Tables of physical and chemical constants and some mathematical functions / by G.W.C. Kaye and T.H. Laby.

Contributors

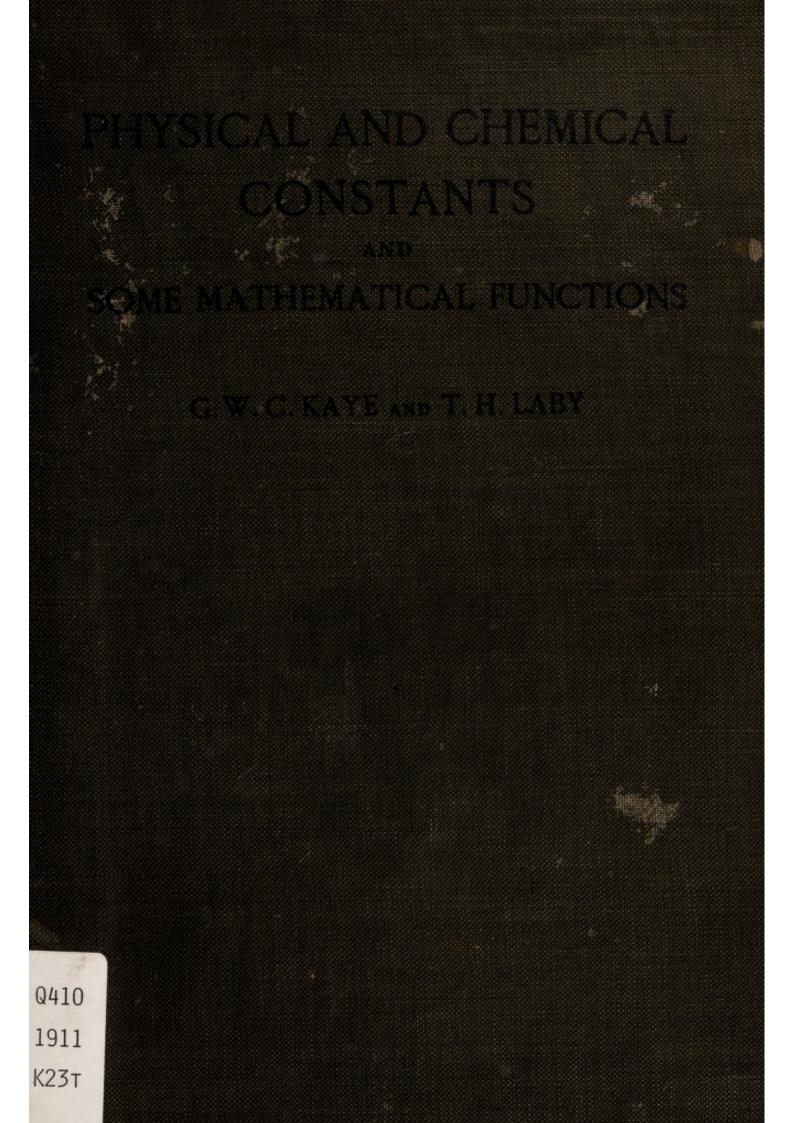
Kaye, G. W. C. 1880-1941. Laby, T. H. 1880-1946.

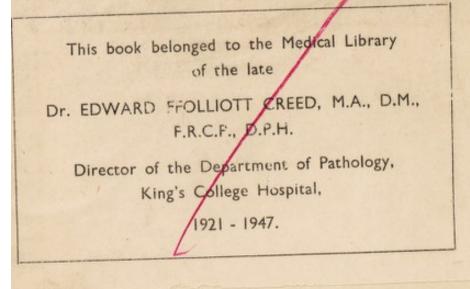
Publication/Creation

London : Longmans, Green, 1911.

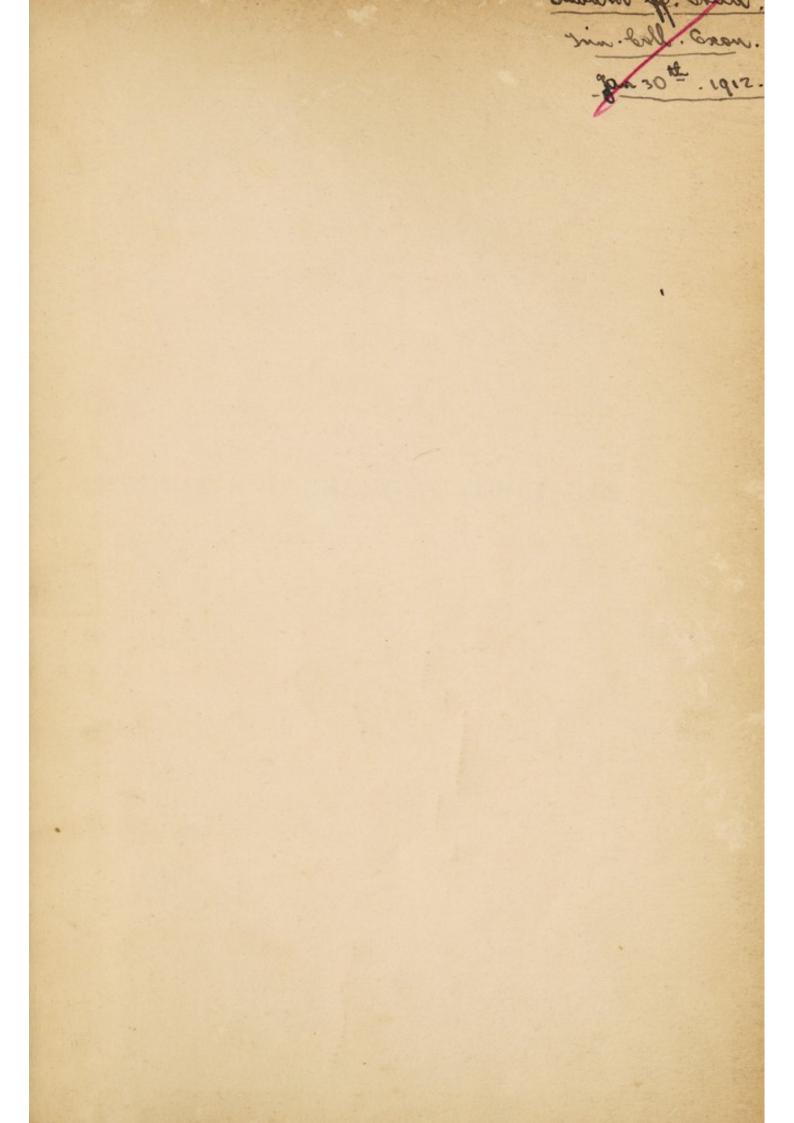
Persistent URL

https://wellcomecollection.org/works/bad2g42g


License and attribution


This work has been identified as being free of known restrictions under copyright law, including all related and neighbouring rights and is being made available under the Creative Commons, Public Domain Mark.

You can copy, modify, distribute and perform the work, even for commercial purposes, without asking permission.



Wellcome Collection 183 Euston Road London NW1 2BE UK T +44 (0)20 7611 8722 E library@wellcomecollection.org https://wellcomecollection.org

Digitized by the Internet Archive in 2019 with funding from Wellcome Library

https://archive.org/details/b3135578x

PHYSICAL AND CHEMICAL CONSTANTS

.

RECENTLY PUBLISHED

- NEW IDEAS ON INORGANIC CHEMISTRY. By Dr. A. WERNER, Professor of Chemistry in the University of Zurich. Translated, with the Author's sanction, from the second German edition, by EDGAR PERCY HEDLEY, Ph.D., A.R.C.Sc.I. 8vo, 7s. 6d. net.
- THE RELATIONS BETWEEN CHEMICAL CONSTI-TUTION AND SOME PHYSICAL PROPERTIES. By SAMUEL SMILES, D.Sc., Fellow of University College, and Assistant Professor of Organic Chemistry at University College, London University. Crown 8vo, 14s.
- NEW REDUCTION METHODS IN VOLUMETRIC ANALYSIS. A Monograph. By EDMUND KNECHT, Ph.D., M.Sc.Tech., F.I.C., Professor of Technological Chemistry at the Victoria University of Manchester, and EVA HIBBERT, Demonstrator in Chemistry, Municipal School of Technology, Manchester. Crown 8vo, 3s. net.
- A HISTORY OF THE THEORIES OF AETHER AND ELECTRICITY, from the Age of Descartes to the Close of the Nineteenth Century. By E. T. WHITTAKER, Hon. Sc.D. (Dublin), F.R.S., Royal Astronomer of Ireland. 8vo, 12s. 6d. net.
- ANALYTICAL MECHANICS, comprising the Kinetics and Statics of Solids and Fluids. By EDWIN H. BARTON, D.Sc. (Lond.), F.R.S.E., A.M.I.E.E., Professor of Experimental Physics, University College, Nottingham. 8vo, 10s. 6d. net.
- ELEMENTS OF MECHANICS. With numerous Examples, for the use of Schools and Colleges. By GEORGE W. PARKER, M.A., of Trinity College, Dublin. With 116 Diagrams and Answers to Examples. 8vo, 4s. 6d.
- A HISTORY OF THE CAVENDISH LABORATORY, 1871-1910. With 3 Portraits in Collotype and 8 other Illustrations. 8vo, 7s. 6d. net.

LONGMANS, GREEN, AND CO. LONDON, NEW YORK, BOMBAY, AND CALCUTTA

TABLES OF

PHYSICAL AND CHEMICAL CONSTANTS AND SOME MATHEMATICAL FUNCTIONS

 $\mathbf{B}\mathbf{Y}$

G. W. C. KAYE

B.A. (CANTAB.), D.Sc. (LOND.), A.R.C.Sc. (LOND.)

THE NATIONAL PHYSICAL LABORATORY; LATE SUB-LECTOR IN PHYSICS, TRINITY COLLEGE, CAMBRIDGE

AND

T. H. LABY

B.A. (CANTAB.)

PROFESSOR OF PHYSICS, WELLINGTON, N.Z.; FORMERLY EXHIBITION OF 1851 SCHOLAR; JOULE STUDENT; AND RESEARCH EXHIBITIONER, EMMANUEL COLLEGE, CAMBRIDGE

LONGMANS, GREEN, AND CO.

39 PATERNOSTER ROW, LONDON NEW YORK, BOMBAY, AND CALCUTTA

1911

All rights reserved

PHYSICAL AND CHEMICAL CONSTANTS

WEL	WELLCOME STITUTE							
Coll	weiMOmec							
Call								
Na	Q.410							
	1911							
	K:23t							
	and the second second							

.

PREFACE

THE need for a set of up-to-date English physical and chemical tables of convenient size and moderate price has repeatedly impressed us during our teaching and laboratory experience. We have accordingly attempted in this volume to collect the more reliable and recent determinations of some of the important physical and chemical constants.

To increase the utility of the book, we have inserted, in the case of many of the sections, a brief *résumé* containing references to such books and original papers as may profitably be consulted.

Every effort has been made to keep the material up to date; in many cases a full reference to the original paper is given, while, failing such reference, the year of publication is almost always indicated.

The scope of the volume calls for little comment on our part. We have dipped a little into Astronomy, Engineering, and Geology in so far as they border on Physics and Chemistry. It will be noticed that considerable space has been allotted to Radioactivity and Gaseous Ionization : it is hoped that the collection of data, which we believe to be the first of the kind, will be of assistance to the numerous workers in a field whose phenomenal and somewhat transitional growth is a little dismaying from our present point of view.

Attention has been paid to the setting and accuracy of the mathematical tables; these are included merely to facilitate calculations arising out of the use of the book, and limitations of space have cut out all but a few of the more essential functions. The convenience of the student of the newer physics has been studied by the inclusion of a table of values of e^{-s} reduced from Newman's original results.

It is remarkable in how few cases the physical properties of pure, commonly occurring chemical compounds are known with accuracy: the task of augmenting (not always with discrimination) already overburdened families of organic compounds receives much greater attention.

For many of the constants which date from before 1905 we are glad to acknowledge our indebtedness to the very complete and accurate Physikalisch-Chemische Tabellen of Landolt Börnstein and Meyerhoffer (indicated throughout by L.B.M.).

PREFACE

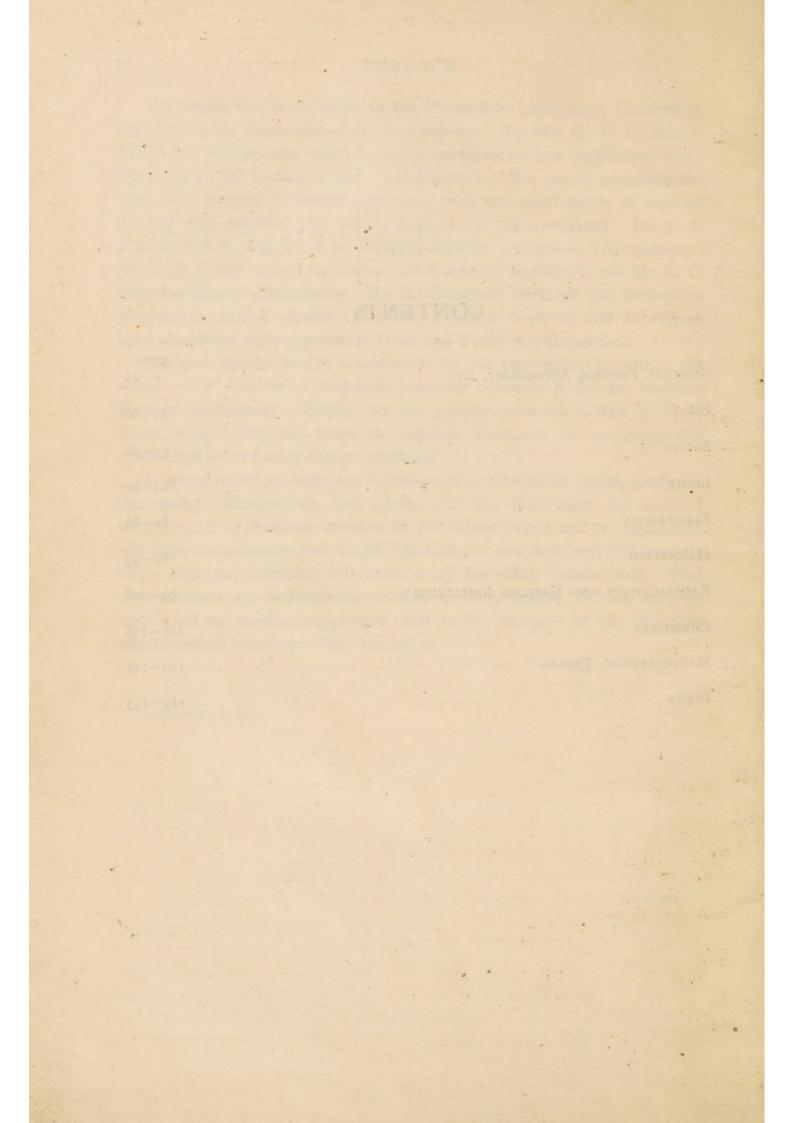
We began this book while at the Cavendish Laboratory, Cambridge, and Dr. G. A. Carse shared in its inception. To Mr. G. F. C. Searle, F.R.S., we feel we owe much for his encouragement and suggestions when the scope of the book was under consideration. We record gratefully the help of a number of friends who have seen the proof-sheets of sections dealing with subjects with which their names are associated. Dr. J. A. Harker, F.R.S., and Mr. R. S. Whipple read the sections on Thermometry ; Mr. F. E. Smith revised the account of Electrical Standards, and Mr. C. C. Paterson that of Photometry ; Mr. A. Campbell criticized the section on Magnetism ; and Professor Callendar, Principal Griffiths, and Dr. Chree have elucidated various points in Heat and Terrestrial Magnetism.

We owe thanks to Dr. Glazebrook for his permission to utilize the values of a number of constants recently determined at the National Physical Laboratory. Finally, we are greatly indebted to Mr. E. F. F. Kaye, M.Sc., who has given us valuable assistance in preparing the manuscript and revising the proof-sheets.

It was decided to keep the volume within reasonable limits, partly for the reader's convenience, and partly with the hope that the task of subjecting it to frequent revision in the future might not be impossible. We have consequently had to pick and choose our data, and it is scarcely likely that our selection will meet every individual requirement. That some sections are inadequately treated we fully realize, and we shall be very glad to receive suggestions and to be informed of any mistakes which, despite every care, have eluded us.

> G. W. C. K. T. H. L.

fibral been been


September, 1911.

CONTENTS

.

*

GENERAL PHYSI	cs,	As	TR	ON	ION	4¥,	E	тс												I-43
НЕАТ																				44—66
Sound															•					67—68
LIGHT													18	•		•				69—80
ELECTRICITY .					•															81—88
MAGNETISM .		•																		89-93
RADIOACTIVITY	ANI	D C	GAS	EC	ous	5 I	ON	IZA	TI	ON		•					•	•	•	94—108
CHEMISTRY .																				109-128
MATHEMATICAL	ТА	BL	ES													•				129—147
INDEX																				149-153

INTERNATIONAL ATOMIC WEIGHTS FOR 19NS.

0 = 16

(See F. W. Clarke, "A Recalculation of the Atomic Weights," 1910)

Element.	Symbol.	Atomic Weight.	Element.	Symbol.	Atomic Weight.
Aluminium · ·	AI	27'I	Neodymium · ·	Nd	144'3
Antimony	Sb	120'2	Neon	Ne	20'2
Argon	A	39.88	Nickel · · · ·	Ni	58.68
Arsenic	As	74.96	Niobium t	Nb ·	93'5
Barium	Ba	137'37	Nitrogen · · ·	N	14'01
Beryllium* · ·	Be	9.1	Osmium · · ·	Os	190'9
Bismuth	Bi	208.0	Oxygen · · · ·	.0	16.00
Boron	в	11.0	Palladium · · ·	Pd	106.7
Bromine	Br	79.92	Phosphorus · ·	P	31.04
Cadmium · · ·	Cd	112'40	Platinum	Pt	195'2
Cæsium · · ·	Cs	132.81	Potassium · ·	K	39.10
Calcium	Ca	40.0%7	Praseodymium	Pr	140.6
Carbon	С	12'00	Radium	Ra	226.4
Cerium · · · ·	Ce	140'25	Rhodium · · ·	Rh	102'9
Chlorine · · ·	CI	35.46	Rubidium · · ·	Rb	85.45
Chromium · ·	Cr	52'0	Ruthenium	Ru	101.2
Cobalt	Co	58.97	Samarium · ·	Sa	150.4
Copper · · · ·	Cu	63.57	Scandium · · ·	Sc	44'I
Dysprosium · ·	Dy	162.5	Selenium · · ·	Se	79'2
Erbium · · · ·	Er	167.11	Silicon	Si	28.3
Europium · · ·	Eu	152'0	Silver	Ag	107.88
Fluorine	F	19'0	Sodium	Na	23'00
Gadolinium · ·	Gd	157'3	Strontium · ·	Sr	87.63
Gallium	Ga	69'9	Sulphur	S	32.07
Germanium · ·	Ge	72'5	Tantalum · · ·	Та	181.02
Gold · · · · ·	Au	197'2	Tellurium · · ·	Te	127.5
Helium · · · ·	He	3.99	Terbium · · ·	Tb	159'2
Hydrogen · · ·	H	1.008	Thallium · · ·	TI	204'0
Indium · · · ·	In	114.8	Thorium · · ·	Th	232 24
lodine · · · ·	1 1 1 20	126.92	Thulium · · ·	Tm	168.5
Iridium · · · ·	Ir	193.1	Tin	Sn	119.0
Iron · · · · ·	Fe	55.814	Titanium · · ·	Ti	48.1
Krypton	Kr	82.92	Tungsten · · ·	W	184.0
Lanthanum · ·	La	139.0	Uranium · · ·	U	238.5
Lead	Pb	207'10	Vanadium · · ·	V	51.0%
Lithium · · · ·	Li	6.94	Xenon · · · ·	Xe	130.5
Lutecium · · ·	Lu	174'0	Ytterbium · · ·	Yb	172'0
Magnesium · ·	Mg	24.32	Yttrium · · · ·	Y	89.0
Manganese · ·	Mn	54.93	Zinc · · · · ·	Zn	65.37
Mercury · · ·	Hg	200.00	Zirconium · · ·	Zr	90.6
Molybdenum ·	Mo	96.0	Niton (Ra Emanation)	NE	222.4
Holmium	Ho	163.5		-	

* Beryllium or Glucinum (Gl).

† Niobium or Columbium (Cb).

1

ATOMIC WEIGHTS

THE ELEMENTS IN THE ORDER OF ATOMIC WEIGHTS

He I Li Be B I I I <t< th=""><th>12:00 14:01 16:00 19:0</th><th>Cavendish Ramsay & Cleve * Arfvedson Wöhler and Bussy Gay-Lussac & Thénard — Rutherford</th><th>1766 1895 1817 1828 1808</th><th>Mo Ru Rh</th><th>96°0 101'7</th><th>Hjelm Claus</th><th>1790</th></t<>	12:00 14:01 16:00 19:0	Cavendish Ramsay & Cleve * Arfvedson Wöhler and Bussy Gay-Lussac & Thénard — Rutherford	1766 1895 1817 1828 1808	Mo Ru Rh	96°0 101'7	Hjelm Claus	1790
Li Be BCN I I CN I I I I I I I I I I I I I I I	6.94 9.1 11.0 12.00 14.01 16.00 19.0	Arfvedson Wöhler and Bussy Gay-Lussac & Thénard —	1817 1828	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	101'7		
Li Be BCN 1 I I OF N 2 AI 2 AI 2 AI 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	6.94 9.1 11.0 12.00 14.01 16.00 19.0	Arfvedson Wöhler and Bussy Gay-Lussac & Thénard —	1828	Dh		Claus	1845
Be I BC I I I	9'I 11'0 12'00 14'01 16'00 19'0	Gay-Lussac & Thénard		Rn I	102'9	Wollaston	1803
B I I	11.0 12.00 14.01 16.00 19.0		1808	Pd	106.7	Wollaston	1803
C N 1 N 0 F N 2 N 1 N 0 F N 2 N 2 N 2 N 2 N 2 N 2 N 2 N 2 N 2 N 2	12:00 14:01 16:00 19:0			Ag	107.88	/mour	P.
N 1 O 1 F 1 P 2 Mg 2 Al 2 Si 2 Si 3 Si 3 </th <th>16.00 19.0</th> <th>Rutherford</th> <th>P.</th> <th>Cd</th> <th>112.40</th> <th>Stromeyer</th> <th>1817</th>	16.00 19.0	Rutherford	P.	Cd	112.40	Stromeyer	1817
O 1 F 1 Ne 2 Na 2 Al 2 Si 2 Si 3 SCI 3 SCI 3	16.00 19.0		1772	In	114.8	Reich and Richter	1863
F I Ne 2 Na 2 Mg 2 AI 2 Si 2 Si 3 SCI 3 SCI 3 SCI 3		Priestley and Scheele	1774	Sn	119.0		P.
Ne 2 Na 2 Mg 2 Al 2 Si 2 Si 3 SCI 3 KA 3		Moissan	1886	Sb	120'2	Basil Valentine	15 centy.
Mg 2 Al 2 Si 2 SP 3 SCI 3 SCI 4 3 SCI 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	20'2	Ramsay and Travers	1898	1	126.92	Courtois	1811
Mg 2 AI 2 Si 2 Si 2 Si 3 SCI 3 KA 3	23.00	Davy	1807	Te	127.5	v. Reichenstein	1782
AI SI P S CI K A	24.32	Liebig and Bussy	1830	Xe	130'2	Ramsay and Travers	1898
Si P S Ci K A	27'1	Wöhler	1827	Cs	-	BunsenandKirchhoff	1861
P S C K A	28.3	Berzelius	1823	Ba	137.37	Davy Davy	1808
SCIKA	31.04	Brand	1674	La	139'0	Mosander	1839
KA	32.07		Р.	Ce	140.25	Mosander	1839
KA	35.46	Scheele	1774	Pr	140.6	Auer von Welsbach	1885
A	39.10	Davy	1807	Nd	144'3	Auer von Welsbach	1885
-	39.88	Rayleigh & Ramsay	1894	Sa	150'4	L. de Boisbaudran	1879
	40.09	Davy	1808	Eu	152'0	Demarçay	1901
	44'1	Nilson and Cleve	1879	Gd	157'3	Marignac	1886
and the second	48.1	Gregor	1789	Tb	159'2	Mosander	1843
V	51.06	Berzelius	1831	Dy	162.5	U. & D.	1907
Cr	52.0	Vauquelin	1797	Er	167.4	Mosander	1843
Mn	54.93	Gahn	1774	Tm	168.5	Cleve	1879
	55.85	S 100	Ρ.	Yb	172'0	Marignac	1878
	58.68	Cronstedt	1751	Lu	174'0	Urbain	1908
Co	58.97	Brand	1735	Та	181.0	Eckeberg	1802
	63'57	at _ mul	P.	w	184.0	Bros. d'Elhujar	1783
Zn	65.37	Ment. by B. Valentine	15 centy.	Os	190'9	Smithson Tennant	1804
	69.9	L. de Boisbaudran	1875	Ir	193.1	Smithson Tennant	1804
	72.5	Winkler	1886	Pt	195'2		16 centy.
	74.96	Albertus Magnus	13 centy.		197'2	-	P.
	79'2	Berzelius	1817	Hg	200'0	Md. by Theophrastus	300 B.C.
	79.92	Balard	1826	TI	204'0	Crookes	1861
	82.9	Ramsay and Travers	1898	Pb	207'10	Mentd. by Pliny	Р.
	85.45	Bunsen and Kirchhoff	1861	Bi	208'0	Mtd. by B. Valentine	15 centy.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	87.63	Davy	1808	Ra	226.4	Curies and Bemont	1902
	89.0	Wöhler	1828	Th	232'0	Berzelius	1828
		Berzelius	1825	U	238.5	Peligot	1841
Nb	90.6	Hatchett	1801				

P., Prehistoric; * Lockyer (in sun), 1868; U. & D., Urbain & Demenitroux.

2

C.G.S. UNITS AND DIMENSIONS

References: Mach, "Science of Mechanics;" Everett, "C.G.S. System of Units;" Maxwell "Theory of Heat."

The metric standards of length and mass are kept at the International Bureau of Weights and Measures in the Pavillon de Breteuil, Sèvres, near Paris. The Bureau is jointly maintained by the principal civilized governments as members of the Metric Convention. The use of metric weights and measures was legalized in the United Kingdom in 1897.

LENGTH

Unit—the **centimetre**, 1/100 of the international metre, which is the distance, at the melting-point of ice, between the centres of two lines engraved upon the polished "neutral web" surface of a platinum-iridium bar of a nearly X-shaped section, called the **International Prototype Metre**.

The alloy of 90 Pt, 10 Ir used (also for the International Kilogramme) has not a large expansion coefficient (see p. 53), is hard and durable, and was artificially aged. Pt-Ir copies of this metre, called **National Prototype Metres**, were made at the same time, and distributed by lot about 1889 to the different governments. The international metre is a copy of the original Borda platinum standard—the mètre des archives. This was intended to be one tenmillionth of the quadrant from the equator to the pole through Paris, and was legalized in 1795 by the French Republic. But as the value of a quadrant came to be more accurately determined, and moreover is changing, the actual bar constructed was made the standard.*

The international prototype metre has been measured (1894 and 1907) in terms of the wavelengths of the cadmium rays (see p. 75), and equals 1,553,164'I wave-lengths of the red ray in dry air at 15° C. (H. Scale) and 760 mm. pressure. (See Michelson's "Light Waves," 1903.)

References : Guillaume, "La Convention du Mètre," and Chree, Phil. Mag., 1901.

MASS

Unit—the gramme, 1/1000 of the International Prototype Kilogramme, which is the mass of a cylinder of platinum-iridium.

The international kilogramme is a copy of the original Borda platinum kilogramme—the kilogramme des archives—which was intended to have the same mass as that of a cubic decimetre of pure water at the temperature of its maximum density. More exact measurements revealed the incorrectness of the relation (see p. 10), and so the kilogramme was subsequently defined as above. As with the metre, Pt-Ir copies of the international standard—**National Prototype Kilo**-

grammes-have been distributed to the different governments.

TIME

Unit—the **second**, which may be defined simply as 1/86,164.09 of a **sidereal day**. For all practical purposes the sidereal day may be regarded as the period of a complete axial rotation (360°) of the earth with respect to the fixed stars.[†]

The second is usually defined as $1/(24 \times 60 \times 60)$ of a **mean solar day**, *i.e.* 1/86,400 of the **average** value of the somewhat variable interval (the apparent solar day) between two successive returns of the sun to the meridian (see p. 15).

Strictly, the sidereal day is the interval between two successive transits of the first point of Aries[‡] across any selected meridian.[§] The true period of rotation of the earth is actually about 1/100 second longer than the sidereal day ; the difference arises from the slow and continual change of direction ("precession") of the earth's axis in space.

A tropical or solar year is the average interval between two successive returns of the sun to the first point of Aries; it is found to equal 365'2422 mean solar days. Our modern (Julian) calendar assumes that in 4 successive civil years, 3 consist of 365 days, and 1 of 366; the average thus being 365'25 days. The Gregorian correction (that century years are not to count as leap years unless divisible by 400) reduces this value to 365'2425 mean solar days, and thus the **average civil year** is a close approximation to a tropical year.

* According to the latest estimates, the *mean* meridian quadrant = 10,002,100 metres (see p. 13).

[†] Tidal friction is retarding the rotation of the earth, so that the above (sidereal) definition of the second, while practically justified, is theoretically not quite perfect.

[‡] The first point of Aries is that one of the two nodes of intersection of the ecliptic and the celestial equator where the sun (moving in the ecliptic) crosses the equator from south to north (at about March 21). The ecliptic is the apparent yearly track of the sun in a great circle on the celestial sphere.

§ Neglecting small irregularities, this is true also for any star.

BRITISH UNITS

A **sidereal year** is the time interval in which the sun appears to perform a complete revolution with reference to the fixed stars; $i \in i$ it is the time in which the earth describes one sidereal revolution round the sun. Owing to precession, a sidereal year is longer than a tropical year.

Mean solar day = $\begin{array}{l} h. & m. & s. \\ 24 & 0 & 0 & = 86,400 \text{ secs.} \\ \text{Sidereal day} &= 23 & 56 & 4.0906 & = 86,164.0906 \text{ secs.} \\ \text{Tropical year} &= 365.2422 \text{ mean solar days.} \\ \text{Sidereal year} &= 365.2564 & ,, & ,, & ,, & (epoch 1900). \\ &= 366.2564 \text{ sidereal days.} \end{array}$

Reference : Newcomb, "Astronomy."

BRITISH IMPERIAL STANDARDS.

(From information supplied by Major MacMahon, F.R.S., Board of Trade, Standards Office.)

According to the Weights and Measures Act, 1878, the **yard** is the distance, at 62° F., between the central transverse lines in two gold plugs in the bronze bar, called the **Imperial Standard Yard**, when supported on bronze rollers in such manner as best to avoid flexure of the bar.

The defining lines are situated at the bottom of each of two holes, so as to be in the medium plane of the bar, which is of τ inch square section and 38 inches long. Its composition is 32 Cu, 5 Sn, 2 Zn. Copper alloys are now known not to be suitable for standards of length, and in 1902 a Pt-Ir \times -shaped copy of the yard was made.

The **pound** is the **weight** in vacuo of a platinum cylinder called the **imperial** standard pound.

The imperial standard yard and pound are preserved at the Standards Office of the Board of Trade, Old Palace Yard. A number of official copies have been prepared, and are in the custody of the Royal Society, the Mint, Greenwich Observatory, and the Houses of Parliament.

The **gallon** contains 10 lbs. weight of distilled water weighed in air against brass weights at a pressure of 30 inches, and with the water and the air at 62° F.

[NOTE.—No mention is made in the Act of the density of the brass weights, or of the humidity of the air.]

BRITISH AND METRIC EQUIVALENTS

The present legal equivalents are those legalized by the Order in Council of May 19, 1898, and derived at the International Bureau of Weights and Measures, by Benoît in 1895 in the case of the yard and the metre, and by Broch in 1883 for the pound and the kilogramme. (See *Trav. et Mém. du Bur. Intl.*, tomes iv., 1885, and xii., 1902.)

Imperial Standard.		International Prototype.	(Reciprocal.)
ı yard	=	'914399 metre	1.093614
1 pound	=	'45359243 kilogramme	2'2046223

[NOTE.—The yard is defined at 62° F., the metre at 0° C.]

DERIVED C.G.S. UNITS AND STANDARDS

GENERAL AND MECHANICAL UNITS

Area :-- Unit-the square centimetre.

Volume :--*Unit*--the cubic centimetre (c.c.). The metric unit is the **litre**, now defined as the volume of a kilogramme of pure, air-free water at the temperature of maximum density (see p. 22) and 760 mm. pressure (*Procès Verbaux*, 1901, p. 175). The litre was originally intended to be I cubic decimetre or 1000 c.cs.; the present accepted experimental relation is that I kilogramme of water at 4° C. and 760 mm. pressure measures 1000'027 c.cs. (see p. 10).

Density :-- Unit—grammes per c.c. **Specific gravity** expresses the density of a substance relative to that of water, and is objectionable in requiring two temperatures to be stated.

4

Velocity :- Unit-1 cm. per second. Angular Velocity :- Units-1 radian (57° 296) per sec. ; I revolution per sec.

Acceleration :- Time rate of alteration of velocity. Unit-(I cm. per sec.) per sec. Angular Acceleration :- Units-I radian per sec.2; I revolution per sec.2

Momentum : -- Mass multiplied by velocity. Unit-I gm. cm. sec. -1. Moment of Momentum :-- Momentum multiplied by distance from axis of reference. Unit-1 cm.² gm. sec.⁻¹. **Moment of Inertia** :-- Σmd^2 , where *m* is the mass of any particle of a body,

and d its distance from the axis of reference. Unit -1 cm.² gm. (see p. 16).

Angular Momentum :- Moment of inertia multiplied by angular velocity round axis of reference. Unit-1 cm.² gm. sec.⁻¹. **Force** :--Measured by the acceleration it produces in unit mass. Unit-the

 $dyne = cm. gm./sec.^2$ Gravitational unit—the weight of I gram = g dynes.

Couple, Torque, Turning Moment :- Force multiplied by distance from point of reference. Unit-I dyne cm.

Work :- Force multiplied by distance through which point of application of force moves in direction of force. Unit—the erg = 1 dyne cm.; 1 joule = 10⁷ ergs. [I calorie = 4'18 joules]. Gravitational unit—weight of I gm. \times I cm. = g dyne cms. = g ergs.

Energy :- Measured by the work a body can do by reason of either (1) its motion—Kinetic Energy $(= mv^2/2)$ or (2) its position—Potential Energy. Unit-the erg. (See "Work.") I Board of Trade Unit = I kilowatt hour = 3.6 × 106 watt-secs.

Power:--Work per unit time. Unit-I erg per sec. I watt = 10⁷ ergs per sec. = 1 joule per sec. = 1 volt-ampere. 1 kilowatt = 1'34 horse-power.

Pressure, Stress:—Force per unit area. Unit—1 dyne per cm.² 1 megabar = 10⁶ dynes per cm.² = 750 * mm. mercury at 0° C., lat. 45°, and sea-level ($g = 980^{\circ}6$). I atmosphere = 760 mm. mercury at 0° C., lat. 45° , and sea-level = 759.4 mm. mercury at 0° C. in London = 1.0132 × 10⁶ dynes per cm.² = 14.7 lbs. per inch² = 0.94 ton per foot².

* Correct to I part in 5000.

Elasticity :-- Ratio of stress to resulting strain. Unit-I dyne per cm.², since the dimensions of a strain are unity.

