | .003                                    | .004               | .005                                     | 006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .007  | .008           | ·009                                    | .0001                                 | 2     | 3    | 4    | 5      | 6           | 7    | 8     | 9      |
| .00        | 1'000                                   | .0000      | .0080             | 9970                                    | .0000              | .0020                                    | .0040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .0030 | .9920          | .0010                                   | I                                     | 2     | 3    | 4    | -      | 6           | 7    | 8     | 9      |
| .01        | 100000000                               |            | 1. 1. 1. 1. 1. 1. | 11127.00                                |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | .9822          |                                         |                                       | 2     | 3    | 4    | 5      | 6           | 7    | 8     | 9      |
| .02        | '9802                                   | 9792       | 9782              | 9773                                    | .9763              | 9753                                     | 9743                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9734  | 9724           | 9714                                    | I                                     | 2     | 3    | 4    | 55     | 6           | 7    | 8     | 9      |
| ·03<br>·04 |                                         |            |                   |                                         |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | '9627<br>'9531 |                                         |                                       | 2 2   | 33   | 4    | 5      | 6           | 777  | 8     | 9      |
| .05        |                                         |            |                   | 10.000                                  |                    | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1000  | .9436          | 1999                                    |                                       | 2     | 3    | 4    | 5      | 6           | 7    | 8     | 9      |
| •06        |                                         |            |                   |                                         |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 9343           |                                         |                                       | 2     | 3    | 4    | 5      | 6           | 7    | 8     |        |
| .07        | 9324                                    | 9315       | '9305             | .9296                                   | .0282              | 9277                                     | 9268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | '9259 | '9250          | 9240                                    | I                                     | 2     | 3    | 4    | 55     | 6           | 7    | 8     | 9<br>8 |
| ·08        |                                         |            |                   |                                         |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | '9158          |                                         |                                       | 2     | 3    | 4    | 5      | 6           | 7    | 7     | 8      |
| .09        | 9139                                    | 9130       | 9121              | 9112                                    | 9103               | 9094                                     | 9005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9070  | ·9066          | 9057                                    | I                                     | 2     | 3    | 4    | 5      | 6           | 0    | 7     | 0      |
|            | ]                                       | for va     | lues              | of x f                                  | rom ·              | 100 t                                    | 0 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.   |                |                                         |                                       | Su    | btr  | act  | Di     | ffere       | nce  | s.    |        |
| x          | 0                                       | •01        | •02               | .03                                     | •04                | •05                                      | .06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .07   | .08            | .09                                     | .001                                  | 2     | 3    | 4    | 5      | 6           | 7    | 8     | 9      |
| •1         | .9048                                   | .8958      | ·8869             | ·8781                                   | ·8694              | .8607                                    | 8521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .8437 | .8353          | .8270                                   | 9                                     | 17    | 26   | 34   | 43     | 52          | 60   | 69    | 77     |
| :2         | .8182                                   | .8100      | .8025             | 7945                                    | .7866              | .7788                                    | 7711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .7634 | 7558           | '7483                                   | 8                                     |       |      |      |        | 47          |      |       |        |
| ·3<br>·4   |                                         |            |                   |                                         |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | ·6839<br>·6188 |                                         | 7                                     |       |      |      |        | 42<br>38    |      |       |        |
| .5         |                                         | 1000000000 |                   |                                         |                    | 10000000                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | .5599          | 1000                                    |                                       |       | 2.1  |      | 29     |             | 40   | 2.0   |        |
| •6         |                                         |            | The second second | 1000                                    |                    |                                          | Contraction of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | .5066          | 0.000000000                             |                                       |       |      |      | 26     |             |      | 42    | - I    |
| .7         | .4966                                   | '4916      | .4868             | '4819                                   | '477 I             | 4724                                     | .4677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | '4630 | 4584           | 4538                                    | 5                                     | 9     | 14   | 19   | 24     | 28          |      |       |        |
| ·8<br>·9   |                                         |            |                   |                                         |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 4148           |                                         | 4                                     |       |      | 17   |        |             | -    | -     | 38     |
|            | 10.000                                  | 1.000      | 1224202-02        |                                         |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 3753           | 1000                                    | 4                                     | 0     |      | 15   |        |             |      | 31    | 35     |
| 1.0        | COOL                                    |            |                   | 0.000                                   | - 1 / I / C        | 100000000000000000000000000000000000000  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | .3396          | 1 Colds (5.00)                          | 4                                     | 1     |      | 14   |        | 21          |      |       | 32     |
| 1·1<br>1·2 | 3329                                    | 3290       | 2052              | 2023                                    | 2804               | 2865                                     | 2837                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2808  | '3073<br>'2780 | 2753                                    | 33                                    | 6     |      |      |        | 19<br>17    |      |       |        |
| 1.3        | 2725                                    | 2698       | 2671              | 2645                                    | .5018              | 2592                                     | 2567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | '2541 | 2516           | 2491                                    | 3                                     | 5     |      | IO   | 13     | 16          | 18   | 21    | 23     |
| 1.4        |                                         |            |                   |                                         |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 2276           |                                         |                                       | 5     | 7    |      |        | 14          |      |       |        |
| 10.0 0.000 |                                         |            | 110 100           | 100 C 100 C                             |                    |                                          | 100 C |       | 2060           |                                         | 2                                     | 4     | 6    |      | II     | 13          | 15   | 17    | 19     |
| 1.6        | 2019                                    | 1999       | 1979              | 1959                                    | 1940               | 1920                                     | 1901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1882  | 1864           | 1845                                    | 22                                    | 4     | 6    | 8    | 10     |             | 13   |       |        |
| 1.7        | 1653                                    | 1637       | 1/91              | 1604                                    | 1/55               | 1730                                     | 1/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1703  | ·1686<br>·1526 | 1511                                    | 2                                     | 333   | 55   | 76   | 9<br>8 | 9           | 12   | 14    | 200    |
| 1.9        | 1496                                    | 1481       | .1466             | 1451                                    | .1437              | 1423                                     | 1409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1395  | 1381           | .1367                                   |                                       | 3     | 4    | 6    | 7      | 9           |      | 11    |        |
| 2.0        | 1353                                    | 1340       | 1327              | .1313                                   | .1300              | 1287                                     | 1275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1262  | 1249           | 1237                                    | I                                     | 3     | 4    | 5    | 6      | 8           | 9    | 10    | 12     |
| 2.1        | 1225                                    | 1212       | 1200              | 1188                                    | 1177               | .1165                                    | 1153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1142  | •1130          | .1119                                   |                                       | 2     | 4    | 5    | 6      | 7           | 8    | 9     | II     |
| 2.2        | .1108                                   | 1097       | 1086              | 1075                                    | 1065               | 1054                                     | 1044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1033  | 1023<br>0926   | 1013                                    | I                                     | 2     |      | 4    | 55     | 7<br>6<br>6 | 776  | 8     | 9      |
| 2·3<br>2·4 | '0007                                   | 0993       | ·0880             | .0880                                   | 0872               | 0863                                     | 0854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .0846 | .0837          | 0820                                    | I                                     | 2 2 2 | 333  | 43   | 5      | 5           | 6    | 9887  | 98     |
| 2.5        |                                         |            |                   | 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | .0758          |                                         |                                       | 2     | 2    | 3    | 4      | 5           | 5    | 6     | 7      |
| 2.6        | 100000000000000000000000000000000000000 |            | 1000000000        |                                         | 2.00 B C C C C C C |                                          | 0.0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | .0686          | 100000000000000000000000000000000000000 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | I     | 2    | 3    | 4      | 4           | 5    |       | 6      |
| 2.7        | 0672                                    | .0665      | .0659             | .0652                                   | .0646              | .0639                                    | .0633                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .0622 | .0650          | '0614                                   | I                                     | I     | 2    | 3    | 3      | 4           | 4    | 6 5 5 | 6      |
| 2·8<br>2·9 |                                         |            |                   |                                         |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | ·0561<br>·0508 |                                         |                                       | I     | 2 2  | 2 2  | 33     | 3           | 4    | 5 4   | 5      |
|            | 0550                                    |            | value             |                                         |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 0300           | 0303                                    | -                                     | _     |      | -    |        | fere        | 4    |       | -      |
|            | 0                                       |            |                   |                                         |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _     | .0             |                                         |                                       | bu    | ibtr | aut  | DI     | lere        | 100  | ð.    |        |
| <i>x</i>   | 0                                       | 1          | -2                | .3                                      | •4                 | •5                                       | •6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .7    | .8             | .9                                      |                                       |       |      |      |        |             |      |       |        |
| 3          | 0498                                    | 0450       | .0408             | 0368                                    | .0334              | .0302                                    | 0273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | '0247 | 0224           | '0202                                   | Me                                    | 20    | die  | fere | ence   | es n        | 0.1  | one   | er     |
| 45         | 0183                                    | 10001      | 0150              | ·0050                                   | 0045               | '004I                                    | '0037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | '0033 | '0082<br>'0030 | '0027                                   |                                       |       |      |      |        | accu        |      |       |        |
| 6          | 0025                                    | '0022      | '0020             | .0018                                   | '0017              | '0015                                    | '0014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | '0012 | 1100.          | '0010                                   |                                       |       |      |      | -      |             |      |       |        |
|            | '0009                                   | .0008      | '0007             | '0007                                   | '0006              | *0006                                    | 10005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0005  | .0004          | '0004                                   |                                       |       |      |      |        |             |      |       |        |
| 8          | 0003                                    | 0003       | 0003              | 0002                                    | 0002               | 0002                                     | 0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0002  | *0002          | 0001                                    |                                       |       |      |      |        |             |      |       |        |

FOUR-FIGURE LOGARITHMS

|                |      |                      |       |      |        |             |              | 1                    |       |                      |    |     |       | 1   | -      | -              | -  |    | -              |
|----------------|------|----------------------|-------|------|--------|-------------|--------------|----------------------|-------|----------------------|----|-----|-------|-----|--------|----------------|----|----|----------------|
|                | 0    | 1                    | 2     | 3    | 4      | 5           | 6            | 7                    | 8     | 9                    | 1  | 2   | 3     | 4   | 5      | 6              | 7  | *  | 9              |
| 10 {           | 0000 | 0043                 | 0086  | 0128 | 0170   | 0212        | 0253         | 0294                 | 0334  | 0374                 | 4  | 8   | 12    | 16  | 20     | 25<br>24       | 28 | 32 | 36             |
| 11 {           | 0414 | 0453                 | 0492  | 0531 | 0569   | 0607        | 0645         | 0682                 | 0719  | 0755                 | 44 |     |       |     |        | 23<br>22       |    |    |                |
| 12 {           | 0792 | 0828                 | 0864  | 0899 | 0934   | 0969        | 1004         | 1038                 | 1072  | 1106                 | 43 | -   |       |     | 100000 | 21<br>20       |    |    |                |
| 18 {           | 1139 | 1173                 | 1206  | 1239 | 1271   | 1303        | 1335         | 1367                 | 1 399 | 1430                 | 33 | 76  |       |     |        | 20<br>19       |    |    |                |
| 14 {           | 1461 | 1492                 | 1523  | 1553 | 1584   | 1614        | 1644         | 1673                 | 1703  | 1732                 | 33 | 6   |       |     |        | 18<br>18       |    |    |                |
| 15 {           | 1761 | 1790                 | 1818  | 1847 | 1875   | 1903        | 1931         | 1959                 | 1987  | 2014                 | 3  | 6   |       |     |        | 17<br>17       |    |    |                |
| 16 {           | 2041 | 2068                 | 2095  | 2122 | 2148   | 2175        | 2201         |                      | 2253  |                      | 3  | 55  | 8     | 11  | 13     | 16<br>16       | 19 | 21 | 24             |
| 17 {           | 2304 | 2330                 | 2355  | 2380 | 2405   |             |              | 2480                 |       |                      | 3  | 5 5 | 8     | 10  | 13     | 15             | 18 | 20 | 23             |
| 18 {           | 2553 | 2577                 | 2601  | 2625 | 2648   | 2672        | 2695         |                      |       |                      | 2  | 55  | 777   | 10  | 12     | 14             | 17 | 19 | 21             |
| 19 {           | 2788 | 2810                 | 2833  | 2856 | 2878   |             | 2923         |                      |       |                      | 2  | 5 4 | 7     | 9   | 11     | 14             | 16 | 18 | 20             |
| 20             | 3010 | 3032                 | 3054  | 3075 | 3096   | 1.1.1.1.1.1 | 3139         | 3160                 |       | 3201                 |    | 4   | 6     |     | 1.500  | 13             |    |    | 0.00           |
| 21             | 3222 | 3243                 | 3263  | 3284 |        | 3324        |              | 3365                 | 3385  | 3404                 |    | 4   | 6     |     |        | 12             |    |    |                |
| 22<br>23<br>24 | 3617 | 3444<br>3636<br>3820 | 3655  | 3674 | 3692   |             | 3729         | 3560<br>3747<br>3927 |       | 3598<br>3784<br>3962 | 2  | 444 | 6 5   | 777 | 9      | 12<br>11<br>11 | 13 | 15 |                |
| 25             | -    | 3997                 |       |      |        |             | 4082         |                      |       |                      |    | 3   | 5     | 7   | 9      |                |    |    | 15             |
| 26<br>27       |      | 4166                 |       | 1    |        |             | 4249         | 4265                 | 10000 | 1                    |    | 3   | 5     | 76  | 8      |                |    |    | 15             |
| 28<br>29       | 4472 | 4330 4487 4639       | 4502  | 4518 | 4533   | 4548        | 4564 4713    | 4579                 | 4594  | 4609                 | 2  | 333 | 554   | -   |        | 9              | 11 | 12 | 14<br>14<br>13 |
| 30             | 4771 | 4786                 | 4800  | 4814 | 4829   | 4843        | 4857         | 4871                 | 4886  | 4900                 | I  | 3   | 4     | 6   | 7      | 9              | 10 | 11 | 13             |
| 31<br>82       |      | 4928                 |       |      |        |             | 4997<br>5132 | 5011<br>5145         |       |                      |    | 33  | 4     |     | 7      | 88             |    |    | 12<br>12       |
| 88<br>84       | 5185 | 5198                 | 5211  | 5224 | 5237   | 5250        | 5263<br>5391 |                      | 5289  | 5302                 | I  | 333 | 4 4 4 | 555 | 766    | 8              | 9  | IO | 12             |
| 35             | 1    | 5453                 | 1 .   |      | 10000  |             | 5514         |                      | -     | 1.1.1                |    | 2   | 4     | 5   | 6      | 7              | 9  | 10 | 11             |
| 36             |      | 5575                 |       | 5599 |        | 5623        |              |                      | 5658  |                      |    | 2   | 4     | 55  | 6      | 7              | 8  |    | 11             |
| 87<br>88       |      | 5694                 |       |      |        |             | 5752<br>5866 |                      |       | 5786<br>5899         |    | 2 2 | 33    |     | 6      |                | 88 | 9  | IO<br>IO       |
| 89<br>40       | 5911 | 5922<br>6031         | 10000 |      | 10.000 |             | 5977<br>6085 | 5988<br>6096         | 10000 |                      |    | 2   | 3     | 4   | 5      | 7              | 8  | -  | 10             |
| 41             |      | 6138                 | 6149  | 6160 | 6170   | 6180        | 6191         | 6201                 | 6212  | 6222                 |    | 2   | 3     | 4   |        | 6              |    | 8  | 9              |
| 42 43          |      | 6243                 | 6253  | 6263 | 6274   | 6284        | 6294         | 6304                 | 6314  | 6325                 |    | 2 2 | 33    | 4   |        | 6              |    |    | 9              |
| 44             |      | 6444                 | 6454  | 6464 | 6474   | 6484        | 6493         | 6503                 | 6513  |                      |    | 2   | 3     | 4   |        | 6              |    |    |                |
| 45             |      | 6542                 | 1000  |      |        |             | 6590         |                      | 1     | 100                  |    | 2   | 3     | 4   | 5      |                |    | 8  | -              |
| 46 47          |      | 6637                 |       | 6656 | 6665   | 6675        | 6684         | 6693                 | 6702  | 6712                 | I  | 2 2 | 33    |     | 5      | 6              | 6  | 77 |                |
| 48 49          | 6812 | 6821<br>6911         | 6830  | 6839 | 6848   | 6857        | 6866<br>6955 | 6875                 | 6884  | 6893                 | I  | 2 2 | 3     | 44  |        |                | 6  | 7  | 8              |
|                | 0    | 1                    | 2     | 8    | 4      | 5           | 6            | 7                    | 8     | 9                    | 1  | 2   | 8     |     | 5      | 6              | 7  | 8  | 9              |

## FOUR-FIGURE LOGARITHMS

|          | 0     | 1            | 2    | 8            | 4         | 5    | 6            | 7            | 8            | 9            | 1     | 2      | 8      | 4   |    | 6  | 7   |    |     |
|----------|-------|--------------|------|--------------|-----------|------|--------------|--------------|--------------|--------------|-------|--------|--------|-----|----|----|-----|----|-----|
|          | -     | -            |      | 0            | 4         | 0    | 0            | -            | 0            | 9            |       | *      | •      | *   | 2  | 0  |     | •  |     |
| 50       | 6990  | 6998         | 7007 | 7016         | 7024      | 7033 | 7 042        | 7050         | 7059         | 7067         | I     | 2      | 3      | 3   | 4  | 5  | 6   | 7  | 8   |
| 51<br>52 | 7076  | 1 10         |      |              |           |      | 7126<br>7210 | 7135         | 7143         | 7152         | I     | 2 2    | 32     | 33  | 4  | 5  | 6   | 77 | 8   |
| 53       | 7243  | 7251         | 7259 | 7267         | 7275      | 7284 | 7292         | 7300         | 7308         | 7316         | I     | 2      | 2      | 3   | 4  | 5  | 6   | 6  | 7   |
| 54<br>55 |       | 7332         |      | 7348         |           |      | 7372         |              |              | 7396         | 1     | 2      | 2      | 3   | 4  | 5  | 6   | 6  | 7   |
| 56       |       | 7412         |      | 7505         |           |      | 7451         |              |              | 7474<br>7551 | I     | 2 2    | 2 2    | 3   | 4  | 5  | 5   | 6  | 7   |
| 57       | 7559  | 7566         | 7574 | 7582         | 7589      | 7597 | 7604         | 7612         | 7543 7619    | 7627         | ī     | 2      | 2      | 33  | 4  | 5  | 5   | 6  | 7   |
| 58<br>59 |       | 7642<br>7716 |      | 7657<br>7731 |           |      | 7679<br>7752 | 7686<br>7760 | 7694         |              | I     | I      | 2 2    | 3   | 4  | 4  | 55  | 6  | 77  |
| 60       | 7782  | 7789         | 7796 | 7803         | 7810      | 7818 | 7825         | 7832         | 7839         | 7846         | I     | I      | 2      | 3   | 4  | 4  | 5   | 6  | 6   |
| 61<br>62 |       | 7860         |      | 7875         |           |      | 7896         | 7903         |              |              | I     | I      | 2      | 3   | 4  | 4  | 5   | 6  | 6   |
| 63       |       | 7931<br>8000 |      | 8014         | 8021      | 8028 | 7966<br>8035 | 7973<br>8041 | 7980<br>8048 | 8055         | 0.000 | I      | 2 2    | 3   | 33 | 4  | 55  | 5  | 6   |
| 64       |       | 8069         |      |              | 8089      | 8096 | 8102         | 8109         | 8116         | 8122         | I     | I      | 2      | 3   | 3  | 4  | 5   | 5  | 6   |
| 65       |       |              |      | 12 1 1 3     |           |      | 8169         |              |              | 8189         | I     | I      | 2      | 3   | 3  | 4  | 5   | 5  | 6   |
| 66<br>67 | 8195  | 8202         | 8209 | 8215         | 8222 8287 | 8228 | 8235<br>8299 | 8241<br>8306 | 8248         | 8254 8319    | 1     | I      | 2 2    | 33  | 33 | 4  | 55  | 55 | 6   |
| 68<br>69 | 8325  | 8331<br>8395 | 8338 | 8344<br>8407 | 8351      | 8357 | 8363<br>8426 | 8370         | 8376         | 8382         | 1     | I      | 2 2    | 32  | 33 | 4  | 4   | 5  | 6   |
| 70       | 1     | 8457         |      |              | 0.001     |      | 8488         |              |              | 1.1          |       | 1      | 2      | 2   | 3  | 4  | 4   | 5  | 6   |
| 71       | 8513  | 8519         | 8525 | 8531         | 8537      | 8543 | 8549         | 8555         | 8561         | 8567         |       | I      | 2      | 2   | 3  | 4  | 4   | 5  | 5   |
| 72       | 8573  | 8579         | 8585 | 8591         | 8597      | 8603 | 8609<br>8669 | 8615         | 8621<br>8681 |              | I     | I<br>I | 2 2    | 2 2 | 33 | 4  | 4 4 | 55 | 5 5 |
| 74       | 8692  | 8698         | 8704 | 8710         | 8716      | 8722 | 8727         |              | 8739         |              |       | i      | 2      | 2   | 3  | 4  | 4   | 5  | 5   |
| 75       | 8751  | 8756         | 8762 | 8768         | 8774      | 8779 | 8785         | 8791         | 8797         | 1.2.2.1      |       | I      | 2      | 2   | 3  | 3  | 4   | 5  | 5   |
| 76       | 8808  | 8814         | 8820 | 8825         | 8831      | 8837 | 8842         | 8848         | 8854         | 8859         | I     | I<br>I | 2      | 2   | 3  | 3  | 4   | 54 | 55  |
| 78       | 8921  | 8927         | 8932 | 8938         | 8943      | 8949 | 8954         | 8960         | 8965         | 8971         | I     | I      | 2 2    | 2 2 | 3  | 33 | 4 4 | 4  | 5   |
| 79       |       | 8982         | 1    |              |           |      | 9009         |              |              |              |       | 1      | 2      | 2   | 3  | 3  | 4   | 4  | 5   |
| 80       |       | 9036         |      |              |           |      | 9063         |              |              | 1.200        |       | 1      | 2      | 2   | 3  | 3  | 4   | 4  | 5   |
| 81 82    | 9138  | 9143         | 9149 | 9154         | 9159      | 9165 | 9117         | 9175         | 9180         | 9186         | I     | I      | 2 2    | 2 2 | 3  | 3  | 4   | 4  | 5 5 |
| 83<br>84 | 9191  | 9196<br>9248 | 9201 | 9206         |           |      | 9222         |              |              |              |       | I<br>I | 2 2    | 2 2 | 3  | 3  | 4   | 4  | 5 5 |
| 85       |       | 9299         |      |              |           |      | 9325         | 1000         |              |              |       | 1      | 2      | 2   | 3  | 3  | 4   | 4  | 5   |
| 86       | 1     | 9350         | 1    | 1.           |           |      | 9375         | A STATE      | 1000000      | 1.000        | 1     | I      | 2      | 2   | 3  | 3  | 4   | 4  | 5   |
| 87<br>88 | 9395  | 9400         | 9405 | 9410         | 9415      | 9420 | 9425         | 9430         | 9435         | 9440         | 0     | 1      | I      | 2   | 2  | 3  | 3   | 4  | 4   |
| 89       |       | 9450<br>9499 |      |              |           |      | 9474<br>9523 |              |              |              | 0     | I      | I      | 2 2 | 2  | 33 | 33  | 4  | 4 4 |
| 90       | 9542  | 9547         | 9552 | 9557         | 9562      | 9566 | 9571         | 9576         | 9581         |              |       | 1      | I      | 2   | 2  | 3  | 3   | 4  | 4   |
| 91<br>92 |       | 9595         |      |              |           |      | 9619         |              |              |              |       | I      | I      | 2 2 | 22 | 3  | 3   | 4  | 4   |
| 98       | 9685  | 9689         | 9694 | 9699         | 9703      | 9708 | 9666         | 9717         | 9722         | 9727         | 0     | I      | I      | 2   | 2  | 33 | 33  | 4  | 4 4 |
| 94       |       | 9736         | 1000 |              |           |      | 9759         |              |              | 1 1 1 1 1    |       | I      | I      | 2   | 2  | 3  | 3   | 4  | 4   |
| 95       | 10000 | 9782         |      | -            |           |      | 9805         | 10.00        | 1            | 1            | L     | I      | 1      | 2   | 2  | 3  | 3   | 4  | 4   |
| 96<br>97 |       | 9827         |      |              |           |      | 9850<br>9894 |              |              |              | 0     | I      | I      | 2 2 | 2  | 3  | 33  | 4  | 4   |
| 98<br>99 | 9912  | 9917<br>9961 | 9921 | 9926         | 9930      | 9934 | 9939<br>9983 | 9943         | 9948         | 9952         | 0     | I<br>I | I<br>I | 2 2 | 22 | 33 | 33  | 43 | 4   |
|          | 0     | 1            | 2    | 8            | 4         | 5    | 6            | 7            | 8            | 9            | 1     | 2      | 3      | 4   | 5  | 6  | 7   | 8  | 9   |
| I        | 1     | 1.           | -    | 0            |           | 1    | 1            |              | 1            | -            | 1     | _      | _      | _   | 1  | 1  | _   | _  |     |

### ANTILOGARITHMS

|            | 0    | 1            | 2            | 8            | 4    | 5            | 6    | 7            | 8    | 9            | 1 | 2 | 8   | 4   | 5      | 6   | 7   | 8   | 9   |
|------------|------|--------------|--------------|--------------|------|--------------|------|--------------|------|--------------|---|---|-----|-----|--------|-----|-----|-----|-----|
| .00        | 1000 | 1002         | 1005         | 1007         | 1009 | 1012         | 1014 | 1016         | 1019 | 1021         | 0 | 0 | I   | I   | 1      | I   | 2   | 2   | 2   |
| •01        | 1023 | 1026         | 1028         | 1030         | 1033 | 1035         | 1038 | 1040         | 1042 | 1045         | 0 | 0 | I   | I   | I      | r   | 2   | 2   | 2   |
| ·02<br>·08 |      | 1050         | 1052         | 1054         |      |              | 1062 | 1064         |      | 1069         |   | 0 | I   | I   | I<br>I | I   | 2   | 2 2 | 2 2 |
| .04        |      | 1099         | 1102         | 1104         |      | 1109         |      | 1114         |      | 1119         |   | I | I   | I   | Î      | 2   | 2   | 2   | 2   |
| .05        | 1122 | 1125         | 1127         | 1130         | 1132 | 1135         | 1138 | 1140         | 1143 | 1146         | 0 | I | I   | I   | 1      | 2   | 2   | 2   | 2   |
| *06<br>*07 |      | 1151<br>1178 | 1153         |              | 1159 | 1161         |      | 1167         |      | 1172<br>1199 |   | I | I   | I   | I<br>I | 2   | 2 2 | 2 2 | 2 2 |
| •08        | 1202 | 1205         | 1208         | 1211         | 1213 | 1216         | 1219 | 1222         | 1225 | 1227         | 0 | I | I   | I   | I      | 2   | 2   | 2   | 3   |
| •09        |      | 1233         | 1236         | 1239         |      | 1245         |      | 1.100        | 1253 | 1256         |   | 1 |     | I   | I      | 2   | 2   | 2   | 3   |
| ·10<br>·11 |      | 1262         |              |              |      | 1274         |      | 1279         |      | 1285         |   | 1 |     | I   | I      | 2   | 2   | 2   | 3   |
| 12         |      | 1321         | 1294         | 1297<br>1327 |      | 1303<br>1334 |      | 1309         |      | 1315<br>1346 |   | I | I   | I   | 2 2    | 2   | 2   | 2 2 | 3   |
| 13<br>14   |      | 1353<br>1384 |              | 1358<br>1390 |      | 1365<br>1396 |      | 1371<br>1403 |      | 1377<br>1409 | 0 | I | I   | I   | 2 2    | 2 2 | 2 2 | 33  | 33  |
| .15        |      | 1416         | 1419         | 1422         |      | 1429         |      | 1435         | 1439 | 1442         |   | 1 | I   | I   | 2      | 2   | 2   | 3   | 3   |
| 16         |      | 1449         |              |              |      | 1462         |      | 1469         |      | 1476         |   | I | I   | I   | 2      | 2   | 2   | 3   | 3   |
| 17         | 1479 | 1483         | 1486         | 1489         | 1493 | 1496         | 1500 | 1503         | 1507 | 1510         | 0 | I | I   | I   | 2      | 2   | 2   | 3   | 3   |
| 18<br>19   |      | 1517         | 1521         | 1524<br>1560 |      | 1531         |      | 1538         | 1542 | 1545         |   | I | I   | I   | 2 2    | 2   | 23  | 33  | 3   |
| .20        | 1585 | 1589         | 1592         | 1596         |      | 1603         |      | 1611         | 1614 | 1618         |   | I | I   | I   | 2      | 2   | 3   | 3   | 3   |
| .21        |      | 1626         | 1629         | 1633         |      |              | 1644 | 1648         | 1652 |              | 0 | I | I   | 2   | 2      | 2   | 3   | 3   | 3   |
| ·22<br>·28 |      | 1663         | 1667         | 1671         |      | 1679<br>1718 |      | 1687         |      | 1694         | 0 | I | I   | 2 2 | 2      | 2 2 | 3   | 3   | 3   |
| -24        |      | 1742         | 1746         | 1750         |      | 1758         |      | 1766         | 1730 | 1734<br>1774 | 0 | ī | i   | 2   | 2 2    | 2   | 33  | 33  | 4   |
| .25        | 1778 | 1782         | 1786         | 1791         | 1795 | 1799         | 1803 | 1807         | 1811 | 1816         | 0 | I | I   | 2   | 2      | 2   | 3   | 3   | 4   |
| *26        |      | 1824         | 1828         | 1832         | 1837 | 1841         | 1845 |              |      | 1858         |   | I | 1   | 2   | 2      | 3   | 3   | 3   | 4   |
| ·27<br>·28 |      | 1866         | 1871         | 1875         |      | 1884         |      | 1892         | 1897 | 1901         | 0 | I | I   | 2 2 | 2 2    | 33  | 3   | 3   | 4   |
| •29        |      | 1954         |              | 1963         |      | 1972         |      | 1982         |      | 1991         | 0 | I | I   | 2   | 2      | 3   | 33  | 4   | 4   |
| .30        | 1995 | 2000         | 2004         | 2009         | 2014 | 2018         | 2023 | 2028         | 2032 | 2037         | 0 | I | I   | 2   | 2      | 3   | 3   | 4   | 4   |
| .81        |      | 2046         |              | 2056         | 2061 | 2065         | 2070 | 2075         |      |              |   | I | I   | 2   | 2      | 3   | 3   | 4   | 4   |
| *82<br>*83 |      | 2094         | 2099         |              | 2109 |              |      | 2123         |      | 2133 2183    |   | I | I   | 2 2 | 2 2    | 33  | 33  | 4 4 | 4   |
| •34        |      |              | 2198         |              |      |              |      | 2223         |      |              |   | I | 2   | 2   | 3      | 3   | 4   | 4   | 5   |
| •35        | 2239 | 2244         | 2249         | 2254         | 2259 | 2265         | 2270 | 2275         | 2280 | 2286         | I | I | 2   | 2   | 3      | 3   | 4   | 4   | 5   |
| .86        |      |              | 2301         |              |      |              | 2323 |              |      | 2339         |   | I | 2   | 2   | 3      | 3   | 4   | 4   | 5   |
| ·37<br>·38 |      |              | 2355         |              | 2366 | 2371         |      | 2382<br>2438 |      | 2393         |   | I | 2 2 | 2 2 | 33     | 33  | 4   | 4   | 55  |
| .39        |      |              | 2466         |              |      |              | 2489 | 2495         | 2500 | 2506         |   | I | 2   | 2   | 3      | 3   | 4   | 5   | 5   |
| •40        | 2512 | 2518         | 2523         | 2529         | 2535 | 2541         | 2547 | 2553         | 2559 | 2564         | I | 1 | 2   | 2   | 3      | 4   | 4   | 5   | 5   |
| ·41        |      | 2576         | 2582         |              | 2594 | 2600         | 2606 | 2612         |      | 2624         | I | I | 2   | 2   | 3      | 4   | 4   | 55  | 56  |
| ·42<br>·43 |      | 2030         | 2642         | 2049 2710    |      |              |      | 2673         |      | 2685<br>2748 |   | I | 2 2 | 23  | 33     | 4   | 4 4 | 55  | 6   |
| •44        |      | 2761         | 2767         |              |      |              | 2793 |              |      | 2812         |   | ī | 2   | 3   | 3      | 4   | 4   | 5   | 6   |
| •45        | 2818 | 2825         | 2831         | 2838         | 2844 | 2851         | 2858 | 2864         | 2871 | 2877         | I | I | 2   | 3   | 3      | 4   | 5   | 5   | 6   |
| ·46        |      | 2891         | 2897         |              |      |              |      | 2931         |      | 2944         |   | I | 2   | 3   | 3      | 4   | 5   | 5   | 6   |
| ·47<br>·48 |      | 2958         | 2965<br>3034 |              |      | 2985         |      | 2999<br>3069 |      | 3013         |   | I | 2 2 | 3 2 | 34     | 4   | 5   | 56  | 6   |
| •49        | -    | 3097         | 3105         |              | 3119 |              |      | 3141         |      | 3155         |   | i | 2   | 33  | 4      | 4   | 55  | 6   | 6   |
|            | 0    | 1            | 2            | 8            | 4    | 5            | 6    | 7            | 8    | 9            | 1 | 2 | 8   | 4   | б      | 6   | 7   |     | 9   |