HEAT UNITS

Temperature :- The melting-point of pure ice under I atmosphere is defined as o° C., and the boiling-point of water under 1 atmosphere as 100° C. This fundamental interval is divided into 100 parts by use of the constant-volume hydrogen thermometer (see p. 44); each part is a degree Centigrade. Dimensions of temperature are not required, as it is defined independently of mass, length, and time.

Heat: — Dynamical unit—the erg. Thermal unit—the calorie = heat required to raise the temperature of I gramme of water from t° C. to $(t + 1)^{\circ}$ C. The **20° calorie** $(t = 20^{\circ}) = 4.180 \times 10^{7}$ ergs. The **15° calorie** $(t = 15^{\circ}) = 4.184 \times 10^{7}$ ergs. The mean calorie (= 1/100 heat required to raise I gramme of water from 0° to 100° C.) = 4.184 × 10⁷ ergs. (see pp. 55, 56). I watt-minute = 14.3 calories. The large calorie = 1000 calories.

Gas Constant R., in $pv = R\theta/m$, where p is the pressure, v the volume, θ the absolute temperature of a gram-molecule (*i.e. m* grams) of a gas of molecular weight *m*. For I gram-molecule of an ideal gas of density ρ , $R = \frac{\beta vm}{\theta} = \frac{\beta}{\theta} \cdot \frac{m}{\rho} = \frac{1.0132 \times 10^6 \times 22412}{273.1} = 83.15 \times 10^6$ ergs per grm. (Berthelot, see p. 106). This value is a constant for all ideal gases. To derive R for I gram of a gas, this figure should be divided by the molecular weight (oxygen = 16) of the gas.

of the gas. R has the dimensions of a specific heat in dynamical units.

ELECTRICAL AND MAGNETIC UNITS

Reference :- J. J. Thomson, "Mathematical Theory of Electricity and Magnetism." The fundamental basis of the electrostatic/system of units is the repulsive force between two quantities of like electricity. In the electromagnetic system the repulsion between two like magnetic po'es is taken as the basis.

The electromagnetic system (or one based on it) is universally employed in electrical engineering; the electrostatic is used only in certain special cases.

ELECTROSTATIC UNITS

Quantity or Charge :- Unit-that quantity which placed I cm. distance from an equal like quantity repels it with a force of I dyne.

ELECTRICAL UNITS

Current :- Unit-Unit quantity flowing past a point in unit time.

Potential Difference and Electromotive Force :- Unit-that P.D. which exists between two points when the work done in taking unit quantity from one point to the other is I erg.

Capacity :- Unit-the charge on a conductor which is at unit potential ; or in the case of a condenser, when its plates are at unit P.D.

Dielectric Constant, Inductivity, or Specific Inductive Capacity of a medium is the ratio of the capacity of a condenser having the medium as dielectric, to the capacity of the same condenser with a vacuum as dielectric (p. 84).

ELECTROMAGNETIC UNITS

Magnetic Pole Strength or Quantity :- Unit-that quantity which, placed 1 cm. distance from an equal like quantity, repels it with a force of 1 dyne.

Magnetic Force or Field Strength :- Unit-the force which acts on unit magnetic pole.

Magnetic Moment of magnet = pole strength × length of magnet.

Intensity of Magnetization = magnetic moment per unit volume.

Permeability of a medium is the ratio of the magnetic induction in the medium to that in the magnetizing field (p. 89).

Susceptibility:—*Unit*—intensity of magnetization per unit field (p. 89). **Electric Current**:—*Unit*—that current which produces unit magnetic force at the centre of a circle of radius 2# cms.

Quantity = current × time. Potential and E.M.F. :-- Unit-that P.D. which exists between two points when the work done in taking unit quantity from one point to the other is 1 erg.

Electrostatic Capacity = quantity/potential difference. **Resistance** = potential difference/resulting current. (Ohm's law is assumed.) Conductance :- Reciprocal of resistance.

Specific Resistance :--Resistance per unit area per unit length (p. 81). Conductivity :---Reciprocal of specific resistance.

Coefficient of Self-induction of a circuit is the E M.F. produced in it by unit time-rate of variation of the current through it.

Coefficient of Mutual Induction of two circuits is the E.M.F. produced in one by unit time-rate of variation of the current in the other.

PRACTICAL ELECTRICAL UNITS

At an International Conference on Electrical Units and Standards held in London, October, 1908, it was resolved that-

1. The magnitudes of the fundamental electrical units shall, as heretofore, Le determined on the electromagnetic system of measurement with reference to the centimeter, gramme, and second (c.g.s.). These fundamental units are (1) the **Ohm**, the unit of electrical resistance, which has the value 10^9 c.g.s.; (2) the **Ampere**, the unit of electric current, which has the value 10^{-1} c.g.s.; (3) the **Volt**, the unit of electromotive force, which has the value 10^8 c.g.s.; (4) the **Watt**, the unit of power, which has the value 10⁷ c.g.s. [For absolute electrical units, see p. 8.] 2. As a system of units representing the above, and sufficiently near to them

to be adopted for the purpose of electrical measurements, and as a basis for legislation, the Conference recommends the adoption of the International Ohm, the International Ampere, and the International Volt.

3. The Ohm is the first primary unit. The International Ohm is defined as the resistance offered to an unvarying electric current by a column of mercury at o° C., 14'4521 grammes in mass, of a constant cross-section, and of a length of 106'300 cms.

4. The Ampere is the second primary unit. The International Ampere is defined as the unvarying electric current which, when passed through a solution of nitrate of silver in water, in accordance with authorized specification, deposits silver at the rate of '00111800 gramme per second.

5. The International Volt is defined as the electrical pressure which, when steadily applied to a conductor whose resistance is one International Ohm, will produce a current of one International Ampere.

6. The International Watt is defined as the energy expended per second by an unvarying electric current of one International Ampere under an electric pressure of one International Volt.

DIMENSIONS OF UNITS

DIMENSIONS OF UNITS The dimensions in terms of length, mass, and time are denoted by the indices given under L, M, and T. Thus the dimensions of power are L ² MT ⁻³ . MECHANICAL AND HEAT UNITS											
Quantity.	L. M.	T.	(Quant	tity.		L.	М. Т.	Quanti	ty.	L. M. T.
Time.Angle.Surface.Volume.Density.Velocity.Angular velAcceleration.Angular accele-	0 I 0 0 2 0 3 0 -3 I I 0 0 0 I 0	0 1 0 0 0 -1 -1 -2 -2	Moment of moment um2 $I - I$ IMoment of inertia2 $I - I$ Compressibility $I - I$ Moment of inertia2 $I - I$ Viscosity $- I$ ertia.2 I O Angularmomentum2 $I - I$ mentum.2 $I - I$ Force. I $I - 2$ Couple, Torque2 $I - 2$ Work, Energy2 $I - 2$ Power.2 $I - 3$ Pressure, Stress $- I$ $I - 2$ LECTRICAL AND MAGNETIC UNITS					I = 1 2 - I I = I			
v , the ratio of the electromagnetic to the electrostatic unit of quantity, is usually taken as 3×10^{10} , and is a pure number (p. 69). (See Rücker, <i>Phil. Mag.</i> , 22, 1889.)											
Vnit.	Sym- bol.		Dimensions. E.S. Unit. E.M. 1 L. M. T. k. L. M.			Unit. T. µ	2.0.0	Pr	Practical Unit.		
Electrical	-				-		/			E.M.U.	E.S.U.
Charge or quan- tity Resistance . Current Potential or E.M.F Electric field Conductivity .	e R i E F		101-	I - 1 I - 1	alama a	101-0	-2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	volt (volt/cm.)	$= 10^{9}$ $= 10^{-1}$ $= 10^{8}$	$=\frac{1}{9} \times 10^{-11}$ $= 3 \times 10^{9}$
Capacity			0	0 1	- 1	0	2 -	$I I/v^2$	micro- farad ‡	= 10 ⁻¹	$b = 9 \times 10^5$
Self and mutual induction . Dielectric con- stant †				2 - 1 0 1	I - 2		0 2 -		{henry cm.	= 10"	$= \frac{1}{9} \times 10^{-11}$ = $\frac{1}{9} \times 10^{-20}$
Magnetic Pole strength Flux (total lines)	m				teleteles .	101-01	1 — 1 —	1	maxwell	 =	$=3 \times 10^{10}$
Force ; field strength . Induction Intensity of mag	. B	-	1-22-1-22	$ \frac{2}{0} - \frac{1}{1} $		101-01	- I - - I		gauss gauss		$= 3 \times 10^{10} \\ = \frac{1}{5} \times 10^{-10}$
netization . Permeability .	. I	- 2	120	$ \frac{0 - \frac{1}{2}}{2 - \frac{1}{2}} $			- I 0	$\begin{array}{ccc} rac{1}{2} & v \\ rac{1}{1} & v^2 \end{array}$	- 1	11	
Example :—7 <i>n</i> = 33	netization . Permeability . $\mu = \frac{3}{2} \frac{1}{2} = 0 - \frac{1}{2} - \frac{1}{2} \frac{1}{2} - 1 - \frac{1}{2} \frac{1}{2} - \frac{1}{2$										

7

ELECTRICAL UNITS

ABSOLUTE DETERMINATIONS OF ELECTRICAL UNITS

See Baillehache, "Unités Électriques," Paris, 1909, and the "Report of the London Conference" (p. 6). The appendix to this report (is sued separately, 9d.) gives full particulars as to the realization of the ampere and ohm, together with the specification of the Weston normal (cadmium) cell.

THE OHM

The **mean value 106'29** cms. of Hg of 1 sq. mm. cross-section at 0° C. may be taken as a measure of the present experimental value of the true ohm, which is equal to 10° E.M. (c.g.s.) units. Compare the international ohm (p. 6). A new determination of the ohm is in progress at the National Physical Laboratory.

cm./0°.	Method.	Observer.	cm./0°.	Method.	Observer.	
106·28 106·22 106·32	Spinning disc """ Mean result	Rayleigh, 1882 Rayleigh and Mrs. Sedg- wick, 1883 Rowland, 1887		Induced dis- charge Spinning disc (McGill ap- paratus)	Glazebrook, '88 V. Jones, 1894 Ayrton and V. Jones, 1897	

The 1884 "legal" ohm = '9972 intl. ohm; the **B.A. ohm** = '9866 intl. ohm.

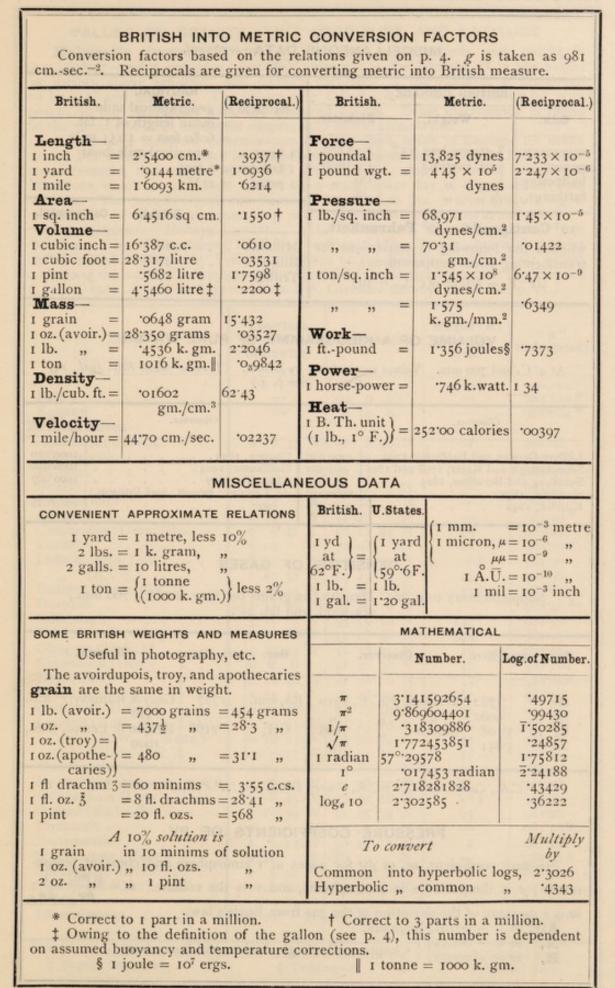
THE AMPERE

The electrochemical equivalent of silver is given in milligrams per coulomb (1 ampere for 1 sec.) = 10^{-1} E.M. unit of quantity. **Mean** = **'00111826gm./coulomb.** Compare the international ampere (p. 6).

mg. Ag.	Method.	Observer.	mg. Ag.	Method.	Observer.
1.11858	Dynamometer	Kohlrausch, '84 Corrected 1908	1.11851	Dynamometer	Janet, Laporte, de la Gorce,
1.11822	Current weigher	Smith, Mather, and Lowry, 1907		"	1909 Do, 1910

E.M.F. OF WESTON CELL

The electromotive force (E) of the Weston (cadmium) cell in volts (10^8 . E M. units) as realized from one of the accepted specifications. The now(1911) accepted international value of E is **1.0183 international volts** (see p. 6) at 20° C.


Temperature coefficient.—Over the range o° to 40°, Wolff (1908) obtained for the E.M.F. at t°—

 $\mathbf{E}_t = \mathbf{E}_{20} - 0000406(t - 20) - 9.5 \times 10^{-7}(t - 20)^2.$

E at 20°.	Method.	Observer.	E at 20°.	Method.	Observer.					
1.0185 1.01822 1.01841	Intl. ohm and dynamo- meter	Guthe, 1906 Guillet, 1908 Pellat, 1908			Ayrton, Mather, and Smith, 1908					
1.01869	And a second	Janet, Laporte, Jouaust, 1908		Intl. ohm and intl. an:pere	Jaeger and v. Steinwehr, 1909					
The E.M.F. of the Clark cell = 1'433 volts at 15° C. It diminishes by about										

1'2 parts in 1000 for 1° C. rise of temp.

CONVERSION FACTORS

MISCELLANEOUS DATA

Xe .

5.851

33

,,

1944 1951	MISCELLANEOUS DATA—continued.											
penny	sovereign penny8 grams less '15% $\frac{1}{3}$ oz. (avoir.)2'18 cm. 1'2 inch 1'0 "= mean length of 1'1 at. = 6080 feet = 1'151 mile I knot = I nautical mile/hour I fathom = 6 feet I point = II14°sovereign penny halfpenny farthing8 grams less '15% $\frac{1}{10}$ "2'18 cm. I'2 inch I'0 " 8 "I knot = I nautical mile/hour I fathom = 6 feet I point = II14°											
Io° Centigrade = 50° Fahrenheit, whence the following is convenient for transforming room temperatures :— $5(t^{\circ}$ F. $-50) = 9(t^{\circ}$ C. $-10)$ British.Continental.Io° Billion Trillion 10^{6} 10^{12} 10^{18} 10^{6} 3×10^{6}												
VOLUME OF A KILOGRAMME OF PURE WATER At 4° C. and 760 mm. Values recalculated by Benoit. 1910.) (See p. 4.) Observer. Observer.												
Schuckbur Svanberg	rgh and Ka and Berzéli 1831	Fabbroni, 1799 ter, 1798 and 18 us, 1825	21 999*52	5 Guillau 6 Chappe 50 de Lép	ime, 1904 . uis, 1907 . pinay, Beno	it, and Buis	1000'027 son,					
DENSITIES OF GASES Supplementary to p. 26. Densities in grams per litre at 0° C., 760 mm., sea-level, and lat. 45°.												
Gas.	gms./litre.	Observ	ver.	Gas.	gms./litre	Ob	server.					
He. Ne. Kr.	1782 9002 3708	Watson, J.C. Moore "		1910								

C.R., Compt. Rend.; J.C.S., Journ. Chem. Soc.; P.R.S., Proc. Roy. Soc.

,,

1909

PRESSURE COEFFICIENTS OF PV

Pressure coefficient, *m*, of pv for gases at 1 atmosphere and constant temperature; p is the pressure in atmospheres, and v is the volume. $m = \frac{\delta(pv)}{pv} \cdot \frac{1}{\delta p}$; *m* is a measure of the deviation of the gas from Boyle's law. **Air**, m = -00191, Regnault. **N**, m = -000559**H**, m = +000772 Chappuis, Rayleigh, Leduc, and Sacerdote.

VALUES OF GRAVITY ("g") LONGITUDE AND LATITUDE

Helmert's formula connecting "gravity" with latitude and height is $g = 980^{\circ}617 - 2^{\circ}593 \cos 2\lambda - 0003086$ H, where λ is the latitude, H is the height in metres above sea-level, and $980^{\circ}617 \text{ cms./sec.}^2$ is the value of g attributed to lat. 45° and sea-level. The values of g calculated by this formula are for most places in fair agreement with the observed values. Some discrepancy is found in the vicinity of large mountain ranges, such as the Himalayas.

No absolute standard determination of g has been made in England for many years, but comparisons have been made with Potsdam and Sèvres. For relative measurements, the relation $dg = 0226 \ dN$ is useful, where N is the number of vibrations which a pendulum makes in a mean solar day of 86,400 mean time seconds. The length (l) of the "seconds" pendulum (*i.e.* 2 secs. period) = g/π^2 = 101321g. l varies from 99'094 cms. at the equator to 99'620 cms. at the pole.

ioi321g. l varies from 99'094 cms. at the equator to 99'620 cms. at the pole.
See Helmert's "Höhere Geodäsie," "Die Grösse der Erde," 1906, and "Die Schwerkraft im Hochgebirge," Clarke's "Geodesy," 1880, Sir Geo. Darwin's "Tides and Kindred Phenomena," Fisher's "Physics of the Earth's Crust," and for recent aspects of the subject, the reports to the triennial International Geodetic Conferences (...1906, 1909...), and the reports of the U.S. Geodetic Survey. (See also p. 13.)

Place.	Longitude E. or W. of Greenwich.	Latitude (λ) .	Height (H) above Sea- level.	"g" (calculated).
Pole Equator Equator British Isles British Isles Aberdeen (Univ.)‡ Aberystwith Bangor Bangor Bangor Belfast Bangor Belfast Bangor Belfast Bangor Burmingham Bangor Bristol Bangor Cambridge (Univ. Obs.) Cardiff Cardiff Cardiff Jublin (Trin. Coll.) March " (R.C.S) Dundee (Univ. Coll.)‡ Durham Edinburgh State		o / " 90 0 0 57 8 58 N 52 25 N 53 13 N 54 37 N 52 28 N 51 28 N 53 20 35 N 53 20 35 N 53 20 35 N 53 23 13 N 56 27 26 N 54 46 6 N 55 55 28 N		(calculated). cms./sec.* 983'210 * 978'024 * 981'68 981'28 * 981'28 * 981'28 * 981'28 * 981'20 * 981'20 * 981'20 * 981'20 * 981'20 * 981'20 * 981'20 * 981'20 * 981'26 * 981'36
Eskdalemuir (Obs.) Glasgow (Univ.)‡ Greenwich (Obs.) Kew (Obs.) Leeds (Univ.)‡ Liverpool (Univ.)‡ London (Natl. Phys. Lab.)§ " (Univ., S. Kens.) . " (Univ. Coll.)‡ Newcastle (Armstrong Coll.) Nottingham (Univ. Coll.)‡ . Oxford (Radcliffe Obs.)	5 11 5 W 3 12 18 W 4 17 12 W 0 0 0 0 18 46 W 1 33 15 W 2 57 37 W 0 20 11 W 0 10 23 W 0 7 57 W 2 14 2 W 1 36 53 W 1 8 45 W 1 8 45 W 1 15 39 W	55 55 20 N 55 18 48 N 55 52 31 N 51 28 38 N 51 28 6 N 53 24 19 N 51 29 54 N 51 29 54 N 51 31 27 N 51 31 27 N 53 27 53 N 54 58 50 N 52 57 10 N 51 45 34 N	134 244 46 47 5 81 51 10 14 28 39 55 58 65	981'45 981'56 981'184 981'200 981'38 981'35 981'19 981'19 981'19 981'19 981'37 981'48 981'31 981'20
Plymouth	4 9 W 1 6 12 W 2 48 W 0 5 50 E 2 28 10 W 26 40 E ied for height abs § Teddi			981'10 * 981'14 981'62 * 981'36 * 981'37 979'24 * und floor, ond floor.

GRAVITY

Place.	Longitude E. or W. of Greenwich.	Latitude (A).	Height (H) above Sea- level.	"g" (calculated).
Africa (could)	0 / 11	0 1 11		
Africa (contd.)—	21 17 14 F	20 1 28 M	metres.	cms./sec.2
Cairo (Observatory) Cape Town	31 17 14 E 18 29 E	30 4 38 N 33 56 S	33 12	979 [.] 32 979 [.] 64
Durban	30 40 E	29 40 S		979'29*
Johannesburg (Univ. Coll.).		26 11 S	1753	978.49
Mauritius (Roy. Alf. Obs.) .		20 5 39 S	55	978.63
America-	51 55 9-	5 59		meaninghich
Baltimore (Meteorol. Stn.) .	76 37 W	39 18 N	23	980.10
Boston (Meteorol. Stn.)	71 4 W	42 21 N		980.37
Chicago (Meteorol. Stn.)	87 38 W	41 52 N		980.26
Harvard, Camb. (Obs.)	71 7 46 W	42 22 48 N		980.37
Jamaica (Montego Bay Obs.)		18 24 51 N		978.52
Montreal (McGill Obs.)	73 34 39 W	45 30 17 N		980.64
New York (Ruthfd. Obs.) .	73 59 9 W			980.20
Philadelphia (Obs.)	75 9 37 W	39 57 8 N		980.15
Princeton (N.J.)	74 39 22 W		65	980.20
Quebec (Obs.)	71 13 8 W			980°76 979°99
St. Louis (Obs.)	90 12 17 W			979 99
Washington (Bur. of Stands.)	79 23 40 W 77 3 59 W			980.40
Yale, New Haven (Obs.)	72 55 8 W	38 56 32 N 41 19 22 N	Contract of the second s	980.28
Asia-	12 33 0 11	41 19 22 1	5-	900 20
Bombay (Obs.)	72 48 56 E	18 53 45 N	10	978.57
Calcutta (Surv. Office)		22 32 54 N		978.76
	114 10 28 E	22 18 13 N		978.76
Madras (Obs.)		13 4 8 N	7	978.29
Australasia-		-5 + 0		,,,
	138 35 8 E	34 55 39 S	430	979.68
	153 I 36 E	27 28 S	42	979.12
Melbourne (Obs.)	144 58 32 E	37 49 53 S	28	979'97
Perth	115 52 E	31 57 S	. 14	979.47
Sydney (Obs.)		33 51 41 S	44	979.63
Wellington (Obs.), N.Z	174 46 37 E	41 18 1 S	.43	980.27
Europe-	- 13 12 12	000		
Berlin (Reichsanstalt) †		52 31 N		981.287
Christiania (Obs.)	10 43 23 E	59 54 44 N		981.90
Copenhagen (Obs.)	12 34 40 E	55 41 13 N		981.56
Geneva (Obs.)	6 9 11 E	46 11 59 N		980.61
Leyden (Obs.)	4 29 3 E	52 9 20 N		981°26 980°95
Paris (Obs.)	2 20 14 E	48 50 11 N		980.951
Potsdam (Astron. Inst.)	2 13 10 E 13 3 59 E	48 49 53 N 52 22 56 N		981.249
Rome (Coll. Obs.)	13 3 59 E 12 28 53 E	41 53 54 N		980.32
St. Petersburg (Acad. Obs.).	30 18 22 E	59 56 30 N		981.91
Vienna (Impl. Obs.)	16 20 21 E	48 12 47 N		980.91 *
Zurich (Poly. Obs.)	8 33 4 E	47 22 40 N		980.69
* No correction applied for hei			arlottenburg.	‡ Sèvres.
10 10 1 100 100		1 1 1 1	(IDD YEAR)	Silentinoz.
	Spherical			Riverson R.
Miles per degree of		er degree of		per degree of
At Lat.	t Lat.	A	t Lat.	
Longitude. Latitude.	Longitud	le. Latitude.	Longitud	le. Latitude.
0 69.15 68.69	40 53.05	69.00	60 34.66	69.21
10 68.11 68.70	45 48.99	69.05	70 23.73	69.32
20 65'01 68'77	50 44'54	69'10	80 12.05	69.38
80 59.94 68.88	55 39.75	69.16	90 0	69'39

12

SIZE AND SHAPE OF THE EARTH

The spheroid of revolution which most nearly approximates to the earth, has the following dimensions :--[1 kilom. = '6214 mile.]

Observer.	Equatorial radius, a.	Polar radius, <i>ò</i> .	Ellipticity, $(a-b)/a$.
Bessel, 1841	6,377,397 metres	6,356,079 metres	1/299'2
Clarke, 1866	8,206 ",	584 "	1/295'0
, 1880	8,249 ",	515 "	1/293'5
Helmert, 1906 * .	8,200 ",	818 "	1/298'3
U.S. Survey, 1906 †	8,388 ",	909 "	1/297'0

• "Die Grosse der Erde." † "The Figure of the Earth," 1909, and Supplement, 1910; U.S. Coast and Geodetic Survey.

MEAN DENSITY OF THE EARTH (See Poynting's "Mean Density of the Earth," 1893.)	SUN The mean equatorial solar parallax (Hinks, $= 8'' \cdot 807$
Observer. Density.	$ \begin{array}{c} 1909) \\ \text{Whence mean distance} \\ \text{from earth to sun} \end{array} = \begin{cases} 1'494 \times 10^{11} \\ \text{metres} \\ 9'282 \times 10^{7} \\ \text{miles} \end{cases} \\ \text{Mean time taken by} \\ \text{light to travel from} \\ = 498'2 \text{ secs.} \end{cases} $
Poynting, 1878 5'493 Richarz and Krigar-Menzel, 5'505 Torsion Balance Method. 5'505 Cavendish, 1798 5'527 Boys, Phil. Trans., 1895 5'527 Braun, 1896 5'534 Mean density of surface 2'65	sun to earth MOON Mean distance from earth to moon $} = \begin{cases} 60^{\circ}27 \times \text{earth's} \\ \text{radius} \end{cases}$ Mass of the moon (Hinks, 1909) $} = \begin{cases} (1/81^{\circ}53) \times \\ \text{earth's mass} \end{cases}$ Inclination of moon's orbit to ecliptic $} = 5^{\circ} 8' 43''$
$ \begin{array}{l} \begin{array}{l} \mbox{Mean polar quad-} \\ \mbox{rant} \end{array} &= 10,002,100 \mbox{ metres }^{\ast} \\ \mbox{Volume of earth} &= 1'082 \times 10^{21} \mbox{ metres}^3 ^{\ast} \\ \mbox{Mass of earth} &= 5'98 \times 10^{21} \mbox{ metres}^3 ^{\ast} \\ \mbox{Mass of earth} &= 5'98 \times 10^{21} \mbox{ metres}^3 ^{\ast} \\ \mbox{Sof earth} &= 5'98 \times 10^{21} \mbox{ metres}^3 ^{\ast} \\ \mbox{Area of land} &= 1'45 \times 10^{18} \mbox{ cm.}^2 \\ \mbox{Area of ocean} &= 3'67 \times 10^{18} \mbox{ cm.}^2 \\ \mbox{Mean depth of} \\ \mbox{ocean (Murray)} \end{array} &= 3'85 \times 10^5 \mbox{ cm.} \\ \mbox{Volume of ocean} &= 1'41 \times 10^{24} \mbox{ cm.}^3 \\ \mbox{Mass of ocean} &= 1'45 \times 10^{24} \mbox{ grms.} \end{array} $	Constant of Gravitation (G in law of attraction) = 6.658×10^{-8} c.g.s. Obliquity of the Ecliptic to the equator = $23^{\circ} 27' 4''.04$ in 1909, subject to a small fluctuation by nutation, and a slow continuous decline of $46''.84$ per century. Constant of aberration of a star is theoretically equal to (Earth's orbital velocity)/(velocity of light) = $20''.43 \pm ''.03$ (Renan and Ebert, 1905). Constant of precession , <i>i.e.</i> annual precessional increase of the longitude of a star = $50''.2564 + ''.0002225t$, where <i>t</i> is

SOLAR SYSTEM

ELEMENTS OF THE SOLAR SYSTEM

8".806 is taken as the equatorial horizontal solar parallax from the observations of the asteroid Eros in 1900-1; 5.527 is adopted as the Earth's mean density (Boys, 1895; Braun, 1896). The constants for Mercury are those adopted by Stroobant and Backland (1909). The value of the mass of Jupiter is that obtained by Cookson (1908). The time of rotation of Venus is that suggested by Hansky and Stefánik (1907). (See Newcomb's "Spherical Astronomy" and Ball's "Spherical Astronomy.")

Name.	Equator	ial Semi-di	ameter.	Mass	Mean I	Density.	Gravity at Surf.	No. of				
Ardino.	Angular.*	Miles.	Earth = 1	Earth = I	Earth=I	Water = 1		Satellites.‡				
1.1	1 11	Section	122			a la la	Sec. 25					
Sun	19 1.18	10 / /	109'2	329,390	'25	1.30	27.61	1 -				
Mercury	3.08		.320	*34	.88	4.86	.28	0				
Venus .	8.40		'955	>.818.	>.94	>5'20	>.01	0				
Earth .	8.80		I.000	1.000	1.00	5.527	1.00	1 (D)				
Mars	4.68		.232	.100	0'71	3.90	.38	2 (D)				
Jupiter .	1 37'36		11.00	314'50	.25	1'36	2'57	8(7 D; I R)				
Saturn .	1 24'75		9.63	94'07	.15	.63	1.01	10(9D;1R)				
Uranus .	34.28		3.00	14'40	.24	1'34	.95	4 (R)				
Neptune	36.26	16470	4.12	16.72	.53	1.58	•97	1 (R)				
	Inclina-	Time of	1 8	Semi-majo	r Axis of (Drbit.	Sider	eal Period.				
Name.	tion of	Axial										
artitute.	Equator	Rotation.	TRACE IN CONTRACTOR	Earth =	L	Millions						
	to Orbit.					of Miles	. Solar I	Days. Years.				
	0 / //	d h m	- Cherry		1.2							
Sun	7 15+ 2	5 9 7			-							
		h m s			de's Law		1					
Mercury.	?	?			=(0+4)	36.0		9693 .24				
Venus .		3 40 (?)	.723		=(3+4)	67.2		7008 .62				
Earth .	23 27 8 2	3 56 4.0			=(6+4)	92.9		2564 1.00				
Mars	24 52 2	4 37 22.7			=(12+4)	141.6	686.	9797 1.88				
Asteroids			2.25 to		=(24+4)	237 to 26						
Jupiter .	3 5	9 56 ±	5.202		=(48+4)	483.3	4332					
	26 49 1	0 15 ±	9.538		=(96+4)	886.2	10759					
and the second se												
Uranus .	? 1	3?	19.100		=(192+4)		30586.					
Uranus .		3??	30.0700		=(192+4	2793.5	30586.					

Name.	Ellipticity of Planet.§	Mean Daily Motion in Orbit.	Longitude of Perihelion.	Longitude of Ascending Node. ¶	Inclination of Orbit to Ecliptic.	Eccentricity of Orbit.**
M		0 / //	0 / 1/	0 / //	0 / //	
Mercury.	[4 5 32.4	75 53 59	47 8 45	7 0 10	*205614
Venus .	3	I 36 77	130 9 50	75 46 47	3 23 37	'006821
Earth .	1/298.3	59 8.2	101 13 15	0 0 0	0 0 0	'016751
Mars	1/270 ?	31 26.5	334 13 7	48 47 9	I 5I I	.093309
Jupiter .	1/17	4 59'1	12 36 20	99 26 42	I 18 42	'048254
Saturn .	1/9	2 0'5	90 48 32	112 47 12	2 29 39	·056061
Uranus .	1/95 ?	42'2	169 2 56	73 29 25	0 46 22	.047044
Neptune	3	21.2	43 45 20	130 40 44	1 46 45	.008533

* This is the angle subtended by the semi-diameter at a distance equal to the Earth's mean distance from the Sun.

† The inclination of the plane of the Sun's equator to the plane of the ecliptic.

‡ D means direct ; R, retrograde.

§ The ellipticity = (a-b)/a, where a is the major axis and b the minor axis of the spheroid of revolution. The value given for the Earth is Helmert's (p. 13).

Perihelion is the point in the orbit nearest the Sun. Longitude is the angular distance from the first point of Aries (see p. 3), measured along the ecliptic.

¶ A node is one of the two points at which a planet's orbit intersects the plane of the ecliptic. At the ascending node the planet passes from south to north of the ecliptic.

** The eccentricity = $\sqrt{(a^2 - b^2)/a}$, where a and b are the major and minor axes of the orbit.

EQUATION OF TIME

(+) means that the equation of time has to be added as a correction to the apparent solar time (i.e. sundial time) to give the mean solar or clock time (see p. 3). (M) = maximum or minimum. The values below vary by a few seconds from year to year.

Date.	Equation of time.	Date.	Equation of time.	Date.	Equation of time.	Date.	Equation of time.	
Jan. 1 ,, 16 Feb. 1 ,, 12 Mar. 1 ,, 16	$ \begin{array}{r} \text{m. s.} \\ + 3 \text{ II} \\ + 9 33 \\ + 13 37 \\ + 14 25 (\text{M}) \\ + 12 34 \\ + 8 51 \end{array} $	April 1 ,, 16 May 1 ,, 14 June 1 ,, 15	-2 57 -3 49 (M) -2 27	July 1 ,, 26 Aug.16 Sept. 1 ,, 16 Oct. 1	+ 6 18 (M) + 4 11 0 0	Oct. 16 Nov. 3 ,, 16 Dec. 1 ,, 12 ,, 25	m. s. - 14 20 - 16 21 (M) - 15 10 - 10 56 - 6 15 0 0	

PARALLAXES OF STARS

The **proper motion** of a star is its real change of place arising from the actual motion of the star itself.

The annual parallax is the angle between the direction in which a star appears as seen from the earth and the direction in which it would appear if it could be observed from the centre of the sun.

A light-year is the distance that light travels in one year (see p. 69).

Star and Magnitude.	Proper motion	Annual	Distance.				
Star and magnitude.	per year.	parallax.	Sun's dist. = 1	Light-years.			
a Centauri ('2) 21185 Lalande (7'5) 61 Cygni (4'8) Sirius (-1'4) Procyon ('5) Altair ('9) Aldebaran (1'1) Capella ('2) Vega ('1) 1830 Groombridge (6'4) Polaris (2'1) Arcturus ('2)	5:2 1:3 1:3 .7 .2 .4 .4	$ \begin{array}{c} " " " \\ 75 \pm 01 \\ 48 \pm 02 \\ 37 \pm 02 \\ 37 \pm 02 \\ 37 \pm 01 \\ 31 \\ 28 \pm 02 \\ 17 \pm 02 \\ 12 \pm 02 \\ 12 \pm 02 \\ 12 \pm 02 \\ 10 \pm 02 \\ 07 \pm 02 \\ 024 \\ \end{array} $	$\begin{array}{c} \cdot 28 \times 10^{6} \\ \cdot 43 & , \\ \cdot 56 & , \\ \cdot 56 & , \\ \cdot 56 & , \\ \cdot 69 & , \\ \cdot 74 & , \\ 1^{\circ}4 & , \\ 1^{\circ}7 & , \\ 2^{\circ}0 & , \\ 3^{\circ}0 & , \\ 8^{\circ}7 & , \end{array}$	4'4 6'8 8'8 8'8 11 12 22 27 27 27 33 47 140			

SYSTEMATIC MOTIONS OF THE STARS

STANDARD TIMES Referred to Greenwich time.

The apparent proper motions of the stars show drifts in two directions. The assigned positions of the apices of these directions are :--

a star	Str	-11° 260° -4	am II.	Switzerland . British South	
Computer.	R.A.	Dec.	R.A.	Dec.	Egypt, Turkey Japan Australia
Kapteyn, 1904 . Eddington Dyson	85° 90° 94°	-11° -19° -7°	292°	-48° -58° -74°	New Zealand . Canada and States

Gt. Britain, France, Hol- land, Belgium, Spain	Greenwich
Ireland	25 m. 25s. fst.
many, Italy, Norway, Switzerland	I hour fast
British South Africa, Egypt, Turkey	$I\frac{1}{2}$ or 2 hours fast
Japan	9 hours fast * 8, 9, or 10
Australia	hours fast
Canada and United States.	4, 5, 6, 7, or 8 hours slow
	10415 5104

SCREWS

It is customary for British metal screws, of 4-inch diameter and above, to have a Whitworth thread, for smaller sizes a British Association thread. In the Whitworth thread the angle between the slopes is 55°, in the B.A. thread 47.5°.

The **pitch** is the distance between adjoining crests (say) of the same thread measured parallel to the axis of the screw. It is the reciprocal of the number of turns per inch or mm. as the case may be. The **full diameter** is the maximum over-all diameter.

Micrometer screws are made with some multiple or sub-multiple of 100 threads to the inch or mm.

"Woodscrews" of iron or brass are numbered as follows: No. 4 has a diameter of $\frac{1}{8}$ inch, each succeeding number adding $\frac{1}{64}$ inch to the diameter of the screw: this applies to all lengths. The length of countersunk screws is measured over all; that of round-headed screws, from under the head. [1 inch = 25.4 mm.]

STANDARD WHITWORTH		192	B	RITIS	SH ASSC	CIATIO	N.	10 EL EL E 1 2 45 4				
Full di- Threads Full di- Thr ameter. to inch. ameter. to		Full di- ameter.	Pitch.	No.	Full di- ameter.	Pitch.	No.	Full di- ameter.	Pitch.			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 0 11 1 12 3 12 4 14 5 16 6 18 7 20 8	mm. 6'0 5'3 4'7 4'1 3'6 3'2 2'8 2'5 2'2	mm. 1'0 '9 '81 '73 '66 '59 '53 '48 '43	9 10 11 12 13 14 15 16 17	mm. 1.9 1.7 1.5 1.3 1.2 1.0 .9 .79 .70	mm. '39 '35 '31 '28 '25 '23 '21 '19 '17	18 19 20 21 22 23 24 25	mm. ·62 ·54 ·48 ·42 ·37 ·33 ·29 ·25	mm. '15 '14 '12 '11 '10 '09 '08 '07			
MOMENTS OF INERTIAM = mass of body.(See A. M. Worthington, " Dynamics of Rotation." London.)												
Body.		is and	Axis of	rota	tion.		M	oment of	inertia.			
Uniform thin rod (leng Rectangular lamina (s a and b) Circular lamina (radio	$(th I) \begin{cases} (th I) \\ ($	$ \begin{cases} (1) \text{ Through centre, perpendicular to} \\ \text{length} \\ (2) \text{ Through end, perpendicular to} \\ \text{length} \\ (1) \text{ Through centre of gravity, perpendicular to plane} \\ (2) \text{ Through centre of gravity, perpendicular to plane} \\ (2) \text{ Through centre, perpendicular to} \\ \text{multiply of the side } b \\ (1) \text{ Through centre, perpendicular to} \\ \text{plane} \\ (2) \text{ Any diameter} \\ \end{cases} \\ \begin{array}{c} M \frac{t^2}{12} \\ M \frac{t^2}{3} \\ M \frac{t^2}{12} \\ M t^2$										
Solid cylinder (radius length l) Hollow cylinder (exte	$r; \left\{ \left(\begin{array}{c} c \\ c$	$\begin{cases} (1) \text{ Axis of cylinder} \\ (2) \text{ Through centre of gravity, per-} \\ \text{pendicular to axis of cylinder} \\ (1) \text{ Axis of cylinder} \end{cases} \begin{array}{l} M\frac{r^2}{2} \\ M\left(\frac{l^2}{12} + \frac{r^2}{4}\right) \\ M \cdot \frac{R^2 + r^2}{2} \end{cases}$										
and internal radii R an length <i>l</i>)	dr; $\left\{ \left(\right. \right. \right\}$	2) Thro pe	ugh cei ndicula	- M	$M\left(\frac{l^2}{12} + \frac{R^2 + r^2}{4}\right)$							
Solid sphere (radius r)		Thro	M	1. 5								
 Hollow sphere (external internal radii R and r) Anchor ring (mean radio f ring R; radius of cristection r) 	dius ross- { (1) Thro	plane o	ntre, f rin		ndicula	r M M	$\left(\frac{2}{5}, \frac{R^5}{R^3}, \frac{R^5}{R^3}, \frac{R^2}{R^2}, \frac{R^2}{2}, R$	$\frac{-r^{5}}{-r^{3}}$ $\frac{3r^{2}}{4}$ $\frac{3r^{2}}{8}$			

C

VOLUME CALIBRATION OF VESSELS BY WATER OR MERCURY

Volume content of vessel at t° C. = V_t = W_t $v_t \equiv w_t(f)$, where—

 w_t = observed weight in grams (against brass weights in air) of contained water (or mercury) at t° C.

 W_t = weight of such liquid *in vacuo* (*i.e.* corrected for buoyancy in air). v_t = volume of 1 gram of liquid at t° C.

(f) is a factor which introduces the buoyancy and specific volume corrections. The following table of values of the factor (f) is based on tables on pp. 19 and 22.

Temp. (t) of weighing	10° C.	11 °	12°	13°	14°	15°	16°	17 °
Value of $\{ \mathbf{H}_2 0 \\ \mathbf{factor} \ (f) \{ \mathbf{H}_{\mathbf{g}} \ . \ \}$	1.00133 .073683	1.00143 .073697	1.00154 .073710	1.00166 .073724	1.00179 .073737	1.00193 .073750	1.00209 .073764	1.00226 .073777
Temp. (1) of weighing	18°	19°	20°	21 °	22°	23°	24°	25°
Value of $\{\mathbf{H}_2\mathbf{O}, \mathbf{f}_3\mathbf{O}, \mathbf{f}_4\mathbf{O}, \mathbf{f}_5\mathbf{O}, \mathbf{H}_5\mathbf{G}, \mathbf{f}_5\mathbf{O}, \mathbf{H}_5\mathbf{O}, \mathbf{f}_5\mathbf{O}, \mathbf{H}_5\mathbf{O}, \mathbf{f}_5\mathbf{O}, \mathbf{H}_5\mathbf{O}, \mathbf{f}_5\mathbf{O}, \mathbf{H}_5\mathbf{O}, \mathbf{f}_5\mathbf{O}, \mathbf{h}_5\mathbf{O}, \mathbf{h}_5$								1'00400 '073884

The above gives the volume content V_t of the vessel at the temperature of weighing, t° C. At any other temperature, t', the volume $V_{t'} = V_t \{I + \gamma(t' - t)\} \equiv V_t(F)$, where γ is the coefficient of cubical expansion of the material of the vessel. Values of the factor (F) for **glass vessels** ($\gamma = 000025$) are tabulated below.

(t' - t)	2° C.	4 °	6 °	8 °	-2° C.	-4°	-6°	-8°
Valueoffactor (F)	1.00002	1.00010	1.00012	1'00020	·99995	•999990	.99985	.99980

Example.—Weight of water contained in a vessel at 10° C. = 10 grams : thence volume of vessel at 10° C. = 10×100133 c.cs. The same vessel, if of glass, would contain at 16° C. $10 \times 100133 \times 100015 = 100148$ c.cs.

CAPILLARITY CORRECTIONS OF MERCURY COLUMNS

The height of the meniscus and the value of the capillary depression depend on the bore of the tubing, on the cleanliness of the mercury, and on the state of the walls of the tube. The correction is negligible for tubes with diameters greater than about 25 mms. The table below gives the amount of the correction (which has to be added to the height) for various diameters of glass tubing and meniscus heights. (Mendelćeff and Gutkowsky, 1877. See also Scheel and Heuse, Ann. d. Phys., 33, 1910.)

Bore		Height of meniscus in mms.								Height of meniscus in mms.					
of tube.	•4	·6	·8	1.0	1.2	1.4	1.6	1.8	of tube.	·8	1.0	1.2	1.4	1.6	1.8
^{mm.} 4 5 6 7 8	mm. *83 *47 *27 *18 —	mm. 1'22 '65 '41 '28 '20	mm. 1'54 '86 '56 '40 '29	mm. 1'98 1'19 '78 '53 '38	mm. 2'37 1'45 '98 '67 '46	mm. 1.80 1.21 .82 .56	mm. — I'43 '97 '65	mm. — — 1·13 ·77	^{mm.} 9 10 11 12 13	mm. '21 '15 '10 '07 '04	mm. *28 *20 *14 *10 *07	mm. '33 '25 '18 '13 '10	mm. '40 '29 '21 '15 '12	mm. '46 '33 '24 '18 '13	mm. '52 '37 '27 '19 '14

REDUCTION OF BAROMETER READINGS TO 0° C.

Corrected height $H_0 = H\left\{1 - \frac{(\beta - \alpha)t}{(1 + \beta t)}\right\}$, where H and t are the observed height and temperature of the barometer, $\beta = \cdot 0001818$ (Regnault), the coefficient of cubical expansion of mercury; $\alpha = \cdot 000085$, the coefficient of linear expansion of glass, or $\cdot 0000184$ for brass. Hydrogen temperature scale. (After Broch, Inter. Bur. Weights and Measures.)

(In standard English barometry the mercury is reduced to 32° F., and the scale to 62° F. In the table below, both are reduced to the ice point.)

TL.	al	15	C	orrection	n in mms	. to be s	ubtracte	d.01	(Salare)	r (c) gaine	
		GLA	SS SCA	LE.			BRA	ASS SCA	LE.		
Temp. (<i>t</i>).	υ	ncorrect	ed heigh	t in mm	s.	Uncorrected height in mms.					
	700	720	740	760	780	700	720	740	760	780	
2° C. 4 6 8 10 12 14 16 18 20 22	mm. ²⁴ ⁴⁸ ⁷³ ⁹⁷ ^{1.21} ^{1.45} ^{1.69} ^{1.94} ^{2.18} ^{2.42} ^{2.66}	*25 *49 *75 *99 1*25 1*49 1*74 1*99 2*24 2*49	*26 *51 *77 1*02 1*28 1*53 1*79 2*05 2*30 2*56 2*81	·26 ·53 ·79 1·05 1·31 1·58 1·84 2·10 2·36 2·62 2·80	²²⁷ 54 '81 1'08 1'35 1'62 1'89 2'16 2'43 2'69	mm. '23 '46 '69 '91 1'14 1'37 1'60 1'82 2'05 2'28 2'28	*24 *47 *71 *94 1*17 1*41 1*64 1*88 2*11 2*34	²⁴ 48 72 97 121 145 169 193 217 241	*25 *50 74 *99 1*24 1*49 1*73 1*98 2*23 2*47	*25 *51 *76 1*02 1*27 1*53 1*78 2*03 2*29 2*54	
22 24 26 28 30 32	2.00 2.90 3.14 3.38 3.62 3.86	2°73 2°98 3°23 3°47 3°72 3°97	3.06 3.32 3.57 3.83 4.08	2.89 3.15 3.41 3.67 3.93 4.19	2.96 3.23 3.50 3.77 4.03 4.30	2.51 2.73 2.96 3.19 3.41 3.64	2.58 2.81 3.04 3.28 3.51 3.74	2.65 2.89 3.13 3.37 3.61 3.85	2.72 2.97 3.21 3.46 3.71 3.95	2.79 3.05 3.30 3.55 3.80 4.05	
34	4'10	4'21	4.33	4'45	4.22	3.87	3.98	4.09	4'20	4'31	

REDUCTION OF BAROMETER READINGS TO LAT. 45° AND SEA-LEVEL

It is a convention to take "g" at lat. 45° and sea-level as the standard value for "gravity." The corrections below result from the variation of "g" with latitude and height above sea-level (see p. 11). The barometer correction for **latitude** = $\frac{H_0}{760}$ (**c**), has to be subtracted from the temperature—corrected barometer reading H_0 for latitudes between 0° and 45°; and added for latitudes from 45° to 90°.

Latitude	0°	5°	10°	15°	20°	25°	30°	35°	40°	45°
	90°	85°	80°	75°	70°	65°	60°	55°	50°	45°
C	mm. 1 '97	1.94	1*85	1.40	1.21	1:27	•98	•67	·34*	.00

The "gravity correction" of the barometer for **height** above sea-level amounts to about '13 mm. of mercury per 1000 metres above sea-level. The correction has to be subtracted from the observed reading.

* London, '45.

WEIGHINGS : GAS VOLUMES

REDUCTION OF WEIGHINGS TO VACUO

19

The buoyancy correction = $M\sigma(I/\Delta - I/\rho) = Mk$, where M is the apparent mass in grams of the body in air, σ is the density of air (= '0012) in grams per c.c., Δ is the density of the body, ρ is the density of the weights. The correction is true to 4% for the following limits: 740 mm. press., I° to 22°; 760 mm., 8° to 29°; 780 mm., $I5^{\circ}$ to 35°. If the correction is required more accurately, multiply the value of k given below by $\sigma'/'0012$, where σ' is the true density of the air for the temp. and press. at the time of the weighing (for σ' , see p. 25). The corrections for quartz weights are the same as for Al. + means corⁿ. to be added to weight. (See L.B.M.)

Density	Correction	Factor (k) in	Milligms.	Density	Correction	Factor (&) in	n Milligms.
of Body weighed Δ .	Brass wgts. $\rho = 8.4.$	$\begin{array}{l} {\rm Pt \ wgts.}\\ \rho=21{}^{\circ}5. \end{array}$		of Body weighed Δ .	Brass wgts. $\rho = 8.4$.	$\begin{array}{l} {\rm Pt \ wgts.}\\ \rho=21.5. \end{array}$	$ \begin{array}{l} \texttt{A1 wgts.} \\ \rho = \texttt{2.65.} \end{array} $
·5 ·55 ·65 ·75 ·85 ·95 1 11 1·2 1·3 1·4 1·5	$\begin{array}{r} + 2.26 \\ + 2.04 \\ + 1.86 \\ + 1.70 \\ + 1.57 \\ + 1.46 \\ + 1.36 \\ + 1.27 \\ + 1.19 \\ + 1.12 \\ + 1.106 \\ + .95 \\ + .86 \\ + .78 \\ + .71 \\ + .66 \end{array}$	$\begin{array}{r} + 2^{\circ}34 \\ + 2^{\circ}13 \\ + 1^{\circ}94 \\ + 1^{\circ}79 \\ + 1^{\circ}66 \\ + 1^{\circ}55 \\ + 1^{\circ}44 \\ + 1^{\circ}36 \\ + 1^{\circ}28 \\ + 1^{\circ}21 \\ + 1^{\circ}14 \\ + 1^{\circ}94 \\ + 37 \\ + 387 \\ + 380 \\ + 375 \end{array}$	$\begin{array}{r} + 1.95 \\ + 1.73 \\ + 1.55 \\ + 1.39 \\ + 1.26 \\ + 1.15 \\ + 1.05 \\ + .96 \\ + .88 \\ + .81 \\ + .75 \\ + .64 \\ + .55 \\ + .47 \\ + .40 \\ + .35 \end{array}$	$ \begin{array}{r} 1.6\\ 1.7\\ 1.8\\ 1.9\\ 2.5\\ 3.5\\ 4.5\\ 6\\ 8\\ 10\\ 1.5\\ 20\\ 22 \end{array} $	$\begin{array}{r} + {}^{6}{}^{6}{}^{1} \\ + {}^{5}{}^{5}{}^{2} \\ + {}^{4}{}^{9} \\ + {}^{5}{}^{2}{}^{2} \\ + {}^{4}{}^{9} \\ + {}^{3}{}^{4}{}^{6} \\ + {}^{5}{}^{2}{}^{0} \\ + {}^{5}{}^{2}{}^{0} \\ + {}^{5}{}^{2}{}^{0} \\ + {}^{5}{}^{0}{}^{1} \\ + {}^{5}{}^{0}{}^{1} \\ + {}^{5}{}^{0}{}^{1} \\ - {}^{5}{}^{0}{}^{6} \\ - {}^{5}{}^{0}{}^{9} \\ - {}^{5}{}^{0}{}^{9} \end{array}$	$\begin{array}{r} + \cdot 69 \\ + \cdot 65 \\ + \cdot 58 \\ + \cdot 54 \\ + \cdot 34 \\ + \cdot 29 \\ + \cdot 24 \\ + \cdot 19 \\ + \cdot 09 \\ + \cdot 03 \\ + \cdot 004 \\ - \cdot 001 \end{array}$	$\begin{array}{r} + \cdot 30 \\ + \cdot 25 \\ + \cdot 21 \\ + \cdot 18 \\ + \cdot 15 \\ + \cdot 03 \\ - \cdot 05 \\ - \cdot 11 \\ - \cdot 15 \\ - \cdot 21 \\ - \cdot 25 \\ - \cdot 30 \\ - \cdot 33 \\ - \cdot 37 \\ - \cdot 39 \\ - \cdot 40 \end{array}$

REDUCTION OF GASEOUS VOLUMES TO 0° AND 760 MMS. PRESSURE

Corrected volume $v_0 = \{v/(1 + 0.0367t)\} \cdot p/760$, where v, t, and p are the observed volume, temp., and pressure (in mms. of mercury) of the gas respectively. g = 980.62 cms. per sec². The coefficient '0.0367 observed by Regnault.

Values of (1 + .00367t).

					(
Temp. (<i>t</i>).	0	1	2	8	4	5	6	7	8	9
0° C.	1.0000	1.0032	1.0073	1.0110	1'0147	1.0183	1.0220	1.0257	1.0294	1.0330
10	0367	0404	0440	0477	0514	0550	0587	0624	0661	0697
20	0734	0771	0807	0844	0881	0917	0954	0991	1028	1064
30	IIOI	1138	1174	1211	1248	1284	1321	1358	1395	1431
40	1468	1505	1541	1578	1615	1651	1688	1725	1762	1798
50	1835	1872	1908	1945	1982	2018	2055	2092	2129	2165
60	2202	2239	2275	2312	2349	2385	2422	2459	2496	2532
70	2569	2606	2642	2679	2716	2752	2789	2826	2863	2899
80	2936	2973	3009	3046	3083	3119	3156	3193	3230	3266
90	3303	3340	3376	3413	3450	3486	3523	3560	3597	3633
100	3670	3707	3743	3780	3817	3853	3890	3927	3964	4000
110	4037	4074	4110	4147	4184	4220	4257	4294	4331	4367
	194.1 (2)	doget		Values	s of $p/$	760	6			2 4
Press . (p) .	0	1	2	3	4	5	6	7	8	9
700 mm.	.9211	.9224	.9227	.9250	.9263	.9276	·9289	.9303	'9316	10000
710	.9342	9355	.9368	.9382	9395	.9408	'9421	9434	.9447	'9329
720	9474	9355	.9500	.9513	9595	'9539	.9553	.9566	.9579	·9461
730	9605	.9618	.9632	9645	.9658	.9671	.9684	.9697	'9711	'9592
740	9737	'9750	.9763	.9776	.9789	.9803	.9816	.9822	.9842	·9724
750	.9868	.9882	.9895	.0008	.0921	'9934	'9947	·9961	'9974	·9855
760	1'0000	1'0013	1'0020	1'0039	1'0053	1'0066	1'0079	1'0092	1'0105	'9987 1'0118
770	1'0132	1'0145	1.0128	1'0171	1'0184	1'0197	1'0211	1'0224	1'0237	
	5-1	1	1							1'0250

DENSITIES OF THE ELEMENTS

Average densities of liquid and solid elements in grams per c.c. at ordinary temperatures unless otherwise stated. For gaseous densities see p. 26. The density of a specimen may depend considerably on its state and previous treatment, *e.g.* the density of a cast metal is increased by drawing, rolling, or hammering. See Koppel in L.B.M.

Element.	Density.	Element.	Density.	Element.	Density.
Aluminium	2:65	Indium	7.12	Samarium	7.8
Antimony	6:62	Iodine	1'05	Scandium	(2)
Argon (liq.).	114/ 18-0	Iridium	4 95	Selenium, amorph	4.8
Argon (nq.).	14/-105	Iron (pure)	7.86	" cryst.	
Arsenic		Krypton (liq.)	2'16	" liq	4 3
Barium			6:10	Silicon	6 2.2
Beryllium	193			Silver.	
		Lead	11 3/	Silver	105
Boron	2.2 (1)	Lithium Magnesium	534	Sodium Strontium	9/1
Bromine	3.102/25	Magnesium	174	Strontium	2 54
Cadmium	8.64	Manganese	7'39	Sulphur, rhombic	2.07
Cæsium	1.87	Mercury (see p. 22)	13.20/12	" monoclinic	1.96
Calcium	1.22/29	Molybdenum	8.0	" amorphous	1.95
Carbon-		Neodymium	6.90	" liquid 113°	1.81
Diamond	3.22	Neon (liq.) Nickel	(?)	Tantalum	
Graphite	2'3	Nickel	8.9	Tellurium	
Cerium	6.68	Niobium	12'75	Terbium	
Chlorine (liq.)	2.49/0°	Nitrogen (liq.) .	·79/-196°	Thallium	11.0
Chromium	6.20	Osmium	22'5	Thorium	
Cobalt	8.6	Osmium Oxygen (liq.)	1.27/-235°	Tin	
Copper	8.93	Palladium	11.4	Titanium	3.54
Erbium	4.77 (?)	Phosphorus, red .	2'20	Tungsten	17-18.8
Fluorine (liq.)	1.11/-187°	, yellow	1.83	Uranium	
Gadolinium	(?)	", yellow Platinum	21.20	Vanadium	5'5
Gallium	5.95	Potassium	.862	Xenon (liq.)	3.5
Germanium	5.47	Praseodymium .	6.48	Ytterbium	(?)
Gold	10'32	Radium	(?)	Yttrium	3.8 (?)
Helium (lig.)	·15/B.P.	Rhodium	12.44	Zinc	
Hydrogen (lig.) .	'07/B.P.	Rubidium	1'532	Zirconium	
m) mog sin (mqr)	'086/M.P.	Ruthenium	12'3		
»» »»				The state of the second s	

The densities of the alkali metals Li, Na, K, Rb, Cs are due to Richards and Brink, 1907; of He at -268° .6, Onnes, 1908; of W, Gin, 1908; of Ta, Nb, and Th, von Bolton, 1905, 1907, 1908; of Ca, Goodwin, 1904; of Rh and Ir, Holborn, Henning, and Austin, 1904; of Br, Andrews and Carlton, 1907.

DENSITIES OF COMMON SUBSTANCES

Average densities in grams per c.c. at ordinary temperatures. For densities of acids, alkalies, and other solutions, see pp. 23 et seq.; of "chemical compounds," p. 109; of gases, p. 26; of other minerals, p. 126.

Substance.	Density.	Substance.	Density.	Substance.	Density.
Metals & Alloys. Iron, cast ,, wrought ,, wire Steel Brass (ordy.) * Brass weights Bronze (Cu, Sn) . Coins (English) ,, bronze † ,, gold ‡	7'1-7'7 7'8-7'9 7'7 7'7-7'9 8'4-8'7 <i>c</i> . 8'4 8'7-8'9 8'96 17'72	Coins (English) ,, silver § Constantan (Eu- reka) } German silver ¶ . Gunmetal Magnalium ** . Manganin †† . Phosphor bronze ‡‡ Platinoid §§ Pt (90), Ir (10).	10'31 8'88 8'9 8'0-8'4 6.2 8'5 8'5 8'7-8'9 6.9 21'62	Woods (seasoned). Ash ; mahogany . Bamboo Beach ; oak ; teak Box Cedar Ebony Lignum vitæ . Pitchpine ; walnut Red pine (deal) . White pine	·6-·8 c. ·4 ·7-·9 ·9-1·1 ·5-·6 1·1-1·3 1·2-1·3 ·6-·7 ·5-·7 ·4-·5

¶ 60 Cu, 15 Ni, 25 Zn. ** c. 70 Al, 30 Mg. † 84 Cu, 12 Mn, 4 Ni. $\ddagger 924$ Ag, $7\frac{1}{2}$ Cu. 00 Cu, 40 Ni. $\ddagger 924$ Cu. 924 Ag, $7\frac{1}{2}$ Cu. 100 Cu, 40 Ni. $\ddagger 924$ Cu. 12 Mn, 4 Ni. $\ddagger 92\frac{1}{2}$ Cu, 7 Sn, $\frac{1}{2}$ P. §§ Described as German silver with a little tungsten.

	DENS	ITIES OF COMMON SU	JBSTANCES	(contd.)	
Substance.	Density.	Substance.	Density.	Substance.	Density.
Minerals, etc. Agate ; slate Asbestos , board . Carbon (see above) Charcoal Coal Coal , anthracite . Coke Gas carbon Emery Granite Marble Marble Marble Pumice (natural) . Quartz Silica, fused , transparent , translucent . Sand (silver) Sandstone ; kaolin	3.0 1.2 .3-6 1.2-1.5 1.4-1.8 1.0-1.7 1.9 4.0 2.5-3 2.5-2.8 6.2 .4-9 2.66 2.21	Liquids. Glycerine Methylated spirit . Milk Naphtha Oil, castor , linseed , lubricating . , olive ; palm . , paraffin Petrol Sea-water Sea-water Turpentine Vinegar Miscellaneous . Amber Bone Celluloid Ebonite	·83 <i>c</i> . 1·03 ·85 ·97 ·91-·93 ·90-·92 ·91-·93 <i>c</i> . ·8 ·68-·72	Gelatine Glass, flint " crown ; window } ", Jena Ice (Roth, 1908), o° ", (Vincent,'02), o° Indiarubber Ivory Leather Paper Porcelain Red fibre Red fibre Snow (loose) Tar Wax, soft paraffin . " hard " " white ; bees- " sealing " soft red	·9160 ·92-·97 I`8-I'9 ·85-I ·7-I'I c. I'I I'45 c. '12 I'02 ·87-·88 ·88-·93 ·95-·96 c. I'8

DENSITY DETERMINATION CORRECTIONS

In the determination of the density of a body by weighing in water, the true density (corrected for air buoyancy and water density) is given by $\Delta(D - \sigma) + \sigma$, where Δ is the uncorrected density of the body, D is the density of the water, and σ is the density of the air. The table below gives the correction to be applied to Δ . D is taken as '9992 (correct to I part in 2000 between 10° and 18° C., see p. 22) and σ as '0012 (see p. 25). — means that the correction has to be subtracted from Δ . (See Stewart and Gee, "Practical Physics," vol. i.)

Δ	Corr.	Δ	Corr.	Δ	Corr.	Δ	Corr.	Δ	Corr.	Δ	Corr.
0.5 1.0 1.5 2.0 2.5 3.0 3.5	+ '0002 - '0008 - '0018 - '0028 - '0038 - '0048 - '0058	4.0 4.5 5.0 5.5 6.0 6.5 7.0	- '0068 - '0078 - '0088 - '0098 - '0108 - '0118 - '0128	7·9 8·0 8·1 8·2	- '0138 - '0144 - '0146 - '0148 - '0150 - '0152 - '0154	8.4 8.5 8.6 8.7 8.8 8.9 9.0		10·0 11·0 12·0	- '0178 - '0188 - '0208 - '0228 - '0248 - '0268 - '0288	$ \begin{array}{r} 17.0 \\ 18.0 \\ 19.0 \\ 20.0 \\ 21.0 \end{array} $	- '0308 - '0328 - '0348 - '0368 - '0388 - '0408 - '0428

DENSITY OF DAMP AIR

The density of damp air may be derived from the expression $\sigma = \sigma_d(H - 0.378p)/H$, where σ_d is the density of dry air at a pressure H mms. (see p. 25), H is the barometric height, and p is the pressure of water-vapour in the air.

HYDROMETERS

Common: Density = degrees/1000. **Baumé**: Density at 15° = 144·3/(144·3 - Baumé degrees). **Twaddell**: Density = 1 + (Twaddell degrees/200). **Sikes**: One degree = a density interval of '002 on the average.

DENSITIES

H.scale and Die pressure (See Ch For Temp. 0° C. 20	. Water esselhors es (⊅), n specifi appuis, density	has a n st; De C c volu <i>Trav. e</i> of ice se Density 2 '99997	re.* Pu naximu coppet, 1 d in atm me is th t Mém. ce p. 21 of wate 4 1.000000	re air-fr 903). T 903). T 903). T 903). T Bur. In ; of steat r at -106999997	given by rocal of t ull., 13, 13, 13, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	under 1 3° 98 (Cl 5° (t_m) of $t_m = 3^{\circ}$ the dense 1907; and 815; at 10 199973	atmos. happuis, maximu 98 - 202 ity. Fo nd Sche [* 1 litr $-5^\circ =$ 12 299953	1897; T aum dens 25(p - r reciproel, L.B.e = 100'99930.14'99927	'hiesen, iity at di 1). ocals, see M.) o'027 c.(16 '99897	Scheel fferent e p.136.
40 60 80 100	·9922 ·9832 ·9718 ·9584	·9915 ·9822 ·9706	·9907 ·9811 ·9693	·9898 ·9801 ·9680	*9890 *9789 *9667 	·9881 ·9778 ·9653 ·951	·9872 ·9767 ·9640	·9862 ·9755 ·9626	·9853 ·9743 ·9612	-9843 -9731 -9598
	Density a	at 150° =	: '917 ; ;	at 200°	= '863 ;	at 250°	= '79;	at 300°	= '70.	
Cha			ydrogen	scale o	OF M f temp. 1., 18, 10	For re 907 ; an	ciproca			
Temp.	0	2	4	6	8	10	12	14	16	18
-20°C. 0 20 40 60 80	13 -6450 -5955 -5462 -4973 -4486 -4001 0	13 ·6400 ·5905 ·5413 ·4924 ·4437 ·3953 20	13 '6351 '5856 '5364 '4875 '4389 '3904 40	13 ·6301 ·5806 ·5315 ·4826 ·4826 ·4340 ·3856 60	13 ·6251 ·5757 ·5266 ·4778 ·4292 ·3808 80	13 ·6202 ·5708 ·5217 ·4729 ·4243 ·3759 100	·5659 ·5168 ·4680 ·4195	13 ·6103 ·5609 ·5119 ·4632 ·4146 ·3663 140	¹³ <u>5550</u> <u>5070</u> <u>4583</u> <u>4098</u> <u>3615</u> <u>160</u>	13 -6004 -5511 -5022 -4534 -4050 -3566
100 300	13.3518	13'304		-	13.162	1000		10000	12.974	
solution. léeff's O	rams po . Hydr	er c.c. ogen so	% indi ale of t nur. Am	cates g temp. . <i>Chem</i> .	Soc., O t 17° C.	C_2H_5O ted by ct. 1954.	H in 10 E. W.	oo gran Morley	from M	lende-
%	0	1	2	3	4	5	6	7	8	9
0 10 20 30 40 50 60 70 80 90 100	9988 9826 9700 9557 9375 9163 8936 8702 8461 8206 7919	·9969 ·9813 ·9687 ·9540 ·9354 ·9140 ·8913 ·8678 ·8436 ·8179 —	·9951 ·9800 ·9674 ·9524 ·9334 ·9118 ·8890 ·8655 ·8411 ·8152 —	·9933 ·9787 ·9661 ·9506 ·9313 ·9096 ·8867 ·8631 ·8386 ·8124	·9916 ·9775 ·9647 ·9489 ·9292 ·9073 ·8843 ·8607 ·8361 ·8096 —	·9899 ·9762 ·9633 ·9470 ·9271 ·9051 ·8820 ·8582 ·8336 ·8068	·9884 ·9750 ·9619 ·9452 ·9250 ·9028 ·8797 ·8558 ·8310 ·8039	·9869 ·9737 ·9604 ·9433 ·9228 ·9005 ·8773 ·8534 ·8285 ·8010 —	·9854 ·9725 ·9589 ·9414 ·9207 ·8982 ·8749 ·8510 ·8259 ·7980 —	·9840 ·9713 ·9573 ·9394 ·9185 ·8959 ·8726 ·8485 ·8232 ·7950
For ot 0%, '9978				At	the abo 22° C . , '9526 ; 7 ; 90 %,			- ifahb	2; 60%,	•8895;