### ANTILOGARITHMS

|            | 0            | 1            | 2            | 8            | 4            | 5            | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7            | 8            | 9            | 1 | 2   | 3   | 4   | 5       | 8        | 7   | 8        | 9        |
|------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|---|-----|-----|-----|---------|----------|-----|----------|----------|
| .50        | 3162         | 3170         | 3177         | 3184         | 3192         | 3199         | 3206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3214         | 3221         | 3228         | I | 1   | 2   | 3   | 4       | 4        | 5   | 6        | 7        |
| .51        | 3236         |              | 3251         | 3258         |              | 3273         | and the second se | 3289         | 3296         | 3304         | I | 2   | 2   | 3   | 4       | 5        | 5   | 6        | 7        |
| •52<br>•58 | 3311         | 3319<br>3396 | 3327<br>3404 |              |              | 3350<br>3428 | 3357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3365         | 3373<br>3451 | 3381<br>3459 |   | 2 2 | 2 2 | 33  | 4       | 55       | 56  | 6        | 777      |
| •54        | 3467         | 3475         | 3483         |              |              | 3508         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | 3532         | 3540         |   | 2   | 2   | 3   | 4       | 5        | 6   | 6        | 7        |
| .22        | 3548         | 3556         | 3565         | 3573         | 3581         | 3589         | 3597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3606         | 3614         | 3622         | I | 2   | 2   | 3   | 4       | 5        | 6   | 7        | 7        |
| •56<br>•57 |              | 3639         | 3648         |              |              | 3673         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3690         |              | 3707         | I | 2   | 3   | 3   | 4       | 5        | 6   | 7        | 88       |
| •58        |              | 3724<br>3811 | 3733 3819    | 3741<br>3828 |              | 3758<br>3846 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3770         | 3784<br>3873 | 3793<br>3882 | I | 2 2 | 33  | 34  | 4       | 55       | 6   | 777      | 8        |
| •59        | 3890         | 3899         | 3908         | 3917         |              | 3936         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3954         | 3963         | 3972         | I | 2   | 3   | 4   | 5       | 5        | 6   | 7        | 8        |
| .60        |              | 3990         | 3999         | 4009         | 4018         | 4027         | 4036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4046         | 4055         | 4064         |   | 2   | 3   | 4   | 5       | 6        | 6   | 7        | 8        |
| ·61<br>·62 |              | 4083         | 4093<br>4188 | 4102<br>4198 |              |              | 4130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4140 4236    |              | 4159 4256    | I | 2 2 | 33  | 4   | 55      | 6        | 777 | 8        | 9 9      |
| .68        | 4266         | 4276         | 4285         | 4295         |              |              | 4325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4335         |              | 4355         | I | 2   | 3   | 4   | 5       | 6        | 7   | 8        | 9        |
| •64        | 1.1.1.1      | 4375         | 4385         |              | 4406         | 4416         | 4426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4436         |              | 4457         |   | 2   | 3   | 4   | 5       | 6        | 7   | 8        | 9        |
| .65        | 4467         | 4477         | 4487         | 4498         | 4508         | 4519         | 4529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4539         | 4550         | 4560         | I | 2   | 3   | 4   | 5       | 6        | 7   | 8        | 9        |
| ·66        | 4571         | 4581         |              | 4603         |              |              | 4634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4645         |              | 4667         | I | 2   | 3   | 4   | 5       | 6        | 7   | 9        | 10       |
| ·67<br>·68 | 40 /7 4786   | 4688         | 4699<br>4808 |              | 4721         | 4732         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4753 4864    |              | 4775<br>4887 | I | 2 2 | 33  | 4 4 | 56      | 777      | 8   | 9 9      | 10<br>10 |
| .69        |              | 4909         | 4920         | 4932         |              | 4955         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4977         | 4989         | 5000         | I | 2   | 3   | 5   | 6       | 7        | 8   | é        | IO       |
| .70        | 5012         | 5023         | 5035         | 5047         | 5058         | 5070         | 5082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5093         | 5105         | 5117         | I | 2   | 4   | 5   | 6       | 7        | 8   | 9        | II       |
| .71        |              | 5140         | 5152         |              |              |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5212         |              | 5236         | I | 2   | 4   | 5   | 6       | 7        | 8   |          | 11       |
| ·72<br>·78 | 5248         | 5260<br>5383 | 5272<br>5395 | 5284<br>5408 |              | 5309<br>5433 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5333<br>5458 | 5346<br>5470 | 5358<br>5483 | I | 23  | 4   | 55  | 6       | 8        | -   | 10       |          |
| .74        |              | 5508         | 5521         | 5534         |              | 5559         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5585         |              | 5610         | 1 | 3   | 4   | 5   | 6       | 8        | 9   | 10       | 12       |
| .75        | 5623         |              | 5649         | 5662         |              | 5689         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5715         | 5728         | 5741         | I | 3   | 4   | 5   | 7       | 8        | 9   | 10       | 12       |
| .76        | 5754<br>5888 | 5768         | 5781         | 5794         |              | 5821         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5848         | 5861         | 5875         | I | 3   | 4   | 5   | 7       | 8        | -   | II       | 1000     |
| •77<br>•78 |              | 5902<br>6039 | 5916<br>6053 | 5929<br>6067 |              | 5957<br>6095 | 5970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5984<br>6124 |              | 6012<br>6152 |   | 33  | 4   | 56  | 777     | 8        |     | II<br>II | 13       |
| •79        | 6166         | 6180         | 6194         | 6209         |              | 6237         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6266         | 6281         | 6295         |   | 3   | 4   | 6   | 7       | 9        | 10  | 11       | 13       |
| .80        |              |              | 6339         |              |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |              | 6442         | I | 3   | 4   | 6   | 7       | 9        | 10  | 12       | 13       |
|            |              |              | 6486<br>6637 |              | 6516         | 6531         | 6546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6561         | 6577         | 6592         | 2 | 3   | 5   | 6   | 8       |          |     | 12<br>12 |          |
| *82<br>*83 |              |              | 6792         |              | 6823         | 6839         | 6699<br>6855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6871         | 6887         | 6902         |   | 33  | 55  | 6   | 8       |          |     | 13       |          |
| •84        | 6918         | 6934         | 6950         | 6966         | 6982         | 6998         | 7015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7031         | 7047         | 7063         | 2 | 3   | 5   | 6   | 8       | 10       | 11  | 13       | 15       |
| .85        |              | 7096         |              | 7129         |              |              | 7178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 7211         | 7228         |   | 3   | 5   | 7   |         | 10       |     |          |          |
| *86<br>*87 |              | 7261         | 7278         |              | 7311<br>7482 | 7328         | 7345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7362         | 7379         | 7396         |   | 3   | 5   | 7   |         | 10<br>10 |     |          |          |
| .88        |              | 7430         | 7447<br>7621 |              |              |              | 7510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7534         | 7551 7727    |              |   | 3 4 | 55  | 777 |         | II       |     |          |          |
| .89        | 7762         | 7780         | 7798         | 7816         | 7834         | 7852         | 7870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7889         | 7907         | 7925         | 2 | 4   | 5   | 7   | 9       | 11       | 13  | 14       | 16       |
| .90        | 12.2 3 1     |              | 7980         |              |              |              | 8054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |   | 4   | 6   | 7   |         | II       | . 3 | . 30     | 1        |
| ·91<br>·92 |              | 8147<br>8337 |              | 8185<br>8375 |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | 8279<br>8472 |              | 2 | 4   | 6   | 8   | 9<br>10 | II<br>I2 |     | 15       |          |
| .93        | 8511         | 8531         | 8551         | 8570         | 8590         | 8610         | 8630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8650         | 8670         | 8690         | 2 | 4 4 | 6   | 8   | 10      | 12       | 14  | 16       | 18       |
| •94        |              | 1.1          | 8750         |              | 0.0000       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8851         |              | SPECE        | 2 | 4   | 6   |     |         | 12       |     |          |          |
| .95        |              | 8933         |              | 8974         |              | 1000         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9057         | 9078         | 9099         | 2 | 4   | 6   |     |         | 12       |     |          |          |
| ·96<br>·97 |              |              | 9162<br>9376 |              |              | 9226         | 9247<br>9462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9268         |              | 9311         |   | 4   | 6   | 8   | II      | 13<br>13 | 15  | 17       | 19       |
| .98        |              |              | 9594         |              | 9638         | 9661         | 9683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9705         |              | 9520         |   | 4 4 | 777 | 9   | II      | 13       | 16  | 18       | 20       |
| .99        |              |              | 9817         |              | 9863         | 9886         | 9908                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9931         |              | 9977         | 2 | 5   | 7   | 9   | II      | 14       | 16  | 18       | 20       |
|            | 0            | 1            | 2            | 3            | 4            | 5            | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7            | 8            | 9            | 1 | 8   | 8   | 4   | 5       | 6        | 7   | 8        | 9        |

FIVE-FIGURE LOGARITHMS

|                 | 0     | 1     | 2     | 8      | 4        | 5                       | 6             | 7      | 8                                       | 9              | 1      | 8        | 8              | 4              | 5        | 6   | 7              | 8          | 9                 |
|-----------------|-------|-------|-------|--------|----------|-------------------------|---------------|--------|-----------------------------------------|----------------|--------|----------|----------------|----------------|----------|-----|----------------|------------|-------------------|
|                 | -     |       |       |        |          |                         |               |        |                                         |                | -      | 0.       |                |                |          |     |                |            |                   |
| 10{             | 00000 |       |       |        |          | 02119                   | 02531         | 02938  | 03342                                   | 03743          | 41     | 81       |                | 162            | 202      | 243 | 283            | 323        | 364               |
| 11{             | 04139 |       |       |        |          | 06070                   | 06446         | 06819  | 07188                                   | 07555          | 37     | 74       |                | 148            | 185      | 222 | 259            | 296        | 333               |
| 12{             |       |       | 08636 |        |          | 09691                   | 10037         | 10380  | 10721                                   | 1 1 0 5 9      |        | 68       |                | 136            | 170      | 205 | 239            | 273        | 307               |
| 18{             |       |       | 12057 |        |          | 13033                   | 13354         | 13672  | 1 3988                                  | 14301          | 100.00 | -        | 95             | 126            | 158      | 190 | 221            | 262<br>253 | 284               |
| 14{             | 14613 | 14922 | 15229 | 15534  | 15836    | 16137                   | 16435         | 16732  | 17026                                   | 17319          |        | 61<br>59 |                |                |          |     |                | 244<br>236 |                   |
| 15              | 17609 | 17898 | 18184 | 18469  | 18752    | 19033                   | 19312         | 19590  | 19866                                   | 20140          |        | 57<br>55 |                |                |          |     |                | 228<br>221 |                   |
| 16{             | 20412 | 20683 | 20951 | 21219  | 21484    | 21748                   | 22011         | 22272  | 22531                                   | 22789          |        | 53<br>52 |                |                |          |     |                | 214<br>208 |                   |
| 17{             | 23045 | 23300 | 23553 | 23805  | 24055    | 24304                   | 24551         | 24797  | 25042                                   | 25285          |        | 50<br>49 | 76<br>73       |                |          |     |                | 201<br>196 |                   |
| 18{             | 25527 | 25768 | 26007 | 26245  | 26482    | 26717                   | 26951         | 27184  | 27416                                   | 27646          |        | 48<br>46 | 71<br>70       |                |          |     |                | 190<br>185 |                   |
| 19{             | 27875 | 28103 | 28330 | 28556  | 28780    | 29003                   | 29226         | 29447  | 29667                                   | 29885          |        | 45<br>44 | 68<br>66       | 90             | 113      | 135 | 158            | 181<br>176 | 203               |
| 20              |       |       | 10.25 | 111111 |          | 31175                   |               | 1      |                                         | 10000          |        |          | 64             |                | 1000     |     |                | 170        | -                 |
| 21 22           | 34242 | 34439 | 34635 | 34830  | 35025    | 33244<br>35218<br>37107 | 35411         | 35603  | 35793                                   | 35984          | 19     | 39       | 61<br>58<br>56 | 77             | 97       | 116 | 135            | 162        | 174               |
| 28<br>24        | 38021 | 38202 | 38382 | 38561  | 38739    | 38917                   | 39094         | 39270  | 39445                                   | 39620          | 18     | 35       | 53             | 74 71          | 89       | 106 | 124            | 148        | 160               |
| 25<br>26        |       | 1000  | 1     |        | Second 1 | 40654                   | S             | 1.00   |                                         |                |        |          | 51<br>49       | 68<br>66       |          |     |                | 136        |                   |
| 27<br>28        | 44716 | 44871 | 45025 | 45179  | 45332    | 43933                   | 45637         | 45788  | 45939                                   | 46090          | 15     | 30       | 47 46          | 63             |          | 91  | 107            | 126        | 137               |
| 29<br>30        | 40240 |       |       | 100    |          | 46982<br>48430          | 1.1.1.1.1.1.1 |        |                                         |                |        |          | 44<br>43       | 59<br>57       | 74       |     |                | 118<br>114 |                   |
| 81<br>82        | 49136 | 49276 | 49415 | 49554  | 49693    | 49831<br>51188          | 49969         | 50106  | 50243                                   | 50379<br>51720 | 14     | 28       | 41<br>40       | 55<br>53       | 69<br>67 |     |                | 110        | 124<br>120        |
| 88<br>84        | 51851 | 51983 | 52114 | 52244  | 52375    | 52504<br>53782          | 52634         | 52763  | 52892                                   | 53020          | 13     | 26       | 39<br>38       | 52<br>50       | 65       | 78  | 91             | 104        |                   |
| 35              | 10000 |       | 10000 | 1      |          | 55023                   |               | 100000 | 100 C C C C C C C C C C C C C C C C C C | 10000000       |        |          | 37             | 49             |          |     | 86             |            | 110               |
| 86<br>87<br>88  | 56820 | 56937 | 57054 | 57171  | 57287    | 56229<br>57403<br>58546 | 57519         | 57634  | 57749                                   | 57864          | 12     | 23       | 36<br>35<br>34 | 48<br>46<br>45 | 58       | 70  | 83<br>81<br>79 | 93         | 107<br>104<br>102 |
| 89              | 59106 | 59218 | 59329 | 59439  | 59550    | 59660                   | 59770         | 59879  | 59988                                   | 60097          | 11     | 22       | 33             | 44             | 55       | 66  | 77             | 88         | 99                |
| <b>40</b><br>41 | 61278 | 61384 | 61490 | 61 595 | 61700    | 60745<br>61805          | 61909         | 62014  | 62118                                   | 62221          | 10     | 21       | 32             | 43<br>42       | 52       | 63  | 75<br>73       | 86<br>84   | 94                |
| 42<br>48<br>44  | 63347 | 63448 | 63548 | 63649  | 63749    | 62839<br>63849          | 63949         | 64048  | 64147                                   | 64246          | 10     | 20       | 30             | 41 40          | 50       | 60  | 72             | 80         | 90                |
| 45              |       |       |       |        |          | 64836<br>65801          |               |        |                                         |                |        |          |                | 39<br>38       |          |     | 67             |            |                   |
| 46<br>47        | 67210 | 67302 | 67394 | 67486  | 67578    | 66745<br>67669          | 67761         | 67852  | 67943                                   | 68034          | 9      | 19<br>18 | 27             | 37             | 47       |     | 65<br>64       |            | 82                |
| 48<br>49        | 68124 | 68215 | 68305 | 68395  | 68485    | 68574<br>69461          | 68664         | 68753  | 68842                                   | 68931          | 9      | 18       | 27             | 36             | 45       | 54  | 63             | 72         | 81                |
|                 | 0     | 1     | 2     | 8      | 4        | 5                       | 6             | 7      | 8                                       | 9              | 1      | 2        | 8              | 4              | 5        | 6   | 7              | 8          | 9                 |

## FIVE-FIGURE LOGARITHMS

|          | 0              | 1              | 2     | 8     | 4         | 5              | 6           | 7               | 8        | 9            | 1 | 2   | 8        | 4   | 5     | 8    | 7  | 8    |     |
|----------|----------------|----------------|-------|-------|-----------|----------------|-------------|-----------------|----------|--------------|---|-----|----------|-----|-------|------|----|------|-----|
|          | -              |                |       |       |           |                |             |                 |          |              | - |     |          |     |       | -    |    |      | -   |
|          | 69897          |                |       |       |           |                |             |                 |          |              |   |     |          | 100 |       |      |    | 1    | 100 |
| 51       | 70757          | 70842          | 70927 | 71012 | 71096     | 71181 72016    | 71265       | 71349           | 71433    | 71517        | 8 | 17  | 25       | 34  | 42    | 51   | 59 | 67   | 76  |
| 58       | 72428          | 72509          | 72591 | 72673 | 72754     | 72835          | 72916       | 72997           | 73078    | 73159        | 8 | 16  | 24       | 32  | 41    | 49   | 57 | 65   | 73  |
| 54       |                |                |       |       |           | 73640          |             | 1. 1995         |          |              |   |     |          |     |       |      |    | 64   | 72  |
| 55       | 74036          | 74115          | 74194 | 74273 | 74351     | 74429          | 74507       | 74586           | 74663    | 74741        | 8 | 16  | 23       | 31  | 39    | 47   | 55 | 63   | 70  |
| 56<br>57 | 74819          | 74896          | 74974 | 75051 | 75128     | 75205          | 75282       | 75358           | 75435    | 75511        | 8 | 15  | 23       | 31  | 39    | 46   | 54 | 62   | 69  |
| 58       |                |                |       |       |           | 75967          |             |                 |          |              |   |     |          |     |       |      |    |      |     |
| 59       |                |                |       |       |           | 77452          |             |                 |          |              |   |     |          |     |       |      |    |      |     |
| 60       | 77815          | 77887          | 77960 | 78032 | 78104     | 78176          | 78247       | 78319           | 78390    | 78462        | 7 | 14  | 23       | 29  | 36    | 43   | 50 | 58   | 65  |
| 61       | 78533          | 78604          | 78675 | 78746 | 78817     | 78888          | 78958       | 79029           | 79099    | 79169        | 7 | 14  | 21       | 28  | 36    | 43   | 50 | 57   | 64  |
| 62<br>63 | 79239          | 79309          | 79379 | 79449 | 79518     | 79588<br>80277 | 79057       | 79727<br>804 LA | 79790    | 79865        | 7 | 14  | 21       | 28  | 35    | 42   | 49 | 50   | 63  |
| 64       | 80618          | 80686          | 80754 | 80821 | 80889     | 80956          | 81023       | 81090           | 81158    | 81224        | 7 | 13  | 20       | 27  | 34    | 40   | 47 |      | 61  |
| 65       | 81291          | 81358          | 81425 | 81491 | 81558     | 81624          | 81690       | 81757           | 81823    | 81889        | 7 | 13  | 20       | 27  | 33    | 40   | 46 | 53   | 60  |
| 66       | 81954          | 82020          | 82086 | 82151 | 82217     | 82282          | 82347       | 82413           | 82478    | 82543        | 7 | 13  | 20       | 26  | 33    | 39   | 46 | 52   | 59  |
| 67<br>68 | 82607          | 82672          | 82737 | 82802 | 82866     | 82930          | 82995       | 83059           | 83123    | 83187        | 6 | 13  | 19       | 26  | 32    | 39   | 45 | 51   | 58  |
| 69       | 83885          | 83948          | 84011 | 84073 | 84136     | 83569<br>84198 | 84261       | 84323           | 84386    | 84448        | 6 | 12  | 19       | 25  | 31    | 30   | 44 | 50   |     |
| 70       | 84510          |                | 1000  |       | 1222323   |                |             |                 |          |              |   |     |          |     | 0.001 |      |    | 49   | 55  |
| 71       | 85126          | 85187          | 85248 | 85309 | 85370     | 85431          | 85491       | 85552           | 85612    | 85673        | 6 | 12  | 18       | 24  | 31    | 37   | 43 | 49   | 55  |
| 72       | 85733          | 85794          | 85854 | 85914 | 85974     | 86034          | 86094       | 86153           | 86213    | 86273        | 6 | 12  | 18       | 24  | 30    | 36   | 42 | 48   | 54  |
| 78       | 86923          |                |       |       |           | 86629          |             |                 |          |              |   |     |          |     |       |      |    |      | 53  |
| 75       |                |                |       |       |           | 87795          |             |                 | 10000000 | 12112        |   |     |          |     |       |      |    |      | -   |
| 76       | 88081          | 88138          | 88195 | 88252 | 88309     | 88366          | 88423       | 88480           | 88536    | 88593        | 6 | 11  | 17       | 23  | 29    | 34   | 40 | 46   | 51  |
| 77       | 88649<br>89209 | 88705          | 88762 | 88818 | 88874     | 88930          | 88986       | 89042           | 89098    | 89154        | 6 | II  | 17       | 22  | 28    | 34   | 39 | 45   | 50  |
| 79       | 89763          | 89818          | 89873 | 89927 | 89982     | 90037          | 90091       | 90146           | 90200    | 90255        | 6 | 11  | 17       | 22  | 28    | 33   | 39 | 44   | 50  |
| 80       | 90309          | 90363          | 90417 | 90472 | 90526     | 90580          | 90633       | 90687           | 90741    | 90795        | 5 | 11  | 16       | 22  | 27    | 32   | 38 | 43   | 49  |
| 81       | 90848          | 90902          | 90956 | 91009 | 91062     | 91116          | 91169       | 91222           | 91275    | 91328        | 5 | 11  | 16       | 21  | 27    | 32   | 37 | 43   | 48  |
| 82       | 91381          | 91434          | 91487 | 91540 | 91593     | 91045          | 91098       | 91751           | 91803    | 91855        | 5 | 11  | 10       | 21  | 20    | 32   | 37 | 42   | 47  |
| 83<br>84 | 91908<br>92428 |                |       |       |           |                |             |                 |          |              |   |     |          |     |       |      |    |      |     |
| 85       | 92942          |                |       |       | 1.6.1.8.1 | R.C.           | 100000      |                 |          |              |   |     |          |     |       | 50.0 |    |      |     |
| 86       | 93450          |                |       | 22    |           |                |             | 10001           | 10.000   |              |   |     |          |     |       |      |    |      |     |
| 87       | 93952          | 94002          | 94052 | 94101 | 94151     | 94201          | 94250       | 94300           | 94349    | 94399        | 5 | 10  | 15       | 20  | 25    | 30   | 35 | 40   | 45  |
| 88<br>89 | 94448<br>94939 |                |       |       |           |                |             |                 |          |              |   |     |          |     |       |      |    |      |     |
|          | 95424          |                |       |       |           |                |             |                 |          |              |   |     |          |     |       | 100  |    | 1.20 |     |
|          | 95904          |                |       |       |           |                |             |                 |          |              |   |     | 14       |     |       |      |    |      |     |
| 92       | 96379          | 96426          | 96473 | 96520 | 96567     | 96614          | 96661       | 96708           | 96755    | 96802        | 5 | 9   | 14       | 19  | 24    | 28   | 33 | 38   | 42  |
| 98<br>94 | 96848<br>97313 | 90895          | 96942 | 96988 | 97035     | 97081          | 97128       | 97174           | 97220    | 97267        | 5 |     | 14<br>14 |     |       |      |    |      |     |
| 1000     | 97772          | 83233          |       |       | 1000      |                | S 3.5 1 1 1 | 10.2            |          | S 12 2 2 2 2 |   | 100 | 14       |     |       |      |    |      | 3.1 |
|          |                |                |       |       |           | 1.1            |             |                 |          | 1.12         |   |     | 14       |     |       |      | -  |      |     |
| 97       | 98227<br>98677 | 98722          | 98767 | 98811 | 98856     | 98900          | 989498      | 98989           | 99034    | 99078        | 3 |     | 14       |     |       |      |    |      |     |
| 98       | 99123          | 99167          | 99211 | 99255 | 99300     | 99344          | 99388       | 99432           | 99476    | 99520        | 4 | 9   | 13       | 18  | 22    | 26   | 31 | 35   | 40  |
|          | 99564          | 99007          | 99051 | 99095 | 99739     | 99782          | 99020       | 99070           | 99913    | 99957        | 4 | 9   | 13       | 1/  |       | 20   | 31 | 33   | 39  |
|          | 0              | 1              | 2     | 8     | 4         | Б              | 6           | 7               | 8        | 9            | 1 | 2   | 3        | 4   | 5     | 8    | 7  |      | 9   |
|          |                | and the second |       |       |           | - Second       |             |                 |          | -            |   |     | -        | _   |       | -    | 1  |      |     |

RECIPROCALS

|          |      |      |      | -            |      | 1    | 1    |      |      |      | T | S      | ubti     | rac | t D  | lffe | ren  | ces.     |         |
|----------|------|------|------|--------------|------|------|------|------|------|------|---|--------|----------|-----|------|------|------|----------|---------|
|          | 0    | 1    | 2    | 8            | 4    | 5    | 6    | 7    | 8    | 9    | 1 | 1000   | 3        |     |      | 6    | -    | -        |         |
| 10       | 1000 | 0001 | 0804 | 9709         | 0615 | 0524 | 0424 | 0246 | 0250 | 0174 | Γ |        |          |     | -    | -    |      |          |         |
|          |      |      |      |              |      |      |      |      |      | 1    |   |        | Me       | an  | dif  | l    | nce  |          |         |
| 11 12    |      |      |      | 8850<br>8130 |      |      |      |      |      |      |   |        |          |     |      | cier |      |          |         |
| 13<br>14 | 7692 | 7634 | 7576 | 7519 6993    | 7463 | 7407 | 7353 | 7299 | 7246 | 7194 |   |        |          | aco | cura | ate. |      |          |         |
|          |      |      |      |              |      |      |      |      |      | 1    |   | -      |          |     |      |      |      |          |         |
| 15       | 0007 | 0023 | 0579 | 6536         | 0494 | 0452 | 0410 | 6369 | 0329 | 0289 | 4 | 8      | 13       | 17  | 21   | 25   | 29   | 33       | 38      |
| 16<br>17 |      |      |      | 6135<br>5780 |      |      |      |      |      |      |   | 7      | II<br>IO | 15  | 18   | 22   | 26   | 29       | 33      |
| 18       | 5556 | 5525 | 5495 | 5464         | 5435 | 5405 | 5376 | 5348 | 5319 | 5291 | 3 | 6      | 9        | 12  | 15   | 17   | 20   | 23       | 26      |
| 19       |      |      |      | 5181         |      |      |      |      |      |      |   |        |          | 11  | 13   | 16   | 18   | 21       | 24      |
| 20       | 5000 | 4975 | 4950 | 4926         | 4902 | 4878 | 4854 | 4831 | 4808 | 4785 | 2 | 5      | 7        | 10  | 12   | 14   | 17   | 19       | 21      |
| 21       |      |      |      | 4695         |      |      |      |      |      |      |   | 4      | 7        |     |      | 13   |      |          |         |
| 22<br>23 |      |      |      | 4484 4292    |      |      |      |      |      |      |   | 44     | 6 5      | 87  |      | 12   |      |          |         |
| 24       |      |      |      | 4115         |      |      |      |      |      |      |   | 3      | 55       | 7   | 8    | 10   | 12   | 13       | 15      |
| 25       | 4000 | 3984 | 3968 | 3953         | 3937 | 3922 | 3906 | 3891 | 3876 | 3861 | 2 | 3      | 5        | 6   | 8    | 9    | 11   | 12       | 14      |
| 26       | 3846 | 3831 | 3817 | 3802         | 3788 | 3774 | 3759 | 3745 | 3731 | 3717 | I | 3      | 4        | 6   | 7    |      | 10   |          |         |
| 27 28    |      |      |      | 3663<br>3534 |      |      |      |      |      |      |   | 32     | 4        | 5   | 6    | 87   | -    | II<br>IO | 1.12 24 |
| 29       |      |      |      | 3413         |      |      |      |      |      |      |   | 2      | 3        | 55  | 6    | 7    | 8    |          | 10      |
| 30       | 3333 | 3322 | 3311 | 3300         | 3289 | 3279 | 3268 | 3257 | 3247 | 3236 | I | 2      | 3        | 4   | 5    | 6    | 7    | 9        | 10      |
| 81       |      |      |      | 3195         |      |      |      |      |      |      |   | 2      | 3        | 4   | 5    | 6    | 7    | 8        | 9       |
| 82<br>83 |      |      |      | 3096<br>3003 |      |      |      |      |      |      |   | 2 2    | 333      | 4   | 54   | 65   | 76   | 8<br>7   | 98      |
| 84       | 2941 | 2933 | 2924 | 2915         | 2907 | 2899 | 2890 | 2882 | 2874 | 2865 | I |        | 3        | 3   | 4    | 5    | 6    | 7        | 8       |
| 35       | 2857 | 2849 | 2841 | 2833         | 2825 | 2817 | 2809 | 2801 | 2793 | 2786 | I | 2      | 2        | 3   | 4    | 5    | 6    | 6        | 7       |
| 86       | 2778 | 2770 | 2762 | 2755         | 2747 | 2740 | 2732 | 2725 | 2717 | 2710 | I |        | 2        | 3   |      |      | 5    | 6        | 7       |
|          |      |      |      | 2681 2611    |      |      |      |      |      |      |   | I      | 2 2      | 3   |      | 4    | 5    | 6        | 6       |
| 89       | 2564 | 2558 | 2551 | 2545         | 2538 | 2532 | 2525 | 2519 | 2513 | 2506 | I |        | 2        | 33  |      | 4    | 54   | 55       | 6       |
| 40       | 2500 | 2494 | 2488 | 2481         | 2475 | 2469 | 2463 | 2457 | 2451 | 2445 | I | I      | 2        | 2   | 3    | 4    | 4    | 5        | 5       |
| 41       |      |      |      | 2421         |      |      |      |      |      |      |   | I      | 2        | 2   | 3    | 3    | 4    | 5        | 5       |
| 42       | 2381 | 2375 | 2370 | 2364         | 2358 | 2353 | 2347 | 2342 | 2336 | 2331 | I | I      | 2        | 2   | 3    | 3    | 4    | 5 4      | 5       |
| 48<br>44 | 2320 | 2268 | 2315 | 2309<br>2257 | 2304 | 2299 | 2294 | 2237 | 2232 | 2278 | I | I      | 2 2      | 2 2 | 5000 | 33   | 4 4  | 4 4      | 55      |
| 45       | 2222 | 2217 | 2212 | 2208         | 2203 | 2198 | 2193 | 2188 | 2183 | 2179 | 0 | I      | I        | 2   | 2    | 3    | 3    | 4        | 4       |
| 46       | 2174 | 2169 | 2165 | 2160         | 2155 | 2151 | 2146 | 2141 | 2137 | 2132 | 0 | I      | I        | 2   | 1000 | 3    | 3    | 4        | 4       |
| 47       | 2128 | 2123 | 2119 | 2114         | 2110 | 2105 | 2101 | 2096 | 2092 | 2088 | 0 | I      | I        | 2   | 2 2  | 3    | 3    | 4        | 4       |
| 48<br>49 |      |      |      | 2070<br>2028 |      |      |      |      |      |      |   | I      | I        | 2 2 | 2 2  | 32   | 33   | 33       | 4       |
| 50       | 2000 | 1996 | 1992 | 1988         | 1984 | 1980 | 1976 | 1972 | 1969 | 1965 | 0 | I      | I        | 2   | 2    | 2    | 3    | 3        | 4       |
| 51       | -    |      |      | 1949         |      |      |      |      | 1    |      |   | Ŧ      | ľ        | 2   | 2    | 2    | 3    | 3        | 3       |
| 52       | 1923 | 1919 | 1916 | 1912         | 1908 | 1905 | 1901 | 1898 | 1894 | 1890 | 0 | i      | ĩ        | I   | 2    | 2    | 3    | 3        | 3       |
| 53<br>54 |      |      |      | 1876<br>1842 |      |      |      |      |      |      |   | I<br>I | I        | I   | 2 2  | 2 2  | 2 2  | 33       | 3       |
|          |      |      |      |              |      |      |      |      |      |      | - | _      | -        | -   | _    | -    | -    | -        | _       |
|          | 0    | 1    | 2    | 8            | 4    | 5    | 6    | 7    | 8    | 9    | 1 | 2      | 3        | 4   | -    |      | 7    | 8        |         |
|          |      |      |      |              |      |      |      |      |      | -    |   | Su     | ıbtr     | act | D    | Ine  | rene | . es.    |         |

#### RE

86 87

88

89

90

91

92

93

94

95

96

97

98

99

0

1

2

8

| ECI      | PR   | DCA  | LS           |      |      |      |      |      |      |      |       |     |      |     |        |      |     |             |    |
|----------|------|------|--------------|------|------|------|------|------|------|------|-------|-----|------|-----|--------|------|-----|-------------|----|
|          | 0    | 1    | 2            | 8    | 4    | 5    | 6    | 7    | 8    | 9    |       | Sul | btra | act | Di     | ffer | ene | <b>e</b> s. |    |
|          | -    | _    | -            | -    | -    |      |      |      |      | -    | 1     | 2   | 3    | 4   | 5      | 6    | 7   | 8           | 1  |
| 55       | 1818 | 1815 | 1812         | 1808 | 1805 | 1802 | 1799 | 1795 | 1792 | 1789 | 0     | I   | I    | I   | 2      | 2    | 2   | 3           |    |
| 56       | 1786 | 1783 | 1779         | 1776 | 1773 | 1770 | 1767 | 1764 | 1761 | 1757 | 0     | I   | I    | I   | 2      | 2    | 2   | 3           |    |
| 57<br>58 | 1754 | 1751 | 1748<br>1718 | 1745 | 1742 | 1739 | 1730 | 1733 | 1730 | 1727 | 0     | II  | I    | I   | 2<br>I | 22   | 2 2 | 2 2         |    |
| 59       | 1695 | 1692 | 1689         | 1686 | 1684 | 1681 | 1678 | 1675 | 1672 | 1669 | 0     | i   | ī    | ī   | ī      | 2    | 2   | 2           |    |
| 60       | 1667 | 1664 | 1661         | 1658 | 1656 | 1653 | 1650 | 1647 | 1645 | 1642 | 0     | 1   | I    | I   | I      | 2    | 2   | 2           |    |
| 61       | 1639 | 1637 | 1634         | 1631 | 1629 | 1626 | 1623 | 1621 | 1618 | 1616 | 0     | 1   | I    | I   | I      | 2    | 2   | 2           | -  |
| 62       | 1613 | 1610 | 1608         | 1605 | 1603 | 1600 | 1597 | 1595 | 1592 | 1590 | 0     | I   | I    | I   | I      | 2    | 2   | 2           | :  |
| 63<br>64 |      |      | 1582         |      |      |      |      |      |      |      |       | 0   | I    | I   | I      | I    | 2   | 2           |    |
| 0%       | 1503 | 1500 | 1558         | 1555 | 1553 | 1550 | 1548 | 1540 | 1543 | 1541 | 0     | 0   | I    | I   | I      | I    | 2   | 2           |    |
| 65       | 1538 | 1536 | 1534         | 1531 | 1529 | 1527 | 1524 | 1522 | 1520 | 1517 | 0     | 0   | I    | 1   | I      | I    | 2   | 2           |    |
| 66       | 1515 | 1513 | 1511         | 1508 | 1506 | 1504 | 1502 | 1499 | 1497 | 1495 | 0     | 0   | I    | 1   | I      | I    | 2   | 2           |    |
| 67       | 1493 | 1490 | 1488         | 1486 | 1484 | 1481 | 1479 | 1477 | 1475 | 1473 | 0     | 0   | I    | 1   | 1      | I    | 2   | 2           |    |
| 68       |      |      | 1466         |      |      |      |      |      |      |      |       | 0   | I    | I   | I      | I    | 2   | 2           | ;  |
| 69       | 1449 | 1447 | 1445         | 1443 | 1441 | 1439 | 1437 | 1435 | 1433 | 1431 | 0     | 0   | 1    | 1   | I      | I    | 1   | 2           | -  |
| 70       | 1429 | 1427 | 1425         | 1422 | 1420 | 1418 | 1416 | 1414 | 1412 | 1410 | 0     | 0   | I    | I   | I      | I    | I   | 2           | -  |
| 71       | 1408 | 1406 | 1404         | 1403 | 1401 | 1399 | 1397 | 1395 | 1393 | 1391 | 0     | 0   | I    | I   | I      | I    | I   | 2           | :  |
| 72       | 1389 | 1387 | 1385         | 1383 | 1381 | 1379 | 1377 | 1376 | 1374 |      |       | 0   | I    | I   | I      | 1    | I   | 2           |    |
| 78       | 1370 | 1368 | 1366         | 1364 | 1362 | 1361 | 1359 | 1357 | 1355 |      | 1.000 | 0   | I    | 1   | I      | I    | 1   | 2           |    |
| 74       | 1351 | 1350 | 1348         | 1340 | 1344 | 1342 | 1340 | 1339 | 1337 | 1335 | 0     | 0   | I    | I   | I      | I    | I   | I           |    |
| 75       | 1333 | 1332 | 1330         | 1328 | 1326 | 1325 | 1323 | 1321 | 1319 | 1318 | 0     | 0   | I    | I   | I      | I    | I   | 1           | 24 |
| 76       | 1316 | 1314 | 1312         | 1311 | 1309 | 1307 | 1305 | 1304 | 1302 | 1300 | 0     | 0   | I    | I   | I      | I    | I   | 1           |    |
| 77       | 1299 | 1297 | 1295         | 1294 | 1292 | 1290 | 1289 | 1287 | 1285 | 1284 |       | 0   | 0    | I   | I      | I    | I   | I           |    |
| 78       |      |      | 1279         |      |      |      |      |      |      |      |       | 0   | 0    | I   | I      | I    | I   | I           |    |
| 79       | 1200 | 1204 | 1263         | 1201 | 1259 | 1258 | 1250 | 1255 | 1253 | 1252 | 0     | 0   | 0    | I   | I      | I    | I   | I           |    |
| 80       | 1250 | 1248 | 1247         | 1245 | 1244 | 1242 | 1241 | 1239 | 1238 | 1236 | 0     | 0   | 0    | I   | I      | I    | 1   | I           |    |
| 81       | 1235 | 1233 | 1232         | 1230 | 1229 | 1227 | 1225 | 1224 | 1222 | 1221 | 0     | 0   | 0    | I   | I      | I    | I   | I           |    |
| 82       | 1220 | 1218 | 1217         | 1215 | 1214 | 1212 | 1211 | 1209 | 1208 | 1206 | 0     | 0   | 0    | I   | I      | I    | I   | I           |    |
| 88       | 1205 | 1203 | 1202         | 1200 | 1199 | 1198 | 1196 | 1195 | 1193 | 1192 | 0     | 0   | 0    |     | 1      | I    | I   | 1           |    |
| 84       | 1190 | 1189 | 1188         | 1186 | 1185 | 1183 | 1182 | 1181 | 1179 | 1178 | 0     | 0   | 0    | I   | I      | I    | I   | I           |    |
| 85       | 1176 | 1175 | 1174         | 1172 | 1171 | 1170 | 1168 | 1167 | 1166 | 1164 | 0     | 0   | 0    | I   | I      | I    | I   | I           |    |
|          |      |      |              |      |      |      |      |      |      |      |       |     |      |     |        |      |     |             |    |

1163 1161 1160 1159 1157 1156 1155 1153 1152 1151 0 1149 1148 1147 1145 1144 1143 1142 1140 1139 1138 0

1111 1110 1109 1107 1106 1105 1104 1103 1101 1100 0

1099 1098 1096 1095 1094 1093 1092 1091 1089 1088 0 1087 1086 1085 1083 1082 1081 1080 1079 1078 1076 0

1053 1052 1050 1049 1048 1047 1046 1045 1044 1043

1042 1041 1040 1038 1037 1036 1035 1034 1033 1032 0

1031 1030 1029 1028 1027 1026 1025 1024 1022 1021 0

1010 1009 1008 1007 1006 1005 1004 1003 1002 1001

4

1075 1074 1073 1072 1071 1070 1068 1067 1066 1065 0 0 0 1064 1063 1062 1060 1059 1058 1057 1056 1055 1054 0 0 0

1020 1019 1018 1017 1016 1015 1014 1013 1012 1011 0 0 0

6

7

8

5

158

9

3

33333

2

2 1 I I 1

> 1 I 1 Τ

> I

I

I

J

9

I

I

I

0 I

OI

OI

01

0 1 I I I I

0 I

4 5 6

Subtract Differences.

I I 1 I I

I

I 1

1

1 I I 1

I 1 I 1

1

1 1 I I

1 I I

I

I

I 1 I

I I I

I 3 I

1 I

7

8

0 0 I

0 0 I

0 0

0 0 I I I I I I

0 0 I I I 1 ĩ I

0 0 I I

0

0 0

0 0

2 8

0 0 0

0 0 0 0 0 I 1 I I

1

9

0

SQUARES

|            | 0     | 1     | 2              | 3      | 4     | 5                 | 6     | 7                         | 8     | 9       | 1   | 2 3          | 4        | 5  | 8        | 7    | 8       | 9   |
|------------|-------|-------|----------------|--------|-------|-------------------|-------|---------------------------|-------|---------|-----|--------------|----------|----|----------|------|---------|-----|
| 1.0        |       |       |                |        |       |                   |       |                           |       | 00      |     |              | -        | -  | -        |      | _       |     |
|            |       |       |                | linear |       | 1.103             |       | Contraction of the second |       | Lanna 1 |     | 4 0          |          |    |          |      |         |     |
| 1.1        | 1'210 | 1.232 | 1°254<br>1°488 | 1.277  | 1.300 | 1.323             | 1'346 | 1.360                     | 1.392 | 1'416   | 2 2 | 5 7 5 7      | IO       | 12 | 14<br>15 | 17   | 20      | 22  |
| 1.8        | 1.900 | 1.210 | 1'742          | 1.769  | 1.200 | 1.823             | 1.820 | 1.877                     | 1'904 | 1'932   | 3   | 5 8          | 11<br>12 | 13 | 16       | 19   | 22      | 24  |
| 1.5        |       |       |                |        |       | 2.403             |       |                           |       |         | ľ   |              | 12       |    |          |      |         |     |
| 1.6        |       |       |                |        |       |                   |       |                           |       |         |     |              |          |    |          |      |         |     |
| 1.7        | 2.890 | 2.924 | 2.928          | 2'993  | 3'028 | 2.723<br>3.063    | 3.008 | 3'133                     | 3.108 | 3'204   | 3   | 7 10         | 14       | 17 | 21       | 24   | 28      | 31  |
| 1.8<br>1.9 | 3.240 | 3.270 | 3.312          | 3'349  | 3.380 | 3.423<br>3.803    | 3.400 | 3.497                     | 3.534 | 3.572   | 4   | 7 11 8 12    |          |    |          |      |         |     |
| 2.0        |       |       |                |        |       | 4.203             |       | 1                         |       |         |     | 8 12         | 16       | 20 | 25       | 29   | 33      | 37  |
| 2.1        |       |       |                |        | 1131  | 4.623             |       |                           |       |         |     | 9 13         | 17       | 21 | 26       | 30   | 34      | 39  |
| 2·2<br>2·3 | 4.840 | 4.884 | 4.928          | 4'973  | 5'018 | 5.063             | 5'108 | 5.123                     | 5.108 | 5'244   | 4   | 9 13 9 14    | 18       | 22 | 27       | 31   | 36      | 40  |
| 2.4        | 5.760 | 5.808 | 5.856          | 5.902  | 5.954 | 6.003             | 6.022 | 6.101                     | 6.120 | 6.200   | 5 1 |              |          |    |          |      |         |     |
| 2.2        | 6.250 | 6.300 | 6.350          | 6.401  | 6.452 | 6.203             | 6.554 | 6.605                     | 6.656 | 6.708   | 5 1 | 0 15         | 20       | 25 | 31       | 36   | 41      | 46  |
| 2.6        |       |       |                |        |       | 7.023             |       |                           |       |         |     |              |          |    |          |      |         |     |
| 2·7<br>2·8 | 7.290 | 7.344 | 7.398          | 7'453  | 7.508 | 7.563             | 7.618 | 7.073                     | 7.728 | 7.784   | 5 1 | I 16<br>I 17 | 22       | 27 | 33       | 38   | 44 46   | 49  |
| 2.9        | 8.410 | 8.468 | 8.526          | 8.585  | 8.644 | 8.703             | 8.762 | 8.821                     | 8.880 | 8.940   | 6 1 | 2 18         | 24       | 29 | 35       | 41   | 47      | 53  |
| 3.0        | 9.000 | 9.060 | 9.120          | 9.181  | 9.242 | 9.303             | 9.364 | 9'425                     | 9.486 | 9.248   | 6 1 | 2 18         | 24       | 30 | 37       | 43   | 49      | 55  |
| 8.1 {      | 9.910 | 9.672 | 9.734          | 9.797  | 9.860 | 9 <sup>.923</sup> | 9.986 | 10.02                     | 10.11 | 10.18   |     | 3 19         | 25       | 31 | 38       | 44 5 | 50<br>5 | 57  |
| 8.2        | 10.24 | 10.30 | 10.37          | 10.43  | 10.20 | 10.26             | 10.63 | 10.60                     | 10'76 | 10.82   | I   | 1 2          | 3        | 3  | 4        | 5    | 5       | 6   |
| 8·8<br>8·4 | 11.20 | 11.63 | 11.02          | 11.09  | 11.83 | 11.30             | 11.30 | 12.04                     | 11.45 | 11.49   | I   | 1 2          | 33       | 33 | 4        | 55   | 56      | 6   |
| 3.2        | 12.25 | 12.32 | 12.39          | 12.46  | 12.53 | 12.60             | 12.67 | 12.74                     | 12.82 | 12.89   | I   | 1 2          | 3        | 4  | 4        | 5    | 6       | 6   |
| 3.6        | 12.96 | 13.03 | 13.10          | 13.18  | 13.25 | 13.32             | 13.40 | 13.47                     | 13.54 | 13-62   | I   | 1 2          | 3        | 4  | 4        | 5    | 6       | 7   |
| 8.7<br>8.8 | 13.90 | 13.26 | 13.84          | 13.01  | 13'99 | 14'06             | 14'14 | 14'21                     | 14'29 | 14'36   | I   | 2 2          | 3        | 4  | 4        | 5    | 6       | 7   |
| 8.8        | 15.31 | 15.20 | 15:37          | 15.44  | 15.52 | 15.00             | 15.68 | 15.76                     | 15.84 | 15.92   | I   | 2 2 2        |          | 4  | 5        | 56   | 6       | 777 |
| 4.0        | 16.00 | 16.08 | 16.16          | 16.24  | 16.32 | 16.40             | 16.48 | 16.26                     | 16.65 | 16.73   | I   | 2 2          | 3        | 4  | 5        | 6    | 6       | 7   |
| 4.1        | 16.81 | 16.89 | 16.97          | 17.06  | 17.14 | 17:22             | 17:31 | 17:39                     | 17.47 | 17:56   | I   | 2 2          | 3        | 4  | 5        | 6    | 777     | 78  |
| 4.2        | 18.40 | 18.28 | 18.00          | 18.75  | 18.84 | 18.06             | 19.01 | 19.10                     | 19.18 | 19.27   | I   | ***          | 3334     | 4  | 5        | 666  | 77      | 8   |
| 4.4        | 19.36 | 19'4  | 19.24          | 19.62  | 19.71 | 19.80             | 19.89 | 19.98                     | 20.07 | 20'16   | I   | 2 3          | 4        | 4  | 5        | 6    | 7       | 8   |
| 4.2        | 20.22 | 20*34 | 20.43          | 20.22  | 20.01 | 20.70             | 20.79 | 20.88                     | 20.98 | 21.07   | I   | 2 3          | 4        | 5  | 5        | 6    | 7       | 8   |
| 4.6        |       |       |                |        |       | 21.62             |       |                           |       |         |     | 2 3          | 4        | 5  | 6        | 777  | 78      | 8   |
| 4.8        |       |       |                |        |       | 22.56             |       |                           |       |         |     | N N N N      | 4        |    | 6        | 7    | 8 8     | 9   |
| 4.9        |       |       |                |        |       | 24.20             |       |                           |       |         |     | 2 3          | 4        | 5  | 6        | 7    | 8       | 9   |
| 5.0        | 25.00 | 25.10 | 25.20          | 25.30  | 25.40 | 25.20             | 25.60 | 25.70                     | 25.81 | 25.91   | I   | 2 3          | 4        | 5  | 6        | 7    | 8       | 9   |
| 5.1        | 26'01 | 26*11 | 26.21          | 26.32  | 26.42 | 26.52             | 26.6  | 26.73                     | 26.83 | 26.94   | I   | 2 3          | 4        | 5  | 6        |      | 88      |     |
| 5.8        | 28.09 | 28.20 | 28.30          | 28.41  | 28.52 | 27.56             | 28.7  | 28.84                     | 28.94 | 29'05   | I   | ***          | 4        |    | 6        | 7    | 9       | IO  |
| 5.4        |       |       |                |        |       | 29.70             |       |                           |       |         |     | 2 3          | 4        | 5  | 7        |      | 9       | 10  |
|            | 0     | 1     | 2              | 8      | 4     | 5                 | 6     | 7                         | 8     | 9       | 1   | 2 8          | 4        | 5  | 6        | 7    | 8       | 9   |

## SQUARES

|                          | 0              | 1              | 2              | 8              | 4                                        | 5              | 6              | 7                                    | 8                  | 9              | 1      | 8 3              | 4                               | 5    | 6        | 7                    | 8                    | 9                    |
|--------------------------|----------------|----------------|----------------|----------------|------------------------------------------|----------------|----------------|--------------------------------------|--------------------|----------------|--------|------------------|---------------------------------|------|----------|----------------------|----------------------|----------------------|
| 5.5                      | 30.22          | 30.36          | 30'47          | 30.28          | 30.69                                    | 30.80          | 30.01          | 31 '02                               | 31.14              | 31.25          | ı      | 2                | 3 4                             | 6    | 7        | 8                    | 9                    | 10                   |
| 5.6<br>5.7<br>5.8<br>5.9 | 32.49<br>33.64 | 32.60          | 32.72          | 32.83<br>33.99 | 31.81<br>32.95<br>34.11<br>35.28         | 33'06          | 33°18<br>34'34 | 33 <sup>29</sup><br>34 <sup>46</sup> | 33°41<br>34°57     | 33°52<br>34°69 | I<br>I |                  | 3 5 5 5 4 5                     | 6666 | 777      | 8888                 | 9                    | 10<br>10<br>11<br>11 |
| 6.0                      |                |                | 100            |                | 36.48                                    |                |                |                                      |                    |                |        | 2                | 4 5                             | 6    | 7        | 8                    | 10                   | 11                   |
| 6·1<br>6·2<br>6·3<br>6·4 | 38'44<br>39'69 | 38.56<br>39.82 | 38.69<br>39.94 | 38.81          | 37'70<br>38'94<br>40'20<br>41'47         | 39°06<br>40°32 | 39°19<br>40°45 | 39°31<br>40°58                       | 39'44<br>40'70     | 39°56<br>40'83 | I<br>I | 3 .              | 4 5 5 4 5 4 5                   | 6666 | 88       | 99                   | 10<br>10<br>10       | 11<br>11             |
| 6.2                      | 42.25          | 42.38          | 42.51          | 42.64          | 42.77                                    | 42.90          | 43.03          | 43.16                                | 43'30              | 43.43          | I      | 3                | 4 5                             | 7    | 8        | 9                    | 10                   | 12                   |
| 6.6<br>6.7<br>6.8<br>6.9 | 44.89 46.24    | 45.02          | 45.16          | 45.29          | 44'09<br>45'43<br>46'79<br>48'16         | 45.56          | 45'70          | 45.83                                | 45.97              | 46'10          | I<br>I | 3                | 4 5 5 5 6                       | 7777 | 8        | -                    | 11<br>11<br>11<br>11 | 12<br>12             |
| 7.0                      | 49.00          | 49'14          | 49.28          | 49.42          | 49.26                                    | 49.70          | 49.84          | 49.98                                | 50.13              | 50.27          | I      | 3                | 4 6                             | 7    | 8        | 10                   | 11                   | 13                   |
| 7·1<br>7·2<br>7·8<br>7·4 | 51.84          | 51.98<br>53.44 | 52.13          | 52.27          | 50'98<br>52'42<br>53'88<br>55'35         | 52°56<br>54°02 | 52'71<br>54'17 | 52.85<br>54.32                       | 53'00<br>54'46     | 53.14          | I      | 3                | 4 6 6 4 6                       | 777  | 99       | 10<br>10<br>10       | 12<br>12             | 13<br>13             |
| 7.5                      | 56.25          | 56.40          | 56.23          | 56.70          | 56.85                                    | 57.00          | 57*15          | 57.30                                | 57.46              | 57.61          | 2      | 3                | 5 6                             | 8    | 9        | 11                   | 12                   | 14                   |
| 7.6<br>7.7<br>7.8<br>7.9 | 59°29<br>60°84 | 59'44<br>61'00 | 59.60          | 59'75          | 58·37<br>59·91<br>61·47<br>63·04         | 60°06<br>61°62 | 60'22          | 60°37<br>61°94                       | 60'53<br>62'09     | 60.68<br>62.25 | 2      | 3                | 5 6 6 6 6                       | 88   | 99       | 11<br>11<br>11<br>11 | 12                   | 14<br>14             |
| 8.0                      | 64.00          | 64.16          | 64.32          | 64.48          | 64.64                                    | 64.80          | 64.96          | 65.12                                | 65.29              | 65.45          | 2      | 3                | 5 6                             | 8    | 10       | 11                   | 13                   | 14                   |
| 8·1<br>8·2<br>8·3<br>8·4 | 67'24<br>68'89 | 67°40<br>69°06 | 67.57          | 67.73          | 66°26<br>67'90<br>69'56<br>71'23         | 68.06<br>69.72 | 68·23<br>69·89 | 68·39                                | 68.56              | 68·72<br>70·39 | 22     | 3                | 5 7<br>5 7<br>5 7<br>5 7        | 8    | 10<br>10 | 12<br>12             | 13                   | 15<br>15<br>15<br>15 |
| 8.2                      | 72.25          | 72.42          | 72.59          | 72.76          | 5 72.93                                  | 73.10          | 73.27          | 73.44                                | 73.62              | 73.79          | 2      | 3                | 5 7                             | 9    | 10       | 12                   | 14                   | 15                   |
| 8.6<br>8.7<br>8.8<br>8.9 | 75.69          | 75.86          | 76.04          | 76.21          | 74.65<br>76.39<br>78.15<br>79.92         | 76.56          | 76.74          | 76.91                                | 77.09              | 77.26          | 2      | 3<br>4<br>4<br>4 | 5 7<br>5 7<br>5 7<br>5 7<br>5 7 | 99   | II<br>II | 12<br>12<br>12<br>13 | 14                   | 16                   |
| 9.0                      | 81.00          | 81.18          | 81.30          | 81.24          | \$81.72                                  | 81.90          | 82.08          | 82.26                                | 82.45              | 82.63          | 2      | 4                | 5 7                             | 9    | 11       | 13                   | 14                   | 16                   |
| 9·1<br>9·2<br>9·3<br>9·4 | 84.64 86.49    | 84.82          | 85.0           | 85'19          | 83.54<br>85.38<br>87.24<br>89.11         | 85.56          | 85'75          | 85.9                                 | 86.12              | 86.30          | 2      | 4                | 5 7<br>6 7<br>6 7<br>6 8        | 99   | II<br>II | 13<br>13<br>13<br>13 | 15<br>15             | 17<br>17             |
| 9.2                      | 90.25          | 90'44          | 90.6           | 90.8           | 291.01                                   | 91.20          | 91.39          | 91.28                                | 391.78             | 91.97          | 2      | 4                | 6 8                             | 10   | 11       | 13                   | 15                   | 17                   |
| 9.6<br>9.7<br>9.8<br>9.9 | 94°09<br>96'04 | 94°28<br>96°24 | 94.4           | 94.6           | 4 92 93<br>7 94 87<br>3 96 83<br>9 98 80 | 95.00          | 95'26          | 95'4                                 | 5 95'63<br>2 97'61 | 95.84          | 2      | 4                | 6 8<br>6 8                      | 10   | 12       | 14<br>14             | 16<br>16             | 17<br>18<br>18<br>18 |
|                          | 0              | 1              | 2              | 8              | 4                                        | 5              | 6              | 7                                    | 8                  | 9              | 1      | 2                | 8 4                             | 5    | 6        | 7                    | 8                    | 9                    |

|          |                |              |                |              |               |              |              |              |              |              |    |     |     |    | -        |
|----------|----------------|--------------|----------------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|----|-----|-----|----|----------|
|          | 0′             | 6'           | 12′            | 18'          | 24'           | 30'          | 36'          | 42'          | 48'          | 54'          | 1' | 3,  | 3'  | 4' | 5'       |
| 0°       | .0000          | .0012        | · <b>0</b> 035 | .0023        | <b>'007</b> 0 | ·0087        | .0102        | ·0122        | ·0140        | .01 57       | 3  | 6   | 9   | 12 | 15       |
| 1        | .0175          | 0192         | 0209           | 0227         | 0244          | 0262         | 0279         | 0297         | 0314         | 0332         | 3  | 6   |     | 12 |          |
| 28       | *0349<br>*0523 | 0366<br>0541 | 0384<br>0558   | 040I<br>0576 | 0419<br>0593  | 0436         | 0454<br>0628 | 047I<br>0645 | 0488<br>0663 | 0506         | 3  | 6   |     | 12 | 15       |
| 4        | .0698          | 0715         | 0732           | 0750         | 0767          | 0785         | 0802         | 0819         | 0837         | 0854         | 3  | 6   |     | 12 |          |
| 5        | ·0872          | 0889         | 0906           | 0924         | 0941          | 0958         | 0976         | 0993         | 1011         | 1028         | 3  | 6   | 9   | 12 | 14       |
| 6        | 1045           | 1063         | 1080           | 1097         | 1115          | 1132         | 1149         | 1167         | 1184         | 1201         | 3  | 6   | 9   | 12 | 14       |
| 7        | 1219           | 1236         | 1253           | 1271         | 1288          | 1305         | 1323         | 1340         | 1357         | 1374         | 3  | 6   |     | 12 |          |
| 8<br>9   | ·1392<br>·1564 | 1409<br>1582 | 1426<br>1599   | 1444<br>1616 | 1461<br>1633  | 1478<br>1650 | 1495<br>1668 | 1513<br>1685 | 1530<br>1702 | 1547<br>1719 | 33 | 6   | 100 | 12 |          |
| 10       | 1736           | 1754         | 1771           | 1788         | 1805          | 1822         | 1840         | 1857         | 1874         | 1891         | 3  | 6   | 9   | 11 | 14       |
| 11       | 1908           | 1925         | 1942           | 1959         | 1977          | 1994         | 2011         | 2028         | 2045         | 2062         | 3  | 6   | -   | 11 |          |
| 12<br>18 | 2079<br>2250   | 2090         | 2113 2284      | 2130<br>2300 | 2147<br>2317  | 2164<br>2334 | 2181<br>2351 | 2198<br>2368 | 2215 2385    | 2233<br>2402 | 33 | 6   | 5   |    | 14<br>14 |
| 14       | 2419           | 2436         | 2453           | 2470         | 2487          | 2504         | 2521         | 2538         | 2554         | 2571         | 3  | 6   | -   | 11 |          |
| 15       | •2588          | 2605         | 2622           | 2639         | 2656          | 2672         | 2689         | 2706         | 2723         | 2740         | 3  | 6   | 8   | 11 | 14       |
| 16       | .2756          | 2773         | 2790           | 2807         | 2823          | 2840         | 2857         | 2874         | 2890         | 2907         | 3  | 6   | 8   | 11 | 14       |
| 17       | 2924           | 2940         | 2957           | 2974         | 2990          | 3007         | 3024         | 3040         | 3057         | 3074         | 3  | 6   | 8   | 11 |          |
| 18<br>19 | 3090           | 3107         | 3123           | 3140         | 3156          | 3173         | 3190         | 3206         | 3223         | 3239         | 3  | 6   |     | II | 14       |
| 19       | .3256          | 3272         | 3289           | 3305         | 3322          | 3338         | 3355         | 3371         | 3387         | 3404         | 3  | 5   | •   | 11 | 14       |
| 20       | '3420          | 3437         | 3453           | 3469         | 3486          | 3502         | 3518         | 3535         | 3551         | 3567         | 3  | 5   |     | 11 |          |
| 21       | ·3584<br>·3746 | 3600<br>3762 | 3616<br>3778   | 3633<br>3795 | 3649<br>3811  | 3665<br>3827 | 3681<br>3843 | 3697<br>3859 | 3714<br>3875 | 3730<br>3891 | 3  | 5 5 | 8   | II | 14       |
| 22<br>28 | 3907           | 3923         | 3939           | 3955         | 3971          | 3987         | 4003         | 4019         | 4035         | 4051         | 3  | 5   | -   |    | 13       |
| 24       | .4067          | 4083         | 4099           | 4115         | 4131          | 4147         | 4163         | 4179         | 4195         | 4210         | 3  | 5   | 8   | 11 |          |
| 25       | .4226          | 4242         | 4258           | 4274         | 4289          | 4305         | 4321         | 4337         | 4352         | 4368         | 3  | 5   | 8   | 11 | 13       |
| 26       | :4384          | 4399         | 4415           | 4431         | 4446          | 4462         | 4478         | 4493         | 4509         | 4524         | 3  | 5   | 8   | 10 | 13       |
| 27<br>28 | '4540<br>'4695 | 4555<br>4710 | 4571<br>4726   | 4586<br>4741 | 4602<br>4756  | 4617 4772    | 4633<br>4787 | 4648<br>4802 | 4664 4818    | 4679<br>4833 | 3  | 5   |     | 10 | 13       |
| 29       | 4848           | 4863         | 4879           | 4894         | 4909          | 4924         | 4939         | 4955         | 4970         | 4985         | 33 | 55  | 8   | 10 | 13       |
| 30       | .2000          | 5015         | 5030           | 5045         | 5060          | 5075         | 5090         | 5105         | 5120         | 5135         | 3  | 5   | 8   | 10 | 13       |
| 81       | .5150          | 5165         | 5180           | 5195         | 5210          | 5225         | 5240<br>5388 | 5255         | 5270         | 5284         | 2  | 5   | 7   | 10 | 1000     |
| 82<br>83 | ·5299<br>·5446 | 5314<br>5461 | 5329<br>5476   | 5344<br>5490 | 5358<br>5505  | 5373<br>5519 | 5534         | 5402<br>5548 | 5417<br>5563 | 5432<br>5577 | 2  | 55  |     | 10 |          |
| 84       | .5592          | 5606         | 5621           | 5635         | 5650          | 5664         | 5678         | 5693         | 5707         | 5721         | 2  | 5   |     | 10 | 10000    |
| 85       | .5736          | 5750         | 5764           | 5779         | 5793          | 5807         | 5821         | 5835         | 5850         | 5864         | 2  | 5   | 7   | 9  | 12       |
| 86       | .5878          | 5892         | 5906           | 5920         | 5934          | 5948         | 5962         | 5976         | 5990         | 6004         | 2  | 5   | 7   | 9  | 12       |
| 87       | 6018           | 6032         | 6046<br>6184   | 6060<br>6198 | 6074<br>6211  | 6088         | 6101         | 6115         | 6129<br>6266 | 6143<br>6280 | 2  | 5   | 7   | 9  | 12       |
| 88<br>89 | ·6157<br>·6293 | 6170<br>6307 | 6320           | 6334         | 6347          | 6225<br>6361 | 6239<br>6374 | 6252<br>6388 | 6401         | 6414         | 2  | 5 4 | 777 | 99 | II       |
|          |                |              |                |              |               |              |              |              |              |              |    |     | 1   | -  |          |
| 40       | .6428          | 6441         | 6455           | 6468         | 6481          | 6494         | 6508         | 6521         | 6534         | 6547         | 2  | 4   | 7   | 9  | 11       |
| 41 42    | ·6561<br>·6691 | 6574<br>6704 | 6587<br>6717   | 6600<br>6730 | 6613<br>6743  | 6626<br>6756 | 6639<br>6769 | 6652<br>6782 | 6665<br>6794 | 6678<br>6807 | 2  | 4   | 76  | 99 | II       |
| 48       | 6820           | 6833         | 6845           | 6858         | 6871          | 6884         | 6896         | 6909         | 6921         | 6934         | 2  | 4   | 6   | 8  | 11       |
| 44       | ·6947          | 6959         | 6972           | 6984         | 6997          | 7009         | 7022         | 7034         | 7046         | 7059         | 2  | 4   | 6   |    | 10       |
|          |                |              |                |              |               | 7            |              |              |              |              | -  |     | -   |    |          |
|          | ď              | 6'           | 12′            | 18′          | 24'           | 80'          | 86'          | 42'          | 48'          | 54'          | 1' | 8   | 8'  | 4' | 5'       |