DENSITIES : ACIDS

			ISITY C									
	G	rams j	per c.c.	at 15°	C. (Lunge a	and Mai	chlews	ski,	189	1.)	
	Grams	HCl in	Dens.	arrill.	Grams	s HCl in	Dens.	Dinone.	Gr	ams]	HCl in	Dens.
Dens.	100 gm	1 litre	Change	Dens.	100 gm	n. 1 litre	Change	Dens.	100	gm.	1 litre	Change
	of Sol	ution.	for $\pm 1^{\circ}$.			lution.	for $\pm 1^{\circ}$.		ot	Solu	tion.	for $\pm 1^{\circ}$
1.01		100	100016	1.00	-6		100035	1.15	-		240	100050
1.02	2'14 4'13	22 42	01000°	1.08 1.09	16.12	174 197	'00035 '00038	1.16		9.6	340 366	'00052 '00054
1.03	6.15	64	'00021	1.10	20'0	220	'00040	1.17		3.5	392	'00056
1.04	8.19	85	'C0024	1.11	21.9	243	'00043	1.18	3.	5'4	418	.00028
1.05	10'17	107	'00027	1.12	23.8	267	'00045	1.19		7'2	443	100059
1.06 1.07	12'19	129 152	'00030 '00032	1.13	25'7 27'7	291	·00048	1.20	3	9.I	469	*00060
Gram	s per c.		DENSIT °C. %N							nge a	nd Re	y, 1891.)
-	Grams 1	HNO, in	1 10 an	1.9 000	Grams	HNO, in	in the		Gra	ms H	INO ₃ in	10.919
	100 gm		Dens.	100000		n. 1 litre	Dens. Change	Dens			1 litre	Ders. Change
Dens.			for ± 1°.	Dens.			for $\pm 1^{\circ}$.	Dens.	-	-	-	for ±1
	of Sol	ution.			of So	olution.			o	Solu	tion.	
1.02	3'70	38	*00022	1.22	35'3	430	.00080	1.42		9.8	991	.00137
1.04	7.26	75	.00028	1.24	38.3	475	*00086	1.44		4'7	1075	.00143
1.06 1.08	10'7	113	.00034	1·26 1·28	41.3	521	10000	1·46 1·48		0'0 6'0	1168	·00149
1.10	13'9 17'1	151 188	'coo40 '00045	1.30	44'4	568 617	'00097 '00103	1.20		4'I	1274 1411	'00154 '00160
1.12	20'2	227	*00051	1.32	50.7	669	00100	1.504		6.0	1444	10100'
1.14	23.3	266	'00057	1.34	54'1	725	'00114	1.508				
1·14 1·16	26.4	306	'00057 '00062	1.36	54'I 57'6	725 783	'00114 '00120	1·508 1·512	9	7.5	1470 1490	'00162 '00163
1·14 1·16 1·18	26°4 29°4	306 347	'00057 '00062 '00068	1·36 1·38	54'I 57'6 61'3	725 783 846	'00114 '00120 '00126	1.508 1.512 1.516	9 9 9	7°5 8°5 9°2	1470 1490 1504	.00162 .00163 .00164
1·14 1·16	26.4	306	'00057 '00062	1.36	54'I 57'6	725 783	'00114 '00120	1·508 1·512	9 9 9	7°5 8°5	1470 1490	.00162 .00163 .00164
1.14 1.16 1.18 1.20	26'4 29'4 32'4 s per c.	306 347 388 DE	*00057 *00062 *00068 *00074 NSITY	1.36 1.38 1.40 OF S	54'1 57'6 61'3 65'3 SULPH 316 × %	725 783 846 914	·00114 ·00120 ·00126 ·00132 ACID, H by wei	1.508 1.512 1.516 1.520	9 9 9 9	7°5 8°5 9°2 9° 7 9	1470 1490 1504 1515	'00162 '00163 '00164 '00166
1.14 1.16 1.18 1.20	26'4 29'4 32'4 s per c.	306 347 388 DE c. at 15	*00057 *00062 *00068 *00074 NSITY	1.36 1.38 1.40 OF S	54'I 57'6 61'3 65'3 SULPH 316×%	725 783 846 914 HURIC	·00114 ·00120 ·00126 ·00132 ACID, H by wei	1.508 1.512 1.516 1.520	9 9 9 9	7°5 8°5 9°2 9°7 9	1470 1490 1504 1515	.00162 .00163 .00164 .00166 .00166
1.14 1.16 1.18 1.20 Gram	26'4 29'4 32'4 s per c.	306 347 388 DE c. at 15 rams H	^{•00057} ^{•00062} ^{•00068} ^{•00074} NSITY ^{0°} C. % S ⁸⁰ , in 1 litre	1.36 1.38 1.40 OF S	54'I 57'6 61'3 65'3 SULPH 316×%	725 783 846 914 HURIC GH ₂ SO ₄ Grams H	·00114 ·00120 ·00126 ·00132 ACID, H by wei .80, in 1 litre	1.508 1.512 1.516 1.520 H ₂ SO ₄ ght. (I	9 9 9 9	7 ^{.5} 8 ^{.5} 9 ^{.2} 9 ^{.7} 9 ^{.7} 4 ge an G n 100	1470 1490 1504 1515 nd Isle	^{•00162} •00163 •00164 •00166 er, 1895.) 2 80 4 in 1 litre
1.14 1.16 1.18 1.20 Gram: Densit	26'4 29'4 32'4 s per c. G ty. 10	306 347 388 DE c. at 15 rams H 0 gm.	¹ 00057 100062 100068 100074 NSITY 0° C. % S 1804 in 1 litre tion.	1.36 1.38 1.40 OF S $50_3 = .8$ Densit	54.1 57.6 61.3 65.3 SULPH 316 × %	725 783 846 914 HURIC GH ₂ SO ₄ Grams H, 00 gm.	⁰⁰¹¹⁴ ⁰⁰¹²⁰ ⁰⁰¹²⁶ ⁰⁰¹³² ACID, H by wei ^{80, in} 1 litre tion.	1.508 1.512 1.516 1.520 H ₂ SO ₄ ght. (I	9 9 9 9 9 9 9 9 9 9 9 9 9	7'5 8'5 9'2 9'7 9'7 9'7 9'7 9'7 9'7 9'7	1470 1490 1504 1515 nd Isle rams H 9 gm.	^{•00162} •00163 •00164 •00166 er, 1895.) 2804 in 1 litre
1.14 1.16 1.18 1.20 Gram: Densit	26'4 29'4 32'4 s per c. G ty. 10	306 347 388 DE c. at 15 rams H 0 gm. of Solu 3.03 5.96	¹ 00057 100062 100068 100074 NSITY 0° C. % S s0 4 in 1 litre tion. 31 62	1.36 1.38 1.40 OF S $5O_3 = .8$ Densit	54.1 57.6 61.3 65.3 SULPH 316 × %	725 783 846 914 HURIC GH ₂ SO ₄ Grams H, 00 gm. of Solut 54'1 56'0	⁰⁰¹¹⁴ ⁰⁰¹²⁰ ⁰⁰¹²⁶ ⁰⁰¹³² ACID, H -by wei 50 , in 1 litre tion. 779 817	1.508 1.512 1.516 1.520 H ₂ SO ₄ ght. (I Densit	99999999999999999999999999999999999999	7:5 8:5 9:2 9:7 9:7 9:7 9:7 9:7 9:7 9:7 9:7 9:7 9:7	1470 1490 1504 1515 and Isle rams H ogm. of Solut 0.4 0.8	^{•00162} ^{•00163} ^{•00164} ^{•00166} ^{•00166} [•] [•] [•] [•] [•] [•] [•] [•]
1.14 1.16 1.18 1.20 Gram: Densit	26'4 29'4 32'4 s per c. G ty. 10	306 347 388 DE c. at 15 rams H 0 gm. of Solu 3.03 5.96 8.77	¹ 00057 100062 100068 100074 NSITY ¹⁰ C. % S s0 ₄ in 1 litre tion. 31 62 93	$ \begin{array}{c} 1.36\\ 1.38\\ 1.40\\ \text{OF S}\\ 50_3 = .8\\ \hline \text{Densit}\\ 1.44\\ 1.46\\ 1.48\\ \end{array} $	54.1 57.6 61.3 65.3 SULPH 316×%	725 783 846 914 HURIC GH ₂ SO ₄ Grams H, 00 gm. of Solut 54'1 56'0 57'8	⁰⁰¹¹⁴ ⁰⁰¹²⁰ ⁰⁰¹²⁶ ⁰⁰¹³² ACID, I by wei ^{250, in} 1 litre tion. 779 ⁸¹⁷ 856	1.508 1.512 1.516 1.520 H ₂ SO ₄ ght. (I Densit	99999999999999999999999999999999999999	7:5 8:5 9:2 9:7 9:7 9:7 9:7 9:7 9:7 9:7 9:7 9:7 9:7	1470 1490 1504 1515 and Isle rams H ogm. 0 074 0.8 1.2	¹⁰⁰¹⁶² ¹⁰⁰¹⁶³ ¹⁰⁰¹⁶⁴ ¹⁰⁰¹⁶⁶ ¹⁰⁰¹⁶⁶ ¹⁰⁰¹⁶⁶ ¹⁰⁰¹⁶⁶
1.14 1.16 1.18 1.20 Gram: Densit 1.02 1.04 1.06 - 1.08	26'4 29'4 32'4 s per c. G ty. 10	306 347 388 DE c. at 15 rams H 0 gm. of Solu 3.03 5.96 8.77 1.60	¹ 00057 100062 100068 100074 NSITY ⁰ C. % S SO ₄ in 1 litre tion. 31 62 93 125	$\begin{array}{c} 1.36\\ 1.38\\ 1.40\\ \\ \text{OF S}\\ 50_3 = .8\\ \\ \hline \text{Densit}\\ 1.44\\ 1.46\\ 1.48\\ 1.50\\ \end{array}$	54.1 57.6 61.3 65.3 SULPH 316×%	725 783 846 914 HURIC GH ₂ SO ₄ Grams H, 00 gm. of Solut 54'1 56'0 57'8 59'7	⁰⁰¹¹⁴ ⁰⁰¹²⁰ ⁰⁰¹²⁶ ⁰⁰¹³² ACID, H by wei 250 , in 1 litre tion. 779 817 856 896	1.508 1.512 1.516 1.520 H ₂ SO ₄ ght. (I Densit 1.822 1.824 1.826 1.828	99999999999999999999999999999999999999	7'5 8'5 9'2 9'7 7 9'7 7 9'7 9'7 6 100 6 100	1470 1490 1504 1515 and Isle rams H ogm. of Solut 0.4 0.8 1.2 1.7	^{•00162} ^{•00163} ^{•00164} ^{•00166} ^{•00166} ^{•00166} ^{•00166} ^{•00166} ^{•001647} ¹⁶⁴⁷ ¹⁶⁵⁶ ¹⁶⁶⁶ ¹⁶⁶⁶ ¹⁶⁷⁶
1.14 1.16 1.18 1.20 Gram: Densit 1.02 1.04 1.06 1.08 1.10	26'4 29'4 32'4 s per c. ty. 10	306 347 388 DE c. at 15 rams H 0 gm. of Solu 3.03 5.96 8.77 1.60 4.35	¹ 00057 100062 100068 100074 NSITY ⁰ C. % S s0 ₄ in 1 litre tion. 31 62 93 125 158	$\begin{array}{c} 1.36\\ 1.38\\ 1.40\\ \\ \text{OF S}\\ 50_3 = .8\\ \\ \hline \text{Densit}\\ 1.44\\ 1.46\\ 1.48\\ 1.50\\ 1.52\\ \end{array}$	54.1 57.6 61.3 65.3 SULPH 316 × %	725 783 846 914 HURIC GH ₂ SO ₄ Grams H, 00 gm. of Solut 54'1 56'0 57'8 59'7 61'6	⁰⁰¹¹⁴ ⁰⁰¹²⁰ ⁰⁰¹²⁶ ⁰⁰¹³² ACID, I by wei ^{250, in} 1 litre tion. 779 ⁸¹⁷ ⁸⁵⁶ ⁸⁹⁶ ⁹³⁶	1.508 1.512 1.516 1.520 H ₂ SO ₄ ght. (I Densit 1.822 1.824 1.826 1.828 1.830	99999999999999999999999999999999999999	7'5 8'5 9'2 9'7 9'7 9'7 9'7 9'7 100 9'9 9 9 9 9 9 9 9 9 9 9	1470 1490 1504 1515 ad Isle rams H 9 gm. 07 Solut 0°4 0°8 1°2 1°7 2°1	^{•00162} ^{•00163} ^{•00164} ^{•00166} ^{•00166} ^{•00166} ^{•00166} ^{•00166} ^{•00166} ^{•00166} ^{•00162} ^{•001647} ¹⁶⁵⁶ ¹⁶⁴⁷ ¹⁶⁵⁶ ¹⁶⁶⁶⁶ ¹⁶⁷⁶ ¹⁶⁸⁵
1.14 1.16 1.18 1.20 Gram: Densit 1.02 1.04 1.06 - 1.08	26'4 29'4 32'4 s per c. G ty. 10	306 347 388 DE c. at 15 rams H 0 gm. of Solu 3.03 5.96 8.77 1.60	¹ 00057 100062 100068 100074 NSITY ¹⁰ C. % S SO ₄ in 1 litre tion. 31 62 93 125 158 191	$\begin{array}{c} 1.36\\ 1.38\\ 1.40\\ \hline \\ OF \\ SO_3 = .8\\ \hline \\ Densit\\ 1.44\\ 1.46\\ 1.48\\ 1.50\\ 1.52\\ 1.54\\ \hline \end{array}$	54.1 57.6 61.3 65.3 SULPH 316 × %	725 783 846 914 HURIC GH ₂ SO ₄ Grams H, 00 gm. of Solut 54'1 56'0 57'8 59'7 61'6 63'4	^{•00114} ^{•00120} ^{•00126} ^{•00132} ACID , I —by wei so , in 1 litre tion. 779 817 856 896 936 977	1.508 1.512 1.516 1.520 H ₂ SO ₄ ght. (I Densit 1.822 1.824 1.826 1.828 1.830 1.832	99999999999999999999999999999999999999	7'5 8'5 9'2 9'7 9'7 9'7 9'7 9'7 100 9'9 9 9 9 9 9 9 9 9 9 9 9 9 9	1470 1490 1504 1515 and Isle rams H ogm. of Solut 0.4 0.8 1.2 1.7 2.1 2.5	[•] 00162 •00163 •00164 •00166 • • • • • • • • • • • • • • • • • •
1.14 1.16 1.18 1.20 Gram: Densit 1.02 1.04 1.06 1.108 1.10 1.12 1.14 1.16	26'4 29'4 32'4 s per c. G ty. 10	306 347 388 DE c. at 15 rams H 0 gm. of Solu 3.03 5.96 8.77 1.60 4.35 7.01 9.61 2.19	¹ 00057 100062 100068 100074 NSITY ⁰ C. % S SO ₄ in 1 litre tion. 31 62 93 125 158 191 223 257	$\begin{array}{c} 1.36\\ 1.38\\ 1.40\\ \\ \text{OF S}\\ 50_3 = .8\\ \\ \hline \text{Densit}\\ 1.44\\ 1.46\\ 1.48\\ 1.50\\ 1.52\\ 1.54\\ 1.56\\ 1.58\\ \end{array}$	54.1 57.6 61.3 65.3 SULPH 316 × %	725 783 846 914 HURIC 6 H ₂ SO ₄ Grams H 00 gm. 00 gm. 01 Solut 54'1 56'0 57'8 59'7 61'6 63'4 65'1 66'7	⁰⁰¹¹⁴ ⁰⁰¹²⁰ ⁰⁰¹²⁶ ⁰⁰¹³² ACID, I by wei ^{250, in} 1 litre tion. 779 ⁸¹⁷ ⁸⁵⁶ ⁸⁹⁶ ⁹³⁶	1.508 1.512 1.516 1.520 H ₂ SO ₄ ght. (I Densit 1.822 1.824 1.826 1.828 1.832 1.834 1.836	99999999999999999999999999999999999999	7'5 8'5 9'2 9'7 9'7 9'7 9'7 9'7 100 9'9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1470 1490 1504 1515 and Isle rams H ogm. of Solut 0.4 0.8 1.2 1.7 2.1 2.5 3.0 3.8	[•] 00162 •00163 •00164 •00166 • • • • • • • • • • • • • • • • • •
1.14 1.16 1.18 1.20 Gram: Densit 1.02 1.04 1.06 1.108 1.10 1.12 1.14 1.16 1.18	26'4 29'4 32'4 s per c. G ty. 10 10 11 10 11 11 10 11 11 11 12 11 11 12 11 12 11 12 11 12 12	306 347 388 DE c. at 15 rams H 0 gm. of Solu 3.03 5.96 8.77 1.60 4.35 7.01 9.61 2.19 4.76	¹ 00057 100062 100068 100074 NSITY ⁰ C. % S SO ₄ in 1 litre tion. 31 62 93 125 158 191 223 257 292	$\begin{array}{c} 1.36\\ 1.38\\ 1.40\\ \hline \\ OF \\ SO_3 = .8\\ \hline \\ Densit\\ 1.44\\ 1.46\\ 1.48\\ 1.50\\ 1.52\\ 1.54\\ 1.56\\ 1.58\\ 1.60\\ \hline \end{array}$	54.1 57.6 61.3 65.3 SULPH 316 × %	725 783 846 914 HURIC GH ₂ SO ₄ Grams H, 00 gm. of Solut 54'1 56'0 57'8 59'7 61'6 63'4 65'1 66'7 68'5	^{•00114} ^{•00120} ^{•00126} ^{•00132} ACID , I —by wei 250 , in 1 litre tion. 779 817 856 896 936 977 1015 1054 1096	1.508 1.512 1.516 1.520 H ₂ SO ₄ ght. (I Densit 1.822 1.824 1.826 1.828 1.832 1.834 1.836 1.838	99999999999999999999999999999999999999	7'5 8'5 9'2 9'7 9'7 9'7 9'7 9'7 100 9'9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1470 1490 1504 1515 and Isle rams H ogm. of Solut 0.4 0.8 1.2 1.7 2.1 2.5 3.0 3.8 4.6	¹⁰⁰¹⁶² ¹⁰⁰¹⁶³ ¹⁰⁰¹⁶⁴ ¹⁰⁰¹⁶⁶ ¹⁰⁰¹⁷²² ¹⁰⁰¹⁷²² ¹⁰⁰¹⁶⁶ ¹⁰⁰¹⁷²² ¹⁰⁰¹⁶⁶⁶ ¹⁰⁰¹⁷²² ¹⁰⁰¹⁶⁶⁶ ¹⁰⁰¹⁷²² ¹⁰⁰¹⁶⁶⁶
1.14 1.16 1.18 1.20 Gram: Densit 1.02 1.04 1.06 1.10 1.12 1.14 1.16 1.18 1.20	26'4 29'4 32'4 s per c. G ty. 10	306 347 388 DE c. at 15 rams H 0 gm. of Solu 3.03 5.96 8.77 1.60 4.35 7.01 9.61 2.19 4.76 7.3	¹ 00057 100062 100068 100074 NSITY ⁰ C. % S s0 , in 1 litre tion. 31 62 93 125 158 191 223 257 292 328	1.36 1.38 1.40 OF S 50 ₃ = .8 Densit 1.44 1.46 1.48 1.50 1.52 1.54 1.58 1.60 1.62	54.1 57.6 61.3 65.3 50LPH 316×%	725 783 846 914 HURIC GH ₂ SO ₄ Grams H, 00 gm. of Solut 54'1 56'0 57'8 59'7 61'6 63'4 65'1 66'7 68'5 70'3	[•] 00114 [•] 00120 [•] 00126 [•] 00132 ACID , I —by wei 250 , in 1 litre tion. 779 817 856 896 936 977 1015 1054 1096 1139	1.508 1.512 1.516 1.520 H ₂ SO ₄ ght. (I Densit 1.822 1.824 1.826 1.828 1.832 1.834 1.836	99999999999999999999999999999999999999	7'5 8'5 9'2 9'7 9'7 9'7 9'7 9'7 100 9'9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1470 1490 1504 1515 and Isle rams H ogm. of Solut 0.4 0.8 1.2 1.7 2.1 2.5 3.0 3.8	¹⁰⁰¹⁶² ¹⁰⁰¹⁶³ ¹⁰⁰¹⁶⁴ ¹⁰⁰¹⁶⁶ ¹⁰⁰¹⁶
1.14 1.16 1.18 1.20 Gram: Densit 1.02 1.04 1.06 1.10 1.12 1.14 1.16 1.18 1.20 1.22	26'4 29'4 32'4 s per c. ty. 10 ty. 10	306 347 388 DE c. at 15 rams H 0 gm. of Solu 3.03 5.96 8.77 1.60 4.35 7.01 9.61 2.19 4.76 7.3 9.8	¹ 00057 100062 100068 100074 NSITY ⁰ C. % S s0 ₄ in 1 litre tion. 31 62 93 125 158 191 223 257 292 328 364	1.36 1.38 1.40 OF S $50_3 = .8$ Densit 1.44 1.46 1.48 1.50 1.52 1.54 1.56 1.58 1.60 1.62 1.64	54.1 57.6 61.3 65.3 50LPH 316×%	725 783 846 914 HURIC GH ₂ SO ₄ Grams H, 00 gm. of Solut 54'1 56'0 57'8 59'7 61'6 63'4 65'1 66'7 68'5 70'3 72'0	'00114 '00120 '00126 '00132 ACID, I -by wei 250, in 1 litre tion. 779 817 856 896 936 977 1015 1054 1096 1139 1181	1.508 1.512 1.516 1.520 H ₂ SO ₄ ght. (I Densit 1.822 1.824 1.826 1.828 1.836 1.835 1.836 1.838 1.836	99999999999999999999999999999999999999	7'5 8'5 9'2 9'7 9'7 9'7 9'7 100 99 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1470 1490 1504 1515 and Isle rams H ogm. of Solut 0.4 0.8 1.2 1.7 2.1 2.5 3.0 3.8 4.6 5.6	¹⁰⁰¹⁶² ¹⁰⁰¹⁶³ ¹⁰⁰¹⁶⁴ ¹⁰⁰¹⁶⁶ ¹⁰⁰¹⁶⁷ ¹⁰⁰¹⁶⁶ ¹⁰⁰¹⁷²² ¹⁰⁰⁹⁵ ¹⁰⁰⁵⁹
1.14 1.16 1.18 1.20 Grams Densit 1.02 1.04 1.06 1.10 1.12 1.14 1.16 1.18 1.20 1.22 1.24	26'4 29'4 32'4 s per c. G ty. 10 10 11 10 11 11 10 11 11 11 11 11 11 1	306 347 388 DE c. at 15 rams H 0 gm. of Solu 3'03 5'96 8'77 1 60 4'35 7'01 9'61 2'19 4'76 7'3 9'8 2'3	¹ 00057 100062 100068 100074 NSITY ¹⁰ C. % S SO ₄ in 1 litre tion. 31 62 93 125 158 191 223 257 292 328 364 400	$\begin{array}{c} 1.36\\ 1.38\\ 1.40\\ \hline \\ 0F \\ SO_3 = .8\\ \hline \\ Densit\\ 1.44\\ 1.46\\ 1.48\\ 1.50\\ 1.52\\ 1.54\\ 1.56\\ 1.58\\ 1.60\\ 1.62\\ 1.64\\ 1.66\\ \hline \end{array}$	54.1 57.6 61.3 65.3 50LPH 316×%	725 783 846 914 HURIC GH ₂ SO ₄ Grams H, 00 gm. of Solut 54'1 56'0 57'8 59'7 61'6 63'4 65'1 66'7 68'5 70'3 72'0 73'6	'00114 '00120 '00126 '00132 ACID, I -by wei .001, in 1 litre tion. 779 817 856 896 936 977 1015 1054 1096 1139 1181 1222	1.508 1.512 1.516 1.520 H ₂ SO ₄ ght. (I Densit 1.822 1.824 1.826 1.832 1.832 1.834 1.836 1.838 1.836 1.838 1.840	99999999999999999999999999999999999999	7'5 8'5 9'2 9'7 9'7 9'7 9'7 100 99 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1470 1490 1504 1515 and Isle rams H 9 gm. 0'4 0'8 1'2 1'7 2'1 2'5 3'0 3'8 4'6 5'6 5'9	¹⁰⁰¹⁶² ¹⁰⁰¹⁶³ ¹⁰⁰¹⁶⁴ ¹⁰⁰¹⁶⁶ ¹⁰⁰⁰⁶ ¹⁰⁰⁰⁶⁵ ¹⁰⁰⁰⁶⁵ ¹⁰⁰⁰⁶⁵⁵ ¹⁰⁰⁰⁶⁵⁵ ¹⁰⁰⁰⁶⁵⁵⁵⁵⁵⁵⁵⁵⁵⁵⁵⁵⁵⁵⁵⁵⁵⁵⁵⁵⁵⁵⁵⁵⁵⁵⁵⁵⁵⁵⁵⁵⁵⁵
1.14 1.16 1.18 1.20 Grams Densit 1.02 1.04 1.06 1.10 1.12 1.14 1.16 1.18 1.20 1.22 1.24 1.26 1.28	26'4 29'4 32'4 s per c. G ty. 10 10 11 10 11 11 10 11 11 11 11 11 11 1	306 347 388 DE c. at 15 rams H 0 gm. of Solu 3.03 5.96 8.77 1.60 4.35 7.01 9.61 2.19 4.76 7.3 9.8	¹ 00057 100062 100068 100074 NSITY ⁰ C. % S s0 ₄ in 1 litre tion. 31 62 93 125 158 191 223 257 292 328 364	$\begin{array}{c} 1.36\\ 1.38\\ 1.40\\ \hline \\ OF \\ SO_3 = .8\\ \hline \\ Densit\\ 1.44\\ 1.46\\ 1.48\\ 1.50\\ 1.52\\ 1.54\\ 1.56\\ 1.58\\ 1.60\\ 1.62\\ 1.68\\ 1.68\\ 1.68\\ 1.70\\ \hline \end{array}$	54.1 57.6 61.3 65.3 50LPH 316×%	725 783 846 914 HURIC GH ₂ SO ₄ Grams H 00 gm. of Solut 54'1 56'0 57'8 59'7 61'6 63'4 65'1 66'7 68'5 70'3 72'0 73'6 75'4 77'2	'00114 '00120 '00126 '00132 ACID, I -by wei 250, in 1 litre tion. 779 817 856 896 936 977 1015 1054 1096 1139 1181	1.508 1.512 1.516 1.520 H ₂ SO ₄ ght. (I Densit 1.822 1.824 1.826 1.832 1.834 1.836 1.838 1.836 1.838 1.836 1.838 1.840 1.840 1.840	99999999999999999999999999999999999999	7'5 8'5 9'2 9'7 9'7 9'7 9'7 100 99 99 99 99 99 99 99 99 99 99 99 99 9	1470 1490 1504 1515 nd Isle rams H 9 gm. 01 Solut 01 Solu	¹⁰⁰¹⁶² ¹⁰⁰¹⁶³ ¹⁰⁰¹⁶⁴ ¹⁰⁰¹⁶⁶ ¹⁰⁰¹⁷²² ¹⁰⁰⁹⁵ ¹⁰⁰⁵⁹
1.14 1.16 1.18 1.20 Grams Densit 1.02 1.04 1.06 1.102 1.14 1.16 1.18 1.20 1.12 1.14 1.16 1.18 1.20 1.22 1.24 1.28 1.30	26'4 29'4 32'4 s per c. G ty. 10 10 10 11 10 11 10 11 10 11 11 10 11 11	306 347 388 DE c. at 15 rams H 0 gm. of Solu 3.03 5.96 8.77 1.60 4.35 7.01 9.61 2.19 4.76 7.3 9.8 2.3 4.6 6.9 9.2	¹ 00057 100062 100068 100074 NSITY ⁰ C. % S SO ₄ in 1 litre tion. 31 62 93 125 158 191 223 257 292 328 364 400 435 472 510	1.36 1.38 1.40 OF S $50_3 = .8$ Densit 1.44 1.46 1.48 1.50 1.52 1.54 1.56 1.58 1.60 1.62 1.64 1.68 1.70 1.72	54'I 57'6 61'3 65'3 SULPH 316 × %	725 783 846 914 HURIC GH ₂ SO ₄ Grams H, 00 gm. of Solut 54'1 56'0 57'8 59'7 61'6 63'4 65'1 66'7 68'5 70'3 72'0 73'6 75'4 77'2 78'9	'00114 '00120 '00126 '00132 ACID, I by wei 250, in 1 litre tion. 779 817 856 896 936 977 1015 1054 1096 1139 1181 1222 1267 1312 1357	1.508 1.512 1.516 1.520 H ₂ SO ₄ ght. (I Densit 1.822 1.824 1.826 1.832 1.834 1.836 1.838 1.836 1.838 1.836 1.838 1.840 1.840 1.840	99999999999999999999999999999999999999	7'5 8'5 9'2 9'7 9'7 9'7 9'7 100 99 99 99 99 99 99 99 99 99 99 99 99 9	1470 1490 1504 1515 nd Isle rams H 9 gm. 01 Solut 01 Solu	**************************************
1.14 1.16 1.18 1.20 Grams Densit 1.02 1.04 1.06 1.10 1.12 1.14 1.16 1.18 1.20 1.22 1.24 1.26 1.28 1.30 1.32	26'4 29'4 32'4 s per c. G ty. 10 10 11 10 11 10 11 11 10 11 11 11 10 11 11	306 347 388 DE c. at 15 rams H 0 gm. of Solu 3.03 5.96 8.77 1.60 4.35 7.01 9.61 2.19 4.76 7.3 9.8 2.3 4.6 6.9 9.2 1.5	¹ 00057 100062 100068 100074 NSITY ⁰ C. % S SO ₄ in 1 litre tion. 31 62 93 125 158 191 223 257 292 328 364 400 435 472 510 548	1.36 1.38 1.40 OF S $50_3 = .8$ Densit 1.44 1.46 1.48 1.50 1.52 1.54 1.56 1.58 1.60 1.62 1.64 1.68 1.60 1.62 1.64 1.68 1.70 1.72 1.74	54'I 57'6 61'3 65'3 50LPH 316×%	725 783 846 914 HURIC GH ₂ SO ₄ Grams H 00 gm. of Solut 54'1 56'0 57'8 59'7 61'6 63'4 65'1 66'7 68'5 70'3 72'0 73'6 75'4 77'2 78'9 80'7	'00114 '00120 '00126 '00132 ACID, I by wei	1.508 1.512 1.516 1.520 H ₂ SO ₄ ght. (I Densit 1.822 1.824 1.826 1.828 1.836 1.838 1.836 1.838 1.836 1.838 1.836 1.838 1.840 1.840 1.840 1.840	99999999999999999999999999999999999999	7'5 8'5 9'2 9'7 9'7 9'7 9'7 100 9'9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1470 1490 1504 1515 ad Isle rams H 9 gm. of Solut 0.4 0.8 1.2 1.7 2.1 2.5 3.0 3.8 4.6 5.6 5.9 7.0 7.7 8.2 8.7	**************************************
1.14 1.16 1.18 1.20 Grams Densit 1.02 1.04 1.06 1.10 1.12 1.14 1.16 1.18 1.20 1.22 1.24 1.26 1.28 1.30 1.32 1.34	26'4 29'4 32'4 s per c. G ty. 10 10 11 10 11 10 11 11 10 11 11 11 10 11 11	306 347 388 DE c. at 15 rams H 0 gm. of Solu 3.03 5.96 8.77 1.60 4.35 7.01 9.61 2.19 4.76 7.3 9.61 2.19 4.76 7.3 9.8 2.3 4.6 6.9 9.2 1.5 3.7	¹ 00057 100062 100068 100074 NSITY ⁰ C. % S SO ₄ in 1 litre tion. 31 62 93 125 158 191 223 257 292 328 364 400 435 472 510 548 586	1.36 1.38 1.40 OF S $50_3 = .8$ Densit 1.44 1.46 1.48 1.50 1.52 1.54 1.56 1.58 1.60 1.62 1.64 1.68 1.60 1.62 1.64 1.68 1.70 1.72 1.74 1.76	54'I 57'6 61'3 65'3 SULPH 316 × %	725 783 846 914 HURIC GH ₂ SO ₄ Grams H 00 gm. of Solut 54'1 56'0 57'8 59'7 61'6 63'4 65'1 66'7 68'5 70'3 72'0 73'6 75'4 77'2 78'9 80'7 82 4	'00114 '00120 '00126 '00132 ACID, I -by wei .00132 .00132 ACID, I .00132 .00132 ACID, I .00132 .0	1.508 1.512 1.516 1.520 H ₂ SO ₄ ght. (I Densit 1.822 1.824 1.826 1.828 1.836 1.836 1.838 1.836 1.838 1.836 1.838 1.840 1.840 1.840 1.840 1.840	99999 99999 . Ac un y. 24530 24530 2500 500	7'5 8'5 9'2 9'7 9'7 9'7 9'7 100 99 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1470 1490 1504 1515 ad Isle rams H 9 gm. of Solut 0.4 0.8 1.2 1.7 2.1 2.5 3.0 3.8 4.6 5.6 5.9 7.0 7.7 8.2 8.7 9.2	**************************************
1.14 1.16 1.18 1.20 Grams Densit 1.02 1.04 1.06 1.10 1.12 1.14 1.16 1.18 1.20 1.22 1.24 1.26 1.28 1.30 1.32 1.34 1.36	26'4 29'4 32'4 s per c. G ty. 10 10 11 10 11 11 10 11 11 11 11 11 11 1	306 347 388 DE c. at 15 rams H 0 gm. of Solu 3'03 5'96 8'77 1 60 4'35 7'01 9'61 2'19 4'76 7'3 9'8 2'3 4'6 6'9 9'2 1'5 3'7 5'9	¹ 00057 100062 100068 100074 NSITY ⁰ C. % S SO ₄ in 1 litre tion. 31 62 93 125 158 191 223 257 292 328 364 400 435 472 510 548 586 624	1.36 1.38 1.40 OF S $50_3 = .8$ Densit 1.44 1.46 1.48 1.50 1.52 1.54 1.56 1.58 1.60 1.62 1.64 1.68 1.60 1.62 1.64 1.68 1.70 1.72 1.74 1.76 1.78	54'I 57'6 61'3 65'3 50LPH 316 × %	725 783 846 914 HURIC GH ₂ SO ₄ Grams H 00 gm. of Solut 54'1 56'0 57'8 59'7 61'6 63'4 65'1 66'7 68'5 70'3 72'0 73'6 75'4 77'2 78'9 80'7 82 4 84'5	'00114 '00120 '00126 '00132 ACID, I by wei	1.508 1.512 1.516 1.520 H ₂ SO ₄ ght. (I Densit 1.822 1.824 1.826 1.828 1.836 1.838 1.836 1.838 1.840 1.840 1.840 1.840 1.840 1.840 1.840 1.840 1.840 1.840 1.840 1.840	99999 99999 . Ac un y. 24530 24530 25005005	7'5 8'5 9'2 9'7 9'7 9'7 9'7 100 99 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1470 1490 1504 1515 ad Isle rams H 9 gm. of Solut 0.4 0.8 1.2 1.7 2.1 2.5 3.0 3.8 4.6 5.6 5.9 7.0 7.7 8.2 8.7 9.2 9.4	**************************************
1.14 1.16 1.18 1.20 Grams Densit 1.02 1.04 1.06 1.10 1.12 1.14 1.16 1.18 1.20 1.22 1.24 1.26 1.28 1.30 1.32 1.34	26'4 29'4 32'4 s per c. G ty. 10 10 11 10 11 11 10 11 11 11 11 11 11 1	306 347 388 DE c. at 15 rams H 0 gm. of Solu 3.03 5.96 8.77 1.60 4.35 7.01 9.61 2.19 4.76 7.3 9.61 2.19 4.76 7.3 9.8 2.3 4.6 6.9 9.2 1.5 3.7	¹ 00057 100062 100068 100074 NSITY ⁰ C. % S SO ₄ in 1 litre tion. 31 62 93 125 158 191 223 257 292 328 364 400 435 472 510 548 586	1.36 1.38 1.40 OF S $50_3 = .8$ Densit 1.44 1.46 1.48 1.50 1.52 1.54 1.56 1.58 1.60 1.62 1.64 1.68 1.60 1.62 1.64 1.68 1.70 1.72 1.74 1.76	54'I 57'6 61'3 65'3 SULPH 316×%	725 783 846 914 HURIC GH ₂ SO ₄ Grams H 00 gm. of Solut 54'1 56'0 57'8 59'7 61'6 63'4 65'1 66'7 68'5 70'3 72'0 73'6 75'4 77'2 78'9 80'7 82 4	'00114 '00120 '00126 '00132 ACID, I -by wei .00132 .00132 ACID, I .00132 .00132 ACID, I .00132 .0	1.508 1.512 1.516 1.520 H ₂ SO ₄ ght. (I Densit 1.822 1.824 1.826 1.828 1.836 1.836 1.838 1.836 1.838 1.836 1.838 1.840 1.840 1.840 1.840 1.840	99999 99999 . Ad . un . y. . 24 . 53 . 05 . 00 . 50 . 50 . 50 . 50 . 50 . 50	7'5 8'5 9'2 9'7 9'7 9'7 100 9'7 100 9'9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1470 1490 1504 1515 ad Isle rams H 9 gm. of Solut 0.4 0.8 1.2 1.7 2.1 2.5 3.0 3.8 4.6 5.6 5.9 7.0 7.7 8.2 8.7 9.2	**************************************

DENSITIES : ALKALIES

	DENSITY OF AMMONIA, NH,HO . Aq Grams per c.c. at 15° C.														
Dens.	Grams 100 gm	-	e Cha	$\frac{1}{\pm 1^{\circ}}$		Gran	ns	NH ₃ in 1 litre	ICh	Dens. nange	Dens.		ns NH _i m. 1 lit	re	Dens. Change for $\pm 1^{\circ}$.
	of Sol	ution.	101		of Solution.		of Solution.								
·996 ·992 ·988 ·984 ·980	'91 1'84 2'80 3'80 4'80	9'1 18'2 27'7 37'4 47'0	00°	0019 0020 0021 0022 0023	·956 ·952 ·948 ·944 ·940	11'0 12' 13' 14'	17 31 46	105'4 115'9 126'2 136'5 146'9	0' 0'	00031 00033 00035 00037 00039	·916 ·912 ·908 ·904 ·900	23'0 24'3 25'6 26'9 28'3	3 221 5 232 8 243	9.9	*00049 *00051 *00053 *00055 *00055
·976 ·972 ·968 ·964	5.80 6.80 7.82 8.84	56.6 66 1 75.7 85.2	.00 .00	0024 0025 0026 0027	·936 ·932 ·928 ·924	16'1 18'0 19'1 20'1	82 03 25 49	157.9 168.1 178.6 189.3	0. 0. 0.	00041 00042 00043 00045	*896 *892 *888 *884	29.6 31.0 32.5 34.1	9 266 5 277 0 288 0 301	·0 ·0 ·6	*00059 *00060 *00062 *00064
'960 9'91 95'1 '00029 '920 21'75 200'1 '00047 '880 35'70 314'2 '00066 DENSITY OF SODIUM HYDROXIDE, NaHO. Aq Grams per c.c. at 18° C. The percentages indicate grams of NaOH in 100 grams of solution. (Bousfield and Lowry, 1905.)															
%	Densi	ty.	%	Den	isity.	%		Densit	y.	%	Den	sity.	%	I	Density.
0 1 2 3 4 5 6 7 8 9	'995 1'010 1'02 1'033 1'04 1'05 1'06 1'06 1'070 1'08 1'095	00 13 24 35 45 56 56 77	10 11 12 13 14 15 16 17 18 19	1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	098 208 319 429 540 650 761 871 982 982	20 21 22 23 24 25 26 27 28 29		1.2202 1.2312 1.2422 1.2532 1.2641 1.2751 1.2866 1.2968 1.3076 1.318	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	30 31 32 33 34 35 36 37 38 39	1'3 1'3 1'3 1'3 1'3 1'3 1'3 1'4 1'4	290 396 502 605 708 811 913 014 115 215	40 41 42 43 44 45 46 47 48 49	「日本」とないては、	1'4314 1'4411 1'4508 1'4604 1'4699 1'4794 1'4890 1'4985 1'5080 1'5174
-100		DEN	ISITY					CARE				CO ₃ .	Aq	1	195
	(frams]	Na ₂ CO	, in			G	rams N	a ₂ C	0, in			Grams	Na	2003 in
Densi	ity. 10	00 gm.	11	itre	Dens	ity.	10	00 gm.	1	litre	Densi	ity.	100 gm		1 litre
		of So	lutior	L.				of Sola	atio	on.			of S	olu	tion.
1.01 1.02 1.02 1.03 1.04	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1.06 1.07 1.08 1.08 1.09 1.10	87 75 83 91 90		5.71 6.37 7.12 7.38 8.62 9.43 0.19	I	60°5 68°0 76°5 85°3 94°0 03°7 12°9	1.11 1.12 1.13 1.14 1.15	5 4 2	10'95 11'81 12 61 13'16 14'24	-	122'2 132'9 143'0 150'3 164'1
	Chan	ge of d	lensity	per	1° C. (o ^o to	300), o to	7%	= '00	02;11	to 20	% = '0	004	
Gr	Change of density per 1° C. (0° to 30°), o to 7 % = '0002 ; 11 to 20 % = '0004. DENSITY OF CALCIUM CHLORIDE, CaCl ₂ . Aq Grams per c.c. at 17'9° C. The percentages indicate grams of anhydrous CaCl ₂ in 100 grams of solution. (Pickering, 1894.)														
%	Dens	ity.	%	Der	isity.	%	-	Densit	y.	%	Den	sity.	%]]	Density.
1 8 5 7 9	0,1 0,1 0,1 0,1 0,1	24 41 58	11 13 15 17 19	III	°094 °112 °131 °150 °169	21 23 25 27 29		1.18 1.20 1.22 1.25 1.25 1.27	9990	31 33 35 37 39	I. I.	294 316 338 361 384	41 43		1'406 1'429

DENSITIES OF SOME AQUEOUS SOLUTIONS

Grams per c.c. at 18°C. The indicated % is the number of grams of anhydrous substance in 100 grams of solution. (Kohlrausch, "Prakt. Phys.")

Substance.	5%	10%	15 %	20 %	25%	Substance.	5%	10 %	15 %	20 %
Duostantoo	0/0	10 /0	10 /0		20 /0		0 /0	10 /0	10 /0	
NaCl .	1.034	1'071	1.100	1.148	1.100	MgSO4.	1.020	1'104	1.100	1'220
NaNO _a	1.033	1.068	1.102	1.144	1.185	BaCl ₂ .	1.044	and the second second	1.147	1'204
NaA .	1'025	1.021	1.028	1'105	1.132	NH4CI.	1.014	1'029	1'043	1.022
H ₃ PO ₄ .	1'027	1.024	1.083	1.114	1.142	CuSO4 .	1.021	1.102	1.162	1.530
ZnSO4 .	1.021	1.102	1.162	1'232	1.302	KCl	1.031	1.064	1.008	1.133
FeCl ₃ .	1.130	1.122	1.226	1.278	1.331	KNO3 .	1.030		1.002	1.133
SrCl ₂ .	1'044	1.082	1.146	1.202	1.256	K_2SO_4 . $K_2Cr_2O_7$	1.039		1.100	
MgCl ₂ .	1.045	1 000	1.130	11/0	1.552	R2C1207	1.032	1.025	1.100	
Substance.	5%	10 %	15 %	20 %	25 %	80 %	85 %	40 %	45 %	50%
				-	-	-				50%
Substance. KBr KI	1.035	1.073	1.114	20% 1.157 1.168	25 % 1'204 1'218	1.254	1.307	1.365	1.429	-
KBr				1.157	1'204	1·254 1·273	1.307			50%
KBr KI K ₂ CO ₃ . LiCl	1*035 1*036	1.073 1.076	1'114 1'120	1.157 1.168	1'204 1'218 1'244 1'147	1.254 1.273 1.299 1.181	1 · 307 1 · 332 1 · 356	1.365	1.429 1.468	1.545
KBr. . KI. . $K_2CO_3.$ LiCl. . $CdSO_4.$	1°035 1°036 1°044 1°027 1°049	1.073 1.076 1.091 1.056 1.103	1'114 1'120 1'140 1'085 1'161	1.157 1.168 1.191 1.115 1.224	1'204 1'218 1'244 1'147 1'295	1.254 1.273 1.299 1.181 1.372	1 · 307 1 · 332 1 · 356 1 · 217 1 · 457	1·365 1·397 1·4·5 1·255	1.429 1.468 1.477	1.245 1.241
$\begin{array}{c} KBr. \\ KI \\ CO_3 \\ LiCl. \\ CdSO_4 \\ Ag \underline{N}O_3. \end{array}$	1°035 1°036 1°044 1°027 1°049 1°042	1.073 1.076 1.091 1.056 1.103 1.089	1'114 1'120 1'140 1'085 1'161 1'140	1.157 1.168 1.191 1.115 1.224 1.196	1'204 1'218 1'244 1'147 1'295 1'255	1.254 1.273 1.299 1.181 1.372 1.321	1 · 307 1 · 332 1 · 356 1 · 217 1 · 457 1 · 394	1·365 1·397 1·415 1·255 1·477	1.429 1.468	1.545
$\begin{array}{c} \mathrm{KBr.} & . \\ \mathrm{KI} & . \\ \mathrm{K}_2\mathrm{CO}_3 & . \\ \mathrm{LiCl.} & . \\ \mathrm{CdSO}_4 & . \\ \mathrm{AgNO}_3 & . \\ \mathrm{PbA}_2 & . \end{array}$	1'035 1'036 1'044 1'027 1'049 1'042 1'036	1.073 1.076 1.091 1.056 1.103 1.089 1.075	1'114 1'120 1'140 1'085 1'161 1'161 1'140 1'118	1.157 1.168 1.191 1.115 1.224 1.196 1.163	1'204 1'218 1'244 1'147 1'295 1'255 1'212	1.254 1.273 1.299 1.181 1.372 1.321 1.265	1'307 1'332 1'356 1'217 1'457 1'457 1'394 1'322	1'365 1'397 1'415 1'255 1'477 1'386	1.429 1.468 1.477 	1.545 1.541
$\begin{array}{c} \mathrm{KBr.} & .\\ \mathrm{KI} & .\\ \mathrm{K}_2\mathrm{CO}_3 & .\\ \mathrm{LiCl.} & .\\ \mathrm{CdSO}_4 & .\\ \mathrm{AgNO}_3 . \end{array}$	1°035 1°036 1°044 1°027 1°049 1°042	1.073 1.076 1.091 1.056 1.103 1.089	1'114 1'120 1'140 1'085 1'161 1'140	1.157 1.168 1.191 1.115 1.224 1.196	1'204 1'218 1'244 1'147 1'295 1'255	1.254 1.273 1.299 1.181 1.372 1.321 1.265	1 · 307 1 · 332 1 · 356 1 · 217 1 · 457 1 · 394	1·365 1·397 1·415 1·255 1·477	1.429 1.468 1.477	1.245 1.241

* 60%, 1.287; [75%, 1.380 (supersaturated)].

DENSITY OF DRY AIR AT DIFFERENT TEMPERATURES AND PRESSURES

Grams per c.c.; pressures in mm. of mercury at 0° C. lat. 45° ; g = 980.62 cms. per sec.². These densities are calculated by the expression $\frac{.001293}{(1 + .00367t)} \cdot \frac{H}{.760}$, where .001293 is due to Leduc, 1898, and Rayleigh, 1893 (p. 26); and .00367 to Regnault. For density of damp air, see p. 21.

DP655	Pressure in Millimetres (H).											
Temp. (/).	710	720	730	740	750	760	770	780				
0 ° C.	'001208	.001225	.001242	.001259	.001276	.001293	.001310	.001 327				
2	001100	.001216	'001233	'001250	'001267	.001284	.001300	'001317				
4	001100	·001207	'001224	'001241	.001258	.001274	'001291	.001 308				
2468	'001182	'001199	.001212	'001232	.001248	'001265	.001282	'001298				
8	'001173	.001100.	'001207	'001223	'001240	.001256	'001273	.001289				
10	.001165	.001182	.001198	.001214	.001231	'001247	.001264	'001280				
12	'001157	.001173	.001100	.001206	.001222	·001238	'001255	'001271				
14	.001149	.001162	181100.	'001197	'001214	.001230	.001246	'001262				
16	'001141	'COI157	'001173	'001189	.001205	'001221	'001237	'001253				
18	'001133	'001149	.001162	.001181	'001197	'001213	'001229	'001245				
20	'001125	.001141	.001157	'001173	.001189	.001205	'001220	.001236				
22	'001118	.001133	'001149	.001165	181100	.001100	'001212	'001228				
24	011100'	.001120	'00114I	.001157	.001173	.001188	'001204	'001220				
26	'001103	811100	'001134	.001149	'001165	.001180	.001199	'001211				
28	'001095	111100.	.001120	'001142	.001157	.001173	'co1188	'001203				
30	'001088	1001103	001110	.001134	.001149	.001165	.001180	.001192				

GASEOUS DENSITIES

DENSITIES OF GASES

Only those gases for which accurate density determinations have been made are included in this table (see also p. 10). Other gases will be found in the table below. For density of air under different temperatures and pressures, see p. 25.

Densities are in grams per litre (1000'027 c.cs.; see p. 10) at 0° C. under 760 mm. of mercury at 0° C. and lat. 45° (g = 980'62), *i.e.* under a pressure of 1'01323 × 10⁶ dynes per sq. cm. (After P. A. Guye, *Chem. News*, 1908.)

Gas.	Density and Observer.	Accepted density.	Density rel. to O
Air \ldots Oxygen, O_2 \ldots Hydrogen, H_2 \ldots Nitrogen, N_2 \ldots Argon, A \ldots Nitrous oxide, N_2O \ldots Nitric oxide, NO \ldots Ammonia, NH_3 \ldots Carbon monoxide, CO \ldots Carbon dioxide, CO_2 \ldots Hydrochloric acid, HClSulphur dioxide, SO_2	1'2927 L.; 1'2928 R. {1'4288 L.; 1'42905 R.; 1'42900 M.; 1'42896 Gr.; 1'4292 J.P. 0'08982 L.; 0'08998 R.; 0'089873 M. 1'2503 L.; 1'2507 R.; 1'2507 Gr. 1'7809 R.; 1'7808 Ra. 1'9780 L.; 1'9777 R.; 1'9774 G.P. 1'3429 L.; 1'3402 Gr.; 1'3402 G.D. 0'7719 L.; 0'77085 P.D.; 0'7708 G.P. 1'2501 L.; 1'2504 R. 1'9763 L.; 1'9769 R.; 1'9768 G.P. 1'6407 L.; 1'6397 Gr.; 1'6398 G.G. 2'9266 L.; 2'9266 J.P.; 2'9266 B.	Grams/litre. 1'2928 1'42900 0'08987 1'2507 1'7809 1'9777 1'3402 0'7708 1'2504 1'9768 1'6398 2'9266	0'90469 1'00000 0'06289 0'87523 1'2463 1'3840 0'93786 0'5394 0'87502 1'3833 1'1475 2'0480

B., Berthelot; G.D., Guye & Davila; G.G., Guye & Gazarian; G.P., Guye & Pintza; Gr., Gray; J.P., Jacquerod & Pintza; L., Leduc; M., Morley; P.D., Perman & Davies; R., Rayleigh; Ra., Ramsay.

The	densities	below are all	experimental	values, and	are relative to that of
			mms. at lat. 45°		

Gas.	Rel. dens.	Gas.	Rel. dens.	Gas.	Rel. dens.
Acetylene, C.H.	13:32	Helium, He	1.08	Nitrogen oxychloride,	
Arsine, AsH ₃	39.02	Hydrobromic acid,	1.1	NOCI	33.45
Boron fluoride, BF ₃ .	33.48	HBr	39.24		
		Hydrofluoric acid, HF		(N ₂ O ₄) 26°·7 C.	38.37
Butane, C4H10	29.10	Hydriodic acid, HI .	63.36	" " 39° .8	35.62
Carbon oxychloride,	8	Hydrogen selenide,	Q29731	60°.2	30.15
COCl.	50.75	H。Se	40.47	" " 80°6	26.06
" oxysulphide,COS	30.42	" sulphide, H ₂ S " telluride, H ₂ Te	17.22	" " 100°·1	24.33
Chlorine, Cl_2	36.02	" telluride, H ₂ Te	65.00	., ., 121.5	23.46
,, monoxide, Cl ₂ O	43.24	Krypton, Kr	41.2	"(NO ₂)154°·0	22.88
, dioxide, CIO_2 .	33.74	Methane, CH ₄ (1909)	8.03	" " 183°·2	22.73
Cyanogen, C_2N_2	30.10	Methylamine,		Phosphine, PH ₃ .	17.58
Ethane, C_2H_6	15.22	CH ₃ NH ₂	15.64	Phosphorus chloro-	-0.10
Ethylamine,		Methyl chloride,		fluoride, PCl ₂ F ₃	70.19
$C_2H_5NH_2$	22.77	CH ₃ Cl	25.00	"oxyfluoride, POF ₃	53.29
Etnyl chloride,	1.1.1	Methyl ether, C2H6O	23.41	"pentanuoride, PF	0501
Ethul fuerida C H E	32.13	"fluoride, CH ₃ F	17.07	,, trinuoride, fr ₃	4370
Ethyl nuoride, C ₂ H ₅ F	24.02	Methylene fluoride,		Silison Augrida SiF	2109
Ellipsing F	14-27	$CH_2F_2 \dots$	20'21	Vanon Vo	5=13
r_{100} ruorine, r_2	18.97	Neon, Ne (1910)	10.92	Achon, Ac	\$ 35
C	ENSIT	Y OF SATURATED WAT	ER VA	POUR	81

Dens	sities in	((Zeuner, 1890.)							
Atmos.	0	0.2	1	1.2	2	2.5	3	3.2	4	4.2
0 5 10		0.315 3.01 5.52	0.606 3.26 5.76	0.887 3.52 6.01	1.16 3.77 6.25	1.43 4.02 6.50	1.70 4.27 6.74	1.97 4.52 6.99	2·23 4·77 7·23	2.49 5.02

26

ELASTICITIES Young's Modulus, or Longitudinal Elasticity, E in dynes per sq. cm. Rigidity, Torsion Modulus, or Shear Modulus, <i>n</i> in dynes per sq. cm. Volume Elasticity, Cubic Elasticity, or Bulk Modulus, <i>k</i> in dynes per sq. cm. Compressibility (cubic), $C = 1/k$. Poisson's Ratio, $\sigma =$ lateral contraction per unit breadth/longitudinal extension per unit length. For a homogeneous isotropic substance— $n = \frac{E}{2(1 + \sigma)} \dots (a); \sigma = \frac{E}{2n} - 1 \dots (b); k = \frac{E}{3(1 - 2\sigma)} \dots (c)$ For an isotropic solid Poisson's Ratio must lie between $+\frac{1}{2}$ and -1 , but for some materials it may, when deduced from E and <i>n</i> , exceed +1. (See Searle's "Elasticity.") 1 megabar = 10 ⁶ dynes per sq. cm. = '987 atmos. = 1/1'013 atmos. = the pressure measured by 750'15 mms. of mercury at o° C. sea-level, and latitude $45^\circ = 749'66$ mms. at o° in London. The elasticities of a substance depend considerably upon its history. The extent of the agreement between the calculated and observed values of <i>n</i> and of σ below gives an indication of the degree of isotropy of the metals used. (Grüneisen, Reichsanstalt, <i>Ann. d. Phy.</i> , 1908.) ELASTICITIES OF METALS											
	Young's	Rigid	ity, <i>n</i> .	Poisson'	s Ratio, σ.	Vol. Elast.		Commerce			
Metal at 18° C. (see also below and pp. 28, 29).	Modulus, E. By static method or longl. vibns.	By oscilln. method.	Calcd. by formula (a).	Ob- served.	Caled. by for- mula (b).	Calcd. formula	by	Compressy C. per megabar (calculated).			
Platinum (C), pure Silver (W), pure . Tin (C), pure . Bronze (C) ‡ Constantan (W) § . Manganin (W) . (C) means cast ; (W ‡ 85.7 % Cu, 7.2	7'05×10 ¹¹ 3'19 4'99 12'3 8'0 21'3 20'9 1'62 20'2 11'3 16'8 7'90 5'43 8'08 16'3 12'4 V) worked. % Zn, 6'4 %	4.55 2.77 8.12 5.11 6.10 2.87 	Fe, ·4 % C % Cu, 40 %		*310 		6 Cc	100			
The (experimental) re	sults below a	are mostly fo	or ordinary	labora	tory ma	aterial	s, ch	niefly wires.			
Substance.		's Modulus, E	-	-			Poiss	on's Ratio, σ .			
Copper 12'4-1 Iron (wrought) 19-2 ,, (cast) 10-1 Steel 10'5-2 Zinc (1 % Pb) 8'7 § Brass (c. 66 Cu, 34 Zn) 9'7-1 German silver 11'6 Platinoid \dagger 13'6 Phosphor bronze \ddagger 12'0 Quartz fibre 5'18 Indiarubber 0'48-6 Jena Glasses, Crowns 6'5-7 """"""""""""""""""""""""""""""""""""		S. S. 52 *8 *0	7.7-8.3 3.5-5.3 7.9-8.9 3.8 6.3.5 4.3-4.7 3.60 4.36 3.0 .00016 2.6-3.2 2.0-2.5	S. S. H.	14.3 × 10 14.6 9.6 18.1 	М. М.	c	26 S. 27 23-'31 25-'33 21 34-'40 37 37 37 38 S. 46-'49 Sc. 20-'27 22-'26			
(G.) Grüneisen, 190; (Sc.) Schiller, 1906. ‡ 92.5 0	7. (H.) * 60 Cu, 7 Sn, *5 1	Horton, 190 5 Cu, 15 Ni, P.	95. (M. 25 Zn. § Pur) Malloc † Gen e Zn, 12	k, 1905. man silve 5 × 10 ¹¹	(S. r with a dynes/cn) Se little n ² .	arle, 1900. e tungsten.			

TENSILE STRENGTHS

	ELASTICITIES (contd.)											
Substance.	Young's Modulus, E.		ature coefficient Elast $_{15}$ $(1 - a)$	Compressibility C. per megabar (i.e. 10 ^s dynes/cm. ²) (Buchanan, Proc. R. Soc., 1904).								
	dynes/cm.2	At 15° C.	a for E.*	a for n †		-300 megabars pp. 27, 29).						
Iridium Rhodium Tantalum Invar . 90 Pt, 10 Ir Silk fibre Spider thread. Catgut . Ice (-2°) Quartz (crystal) Marble . Oak . Deal . Mahogany Teak .	3'2 (G.) 18'6 (Bo.) 14'1 21'0 '65 ‡ '3 (B.)§ '32 '28 6'8 2'6 1'3 '9	Copper Gold Iron Steel Platinum . Silver Tin Brass German sil Phosphor-b Quartz fibre (A.) Amagat. (Br.) Bridgm Schaefer, 190	3.64 4.8 2.3 2.4 .98 7.5 3.7 ver ronze (B.) Bento an, 1909. (G	4'0 3'3 7'3 2'6 1'0 4'5 5'9 4'6 6'5 <i>c</i> .3 -1'2 on, 1907 and .) Grüneisen, on, 1904 and	1907. * Wass	*88 *80 2*8 (A.) 3*2 *56 3*0 2*57 *51 (Br.) *. Bolton, 1905. muth, 1906, and minishes rapidly						

TENSILE STRENGTHS OF MATERIALS

Tenacities or breaking stresses in dynes per sq. cm. The elastic limit is always exceeded before the breaking stress is reached. The process of drawing into wire seems to strengthen the material, and the finer the wire the greater is the breaking stress. (See Poynting and Thomson's "Properties of Matter.")

stress. (See Poynting and Thomson's "Properties of Matter.") For crushing and shearing strengths, see Ewing's "Strength of Materials" or one of the Engineering "Pocket-books." For bursting strengths of tubing, see p. 39; for tensile strengths of liquids, see p. 39.

To reduce to kilogrammes per sq. mm., it is sufficient to divide by 10^8 ; to lbs. per sq. inch, divide by 7×10^4 . • Along the grain.

COMPRESSIBILITIES OF ELEMENTS

Coefficient of compressibility $C = \frac{I}{V} \cdot \frac{\delta V}{\delta p}$, where δV is the change in volume of a volume V under a change of pressure δp (temp. constant).

The values of C below are per megabar (*i.e.* 10⁶ dynes per sq. cm.). To express as compressibility per atmosphere, increase C by $\frac{1}{80}$ of its value. Room temp. Pressure range, 100-500 megabars. Based on compressibility of mercury = '0₅371 per megabar. The results show a periodic relation with atomic weight. See also pp. 27, 28. (Richards, Zeit. Phys. Chem., 61, 1907, and *Journ. Chem. Soc.*, 1911.)

Element.	C	Element.	C	Element.	C	Element.	C
Al Sb As Bi Br Cd Cs Ca C,diamond graphite	$\begin{array}{c} 1^{\circ}3 \times 10^{-6} \\ 2^{\circ}2 \\ 3^{\circ}2^{\circ}8 \\ 3^{\circ}2^{\circ}8 \\ 3^{\circ}5^{\circ}1^{\circ}8 \\ 3^{\circ}75 \\ 3^{\circ$	Cl (liq.) . Cr Cu Au I Fe Pb Li Mg Mn	95×10 ⁻⁶ '7 " '54 " '47 " 13 " '40 " 2'2 " 8'8 " 2'7 " '67 "	Hg Mo Ni Pd P, red . white . Pt K Rb Se	$\begin{array}{c} 3.71 \times 10^{-6} \\ 2.26 \\ .27 \\ .38 \\ .90 \\ .203 \\ .203 \\ .21 \\ .315 \\ .315 \\ .315 \\ .315 \\ .315 \\ .3118 \\ .3118 \\ .3118 \\ .31118 \\ .31118 \\ .31118 \\ .31118 \\ .31118 \\ .311118 \\ .311118 \\ .3111111 \\ .31111111 \\ .31111111 \\ .311111111 \\ .3111111111 \\ .31111111111$	Si Ag Na S Tl Sn Zn	*16×10 ⁻⁶ *84 " 15'4 " 12'5 " 2'6 " 1'7 " 1'5 "

COMPRESSIBILITIES OF LIQUIDS

C = compressibility per megabar (*i.e.* 10^6 dynes per cm.²). To express as compressibility per atmosphere, increase C by $\frac{1}{80}$ of its value.

As the pressure increases C becomes less. In general a rise in temperature increases the compressibility of a liquid; but water, however, shows a minimum value of C at about 50° C. (Amagat). The compressibility of a solution diminishes as the concentration increases (see Poynting and Thomson's "Properties of Matter" and Auerbach in L.B.M.).

Where the limits of pressure are not given, they are-for Amagat, 8-37 atmos. ; for Röntgen, 8 atmos. ; for Richards, 100-200 atmos.

Liquid.	Temp.	Comp. C per megabar.	Liquid.	Temp.	Comp. C per megabar.
Water, 1-25 atmos. (A.) 900-1000 , (A.) 900-1000 , (A.) 2500-3000 , (A.) Sea-water (Grassi, 1851) Mercury . (A.) "(Ri.) Methyl alcohol, CH ₃ OH (A.) Ethyl alcohol, CH ₃ OH 150-200 atm. (A.) 150-200 atm. (Ba.) Propyl alcohol, C ₃ H ₇ OH . (R.) Propyl alcohol iso- (R.) Butyl alcohol, C ₄ H ₉ OH (R.) Butyl alcohol iso- (R.) Amyl alcohol, C ₅ H ₁₁ OH . (R.) Chloroform . (R.)	15 198 14·2 20 15 14·7 0 310 17·7 17·8 17·4 17·9	THE PRESS	Carbon tetrachloride (Ri.) Carbon bisulphide (A.) Ether, 1-50 atmos. (A.) 900-1000 ,, (A.) Methyl acetate . (A.) 1, bromide . (A.) , bromide . (A.) , bromide . (A.) , bromide . (A.) , chloride . (A.) (C. & S.) Glycerine, $C_3H_5(OH)_3$ (Q.) Olive oil (Q.) Paraffin oil (de Metz, 1890) Petroleum (Martini) . Pentane, C_5H_{12} . (G.) Benzene, C_6H_6 . (R.) Turpentine, $C_{10}H_{13}$ (Q.)	0 198 14·3 13·3 99·3 15·2	89.6 × 10 ⁻⁶ 85.9 " 145.2 " 64.2 " 142.2 " 95.8 " 102.7 " 291.3 " 151.1 " 40.2 " 24.8 " 62.5 " 61.9 " 68.7 " 314 " 90.8 " 78.14 "

(A.) Amagat, Comptes Rendus, 1884-93; (B.) Bartoli, 1896; (Ba.) Barus, 1891; (C. & S.), Colladon and Sturm, 1827; (G.) Grimaldi, 1886; (Q.) Quincke, Wied. Ann., 19, 1883; (R.) Röntgen, Wied. Ann., 44, 1891; (Ri.) Richards, 1907.

VISCOSITIES

VISCOSITIES OF LIQUIDS

If two parallel planes are at unit distance apart in a fluid, and one of them is moving in its own plane with unit velocity relatively to the other plane, then the tangential force exerted per unit area on each of the planes is equal to the viscosity. The dimensions of a viscosity are $ML^{-1}T^{-1}$.

For the capillary-tube method of determining viscosities, Poiseuille's formula is, Viscosity $\eta = \frac{\pi \rho r^4 t}{8 \ell V}$, where ρ is the pressure difference between the two ends of the tube, r the radius of the tube, ℓ its length, V the volume of liquid delivered in a time t.

VISCOSITY OF WATER

Determined by an efflux method and corrected for kinetic energy of outflow. (Hosking, *Phil. Mag.*, 1909, 1, 502; 2, 260.)

Temp. V	iscosity.	Temp.	Visc	osity.	Temp.	Visco	osity.	Ter	np. V	Viscosity.
0° C. 5 10 15	c.g.s. *01793 *01522 *01311 *01142	20° C. 25 30 40	.00.	006 893 800 657	50° C. 60 70 80	*00. *00.	550 469 406 356	90 100 124 153		.00316 .00284 .00223 .00181
	Te esp	eouo		de Haas SITY OF	, 1894. MERCUR	Y	100		(Koch,	1881.)
Temp.	-20°	c. C	p	20°	50°		100°	2	00°	300°
Viscosity (c.	g.s.) '018	6 .01	69	·0156	.0141		0122	.0	101	.0093
VISCOSITIES OF VARIOUS LIQUIDS (see Stöckl in L.B.M.).										
Substa	ince.	0° C.	10°	10100	-	40		50°	60°	70°
" diox Benzene, C ₆ Aniline, C ₆ H Glycerine, C	$C_2H_6O C_3H_8O C_3H_8O C_3H_8O$ $CHCl_3 C_4CHCl_3 C_4CHCl_3 C_4CHCl_4 C_4CHCl_4 C_4CO C_4CC_4CO C_4CC_4CO C_4CC_4CC_4CC_4CC_4CC_4CC_4CC_4CC_4CC_4$	·0177 ·0388 ·0456 ·00286 ·00700 ·0135 ·00429 	·0068 ·0143 ·0292 ·0324 ·0023 ·0062 ·0113 ·0039 ·0065 ·0113 ·0039 ·0065 ·0113 ·0039 ·0065 ·0117 ·0178 ·0035 ·0025 ·0035 ·0224 ·0129 ·0185 ·0224 ·0129 ·0185 ·0224 ·0113 ·0035 ·0035 ·0035 ·0035 ·0035 ·0035 ·0035 ·0035 ·0035 ·0035 ·0035 ·0035 ·0035 ·0035 ·0035 ·0035 ·0035 ·0055 ·0113 ·0036 ·0013 ·0039 ·0065 ·0113 ·0039 ·0065 ·0113 ·0039 ·0065 ·0113 ·0039 ·0065 ·0113 ·0039 ·0065 ·0113 ·0039 ·0065 ·0113 ·0039 ·0065 ·0113 ·0039 ·0065 ·0113 ·0039 ·0065 ·0075 ·0055 ·0113 ·0035 ·0055 ·0113 ·0035 ·0055 ·0113 ·0035 ·0055 ·0055 ·0115 ·0035 ·0055	0110 022 022 022 022 022 022 022	 0098 0178 0175 00213 00213 0051 0084 0051 0084 0053 0084 0053 00343 00563 00319 00127 00296 0146 0096 0130 0113 00317 00317 00317 00317 00317 00317 00317 	9 008 014 013 2 1 004 1 007 2 003 3 2 004 024 024 024 024 024 024 024	327 10 10 100 10 10 100 10 10 100 10 10 110 10 10 111 10 10 117 10 10 117 10 10 117 10 10 117 10 10 117 10 10 110 10 10 120 10 10 138 10 10 141 10 10 150 10 10 164 10 10 100 10 10 100 10 10 110 10 10 110 10 10 110 10 10 110 10 10 110 10 10 110 10 10 110 10 10 110 10 10 110 <t< td=""><td>0396 0697 113 103 0426 0653 0437 189 0746 0926 0241 103 079 075 097 086 0299 0284</td><td>·00349 ·00591 ·00919 ·00804 ·00390 ·00583 ·00390 ·0156 ·00821 ·00821 ·00821 ·00821 ·00821 ·0085 ·0070 ·0067 ·0085 ·0076 ·0085</td><td></td></t<>	0396 0697 113 103 0426 0653 0437 189 0746 0926 0241 103 079 075 097 086 0299 0284	·00349 ·00591 ·00919 ·00804 ·00390 ·00583 ·00390 ·0156 ·00821 ·00821 ·00821 ·00821 ·00821 ·0085 ·0070 ·0067 ·0085 ·0076 ·0085	

7

_

Strength For a compl	of solution	ns I no	ormal. Visco	SOME AQUEC sities relative , and Moore,	to that of	water a	it same temp.			
Substan	ice.	Tem	p. Relative Viscosity	Substa	nce.	Tem	p. Relative Viscosity.			
Ammonia . Ammonium calcium chlo Hydrochlorio	oride .	25° 17•6 20 25		Potassium o Potassium i Sodium hyd Sulphuric a	odide lrate	17° 17° 25 25	6 C. 98 91 1'24 1'09			
VISCOSITIES OF SOLIDS Venice turpentine * at 17°·3, 1300, c.g.s. Shoemaker's wax † at 8°, 4.7 × 10 ⁶ . c.g.s. Pitch † at 0°, 51 × 10 ¹⁰ ; at 15°, 1.3 × 10 ¹⁰ . Shoemaker's wax † at 575°, 11 × 10 ¹² ; Glacier ice, \ddagger 12 × 10 ¹³ . 710°, 4 × 10 ¹⁰ . * R. Ladenburg, 1906. † Trouton and Andrews, 1904. ‡ Deeley, 1908.										
coefficient of vary as the except at ver Of the fo the convenie where α is a (<i>Phil. Mag.</i> , bringing abo expression η_i Sutherland's for pressures is thus of th K is a consta Theory of G	axwell she f viscosity square re- y low pre- ormulæ co- ent but of const.; a 31 , 1893) out collisi $a = \eta_0 \frac{273}{\theta}$. constant, such tha- te form (we tases; " an	owed is of a solution of a solution of a so	in 1860 that, gas would b the absolute ; the second ing gaseous v pproximate r e less manag by taking ac hich otherwis $\left(\frac{\theta}{273}\right)^{\frac{3}{2}}$, when formula onl e's law is app ends itself to r, <i>Phys. Rev.</i> , ckl in L.B.M	ASES AND on the basis e independent e temperature deduction is viscosity (η) a elation of O. eable but accord count of the of the would have the would have the θ is the alt ty holds for the proximately of graphical tree 1907, 1909 <i>et</i> . For a bibli- te values below	s of the t of the p . The finot not support nd temper E. Meyer curate fort effects of the been av osolute tem emps. abor beyed. S eatment), e seq.; O. Hography o	kinetic ressure rst rel tred by ature er, η_t : nula o molecu- roided, mperate we the utherla $\theta = \frac{K\theta}{\eta}$ 2. Mey f gase	e, and would ation is true rexperiment. (t), there are $= \eta_0 (I + \alpha t)$, f Sutherland lar forces in derived the ure, and C is critical, and und's relation $\frac{3}{2}$ - C, where er's "Kinetic ous viscosity,			
Gas or Vapour.	Temp.	η.	Observer.	Gas or Vapour.	Temp.	η.	Observer.			
Air -21° C. $\frac{\times 10^{-6}}{164}$ Breitenbach m (1901)Nitrogen (contd.) 0° C. $\frac{\times 10^{-6}}{166}$ v.Obermayer m (1876)0173,, (1901)(contd.)11171,, (1876)0171Hogg, 1905(contd.)11171,, (1876)0170G.&G.*1908Helium0189Schultze, 'o10171Fisher, 1909Helium0189Schultze, 'o115181MarkowskiNeon.1519799.6221,, (1904)Neon.153121302299BreitenbachArgon.02101589,, 1152211589,, 11599106,, 115222302139,, 10187v.Obermayer.0129Graham, '460187y.Obermayer.090Puluj, 1878018701870187018701870187 <td< td=""></td<>										
1, 37 (c.). (y (cm./iec.) (h in cmb.	001599.6302-21015993020	171 170 171 181 221 299 82 86 89 106 139 187	Hogg, 1905 G.&G.*1908 Fisher, 1909 Markowski , (1904) Breitenbach , (1901) """ """ """ v.Obermayer	Helium . Neon Argon Krypton . Xenon Chlorine .	54 0 15 185 15 0 15 184 15 15 15 0 20	190 189 197 270 312 210 221 322 246 222 129 147	Schultze, '01 " Rankine, '10 Schultze, '01 " Rankine, '10 Graham, '46			

VISCOSITIES

Allocate sectors	VISCOSITIES OF GASES AND VAPOURS (contd.)										
Gas or Vapour.	Temp.	η.	Observer.	Gas or Vapour.	Temp.	η.	Observer.				
Mercury (vap.) Nitrous oxide Nitric oxide Sulphur dioxide Sulphuret ⁴ hydrogen Cyanogen .	380 -21 0 100 0 20 0	$\times 10^{-6}$ 162^{*} 532 656 125 135 133 165 186 123 138 115 130 95 107	S. Koch, '83 " v.Obermayer " (1876) Gräham, '46 " " " " " " "	dioxide Methane, CH4	0 20 -21 0 15 99·3 0 17 78	×10-6 186 268 104 120 89 97 102 128 83 89 142 69 73 79 99	Breitenbach ,, (1901) Graham, '46 Breitenbach ,, (1901) ,, (1				
Carbon monoxide Carbon dioxide	0 20 -21 0 15	163 184 129 139 146	v.Obermayer " (1876) Breitenbach " (1901) " "	(vap.)	17·4 61 0 19 100	103 189 69 79 118	", (1901) Schumann ", (1884) ", "				

* Extrapolated.