### NATURAL SINES

|                      | 0                                | 6'                                   | 12'                          | 18'                          | 24'                          | 80'                           | 36'                           | 42'                                   | 48'                           | 54'                           | 1'               | 8'               | 3'               | 4'               | 5'               |
|----------------------|----------------------------------|--------------------------------------|------------------------------|------------------------------|------------------------------|-------------------------------|-------------------------------|---------------------------------------|-------------------------------|-------------------------------|------------------|------------------|------------------|------------------|------------------|
| 45°                  | .7071                            | .7083                                | .7096                        | .7108                        | .7120                        | .7133                         | .7145                         | .7157                                 | .7169                         | .7181                         | 2                | 4                | 6                | 8                | 10               |
| 46<br>47<br>48       | ·7193<br>·7314                   | 7206                                 | 7218                         | 7230                         | 7242<br>7361                 | 7254                          | 7266                          | 7278                                  | 7290                          | 7302<br>7420<br>7536          | 2 2 2            | 4 4              | 666              | 8 8 8            | 10<br>10<br>10   |
| 49                   | 7431                             | 7443<br>7559                         | 745 <b>5</b><br>7570         | 7466<br>7581                 | 7478<br>7593                 | 7490<br>7604                  | 7501<br>7615                  | 7513<br>7627                          | 7524<br>7638                  | 7649                          | 2                | 4 4              | 6                | 8                | 9                |
| <b>50</b>            | .7660                            | 7672                                 | 7683                         | 7694                         | 7705                         | 7716                          | 7727                          | 7738                                  | 7749                          | 7760                          | 2                | 4                | 6                | 7                | 9                |
| 52<br>53<br>54       | 7771<br>7880<br>7986<br>8090     | 7782<br>7891<br>7997<br>8100         | 7793<br>7902<br>8007<br>8111 | 7804<br>7912<br>8018<br>8121 | 7815<br>7923<br>8028<br>8131 | 7826<br>7934<br>8039<br>8141  | 7837<br>7944<br>8049<br>8151  | 7848<br>7955<br>8059<br>8161          | 7859<br>7965<br>8070<br>8171  | 7869<br>7976<br>8080<br>8181  | 2 2 2 2 2        | 4 4 3 3          | 5555             | 77777            | 9998             |
| 55                   | .8192                            | 8202                                 | 8211                         | 8221                         | 8231                         | 8241                          | 8251                          | 8261                                  | 8271                          | 8281                          | 2                | 3                | 5                | 7                | 8                |
| 56<br>57<br>58<br>59 | ·8290<br>·8387<br>·8480<br>·8572 | 8300<br>8396<br>8490<br>8581         | 8310<br>8406<br>8499<br>8590 | 8320<br>8415<br>8508<br>8599 | 8329<br>8425<br>8517<br>8607 | 8339<br>8434<br>8526<br>8616  | 8348<br>8443<br>8536<br>8625  | 8358<br>8453<br>8545<br>8634          | 8368<br>8462<br>8554<br>8043  | 8377<br>8471<br>8563<br>8652  | 2<br>2<br>2<br>I | 3333             | 5554             | 6666             | 8<br>8<br>8<br>7 |
| 60                   | ·8660                            | 8669                                 | 8678                         | 8686                         | 8695                         | 8704                          | 8712                          | 8721                                  | 8729                          | 8738                          | 1                | 3                | 4                | 6                | 7                |
| 61<br>62<br>63<br>64 | ·8746<br>·8829<br>·8910<br>·8988 | 8755<br>8838<br>8918<br>8996         | 8763<br>8846<br>8926<br>9003 | 8771<br>8854<br>8934<br>9011 | 8780<br>8862<br>8942<br>9018 | 8788<br>8870<br>8949<br>9026  | 8796<br>8878<br>8957<br>9033  | 8805<br>8886<br>8965<br>9041          | 8813<br>8894<br>8973<br>9048  | 8821<br>8902<br>8980<br>9056  | I<br>I<br>I<br>I | 3333             | 4444             | 6 5 5 5          | 7766             |
| 65                   | .9063                            | 9070                                 | 9078                         | 9085                         | 9092                         | 9100                          | 9107                          | 9114                                  | 9121                          | 9128                          | I                | 2                | 4                | 5                | 6                |
| 66<br>67<br>68<br>69 | ·9135<br>·9205<br>·9272<br>·9336 | 9143<br>9212<br>9278<br>9342         | 9150<br>9219<br>9285<br>9348 | 9157<br>9225<br>9291<br>9354 | 9164<br>9232<br>9298<br>9361 | 9171<br>9239<br>9304<br>9367  | 9178<br>9245<br>9311<br>9373  | 9184<br>9252<br>9317<br>9379          | 9191<br>9259<br>9323<br>9385  | 9198<br>9265<br>9330<br>9391  | I<br>I<br>I<br>I | 2 2 2 2 2        | 3333             | 5444             | 6 6 5 5          |
| 70                   | ·9397                            | 9403                                 | 9409                         | 9415                         | 9421                         | 9426                          | 9432                          | 9438                                  | 9444                          | 9449                          | I                | 2                | 3                | 4                | 5                |
| 71<br>72<br>73<br>74 | '9455<br>'9511<br>'9563<br>'9613 | 9461<br>9516<br>9568<br>9617         | 9466<br>9521<br>9573<br>9622 | 9472<br>9527<br>9578<br>9627 | 9478<br>9532<br>9583<br>9632 | 9483<br>9537<br>9588<br>9636  | 9489<br>9542<br>9593<br>9641  | 9494<br>9548<br>9598<br>9646          | 9500<br>9553<br>9603<br>9650  | 9505<br>9558<br>9608<br>9655  | I<br>I<br>I<br>I | 2 2 2 2 2 2      | 3<br>3<br>2<br>2 | 4 3 3 3 3        | 5444             |
| 75                   | .9659                            | 9664                                 | 9668                         | 9673                         | 9677                         | 9681                          | 9686                          | 9690                                  | 9694                          | 9699                          | I                | I                | 2                | 3                | 4                |
| 76<br>77<br>78<br>79 | '9703<br>'9744<br>'9781<br>'9816 | 9707<br>9748<br>9785<br><b>98</b> 20 | 9711<br>9751<br>9789<br>9823 | 9715<br>9755<br>9792<br>9826 | 9720<br>9759<br>9796<br>9829 | 9724<br>9763<br>9799<br>9833  | 9728<br>9767<br>9803<br>9836  | 9732<br>9770<br>9806<br>9839          | 9736<br>9774<br>9810<br>9842  | 9740<br>9778<br>9813<br>9845  | I<br>I<br>I<br>I | I<br>I<br>I<br>I | 2<br>2<br>2<br>2 | 3<br>3<br>2<br>2 | 3333             |
| 80                   | ·9848                            | 9851                                 | 9854                         | 9857                         | 9860                         | 9863                          | 9866                          | 9869                                  | 9871                          | 9874                          | 0                | I                | 1                | 2                | 2                |
| 81<br>82<br>83<br>84 | -9877<br>-9903<br>-9925<br>-9945 | 9880<br>9905<br>9928<br>9947         | 9882<br>9907<br>9930<br>9949 | 9885<br>9910<br>9932<br>9951 | 9888<br>9912<br>9934<br>9952 | 9890<br>9914<br>9936<br>9954  | 9893<br>9917<br>9938<br>9956  | 9895<br>9919<br>9940<br>9957          | 9898<br>9921<br>9942<br>9959  | 9900<br>9923<br>9943<br>9960  | 0000             | I<br>I<br>I<br>I | 1<br>1<br>1<br>1 | 2<br>2<br>1<br>I | 2<br>2<br>2<br>1 |
| 85                   | ·9962                            | 9963                                 | 9965                         | 9966                         | 9968                         | 9969                          | 9971                          | 9972                                  | 9973                          | 9974                          | 0                | 0                | 1                | I                | I                |
| 86<br>87<br>88<br>89 | 19976<br>19986<br>19994<br>19998 | 9977<br>9987<br>9995<br>9999         | 9978<br>9988<br>9995<br>9999 | 9979<br>9989<br>9996<br>9999 | 9980<br>9990<br>9996<br>9999 | 9981<br>9990<br>9997<br>1'000 | 9982<br>9991<br>9997<br>1.000 | 99 <b>83</b><br>9992<br>9997<br>1°000 | 9984<br>9993<br>9998<br>1.000 | 9985<br>9993<br>9998<br>1'000 | 0                | 0000             | 1<br>0<br>0      | I<br>I<br>0<br>0 | I<br>0<br>0      |
|                      | 0'                               | 6'                                   | 12'                          | 18'                          | 24'                          | 80'                           | 36'                           | 42'                                   | 48'                           | 54'                           | ľ                | 8                | 8'               | 4'               | 5'               |

NATURAL COSINES

|            |       |              |              |              |              |              |              |              |              |              |     |       | btra |     |    |
|------------|-------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----|-------|------|-----|----|
|            | 0'    | 6'           | 12           | 18′          | 24'          | 30'          | 86'          | 42'          | 48'          | 54'          | 1'  |       | _    |     | 5' |
| <b>0</b> ° | 1.000 | 1.000        | 1.000        | 1.000        | 1.000        | 1.000        | .99999       | .99999       | .99999       | ·99999       | 0   | 0     | 0    | 0   | 0  |
| 1          | ·9998 | 9998         | 9998         | 9997         | 9997         | 9997         | 9996         | 9996         | 9995         | 9995         | 0   | 0     | 0    | 0   | 0  |
| 2          | '9994 | 9993         | 9993         | 9992         | 9991         | 9990         | 9990         | 9989         | 9988         | 9987         | 0   | 0     | 0    | I   | I  |
| 8          | '9986 | 9985         | 9984         | 9983         | 9982         | 9981         | 9980         | 9979         | 9978         | 9977         | 0   | 0     | I    | I   | I  |
| 4          | ·9976 | 9974         | 9973         | 9972         | 9971         | 9969         | 9968         | 9966         | 9965         | 9963         | 0   | 0     | 1    |     | I  |
| 5          | ·9962 | <b>9</b> 960 | 9959         | 9957         | 9956         | 9954         | 9952         | 9951         | 9949         | 9947         | 0   | 1     | 1    | I   | 1  |
| 6          | '9945 | 9943         | 9942         | 9940         | 9938         | 9936         | 9934         | 9932         | 9930         | 9928         | 0   | I     | I    | I   | 2  |
| 7          | 9925  | 9923         | 9921         | 9919         | 9917         | 9914         | 9912         | 9910         | 9907         | 9905         | 0   | I     | I    | 2   | 2  |
| 8          | 9903  | 9900         | 9898         | 9895         | 9893         | 9890         | 9888         | 9885         | 9882         | 9880         | 0   | I     | I    | 2   | 2  |
| 9          | 9877  | 9874         | 9871         | 9869         | 9866         | 9863         | 9860         | 9857         | 9854         | 9851         | 0   | 1     | 1    | 2   | 2  |
| 10         | ·9848 | 9845         | 9842         | 9839         | 9836         | 9833         | 9829         | 9826         | 9823         | 9820         | I   | 1     | 2    | 2   | 3  |
| 11         | .9816 | 9813         | 9810         | 9806         | 9803         | 9799         | 9796         | 9792         | 9789         | 9785         | I   | I     | 2    | 2   | 3  |
| 12         | 9781  | 9778         | 9774         | 9770         | 9767         | 9763         | 9759         | 9755         | 9751         | 9748         | I   | 1     | 2    | 3   | 3  |
| 18         | 9744  | 9740         | 9736         | 9732         | 9728         | 9724         | 9720         | 9755         | 9711         | 9707         | I   | ī     | 2    | 3   | 3  |
| 14         | .9703 | 9699         | 9694         | 9690         | 9686         | 9681         | 9677         | 9673         | 9668         | 9664         | ī   | ī     | 2    | 3   | 4  |
| 15         | ·9659 | 9655         | 9650         | 9646         | 9641         | 9636         | 9632         | 9627         | 9622         | 9617         | I   | 2     | 2    | 3   | 4  |
| 16         | 9613  | 9608         | 9603         | 0108         | 0500         | 9588         | 9583         | 0779         | 0570         | 9568         | I   | 2     | 2    | 2   | 4  |
| 17         | 9563  | 9558         |              | 9598         | 9593         |              |              | 9578         | 9573<br>9521 | 9516         | I   | 2     | 3    | 33  | 4  |
| 18         | 9511  | 9505         | 9553<br>9500 | 9548         | 9542<br>9489 | 9537         | 9532         | 9527         | 9521         | 9461         | I   | 2     | 3    | 4   | 5  |
| 19         | 9455  | 9449         | 9444         | 9494<br>9438 | 9409 9432    | 9483<br>9426 | 9478<br>9421 | 9472<br>9415 | 9400         | 9403         | ī   | 2     | 3    | 4   | 5  |
| 20         | ·9397 | 9391         | 9385         | 9379         | 9373         | 9367         | 9361         | 9354         | 9348         | 9342         | 1   | 2     | 3    | 4   | 5  |
| 21         | 9336  | 9330         | 9323         | 9317         | 9311         | 9304         | 9298         | 9291         | 9285         | 9278         | I   | 2     | 3    | 4   | 5  |
| 22         | 9272  | 9265         | 9259         | 9252         | 9245         | 9239         | 9232         | 9225         | 9219         | 9212         | I   | 2     | 3    | 4   | 56 |
| 28         | 9205  | 9198         | 9191         | 9184         | 9178         | 9171         | 9164         | 9157         | 9150         | 9143         | I   | 2     | 3    | 5   | 6  |
| 24         | .9135 | 9128         | 9121         | 9114         | 9107         | 9100         | 9092         | 9085         | 9078         | 9070         | 1   | 2     | 4    | 5   | 6  |
| 25         | .9063 | 9056         | 9048         | 9041         | 9033         | 9026         | 9018         | 9011         | 9003         | 8996         | I   | 3     | 4    | 5   | 6  |
| 26         | ·8988 | 8980         | 8973         | 8965         | 8957         | 8949         | 8942         | 8934         | 8926         | 8918         | I   | 3     | 4    | 5   | 6  |
| 27         | .8910 | 8002         | 8894         | 8886         | 8878         | 8870         | 8862         | 8854         | 8846         | 8838         | ī   | 3     | A    | 5   | 7  |
| 28         | .8829 | 8821         | 8813         | 8805         | 8796         | 8788         | 8780         | 8771         | 8763         | 8755         | I   | 3     | 4    | 6   | 7  |
| 29         | .8746 | 8738         | 8729         | 8721         | 8712         | 8704         | 8695         | 8686         | 8678         | 8669         | I   | 3     | 4    | 6   | 7  |
| 30         | ·866o | 8652         | 8643         | 8634         | 8625         | 8616         | 8607         | 8599         | 8590         | 8581         | 1   | 3     | 4    | 6   | 7  |
| 31         | .8572 | 8-60         | 8000         | 8-1-         | 8006         | 8106         | Sera         | 8008         | 8400         | 8.00         |     | 2     | -    | 6   | 8  |
| 82         | 8480  | 8563         | 8554         | 8545         | 8536         | 8526         | 8517         | 8508         | 8499         | 8490<br>8396 | 2   | 3     | 5    | 6   | 8  |
| 88         | 8387  | 8471<br>8377 | 8462<br>8368 | 8453<br>8358 | 8443         | 8434         | 8425<br>8329 | 8415         | 8406<br>8310 | 8300         | 2   | 3     | 5    | 6   | 8  |
| 84         | -8290 | 8281         | 8271         | 8261         | 8348<br>8251 | 8339<br>8241 | 8231         | 8320<br>8221 | 8211         | 8202         | 2 2 | 33    | 5 5  | 7   | 8  |
| 35         | ·8192 | 8181         | 8171         | 8161         | 8151         | 8141         | 8131         | 8121         | 8111         | 8100         | 2   | 3     | 5    | 7   | 8  |
| 86         | .8090 | 8080         | 8070         | 8059         | 8049         | 8039         | 8028         | 8018         | 8007         | 7997         | 2   | 3     | 5    | 7   | 9  |
| 87         | .7986 | 7976         | 7965         | 7955         | 7944         | 7934         | 7923         | 7912         | 7902         | 7891         | 2   | 4     | 5    | 7   | 9  |
| 38         | .7880 | 7869         | 7859         | 7848         | 7837         | 7826         | 7815         | 7804         | 7793         | 7782         | 2   | 4     | 5    | 7   | 9  |
| 89         | .7771 | 7760         | 7749         | 7738         | 7727         | 7716         | 7705         | 7694         | 7683         | 7672         | 2   | 4     | 56   | 7   | 9  |
| 40         | .7660 | 7649         | 7638         | 7627         | 7615         | 7604         | 7593         | 7581         | 7570         | 7559         | 2   | 4     | 6    | 8   | 9  |
| 41         | .7547 | 7536         | 7524         | 7513         | 7501         | 7490         | 7478         | 7466         | 7455         | 7443         | 2   | 4     | 6    | 8   | 10 |
| 42         | 7431  | 7420         | 7408         | 7396         | 7385         | 7373         | 7361         | 7349         | 7337         | 7325         | 2   | 4     | 6    | 8   | 10 |
| 48         | 7314  | 7302         | 7290         | 7278         | 7266         | 7254         | 7242         | 7230         | 7218         | 7206         | 2   | 4     | 6    | -   | 10 |
| 44         | .7193 | 7181         | 7169         | 7157         | 7145         | 7133         | 7120         | 7108         | 7096         | 7083         | 2   | 4     | 6    | -   | 10 |
|            |       |              |              |              |              |              |              |              |              |              | 1'  | 2'    | 3'   | 4'  | 5' |
|            | o     | 6'           | 12'          | 18′          | 24           | 80'          | 86'          | 42'          | 48'          | 54'          | -   | Sub   | tra  | ot  |    |
|            |       |              |              |              |              |              |              |              |              |              |     | liffe | ren  | 001 | h- |

## NATURAL COSINES

|          |                |              |              |              |              |              |                |              |              |              | Γ,  | Sul  | otra |     |          |
|----------|----------------|--------------|--------------|--------------|--------------|--------------|----------------|--------------|--------------|--------------|-----|------|------|-----|----------|
|          | 0'             | 6'           | 12'          | 18'          | 24'          | 80'          | 86'            | 42'          | 48'          | 54           | 1'  | 2'   |      | 4'  |          |
| 45°      | .7071          | .7059        | .7046        | .7034        | .7022        | .7009        | ·6997          | ·6984        | .6972        | ·6959        | 2   | 4    | 6    | 8   | 10       |
| 46       | .6947          | 6934         | 6921         | 6909         | 6896         | 6884         | 6871           | 6858         | 6845         | 6833         | 2   | 4    | 6    | 8   | 11       |
| 47       | .6820          | 6807         | 6794         | 6782         | 6769         | 6756         | 6743           | 6730         | 6717         | 6704         | 2   | 4    | 6    | 9   | II       |
| 48<br>49 | ·6691<br>·6561 | 6678<br>6547 | 6665<br>6534 | 6652<br>6521 | 6639<br>6508 | 6626<br>6494 | 6613<br>6481   | 6600<br>6468 | 6587<br>6455 | 6574<br>6441 | 2 2 | 4    | 777  | 99  |          |
|          |                |              |              | and second   | a later      |              | and the second | La constant  |              |              | -   | *    | '    | 9   |          |
| 50       | ·6428          | 6414         | 6401         | 6388         | 6374         | 6361         | 6347           | 6334         | 6320         | 6307         | 2   | 4    | 7    | 9   | 11       |
| 51<br>52 | 6293           | 6280         | 6266         | 6252         | 6239         | 6225         | 6211           | 6198         | 6184         | 6170         | 2   | 5    | 7    | 9   | II       |
| 53       | ·6157<br>·6018 | 6143<br>6004 | 6129<br>5990 | 6115<br>5976 | 6101<br>5962 | 6088<br>5948 | 6074<br>5934   | 6060<br>5920 | 6046<br>5906 | 6032<br>5892 | 2 2 | 5 5  | 77   | 99  | 12       |
| 54       | .5878          | 5864         | 5850         | 5835         | 5821         | 5807         | 5793           | 5779         | 5764         | 5750         | 2   | 5    | 7    | 9   | 12       |
| 55       | .5736          | 5721         | 5707         | 5693         | 5678         | 5664         | 5650           | 5635         | 5621         | 5606         | 2   | 5    | 7    | 10  | 12       |
| 56       | .5592          | 5577         | 5563         | 5548         | 5534         | 5519         | 5505           | 5490         | 5476         | 5461         | 2   | 5    | 7    | 10  | 12       |
| 57       | .5446          | 5432         | 5417         | 5402         | 5388         | 5373         | 5358           | 5344         | 5329         | 5314         | 2   | 5    |      | 10  |          |
| 58       | .5299          | 5284         | 5270         | 5255         | 5240         | 5225         | 5210           | 5195         | 5180         | 5165         | 2   | 5    |      |     | 12       |
| 59       | .2120          | 5135         | 5120         | 5105         | 5090         | 5075         | 5060           | 5045         | 5030         | 5015         | 3   | 5    |      | 10  |          |
| 60       | .2000          | 4985         | 4970         | 4955         | 4939         | 4924         | 4909           | 4894         | 4879         | 4863         | 3   | 5    |      | 10  |          |
| 61       | 4848           | 4833         | 4818         | 4802         | 4787         | 4772         | 4756           | 4741         | 4726         | 4710         | 3   | 5    |      | IO  |          |
| 62<br>63 | 4695           | 4679         | 4664         | 4648         | 4633         | 4617         | 4602           | 4586         | 4571         | 4555         | 3   | 5    |      | 10  | 13       |
| 64       | '4540<br>'4384 | 4524<br>4368 | 4509<br>4352 | 4493<br>4337 | 4478<br>4321 | 4462<br>4305 | 4446<br>4289   | 4431<br>4274 | 4415<br>4258 | 4399<br>4242 | 33  | 55   |      | 11  |          |
| 65       | .4226          | 4210         | 4195         | 4179         | 4163         | 4147         | 4131           | 4115         | 4099         | 4083         | 3   | 5    | 8    | 11  | 13       |
| 66       | .4067          | 4051         | 4035         | 4019         | 4003         | 3987         | 3971           | 3955         | 3939         | 3923         | 3   | 5    | 8    | 11  | 14       |
| 67       | 3907           | 3891         | 3875         | 3859         | 3843         | 3827         | 3811           | 3795         | 3778         | 3762         | 3   | 5    | 8    | II  | 14       |
| 68       | 3746           | 3730         | 3714         | 3697         | 3681         | 3665         | 3649           | 3633         | 3616         | 3600         | 3   | 5    | 8    | II  | 14       |
| 69       | *3584          | 3567         | 3551         | 3535         | 3518         | 3502         | 3486           | 3469         | 3453         | 3437         | 3   | 5    | 8    | 11  | 14       |
| 70       | .3420          | 3404         | 3387         | 3371         | 3355         | 3338         | 3322           | 3305         | 3289         | 3272         | 3   | 5    | 8    | 11  | 14       |
| 71       | .3256          | 3239         | 3223         | 3206         | 3190         | 3173         | 3156           | 3140         | 3123         | 3107         | 3   | 6    | 8    | 11  | 14       |
| 72       | .3090          | 3074         | 3057         | 3040         | 3024         | 3007         | 2990           | 2974         | 2957         | 2940         | 3   | 6    |      |     | 14       |
| 78       | 2924           | 2907         | 2890         | 2874         | 2857         | 2840         | 2823           | 2807         | 2790         | 2773         | 3   | 6    |      |     | 14       |
| 74       | .2756          | 2740         | 2723         | 2706         | 2689         | 2672         | 2656           | 2639         | 2622         | 2605         | 3   | 6    |      |     | 14       |
| 75       | ·2588          | 2571         | 2554         | 2538         | 2521         | 2504         | 2487           | 2470         | 2453         | 2436         | 3   | 6    | 8    |     |          |
| 76       | 2419           | 2402         | 2385         | 2368         | 2351         | 2334         | 2317           | 2300         | 2284         | 2267         | 3   | 6    |      | 11  |          |
| 77       | 2250           | 2233         | 2215         | 2198         | 2181         | 2164         | 2147           | 2130         | 2113         | 2096         | 3   | 6    |      |     | 2 2 1    |
| 78<br>79 | ·2079<br>·1908 | 2062<br>1891 | 2045<br>1874 | 2028<br>1857 | 2011<br>1840 | 1994<br>1822 | 1977<br>1805   | 1959<br>1788 | 1942<br>1771 | 1925<br>1754 | 33  | 6    | 99   | II  | 14<br>14 |
| 80       | ·1736          | 1719         | 1702         | 1685         | 1668         | 1650         | 1633           | 1616         | 1599         | 1582         | 3   | 6    | 9    | 11  | 14       |
| 81       | .1564          | 1547         | 1530         | 1513         | 1495         | 1478         | 1461           | 1444         | 1426         | 1409         | 3   | 6    | 9    | 12  | 14       |
| 82       | 1392           | 1374         | 1357         | 1340         | 1323         | 1305         | 1288           | 1271         | 1253         | 1236         | 3   | 6    | 9    | 12  | 14       |
| 83       | 1219           | 1201         | 1184         | 1167         | 1149         | 1132         | 1115           | 1097         | 1080         | 1063         | 3   | 6    | 9    | 12  | 14       |
| 84       | 1045           | 1028         | 1011         | 0993         | 0976         | 0958         | 0941           | 0924         | 0906         | 0889         | 3   | 6    | 9    | 12  | 14       |
| 85       | .0872          | 0854         | 0837         | 0819         | 0802         | 0785         | 0767           | 0750         | 0732         | 0715         | 3   | 6    | 9    | 12  | 14       |
| 86       | ·0698          | 0680         | 0663         | 0645         | 0628         | 0610         | 0593           | 0576         | 0558         | 0541         | 3   | 6    | 9    | 12  | 15       |
| 87       | .0523          | 0506         | 0488         | 0471         | 0454         | 0436         | 0419           | 0401         | 0384         | 0366         | 3   | 6    | 9    |     | 15       |
| 88       | 0349           | 0332         | 0314         | 0297         | 0279         | 0262         | 0244           | 0227         | 0209         | 0192         | 3   | 6    |      |     | 15       |
| 89       | .0122          | 0157         | 0140         | 0122         | 0105         | 0087         | 0070           | 0052         | 0035         | 0017         | 3   | 6    | 9    | 12  | 15       |
|          | 0'             | 6'           | 10           | 10'          | 941          | 30'          | 94             | 49           | 4.01         | E.A.         | 1'  | 2'   | 8'   | 4   | 5'       |
|          | 0              | 0            | 12'          | 18'          | 24'          | 30           | 86'            | 42'          | 48'          | 54'          |     | Sul  | otra | let |          |
|          |                |              |              |              |              |              |                |              |              |              | D   | iffe | ren  | Cet | -        |

NATURAL TANGENTS

|                      | or                               | 6'                           | 12'                          | 18'                          | 24'                          | 80'                          | 36'                          | 42'                          | 48'                          | 54'                          | 1'   | 2     | 8'       | 4'             | 5'                           |
|----------------------|----------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------|-------|----------|----------------|------------------------------|
| 0°                   | .0000                            | .0017                        | .0035                        | .0052                        | ·0070                        | .0087                        | .0102                        | .0122                        | •0140                        | .0157                        | 3    | 6     | 9        | 12             | 15                           |
| 12                   | 0175<br>0349                     | 0192<br>0367                 | 0209<br>0384                 | 0227<br>0402                 | 0244<br>0419                 | 0262<br>0437                 | 0279<br>0454                 | 0297<br>0472                 | 0314<br>0489                 | 0332<br>0507                 | 33   | 6     |          | 12<br>12       | 15<br>15                     |
| 284                  | ·0524<br>·0699                   | 0542<br>0717                 | 0559<br>0734                 | 0577<br>0752                 | 0594<br>0769                 | 0612<br>0787                 | 0629<br>0805                 | 0647<br>0822                 | 0664<br>0840                 | 0682<br>0857                 | 33   | 6     | -        | 12             |                              |
| 5                    | ·0875                            | 0892                         | 0910                         | 0928                         | 0945                         | 0963                         | 0981                         | 0998                         | 1016                         | 1033                         | 3    | 6     |          | 12             |                              |
| 6<br>7<br>8          | 1051<br>1228<br>1405             | 1069<br>1246<br>1423         | 1086<br>1263<br>1441         | 1104<br>1281<br>1459         | 1122<br>1299<br>1477         | 1139<br>1317<br>1495         | 1157<br>1334<br>1512         | 1175<br>1352<br>1530         | 1192<br>1370<br>1548         | 1210<br>1388<br>1566         | 333  | 666   | 9        | 12<br>12<br>12 |                              |
| 9                    | 1584                             | 1692                         | 1620                         | 1638                         | 1655                         | 1673                         | 1691                         | 1709                         | 1727                         | 1745                         | 3    | 6     |          | 12             |                              |
| 10                   | ·1763                            | 1781                         | 1799<br>1980                 | 1817                         | 1835<br>2016                 | 1853<br>2035                 | 1871<br>2053                 | 1890<br>2071                 | 1908<br>2089                 | 1926<br>2107                 | 3    | 6     |          |                | 15                           |
| 12 18                | 2126                             | 2144                         | 2162                         | 2180                         | 2199 2382                    | 2217<br>2401                 | 2235                         | 2254 2438                    | 2272<br>2456                 | 2290<br>2475                 | 33   | 6     | 9        | 12<br>12       | 15                           |
| 14                   | -2493                            | 2512                         | 2530                         | 2549                         | 2568                         | 2586                         | 2605                         | 2623                         | 2642                         | 2661                         | 3    | 6     | 9        | 12             | IĞ                           |
| 15                   | .2679                            | 2698                         | 2717                         | 2736                         | 2754                         | 2773                         | 2792                         | 2811                         | 2830                         | 2849                         | 3    | 6     |          |                | 16                           |
| 16<br>17<br>18<br>19 | *2867<br>*3057<br>*3249<br>*3443 | 2886<br>3076<br>3269<br>3463 | 2905<br>3096<br>3288<br>3482 | 2924<br>3115<br>3307<br>3502 | 2943<br>3134<br>3327<br>3522 | 2962<br>3153<br>3346<br>3541 | 2981<br>3172<br>3365<br>3561 | 3000<br>3191<br>3385<br>3581 | 3019<br>3211<br>3404<br>3600 | 3038<br>3230<br>3424<br>3620 | 3333 | 6667  | 10<br>10 | 13             | 16<br>16<br>16<br>16         |
| 20                   | .3640                            | 3659                         | 3679                         | 3699                         | 3719                         | 3739                         | 3759                         | 3779                         | 3799                         | 3819                         | 3    |       |          |                | 17                           |
| 21<br>22<br>23<br>24 | -3839<br>-4040<br>-4245<br>-4452 | 3859<br>4061<br>4265<br>4473 | 3879<br>4081<br>4286<br>4494 | 3899<br>4101<br>4307<br>4515 | 3919<br>4122<br>4327<br>4536 | 3939<br>4142<br>4348<br>4557 | 3959<br>4163<br>4369<br>4578 | 3979<br>4183<br>4390<br>4599 | 4000<br>4204<br>4411<br>4621 | 4020<br>4224<br>4431<br>4642 | 3334 | 7777  | 10<br>10 | 14<br>14       | 17<br>17<br>17<br>17<br>18   |
| 25                   | .4663                            | 4684                         | 4706                         | 4727                         | 4748                         | 4770                         | 4791                         | 4813                         | 4834                         | 4856                         | 1    |       |          |                | 18                           |
| 26<br>27<br>28<br>29 | ·4877<br>·5095<br>·5317<br>·5543 | 4899<br>5117<br>5340<br>5566 | 4921<br>5139<br>5362<br>5589 | 4942<br>5161<br>5384<br>5612 | 4964<br>5184<br>5407<br>5635 | 4986<br>5206<br>5430<br>5658 | 5008<br>5228<br>5452<br>5681 | 5029<br>5250<br>5475<br>5704 | 5498                         | 5073<br>5295<br>5520<br>5750 | 4    | 780   | II<br>II | 15             | 18<br>18<br>19<br>19         |
| 30                   | .5774                            | 5797                         | 5820                         | 5844                         | 5867                         | 5890                         | 5914                         | 5938                         | 5961                         | 5985                         |      |       |          |                | 20                           |
| 81<br>32<br>33<br>34 | ·6009<br>·6249<br>·6494<br>·6745 | 6032<br>6273<br>6519<br>6771 | 6056<br>6297<br>6544<br>6796 | 6080<br>6322<br>6569<br>6822 | 6104<br>6346<br>6594<br>6847 | 6128<br>6371<br>6619<br>6873 | 6152<br>6395<br>6644<br>6899 | 6176<br>6420<br>6669<br>6924 | 6445<br>6694                 | 6720                         | 4    | 8     | 12<br>13 | 16             | 20<br>20<br>21<br>21         |
| 35                   | .7002                            | 7028                         | 7054                         | 7080                         | 7107                         | 7133                         | 7159                         | 7186                         | 7212                         | 7239                         | 4    | 9     | 13       | 18             | 3 22                         |
| 86<br>87<br>88<br>89 | ·7265<br>·7536<br>·7813<br>·8098 | 7292<br>7563<br>7841<br>8127 | 7319<br>7590<br>7869<br>8156 | 7618                         | 7373<br>7646<br>7926<br>8214 | 7400<br>7673<br>7954<br>8243 | 7427<br>7701<br>7983<br>8273 | 7454<br>7729<br>8012<br>8302 | 7757 8040                    |                              | 5    | 99    | 14<br>14 | 18             | 3 23<br>3 23<br>9 24<br>9 24 |
| 40                   | .8391                            | 8421                         | 8451                         | 8481                         | 8511                         | 8541                         | 8571                         | 8601                         | 8632                         | 8662                         | 5    | 10    | 15       | 20             | 25                           |
| 41<br>42<br>43<br>44 | -8693<br>-9004<br>-9325<br>-9657 | 9036<br>9358                 | 9067                         | 9099<br>9424                 | 8816<br>9131<br>9457<br>9793 | 9163<br>9490                 | 9523                         | 9228<br>9556                 | 9260<br>9590                 | 9293<br>9623                 | 56   | II    | 16       | 21             | 26<br>27<br>2 28<br>3 29     |
|                      | o                                | 6'                           | 12'                          | 18'                          | 24'                          | 30'                          | 36'                          | 42'                          | 48'                          | 54'                          | 1    | .' 2' | 8'       | 4'             | 5'                           |

# NATURAL TANGENTS

|          | 0°               | 6             | 12'           | 18'          | 24           | 80'            | 86'            | 42'             | 48'             | 54'                                      | 1' 8           | 3'       | 4'       | 5'       |
|----------|------------------|---------------|---------------|--------------|--------------|----------------|----------------|-----------------|-----------------|------------------------------------------|----------------|----------|----------|----------|
|          |                  |               |               |              |              |                |                |                 |                 |                                          |                |          |          |          |
| 4.5°     | 1.0000           | .0032         | .0070         | .0102        | ·0141        | <b>.01</b> 76  | '0212          | .0247           | .0283           | .0319                                    | 6 12           | 18       | 24       | 30       |
| 46 47    | 1'0355           | 0392          | 0428          | 0464         | 0501<br>0875 | 0538           | 0575<br>0951   | 0612            | 0649            | 0686                                     | 6 12<br>6 13   | 18<br>19 | 25       | 31<br>32 |
| 48<br>49 | 1.1100           | 1145          | 1184          | 1224         | 1263         | 1303<br>1708   | 1343           | 1383            | 1423<br>1833    | 1463                                     | 7 13           | 20 21    | 27 28    | 33<br>34 |
| 50       | 1.1018           | 1960          | 2002          | 2045         | 2088         |                |                | 2218            | 2261            | 2305                                     | 7 14           | 22       | 29       | 36       |
| 51       | 1'2349           |               |               | 2482         |              | 2131           | 2174           | 2662            |                 |                                          |                |          |          |          |
| 52       | 1'2799           | 2393<br>2846  | 2437<br>2892  | 2938         | 2527<br>2985 | 2572<br>3032   | 2617<br>3079   | 3127            | 2708            | 2753<br>3222                             | 8 16           | 23<br>24 | 30<br>31 | 38<br>39 |
| 53<br>54 | 1'3270           | 3319<br>3814  | 3367<br>3865  | 3416<br>3916 | 3465<br>3968 | 3514<br>4019   | 3564<br>4071   | 3613<br>4124    | 3663<br>4176    | 3713 4229                                | 8 16<br>9 17   | 25<br>26 | 33<br>34 | 41<br>43 |
| 55       | 1'4281           | 4335          | 4388          | 4442         | 4496         | 4550           | 4605           | 4659            | 4715            | 4770                                     | 9 18           | 27       | 36       | 45       |
| 56       | 1'4826           | 4882          | 4938          | 4994         | 5051         | 5108           | 5166           | 5224            | 5282            |                                          | 10 19          | 29       | 38       | 48       |
| 57<br>58 | 1.2399           | 5458<br>6066  | 5517<br>6128  | 5577<br>6191 | 5637<br>6255 | 5697<br>6319   | 5757<br>6383   | 5818            | 5880            | 5941<br>6577                             | 10 20<br>11 21 | 30<br>32 | 40<br>43 | 50<br>53 |
| 59       | 1.6643           | 6709          | 6775          | 6842         | 6909         | 6977           | 7045           | 7113            | 7182            |                                          | 11 23          | 34       | 45       | 57       |
| 60       | 1.7321           | 7391          | 7461          | 7532         | 7603         | 7675           | 7747           | 7820            | 7893            | 7966                                     | 12 24          | 36       | 48       | 60       |
| 61<br>62 | 1.8040<br>1.8807 | 8115<br>8887  | 8190<br>8967  | 8265<br>9047 | 8341<br>9128 | 8418           | 8495           | 8572            | 8650            |                                          | 13 26          | 38       | 51       | 64<br>68 |
| 63       | 1'9626           | 9711          | 9797          | 9883         |              | 9210<br>2.0057 | 9292<br>2.0145 | 9375<br>2.0233  | 9458<br>2'0323  | 2'0413                                   | 14 27          | 41<br>44 | 55<br>58 | 73       |
| 64       | 2.0203           | 0594          | 0686          | 0778         | 0872         | 0965           | 1060           | 1155            | 1251            | 1348                                     | 16 31          | 47       | 63       | 79       |
| 65       | 2.1445           | 1543          | 1642          | 1742         | 1842         | 1943           | 2045           | 2148            | 2251            |                                          | 17 34          | 51       | 68       | 85       |
| 66<br>67 | 2'2460           | 2566<br>3673  | 2673<br>3789  | 2781<br>3906 | 2889<br>4023 | 2998<br>4142   | 3109 4262      | 3220<br>4383    | 3332<br>4504    |                                          | 18 37 20 40    | 55       | 73<br>79 | 92<br>99 |
| 68<br>69 | 2'4751           | 4876          | 5002          | 5129         | 5257<br>6605 | 5386           | 5517           | 5649            | 5782            | 5916                                     | 22 43          | 65       | 87       | 108      |
| 70       | 2.6051           | 6187          | 6325          | 6464         | 8083         | 6746           | 6889           | 7034            | 7179            |                                          | 24 48<br>26 52 | 71       | 95       | 119      |
|          | 2.7475           | 7625          | 7776          | 7929         |              | 8239           | 8397           | 8556            | 8716            |                                          |                |          | 105      |          |
| 71<br>72 | 2'9042<br>3'0777 | 9208<br>0961  | 9375<br>1146  | 9544<br>1334 | 9714<br>1524 | 9887           | 1910           | 3.0237 2106     | 2305            | 2506                                     | 32 64          |          | 116      |          |
| 78<br>74 | 3'2709           | 2914          | 3122          | 3332         | 3544         | 3759           | 3977           | 4197            | 4420            | 4646                                     | 36 72          |          |          |          |
| 10000    | 3'4874           |               |               | 5576         | 5816         |                | 6305           | 6554            | 6806            |                                          | 41 81          |          |          |          |
| 75       | 3.7321           |               | 1212          | 8118         |              | 8667           | 8947           | 9232            | 9520            |                                          | 46 93          | 139      | 180      | 232      |
| 76<br>77 | 4'0108<br>4'3315 | 0408<br>3662  | 0713<br>4015  | 1022<br>4374 | 1335<br>4737 | 1653           | 1976<br>5483   | 2303<br>5864    | 2635<br>6252    | 2972<br>6646                             |                |          |          |          |
| 78<br>79 | 4'7046           | 7453          | 7867          | 8288         | 8716         | 9152           | 9594           | 5'0045          | 5.0504          | 5.0970                                   |                |          |          |          |
| 80       | 5.1446           |               | 2422<br>7894  | 2924<br>8502 | 3435<br>9124 | 3955           | 4486           | 5026<br>6.1066  | 5578            | 6140                                     |                |          |          |          |
| 81       | 6.3138           |               |               | 5350         | 6122         | 6912           |                |                 |                 |                                          |                |          |          |          |
| 82       | 7'1154           | 2066          | 4596<br>3002  | 3962         | 4947         | 5958           | 7720<br>6996   | 8548<br>8062    |                 | 7 <sup>.0264</sup><br>8 <sup>.0285</sup> | Mean<br>no     |          |          |          |
| 83<br>84 | 8.1443 9.514     | 2636<br>9.677 | 3863<br>9'845 | 5126         |              | 7769           | 9152<br>10'58  | 9.0579<br>10.78 | 9'2052<br>IO'99 |                                          |                | tly a    |          |          |
| 85       |                  |               |               |              |              |                |                |                 |                 |                                          |                |          |          |          |
|          |                  |               |               |              | 12.43        |                |                | 13.30           |                 |                                          |                |          |          |          |
| 86<br>87 | 14'30 19'08      |               |               | 21'20        | 15.89        |                | 16.83          |                 | 17.89           | 18.46                                    | 100            |          |          |          |
| 88<br>89 | 28.64            | 30'14         | 31.82         | 33.69        |              | 38.10          | 40'92          | 44.07           | -               | 52.08                                    |                |          |          |          |
|          | 57.29            | 03 00         | /1 02         |              | 95 49        | 114.0          | 143'2          | 191.0           | 200 5           | 573.0                                    |                |          |          |          |
|          | o                | 6'            | 12′           | 18′          | 24           | 80′            | 86'            | 42'             | 48'             | 54'                                      |                |          |          |          |

|          | or             | 6'           | 12'          | 18'          | 24'          | 80'          | 86'          | 42'          | 48'          | 54'          | 1' | 8'  | 8'  | 4'   | 5'            |
|----------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----|-----|-----|------|---------------|
| 0°       | '00000         | .0017        | .0035        | .0052        | .0070        | .0087        | .0102        | '0122        | .0140        | .0157        | 3  | 6   | 0   | 12   | 15            |
|          |                |              |              |              |              |              | -            |              |              |              | -  | -   | -   |      | -             |
| 12       | '0175<br>'0349 | 0192 0367    | 0209         | 0227<br>0401 | 0244         | 0262 0436    | 0279<br>0454 | 0297<br>0471 | 0314 0489    | 0332         | 33 | 6   | -   |      | 15            |
| 28       | '0524          | 0541         | 0559         | 0576         | 0593         | 0611         | 0628         | 0646         | 0663         | 0681         | 3  | 6   | 9   |      | 15            |
| 4        | •0698          | 0716         | 0733         | 0750         | 0768         | 0785         | 0803         | 0820         | 0838         | 0855         | 3  | 6   | 9   | 12   | 15            |
| 5        | ·0873          | 0890         | 0908         | 0925         | 0942         | 0960         | 0977         | 0995         | 1012         | 1030         | 3  | 6   | 9   | 12   | 15            |
| 6        | 1047           | 1065         | 1082         | 1100         | 1117         | 1134         | 1152         | 1169         | 1187         | 1204         | 3  | 6   | ~   | 12   | 15            |
| 78       | 1222           | 1239<br>1414 | 1257<br>1431 | 1274<br>1449 | 1292<br>1466 | 1309<br>1484 | 1326         | 1344<br>1518 | 1361<br>1536 | 1379         | 3  | 6   | -   | 12   | 15            |
| ĝ        | '1396<br>'1571 | 1588         | 1606         | 1623         | 1641         | 1658         | 1676         | 1693         | 1710         | 1553<br>1728 | 3  | 6   |     |      | 15            |
| 10       | 1745           | 1763         | 1780         | 1798         | 1815         | 1833         | 1850         | 1868         | 1885         | 1902         | 3  | 6   | -   |      | 15            |
|          |                |              |              |              |              | - marine     |              |              |              |              |    |     |     |      |               |
| 11 12    | *1920<br>*2094 | 1937 2112    | 1955 2129    | 1972<br>2147 | 1990<br>2164 | 2007<br>2182 | 2025         | 2042         | 2059         | 2077 2251    | 3  | 6   | -   | 12   | 15            |
| 18       | 12269          | 2286         | 2304         | 2321         | 2339         | 2356         | 2374         | 2391         | 2409         | 2426         | 3  | 6   |     |      |               |
| 14       | *2443          | 2461         | 2478         | 2496         | 2513         | 2531         | 2548         | 2566         | 2583         | 2601         | 3  | 6   |     |      | 15            |
| 15       | .2618          | 2635         | 2653         | 2670         | 2688         | 2705         | 2723         | 2740         | 2758         | 2775         | 3  | 6   | 9   | 12   | 15            |
| 16       | 2793           | 2810         | 2827         | 2845         | 2862         | 2880         | 2897         | 2915         | 2932         | 2950         | 3  | 6   | -   |      | 15            |
| 17       | 2967           | 2985         | 3002         | 3019<br>3194 | 3037         | 3054         | 3072         | 3089         | 3107         | 3124         | 3  | 6   |     |      | 15            |
| 18<br>19 | ·3142<br>·3316 | 3159<br>3334 | 3351         | 3368         | 3386         | 3229<br>3403 | 3246<br>3421 | 3264<br>3438 | 3456         | 3299<br>3473 | 33 | 6   |     |      | 15<br>15      |
| 20       | ·3491          | 3508         | 3526         | 3543         | 3560         | 3578         | 3595         | 3613         | 3630         | 3648         | 3  | 6   | 9   | 12   | 15            |
| 21       | .3665          | 3683         | 3700         | 3718         | 3735         | 3752         | 3770         | 3787         | 3805         | 3822         | 3  | 6   |     |      | 15            |
| 22       | .3840          | 3857         | 3875         | 3892         | 3910         | 3927         | 3944         | 3962         | 3979         | 3997         | 3  | 6   |     |      | 15            |
| 28       | 4189           | 4032         | 4049         | 4067         | 4084 4259    | 4102         | 4119         | 4136         | 4154 4328    | 4171 4346    | 3  | 6   | -   | 12   | 15            |
| 25       | .4363          |              | 4398         | 4416         | 4433         | 4451         | 4468         |              |              | 4520         | 3  | 6   | -   |      | 15            |
|          |                |              |              |              |              |              |              |              |              | 1            | ľ  |     | 1   |      | -             |
| 26       | 4538           | 4555         |              | 4590         | 4608<br>4782 | 4625         | 4643         | 4660         | 4677         | 4695         | 3  | 6   | -   | 12   |               |
| 27       | 4712           | 4730         |              | 4765         | 4702         | 4974         |              | 4835         |              | 4869         | 3  | 6   |     |      | 15            |
| 28<br>29 | .2001          |              |              | 5114         |              | 5149         |              |              |              | 5219         | 3  | 6   |     |      | 15            |
| 30       | .5236          | 5253         | 5271         | 5288         | 1            | 5323         | 5341         | 5358         | 5376         | 5393         | 3  | 6   | 9   | 12   | 2 15          |
| 81       | -5411          | 5428         |              |              |              |              | 5515         |              |              |              |    | 6   |     |      | 2 15          |
| 32       | ·5585<br>·5760 | 5603         |              |              |              |              |              |              |              |              |    | 6   |     |      | 2 15          |
| 83<br>84 | -5934          |              |              |              |              |              |              |              |              |              |    |     |     |      | 2 15          |
| 35       | .6100          | 6126         | 6144         | 6161         | 6178         | 6196         | 6213         | 6231         | 6248         | 6266         | 3  | 6   | 9   | 1:   | 2 15          |
| 86       | .6283          |              |              |              |              |              |              |              |              |              |    | 6   |     |      | 2 15          |
| 87       | 6458           |              |              |              |              |              |              |              |              |              |    |     |     |      | 2 15          |
| 88<br>89 | ·6632<br>·6807 |              |              | 6859         |              |              |              |              |              |              |    |     |     |      | 2 15          |
| 40       | ·6981          | 6999         | 7016         | 7034         | 7051         | 7069         | 7086         | 710          | 3 7121       | 7138         | 3  | 6   | 9   | ) 1: | 2 15          |
| 41       | 17150          |              |              | 7208         | 3 7226       |              |              | 7278         | 8 729        |              |    |     |     | ) 1  | 2 15          |
| 42       | 7330           | 7348         | 3 7365       | 738          | 3 7400       | 741          | 3 743        | 5 745        | 3 7470       | 748          | 3  |     | 9   | ) 1  | 2 15          |
| 48       | ·750           |              |              |              |              |              |              |              |              |              |    |     |     |      | 2 15          |
|          | o              | 6'           | 12           | 18'          | 24'          | 80'          | 86'          | 42'          | 48'          | 54'          | 1  | . 2 | • 1 | 5 4  | <b>f. 2</b> , |

RADIANS

| 4.50     | 0'               | 6'           | 12'          | 40/          |              |              |                               |              |              |              |    |   |    |          |          |
|----------|------------------|--------------|--------------|--------------|--------------|--------------|-------------------------------|--------------|--------------|--------------|----|---|----|----------|----------|
| 4 =0     |                  |              |              | 18'          | 24'          | 80′          | 86′                           | 42'          | 48'          | 54'          | 1' | 8 | 3  | 4'       | 5'       |
| 45°      | .7854            | .7871        | .7889        | .7906        | .7924        | .7941        | .7959                         | .7976        | .7994        | .8011        | 3  | 6 | 9  | 12       | 15       |
| 46       | .8029            | 8046         | 8063         | 8081         | 8098         | 8116         | 8133                          | 8151         | 8168         | 8186         | 3  | 6 |    |          | 15       |
| 47       | ·8203<br>·8378   | 8221<br>8395 | 8238<br>8412 | 8255<br>8430 | 8273<br>8447 | 8290<br>8465 | 8308<br>8482                  | 8325<br>8500 | 8343<br>8517 | 8360<br>8535 | 3  | 6 |    | 12       | 15       |
| 48<br>49 | .8552            | 8570         | 8587         | 8604         | 8622         | 8639         | 8657                          | 8674         | 8692         | 8709         | 3  | 6 | -  |          | 15       |
| 50       | .8727            | 8744         | 8762         | 8779         | 8796         | 8814         | 8831                          | 8849         | 8866         | 8884         | 3  | 6 | 9  | 12       | 15       |
| 51<br>52 | ·8901            | 8919         | 8936         | 8954         | 8971         | 8988         | 9006                          | 9023         | 9041         | 9058         | 3  | 6 | -  | 12       |          |
| 58       | '9076<br>'9250   | 9093<br>9268 | 9111<br>9285 | 9128<br>9303 | 9146<br>9320 | 9163<br>9338 | 9180<br>9355                  | 9198<br>9372 | 9215<br>9390 | 9233<br>9407 | 3  | 6 |    | 12       |          |
| 54       | 9425             | 9442         | 9460         | 9477         | 9320         | 9512         | 95 <b>35</b><br>95 <b>2</b> 9 | 9547         | 9564         | 9582         | 3  | 6 |    |          | 15       |
| 55       | <b>.959</b> 9    | 9617         | 9634         | 9652         | 9669         | 9687         | 9704                          | 9721         | 9739         | 9756         | 3  | 6 | 9  | 12       | 15       |
| 56       | .9774            | 9791         | 9809         | 9826         | 9844         | 9861         | 9879                          | 9896         | 9913         | 9931         | 3  | 6 |    | 12       |          |
| 57<br>58 | *9948<br>1'0123  | 9966<br>0140 | 9983<br>0158 | 0175         | 0193         | 0210         | 0228                          | 0245         | 0263         | 0280         | 3  | 6 | -  | 12       | 15       |
|          | 1.0297           | 0315         | 0332         | 0350         | 0367         | 0385         | 0402                          | 0420         | 0437         | 0455         | 33 | 6 |    | 12       |          |
| 60       | 1'0472           | <b>0</b> 489 | 0507         | 0524         | 0542         | 0559         | 0577                          | 0594         | 0612         | 0629         | 3  | 6 | 9  | 12       | 15       |
| 61       | 1.0647           | 0664         | 0681         | 0699         | 0716         | 0734         | 0751                          | 0769         | 0786         | 0804         | 3  | 6 | 9  |          | 15       |
| 62<br>63 | 1'0821           | 0838         | 0856         | 0873         | 0891         | 0908         | 0926                          | 0943<br>1118 | 0961         | 0978         | 3  | 6 | 9  |          | 15       |
|          | 1.1120           | 1188         | 1030<br>1205 | 1222         | 1065<br>1240 | 1257         | 1100                          | 1292         | 1135         | 1153<br>1327 | 33 | 6 |    | 12       | 15       |
| 65       | 1.1345           | 1362         | 1380         | 1397         | 1414         | 1432         | 1449                          | 1467         | 1484         | 1502         | 3  | 6 | 9  | 12       | 15       |
| 66       | 1.1219           | 1537         | 1554         | 1572         | 1589         | 1606         | 1624                          | 1641         | 1659         | 1676         | 3  | 6 | -  | 12       | 15       |
| 67<br>68 | 1'1694<br>1'1868 | 1711         | 1729         | 1746         | 1764         | 1781         | 1798                          | 1816         | 1833         | 1851         | 3  | 6 | 9  | 12       | 15       |
|          | 1.2043           | 1886<br>2060 | 1903<br>2078 | 1921<br>2095 | 1938<br>2113 | 1956<br>2130 | 1973<br>2147                  | 1990<br>2165 | 2008<br>2182 | 2025<br>2200 | 33 | 6 |    | 12<br>12 | 1. 2. 1  |
| 70       | 1.3312           | 2235         | 2252         | 2270         | 2287         | 2305         | 2322                          | 2339         | 2357         | 2374         | 3  | 6 | 9  | 12       | 15       |
| 71       | 1'2392           | 2409         | 2427         | 2444         | 2462         | 2479         | 2497                          | 2514         | 2531         | 2549         | 3  | 6 |    | 12       |          |
|          | 1.2566           | 2584         | 2601         | 2619         | 2636         |              | 2671                          | 2689         | 2706         | 2723         | 3  | 6 |    |          | 15       |
| 74       | 1°2741<br>1°2915 | 2758<br>2933 | 2776<br>2950 | 2793<br>2968 | 2811<br>2985 | 2828<br>3003 | 2846<br>3020                  | 2863<br>3038 | 2881<br>3055 | 2898<br>3073 | 33 | 6 |    | 12<br>12 | 15       |
| 75       | 1.3090           | 3107         | 3125         | 3142         | 3160         | 3177         | 3195                          | 3212         | 3230         | 3247         | 3  | 6 | 9  | 12       | 15       |
| 76       | 1.3265           | 3282         | 3299         | 3317         | 3334         | 3352         | 3369                          | 3387         | 3404         | 3422         | 3  | 6 |    | 12       |          |
| 77<br>78 | 1'3439           | 3456         | 3474         | 3491         | 3509         | 3526         | 3544                          | 3561         | 3579         | 3596         | 3  | 6 |    |          | 15       |
|          | 1.3614           | 3631<br>3806 | 3648<br>3823 | 3666<br>3840 | 3683<br>3858 | 3701<br>3875 | 3718<br>3893                  | 3736<br>3910 | 3753<br>3928 | 3771<br>3945 | 33 | 6 |    |          | 15<br>15 |
| 80       | 1.3963           | 3980         | 3998         | 4015         | 4032         | 4050         | 4067                          | 4085         | 4102         | 4120         | 3  | 6 | 9  | 12       | 15       |
| 81       | 1'4137           | 4155         | 4172         | 4190         | 4207         | 4224         | 4242                          | 4259         | 4277         | 4294         | 3  | 6 |    |          | 15       |
| 82<br>88 | 1.4312           | 4329         | 4347         | 4364         | 4382         | 4399         | 4416                          | 4434         | 4451         | 4469         | 3  | 6 |    |          | 15       |
| 84       | 1°4486<br>1°4661 | 4504<br>4678 | 4521<br>4696 | 4539<br>4713 | 4556<br>4731 | 4573<br>4748 | 4591<br>4765                  | 4608<br>4783 | 4626<br>4800 | 4643<br>4818 | 3  | 6 |    |          | 15<br>15 |
| 85       | 1.4835           | 4853         | 4870         | 4888         | 4905         | 4923         | 4940                          | 4957         | 4975         | 4992         | 3  | 6 | 9  | 12       | 15       |
| 86       | 1.2010           | 5027         | 5045         | 5062         | 5080         | 5097         | 5115                          | 5132         | 5149         | 5167         | 3  | 6 | 9  | 12       | 15       |
| 87       | 1.2184           | 5202         | 5219         | 5237         | 5254         | 5272         | 5289                          | 5307         | 5324         | 5341         | 3  | 6 | -  |          | 15       |
| 88<br>89 | 1.2329           | 5376<br>5551 | 5394<br>5568 | 5411<br>5586 | 5429<br>5603 | 5446<br>5621 | 5464<br>5638                  | 5481<br>5656 | 5499<br>5673 | 5516<br>5691 | 33 | 6 |    |          | 15       |
|          | o                | 6'           | 12'          | 18′          | 24'          | 30'          | 36'                           | 42'          | 48'          | 54'          | 1' | 8 | 8' | 4'       | 5'       |

#### ATOMIC MASS OF ISOTOPES

The atomic masses given below are in terms of  $O^{16} = 16$ , *i.e.* they are on the physical scale. (Chemical unit : physical unit = 16.00432 : 16 = 1 : 1.00027.)