TEMPERATURE COEFFICIENTS OF VISCOSITY

Based largely on W. J. Fisher's computations (ref. above).

Gas or Vapour.		Meyer's Const. a			therland's Consts.	Meyer's Const. a
Data Astronomia -	C K	const. a	The sounds and	C	K	const. a
Air Hydrogen Oxygen Nitrogen Helium Neon Argon Krypton	72 66 ,, 127 175 ,,	*00273 	Xenon Water (vap.) Carbon monoxide "dioxide . Nitrous oxide Ethylene Chloroform (vap.)	72 102 240 313 226	$\begin{array}{c} 246 \times 10^{-7} \\ 135 \\ 158 \\ 172 \\ 106 \\ 159 \\ 159 \\ \end{array}$	

SIZE, VELOCITY, AND FREE PATH OF MOLECULES

- ρ = density of gas in gms./c.c. at o^o C. N = number of molecules of gas per c.c. and 76 cms.
- p = 1 atmos. = 1.0132 × 10⁶ dynes/cm.²
- θ = absolute temperature.
- R = gas constant.
- $b = \tilde{b}$ of Van der Waal's equation (p. 34).
- k = thermal conductivity of gas (p. 52).
- c_e = specific heat at const. volume (p. 58).
- $\eta =$ viscosity of gas (p. 31).

- at o° C. and 76 cms. σ = molecular diameter in cms.
- m = mass of a single molecule (in grams).
- G = square root of mean square molecular vel. (cm./sec. at o° C.).
- Ω = mean molecular velocity (cm./sec.). L = length of mean free path in cms.

Assuming a Maxwell-Boltzmann distribution of velocities-

$$G = \sqrt{3p/(Nm)} = \sqrt{3p/\rho} = \sqrt{3R\theta}$$
$$Q = 4G/\sqrt{6\pi} = 0.021G$$

- $L = \eta/(31\rho\Omega) = 202\eta/\sqrt{p\rho}$ Collision frequency = $\Omega/L = 5 \times 10^9$ per sec. for O₂

32

SIZE, VELOCITY, AND FREE PATH OF MOLECULES (contd.)

MOLECULAR SIZE

The molecular diameter σ has been calculated by the following formulæ :— 1. The **viscosity** η of a gas is a function of the size of its molecules.

$$\eta = \frac{44\rho\Omega}{(\sqrt{2}N\pi\sigma^2)} \quad . \quad . \quad Jeans \quad . \quad \sigma = \frac{10912\rho G}{(N\eta)}$$

2. The thermal conductivity, $k = 1.6\eta c_v = .158\rho\Omega c_v/N\sigma^2$

:. $\sigma = \{ :146\rho Gc_v / (Nk) \}^{\frac{1}{2}}$

3. Van der Waal's, $b = 2\pi N \sigma^3/3$: $\sigma = (3b/(2\pi N))^3$

4. Limiting density, *i.e.* density D of densest known form. $\sigma = \frac{6\rho}{(\pi DN)^3}$

The values of ρ and η used in calculating G and L below are given on pp. 26, 31. The values of σ tabulated are mostly taken from Jeans' "Dynamical Theory of Gases," or Rudorf (*Phil. Mag.*, 1909, p. 795). Jeans takes N = 4 × 10¹⁹, while in the table following, the more recent value 2.75 × 10¹⁹ has been used.

Contraction Solida		Mean free	Mole	ecular diamet	er σ deduced	from
Gas.	G at 0° C.	path, L.	η	η k		Lt. ρ [= D]
and a fire	cm./sec.	cm.	cm.	cm.	cm.	cm.
Hydrogen, H2.	18.39 × 104	18.3 × 10	6 2.41 × 10-8	2.40 × 10-8		2.05×10^{-8}
	13.11 ,,	28.5 ,,	2.18 "		2'30 "	4'34 "
Nitrogen, N2 .	4'93 "	9.44 ,,	3.20 "	3.31 "	3.53 "	2'97 "
Oxygen, O ₂ .	4.61 ,,	9.95 "	3.39 "	3.11 "		2.79 "
Neon, Ne	5.61 "	19'3 "	-	- "		
Argon, A	4.13 "	10'0 "	3.36 "	and and the	2.86 "	4.43 "
Krypton, Kr .	2.86 "	9.49 ,,	- "		3.14 "	4'93 "
Xenon, Xe	2.28 ,,	5.61 "	-	-	3.42 "	4.88 ,,
Chlorine, Cl .	3.07 "	4.57 ,,	4.96 "			- "
Methane, CH,	6.48 "	7.79 "			_	
Ethylene, C ₂ H ₄		5.47 "	4.55 "	4.68 "	-	5.26 ,,
Carbon mon-	1	5 ,,	1 33 "		Serie Brief	, n
oxide, CO .	4'93 "	9.27 "	3.20 "	3.31 "		a multiplice of the
Carbon di-	4 75 11	, , ,,	55- 11	55- 11	and the state	0037
oxide, CO ₂ .	3.92 "	6.29	4.18 "	4'32 ,,	3.40 "	4.42 ,,
Ammonia, NH3	6.28 "	6:00	- "	- "	545 ,	
Nitrous oxide,	· · · · ,,	095 "	52.2 1001	1 2 64		- CLORDZ.
N ₂ O	3.92 "	6.10	4.27 "	4'20 "		4.28 "
Nitric oxide,	392 "	, ,,	4.27 "	4 20 ,,		4 50 "
NO	4.76 "	9.06	3.40 "	3.40 ,,		
Sulph. hydro-	470 "	900 "	540 ,,	3.40 ,,	. Di Sú Suite	Tost Autority
gen, H ₂ S.	4.44 .,	5.90 ,,			a optiziono	n obtion
Sulph. dioxide,	4 44 ',	, ,,	A Day and the state	1 Marshall	and Balyo	P CATOON T
SO ₂ · · · ·	3.22 "	4.57 "	TITL YOUR	175	. abinqian	Carbon U
Hydrochloric	3 22 "	4 5/ ,,	A DATA CONTRACT		- Hereit	unormal 3.
acid, HCl .	4.30 "	6.86	Carter States	A Street a	and shake	a second and
Water, H ₂ O .	9100	=	1:00		· 0%	2.10
mater, 1120 .	7.00 "	7'22 ,,	4.09 "	A CIRCH A	Net rox released	3.45 "

The formulæ above assume the molecules to be spherical. Sutherland (*Phil.* Mag., 1910), adopting his formula (see p. 31) for the variation of η with temp., obtains the following values of σ . Unit, 10⁻⁸ cm.

H	He	A	02	N ₂	N ₂ 0	NO	CO	C02	C ₂ H ₄	C1,2
2.17	1.92	2.66	2.21	2.95	3.33	2.59	2.74	2.90	3.31	3.76

CRITICAL DATA

CRITICAL DATA AND VAN DER WAAL'S CONSTANTS

Critical temperature, θ_c , is the highest temperature at which a gas can be liquefied by subjecting it to pressure.

Critical pressure, p_e , is the pressure (of gas and liquid) at the critical temperature. **Critical volume**, v_e , is here defined as the ratio of the volume that a gas has at the critical temp. and press. to that which it would have at 0° C. and 760 mms., *i.e.* it is the volume of gas at θ_e and p_e which at N.T.P. would have unit volume. Some writers take the critical volume to be the specific volume (c.cs. per gram) at θ_e and p_e .

Most of the characteristic equations of state which have been proposed for gases take the form $(\not + a/v^2)(v - b) = R\theta$, where \not is the pressure, v the volume, θ the absolute temperature of the gas, and R is the "gas constant." *a* expresses the mutual attraction of the molecules. The "covolume" b is proportional to the space occupied by the molecules : O. E. Meyer takes $b = 4\sqrt{2}$ (volume of molecules). Van der Waal assumes *a* is constant : if this were true the constant volume and thermodynamic scales of temperatures would agree—they do not, however (see p. 44). Joule and Thomson, Clausius, Amagat, and Berthelot, among others, regard *a* as a function of θ (e.g. $a \propto 1/\theta$), and b as constant.

Assuming with Van der Waal that *a* and *b* are constants, the equation can be regarded as a cubic in v, which has its three roots equal at the critical point, whence $a = 27 R^2 \theta_c^2/(64 p_c)$, and $b = R \theta_c/(8 p_c)$.

The values of *a* and *b* below are largely from Rothe (L.B.M.). Taking pressures in atmos., and the volume of the gas at 0° C. and I atmos. as I, $R = pv/\theta = 1/273$. In these units, *b* is in terms of the volume of the gas at 0° C. and I atmos.

Example.—For CO₂ $p_e = 73$ atmos. and $\theta_e = 273 + 31^{\circ}1 = 304^{\circ}1$, whence $b = 304^{\circ}1/(8 \times 273 \times 73) = 00191$ of the volume of the gas at 0° C. and 1 atmos. See Preston's "Heat," Nernst's "Theoretical Chemistry," Young's "Stoichiometry," Berthelot (*Trav. et Mém. Bur. Intl.*, 1907). * Indicates calculated values.

Substance.	C	ritical		Van der	Waal's	01
Substance.	Temp. θ_c	Press. p_c	Vol. v_c	8.	b.	Observer.
Hydrogen	- 234° 5 C.	atmos. 20	·00264*	000.12	.00088	Olszewski, '95
	-118	50	00426*		.00142	v.Wroblewski, '85
	- 146	33	'00517*		.00165	and the second second second
	- 140	39	.00468*		.00156	Olszewski, '84"
Helium	- 268	2.3	.00299*	0000615	.000995	Onnes, 1908
Neon	<-210	-				
Argon	-117.4	52.9	·00404*	00259	'00135	Ramsay and
Krypton	-62.2	54'3	.00532*		00178	Travers, 1900
Xenon	14.7	57'2		.00818	.00230	A share a share it
Chlorine	146	93.5		01063	'00205	Knietch, '90
Bromine	302	131*		01434	'00202	Nadejdine, '85
Water	365	194.6		8110	.00120	Battelli, '90
Hydrochloric acid	52'3	86	1 C C	00697	00173	Dewar, 1884
Carbon monoxide	-141.1	35.9	.00202*		.00108	v.Wroblewski, '83
Carbon dioxide	31.1	73		00717	16100.	Andrews, 1869
Carbon bisulphide	273	72.9	.0000	02316	00343	Battelli, 1890
Ammonia, NH ₃	130	115.0	.00481*		.00101	Dewar, 1884
Nitrous oxide, N ₂ O .	38.8	77'5		00710	.00184	Villard, 1894
Nitric oxide, NO	-93.2	71'2	.00347*		00116	Olszewski, '85
Nitrogen tetroxide, NO ₂ Sulphuretted hydrogen	171.2	147*	00413	00756	.00138	Nadejdine, '85
Sulphur dioxide	100	88.7	21	88800	.00193	Olszewski, '90 Sajotschewsky,'78
Mailan CH	155.4	78.9		01316	'00249 '00162	Dewar, 1884
Acetylene, C_2H_2	-955 36.5	50 61.6	'00488* '0069*	00357		Mackintosh, '07
Ethylene, C_2H_4 .	10	51.7	0009		·00230 ·00251	Olszewski, '95
Ethane, C_2H_6	34	50'2	.00839*		00251	CISZEWSKI, 95
Ethylalcohol, C2HoOH	243	62.7		02407	0020	Ramsay & Young,
Ether $(C_2H_\delta)_2O$	197	35.8		03496	.00602	Battelli, '92
Chloroform, CHCl ₃ .	260	54.9	0133	0293	.00445	Sajotschewsky,'78
Aniline, C ₆ H ₅ NH ₂ .	425.6	52'3		05282	.00011	Guye & Mallet, '02
Benzene, C ₆ H ₆	288.5	47.9		03726	.00537	Young, 1900
,		41.9		-5/		

DIFFUSION OF GASES

The Coefficient of diffusion, D, is the mass of the "diffusing" gas which crosses unit area in unit time under unit concentration gradient : the dimensions of the coefficient are cm.² sec.⁻¹. D is inversely proportional to the total pressure of the two gases, and roughly proportional to the square of their absolute temperature. Total pressure I atmosphere. H_2 — O_2 implies that H_2 is diffusing into O_2 .

(See Meyer's "Kinetic Theory of Gases," and v. Steinwehr in L.B.M.)

Gases.	<i>t</i> ° ℃.	D	Gases.	<i>t</i> ° ℃.	D	Gas (Winkelmann).	ℓ° C.	1	D inte	0
			the game?		Ohearsen			Air.	C02	H2
$\begin{array}{c} H_2 & - O_2 & \cdot \\ H_2 & - O_2 & \cdot \\ H_2 & - CH_4 \\ H_2 & - CO_2 & \cdot \\ H_2 & - CO_2 & \cdot \\ H_2 & - CO_2 & \cdot \\ H_2 & - O_2 & H_4 \\ H_2 & - N_2 O \\ O_2 & - N_2 & \cdot \\ O_2 & - H_2 & \cdot \end{array}$	000000 0	-681, O. -625, O. -649, O. -538, O. -483, O. -535, O. -171, O.	$CO - H_2 \cdot CO - C_2 H_4$ $CO_2 - CO - CO_2 - CO - CO_2 - CO - CO_2 - Air - CO_2 - CH_4$ $CO_2 - CH_4 - CO_2 - CH_4 - CO_2 - O_2 \cdot CO_2 - N_2 O - O_2 - N_2 O - O_2 - N_2 O - O_2 - M_2 O - M_2 O - O_2 - M_2 O - M$	0 000000	'131, O. '141, L. '142, L. '146, O. ; '16, L.	Formic acid . Acetic Propionic acid Butyric acid . Isobutyric acid Me. alcohol . Et. ,, . Propyl alcohol Butyl ,, . , , .	000000000	131 106 082 053 07 132 102 080 068 126	·071 ·058 ·037 ·047 ·088 ·068 ·058 ·058 ·048	·404 ·326 ·201 ·271 ·500 ·378 ·315 ·272
H ₂ O—Air H ₂ O—Air	8 15 18	'239, G. '246, G. '248, G.	CS ₂ —Air	17	·66, Sc.	Benzene Me. acetate . Et. formate . Et. acetate . Et. butyrate . Et.iso-butyrate	0000	·075 ·084 ·085 ·071 ·057 ·055	·056 ·057 ·049 ·041	·328 ·336 ·273 ·224

G., Guglielmo, 1884; H., Houdaille, 1896; L., Loschimdt, 1870; O., v. Obermayer, 1887; S., Stefan, 1879; Sc., Schulze, 1897.

DETERMINATION OF ALTITUDES BY THE BAROMETER

Babinet's formula (*Compt. Rend.*, 1850) is, Altitude = $\frac{C(H_1 - H_2)}{H_1 + H_2}$, where H_1 = barometer reading at lower station, H_2 at upper station. If altitudes are in metres, and barometric heights in mms.,

$$C = 32(500 + t_1 + t_2)$$

where t_1 and t_2 are the corresponding station temperatures (° C.).

In the table below the mean temperature, $(t_1 + t_2)/2$, is taken as 10° C., and the barometric height at sea-level as 760 mm., so that altitudes are in metres above sea-level. The values are of course only approximate. Babinet's formula is not applicable to very great altitudes.

Altitude	0	100	200	300	400	500	600	700	800	900
metres.	mm.									
0	760	751	742	733	724	716	707	699	690	682
1000	674	666	658	650	642	635	627	620	612	605

THICKNESS OF THIN METAL FOIL

Approximate thickness of the thinnest beaten metal leaf at present commercially obtainable. Unit 10⁻⁶ cm.

Metal	Al	Cu	Au	Pt	Ag	Dutch metal.	(Cigarette paper.)
Thickness	20	34	• 8	25	21	70	2500

SURFACE TENSIONS

SURFACE TENSIONS

In dynes per cm. (A) indicates liquid in contact with air, (V) indicates liquid in contact with its vapour. The surface tension of a liquid varies somewhat with the age (and contamination) of the surface.

Temperature variation. It follows from Eötvos' rule, that the surface tension T at temp. t is approximately proportional to $(t_e - t)$, where t_e is the critical temp., the constant of proportionality being much the same for chemically similar substances. The surface tension at t_e is zero. (For critical temps. see p. 34.) See Poynting and Thomson's "Properties of Matter," and Meyer in L.B.M.

WATER $(t_e = 365^\circ \text{ C.})$ Surf. Tens. Method. Observer. Temp. (t). T_t/T_{t_e} Temp. (t). T_t/Γ

Surf. Tens. T at 15° C.	Method.		Observ	er.		Temp . (<i>t</i>).	$\mathbf{T}_{t}/\mathbf{T}_{15}$	Temp. (<i>t</i>).	$\mathbf{T}_{\ell}/\mathbf{\Gamma}_{15}$
dynes per cm. 72'8 (A) 74'3 (A) 74'2 (A) 73'8 (A) 73'3 (A) 73'3 (A) 74'3 (A) 73'3 (A) 71'4 (V) 77'6 (A)	Vibrating jet Vibrating jet Capillary wav Hanging drop Tension of filr Capillary wav Capillary tube Capillary tube Pull on ring	apillary waves anging drop ension of film apillary tube apillary tube			,'07 hy., ['02 ['93 ag.,	10 15 20 30 40 50 Ramsay	1.030 1.010 1.000 .990 .970 .947 .925 & Shie hann &	60° C. 70 80 90 100 120 140 elds, '93 ; Brunner	'901 '876 '851 '827 '80 '75 '70 Volk-
Sub	stance.	010	Temp. (<i>t</i>).	Surf. Tens.	17	Method.		Observ	er.
Cadmium Gold . Lead . Mercury (' Potassium Sodium . Sulphur (N " Liquid oxy " Liquid oxy " nitu " Nickel carl Ammonia Sulph ^e acid Other soln	$T_t = T_0 - 379t$) M.P. 115°). (B.P.) ygen. rogen. rous oxide. bonyl,Ni(CO) ₄ soln. ($d = 96$) dsol. ($d = 114$) s. (see below)	CO ₂ A CO ₂ A CO ₂ A A A A A A V A A	1070°C. 335 17.5 58	dynes cm. 693 612 473 547 364 520 59 118 44 13'1 8'5 26'3 14'2 64'7 74'4	Cur Cap Cap We Pre bl tu Cap Cap Vib	ight of dr vature of billary wav billary tub ight of dr ss. reqd.to e air from be thro' li billary wav """"""""""""""""""""""""""""""""""""	drop e op bub- cap. iquid) zes	'o8 Grunmach, " Ramsay Shields, Pedersen,	nt, 'o6 ; incke, 1906 1904 and 1893
Acetone, (4 Acetic acid Alcohol—m $(T_e = T_0)$	eHe.	V V V V V V V V V V V V V V V V V A A	78.3 20 300 20 200 20 150 16.4 78.3 15	23'3 15'9 23'5 1'16 23 5'2 22'0 9'5 23'8 18'7 43'0 29'2	Vibr	illary tube """"""""""""""""""""""""""""""""""""		{Ramsay Shields, " " " " " " " Pedersen, I Volkmann	22 21 22 22 22 22 22 22 22 22 22 22 22 2

SUR	FACE	TENS	IONS
-----	------	------	------

§ Density = '79.

Substance.	H-W	Temp. (<i>t</i>).	Surf. Tens.	Method.	Observer.
CARBON COMPOUNDS			dynes		
(contd.) Butyric acid, C ₃ H ₇ CO ₂ H	v	15° C.	cm. 26.7	Capillary tube	(Ramsay and
	V	132	164	,, ,,	Shields, 1893
Carbon bisulphide	V	19.4	336	57 27	,, ,,
	V	46.1	29.4	"""	,, ,,
Carbon tetrachloride	V V	20	25.7	,, ,,	,, ,,
Chloroform, CHCl ₃	A	250 15	1.93 27.2	»» »»	Kaye, 1905 "
Ether (ethyl), $(C_2H_5)_2O$.	v	20	16.5	55 55 57 57	Jaeger, 1892
$(T_t = T_0 - 115t)$.	v	150	2.9	37 77	
Ethyl acetate,	V	20	23.6	»» »»	"
CH ₃ CO ₂ C ₂ H ₅	V	100	14	,, ,,	·D "
Formic acid, HCOOH .	V	17	37:5	,, ,,	Ramsay and
Olive oil $(d/20^\circ = .91)$.	V A	80 20	30.8 32	Curvature of drop	\ Shields, 1893 Magie, 1888
Paraffin oil $(d = .847)$.	A	25	26.4	Capillary tube	Frankenheim, '47
Propionic acid, C ₃ H ₆ O ₂	v	16.6	26.6	" "	(Ramsay and
10 C Loss	V	132	15.2	33 33	Shields, 1893
Pyridine, $C_{\delta}H_{\delta}N$	V	17.5	36.7	>> >>	(Dutoit and Fri-
Toluena C.H. CH	V	91	26.5 28.8	Vibrating jet	l derich, 1900 Pedersen, 1907
Toluene, $C_6H_5 \cdot CH_3 \cdot Turpentine, C_{10}H_{16} \cdot .$	A A	15 15	27.3	Capillary tube	Kaye, 1905

SURF. TENSIONS OF SOLUTIONS SURFACE TENSIONS AT INTER-LIQUID BOUNDARIES The surface tension of aqueous salt solutions is generally greater than that of pure water. Dorsey Surface Liquids at 20° C. Observer. Tension T. (Phil. Mag., 1897) has shown dynes/cm. $T_n = T + A \cdot n$ Water-benzene . Pockels, 1899 33.6 T_n is the surf. tens. of a sol. of chloroform † 29'5 Quincke ,, ether . n gram – equivalents per litre, T that of water at same temp. 12'2 ,, 33 olive oil ‡ 206 22 Pockels, 1899 paraffin oil . 48.3 11 427 * Salt. Α. Gouy, 1908 Mercury-water alcohol§ . Quincke 399 33 NaCl 1.23 chloroform † . 399 22 22 KCl . 1'71 $\frac{1}{2}(Na_2CO_3)$ 2'00 * Diminishes with time. † Density = 1'49. $\frac{1}{2}(K_2CO_3)$. 1.22

ANGLES OF CONTACT BETWEEN GLASS AND LIQUIDS Angles of contact vary largely with the freshness of the surfaces in contact.

1.86

 $\frac{1}{3}(ZnSO_4)$

 \ddagger Density = '91.

Manau					
Mercury Water Water Methyl alcohol . Ethyl alcohol .	52° 40' * 8°-9° 0° † 0° 0°	Quincke Wilberforce Magie, '88	Acetic acid Benzene Paraffin oil Turpentine		Magie, '88 " "
Ether Chloroform	16° 0°	» » »	* For freshly fo † Glass (ormed drop quite clea	o, 41° 5'. n.

Reference may be made to the writings of J. J. Thomson ("Conduction of Electricity through Gases"), C. T. R. Wilson, Laby (Phil. Trans. A, 1908), Reinold & Rücker (Phil. Trans., 1886), Lord Rayleigh, and Johonnot (Phil. Mag., 1906).

HYGROMETRY

RELATIVE HUMIDITY AND DEW-POINT

Relative humidity $= \frac{[p]_t}{[p]_t^s}$. Ico, where $[p]_t$ is the actual pressure of water-vapour

at temperature ℓ° , and is equal to $[\not p]_{dp}^{t}$, the saturated vapour pressure at the dewpoint $(d\not p)$; $[\not p]_{t}^{t}$ is the pressure of saturated vapour at ℓ° . For a table of saturated water-vapour pressures, see p. 40. (See "Smithsonian Meteorological Tables.")

Percentage relative humidities for different dew-points and dew-point depressions are tabulated below.

Dew-point	Depression of dew-point $= \ell^{\circ} - (dp)^{\circ}$.											2.E	TOBAT		
(<i>dp</i>).	0 °C.	1 °	2 °	3 °	4 °	5 °	6 °	7 °	8 °	9 °	100	12°	14 °	16 °	18 °
- 15° C. 0 + 10 20 30	001 001 001 001 001	92 93 94 94 94	85 87 88 89 89	79 81 82 83 84	73 75 77 78 80	67 70 72 74 75	62 65 68 70 71	58 61 64 66 68	53 57 60 62 64	49 53 56 58 61	46 50 53 55 57	39 44 47 49 52	34 38 41 44 46	29 34 37 39 42	26 30 33 35 38

WET AND DRY BULB HYGROMETER

Apjohn (1835), August (1825), and others, by making various assumptions (some of doubtful legitimacy), have derived formulæ of the type---

 $[p]_{w}^{s} - [p]_{t} = AH(t - t_{w})[1 + B(t - t_{w})]$

where t is the temperature of the dry bulb, t_w that of the wet, $[p]_t$ is the actual pressure of water-vapour in the air (at temperature t), $[p]_w^*$ is the saturated vapour pressure of water at the temperature (t_w) of the wet bulb. H is the barometric height, and A and B are constants. (See Preston's "Heat.")

The indications of this hygrometer are so dependent on its environment that for most purposes B may be taken as zero, and H as constant, say 760 mms. If H is measured in millimetres, and temperatures in Centigrade degrees, the

If H is measured in millimetres, and temperatures in Centigrade degrees, the following values of A are suitable for the conditions mentioned :---

A = 0007 if wet bulb is caused to swing for a short time.

A = 00075 in a Stevenson screen as used by Meteorological Office.

A = 0008 in open air with slight wind.

A = 0009 in open air with no wind.

A = 001 in a small closed room.

Rizzo (1897) takes A = '00075 and B = - '008, and the table below is derived by employing these values. $[p]_{w}^{t}$ can be got from the table of saturated vapour pressures on p. 40, and thus the desired vapour pressure $[p]_{t}$ can be determined.

Barom.	Difference of temperature of dry and wet bulb thermometers $(t - t_w)$										
Press. H.	1 ° C.	2 °	3 °	4 °	5 °	6 °	7 °	8 °	9 °	10°	
770 760 750 730 700 670	mm. 57 56 55 54 52 50	mm. 1°13 1°12 1°11 1°08 1°03 °99	mm. 1.69 1.67 1.65 1.60 1.54 1.47	mm. 2·23 2·20 2·17 2·12 2·03 1·94	mm. 2·78 2·74 2·71 2·63 2·52 2·42	mm. 3'30 3'25 3'21 3'12 3'00 2'87	mm. 3'81 3'76 3'71 3'61 3'46 3'32	mm. 4'32 4'27 4'21 4'10 3'93 3'76	mm. 4 [.] 87 4 [.] 75 4 [.] 69 4 [.] 56 4 [.] 37 4 [.] 19	mm. 5·31 5·24 5·17 5·03 4·82 4·62	
	11° C.	12°	13 °	14°	15°	16°	17°	18°	19°	20°	
770 760 750 730 700 670	5.78 5.71 5.63 5.48 5.26 5.03	6.26 6.18 6.09 5.93 5.69 5.44	6.72 6.63 6.54 6.37 6.11 5.84	7.17 7.08 6.98 6.79 6.52 6.24	7.62 7.52 7.42 7.22 6.93 6.63	8.06 7.95 7.84 7.63 7.32 7.01	8.47 8.36 8.25 8.03 7.70 7.37	8.89 8.77 8.66 8.43 8.08 7.73	9.30 9.18 9.06 8.82 8.46 8.08	9.69 9.56 9.44 9.18 8.82 8.43	

VALUES OF $[p]_{m}^{t} - [p]_{t}$ (Rizzo)

WET AND DRY BULB HYGROMETER (contd.) GLAISHER'S FACTORS

Mr. Glaisher, in 1841-5, took many thousands of observations with the wet and dry bulb hygrometer in Greenwich, India, and Toronto, and from simultaneous readings of a Daniell's hygrometer (now recognized as being an untrustworthy instrument) drew up a table of "factors."

The factor (f) at any dry-bulb reading is defined by

depression of dew-point = $t - t_{dp} = f(t - t_w)$

the notation being as above. Glaisher's factors are employed by the Meteorological Office and the Meteorological stations in this country. The hygrometer readings are taken in a Stevenson screen, which is essentially a box with double louvred sides.

The factors for a range of dry-bulb temperatures are tabulated below. The formula above yields the dew-point; and the saturated vapour pressure at the dew-point gives the actual vapour pressure at t° . For a table of saturated vapour pressures, see p. 40. (See "The Observers' Handbook," Meteorological Office.)

Dry Bulb Temp. (<i>l</i>).	0	1	2	3	4	5	6	7	8	9
- 10° C.	8.76	8.73	8.55	8.26	7.82	7.28	6.62	5'77	4'92	4.04
0	3.32	2.81	2.54	2.39	2.31	2.26	2.21	2'17	2'13	2.10
+ 10	2.06	2.02	1.99	1.95	1.92	1.89	1.87	1'85	1'83	1.81
20	1.79	1.77	1.75	1.74	1.72	1.70	1.69	1'68	1'67	1.66
30	1.65	1.64	1.63	1.62	1.61	1.60	1.59	1'58	1'57	1.56

CHEMICAL HYGROMETER

The values below are grams of water vapour contained in a cubic metre (106 c.cs.) of saturated air at 760 mms. total pressure. Calculated from Regnault's observations.

Temp.	0	1	2	3	4	5	6	7	8	9
0° C. 10 20 30	9.33	5718 993 1814 3170	5 54 10 [.] 57 19 [.] 22 33 [.] 45	5'92 11'25 20'35 35'27	11'96	6.76 12.71 22.80 39.18	13 50 24.11	7'70 14'34 25'49 43'5	8*21 15*22 26*93 45*8	8.76 16.14 28.45 48.2

TENSILE STRENGTHS OF LIQUIDS

Liquids perfectly free from air can sustain considerable tension without rupture, e.g. water can withstand a tension of 5 atmospheres, alcohol 12, and strong sulphuric acid 12 atmospheres. Extensions of volume of 0.8% for water, 1.1% for alcohol, and 1.7% for ether have been obtained. The volume elasticity (p. 29) of alcohol is the same for extension as for compression. (See Worthington, *Phil. Trans. A.*, 1892; Dixon, *Proc. Roy. Dub. Soc.*, 1909; Berthelot, *Ann. Chim. Phys.*, **30**, 1850; Poynting and Thomson's "Properties of Matter.")

BURSTING STRENGTHS OF GLASS TUBING

Bursting pressures in atmospheres for German soda glass tubing. Most glasstubing is in a state of considerable strain, and a factor of safety of not less than two should usually be employed. (Roebuck, *Phys. Rev.*, 1909; and Onnes and Braak, *Kon. Ak. Wet.*, Amsterdam, 1908.) Ordinary boiler water-gauge glasses stand between 12 and 24 atmospheres.

Thickness	Bore.											
of Wall.	1 mm.	2	3	4	5	6	7					
1 mm.	atmos.	110	280	220	220	150	100					
2	570	310	340	230	330	240	190 220					
2 3	560	420	460	400	-	10 38 - 11 M						
4		450	-	400	310	320	230 280					

VAPOUR PRESSURES

VAPOUR PRESSURES

Inter- and Extrapolation of Vapour Pressures.—The Kirchhoff-Rankine-Dupré formula, $\log p = A + B/\theta + C \log \theta$, where p is the vapour pressure, θ the absolute temperature, and A, B, C are constants, is accurate and convenient (e.g. see p. 41). For values of A, B, C, see Juliusburger, Ann. d. Phys., p. 618, 1900.

Ramsay and Young's Method.—If two liquids, one at absolute temperature θ and the other at θ' , have the same vapour pressure, the ratio θ/θ' , when plotted against θ , gives a straight line. This method may be used to find roughly the vap. press. of a substance at any temperature when only its boiling-point is known.

Interpolation by Logarithms.—The curve of vapour pressure (p) against temp. (t) is approximately hyperbolic, and thus $\log p$ plotted against t gives a graph of slight curvature, which over 10° intervals of t may, for approximate work, be regarded as a straight line: thus the following method of interpolation :—

Example.-Required vap. press. of water at 15°, given

t	p	log p	
10 ⁰ 20 ⁰	9'2 17'5	log ⊅ .964 1.243	$\frac{.964 + 1.243}{2} = 1.104 = \log 12.7; i.e. p \text{ at } 15^{\circ} = 12.7,$ actually it is 12.8.

VAPOUR PRESSURE OF ICE

In mms. of mercury at o^o C.; $g = 980^{\circ}62$ cms. per sec.²; hydrogen (const. vol.) scale of temps. (Scheel, and Heuse, Reichsanstalt *Ann. d. Phys.*, 1909.)

Temp	−50° C.	-40°	-30°	-20°	-10°	-5°	-2°	0 °
Vap. press.	.030 mm.	. 096	•288	•784	1.963	3.022	3.885	4.579

(SATURATED) VAPOUR PRESSURE OF WATER

In mms. of mercury at 0° C. ; g = 980.67 cms. per sec.² Thermodynamic scale of temp. (see p. 44). From -20° to 0° the observations are due to Scheel and Heuse (v. ice); from 0° to 50°, to Thiesen and Scheel; from 50° to 200°, to Holborn and Henning, Reichsanstalt (*Ann. d. Phys.*, **26**, 833, 1908). For vapour pressures at temps. near 100° see also the table of boiling-points on next page. Vap. press. at -20° C., 960 mm.; -10° , 2.160; -5° , 3.171; -2° , 3.958; -1° , 4.258.

Temp.	0	1	2	3	4	5	6	7	8	9			
0° C. 10 20 30	4°579 9°205 17°51 31°71	4'924 9'840 18'62 33'57	5 ²⁹⁰ 10 ⁵¹³ 19 ⁷⁹ 35 ⁵³	5 ^{.681} 11 ^{.226} 21 ^{.02} 37 ^{.59}	6.097 11.980 22.32 39.75	6.541 12.779 23.69 42.02	7'011 13'624 25'13 44'40	7.511 14.517 26.65 46.90	8.042 15.460 28.25 49.51	8.606 16.456 29.94 52.26			
Sugar 6	0	2	4	6	8	10	12	14	16	18			
40 60 80 100 120 140 160 180 200	55°13 149°2 355°1 760°0 1489 2709 4633 7514 11647	61'30 163'6 384'9 815'9 1586 2866 4874 7866 12142	68.05 179.1 416.7 875.1 1687 3030 5124 8230 12653	75'43 195'9 450'8 937'9 1795 3202 5384 8608	83:50 214:0 487:1 1004 1907 3381 5655 8999	92°30 233°5 525°8 1074°5 2026 3569 5937 9404	101'9 254'5 567'1 1149 2150 3764 6229 9823 —	112'3 277'1 611'0 1227 2280 3968 6533 10256	123.6 301.3 657.7 1310 2416 4181 6848 10705	135'9 327'2 707'3 1397 2560 4402 7175 11168			
- 20	9			(Bat	telli, 18	92.)		1					
Temp	. 22	0° C.	240°	260°	280	300	° 32	0° 8	340°	360 °			
Vap. Pres	ss. 17,3	80 mm.	25,170	35,760	50,60	0 67,6	20 88,	340 11	13,830	141,870			
	In	terpolat	e logs o	of vapou	r pressu	ires as e	explaine	d above	e				

BOILING-POINT OF WATER UNDER VARIOUS BAROMETRIC PRESSURES

Hydrogen scale of temps. Pressures in mms. of mercury at 0° C.; $g = 980^{\circ}62$ cms. per sec.² (Regnault's measurements; reduced by Broch, 1881; recalculated by Wiebe, 1893.)