The existence of elements with chemically identical properties but of different atomic mass was discovered for the radioactive elements in 1910 by Soddy. The existence of such atoms was independently shown by the mass spectrograph (Thomson, Aston). The mass and abundance of isotopes is measured by means of this instrument and by the analysis of molecular spectra ; the mass of isotopes can also be accurately calculated in a number of cases from the data of nuclear disintegrations. Deuterium lines are observed in the Balmer spectrum of hydrogen and the difference of their wavelengths from the corresponding hydrogen lines enables the mass of the D atom to be calculated.

**Mass Spectrograph.**—Positive rays (and anode rays) deflected by an electric and a magnetic field are focused to form a line spectrum, in which there is a line for each value of e/m. The O<sup>16</sup> atom which is the standard with which other lines are compared has lines at 8 for O<sup>++</sup> (called a second order line), at 16 for O<sup>+</sup>, and at 32 for O<sup>+</sup><sub>2</sub>. The methods used in precision determinations of atomic mass are described by Aston "Mass Spectra and Isotopes," London, 1933.

With the electric and the magnetic field constant positive rays of approximately equal e/m can be compared, e.g.

 $CH_4^+$  and  $O^{16+}$ ;  $S^{32++}$  and  $O^{16+}$ ;  $(O^{16}H^1)^+$  and  $(N^{14}H_3^1)^+$ ;  $N^{14+}$  and  $(C^{12}H_2^1)^+$ and the three lines  $C^{12++}$ ,  $(He^4H^2)^+$ ,  $(H_3^2)^+$ .

By changing the electric field in a known ratio (e.g. doubling it), the magnetic field being kept constant, the ratio

H<sup>2</sup>: He which is approximately I : 2 is compared

 $H^1: H^1_2$  which is exactly I: 2. Similarly the mass ratios

He<sup>4</sup>: O<sup>16</sup> and H<sup>2</sup> H<sup>1</sup> H<sup>1</sup>: He<sup>4</sup> are assured.

The following equations for the differences in atomic masses are given by Bainbridge and Jordan and they include the estimated error :---

 $\begin{array}{l} H_{1}^{1} - H^{2} = \cdot 00153 \pm \cdot 00004 = a \\ H_{3}^{2} - \frac{1}{2}C^{12} = \cdot 04219 \pm \cdot 00005 = b \\ C^{12}H_{4} - O^{16} = \cdot 03649 \pm \cdot 00008 = c \end{array}$ 

giving

 $\begin{aligned} \mathrm{H}^{1} &= \frac{1}{16}\mathrm{O}^{16} + \frac{3}{8}a + \frac{1}{8}b + \frac{1}{16}c = 1.00813 \pm .000017 \\ \mathrm{H}^{2} &= \frac{1}{8}\mathrm{O}^{16} - \frac{1}{4}a + \frac{1}{4}b + \frac{1}{8}c = 2.01473 \pm .000019 \\ \mathrm{C}^{12} &= \frac{3}{4}\mathrm{O}^{16} - \frac{3}{2}a - \frac{1}{2}b + \frac{3}{4}c = 12.00398 \pm .00009. \end{aligned}$ 

Similar groups of doublets allow the computation of the masses of several other light elements. (See Livingston and Bethe, Rev. Mod. Phys., 1937.)

**Nuclear Disintegration Method.**—Nuclear disintegrations are produced by the collision of *a*-particles, protons, deuterons, neutrons or  $\gamma$ -radiation with the nucleus, or by spontaneous disintegration as in the case of radioactive elements.

The collision of a positively charged deuterium ion with the nucleus of the deuterium atom and the production of two isotopes of hydrogen (H<sup>1</sup> and H<sup>3</sup>) and the liberation of energy may be taken as an example of such a disintegration. The following equation applies to it :--

 $H^2 + H^2 = H^3 + H^1 + Q$ 

 $(2.0147 + 2.0147 = H^3 + 1.00813 + .00427)$  1.6604 × 10<sup>-24</sup> gm.

The energy, Q eV, liberated is  $3.98 \times 10^6$  eV, and therefore H<sup>3</sup> = 3.0170 mass unit.

**Conversion of Energy into Mass.**—In nuclear disintegrations and integrations mass is converted into energy and energy into mass. Einstein's expression, derived by relativity theory, gives E erg of energy to be equivalent to  $E/c^2$  gm. of mass. In calculations relating to nuclear changes the unit of atomic mass is  $\frac{1}{16}$ of the mass of the O<sup>16</sup> atom.

**Unit of Atomic Mass** (physical scale) =  $1.6599 \times 10^{-24}$  gm.

#### ATOMIC MASS OF ISOTOPES (contd.)

**Electron Volt.**—The energy of X-rays and other radiations is expressed in eV.

| $I eV = e \cdot IO^8/c erg =$ | : 1.6019 X | 10 <sup>-12</sup> erg | $= 1.0739 \times 10^{-1}$ | • mass unit. |
|-------------------------------|------------|-----------------------|---------------------------|--------------|
| $9.312 \times 10^8 eV =$      | 1.4917 ×   | 10-3 erg              | = I                       | mass unit.   |
| $6.242 \times 10^{11} eV =$   | : I        | erg                   | = 670.37                  | mass unit.   |

Disintegration data gave the first indication of error in earlier accepted nuclear mass values (Oliphant, Kempton and Rutherford (1935)). Recent workers (Cockcroft and Lewis (1936), Bonner and Brubaker (1936)) have given improved disintegration masses and these agree with the accepted mass values. From disintegration data can be deduced the masses of the neutron, of radioactive nuclei and of nuclei too rare to be measured with accuracy by the mass spectrograph.

The **mass of the neutron** has been determined from the reaction :  $H^2 + \gamma = H^1 + n^1$ . The energy of the gamma ray is known and that of the proton is obtained from the ionization produced by the proton. Since the masses of the neutron and proton are approximately equal their kinetic energies are assumed equal. Using  $\gamma$ -rays from ThC' (energy of  $2.623 \times 10^6 \text{ eV}$ ), the energy of the proton is  $\cdot 2186 \times 10^6 \text{ eV}$ , giving the binding energy of the deuteron as  $2.189 \times 10^6 \text{ eV}$ , equivalent to  $\cdot 00235$  mass units, that is,

or

 $H^2 = H^1 + n^1 - .00235$  $(n^1 - H^1) = -(H_2^1 - H^2) + .00235$ , since  $2H^1 = H_2^1$ 

 $(H_2^1 - H_2) = .00153$ ,  $H_1^1 = 1.00813$  from mass spectra observations.

## Thus **n**<sup>1</sup> = 1.00895.

**References**: —Gamow, "Structure of Atomic Nuclei," Oxford, 1937; Feather. "Nuclear Physics," Cambridge, 1936; Livingston and Bethe, *Rev. Mod. Phys.*, 1937. *Authorities for table :*—O. Hahn, *Ber. der Deuts. Chem. Ges.*, 1938; Third Report of the Committee on Atoms, International Union of Chemistry, *Journ. Chem. Soc.*, 1938; Gregoire, *J. de Phys. et le Rad.* (1938).

V. D. H., T. H. L.

## **ISOTOPES**

Z = Atomic number. Atomic mass in terms  $O^{16} = 16.$ 

| bol.                        | Z.  | Abund-<br>ance. | Atomic<br>Mass.    | Sym-<br>bol. | z. | Abund-<br>ance. | Atomic<br>Mass.   | Sym-<br>bol. | z.       | Abund-<br>ance. | Atomic<br>Mass.  |
|-----------------------------|-----|-----------------|--------------------|--------------|----|-----------------|-------------------|--------------|----------|-----------------|------------------|
|                             | 0   |                 | 1.0089             | CI           | 17 |                 | 33.981            | As           | 33       | 100             | 74.934           |
| n<br>H                      | 1   | 99.98           | 1.0081             | ci           |    | 76              | 34.9803           | Se           | 34       | 0.0             | 74 934           |
| D                           | -   | 0.02            | 2.0147             | Cl           |    | 24              | 36.9779           | Se           |          | 9.5             | 76               |
| r                           | -   |                 | 3.0121             | Cl           |    |                 | 37.981            | Se           |          | 8.3             | 77               |
| He<br>He                    | 2   |                 | 3.0121             | AA           | 18 | 0.31            | 35.978            | Se<br>Se     | 11       | 24·0<br>48·0    | 77:938           |
| He                          |     | 100             | 4.0039<br>5.0037   | Â            |    | 0.06<br>99.63   | 37·974<br>39·9750 | Se           |          | 9.3             | 79.941<br>82     |
| Li                          | 3   | 7.9             | 6.0169             | K            | 19 | 93.4            | 39                | Br           | 35       | 50.6            | 78.929           |
| Li                          |     | 92.1            | 7.0182             | K            |    | 10.0            | 40                | Br           |          | 49.4            | 80.926           |
| Li                          |     |                 | 8.0251             | K            | 00 | 6.6             | 41                | Kr<br>Kr     | 36       | 0.32            | 77:945           |
| Be<br>Be                    | 4   | 100             | 8.0079<br>9.0150   | Ca<br>Ca     | 20 | 96·76<br>0·77   | 40<br>42          | Kr           |          | 2.01<br>11.23   | 80<br>81-939     |
| Be                          |     | 100             | 10.0167            | Ca           |    | 0.17            | 43                | Kr           |          | 11.53           | 83               |
|                             | 5   | 20              | 10.0163            | Ca           |    | 2.30            | 44                | Kr           |          | 57.11           | 83.938           |
| BBCCCCNNN                   |     | 80              | 11.0129            | Sc           | 21 | 100             | 45                | Kr           | -        | 17.47           | 85.939           |
|                             | 6   | 99.3            | 12.0040            | Ti<br>Ti     | 22 | 8·5<br>7·8      | 46                | Rb<br>Rb     | 37       | 72.8            | 85<br>87         |
| č                           |     | 0.2             | 13.0076            | Ti           |    | 71.3            | 47<br>48          | Sr           | 38       | 0.5             | 84               |
| Ň                           | 7   | 99.62           | 14.0075            | Ti           |    |                 | 49                | Sr           |          | 9.6             | 86               |
| N                           |     | 0.38            | 15.0049            | Ti           |    | 5·5<br>6·9      | 50                | Sr           |          | 7.5             | 87               |
| N                           |     | Lines.          | 13.0100            | V            | 23 | 100             | 51                | Sr           | 20       | 82.4            | 88               |
| N                           | 8   | PRAC            | 16.01<br>15.0078   | Cr<br>Cr     | 24 | 4.9<br>81.6     | 50<br>51.948      | Y<br>Zr      | 39<br>40 | 100<br>48       | 89<br>90         |
| N<br>O<br>O                 | 0   | 99.76           | 15.0070            | Cr           |    | 10.4            | 51 940            | Zr           | 10       | 11.2            | 91               |
| 0                           |     | 0.04            | 17.0045            | Cr           |    | 3.1             | 54                | Zr           |          | 22              | 92               |
| 0<br>F<br>F                 |     | 0.50            | 18.0037            | Mn           | 25 | 100             | 55                | Zr           |          | 17              | 94               |
| F                           | 9   | 100             | 19.0045            | Fe           | 26 | 6.5             | 54                | Zr<br>Nb     | 41       | 1.5             | 90               |
| F                           |     |                 | 17.0076            | Fe<br>Fe     |    | 90·2<br>2·8     | 56<br>57          | Mo           | 42       | 100<br>14·2     | 92·926           |
| Ne                          | 10  | 90              | 19.9988            | Fe           |    | 0.5             | 58                | Mo           |          | 10.0            | 94               |
| Ne                          |     | 0.27            | 20.9997            | Co           | 27 | 0.5             | 57                | Mo           |          | 15.5            | 95               |
| Ne                          |     | 9.73            | 21.9986            | Co           | 00 | 99.8            | 59                | Mo           |          | 17.8            | 96               |
| Na<br>Na                    | 11  | 100             | 22.0002            | Ni<br>Ni     | 28 | 66·4<br>26·7    | 57.942            | Mo<br>Mo     |          | 9.6             | 97               |
| Na                          |     | 100             | 22.9961<br>23.9974 | Ni           |    | 1.6             | 60<br>61          | Mo           |          | 23.0<br>9.8     | 97·946<br>99·945 |
| Mg                          | 12  | 77.4            | 23.9924            | Ni           |    | 3.7             | 62                | Mo           |          |                 | 102              |
| Mg                          |     | 11.2            | 24.9938            | Ni           |    | 1.0             | 64                | Ru           | 44       | 5.0             | 96               |
| Mg                          | 100 | 11.1            | 25.9898            | Cu           | 29 | 68              | 63                | Ru           |          | 10              | 98               |
| Mg<br>Al                    | 13  |                 | 26·9921<br>25·9929 | Cu<br>Zn     | 30 | 32<br>50.4      | 65<br>63·937      | Ru<br>Ru     |          | 12<br>14        | 99<br>100        |
| Al                          | 10  | 100             | 26.9899            | Zn           |    | 27.2            | 66                | Ru           |          | 22              | 101              |
| Al                          |     |                 | 27.9903            | Zn           |    | 4.2             | 67                | Ru           |          | 30              | 102              |
| Al                          | 11  |                 | 28.9904            | Zn           |    | 17.8            | 68                | Ru           | 45       | 17              | 104              |
| Si                          | 14  | 89.6            | 26.9931<br>27.9866 | Zn<br>Ga     | 31 | 0.4<br>61.2     | 70<br>69          | Rh<br>Rh     | 45       | 0.1             | 101<br>103       |
| Si<br>Si                    |     | 6.2             | 28.9866            | Ga           | 01 | 38.8            | 71                | Pd           | 46       | 0.8             | 103              |
| Si                          | -   | 4.2             | 29.9832            | Ga           |    | 500             | 73                | Pd           |          | 9.3             | 104              |
| Si                          |     |                 | 30.9862            | Ga           |    |                 | 74                | Pd           |          | 22.6            | 105              |
| P                           | 15  | 100             | 29.9882            | Ga<br>Ge     | 32 | 0110            | 76                | Pd<br>Pd     |          | 27.2            | 106              |
| P                           |     | 100             | 30·9843<br>31·9841 | Ge           | 04 | 21.2            | 70<br>72          | Pd           |          | 26.8            | 108              |
| S                           | 16  | 96              | 31.9823            | Ge           |    | 7.9             | 73                | Ag           | 47       | 52.5            | 107              |
| Si<br>P<br>P<br>S<br>S<br>S |     | I               | 33                 | Ge           |    | 37.1            | 74                | Ag           |          | 47.5            | 109              |
| 8                           |     | 3               | 33.978             | Ge           |    | 6.5             | 76                | 1000         |          |                 |                  |

## ISOTOPES

|                                                             | ISOTOPES (contd.)<br>$Z = Atomic number.$ Atomic mass in terms $O^{16} = 16.$ |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                             |                                                                                  |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                         |                                          |                                                                                  |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sym-<br>bol.                                                | z.                                                                            | Abund-<br>ance.                                                                                                                                                                                                                                                                                                                                                                                                           | Atomic<br>Mass.                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sym-<br>bol.                                                | z.                                                                               | Abund-<br>ance.                                                                                                                                                                                                                                                      | Atomic<br>Mass.                                                                                                                                                                                                                         | Sym-<br>bol.                             | z.                                                                               | Abund-<br>ance.                                                                                                                                                                                                                                                                                                               | Atomic<br>Mass.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cd Cd Cd Cd Cd II II SN | 48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56                            | $\begin{array}{c} 1.5\\ 1.0\\ 15.6\\ 15.2\\ 22.0\\ 14.7\\ 24.0\\ 6.0\\ 4.5\\ 95.5\\ 1.1\\ 0.8\\ 0.4\\ 15.5\\ 9.1\\ 22.5\\ 9.8\\ 28.5\\ 5.6\\ 8\\ 56\\ 44\\ 2.9\\ 1.6\\ 4.5\\ 6.0\\ 19.0\\ 32.8\\ 33.1\\ 100\\ 0.09\\ 1.90\\ 26.23\\ 4.07\\ 21.17\\ 26.96\\ 10.54\\ 8.95\\ 100\\ 0.16\\ 0.01\\ 1.72\\ 5.7\\ 8.5\\ 100\\ 0.16\\ 0.01\\ 1.72\\ 5.7\\ 8.5\\ 100\\ 0.16\\ 0.01\\ 1.72\\ 5.7\\ 8.5\\ 10.8\\ 73.1\\ \end{array}$ | $\begin{array}{c} 106\\ 108\\ 110\\ 111\\ 112\\ 113\\ 114\\ 116\\ 113\\ 115\\ 112\\ 114\\ 115\\ 116\\ 117\\ 118\\ 119\\ 120\\ 122\\ 124\\ 121\\ 123\\ 120\\ 122\\ 124\\ 121\\ 123\\ 120\\ 122\\ 124\\ 125\\ 126\\ 128\\ 130\\ 126 \cdot 932\\ 124\\ 126\\ 128\\ 130\\ 126 \cdot 932\\ 124\\ 126\\ 128\\ 130\\ 131 \cdot 945\\ 130\\ 131 \cdot 945\\ 134\\ 136\\ 132 \cdot 933\\ 130\\ 132\\ 134\\ 135\\ 136\\ 137\\ 137 \cdot 916\\ \end{array}$ | La ce ce prinding no fi | 57<br>58<br>59<br>60<br>62<br>63<br>64<br>65<br>66<br>67<br>68<br>69<br>70<br>71 | $\begin{array}{c} 100\\ 89\\ 11\\ 100\\ 25.95\\ 13.0\\ 22.6\\ 9.2\\ 16.5\\ 6.8\\ 5.95\\ 3\\ 17\\ 14\\ 15\\ 5\\ 26\\ 20\\ 50.6\\ 49.4\\ 21\\ 23\\ 17\\ 23\\ 16\\ 100\\ 22\\ 25\\ 25\\ 28\\ 100\\ 36\\ 24\\ 30\\ 10\\ 100\\ 9\\ 24\\ 17\\ 38\\ 12\\ 100\\ \end{array}$ | $\begin{array}{c} 139\\ 136\\ 138\\ 140\\ 142\\ 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ 148\\ 150\\ 152\\ 154\\ 151\\ 153\\ 155\\ 156\\ 157\\ 158\\ 160\\ 165\\ 166\\ 167\\ 168\\ 170\\ 171\\ 172\\ 173\\ 174\\ 176\\ 175\\ 177\end{array}$ | ╫╫╫╫╫а₩₩₩₩₽₽₽000000000000000000000000000 | 72<br>73<br>74<br>75<br>76<br>77<br>78<br>79<br>80<br>81<br>82<br>83<br>90<br>92 | $\begin{array}{c} 5\\ 19\\ 28\\ 18\\ 30\\ 100\\ 0.2\\ 22.6\\ 17.3\\ 30.1\\ 29.8\\ 38.2\\ 61.8\\ 0.02\\ 1.58\\ 1.64\\ 13.3\\ 16.2\\ 26.4\\ 40.9\\ 38.5\\ 61.5\\ 0.8\\ 30.2\\ 35.3\\ 26.4\\ 40.9\\ 38.5\\ 61.5\\ 0.8\\ 30.2\\ 35.3\\ 26.4\\ 100\\ 0.15\\ 100\\ 1.5\\ 23.5\\ 22.7\\ 52.3\\ 100\\ 100\\ 0.4\\ 99.6\\ \end{array}$ | 176<br>177<br>178<br>179<br>180<br>180-928<br>180<br>182<br>183<br>184-0<br>186<br>185<br>186-981<br>184<br>186<br>187<br>188<br>189<br>98<br>191-98<br>191<br>193<br>192<br>194<br>195<br>196<br>198<br>197<br>196<br>198<br>197<br>196<br>198<br>197<br>196<br>198<br>197<br>196<br>198<br>197<br>200-016<br>201<br>202<br>204<br>203:037<br>205:037<br>204<br>205<br>203<br>205<br>203<br>235:083<br>238:088 |
|                                                             | V. D. H., T. H. L.                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                             |                                                                                  |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                         |                                          |                                                                                  |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                 |

| PAGE                                                                                                                                                                                                                                                                      | PAGE                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| ABERRATION, constant of 22                                                                                                                                                                                                                                                | Atomic constants 120                                                                                            |
| Absolute electrical units 8, 14, 15                                                                                                                                                                                                                                       | ,, mass                                                                                                         |
| ,, temperature scale 64                                                                                                                                                                                                                                                   | ,, ,, of isotopes 169                                                                                           |
| ,, zero of temperature 54                                                                                                                                                                                                                                                 | ,, numbers I, I2I, 17I                                                                                          |
| Absorption, acoustical 79                                                                                                                                                                                                                                                 | ,, stopping powers 115                                                                                          |
| ,, coefficients, a particles . 115<br>,, edges 108                                                                                                                                                                                                                        | ,, weights, international I, 2                                                                                  |
| ,, edges 108                                                                                                                                                                                                                                                              | Atoms, electrons in                                                                                             |
| ,, spectra                                                                                                                                                                                                                                                                | A.U 16, 86                                                                                                      |
| ", ", (X-ray) 107                                                                                                                                                                                                                                                         | Auditory sensation area                                                                                         |
| Abundance of isotopes 171                                                                                                                                                                                                                                                 | Avogadro's number                                                                                               |
| Acceleration due to gravity                                                                                                                                                                                                                                               | Avoirdupois ounce 16                                                                                            |
| ,, unit, dimensions 5, 7                                                                                                                                                                                                                                                  | Ayrton's formula 119                                                                                            |
| Acids, density of                                                                                                                                                                                                                                                         |                                                                                                                 |
| Acoustical absorption and transmission . 79                                                                                                                                                                                                                               | Ale a la contra para las dellas des institu                                                                     |
| Activities, equilibrium (minerals)                                                                                                                                                                                                                                        | B.A. SCREWS 25                                                                                                  |
|                                                                                                                                                                                                                                                                           | Babinet's altitude formula                                                                                      |
| Air, composition of                                                                                                                                                                                                                                                       |                                                                                                                 |
| ,, , (dry) density of                                                                                                                                                                                                                                                     |                                                                                                                 |
| ,, , (damp) ,,                                                                                                                                                                                                                                                            |                                                                                                                 |
| ,, , ions in 109, 110, 111                                                                                                                                                                                                                                                | ,, , determination of altitudes by 44                                                                           |
| ", , mobilities of ions in 119                                                                                                                                                                                                                                            | ,, , reduction to lat. 45° 27                                                                                   |
| ,, , (saturated) water in                                                                                                                                                                                                                                                 | ", ", ", 0° C 27                                                                                                |
| Alcohol, ethyl, density of 31                                                                                                                                                                                                                                             | 11 11 200-20101                                                                                                 |
| ,, , ions in                                                                                                                                                                                                                                                              | Beaumé's hydrometer 30                                                                                          |
| ,, , vapour pressure of 50                                                                                                                                                                                                                                                | Bel                                                                                                             |
| Alkalis, density of                                                                                                                                                                                                                                                       | β rays, e/m of 113                                                                                              |
| Alloys, composition of . 29, 36, 61, 63,                                                                                                                                                                                                                                  | ,, , to montion by                                                                                              |
| 69, 92, 94, 100                                                                                                                                                                                                                                                           | ,, , magnetic deflection 114                                                                                    |
| a rays, absorption coefficients 115                                                                                                                                                                                                                                       | ,, , velocity of                                                                                                |
| ,, , e/m of 112                                                                                                                                                                                                                                                           | Billion 17                                                                                                      |
| ., energy and range 122                                                                                                                                                                                                                                                   | Black-body radiation                                                                                            |
|                                                                                                                                                                                                                                                                           | Bode's Law                                                                                                      |
| ,, , gaseous, ionization by 116<br>,, , magnetic, spectra of 123<br>,, , number of from Ra 114                                                                                                                                                                            | Boiling-points, effect of pressure on . 60                                                                      |
| ", , number of from Ra 114                                                                                                                                                                                                                                                | ,, ,, , elements                                                                                                |
| ,, , ,, ions from 115                                                                                                                                                                                                                                                     | ,, ,, , inorganic compounds 130-138                                                                             |
| ", , range and velocity of 115, 122                                                                                                                                                                                                                                       | ,, ,, , mixtures, maximum . 149                                                                                 |
| ", stopping powers                                                                                                                                                                                                                                                        | minimum                                                                                                         |
| Altitudes of gravity stations above sea-level 20                                                                                                                                                                                                                          | APRODIA COMPOSIDA PAG TU                                                                                        |
| ,, , determination of, by baro-                                                                                                                                                                                                                                           |                                                                                                                 |
| meter                                                                                                                                                                                                                                                                     |                                                                                                                 |
| Ammonia, density of                                                                                                                                                                                                                                                       |                                                                                                                 |
| American hadres 0 at                                                                                                                                                                                                                                                      | Boltzmann's constant 7, 120<br>Brightness of light sources 81                                                   |
|                                                                                                                                                                                                                                                                           |                                                                                                                 |
|                                                                                                                                                                                                                                                                           | <b>W 1.1.1</b>                                                                                                  |
|                                                                                                                                                                                                                                                                           | the second se |
| Angle, solid 5                                                                                                                                                                                                                                                            | ,, thermal unit 16                                                                                              |
| Angles of contact                                                                                                                                                                                                                                                         | ,, units 4                                                                                                      |
| Angström unit. See A.U.                                                                                                                                                                                                                                                   | ,, ,, and metric equivalents 4, 16                                                                              |
| Angular measure 167                                                                                                                                                                                                                                                       | ,, weights and measures . 4, 16                                                                                 |
| Antilogarithms 153                                                                                                                                                                                                                                                        | Brownian movements 112                                                                                          |
| Apothecaries' units 16                                                                                                                                                                                                                                                    | Bulk modulus                                                                                                    |
| Approximate relations 16                                                                                                                                                                                                                                                  | Buoyancy correction of densities 30                                                                             |
| Aqueous solutions, densities of 34                                                                                                                                                                                                                                        |                                                                                                                 |
|                                                                                                                                                                                                                                                                           | ,, weighings 28                                                                                                 |
| Arcs, electric                                                                                                                                                                                                                                                            |                                                                                                                 |
| Arcs, electric                                                                                                                                                                                                                                                            | ,, weighings 28                                                                                                 |
| Arcs, electric                                                                                                                                                                                                                                                            | ,, weighings 28                                                                                                 |
| Arcs, electric         .         .         .         .         56, 119           Area unit         .         .         .         .         .         .         5, 7           Aries, first point of         .         .         .         .         .         .         3 | Bursting strengths of glass tubing                                                                              |
| Arcs, electric56, 119Area unit57, 7Aries, first point of3Arrangement of electrons in atoms123                                                                                                                                                                             | Bursting strengths of glass tubing                                                                              |
| Arcs, electric<                                                                                                                                                                                                                                                           | ", ", weighings                                                                                                 |
| Arcs, electric56, 119Area unit5, 7Aries, first point of3Arrangement of electrons in atoms123Astronomy20-24Atmosphere, composition of146                                                                                                                                   | ", ", weighings                                                                                                 |
| Arcs, electric<                                                                                                                                                                                                                                                           | ", ", weighings                                                                                                 |

| PAGE                                                                                                    | PAGE                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calories, values of 7, 65<br>Candle, Hefner 81<br>., , international 81<br>Capacity, electrical unit 10 | Constant, solar                                                                                                                                                                              |
| Candle, Hefner 81                                                                                       | , Stefan's, 70, Stefan's, 75, 120, 128, Verdet's, 91, Wien's, 75, 120, 128Constants, atomic, 120Contact angles, 46Conversion factors, 46, of energy into mass, 169Corrections, barometer, 27 |
| ,, , international 81                                                                                   | ,, , Verdet's 91                                                                                                                                                                             |
| Capacity, electrical unit 10                                                                            | ", , Wien's 75, 120, 128                                                                                                                                                                     |
| ,, , specific inductive 95                                                                              | Constants, atomic 120                                                                                                                                                                        |
| Capillary corrections (mercury columns) 26                                                              | Contact angles                                                                                                                                                                               |
| Carbon dioxide, ions in 110, 111                                                                        | Conversion factors 4, 10                                                                                                                                                                     |
| ,, monoxide, ions in 110                                                                                | " of energy into mass 109                                                                                                                                                                    |
| Cauchy's dispersion formula                                                                             | Corrections, barometer                                                                                                                                                                       |
| Cens, e.m.r. s or                                                                                       | ,, , capitary                                                                                                                                                                                |
| Centimetre definition of                                                                                | ,, , mercury thermometers . 57                                                                                                                                                               |
| CGS units                                                                                               | ,, , increatly incrimoniciers . 5/                                                                                                                                                           |
| C.G.S. units $3$<br>Change in temperature for change in $\delta$ $54$                                   | ,,, pyrometers <t< td=""></t<>                                                                                                                                                               |
| Changes, secular magnetic 103                                                                           | ,, , weighings to vacuo                                                                                                                                                                      |
| Characteristic spectra                                                                                  | Cosines, natural                                                                                                                                                                             |
| Charge, electrical, unit 0, 12                                                                          | Coulomb 8                                                                                                                                                                                    |
| Charge, electrical, unit 9, 12<br>,, of electron 120, 126                                               | Coulomb 8<br>Couple, unit, dimensions                                                                                                                                                        |
| Chemical hygrometer 47                                                                                  | Critical data 43                                                                                                                                                                             |
| Clark cell, e.m.f. and temp. coeff. of . 15                                                             | ,, potentials 126                                                                                                                                                                            |
| Clausius-Mossotti relation 95                                                                           | temperature (magnetization) . 100                                                                                                                                                            |
| Coefficients of diffusion                                                                               | Cryoscopic constant                                                                                                                                                                          |
| ,, ,, ,ionic 109                                                                                        | Crystals, lattice constants of 105                                                                                                                                                           |
| ", ", ionic . 109<br>", electrical resistance . 93<br>", expansion, gases . 64                          | Cubic coefficients of expansion 04                                                                                                                                                           |
| " expansion, gases 64                                                                                   | Curie's Law                                                                                                                                                                                  |
| , inquids 05                                                                                            | Current, electrical, unit 11, 12                                                                                                                                                             |
| anlida fa                                                                                               | Currents, safe 94                                                                                                                                                                            |
| ,, recombination 109                                                                                    |                                                                                                                                                                                              |
| ,, , Stemmetz s 101                                                                                     |                                                                                                                                                                                              |
| Coercivity 100                                                                                          | DATES of isolation of elements I                                                                                                                                                             |
| Coins (British), composition of 29                                                                      | Day, definition of                                                                                                                                                                           |
| ,, ,, , density of 29<br>,, ,, , dimensions of 17                                                       | Decay, periods of                                                                                                                                                                            |
| ,, ,, , dimensions of 17                                                                                | Day, definition of                                                                                                                                                                           |
| ,, ,, ,, weight of 17<br>Collisions, elastic and inelastic 126                                          | Decimation, magnetic 102                                                                                                                                                                     |
| Collisions, elastic and inelastic                                                                       | Deflection, magnetic of electrons 114                                                                                                                                                        |
| Colour of hot objects                                                                                   | Densities, acids                                                                                                                                                                             |
| Combustion, heats of                                                                                    | ,, , air (damp)                                                                                                                                                                              |
| Common substances, densities of 29                                                                      | alcohol (ethyl)                                                                                                                                                                              |
| Composition of air                                                                                      | , alkalies , , , , , , , , , , , , , , , , , , ,                                                                                                                                             |
| ,, alloys . 29, 36, 61, 63, 69, 92,                                                                     | ","       , ","       (dry)                                                                                                                                                                  |
| 94, 100                                                                                                 | ,, , calcite 120                                                                                                                                                                             |
| ,, minerals 147                                                                                         | ,, , calcium chloride 33                                                                                                                                                                     |
| Compressibility                                                                                         | ,, , coins                                                                                                                                                                                   |
| ,, , elements                                                                                           | ,, , common substances 29                                                                                                                                                                    |
| ,, , liquids 38                                                                                         | ,, , earth                                                                                                                                                                                   |
| Compton effect 129                                                                                      | ,, , elements                                                                                                                                                                                |
| Concert pitch 80                                                                                        | ,, , gases 17, 35                                                                                                                                                                            |
| Condensation of vapours III                                                                             | ,, , inorganic compounds . 130-138                                                                                                                                                           |
| Conductivities, electrical 92                                                                           | ,, , liquids 30                                                                                                                                                                              |
| ,, ,, (solutions) . 97                                                                                  | ,, , mercury                                                                                                                                                                                 |
| ,, , , thermal 60                                                                                       | ,, , metals and alloys 29                                                                                                                                                                    |
| Conductivity water                                                                                      | ,, , minerals                                                                                                                                                                                |
| Constant, aberration                                                                                    | ,, , organic compounds . 139-144<br>,, , planets                                                                                                                                             |
| amagaania 77                                                                                            |                                                                                                                                                                                              |
| dialactric                                                                                              |                                                                                                                                                                                              |
| mag 7 120                                                                                               | ,, , steam                                                                                                                                                                                   |
| gravitation 17 120                                                                                      | ,, , water-vapour, saturated . 35                                                                                                                                                            |
| lattice                                                                                                 | ,, , woods                                                                                                                                                                                   |
| magnetic terrestrial 102                                                                                | Density determination corrections . 30                                                                                                                                                       |
| Planck's 56 120 128                                                                                     | ,, unit, dimensions 5, 8                                                                                                                                                                     |
| ,, , precession                                                                                         | Depression of freezing-point (solutions) . 77                                                                                                                                                |
| ", , radiation                                                                                          | ,, ice-point of mercury                                                                                                                                                                      |
| ", , Rydberg's 120, 127, 129                                                                            | thermometers 57                                                                                                                                                                              |
|                                                                                                         |                                                                                                                                                                                              |