Barometric Height.	0	1	2	3	4	5	6	7	8	9
680 mm. 690 700 710 720 730 740 750 760 770 780	°C. 96'91 97'32 97'71 98'11 98'49 98'88 99'25 99'63 100'00 100'37 100'73	96.95 36 75 98.14 53 91 99.29 .67 100.03 .40 .76	79 98.18 57 99.33 70 100.07 44	97'03 '44 '83 98'22 '61 '99 99'37 '74 100'11 '47 '84	97.07 '48 '87 98.26 '65 99.03 '41 '78 100.15 '51 '87	97.11 '52 '91 98.30 '69 99.07 '44 '81 100.18 '55 '91	·85 100·22 ·58	99 98·38 '76 99·14 '52 '89 100·26 '62	.93 100°29 .66	97'28 '67 98'07 '45 '84 99'22 '59 '96 100'33 '69 101'05

VAPOUR PRESSURE OF MERCURY

In mms. of mercury at 0° C. Reduced from the observations of Hertz, Ramsay and Young, Callendar and Griffiths, Pfaundler, Morley, Gebhardt, Cailletet, Colardeau, Rivière. For interpolation from 15° to 270°.

 $\log p = 15^{\circ}24431 - 3623^{\circ}932/\theta - 2^{\circ}367233 \log \theta \quad . \quad . \quad . \quad (A)$ From 270° to 450°

$$\log p = 10\,04087 - 3271'245/\theta - '7020537\log\theta$$

 $\frac{\delta p}{\delta t}$ at the boiling-point = 13.6 mm. per degree (Laby, *Phil. Mag.*, Nov., 1908).

Temp.	Vap. Press.	Temp.	Vap. Press.	Temp.	Vap. Press.	Temp.	Vap. Press.	Temp.	Vap. Press.
0° C. 5 10	mm. '00016* '00026* '00043*		mm. 100168 100257 100387	60° 80 100	mm. •0246 •0885 •276	250° 300 356·7	mm. 75 ^{.8} 3 248 ^{.6} 760	500° 600 700	atmos. 8 22'3 50
15 20	'00069 '00109	40 50	.00574 .0122	150 200	2.88 17.81	400 450	1566 3229	800 880	102 162

* Extrapolated by formula A.

VAPOUR PRESSURE OF ETHYL ALCOHOL

Vap. press. in mms. of mercury at 0° C. Calculated by Bunsen from Regnault's results (1862), which are in good agreement with the mean of those of Ramsay and Young (1886), and Schmidt (1891).

Regnault, Vapour press. at -20°, 3'34 mm.; at -10°, 6'47 mm.

Temp.	0	1	2	3	4	5	6	7	8	9
0° C. 10 20 30	12°73 24°08 44°0 78°4	13.65 25.59 46.7	14°6 27°19 49°5	15°59 28°9 52°5	16.62 30.7 55.7	17.7 32.6 59.0	18.84 34.6 62.5	20'04 36'8 66'2	21.31 39.0 70.1	22.66 41.4 74.1

							(Rams	ay and '	Young,	1886.)
Temp.	30° C.	40 °	50°	60 °	70 °	80°	100°	120°	140°	160°
Press.	78.1 mm.	133'4	219.8	350.2	541	812	1692	3220	5670	9370
							xplained			

VAPOUR PRESSURES

VAPOUR PRESSURES OF ELEMENTS

p = vapour pressure in mms. of mercury at 0° C. lat. 45° and sea-level (g = 980.62) (*i.e.* 1 mm. Hg = 1333.2 dynes per sq. cm.). If followed by *at.*, p is in atmospheres; θ = absolute temp. (A.); t = temp. in °C.; (s) solid; (l) liquid. The thermometry is in many cases somewhat dubious.

Inte	erpolate log	s of var	oour pre	ssures a	as explai	ined on	p. 40.	Alastan I	
Argon	t -121° C. p 50°6 at.	-128.6 38.0	-129.6 35.8	- 134·4 29·8	- 135·1 29'0	-136·2 27'3	-138·3 25·3	-139·1 23·7	E
Xenon	 θ 78°·9 A. θ 110°·5 A. θ 148°·9 A. ₽ 300 mm. 	86·9 121·3 163·9 760	97·9 135·2 182·9 2000	107·3 147·3 199·6 4000	155·6 40,200	= crit. 210.5 41,240	temp. = crit. 287.8 43,500	temp. = crit. t	 temp
Bromine	t -16°.6 C. p 20 mm.	-12 0 30	-5·0 50	8·2 100	16·9 150	23·4 200	40.5 400	51·9 600	58·7 760
Chlorine	t -80° C. p 62'5 mm.	-60° 210	- 40 560	- 33·6 760	-20 1.84 at.	0 3.66	10 4'95	20 6.62	30 8·75
and the state of the	t 0° C. p '03 mm.	15 •131	30 ·469	55 3.08	85 20	117 100	137 200	160·9 400	185·3 760
Hydrogen (Travers & Jaquerod, 1902)	t-258°·2C. p 100 mm.	-256·7 200	-255·7 300	-255 [.] 0 400	-254·3 500	-253·7 600	-253·2 700	-252·9 760	H. Scale
10	θ 4°·5 A. p 760 mm.		_	= s	Neon (T & Jaquero	ravers od, '02)	15°.65 /	A.(s)20 4 m. 12.8	
Mercury	See p. 41.			1	Ra. Ema	nation	See	p. 103.	
T1' 1 0 11	 θ 62°.5 A. p 86 mm. 	67·8 200	72·4 400	77·3 760	80 1013	83 1386	86 1880	89 2465	91 2916
0xygen (Jaquerod, Travers, & Senter, 1902)	 θ 79°·1 A. p 200 mm. 	82·1 300	84·4 400	86·3 500	87·9 600	89·3 700	90·1 760	90.6 800	II. Scale
Phosphorus	t 165° C. p 120 mm.	170 173	180 204	200 266	209 339	219 359	226 393	230 514	287·3 760
Sulphur (Ruff & Graff, '08; B., 1899; C., 1899)		100 .0089	147 192	211 3 ^{·14}	400 c. 372	444·5 760		o°·09/mi (see p. 50	
			And a state of the state	and the second second	1033 00 10	1242	Station of the	And and a start of the start of	

VAPOUR PRESSURES OF COMPOUNDS

For a complete list, see Schenck in L.B.M.

Hydrochloric acid	t	-73°·3 C.	-45·5	-23·3	- 8·9	4·0	9·2	13·8	22·0	33·4
(F., 1845; Ansdell, 1880).	p	1.8 at.	6·3	12·8	23·1	29·8	33'9	37'7	45 [.] 7	58·8
Sulphuretted hydrogen .	tp	-25° C.	-15	-5	0	10	80	50	60	70
(R., 1862)		4'93 at.	6·84	9'3	10 [.] 8	14'3	23'7	36.6	44 [.] 4	53'1
Sulphur dioxide	tp	-30° C. '39 at.	-20 .63	-10 1.00	0 1.53	10 2 [.] 26	20 3 ^{·24}	30 4 ^{.52}	40 6·15	50 8·19
Ammonia , NH ₃ (Brill, 1906)	t p		-77.6 44.1	-70.4 74.9	-64·4 116·0	-60·8 157·6	-54·4 239·5	-46·2 4º3'5	-39·8 568·2	-33 0 761
Nitrous oxide, N_2O (Cailletet, '78; R., '62) .	t	-80° C.	- 60	-40	-20	-10	0	10	20	40
	p	1'9 at.	5'05	11'0	23.1	28·9	36·1	44 [.] 8	55 3	83.4
Nitric oxide, NO	t	-176.5°C.	-167	-138	-129	- 119	-110	-105	-100·9	-97·5
(Olszewski, 1885)	p	'024 at.	182	5'4	10 ^{.6}	20 0	31.6	41'0	49'9	57·8
Nickel carbonyl, NiCO ₄ .	t	- 9 ° C.	- 7	- 2	0	10	16	20	30	Ξ
(D. & Jones, 1903)	p	94'3 mm.	104.3	129.1	144.5	2150	283.5	329.5	462	

Interpolate logs of vapour pressures as explained on p. 40.

VAPOUR PRESSURES OF COMPOUNDS (contd.) Interpolate logs of vapour pressures as explained on p. 40.											
	t -130°C.(s) p 2.5 mm.	-100(s) 119	- 80 (s) 657	-65 (s) 2100	-56·4 \$	- 65 (/) 2508	40 (<i>l</i>) 7510	-20(2) 14,830	-10 (2) 19,630		
Carbon bisulphide (Regnault, 1862)	t -20° C. p 47'3 mm.	-10 79 [.] 4	0 128	10 198	20 298	40 618	60 1164	80 2033	100 3325		
Chloroform, CHCl ₃ (Regnault, 1862)	t 20° C. p 160°5 mm.	30 248	40 369	50 535	60 755	70 1042	80 1408	90 1865	100 2429		
100 000	t -20° C. p 9'8 mm.	-10 18·47	0 32.9	10 56	20 91	40 215	60 447	80 843	100 1467		
	t -90° C. (s) p ·69 at.	-85 (s) 1.00	-81 1°25	- 70 2 [.] 22	- 50 5'3	-23·8 13·2	0 26.05	20·2 42·8	36·5 61·6 (M.)		
(Young, 1889)	t -10° C. p 14'8 mm.	0 26.5	10 45 [°] 4	20 74 [.] 6	40 181.1	60 389	80 754	100 1344	120 2238		
(Kahlbaum, 1898)	t 101°.9 C. p 50 mm.	119·4 100	138·7 200	151·5 300	161·1 400	168·7 500	175·0 600	180 [.] 8 700	183·9 760		
C ₁₀ H ₇ Br (Ra. & Y., 1885)	t 215° C. p 158'9 mm.	220 181.8	230 236.0	240 303'4	250 386.4	260 487.4	270 608.8	275 677'9	280·4 760		
(R., '62; Ra. & Y.; Ri., '86)		0 28.5	17 78·3	20 88·7	30 150	50 381.7	80 1238	120 4342	150 9361		
n. propyl alcohol, † _i C ₃ H ₂ OH (Ra. & Y.; S.; Ri., '86). Iso-butyl alcohol †	p 3.9 mm.	10 7·8	17 12'4	30 28·2	40 51.4	60 157	80 389	100 843	120 1668		
	t 10° C. p 4'I mm.	17 6·8	20 8·1	40 30'3	60 94 ^{.2}	80 245	100 569	108 760	120 1195		
C ₃ H ₁₁ OH (Ri., '86 ; S., '91) Formic acid, † CH ₂ O ₂ .	-	30 4.68	40 9'33	50 17.4	60 32'0	80 93'3	100 234	120 522	130 741		
10 0 11 0 01	t 0° C. p 10'2 mm. t 17° C.	10 18·4 30	17 26·3 50	20 31.6 70	80 51'3 90	40 79'4 110	70 266 130	80 373 150	101 760 200		
(Ra. & Y.; Ri., '86; S., '91) Propionic acid , † C ₂ H ₆ O ₂ .	p 9.8 mm. t 15° C.	20 ^{.6}	56·2 20	133 30	288 40	582 60	1018 70	1847 80	5905 140		
101 107 0 1 1 11 101	p 1.7 mm.	2'0 20	2°45 30	4'9 50	9°1 70	28·2 90	46·1 110	74°5 130	760 150		
(Ra. & Y., '86; S. '91; K. '94) Iso-butyric acid, † C ₄ H ₈ O ₂	p .52 mm.*	·66*	1'4 50	5 ² 70	16·2 90	44'9 110	110	245 150	497 153·5		
(Ri., '86; S., '91; K., '94) Methyl formate †	p ·88 mm.*	1'9 10	8·2 0	25°1 10	67 ^{.6} 20	162 40	347 60	684 80	760 100		
CHO ₂ CH ₃ (Y. & T., '93). Methyl butyrate †	p 67.7 mm.	117 ^{.6}	195 10	309 20	476 40	1029 60	1990 80	3497 100	5782		
C ₄ H ₇ O ₂ ·CH ₃ (Y. & T., '93) Methyl isobutyrate †	p 3.55 mm.	7'3 0	13 ^{.8}	24°5 20	69°2 40	167°5 60	361 80	701 100			
$\frac{C_4H_7O_2.CH_3(Y.\&T., '93)}{Ethyl acetate \dagger }$	t -20° C	12°15 -10	22'4 0	38·9 10	104'7 20	²⁴⁴ 40	505 60	956 80	1660 100		
$\frac{C_2H_3O_2.C_2H_5(Y.\&T.,'93)}{Ethyl propionate \dagger}$	p 6.5 mm.	12.9 0	24 [.] 3 10	42.7 20	72.8 40	186 60	415 80	8 ₃₃ 100	1515 120		
$\frac{C_{2}H_{s}O_{2}C_{2}H_{s}(Y.\&T., 93)}{Propyl acetate \dagger}$	p 4.05 mm.	8·3 0	15·5 10	27.7 20·	77'9 40	188.0 60	403.6 80	785 100	1388 120		
(Versee and the second	t -10° C.	7'4 0	13 [.] 9 10	25°1 20	70 ^{.8} 40	172 60	373 80	724 100	1288 193·8		
	p 112.3 polate logs	184'9	290'8	439.8	921	1734 ed on p		4855	27,060		

* Extrapolated.
 * The vapour pressures here given have been graphically interpolated from the observers' values. B., Bodenstein; C., Callendar; D., Dewar; F., Faraday; K., Kahlbaum; M., Mackintosh; R., Regnault; Ra. and Y., Ramsay and Young; Ri., Richardson; S., Schmidt; Y. and T., Young and Thomas.
 ‡ Triple point. || Critical temp.

GAS THERMOMETRY

GAS THERMOMETRY

The standard thermometric scale of the International Committee of Weights and Measures (1887) is that of the constant-volume hydrogen thermometer, the hydrogen being taken at an initial pressure at 0° C. of 1000 mms. of mercury measured at 0° C. sea-level and lat. 45° (= 1'3158 standard atmosphere).

Method.	\mathbf{H}_2	N ₂	Air.	CO ₂	Computer.
From Joule-Thomson effect	° 273.14	° 273'09	1.88_00	° 273.05	Callendar, 1903
Extrapolation to zero pressure (see p. 54)	273.07	273.09	0	-	Berthelot and Chappuis, 1907
From Joule-Thomson effect	273°05 273°06	(273.17) 273.25	273'19 273'27	273'10 273'12	Berthelot, 1907 Buckingham, 1907
» » »	273.13	273.14	-		Rose-Innes, 1908

THERMODYNAMIC TEMPERATURE OF THE ICE-POINT

THERMODYNAMIC CORRECTIONS TO GAS SCALES OF TEMPERATURE

The corrections to both the constant-pressure (C.P.) and the constant-volume (C.V.) scales are either (1) derived from characteristic equations of state (Callendar, 1903; Berthelot, 1907), or (2) in the case of the C.P. thermometer, computed from the Joule-Thomson effect ; whence from these C.P. corrections and a knowledge of the compressibility of the gas under different conditions the C.V. corrections can be calculated. Chappuis (1907)* has experimentally compared the C.P. and C.V. H. and N. thermometers each with mercury thermometers. The values below are based on computations by Callendar (Phil. Mag., 1903), Berthelot * (from Chappuis' data 1907), Onnes and Braak (1907 and 1908), Rose-Innes (Phil. Mag., 1908), and Buckingham (1908).† There is some divergence among the different computations for hydrogen ; the agreement is much better in the case of nitrogen. The thermodynamic correction to the C.V.H. thermometer is negligible, and with nitrogen also at extreme temps, the correction is less than the error of working in modern gas thermometry. The values for air are a little smaller than for nitrogen ; for helium they are slightly larger than for hydrogen except at the lowest temperatures, when the helium corrections are the smaller. New experiments on the Joule-Thomson effect are needed. ‡ (+) means that the correction has to be added to the gas scale temperature to give the thermodynamic temperature. The correction is proportional to the initial pressure of the gas in the thermometer.

<i>t</i> ° €.		Pressure 00 mm.					Const. ∇ P at $0^\circ = 10^\circ$	and the second se	
	\mathbf{H}_2	\mathbf{N}_2	\mathbf{H}_2	\mathbf{N}_2		H,	N ₂	H2	\mathbf{N}_2
$ \begin{array}{r} -240^{\circ} \\ -200 \\ -150 \\ -100 \\ -50 \\ 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 60 \end{array} $	$\begin{array}{r} +1^{\circ} \cdot 2 (?) \\ + \cdot 26 \\ + \cdot 10 \\ + \cdot 04 \\ + \cdot 02 \\ 0 \\ - \cdot 001 \\ - \cdot 002 \\ - \cdot 003 \\ - \cdot 003 \\ - \cdot 003 \\ - \cdot 003 \end{array}$	$ \begin{array}{r} - \\ +1^{\circ} \cdot 3 \\ + \cdot 40 \\ + \cdot 12 \\ 0 \\ - \cdot 009 \\ - \cdot 017 \\ - \cdot 021 \\ - \cdot 023 \\ - \cdot 024 \\ - \cdot 022 \end{array} $	$+^{\circ} \cdot 18$ + $\cdot 06$ + $\cdot 033$ + $\cdot 010$ + $\cdot 005$ 0 - $\cdot 000$ - $\cdot 000$ - $\cdot 001$ - $\cdot 001$ - $\cdot 001$ - $\cdot 001$		70° 80 90 100 200 300 400 450 600 800 1000 1200	$ \begin{array}{r} - ^{\circ} \cdot 003 \\ - \cdot 002 \\ - \cdot 001 \\ 0 \\ + \cdot 014 \\ + \cdot 034 \\ + \cdot 07 (?) \\ + \cdot 09 (?) \\ - \\ - \\ - \\ - \\ - \\ - \end{array} $	$\begin{array}{r} - \circ \circ 019 \\ - & \circ 014 \\ - & \circ 007 \\ 0 \\ + & \cdot 12 \\ + & \cdot 28 \\ + & \cdot 46 \\ + & \cdot 56 \\ + & \cdot 87 \\ + 1 \cdot 3 \\ + 1 \cdot 8 \\ + 2 \cdot 3 \end{array}$	$ \begin{array}{r} - \circ \cdot 001 \\ - \cdot 000 \\ - \cdot 000 \\ 0 \\ + \cdot 004 \\ + \cdot 011 \\ + \cdot 018 (?) \\ + \cdot 02 (?) \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \end{array} $	$\begin{array}{r} - & ^{\circ} \cdot & 004 \\ - & ^{\circ} \cdot & 003 \\ - & ^{\circ} \cdot & 002 \\ 0 \\ + & \cdot & 04 \\ + & \cdot & 100 \\ + & \cdot & 170 \\ + & \cdot & 190 \\ + & \cdot & 190 \\ + & \cdot & 310 \\ + & \cdot & 510 \\ + & \cdot & 700 \\ + & 100 \\ + & \cdot & 100 \\ + & 100 \\ + & 100 \\ + & 100 \\ + & 100$

* Trav. et Mém. Bureau Intl. 1907. † Bull. Bureau of Standards. 1908. † See Dalton, Proc. Konink. Akad. Weten. Amsterdam, April, 1909.

MERCURY THERMOMETRY

MERCURY THERMOMETRY

45

CORRECTIONS TO REDUCE MERCURY-IN-GLASS SCALE TEMPS. TO GAS SCALE TEMPS. The values for the English Kew glass (which is a lead potash silicate) are due to Harker (1906); the verre dur corrections are given by the International Bureau; those for the Jena glasses by Grützmacher. The method at Kew is to determine the ice-point correction before an observation is made. The other glasses have their ice-point or zero depressions determined immediately after each temperature reading. See Guillaume's "Thermométrie de Précision." Paris, 1889, and Chree's "Notes on Thermometry," *Phil. Mag.*, 1898. The French glass, verre dur, is used by Tonnelot of Paris. The normal glass, Jena 16''', may be known by the presence of a thin violet line near the surface. Jena 59''' is a borosilicate (p. 74).

	Kew Glass.	Verre Dur.	Jena 16'''.	Jena 59'''.		Verre Dur.	Jena 16"'.	Jena 59'''.
Temp.	$t_{\rm H} - t_{\rm K,G}$	$t_{\rm H} - t_{\rm V,D.}$	$t_{\rm H} - t_{16'''}$	<i>t</i> _H - <i>t</i> ₅₉ '''	Temp.	$t_{\rm N} - t_{\rm V,D,}$	$t_{\rm N}-t_{16^{\prime\prime\prime\prime}}$	t _N -t ₅₉ ""
-20° 0 10 20 30 40 50 60		$+^{\circ}\cdot 17$ 0 - $\cdot 05$ - $\cdot 08$ - $\cdot 10$ - $\cdot 11$ - $\cdot 10$ - $\cdot 09$	$+^{\circ.19}$ 0 - '06 - '09 - '11 - '12 - '11 - '10	$+^{\circ} \cdot 10$ 0 $-^{\circ} \cdot 02$ $-^{\circ} \cdot 04$ $-^{\circ} \cdot 04$ $-^{\circ} \cdot 04$ $-^{\circ} \cdot 03$ $-^{\circ} \cdot 02$	110° 120 130 140 150 160 170 180	$+^{\circ} \cdot 04$ + $\cdot 06$ + $\cdot 07$ + $\cdot 07$ + $\cdot 06$ + $\cdot 03$ 0 - $\cdot 04$	$+^{\circ} \cdot 03$ + $\cdot 05$ + $\cdot 07$ + $\cdot 09$ + $\cdot 10$ + $\cdot 08$ + $\cdot 06$	$\begin{array}{r} - & \circ \cdot & \circ & \circ \\ - & \cdot & \circ & 2 \\ - & \cdot & \circ & 4 \\ - & \cdot & \circ & 8 \\ - & \cdot & 1 & 3 \\ - & \cdot & 1 & 9 \\ - & \cdot & 2 & 8 \\ - & \cdot & 2 & 8 \\ - & \cdot & 3 & 9 \end{array}$
70 80 90 100	+ 015 + 02 + 025 0	07 05 03 0	- '08 - '06 - '03 0	10' 00' 0	190 200 250 300	09 13 	+ .02 04 63 - 1.91	- '52 - '67 -1'7 -4'1

DEPRESSION OF ZERO OF MERCURY THERMOMETERS

The values indicate the zero depressions after the thermometer has been heated to the temp. stated. They have been determined by Guillaume, Thiesen, Schloesser, and Böttcher because of the impossibility in practice of interrupting a series of temperature measurements to take a number of zero readings (see above).

Temp.	Verre Dur.	Jena 16"".	Jena 59'''.	Temp.	Verre Dur.	Jena 16'''.	Jena 59'''.
10° C.	°·008	°·005	°·005	60° C.	°·060	° 039	°•024
20	'017	'011	'009	70	'071	•048	•027
30	'027	'017	'014	80	'084	•057	•030
40	'037	'024	'017	90	'097	•066	•033
50	'048	'031	'021	100	'111	•077	•035

STEM-EXPOSURE OR EMERGENT-COLUMN CORRECTION

The table below gives the (additive) "stem-exposure" correction for (1) the ordinary solid-stem thermometer, and (2) the German pattern sleeve-thermometer, which has a fine capillary in an outer glass tube. Both thermometers are of Jena glass, with degree intervals about 1 mm. long.

t is the indicated temperature, and t_{aux} the temperature of an auxiliary thermometer whose bulb is 10 cms. from and on a level with the mid-point of the exposed stem. The auxiliary thermometer must be shielded from the source of heat. (See Watson's "Practical Physics," and Rimbach, Zeit. f. Inst., 10, 1890.)

No. of	So	lid Ste	em; S	cale or	1 Stem	•	Sleeve	Scale.	No. of degree				
divs. of	degree divs. of $t - t_{aux}$ exposed											divs. of exposed	
thread.	70° C.	80 °	100°	120 °	140 °	180 °	70° C.	80°	100°	120°	140°	180°	thread.
10 20 30 40 60 80 100 120	°·02 '13 '24 '35 '57 '80 1.02	°·03 '15 '28 '41 '66 '91 1·18	°·07 ·22 ·39 ·56 ·89 I·21 I·56 I·98	°·11 '29 '48 '68 1'09 1'52 1'97 2'43	°·17 ·38 ·59 ·82 1·25 1·71 2·18 2·69	°·27 53 78 1·04 1·58 2·15 2·70 3·26	°·01 •08 •25 •30 •52 •75 •98	°·01 '12 '28 '35 '60 '87 1·12	°·04 '19 '36 '48 '79 1'15 1'47 1'88	°·07 '25 '42 '60 '99 1·38 1·82 2·28	°·10 '28 '48 '67 1'11 1'53 2'03 2'49	°·17 '40 '66 '92 1'46 1'98 2'55 3'13	10 20 30 40 60 80 100 120

ELECTRICAL THERMOMETRY

PLATINUM THERMOMETRY

TO REDUCE PT-SCALE TEMPS. (Ipt) TO CONST. VOL. N-SCALE TEMPS. (1)

Callendar's "difference formula" for the difference between the nitrogen-scale temp. (t) and the Pt-scale temp. (t_{pt}) is $t - t_{pt} = \delta \cdot t(t - 100)10^{-4}$, where δ is close to 15. Pt-scale temps, result from assuming a linear relation $R_{pt} = R_0(1 + \alpha t_{pt})$ between temp, and the electrical resistance (R) of Pt; α is the mean coefficient for the range o° to 100°. The "difference formula" gives the correction yielded by the truer parabolic relation $R_t = R_0(1 + \alpha t + \beta t^2)$. Pt thermometers should not be used above 1200° C. (See Callendar, *Phil. Mag.*, 1899, **1**, p. 191; **2**, p. 519, Camb. Sci. Inst. Co.'s list "Technical Thermometry;" and (for bibliography), Waidner and Burgess, *Bull. Bur. of Standards*, 1909.)

	$\delta = 1.50. \qquad (\text{Harker, Phil. Trans., 1904.})$												
Pt Temps. tpt.	0	20	40	6	0	80	100	120	140	160	180		
-200° 0 +200 400 600 800 1000 TO CALC	t 0° 203'I 420'2 654'4 910'8 1197	937'9 1228	t -154°. 39°6. 245°4 465°5 7°3°7 965°3 1259 ANGE Δ	4 59 266 488 728 993 12	0.64 0.7 3.5 3.7 3.0 390	t 116°·2 79'76 288'1 511'6 754'0 1021 1323 CALE T	t -97°·13 100 309·8 534·9 779·4 1050 1355 EMP. (t)	t -77 [°] ·92 120'4 331'5 558'4 805'2 1078 -	t -58°·61 140'9 353'4 582'1 831'2 1107 	161*5 375*5 606*0 857*4 1137	182°3 397°8 630°1 884°0 1167 —		
t	Δt	t	Δt	t	Δt	t	Δt	t	Δt	t	Δt		
-200° -180 -160 -140 -120 -100 -80	°-060 '050 '042 '034 '026 '020 '014		^{0.} 010 '006 '002 0 - '002 - '002 - '002	80° 100 120 140 160 180 200	- °.00: 0 .000 .000 .010 .010 .010 .020	300 350 400 450 450	*060 *088 *120 *158 *20	600° 650 700 750 800 850 900	°·30 ·36 ·42 ·49 ·56 ·64 ·72	950° 1000 1050 1100 1150 1200 1250	· ⁰ ·8 · 9 I · 0 I · 1 I · 2 I · 3 I · 4		

HIGH TEMPERATURES

(See Le Chatelier's "High Temperature Measurements;" Waidner and Burgess, Bull. Bureau of Standards, 1905 and 1907; Harker, Science Progress, 1911.)

For the measurement of high temperatures (say above 1200° C., which is about the present upper experimental limit of the gas scale) the instruments in general use are thermo-junctions and optical or radiation pyrometers. Both involve extrapolation. Thermo-couples have been used up to the temperature of the meltingpoint of platinum (c. 1750°). At high temperatures thermo-junctions yield rather lower results than do optical pyrometers, e.g. see the M.P.'s of Pd and Pt on p. 49.

THERMO-ELECTRIC THERMOMETRY

Temperature readings with thermo-couples are reduced by one of the formulæ: (a) $E = a + bt + ct^2$, (b) $E = mt^n$, or $E = n \log t + m'$, E being the e.m.f. generated, and t the temperature of the hot junction, the cold junction being at 0°. Up to about 1200° these formulæ with suitable constants agree to within 2° for the usual 10% (Pt, Pt - Rh) and (Pt, Pt - Ir) couples, but above 1200° formula (b) yields the higher results, e.g. see the melting-points of Pd and Pt on p. 49. The thermo-e.m.f.'s of these Pt couples gradually diminish with prolonged heating. The values of the constants below are only average values.

E IN	MICRO	VOLTS (10-6	VOLT)
------	-------	---------	------	-------

- 02	Couple.	a	b	c	,11	<i>m</i> ′
Cold junc- tion at o° C.	Pt and (90 Pt, 10 Rh). Pt and (90 Pt, 10 Ir). Cu and Constantan †. Cu and Fe	-307* -550*	8:1* 14:8* 	*0017* *0016* - *0183	1.10 1.10 1.14	·52 ·89 1·34

46

THERMOMETRY

THERMO-ELECTRIC THERMOMETRY (contd.)

The following are the readings in micro-volts (10⁻⁶ volt) determined at the National Physical Laboratory for a Pt-Rh and a Pt-Ir couple, each having the cold junction at o° C. (Camb. Sci. Inst. Co.)

Couple.	Temp.	0	50	100	150	200	250	300	350	400	450
Pt and (90 Pt, 10 Rh)	0° C. 500 1000	0 377 880	23 423 935	51 470 991	83 518 1048	567	158 617 1165	668	242 720 1286	286 773 1348	331 826 —
Pt and (90 Pt, 10 Ir)	0 500 1000	0 737 1571	58 818 1657	125 899 1744	195 981 1831	1064	343 1147 2007	1231	498 1315 2185	577 1400 2275	657 1485 —

THERMO-E.M.F.'S AGAINST PLATINUM IN MICRO VOLTS (10-6 VOLT)

One junction at o° C. The current flows across the other junction from the metal with the (algebraically) smaller value to the other metal. (See Watson's "Physics" and Henning in L.B.M.)

Metal.	- 190°	$+100^{\circ}$	Metal.	-190°	$+100^{\circ}$	Metal.	-190°	$+100^{\circ}$
Aluminium	+ 390	+ 380	Lead	+ 210	+ 410	Tantalum .	_	+ 330
Antimony.		+4700	Magne-			Tin	+200	+ 410
Bismuth .	+12300	-6500	sium .	+ 330	+ 410	Tin Zinc	- 120	+ 750
Cadmium .		+ 900	Mercury	-	0	Brass	-	c.+ 400
Cobalt	28					Constantan*		
Copper	- 200	+ 740	Palla-			German sil-		
Gold	- 120	+ 730	dium .	+ 790	- 560	ver†		c 1000
Iron	- 2900	c. + 1600	Silver .	- 140	+ 710	Manganin‡	-	+ 570

* Eureka, 60 Cu, 40 Ni.

† 60 Cu, 15 Ni, 25 Zn.

‡ 84 Cu, 4 Ni, 12 Mn.

RADIATION AND OPTICAL THERMOMETRY

Most radiation thermometers use as a basis either (1) the Stefan-Boltzmann law, $E = K(\theta^4 - \theta_0^4)$, where E is the total energy (of all wave-lengths) radiated by a black body at absolute temp. θ to surroundings at absolute temp. θ_0 , and K is a const. (K = 5.3 × 10⁻¹² watts per cm.² per 1°—see p. 65); or (2) Wien's equation connecting the temperature with the intensity of some particular wave-length of light

emitted (p. 65). The Wien equation is, Intensity $I = c_1 \lambda^{-5} e^{-\frac{c_2}{\lambda T}}$, where λ is the wave-length, T is the "black body" temp. on the absolute scale, c_1 and c_2 are constants, and e is the base of the Napierian logarithms. Both equations give results which agree very accurately with the gas scale over the calibrated range o° to 1200° C. Up to about 1500° radiation thermometers are, in practice, almost always graduated empirically, usually against a thermo-couple.

The "black body" temperature of a radiating substance is the temperature at which an ideal black body would emit radiation of the same intensity as that from the substance, the radiation considered being of some particular wave-length. A perfectly black body absorbs all the radiation which falls upon it ; it is destitute of reflecting power. Coal, carbon, metals which when heated tarnish with a black oxide, enclosed furnaces and muffles at a uniform temperature, all conform very nearly to this definition. When a pyrometer is sighted upon a body which is not "black," the temperature recorded-the "black body" temperature-will be lower than the true temperature to an extent which increases with the reflecting power of the body, e.g. if platinum and carbon have equal "black body" temperatures, their actual temperatures may differ by 180° or so at 1500°.

EMPER	ATURE	OF FIRE
-------	-------	---------

Appearance .	Red—just visible.	Dull Red.	Cherry Red.	Orange.	White.	Dazzling White.
Temperature.	c. 500° C.	c. 700°	c. 900°	<i>c</i> . 1100°	c. 1300°	c. 1500°
For :	standard te	mperature	s for thermom	eter calibrat	tion, see p.	50.

47

MELTING AND BOILING POINTS

MELTING AND BOILING POINTS OF THE ELEMENTS

48

For an account of temperature measurements, see p. 46. For melting and boiling points of chemical compounds, see p. 109 ; of fats and waxes, see p. 50.