| 2018                                                      |        |       | PAGE             |
|-----------------------------------------------------------|--------|-------|------------------|
| Derived units                                             |        |       | . 5              |
| Deuterium, atomic mass                                    | •      | •     | 120, 171         |
| Deuteron                                                  | •      | •     | . 120            |
| Dew point<br>Diameter, molecular .                        | •      | •     | · 47             |
| "Diapason Normal".                                        | •      | •     | · 42<br>· 80     |
| Dielectric constant, definiti                             | on     | :     | . 10             |
| ,, constants .                                            |        |       | . 95             |
| Diffraction of electrons                                  |        |       | . 129            |
| Diffusion of gases .                                      |        |       | • 44             |
| ,, ions (gaseous)                                         |        |       | . 109            |
| Dilution, heats of .                                      | •      |       | . 74             |
| Dimensions of units .                                     | •      | 3, 0  | , 8, 11-13       |
| Diopter, the<br>Discoverers of elements                   | •      | •     | · 91             |
| Disintegration constants                                  | •      | •     | . 121            |
| Dispersions, optical .                                    |        |       | . 82             |
| Dispersive powers .                                       |        |       | 84, 85           |
| Dissociation, ionic .                                     |        |       | . 96             |
| Distance of sun and moon                                  |        |       | . 22             |
| Distances of stars .                                      |        |       | . 24             |
| Drachm, value of .                                        |        |       | . 16             |
| Drift, star                                               |        |       | . 24             |
| Drops, size of                                            | • .    | •     | . 46             |
| Dupré, vapour-pressure for                                | mula   | •     | · 49             |
| Dyne, definition                                          | •      | •     | . 0              |
|                                                           |        |       |                  |
|                                                           |        |       |                  |
|                                                           |        |       |                  |
| e (exponential), value of                                 |        |       | . 16             |
| e, the ionic charge .                                     |        |       | 120, 126         |
| Ear                                                       |        |       | 79,80            |
| Earth, density of .                                       |        |       | 22, 23           |
| ", , elements of .                                        |        | •     | . 22             |
| ", figure of the .                                        | •      | •     | 18, 22           |
| ", , orbit of                                             | •      | •     | . 22             |
| ,, , size and shape of                                    | •      | •     | . 22             |
| Ecliptic, obliquity of .<br>Einstein, relativity theory o | e'     | •     | . 22             |
| ,, , photo-electric equ                                   | ation  |       | . 128            |
| Elasticity, definition and un                             | nits o | f     | . 6              |
| Elasticities                                              |        |       | . 36             |
| Electrical conductivities                                 |        |       | . 92             |
|                                                           | lution | ns)   | . 97             |
| ", equivalent of hea                                      | t      |       | . 65             |
| ", resistivities .                                        |        |       | . 92             |
| ,, thermometry                                            |        |       | : 55             |
| " units                                                   | ·      | i.    | 8, 9-15          |
| ,, ,, , relation o                                        | r abs  | orute | 2722326 C        |
| Electric arcs                                             | •      | •     | . 15             |
| field, unit .                                             | •      | •     | . 119            |
| Electrochemical equivalents                               | s.     |       | . 144            |
| Electrolysis, laws of .                                   |        |       | 96, 144          |
| Electromagnetic system of                                 | units  |       | . 8              |
| Electromotive force, unit                                 |        |       | . 9              |
| ", forces of cell                                         | s      |       | 15, 99           |
| Electron-volt                                             |        |       | . 170            |
| Electronic arrangement in a                               | atoms  |       | . 123            |
| ", charge .                                               | •      | •     | 120, 126         |
| ,, diffraction .                                          |        |       | . 129            |
| ,, e/m<br>,, ,, , , , change of,                          | with   | veloo | 120, 127         |
| mass                                                      | with   | VEIOC | ity 113<br>. 120 |
| ", mass                                                   |        |       | . 1201           |

|                                   |      | P     | AGE  |
|-----------------------------------|------|-------|------|
| Electrons in atoms                |      |       | 125  |
| ,, ,, , symbols for               |      |       | 124  |
| ,, , ionization due to .          |      |       | 117  |
| ,, (negative), magnetic           | def  | lec-  |      |
| tion of                           |      |       | 114  |
| ,, ,, , velocity of               |      |       | 114  |
| Electrostatic system of units     |      |       | 9    |
| Elements                          |      | 1, 2, | 171  |
| e/m of a rays                     |      | 112,  | 120  |
| ,, electrons                      | 113, | 120,  | 127  |
| ,, helium                         |      |       | 120  |
| " hydrogen ion                    |      |       | 120  |
| ,, proton                         |      |       | 120  |
| Emanation, radium                 |      | 117,  | 119  |
| Emergent-column correction        |      |       | 57   |
| Emission spectra                  |      | 87    | , 88 |
| Emissivities                      |      | 56    | , 75 |
| Emissivity corrections            |      |       | 56   |
| Energy and range of a rays .      |      |       | 122  |
| " of full radiation .             |      |       | 75   |
| ,, , units of                     |      | 6, 8, | 170  |
| Engineering gravitational units   |      |       | 7    |
| Entropy, unit, dimensions .       |      |       | 7,8  |
| Eötvös rule                       |      |       | 45   |
| Equation of time                  |      |       | 24   |
| Equator, earth's radius at .      |      |       | 22   |
| Equilibrium activities (minerals) |      |       | 118  |
| Equivalent of heat                |      |       | 65   |
| Equivalents, electrochemical      |      |       | 144  |
| Erg                               |      |       | 6    |
| Ethyl alcohol, density of .       |      |       | 31   |
| ", ", vapour pressure of          |      |       | 50   |
| Expansion coefficients, gases     |      |       | 64   |
| ,, ,, , liquids                   |      |       | 65   |
| ,, ,, ,, solids                   |      |       | 62   |
| Exponential $(e^{-x})$            |      |       | 150  |
|                                   |      |       |      |

| FACTORS, conversion .        |     | • :   |      | 4, 16 |
|------------------------------|-----|-------|------|-------|
| ,, , gravimetric .           |     |       |      | 148   |
| ", , relative visibility     |     |       |      | 81    |
| Farad                        |     |       |      | 8     |
| Faraday                      |     |       | 112  | 120   |
| ,, effect                    |     |       |      | 91    |
| Faraday's laws of electrolys | is  |       |      | 144   |
| Fathom                       |     |       |      | 17    |
| Fats, melting-points of      |     |       |      | 60    |
| Ferromagnetic materials      |     |       |      | 100   |
| Figure of the earth .        |     |       |      | 18    |
| Films, liquid, thickness of  |     |       |      | 46    |
| Fine-structure constant      |     |       |      | 120   |
| Fire, temperature of .       |     |       |      | 56    |
| First radiation constant     |     |       |      | 120   |
| Fixed points of Internation  | nal | Tempe | era- |       |
| ture Scale                   |     | 1000  |      | 53    |
| Flames, ionic mobilities in  |     |       |      | III   |
| Fluid ounce                  |     |       |      | 16    |
| Flux, luminous               |     |       |      | 81    |
| ,, , magnetic, unit .        |     |       |      | II    |
| Foil (metal), thickness of   |     |       |      | 44    |
| Foot candle                  |     |       |      | 81    |
| Force, C.G.S. unit, dimensi  | ons |       |      | 6,8   |

| MOLA                                       |                                                                                                                                                                                                                      |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PAGE                                       | PAGE                                                                                                                                                                                                                 |
| Formation, heats of 72, 74                 | Heat from thorium                                                                                                                                                                                                    |
| Formula weights 130, 139                   | ", mechanical equivalent of 65                                                                                                                                                                                       |
| Fraunhofer lines                           | Heats, latent                                                                                                                                                                                                        |
| Free path of molecules 41                  | ,, of combustion                                                                                                                                                                                                     |
| Freezing mixtures                          | ,, ,, dilution                                                                                                                                                                                                       |
| ,, point, depression of 77                 | ,, ,, dilution                                                                                                                                                                                                       |
| ", ", fats and waxes 60                    | ,, ,, neutralization                                                                                                                                                                                                 |
| Frequency ratios of musical scale          | ,, , , specific, elements                                                                                                                                                                                            |
| Full radiation                             | )) ) )) ) D                                                                                                                                                                                                          |
|                                            | ,, , , , , , mercury                                                                                                                                                                                                 |
| Fusion, latent heats of 70                 |                                                                                                                                                                                                                      |
|                                            |                                                                                                                                                                                                                      |
|                                            | Heaviside-Lorentz units 9, 13                                                                                                                                                                                        |
| GALLON, definition of 4                    | Heavy water31, 39, 45, 50, 66Hefner light unit81Heights above sea-level20                                                                                                                                            |
| ,, , value in metric units 16              | Heighte above sea level 20                                                                                                                                                                                           |
| γ rays, absorption coefficients of 116     | determination of                                                                                                                                                                                                     |
| ", , ionization by 116                     | ,, , determination of                                                                                                                                                                                                |
| ,, , quantity 105                          | atomic mass 120                                                                                                                                                                                                      |
| Gas constant                               | Helmert's formula (gravity) . 19, 21                                                                                                                                                                                 |
| , thermometry 54                           | Henry the 8                                                                                                                                                                                                          |
| Gases, coefficient of expansion 64         | Henry, the 8<br>Hertzian waves, velocity of                                                                                                                                                                          |
| ,, , density of                            | Heusler alloys                                                                                                                                                                                                       |
| ", dielectric constants of 95              | High temperatures       55         Hittorf's numbers       96         Humidity, relative       47         Hydrochloric acid, density of       32         Hydrogen       1, 2, 120, 171         atomic mass       120 |
| ", , diffusion of                          | Hittorf's numbers                                                                                                                                                                                                    |
| ,, , emission spectra                      | Humidity, relative                                                                                                                                                                                                   |
| ", mobility of ions in 110                 | Hydrochloric acid, density of 32                                                                                                                                                                                     |
| ,, , refractive indices of 02              | Hydrogen 1, 2, 120, 171                                                                                                                                                                                              |
| ", , solubility                            | ,, , , atomic mass                                                                                                                                                                                                   |
| ,, , specific heat                         | Hydrometers 30                                                                                                                                                                                                       |
| ,, , thermal conductivity 61               | Hydrometers                                                                                                                                                                                                          |
| ,, , viscosity of                          | ., wet- and dry-bulb 47                                                                                                                                                                                              |
|                                            | Hygrometry                                                                                                                                                                                                           |
|                                            | Hyperbolic logs, conversion factor . 16                                                                                                                                                                              |
| Gauss, the                                 | Hysteresis, magnetic 100                                                                                                                                                                                             |
| Geiger's relation                          | the surply set                                                                                                                                                                                                       |
| Geographical mile                          | the second s                                                                                                       |
| Giorgi units                               | and the second second second second second                                                                                                                                                                           |
| Giorgi units                               | ICE, vapour pressure of 49                                                                                                                                                                                           |
| ,, tubing, bursting strengths of . 48      | ace pennel meetine al minute temperature                                                                                                                                                                             |
| Grain                                      | of                                                                                                                                                                                                                   |
| Gramme, definition of 3                    | Illumination 81                                                                                                                                                                                                      |
| Grating spaces 120                         | Inclination, magnetic 102                                                                                                                                                                                            |
| Gravimetric factors 148                    | Indices of refraction 83                                                                                                                                                                                             |
| Gravitation, constant of 17, 120           | Inductance, unit                                                                                                                                                                                                     |
| " units 7                                  | Induction, magnetic 100                                                                                                                                                                                              |
| Gravity correction of barometer 27         | Inductive capacity, specific                                                                                                                                                                                         |
| ", g                                       |                                                                                                                                                                                                                      |
| ,, , specific, definition 5                | Inertia, moments of                                                                                                                                                                                                  |
| ,, , values of 7, 18                       | Intensity of magnetization                                                                                                                                                                                           |
| Gregorian calendar 4                       | International atomic weights I, 2                                                                                                                                                                                    |
|                                            | ,, candle 81                                                                                                                                                                                                         |
|                                            | " concert pitch 80                                                                                                                                                                                                   |
| h (Planck's constant)                      | " electrical units II                                                                                                                                                                                                |
| Half-periods, radioactive substances . 121 | ,, steam table calorie 65                                                                                                                                                                                            |
| Hardness of minerals 147                   | ,, temperature scale . 53. 55                                                                                                                                                                                        |
| ,, , scale of (Mohs') 147                  | Ionic charge                                                                                                                                                                                                         |
| Hearing                                    | , diffusion 109                                                                                                                                                                                                      |
| Heat conductivities 60                     | ,, dissociation 96                                                                                                                                                                                                   |
| ,, , electrical and mechanical equi-       | ,, mobilities (gaseous) 110                                                                                                                                                                                          |
| valent of 65                               | ,, ,, (gaseous) at high tem-                                                                                                                                                                                         |
| " from radium 116                          | peratures III                                                                                                                                                                                                        |
| D D                                        |                                                                                                                                                                                                                      |
| ", " RaEm 116                              | ,, ,, (liquids) 99, 110                                                                                                                                                                                              |
| ,, ,, KaEm                                 | (liquide) 00 LIO                                                                                                                                                                                                     |

| PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ionization by a rays                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Magnetism, terrestrial 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ,, β, γ, and X-rays 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Magnetization, intensity of 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Magnetization, intensity of 100<br>Mass, atomic 120, 169, 171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| " electrons and X-rays                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mass, atomic 120, 109, 1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| , potentials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,, of electron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ions from a rays, number and velocity of 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,,       ,,       isotopes       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       . |
| ,, , natural in air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,, ,, neutron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Iron-arc spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,, , unit of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Isotopes 121, 169, 171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mathematical constants 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Maximum boiling-point mixtures 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Maxwell's relation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| JENA glasses, density of 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Measurement, principles of 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ,, ,, , dispersive power of 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mechanical equivalent of heat . 65, 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ,, ,, , optical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,, light 81<br>Melting-points, elements and alloys . 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ", ", refractive index of 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Melting-points, elements and alloys . 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ,, ,, , thermometric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | " " " , fats and waxes 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,, ,, , inorganic compounds 130-138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Joule, the 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Joule's equivalent 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,, ,, , organic compounds 139-144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Julian calendar 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Menisci, correction for 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mercury columns, capillary correction . 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,, , density of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Varaan and A.C. Man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,, , specific heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| KILOGRAMME, definition 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,, thermometers, depression of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Kirchhoff, vapour pressure formula . 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Knot, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | stem company of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Second design of the second seco | ,, ,, , , stem - exposure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | correction . 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,, thermometry 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| LAMBERT 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , , vapour pressure of , , 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Land and water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Metal leaf, thickness of 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Langley and Abbot's solar work 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Metal leaf, thickness of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Latent heat of fusion 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Metals, densities of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ,, ,, vaporization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Metals, densities of 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Metric units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Lattice constants of crystals . 105, 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,,, ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Leaf, metal, thickness of 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Meyer's constant 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Length units 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Micron $\mu$ (and $m\mu$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Light, magnetic rotation of 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Migration ratios, ionic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ,, , mechanical equivalent of 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mil malue of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ,, , optical rotation of 89, 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Millibar, value of 6, 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ,, , reflection of (metallic) 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Millilambert 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ,, , units of 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ,, , velocity of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Minerals, activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Light-year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,, , composition of 147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Liquid films, thickness of 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,, , density of 147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Litre, definition of 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Logarithms, five-figure 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Lorentz, electronic theory of 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Minimum boiling-point mixtures 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Loudness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Miscellaneous data 16, 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Lumen 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Luminous efficiencies 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mixtures, freezing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ,, flux 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Moontries of ions, names                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Lux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,, ,, ,, ,, ,, , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | j, j, j, j, at light tem-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | peratures III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,, ,, , liquids 96, 99, 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MAGNETIC constants, terrestrial 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| deflection of electrone III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | and ide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| field unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| " force, unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| " induction 10, 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| " moment, unit IC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ,, pole, unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| " rotation of polarized light . 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| cheatra of a rave Tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| eucoentibility too                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| " susceptionity 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

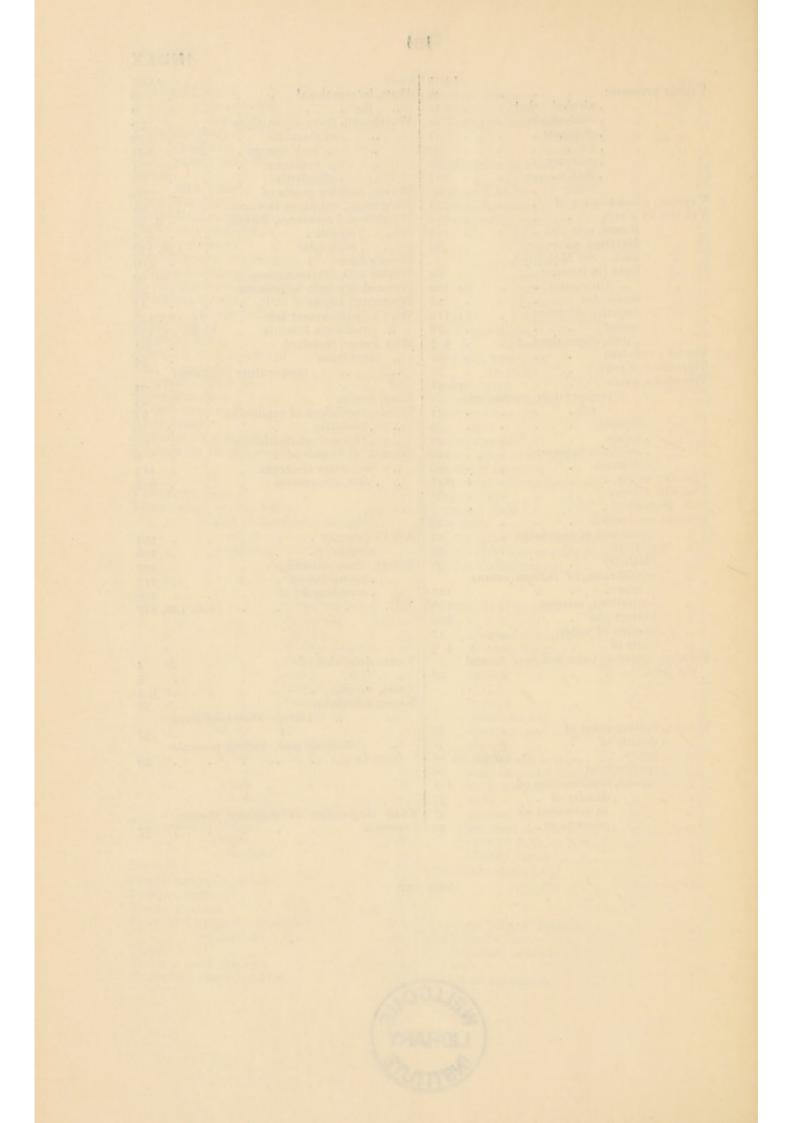
Ν

| HUDER                                                                                                                                                                                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                           | PAGE         | PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Molecules, per c.c.                                                                                                                                                                       | . II2        | Photoelectric effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ,, ,, gramme molecule .                                                                                                                                                                   | 112, 120     | Photometry 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ,, , size of                                                                                                                                                                              | . 41         | Physical constants, inorganic compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ", , velocity of                                                                                                                                                                          | . 41         | 130-138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,                                                                                                                                                    | . 25         | ,, ,, , organic compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Momentum, unit, dimensions .                                                                                                                                                              | . 0-8        | $\pi$ , value of $139-144$<br>$\pi$ , value of $139-144$<br>Pitch, musical $1200$ $1600$<br>Planck's radiation formula $1200$ $1600$<br>Planck's radiation formula $1200$ $1200$<br>1200 $1200$ $1200Planets 1200 1200 1200Planets 1200 1200 1200Planets 1200 1200 1200 1200Planets 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200$ |
| Moon, elements of                                                                                                                                                                         | . 22         | $\pi$ , value of $\cdot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Mossoth, Clausius-, relation .                                                                                                                                                            | · 95         | Planckie rediction formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Motions of stars                                                                                                                                                                          | . 24         | Planck's radiation formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Mutual inductance unit                                                                                                                                                                    | · 79         | ,, universal constant $(n)$ 70, 120, 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Mutual muuctance unit                                                                                                                                                                     | . 11         | Platinum thermometers, reduction to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                           |              | international scale st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                           |              | thermometry 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NATURAL ions in air                                                                                                                                                                       | . 119        | miternational scale       54         "," thermometry       54         Poisson's ratio       36         Polarized light, magnetic rotation of       91         Pole, magnetic unit       10         Polonium       121         Potentials, resonance and ionization       126         "," sparking       104         Pound, definition of       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| " cosines                                                                                                                                                                                 |              | Polarized light magnetic rotation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| sines                                                                                                                                                                                     | 161          | Pole, magnetic unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ,, sines                                                                                                                                                                                  | 165          | Polonium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Nautical measures                                                                                                                                                                         | . 17         | Potentials, resonance and ionization . 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| No for electrolytic ions                                                                                                                                                                  | 77.0         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Negative electrony te tons<br>Negative electrons<br>,, ,, , e/m of<br>,, ,, , mass of<br>,, ,, , velocity of .<br>Neutralization, heats of<br>Nitric acid, density of<br>Nitrogen ions in | 120, 126     | Pound, definition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                           | 120, 127     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| mass of                                                                                                                                                                                   | . 120        | Power, unit, dimensions 6-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ., , velocity of .                                                                                                                                                                        | . 113        | Practical electrical units , 9, 11, 14, 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Neutralization, heats of                                                                                                                                                                  | . 73         | Precession, constant of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Neutron                                                                                                                                                                                   | 120, 170     | Pressure, critical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Nitric acid, density of                                                                                                                                                                   | . 32         | ,, , enect of, on boining-points . 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Nitrogen, ions in                                                                                                                                                                         | 110, 111     | ,, , unit, dimensions 6-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Normal diapason                                                                                                                                                                           | . 80         | ,, , vapour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Notation in spectroscopy                                                                                                                                                                  | 124, 126     | ,, , vapour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Number, atomic                                                                                                                                                                            | 1, 171       | Proper motion of stars 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Avogadro s                                                                                                                                                                                | 112, 120     | Proton, mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ,, of a particles from Ra<br>,, ions from a particles .                                                                                                                                   | . 114        | Proper motion of stars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ,, ,, ions from a particles .                                                                                                                                                             | . 115        | Psychrometry 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ", ", molecules in a gas .<br>", quantum<br>Nutation                                                                                                                                      | . II2        | Pyrometers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ,, , quantum                                                                                                                                                                              | . 124        | Pyrometry, optical 56, 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Nutation                                                                                                                                                                                  | • 3          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                           | 1000         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| OBLIQUITY of ecliptic                                                                                                                                                                     | . 22         | QUANTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                           | · 22<br>· 22 | Quantity of electricity, unit, dimen-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ocean, size, etc                                                                                                                                                                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Oersted                                                                                                                                                                                   | 8, 14        | Quantum numbers 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ,, international                                                                                                                                                                          | 11, 14       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Oils, thermal conductivities .                                                                                                                                                            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ontical glass                                                                                                                                                                             | . 85         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Optical glass                                                                                                                                                                             | 56, 75       | R (gas constant) 7, 120<br>Radians                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| rotations, liquids                                                                                                                                                                        | . 89         | Radians                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| , quartz                                                                                                                                                                                  | . 90         | Radiation, black-body                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ", , , quartz<br>,, thermometry<br>Orbits, electronic                                                                                                                                     | . 56         | ,, constants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Orbits, electronic                                                                                                                                                                        | . 125        | ., , full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Organ pipes, wavelengths from .                                                                                                                                                           | . 79         | ., pyrometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ounce, values of                                                                                                                                                                          | . 16         | ,, thermometers 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ounce, values of<br>Oxygen, ions in                                                                                                                                                       | , 111, 116   | Radioactive decay-constants 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                           |              | ,, minerals 115, 147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                           |              | ,, substances, constants of . 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                           |              | ,, ,, ,, properties of . 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PARALLAX, equatorial solar .                                                                                                                                                              | . 22         | Radioactivity 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ,, , stars                                                                                                                                                                                | . 24         | Radium 116, 118, 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Pauli's principle                                                                                                                                                                         | . 124        | ,, emanation,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Period, sidereal, of planets<br>Periods of decay                                                                                                                                          | . 23         | ,, emanation,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Periods of decay                                                                                                                                                                          | 117, 121     | ,, ,, , density of 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Permeability                                                                                                                                                                              | 11, 100      | ,, ,, ,, equilibrium, volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Phon                                                                                                                                                                                      | . 79         | of 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PAGE                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Radium emanation, heat from 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Second, definition of 3                                                                                                                                                                                                                                                                                                                                                                                 |
| ,, ,, , in atmosphere . 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,, order line                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | radiation constant 120                                                                                                                                                                                                                                                                                                                                                                                  |
| ,, ,, , vapour pressure of . 117<br>heat from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Secular magnetic changes 103                                                                                                                                                                                                                                                                                                                                                                            |
| ,, , heat from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Secular magnetic changes 103<br>Self-inductance unit                                                                                                                                                                                                                                                                                                                                                    |
| in rocks 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sidereal day                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ramsay and Young's vapour-pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,, periods of planets       . 23         Sikes' hydrometer       . 30         Silver, atomic mass       . 120         ,, in electrolysis       . 11, 144         Sines, natural                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Silver atomic mass                                                                                                                                                                                                                                                                                                                                                                                      |
| law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | in electrolysis                                                                                                                                                                                                                                                                                                                                                                                         |
| Rankine's vapour pressure formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sines natural                                                                                                                                                                                                                                                                                                                                                                                           |
| Rankine's vapour-pressure formula49Ratio, Poisson's36Ratios of specific heats68Rayleigh's radiation formula75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Size of drops                                                                                                                                                                                                                                                                                                                                                                                           |
| Ratios of specific heats 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | molecules                                                                                                                                                                                                                                                                                                                                                                                               |
| Ravleigh's radiation formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sodium carbonate density of 22                                                                                                                                                                                                                                                                                                                                                                          |
| Rayleigh's radiation formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | budrovide density of                                                                                                                                                                                                                                                                                                                                                                                    |
| Reciprocals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Solar constant                                                                                                                                                                                                                                                                                                                                                                                          |
| Reduction of barometer readings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | day                                                                                                                                                                                                                                                                                                                                                                                                     |
| Reduction of barometer readings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | narallar equatorial                                                                                                                                                                                                                                                                                                                                                                                     |
| ,, gaseous volumes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,, paranax, equatoriar                                                                                                                                                                                                                                                                                                                                                                                  |
| ", platinum to international                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,, spectrum                                                                                                                                                                                                                                                                                                                                                                                             |
| temperatures 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,, system                                                                                                                                                                                                                                                                                                                                                                                               |
| ,, weighings to vacuo 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,, year                                                                                                                                                                                                                                                                                                                                                                                                 |
| Reflection of light (metallic) 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Solubilities aqueous, gases 145                                                                                                                                                                                                                                                                                                                                                                         |
| Kerractive indices, gases 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,, ,, , inorganic com-                                                                                                                                                                                                                                                                                                                                                                                  |
| ,, ,, , glasses 83, 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pounds . 130-138                                                                                                                                                                                                                                                                                                                                                                                        |
| , miscellaneous 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pounds . 130–138<br>,, ,, , solids 146<br>,, of liquids (mutual) 145                                                                                                                                                                                                                                                                                                                                    |
| Refractivity 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,, of liquids (mutual) 145                                                                                                                                                                                                                                                                                                                                                                              |
| Kelative activity of minerals 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Solutions, aqueous, coefficient of cubic                                                                                                                                                                                                                                                                                                                                                                |
| "humidity 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | expansion 65                                                                                                                                                                                                                                                                                                                                                                                            |
| ", ionization by a rays 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,, ,, , , conductivity 97                                                                                                                                                                                                                                                                                                                                                                               |
| " viscosities 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,, ,, , densities of 34                                                                                                                                                                                                                                                                                                                                                                                 |
| " visibility factors 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,, ,, , standard conductivity 97<br>,, ,, , surface tensions of . 46                                                                                                                                                                                                                                                                                                                                    |
| ,,weighings to vacuo<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,, ,, ,, surface tensions of . 46                                                                                                                                                                                                                                                                                                                                                                       |
| Remanence 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sound and hearing                                                                                                                                                                                                                                                                                                                                                                                       |
| Remanence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,, velocity of                                                                                                                                                                                                                                                                                                                                                                                          |
| ,, , specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sparking potentials 105                                                                                                                                                                                                                                                                                                                                                                                 |
| ,, , temperature coefficient of 93, 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Specific charge of electron . 120, 127                                                                                                                                                                                                                                                                                                                                                                  |
| Resistances of cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | " gravity, definition 5                                                                                                                                                                                                                                                                                                                                                                                 |
| ,, wires                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,, heats, elements 60                                                                                                                                                                                                                                                                                                                                                                                   |
| Resistivities, electrical 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                         |
| D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ", ", gases, constant pressure . 68                                                                                                                                                                                                                                                                                                                                                                     |
| Resonance potentials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,, ,, , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                   |
| Resonance potentials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,, ,, ,, gases, constant pressure . 68<br>,, ,, ,, ,, constant volume . 68<br>,, ,, ,, ,, , ratio of 68                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,,       ,,       gases, constant pressure .       68         ,,       ,,       ,,       constant volume .       68         ,,       ,,       ,,       ratio of .       68         ,,       ,,       ,,       ratio of .       68                                                                                                                                                                       |
| , temperature coefficient of . 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,,       ,,       gases, constant pressure .       68         ,,       ,,       ,,       constant volume .       68         ,,       ,,       ,,       ratio of .       68         ,,       ,,       ,,       ratio of .       68         ,,       ,,       ,       ratio of .       68         ,,       ,,       ,       mercury .       66         ,,       ,,       ,       miscellaneous .       69 |
| ,, , temperature coefficient of . 37<br>Rocks, Ra, Th, in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                    |
| ,, , temperature coefficient of . 37<br>Rocks, Ra, Th, in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                    |
| ,, , temperature coefficient of . 37<br>Rocks, Ra, Th, in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                    |
| ,,, temperature coefficient of. 37Rocks, Ra, Th, in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                    |
| ,,, temperature coefficient of. 37Rocks, Ra, Th, in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                    |
| ,,, temperature coefficient of.37Rocks, Ra, Th, in118Rods, vibrations of79Röntgen105,,rays, ionization by,,, wavelengths of,,, wavelengths ofRotations (magnetic) of polarized light.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                    |
| ,, temperature coefficient of       37         Rocks, Ra, Th, in       118         Rods, vibrations of       79         Röntgen       105         ,, rays, ionization by       116         ,, , wavelengths of       106         Rotations (magnetic) of polarized light       91         ,, (optical)       89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .                                                                                                                                                                                                                                                                                                                                                                                                       |
| ,,, temperature coefficient of.37Rocks, Ra, Th, in118Rods, vibrations of79Röntgen105,,rays, ionization by,,, wavelengths of,,, wavelengths ofRotations (magnetic) of polarized light.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                         |
| ,, temperature coefficient of       37         Rocks, Ra, Th, in       118         Rods, vibrations of       79         Röntgen       105         ,, rays, ionization by       116         ,, , wavelengths of       106         Rotations (magnetic) of polarized light       91         ,, (optical)       89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .                                                                                                                                                                                                                                                                                                                                                                                                       |
| ,, temperature coefficient of       37         Rocks, Ra, Th, in       118         Rods, vibrations of       79         Röntgen       105         ,, rays, ionization by       116         ,, , wavelengths of       106         Rotations (magnetic) of polarized light       91         ,, (optical)       89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,, , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                  |
| ,, temperature coefficient of       37         Rocks, Ra, Th, in       118         Rods, vibrations of       79         Röntgen       105         ,, rays, ionization by       116         ,, , wavelengths of       106         Rotations (magnetic) of polarized light       91         ,, (optical)       89         Rydberg's number       120, 129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,, , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                  |
| ",", temperature coefficient of       37         Rocks, Ra, Th, in       118         Rods, vibrations of       79         Röntgen       79         Röntgen       105         "," rays, ionization by       116         ",", wavelengths of       106         Rotations (magnetic) of polarized light       91         "," (optical)       89         Rydberg's number       120, 129         SAFE currents for wires       94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,, , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                  |
| ,, temperature coefficient of       37         Rocks, Ra, Th, in       118         Rods, vibrations of       79         Röntgen       105         ,, rays, ionization by       116         ,, , wavelengths of       106         Rotations (magnetic) of polarized light       91         ,, (optical)       89         Rydberg's number       120, 129         SAFE currents for wires       94         Satellites of planets       23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,, , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                  |
| ,, temperature coefficient of       37         Rocks, Ra, Th, in       118         Rods, vibrations of       79         Röntgen       105         ,, rays, ionization by       116         ,, , wavelengths of       106         Rotations (magnetic) of polarized light       91         ,, (optical)       89         Rydberg's number       120, 129         SAFE currents for wires       94         Satellites of planets       23         Saturated air, water in       47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,, , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                  |
| ,, temperature coefficient of       37         Rocks, Ra, Th, in       118         Rods, vibrations of       79         Röntgen       105         ,, rays, ionization by       116         ,, , wavelengths of       106         Rotations (magnetic) of polarized light       91         ,, (optical)       89         Rydberg's number       120, 129         SAFE currents for wires       94         Satellites of planets       23         Saturated air, water in       47         ,, vapour pressure       49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,, , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                  |
| ", temperature coefficient of       37         Rocks, Ra, Th, in       118         Rods, vibrations of       79         Röntgen       79         Röntgen       105         ", rays, ionization by       116         ", ", wavelengths of       106         Rotations (magnetic) of polarized light       91         ", (optical)       89         Rydberg's number       120, 129         SAFE currents for wires       94         Satellites of planets       23         Saturated air, water in       47         ", vapour pressure       49         ", water-vapour, density of       35                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,, , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                  |
| ", temperature coefficient of       37         Rocks, Ra, Th, in       118         Rods, vibrations of       79         Röntgen       79         Röntgen       105         ", rays, ionization by       116         ", ", wavelengths of       106         Rotations (magnetic) of polarized light       91         ", (optical)       89         Rydberg's number       120, 129         SAFE currents for wires       94         Satellites of planets       23         Saturated air, water in       47         ", vapour pressure       49         ", water-vapour, density of       35         Scale of hardness (Mohs')       147                                                                                                                                                                                                                                                                                                                                                                                                      | ,, , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                  |
| ,, temperature coefficient of       37         Rocks, Ra, Th, in       .       .         Rods, vibrations of       .       .         , rays, ionization by       .       .         , wavelengths of       .       .         , optical)       .       .         , (optical)       .       .         , Satellites of planets       .       .         , vapour pressure       .       .         , water-vapour, density of       .       .         , water-vapour, density of | ,, , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                  |
| ", temperature coefficient of       37         Rocks, Ra, Th, in       118         Rods, vibrations of       79         Röntgen       79         Röntgen       105         ", rays, ionization by       116         ", ", wavelengths of       106         Rotations (magnetic) of polarized light       91         ", (optical)       89         Rydberg's number       120, 129         SAFE currents for wires       94         Satellites of planets       23         Saturated air, water in       47         ", vapour pressure       49         ", water-vapour, density of       35         Scale of hardness (Mohs')       147         Scales, musical       79         Scattering of X-rays       129                                                                                                                                                                                                                                                                                                                              | ,, , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                  |
| ", temperature coefficient of       37         Rocks, Ra, Th, in       118         Rods, vibrations of       79         Röntgen       105         ", rays, ionization by       116         ", ", wavelengths of       106         Rotations (magnetic) of polarized light       91         ", (optical)       89         Rydberg's number       120, 129         SAFE currents for wires       94         Satellites of planets       23         Saturated air, water in       47         ", vapour pressure       49         ", water-vapour, density of       35         Scale of hardness (Mohs')       147         Scales, musical       79         Scattering of X-rays       129         Screws, pitch of, etc.       25                                                                                                                                                                                                                                                                                                               | ,, , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                  |
| ", temperature coefficient of       37         Rocks, Ra, Th, in       118         Rods, vibrations of       79         Röntgen       105         ", rays, ionization by       116         ", ", wavelengths of       106         Rotations (magnetic) of polarized light       91         ", (optical)       89         Rydberg's number       120, 129         SAFE currents for wires       94         Satellites of planets       23         Saturated air, water in       47         ", vapour pressure       49         ", water-vapour, density of       35         Scale of hardness (Mohs')       147         Scales, musical       79         Scattering of X-rays       129         Screws, pitch of, etc.       25         Seas, area, etc.       22                                                                                                                                                                                                                                                                             | ,, , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                  |
| ", temperature coefficient of       37         Rocks, Ra, Th, in       118         Rods, vibrations of       79         Röntgen       105         ", rays, ionization by       116         ", ", wavelengths of       106         Rotations (magnetic) of polarized light       91         ", (optical)       89         Rydberg's number       120, 129         SAFE currents for wires       94         Satellites of planets       23         Saturated air, water in       47         ", vapour pressure       49         ", water-vapour, density of       35         Scale of hardness (Mohs')       147         Scales, musical       79         Scattering of X-rays       129         Screws, pitch of, etc.       25                                                                                                                                                                                                                                                                                                               | ,, , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                  |

|                         |             |         |        | PAGE    |
|-------------------------|-------------|---------|--------|---------|
| Standards, metric       |             |         |        | . 3     |
| ", ", photometri        | с           |         |        | . 81    |
| ,, , units and          |             |         |        | • 5     |
| Stars, distances of     |             |         |        | . 24    |
| ,, , parallaxes         |             |         |        | . 24    |
| ,, , proper motions     |             |         |        | . 24    |
| Steam                   |             |         |        | . 70    |
| ,, table calorie        |             |         |        | . 65    |
| Stefan's constant       |             |         | 75, 14 | 20, 128 |
| Stefan-Boltzmann law    |             |         |        | 56, 76  |
| Steinmetz's coefficient |             |         |        | . IOI   |
| Stellar parallaxes      |             |         |        | . 24    |
| Stem-exposure correct   | tions       | of n    | nercur |         |
| thermometers .          |             |         |        | . 57    |
| Stopping powers (aton   | nic)        |         |        | . 115   |
| Strengths, bursting (g  |             | ubing)  |        | . 48    |
| ,, , , tensile (soli    | ds)         |         |        | . 37    |
| Stress, unit of .       |             | 1.1     |        | . 6,7   |
| Structure factor .      | 2           |         |        | . 120   |
| Sulphuric acid, density | v of        |         |        | . 32    |
| Sun, elements of        |             |         |        | 22, 23  |
| ", , temperature of     |             |         |        | . 76    |
| Supersaturation .       |             |         |        | . 111   |
| Surface tensions .      |             |         |        | . 45    |
| Susceptibility .        |             | . 10.   | 11. 10 | 00, 102 |
| Sutherland's constant   | Sale -      | ,       |        | 40, 41  |
| Symbols for electrons   | and s       | pectra  | 1 term |         |
| Symbolo for electrons   | Contract 10 | Peccera |        |         |

| ,, and pitch of           | of musical instru-    |
|---------------------------|-----------------------|
| ments .                   | 80                    |
| ", coefficient,           | conductivity          |
|                           | (solns.) . 97         |
|                           | dielectric con-       |
| " "                       |                       |
|                           |                       |
|                           | , refractive index 82 |
|                           | , resistance 93, 94   |
|                           | , rigidity 37         |
|                           | , surface tension 45  |
| ,, ,,                     | , viscosity (gas-     |
|                           | eous) 41              |
| ** **                     | Weston cell . 15      |
|                           | Young's modulus 37    |
| " internation             |                       |
|                           |                       |
| ,, of arc .               | 56                    |
| ,, ,, commo               | n light sources . 81  |
| ", ", hot obj             | ects, by appear-      |
| ance                      | 56                    |
| ,, ,, sun .               |                       |
| scales of                 |                       |
| unit dim                  |                       |
| Temperatures, critical .  |                       |
|                           | · · · 43              |
| ,, , high .               | 54-56                 |
| ,, , standard             | · · · 53              |
| Tenacities                | 37                    |
| Tensile strengths, solids | 37                    |
| Tension, surface .        | 45                    |
| Terms, spectral           | 124, 126              |
| Terrestrial magnetic con  |                       |
|                           | 102                   |
| ", magnetism              |                       |
| Therm                     | 16                    |
| Thermal conductivities    | 60                    |
| Thermionic work function  | on 113                |
|                           |                       |


| PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                  |         |          | PAGE                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| . 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Thermochemistry .                                                |         |          | 72                                                                                                                                                                                                               |
| . 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Thermo-couples .<br>Thermodynamic scale .<br>,, temperature      |         |          | 55                                                                                                                                                                                                               |
| . 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Thermodynamic scale .                                            |         |          | 53                                                                                                                                                                                                               |
| . 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,, temperature                                                   | e of    | f ice    |                                                                                                                                                                                                                  |
| . 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | point                                                            |         |          | 54                                                                                                                                                                                                               |
| . 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Thermoelectric effect .                                          |         |          | 55                                                                                                                                                                                                               |
| . 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,, thermometry                                                   |         |          | 55                                                                                                                                                                                                               |
| . 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Thermo-E.M.Fs                                                    |         |          | 55                                                                                                                                                                                                               |
| 20, 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Thermo-junctions .                                               |         |          | 55                                                                                                                                                                                                               |
| 56, 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Thermo-junctions .<br>Thermometry, electrical                    |         |          | 55                                                                                                                                                                                                               |
| , IOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,, , , gas<br>,, glass (compos                                   |         |          | 54                                                                                                                                                                                                               |
| . 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | " glass (compos                                                  | sition  | ) .      | . 85                                                                                                                                                                                                             |
| ry                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,, , mercury                                                     |         |          | 57                                                                                                                                                                                                               |
| . 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,, , optical .                                                   |         |          | 56                                                                                                                                                                                                               |
| . 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,, , , platinum                                                  |         |          | 54                                                                                                                                                                                                               |
| · 48<br>· 37                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ", , radiation<br>, , thermoelectri<br>Thickness of liquid films |         |          | 56                                                                                                                                                                                                               |
| . 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · · · · · · · · · · · · · · · · · ·                            | 1. A.   |          | 55                                                                                                                                                                                                               |
| . 6,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A HICKINGSO OF FIGURE HILLS                                      |         |          | . 46                                                                                                                                                                                                             |
| . 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | metal leaf                                                       |         |          | 44                                                                                                                                                                                                               |
| . 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Thorium, heat from .                                             |         |          | . 116                                                                                                                                                                                                            |
| 22, 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,, , III IUCAS .                                                 |         |          | . 118                                                                                                                                                                                                            |
| . 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Thread, screw                                                    |         |          | 25                                                                                                                                                                                                               |
| . III                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I hresholds of hearing .                                         |         |          | . 79                                                                                                                                                                                                             |
| . 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Time, equation of .                                              |         |          | . 24                                                                                                                                                                                                             |
| 00, 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                | unit                                                             |         |          | . 3                                                                                                                                                                                                              |
| 40, 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Times, standard .                                                |         |          | . 24                                                                                                                                                                                                             |
| 18 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ronne, value or                                                  |         |          | . 16                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Transport numbers .                                              |         |          | . 96                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Transverse vibrations of rod                                     | S       |          | . 79                                                                                                                                                                                                             |
| . 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tropical year                                                    |         |          | . 3                                                                                                                                                                                                              |
| 54, 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Trouton's Rule                                                   |         |          | . 70                                                                                                                                                                                                             |
| u-                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Trout unite                                                      |         |          | 16                                                                                                                                                                                                               |
| . 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tubing (glass), bursting stre                                    | ngths   | of .     | . 48                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tuning fork, temperature co                                      | efficie | ent of   | . 80                                                                                                                                                                                                             |
| · 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Twaddell's hydrometer                                            |         |          | . 30                                                                                                                                                                                                             |
| n-                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                  |         |          |                                                                                                                                                                                                                  |
| · 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                  |         |          |                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |         |          |                                                                                                                                                                                                                  |
| THE REPORT OF THE REPORT OF                                                                                                                                                                                                                                                                                                                                                                                                                                            | UNITED STATES units                                              |         | •        | • 4                                                                                                                                                                                                              |
| 93, 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WW 4.                                                            | :       | : :      |                                                                                                                                                                                                                  |
| 93, 94<br>· 37                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Units                                                            |         | : :      | 38                                                                                                                                                                                                               |
| 93, 94<br>. 37<br>on 45                                                                                                                                                                                                                                                                                                                                                                                                                                                | Units                                                            |         |          | 38 5                                                                                                                                                                                                             |
| 93, 94<br>. 37<br>on 45<br>s-                                                                                                                                                                                                                                                                                                                                                                                                                                          | Units                                                            |         |          | 3<br>8<br>5<br>10, 171                                                                                                                                                                                           |
| 93, 94<br>. 37<br>on 45<br>s-<br>. 41                                                                                                                                                                                                                                                                                                                                                                                                                                  | Units                                                            |         |          | 3<br>8<br>5<br>171<br>4                                                                                                                                                                                          |
| 93, 94<br>. 37<br>on 45<br>s-<br>. 41<br>. 15                                                                                                                                                                                                                                                                                                                                                                                                                          | Units                                                            | :       |          | 3<br>8<br>5<br>171<br>4                                                                                                                                                                                          |
| 93, 94<br>. 37<br>on 45<br>s-<br>. 41<br>. 15<br>dlus 37                                                                                                                                                                                                                                                                                                                                                                                                               | Units                                                            |         |          | 3<br>8<br>5<br>171<br>4                                                                                                                                                                                          |
| 93, 94<br>. 37<br>on 45<br>s-<br>. 41<br>. 15<br>dlus 37<br>. 53                                                                                                                                                                                                                                                                                                                                                                                                       | Units                                                            |         |          | 3<br>8<br>5<br>171<br>4                                                                                                                                                                                          |
| 93, 94<br>. 37<br>on 45<br>s-<br>. 41<br>. 15<br>ilus 37<br>. 53<br>. 56                                                                                                                                                                                                                                                                                                                                                                                               | Units                                                            |         | . 12     | 38<br>5<br>0, 171<br>4<br>3<br>5<br>8<br>8                                                                                                                                                                       |
| 93, 94<br>. 37<br>on 45<br>s-<br>. 41<br>. 15<br>illus 37<br>. 53<br>. 56<br>. 81                                                                                                                                                                                                                                                                                                                                                                                      | Units                                                            |         | . 12     | 38<br>50, 171<br>4<br>35<br>8<br>6, 170                                                                                                                                                                          |
| 93, 94<br>. 37<br>on 45<br>s-<br>. 41<br>. 15<br>ilus 37<br>. 53<br>. 56<br>. 81<br>r-                                                                                                                                                                                                                                                                                                                                                                                 | Units                                                            |         | . 12     | 38<br>50, 171<br>4<br>35<br>8<br>6, 170<br>5, 7                                                                                                                                                                  |
| 93, 94<br>. 37<br>on 45<br>s-<br>. 41<br>. 15<br>. 15<br>. 15<br>. 53<br>. 56<br>. 81<br>r-<br>. 56                                                                                                                                                                                                                                                                                                                                                                    | Units                                                            |         | . 12     | 3<br>8<br>5<br>0, 171<br>4<br>3<br>5<br>8<br>8<br>6, 170<br>5, 7<br>4, 16                                                                                                                                        |
| 93, 94<br>- 37<br>on 45<br>- 41<br>- 15<br>- 15<br>- 15<br>- 53<br>- 56<br>- 81<br>r-<br>- 56<br>- 76                                                                                                                                                                                                                                                                                                                                                                  | Units                                                            |         | . 12     | 3<br>8<br>5<br>0, 171<br>4<br>3<br>5<br>8<br>8<br>6, 170<br>5, 7<br>4, 16                                                                                                                                        |
| 93, 94<br>- 37<br>on 45<br>- 41<br>- 15<br>- 15<br>- 53<br>- 56<br>- 81<br>r-<br>- 56<br>- 76<br>- 57, 64                                                                                                                                                                                                                                                                                                                                                              | Units                                                            |         | . 12     | 3<br>8<br>5<br>80, 171<br>4<br>3<br>5<br>8<br>6, 170<br>5, 7<br>4, 16<br>5<br>81                                                                                                                                 |
| 93, 94<br>. 37<br>on 45<br>s-<br>. 41<br>. 15<br>. 15<br>. 15<br>. 15<br>. 53<br>. 81<br>r-<br>. 56<br>. 76<br>. 57, 64<br>. 7, 8                                                                                                                                                                                                                                                                                                                                      | Units                                                            |         | . 12     | 3<br>8<br>5<br>5<br>6, 171<br>4<br>3<br>5<br>8<br>6, 170<br>5, 7<br>4, 16<br>5<br>81<br>3                                                                                                                        |
| 93, 94<br>. 37<br>on 45<br>s-<br>. 41<br>. 15<br>. 15<br>. 15<br>. 15<br>. 37<br>. 53<br>. 81<br>r-<br>. 56<br>. 76<br>. 57, 64<br>. 7, 8<br>. 43                                                                                                                                                                                                                                                                                                                      | Units                                                            |         | . 12     | 3<br>8<br>5<br>5<br>6, 171<br>4<br>3<br>5<br>8<br>6, 170<br>5, 7<br>4, 16<br>5<br>81<br>14, 15                                                                                                                   |
| 93, 94<br>. 37<br>on 45<br>s-<br>. 41<br>. 15<br>. 15<br>. 15<br>. 15<br>. 37<br>. 53<br>. 81<br>r-<br>. 56<br>. 7, 64<br>. 7, 8<br>. 43<br>. 54–56                                                                                                                                                                                                                                                                                                                    | Units                                                            |         | . 12     | 3<br>8<br>5<br>5<br>6, 171<br>4<br>3<br>5<br>8<br>6, 170<br>5, 7<br>4, 16<br>5<br>81<br>14, 15<br>15                                                                                                             |
| 93, 94<br>. 37<br>on 45<br>s-<br>. 41<br>. 15<br>. 15<br>. 15<br>. 15<br>. 53<br>. 81<br>r-<br>. 56<br>. 7, 64<br>. 7, 8<br>. 43<br>. 54-56<br>. 53                                                                                                                                                                                                                                                                                                                    | Units                                                            |         | . 12     | 3<br>8<br>5<br>5<br>6, 171<br>4<br>3<br>5<br>8<br>6, 170<br>5, 7<br>4, 16<br>5<br>81<br>14, 15<br>15<br>4                                                                                                        |
| 93, 94<br>37<br>37<br>45<br>37<br>15<br>15<br>37<br>53<br>53<br>56<br>81<br>r<br>56<br>57, 64<br>57, 64<br>57, 64<br>54-56<br>53<br>37                                                                                                                                                                                                                                                                                                                                 | Units                                                            |         | . 12<br> | 3<br>8<br>5<br>5<br>6, 171<br>4<br>3<br>5<br>8<br>8<br>6, 170<br>5, 7<br>4, 16<br>5<br>8<br>14, 15<br>15<br>4<br>17                                                                                              |
| 93, 94<br>$\cdot$ 37<br>$\cdot$ 41<br>$\cdot$ 15<br>$\cdot$ 15<br>$\cdot$ 53<br>$\cdot$ 56<br>$\cdot$ 81<br>$\cdot$ 76<br>$\cdot$ 77, 64<br>$\cdot$ 77, 8<br>$\cdot$ 43<br>$\cdot$ 54-56<br>$\cdot$ 53<br>$\cdot$ 37<br>$\cdot$ 37                                                                                                                                                                                                                                     | Units                                                            |         | . 12<br> | 3<br>8<br>5<br>5<br>6, 171<br>4<br>3<br>5<br>8<br>6, 170<br>5, 7<br>4, 16<br>5<br>81<br>14, 15<br>15<br>4                                                                                                        |
| 93, 94<br>. 37<br>on 45<br>. 41<br>. 15<br>. 53<br>. 56<br>. 81<br>r-<br>. 56<br>. 7, 8<br>. 43<br>54-56<br>. 53<br>. 37<br>. 37<br>. 37<br>. 45                                                                                                                                                                                                                                                                                                                       | Units                                                            |         | . 12<br> | 3<br>8<br>5<br>5<br>6, 171<br>4<br>3<br>5<br>8<br>8<br>6, 170<br>5, 7<br>4, 16<br>5<br>8<br>14, 15<br>15<br>4<br>17                                                                                              |
| 93, 94<br>. 37<br>on 45<br>$\cdot$ 41<br>. 15<br>. 15<br>. 15<br>. 15<br>. 53<br>. 56<br>. 7, 64<br>. 7, 8<br>. 43<br>. 54-56<br>. 53<br>. 37<br>. 45<br>. 24, 126                                                                                                                                                                                                                                                                                                     | Units                                                            |         | . 12<br> | 3<br>8<br>5<br>5<br>5<br>6, 170<br>5, 7<br>4, 16<br>5, 7<br>4, 16<br>5<br>81<br>4, 15<br>14, 15<br>15<br>4<br>17<br>17<br>17<br>17<br>17<br>17<br>15<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17 |
| 93, 94<br>. 37<br>on 45<br>37<br>. 41<br>. 15<br>. 15<br>. 15<br>. 15<br>. 53<br>. 56<br>. 7, 64<br>. 7, 8<br>. 43<br>. 54-56<br>. 53<br>. 37<br>. 45<br>. 24, 126<br>. 102                                                                                                                                                                                                                                                                                            | Units                                                            |         | . 12<br> | 3<br>8<br>5<br>5<br>6, 171<br>4<br>3<br>5<br>8<br>6, 170<br>5, 7<br>4, 16<br>5<br>81<br>4, 15<br>14, 15<br>15<br>4, 17<br>17<br>17<br>17<br>15<br>4<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17  |
| 93, 94<br>37<br>37<br>45<br>37<br>15<br>15<br>15<br>103<br>37<br>53<br>56<br>81<br>$1^{-}$<br>56<br>57, 64<br>57, 64<br>53<br>57, 64<br>53<br>54-56<br>53<br>37<br>43<br>54-56<br>53<br>37<br>43<br>54-56<br>53<br>37<br>43<br>54-56<br>53<br>37<br>45<br>54-56<br>53<br>37<br>45<br>54-56<br>53<br>37<br>45<br>54-56<br>53<br>37<br>45<br>54-56<br>53<br>37<br>45<br>54-56<br>53<br>37<br>45<br>54-56<br>53<br>37<br>45<br>54-56<br>53<br>37<br>45<br>24, $126102102$ | Units                                                            |         | . 12<br> | 3<br>8<br>5<br>5<br>5<br>6, 170<br>5, 7<br>4, 16<br>5, 7<br>4, 16<br>5<br>81<br>4, 15<br>14, 15<br>15<br>4<br>17<br>17<br>17<br>17<br>17<br>17<br>15<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17 |
| 93, 94<br>$\cdot$ 37<br>$\cdot$ 41<br>$\cdot$ 15<br>$\cdot$ 15<br>$\cdot$ 15<br>$\cdot$ 53<br>$\cdot$ 56<br>$\cdot$ 81<br>$\cdot$ 76<br>$\cdot$ 76<br>$\cdot$ 77, 64<br>$\cdot$ 77, 8<br>$\cdot$ 43<br>$\cdot$ 54-56<br>$\cdot$ 53<br>$\cdot$ 37<br>$\cdot$ 45<br>$\cdot$ 45<br>$\cdot$ 102<br>$\cdot$ 102<br>$\cdot$ 102<br>$\cdot$ 16                                                                                                                                | Units                                                            |         | . 12<br> | 3<br>8<br>5<br>5<br>6, 170<br>4<br>3<br>5<br>8<br>6, 170<br>5, 7<br>4, 16<br>5<br>81<br>4, 15<br>14, 15<br>4, 17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                                           |
| 93, 94<br>37<br>37<br>45<br>37<br>15<br>15<br>15<br>103<br>37<br>53<br>56<br>81<br>$1^{-}$<br>56<br>57, 64<br>57, 64<br>53<br>57, 64<br>53<br>54-56<br>53<br>37<br>43<br>54-56<br>53<br>37<br>43<br>54-56<br>53<br>37<br>43<br>54-56<br>53<br>37<br>45<br>54-56<br>53<br>37<br>45<br>54-56<br>53<br>37<br>45<br>54-56<br>53<br>37<br>45<br>54-56<br>53<br>37<br>45<br>54-56<br>53<br>37<br>45<br>54-56<br>53<br>37<br>45<br>54-56<br>53<br>37<br>45<br>24, $126102102$ | Units                                                            |         | . 12<br> | 3<br>8<br>5<br>5<br>6, 171<br>4<br>3<br>5<br>8<br>6, 170<br>5, 7<br>4, 16<br>5<br>81<br>4, 15<br>14, 15<br>15<br>4, 17<br>17<br>17<br>17<br>15<br>4<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17  |

| 01    |
|-------|
| <br>- |
|       |
|       |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PAGE           | PAGE                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------|
| Vapour pressures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · 49         | Watt, international 6                             |
| ,, ,, , alcohol, ethyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50             | ,, , the 6                                        |
| ,, ,, , compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51             | Wavelength from organ pipes 79                    |
| ,, ,, , elements .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 51             | ,, of electrons 129                               |
| ,, ,, ,ice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 49             | ,, ,, 1 eV energy 120                             |
| ,, ,, , mercury .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50             | ,, ,, radiation 75                                |
| ,, ,, , , RaEm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 117            | ,, standards 86                                   |
| ,, ,, , water .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 49             | Waxes, melting-points of 60                       |
| Vapours, condensation of .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 111            | Weighings, reduction to vacuo 28                  |
| Velocity of a rays                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 122            | Weights and measures, British 4, 16               |
| $\beta$ rays, e/m and .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 113            | ", , atomic                                       |
| ,, Hertzian waves .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 84             | ", , molecular 130, 138                           |
| ,, ions. See Mobilities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | Weiss's Law 100                                   |
| ,, light (in liquids)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 84             | Weston cell, determinations of . 15, 99           |
| ,, ,, (in vacuo) .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 84, 120      | Wet-and-dry-bulb hygrometer 47                    |
| ", molecules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · 41         | Whitworth screws                                  |
| ,, negative electrons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 113, 114     | Wien's displacement law . 75, 120, 128            |
| ,, sound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 78             | ,, radiation formula                              |
| , unit, dimensions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · 5,7        | Wire gauge, standard 94                           |
| Verdet's constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 91             | " resistances                                     |
| Vibrations of rods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • • 79         | ", ", temperature coefficient                     |
| Viscosities, gases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 40, 41       | of                                                |
| ", ", (temperature coe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | Wood screws                                       |
| of)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · 41         | Woods, coefficient of expansion 63                |
| ,, , liquids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · 39         | ,, , densities                                    |
| ,, , solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • • 40         | ,, , thermal conductivities 62                    |
| ,, , solutions (aqueous)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · · 40         | Work, C.G.S. unit of 6<br>,, to extract electrons |
| ,, , vapours<br>Viscosity of air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40             |                                                   |
| A71 11 111 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · 127        | ,, , unit, dimensions 6–8                         |
| Visibility factors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8              |                                                   |
| Volume, calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26             |                                                   |
| Contract of the state of the st |                | X-RAY quantity 105                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | X-RAY quantity                                    |
| alastisitu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | V                                                 |
| aquilibrium of radium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>36</u>      | ,, , ionization by                                |
| tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · . 117        | ,, , wavelengths of 106                           |
| ionizations relative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 116            | X.U                                               |
| norfact and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120            |                                                   |
| ,, , specific of water .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17             |                                                   |
| ,, , units of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4, 5           |                                                   |
| Volumes (gaseous) reduction to o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ° C. and       | YARD, definition of 4                             |
| 760 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28             | ", U.S 4                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Years, various                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Young's modulus                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | ,, ,, , temperature coefficient                   |
| WATER, boiling-point of .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50             | of 37                                             |
| ,, , density of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31             | ,, , Ramsay and, vapour-pressure                  |
| ,, , heavy 31,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 39, 45, 50, 66 | formula                                           |
| ,, , specific heat .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 66             |                                                   |
| ,, vapour, condensation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 111            |                                                   |
| ,, ,, , density of .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · 35         |                                                   |
| ,, ,, in saturated air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • • 47         | ZERO depression of mercury thermo-                |
| ", ", pressure of .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · 49         | meters                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                   |

THE END