Element.	Melting Point.	Observer.	Boiling Point at 760 mms.	• Observer.
				COS Instanting
Aluminium .	657° C.	Holborn and Day, 1900	1800° C.	Greenwood, 1909
Antimony	630	n n n n	1440	Greenwood, 1909
Argon	- 188	Ramsay and Travers, 1901	- 186 (sublimes)	
Arsenic	volatilizes	_	450	_
Barium	850	Guntz, 1903	040.000	A-OMABHT -
Beryllium Bismuth	c. 1430	Just and Mayer, 1909		
	269	Callendar, 1899	I420 (sublimes)	Greenwood, 1909
Boron	2000 to 2500	Weintraub, 1909	3500 (?)	
Bromine	-7'3	van der Plaats, 1886	63	van der Plaats, 1886
Cadmium Cæsium	321 26.4	Holborn and Day, 1900	778	D. Berthelot, 1902
Calcium	780	Eckardt and Graefe, 1900 Ruff and Plato, 1903	670	Ruff & Johannsen, 1906
Carbon	4000 (?)	(Calculated) McCrae, 1906		Dispar
Cerium	623	Muthmann & Weiss, 1904		Cartan - 0 - antar -
Chlorine	- 102	Olszewski	- 33.6	Regnault, 1863
Chromium	$\left\{\begin{array}{c} 1489\\ \text{not sharp}\end{array}\right\}$	Burgess, 1907	2200	Greenwood, 1909
Cobalt	5 1464			coord - Sec ford
cobait	1 1490+	Day & Sosman, 1910 }		
Copper	{ 1084 * 1083	Holborn and Day, 1900)	2310	Greenwood, 1909
Erbium	(1003	Day and Sosman, 1910 J	A ROITAL	10
Fluorine	- 223	Moissan and Dewar, 1903	- 187	Moissan & Dewar, 1903
Gallium	: 30.2	L. de Boisbaudran, 1876		
Germanium .	900 (?) 1063	Winkler, 1886	And a Trainer Ph	DA N E'A T AL DEBON
Gold	1062 +	Holborn and Day, 1901) Day and Sosman, 1910)	2530(?)	resigned and - the letting
Helium	below - 270	Onnes, 1908	- 268.6	Onnes, 1908
Hydrogen	-259	Travers, 1902	- 252'7	Travers, 1902
Indium	155	Thiel, 1904	1000 (?)	Deuronana & Damsau 200
Iodine Iridium	2290	Lean & Whatmough, 1898 Mendenhall & Ingersoll, '07		Drugmann & Ramsay, '00
Iron	1 1505 1	Burgess, 1907		Greenwood, 1909
	\not definite∫	and the second second second	2450	
Krypton Lanthanum .	- 169 810	Ramsay, 1903 Muthmann & Weiss, 1904	- 151.7	Ramsay, 1903
Lead	327	Holborn and Day, 1900	1525	Greenwood, 1909
Lithium	186	Kahlbaum, 1900	>1400	Ruff & Johannsen, 1906
Magnesium .	633	Heycock and Neville, 1895	1120	Greenwood, 1909
Manganese .	$\left\{\begin{array}{c} 1207\\ \text{not sharp} \end{array}\right\}$	Burgess, 1907	1900	Greenwood, 1909
Mercury	- 38.80	Chappuis, 1900	356.7	Callendar, 1899
Molybdenum .	>white heat	to " time and unities to	3200 (?)	A share - da hall
Neodymium . Neon	840	Muthmann & Weiss, 1904	- 220	Dewar, 1901
	1435	Burgess, 1907)	-239	Dewai, 1901
Nickel	1452 †	Day and Sosman, 1910 J	2330 (?)	
Niobium	1950	von Bolton, 1907	-	Fischer & Alterant
Nitrogen	- 210'5	Fischer and Alt, 1903	- 195'7	Fischer & Alt, 1903
	aduaina stras	here : 1062° in air	Const wel	N. thermometer.
- In I	equeing atmost	bhere; 1062° in air. †	Const. vol.	ry, thermometer,

MELTING AND BOILING POINTS

Element.	Melting Point.	Observer.	Boiling Point at 760 mms.	Observer.
Osmium	2200° C.	Tangto - stateteen	-	enante
Oxygen	-235		- 182° 9 C.	Travers, 1902
Palladium *	1549 1535	Day and Sosman, 1910 Holborn & Henning, 1905	2540	a the shirts
optical therm.	1549		_	
· ,, ·	1545	Nernst & Wartenberg, 1906		Carbon - mide
" in (a)	1582	Holborn & Valentiner, 1907	-	Alercia - eltrista
thermo-jn. (a)	1530 1543	Waidner & Burgess, 1907	_	Water -
optical therm.	1546	·· ··	_	an one a -banante
Phosphorus .	44'I 760	Hulett, 1899	287	Schrötter, 1848
Platinum *	1710	Harker, 1905	2150(2)	in the second second
thermo-jn. (a)	1710 1710	Holborn & Henning, 1905	2450 (?)	Company Contract
optical therm.	1729		_	
,,, .	1750	Nernst & Wartenberg, 1906	-	
thermo-jn. (a)	1789 1706	Holborn & Valentiner, 1907 Waidner & Burgess, 1907		
(a)	1731	waldher & Burgess, 1907	_	_
optical therm.	1770	"" " 1909		
Potassium	62.5	Holt and Sims, 1894	758	Ruff & Johannsen, 1905
Praseodymium	T- TAN STREET, DOL	Muthmann and Weiss, 1904	667	Permann, 1889
Rhodium	940 1907	Mendenhall & Ingersoll, '07	2500 (?)	
Rubidium . ".	38.5	Erdmann and Köthner, 1896		Ruff & Johannsen, 1905
Ruthenium	1900 (?)	The donesting of the st	2520 (?)	and the state of the page
Samarium Selenium	1350 217	Saunders, 1900	690	Berthelot, 1902
Silicon	1200 (?)	- Jaunders, 1900	3500 (?)	
Silver	\$ 962 +	Holborn and Day, 1900 \	1955	Greenwood, 1909
Silver	1 960‡	Day and Sosman, 1910 J		
Sodium	97'0	Kurnakow & Puschin, 1902	{ 877 742	Ruff & Johannsen, 1905 Permann, 1889
Strontium	900	-	-	
441 Fig. 1		1.201 3755 1 135 d	(444'55	Eumorfopoulos, 1908
: : : : : : : :	rhombic	the second properties	(c.p. air)	(corrected, 1909)
Sulphur	119		444'7 (c.v. N)	Chappuis & Harker, 1902
1 1 1 1 1 1 1	monoclinic	the state of the second	444.53	Callendar, 1899
Tratalium		Purseas toop	((c.p. N)	f canendar, 1099
Tantalum Tellurium	2910 450	Burgess, 1907 Matthey, 1901	1390	Deville and Troost, 1880
Thallium	301	Kurnakow & Puschin, 1901	1280(?)	Wartenberg, 1907
Thorium	1690	Wartenberg, 1909		the second s
Tin	232	Heycock & Neville, 1895	2270	Greenwood, 1909
Titanium	c. 2500 (3080	Burgess, 1907		
Tungsten	2825	Wartenberg, 1907	3700 (?)	-
Vanadium	1620	and the second s		
Xenon Zinc	- 140	Ramsay, 1903 Day and Sosman, 1910	- 109	Ramsay, 1903
Zirconium	418‡ c. 1300		918	Berthelot, 1902

49

Е

STANDARD TEMPERATURES

STANDARD TEMPERATURES

50

Melting and boiling points of elements will be found on p. 48; of chemical compounds, on p. 109.

B.P. = boiling point at 760 mm.; M.P. = melting point; T.P. = transition point.

Substance.		Temp.	Substance.		Temp.
Hydrogen Oxygen Carbon dioxide Mercury Water Na ₂ SO ₄ . 10H ₂ O Water Naphthalene * Benzophenone * Cadmium *	B.P. B.P. B.P. M.P. M.P. T.P. B.P. B.P. B.P. M.P. B.P.	°C. - 253 - 183 - 78.2 - 38.8 0 32.383 100 218.0 231.9 306.0 321.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M.P. B.P. M.P. M.P. M.P. M.P. M.P. B.P. B	°C. 419'4 444'7 657 801 1070 1550 1750 2270 3700 abs. 3620 abs. 5800 abs.

* Const. vol. N. scale, Waidner & Burgess, 1911; W. & B., Waidner & Burgess, 1904.
 † Black body temperature.
 ‡ Positive crater.

EFFECT OF PRESSURE ON BOILING POINTS

 $\delta p/\delta t$ is given as mm. Hg per degree C. for pressures not very far removed from 760 mm.

The boiling point in absolute degrees C. of a substance under 760 mm. mercury = c(760 - p)(t + 273), where c is a constant for the substance, and t is the B.P. in degrees C. at the pressure p mm. The constant c is the same for chemically similar substances.

(See Young, "Fractional Distillation.")

Substance.	$\delta p/\delta t$	c	Substance.	$\delta p/\delta t$	c	Substance.	$\delta p/\delta t$	c
Hydrogen Oxygen Carbon dioxide Water Mercury Sulphur *	200 77 55 27 [.] 2 13 [.] 6 11 [.] 0	× 10 	CCl ₄ Pentane, n Alcohol, methyl ,, ethyl . ,, amyl . Ether, ethyl .	23 25.8 29.6 30.3 25 26.9		Benzene Toluene Aniline Naphthalene . Benzophenone Acetone	23.5 21.7 19.6 17.1 15.8 26.4	× 10 ⁻⁶ 121 120 112 119

* $t_p = t_{769} + .0904(p - 760) - .0452 (p - 760)^2$, Harker & Sexton, 1908.

MELTING, FREEZING, AND BOILING POINTS OF FATS AND WAXES

At 760 mm. pressure.

(See Lewkowitsch's treatise.)

Substance.	MP.	F.P.	Substance.	M.P.	F.P.	Substance.	M.P.	B.P.
Butter Lard Tallow, beef . ,, mutton	28-33 36-40	27-30	Beeswax Spermaceti . Stearin	42-49	60-63 42-47 70	Paraffin wax,	38-52	° C. 350–390 390–430 <i>c</i> . 300

THERMAL CONDUCTIVITIES

THERMAL CONDUCTIVITIES

51

The thermal conductivity, k, is given below as the number of (gram) calories conducted per sq. cm. per sec. across a slab of the substance 1 cm. thick, having a temp.-gradient of 1°C. per cm., *i.e.* calorie cm.⁻¹ sec.⁻¹ temp.⁻¹. (See Callendar, "Conduction of Heat," *Encyc. Brit.*, and Winkelmann's "Handbuch der Physik.," 111., 1906.)

METALS AND ALLOYS

k for most pure metals decreases with rise of temperature; the reverse appears to be true for alloys. If κ be the electrical conductivity and θ the absolute temp., then $k/(\kappa\theta)$ is very approximately a constant for pure metals. (See J. J. Thomson, "Corpuscular Theory of Matter," and Lees, *Phil. Trans.*, 1908.) The electrical conductivity of the same specimen of many of the substances below will be found on p. 81.

Substance.	Temp.	Cond.k.	Observer.	Substance.	Temp.	Cond. k.	Observer.
Metals- Aluminium*. """"""""""""""""""""""""""""""""""""	remp. - 160 18 18 100 - 186 18 100 - 186 18 100 - 160 18 100 18 100 - 160 18 100 - 160 18 100 - 186 18 100 - 160 18 100 - 186 18 100 - 160 18 100 - 186 18 100 - 160 18 100 - 18 100 - 160 - 18 - 1	514 504 480 492 044 040 025 0194 0161 239 222 216 1079 918 908 700 703 161 151 152 144	Lees, <i>P.T.</i> , '08 <i>J.</i> & D., 1900 Lorenz, 1881 M., 1907 <i>J.</i> & D., 1900 Lees, '08 <i>J.</i> & D., 1900 Lees, '08 <i>J.</i> & D., 1900 <i>Lees</i> , '08 <i>J.</i> & D., 1900 <i>J.</i> & D., 1900 <i>Lees</i> , '08 <i>J.</i> & D., 1900 <i>J.</i> & D., 1900 <i>Lees</i> , '08 <i>J.</i> & D., 1900 <i>J.</i> & D., 1900 <i>J.</i> & D., 1900 <i>Lees</i> , '08 <i>J.</i> & D., 1900 <i>J.</i> & D., 1900 <i>Lees</i> , '08 <i>J.</i> & D., 1900 <i>J.</i> &	Substance. Mercury "	remp. ° C. 0 50 50 17 -160 18 100 18 100 -160 -160 18 100 -160 -160 -160 -160 -160 -160 -160 -160 -160 -160 -160 -160 -160 -160 -160 -160 -160 -160 -18 100 -160 -160 -18 100 -160 -18 -100 -160 -18 100 -160 -18 100 -160 -18 -100 -160 -18 -100 -160 -18 -100 -160 -18 -100 -160 -18 -100 -160 -18 -100 -160 -160 -18 -100 -160 -18 -100 -160 -160 -18 -100 -160 -18 -100 -160 -18 -100 -160 -18 -100 -160 -18 -100 -160 -18 -100 -160 -18 -100 -160 -18 -100 -160 -18 -100 -160 -18 -100 -160 -18 -100 -160 -18 -100 -160 -18 -100 -160 -18 -18 -100 -160 -18 -100 -18 -18 -19 -18 -18 -18 -19 -19 -18 -18 -19 -18 -19 -18 -18 -18 -19 -18 -18 -19 -18 -18 -19 -18 -18 -18 -18 -18 -18 -18 -18	*0148 *0189 *0177 *0197 *129 *142 *138 *168 *182 *166 *173 *998 *974 1*006 *992 *192 *192 *155 *145 *265 *262	H. F. Weber,'79 A., 1864 R. W., '02 Lees, '08 J. & D., 1900 J. & D., 1900 J. & D., 1900 Lees, '08 J. & D., 1900 Lees, '08 J. & D., 1900 Lees, '08 J. & D., 1900 Lees, '08 J. & D., 1900
" " " " " cast # " " * " " * " steel {1% " " " " " " Lead, pure ". " " " Magnesium . " "	100 54 102 30 -160 18 18 100 -160 18 100 0 to 100	'143 '114 '111 '149 '113 '115 '108 '107 '092 '083 '082 }:376 {	f 1900 Callendar Hall Lees, 1908 J. & D., 1900 Lees, '08 J. & D., 1900 Lorenz, 1881	Alloys— Brass Constantan (Eureka)¶} German silver Manganin ***. " Platinoid	-160 17 18 100 0 100 -160 18 100 18	181 260 054 064 070 089 035 053 063 060	Lees, 1908 J. & D., 1900 Lorenz, 1881 Lees, '08 J. & D., 1900 Lees, '08
0	im ; J. &			% Mn. ‡ 70 Cu, 30 Zn. Ni, 12 Mn. selhorst ; M., Ma			

THERMAL CONDUCTIVITIES

MISCELLANEOUS SUBSTANCES

The values below are mostly at ordinary temperatures. They must be regarded as rough average values in the case of indifferent conductors. Nearly all liquids have very approximately the same conductivity, which in most cases appears to increase with temperature.

Substance.	k	Substance.	k	Substance.	k	Substance.	k
Glass— Crown ; window Flint Jena Soda Woods (dry)— Mahogany Oak, teak Pine, walnut Miscellaneous Asbestos paper . Cardboard Cement	2, L. 1-2, L. 1'3-1'8 '5, L. '6 '4, L. '6 '5 '7, L.	Flannel Gas carbon . Graphite Ice Marble, white Mica * Paper Paraffin wax . Porcelain	4 .42, L. .09 .23, L. 10 12 5, L. .3, L. .3, L. .25, L.	Substance. Water " · · · " · · · " · · ·	^{145, L.} ¹³ ¹² ¹⁹ ^{22, L.} 4 ^{17, L.} Temp. 17° 20 4 23°6 11	Liquids— Alcohol, 25°. Aniline, 12°. Glycerine, 25° Paraffin oil, 17° Turpentine, 13° Vaseline, 25° Cond. &. '00131 '00143 '00138 '00152 '00147	4'4, L. Obs. R.W.'03 M.&C. H. F. Weber Lees,
Cotton	.55, L.	Quartz, axis	30, L.	" · · ·	25	·00136	\$ 1898

* Perp. to cleavage plane. † Average for igneous and sedimentary rocks ; see Brit. Ass. Reports. L., Lees, 1892 & 1898 ; M. & C., Milner & Chattock, 1898 ; R. W., R. Weber.

GASES

In the case of a gas the thermal conductivity $k = 1.603 \eta c_v$, where η is the viscosity, and c_v the specific heat at constant volume. Stefan, and Kundt and Warburg have found, in agreement with this formula, that k for air, hydrogen, etc., is constant between the pressures 76 cm. and 1 cm. k increases with the temperature. (See Meyer's "Kinetic Theory of Gases.")

Gas.	Temp.	Cond. k.	Gas.	Temp.	Cond. k.	Gas.	Temp.	Cond. k.	Gas.	Temp.	Cond. k.
H ₂ " " He N ₂	. 0	× 10 ⁻⁵ 11'7, E. 31'8, E. 31'9, G. 36'9, G. 33'9, S. 5'24,W.	O_2 A CH ₄ C ₂ H ₄	0 8 0	× 10 ⁻⁵ 5 ²² * 5 ⁶³ , W. 3 ⁸⁹ , S. 6 ⁴⁷ , W. 3 ⁹⁵ , W. 4 ⁹⁹ , W.	" " NH3		× 10 ⁻⁶ 5 ⁻¹⁰ , W. 3 ⁻⁰⁷ , W. 3 ⁻²⁷ , Sc. 5 ⁻⁰⁶ , Sc. 4 ⁻⁵⁸ , W. 7 ⁻⁰⁹ , W.	NO Hg	C. 0° 100 8 203	× 10 ⁻⁵ 3 ^{.5} 0, W. 5 ^{.06} , W. 4 ^{.6} 0, W. 1 ^{.8} 5, Sc.

* Mean of five observers. E., Eckerlein, 1900; G., Graetz, 1885; S., Schwarze, 1903; Sc., Schleiermacher, 1889; W., Winkelmann, 1875.

COEFFICIENTS OF LINEAR EXPANSION OF SOLIDS

To represent accurately over any considerable range the variation of length (l) with temperature (t) requires for almost all solid substances a parabolic or cubic equation in t. But if the temperature interval is not large, a linear equation $l_t = l_0(1 + \alpha t)$ may be employed; and this gives a definition of the mean coefficient of linear expansion (α) over that temperature range. The coefficient of **cubical expansion** = 3α .

There is little point in tabulating coefficients of higher-powered terms of t, since for a given specimen it is as a rule impossible without measurement to assume with any accuracy anything more definite than the average value of even the first power coefficient (a). Except in a few cases the linear coefficient as defined above increases with the temperature. The values of a subjoined are per degree C, and except when some temperature is specified, for a range round and about 20° C. Some substances expand irregularly, and extrapolation of a may therefore be dangerous. Interpolation of a from the constituent metals must be employed with caution in the case of alloys. (See Winkelmann's "Handbuch der Physik," iii. 1906.)

53 COEFFICIENTS OF EXPANSION

COEFFICIENTS OF LINEAR EXPANSION OF SOLIDS (contd.)											
Element. a. Obs.	Elen	nent.	а.	Obs.	Element.	α.	Obs.				
×10-6	C	Taskity	×10-6	17 1	D. H. H.	×10 ⁻⁶					
Aluminium 25.5 V. '93 Antimony 12 F. '69	Coppe Gold		16.7	V. '93 V. '93	Palladium . Platinum .	11.7	S. '03 B. '88				
Bismuth 15'7 V. '93		••••	13.9	B. '88	Platinum . Potassium .	8.9 83	H. '82				
C.(diamond) 1'2 F. '69			10'2	D. '02	Selenium, 40°	36.8	F. '69				
" (gas car-		rought)		H.D.'00		18.8	V. '93				
bon) . 5'4 F. '69	Steel,	10'5 to	11.0	N.P.L.	Sulphur	c. 70	-				
" (graphite) 7.9 F. '69			27.6	M. '66	Thallium, 40°	30.5	F. '69				
		esium.	25.4	V. '93	Tin		M. '66				
Cobalt 12.3 T. '99	Nicke	• • •	13.8	T. '99	Zinc, 25.8 to	26.3	N.P.L.				
						n la la ini	annand 2				
Substance.	α.	Obs.		Subst	ance.	α.	Obs.				
Alloys-	×10-6		Mis	cellaneo	us (contd.)	×10-6	Port 1				
Aluminium bronze	- / -	N.P.L.	Gla	ass, flint, a	45 SiO2,		1-1-1				
Brass (ordy.) c.66 Cu, 34 Zn		N.P.L		8	K ₂ O, 46 PbO	7.8	Sc.				
Bronze, 32 Cu, 2 Zn, 5 Sn§ Constantan (Eureka), 60	17.7	B. '88	,		16"" (see p. 74)	7.8	} T.S.S.				
Cu, 40 Ni	17.0	N.P.L.	,	, ,, Verre	59''' (see p. 74) dur (see p. 74)	5'7 7'2	\$ '96 C. '07				
German silver, 60 Cu, 15	- Antinana		Gr	anite	· · · · · · ·	8.3					
Ni, 25 Zn, 50°	18.4	Pf. '72	Gu	tta-percha		198	Ru. '82				
Gunmetal (Admiralty)	18.1	N.P.L.	Ice	-10° to	0°	50.7	Vn. '02				
Magnalium, 86 Al, 13 Mg		St. 'or		land span	, axis	25.1	B. '88				
Nickel steel,* 10 % Ni .	130	N.P.L.		" "	\perp axis	- 5.0	B. '88				
" " ²⁰ " " ·	19'5 12'0	N.P.L.		irble, wh	ite Carrara, 15°, 1'4 to	3.5	N.P.L.				
" " ³⁰ % " ·	120		110	" blac	k	4.4					
(Invar†)	0.0	N.P.L.	Ma		4 to	7	-				
""40%".	6.0	N.P.L.	Par	raffin wax	, 0°-40°	c. 110	-				
" " ⁵⁰ %" ·	97	N.P.L.		rcelain, B	erlin	2.8	S. '03				
", ", 80 % ", . Phosphor bronze, 97 6 Cu,	143	N.P.L.	1000		" 0°–100°	3.1	H.G. '01				
2 Sn, '2 P	16.8	B. '88	181	" Ba	00	3'4 2'5	Bd. '00 T. '02				
Platinum-iridium, 90 Pt,		2. 00	Po	riland sto	ne	6.3					
10 Ir‡	8.7	B. '88			tal), axis .	7'5	B. '88				
Platinum - silver, 33 Pt,					⊥ axis .	13.7	B. '88				
67 Ag	15	-	Sili	ca (fused)	$, -80^{\circ} to 0^{\circ}$.	•22	S. '07				
Solder, 2 Pb, 1 Sn, 50°. Speculum metal, 68 Cu,	25	Sm.	,,	, ,,	0° to 30°.	.42	C. '03				
32 Sn	19.3	Sm.	93		0° to 100° 0° to 1000°	.50	S. '07 R. '10				
Type metal, c. 135°	195	Dl.	Sai	idstone .	· · · 7 to	.54 12	K. 10				
Miscellaneous-	-	101.		te	6 to	IO	-				
Brick (Egyptian)	9'5	N.P.L.	Woo	ds (1) alo	ong grain-	0011-0	14 BO				
Cement and concrete, 10 to	14	-			ogany	c. 3	Vl. '68				
Ebonite 64 to	77			k; pine .		c. 5	Vl. '68				
Fluor spar, CaF ₂	19	F. '68			ross grain—		111 100				
Glass, soft, 68 SiO ₂ ,	Q	5.0		ech		60	VI. '68				
14 Na ₂ O, 7 CaO ,, hard, 64 SiO ₂ ,	8.2	Sc.		hogany .		40	VI. '68 VI. '68				
20 K ₂ O, 11 CaO	9.7	Sc.	FI	ne		34	VI. 00				
20 No. 11 CaU							and the second se				

* See Guillaume's "Les Applications des Aciers au Nickel," 1904. † Invar is obtainable in three qualities, with a range of coefficients of $(-3 \text{ to } + 25) \times 10^{-6}$ at ordinary temperatures. ‡ Used for international prototype metre (see p. 3). § Used for Imperial Standard Yard (see p. 4). B. Benoît ; Bd. Bedford ; C. Chappuis ; D. Dittenberger ; Dl. Daniell ; F. Fizeau ; H. Hagen ; H.D. Holborn and Day ; H.G. Holborn and Grüneisen ; M. Matthiessen ; N.P.L. National Physical Laboratory ; Pf. Pfaff ; R. Randall ; Ru. Russner ; S. Scheel ; Sc. Schott ; Sm. Smeaton ; St. Stadthagen ; T. Tutton ; T.S.S. Thiesen, Scheel, and Sell ; V. Voigt ; Vl. Villari ; Vn. Vincent.

COEFFICIENTS OF EXPANSION

COEFFICIENTS OF CUBICAL EXPANSION OF GASES

54

The volume coefficient, α , at constant pressure is defined by $v_t = v_0(1 + \alpha t)$; the pressure coefficient, β , at constant volume is defined by $p_t = p_0(1 + \beta t)$, where v_t and p_t are the volume and pressure respectively corresponding to t° , the initial volume and pressure (v_0, p_0) being measured at $o^\circ C$. The values of both α and β depend on the initial pressure of the gas. If a gas obeys Boyle's law exactly, $\alpha = \beta$.

Comparison of rarefied gas, H₂ and absolute temperature scales.— By graphically or otherwise extrapolating α and β to zero pressure, they become equal (as we should expect, for rarefied gases should behave as ideal gases and obey Boyle's law), and we may write $\alpha = \beta = \gamma$. For example, Berthelot finds from Chappuis' data—

> For H₂, mean γ = '00366207 = 1/273'07 (see p. 44) N₂, , γ = '00366182 = 1/273'09 (see p. 44)

Kelvin's absolute temperature scale agrees with the ideal gas scale, and therefore with the rarefied gas scale. Now, as will be seen below, β for $H_2 = \gamma$ very nearly, and thus the constant-volume hydrogen scale of temperature may justifiably be taken as closely approximating to the thermodynamic scale (see also p. 44).

be taken as closely approximating to the thermodynamic scale (see also p. 44). (See Börnstein and Scheel in L.B.M.; Young's "Stoichiometry"; and Berthelot and Chappuis, *Trav. et Mém. du Bur. Intl.*, 1907.)

Gas.	Temp.	Po-	a	Obs.	Gas.	Temp.	po.	β	Obs.		
	AT CO	DNSTANT P	RESSURE.		AT CONSTANT VOLUME.						
Air	C, 0°-100° 0-100	cm. Hg. 100'1 76	·0036728 3671	C., 1903 R., 1847	Air	C.	cm. Hg. '58 1'32	.0037666	M., 1892		
H ₂ .	0-100 0-100 0-100	100 76	36600 3661	C., 1903 R., 1847	>> >> >>	-	10'0 17-24	37172 36630 36513	". R., 1847		
". N ₂ :	0-100 -001-0 001-0	76 100	36609 367313 367750		», »,	0°-100°	76 100'1 200	36650 36744 3690	C., 1903 R., 1847		
" · " ·		139- 200 atm. 1000 "	434 218	A., 1890 A., 1890))))	0-1067	2000 23	3887 36643	J. P."		
CO . CO .		100 " 76	486 3669 37128	A., 1890 R., 1847 C., 1903	12	0-100 0-100 0-100	52 70 100	36626 366255 366256	T. J., '02 C., 1903		
" · " ·	0-40 0-100	51.8 "	37100 37073	" "	" · " · N ₂ ·	0-100 0-100	109 53	36627 36683	O, 1903 C., 1903		
» ·	0-20 0-40 0-100	99 [.] 8 "	37602 37536 37410	" "	" · " ·	0-100 0-100 0-100	79 100 66	36718 367440 36738	" M. N., '03		
" ·	0-20 0-40	137.7 "	37972 37906	" "	ü.	0-1067 0-100	18-23 52	36652 36627	J. P. T. J., '02		
N.O	0-100	" 76	37703 37282 3719	R. M. R., 1847	" Ä.	0-100	70 100 51'7	366255 36616 3668	0., 1908 K. R., '96		
NH. SO	0-50	76 76/15° 76	3854 3903	P.D., '06 R., 1847	CO	0-100 0-1067	76 23	3667 36648	R., 1847 J. P.		
queroc M., M	l & Perro lelander ;	t; C., Cha t; K. R., M. N., M	ppuis; J. Kuenen & I lakower & an & Dav	Randall ; Noble ;	CO2	0-100 0-20 0-100 0-1067	51.8 99.8 99.8 24	36981 37335 37262 36756	C., 1903 " J. P.		
Regna		M., Richard	ls & Marks		N ₂ O SO ₂		76 76	3676 3845	R., 1847 R., 1847		

55 COEFFICIENTS OF EXPANSION

COEFFICIENTS OF CUBICAL EXPANSION OF LIQUIDS

As with solids (see p. 52), if the temperature interval is not large, a linear equation $v_t = v_0(1 + \alpha t)$ may be employed to show the relation between the volume (v) of a liquid and its temperature (t). The mean coefficient (α) thus defined increases in general with the temperature. The values of α subjoined are per ° C., and for a range round 18° C. unless otherwise specified.

Liquid.	Temp. range.	Mean Coefficient from 0° C. to t ^o C.	Observer.
Water		$\cdot o_{3}13019/(t) - \cdot o_{4}65769 + \cdot o_{5}86797t - \cdot o_{7}7336t^{2}$	Chappuis, '97
(see p. 22 and below)	17 to 100	Density = $I - \frac{(t-3.982)^2}{466,700} \cdot \frac{t+273}{t+67} \cdot \frac{350-t}{365-t}$	Thiesen, '03
Mercury	24 to 299	$00018179 + 0_{9}175t + 0_{10}351t^{2}$	Regnault,'47 (Broch)
(see p. 22)	0 to 100	$00018169 - 0_82951t + 0_9115t^2$	Chappuis, '07
	- 10 to 300 0 to 200	$\frac{1000180555 + 0712447 + 0102547^2}{100018000 + 0727}$, to 1 in 2000	Callendar & Moss, Phil. Trans., 1911

Liquid.	a	Liquid.		Liquid.	a	Liquid.	a
Acetic acid . Alcohol, me ,, ethyl ,, amyl Aniline . Benzene . CS ₂ Chloroform .	110 93 85	Ether, ethyl . Ethyl bromide Glycerine	50 above)	Pentane Toluene Turpentine . Xylol (m) . Water,5°-10° , 10-20 , 20-40 , 40-60	109 94 101 5'3 15'0	Water, 60–80 Solutions CaCl ₂ , 5 ^{.8} % . , 40 ^{.9} % NaCl, 26% . H ₂ SO ₄ , 100%	× 10 ⁻⁵ 58.7 25.0 45.8 43.6 57

MECHANICAL EQUIVALENT OF HEAT

Joule's equivalent, J, is here given as the number of ergs equivalent to a calorie, *i.e.* the heat required to raise I gram of water through 1° C. at some specified temperature. The **15**° **calorie** is about I part in 1000 greater than the **20**° calorie. (See p. 56.) See Griffith's "Thermal Measurement of Energy," 1901.

Observer.	Calorie.	Ergs.	Observer.	Calorie.	Ergs.
Joule, 1843	N. scale 20° C.	× 10 ⁷ 4.169	Bousfield, Phil. Trans.,	N. scale	× 10 ⁷
Rowland, 1878 Griffiths, 1893	20° C. 20° 20°	4.180 4.184	1911	20° C. 0°	4 ¹⁷⁵ 4 ¹⁸⁵
Schuster and Gannon, 1894 Callendar and Barnes,	20 [°]	4.181	Reynolds & Moorby, 1897 Barnes, 1909 (deduced)	Mean Mean	4.184
1899	20 ⁰	4.180	Canaco, 1909 (acqueed)		4.00

SPECIFIC HEAT OF WATER

Callendar and Barnes (*Phil. Trans.*, 1902) used an electrical method of determining the temperature variation of the specific heat of water. The specific heats below are reduced by Callendar ("Ency. Brit.," Art. "Calorimetry") from their results; they are relative to the specific heat at 20° C. on the C.P. nitrogen scale. The **20° calorie** (see pp. 5 and 55) is adopted as 4'180 joules = 4'180 × 10⁷ ergs, being the mean of the results of Rowland (1879) and of Reynolds and Moorby (reduced), each of whom used a mechanical method of determining "J." Thus the values of J below do not rest on the values attributed to the electrical standards employed. The specific heat of water is a minimum at 37'5° C.

The 15° calorie (according to Barnes, *Proc. Roy. Soc.*, 1909) = 4.184 joules, assuming the e.m.f. of the Clark cell at 15° C. = 1.4330 international volts.

The mean calorie $(=\frac{1}{100}$ of heat required to raise I gram of water from 0° to 100° C.) = 4'185 joules (Barnes, 1909); = 4'184 joules (Reynolds and Moorby, 1897, corrected by Smith).

Temp.	Specific heat.	Joules.	Temp.	Specific heat.	Joules.	Temp.	Specific heat.	Joules.
- 5° C. 0 5 10 15 20 25 30 35 40	1.0158 1.0094 1.0054 1.0027 1.0011 1.0000 .9992 .9987 .9983 .9982	4'246 4'219 4'202 4'191 4'184 4'180 4'177 4'175 4'173 4'173	45° C. 50 55 60 65 70 75 80 85 90	'9983 '9987 '9992 1'0000 1'0008 1'0016 1'0024 1'0033 1'0043 1'0053	4'173 4'175 4'177 4'180 4'183 4'187 4'190 4'194 4'198 4'202	95° C. 100 120 140 160 180 200 220	1.0063 1.0074 1.0121 1.0176 1.0238 1.0388 1.0384 1.0467	4'206 4'211 4'231 4'254 4'280 4'309 4'341 4'376

SPECIFIC HEAT OF MERCURY

In terms of the gram calorie at 15°5 on the const. vol. H. scale. (Barnes and Cooke, Phys. Rev, 15, 1902.) Mercury has a minimum specific heat at 140° C. (Barnes, Brit. Ass. Rep., 1909.)

Temp.	0 ° C.	20°	40 °	60°	80°	100°	200°
Specific heat .	·0335	·0333	.0331	.0329	·0328	('0327)	(.032)

SPECIFIC HEATS OF THE ELEMENTS

For gases, see p. 58. (See Waterman, Phys. Rev., 1896, and Börnstein and Scheel in L.B.M.)

Substance.	Temperature.	Sp. heat.	Observer.	Substance.	Temperature.	Sp. heat.	Observer.			
Aluminium .	-182° to 15°	·168	Tilden, 1903	Bromine, liqd.	13° to 45°	.107	Andrews, '48			
	15 to 185	'219	"	Cadmium * .	-186 to -79	050	Behn, 1900			
A CONTRACTOR	600	282	Richards, '93	" pure	18 to 99	'055	Voigt, 1893			
Antimony	-186 to -79	'0462	Behn, 1900	Cæsium	0 to 26	.048	E. & G., 1900			
	17 to 92	.0508	Gaede, 1902	Calcium	-185 to 20	157	N. & B., 1906			
Arsenic, cryst.	21 to 68	.083	B. & W., 1868		0 to 100	.149	Be., 1906			
" amorph.	21 to 65	.076	.,	Carbon						
Barium	-185 to 20	.068	N. & B, 1906	Gas carbon.	24 to 68	204	B. & W., 1868			
Beryllium	0 to 100	'425	N. & P., 1880	Charcoal .	0 to 24	.165	H.F.Weber,'75			
Bismuth	-186	.0284	Giebe, 1903		0 to 224	238	"			
	22 to 100	.0304	W., 1896	Graphite .	-50	114	33			
Boron, amor.	0 to 100		M. & G., 1893	" .	11	.160	"			
Bromine, solid			Regnault, '49	,, ,	202	.297	"			
* Contained Fe and Zn.										

The specific	SPEC	IFIC	HEATS OF	THE ELEMEN	TS (contd.)		ne values d'Élenn
Substance.	Temperature.	Sp. heat.	Observer.	Substance.	Temperature.	Sp. heat.	Observer.
Carbon (contd.)	18-192-51		Surric anida N	Palladium	-186° to 18°	.052	Behn, 1898
Graphite .	977° C.	.467	H.F.Weber,'75		18 to 100	059	
Diamond .	-50	.064	**	Phosphorus-	70. 10		
	11 206	113	"	", yellow	-78 to 10 13 to 36	·17 ·202	Regnault, 1849 Kopp, 1864
" ·	985	·273 ·459	"	" liquid		202	Person, 1847
Cerium"	0 to 100	045	H., 1876	,, red .	15 to 98	17	Regnault, 1853
Chlorine, liqd.	0 to 24	226	Knietsch	Platinum	-186 to 18	.0293	
Chromium.	-200	.067	Adler, 1903	* 16. A. 11. 021	18 to 100	0324	
(1.4% Fe & Si)	0	'104 '112	33	Potassium	1230 -78 to 23	·0461 ·166	Tilden, 1903 Schüz, 1892
to chine servers	400	133	"	Rhodium	10 to 97	.058	Regnault, 1862
Cobalt	-182 to 15	082	Tilden, 1903	Ruthenium .	0 to 100	.001	Bunsen, 1870
	15 to 100	.103	"	Selenium, cryst.		.084	B. & W., 1868
Connor	15 to 630 -192 to 20	123	Schmitz, 1903	" amorph.	18 to 38 -185 to 20	.095	N. & B, 1906
Copper	20 to 100	.0936		Shicon, cryst.	57	·123 ·183	H.F.Weber,'75
1. 19th and a	900	.118	Le Verrier, '92	TO H & DE	232	203	,,
Didymium	0 to 100	.046	H., 1876	Silver	-186 to -79		
Gallium, solid	12 to 23	'079	B., 1878	11 11	15 to 100	.056	B. & S., 1895
,, liquid Germanium .	12 to 119 0 to 100	080 074	N. & P., 1887	Sodium	427 -185 to 20	.059	Tilden, 1903 N. & B., 1906
Gold	-185 to 20	035	N. & B., 1906	Sourum	-185 to 20	·234 ·297	Bernini, 1906
representation 77	18 to 99	.0303	Voigt, 1893	A S II : monoide	128	333	"
Indium	0 to 100	.057	Bunsen, 1870	Sulphur-	un (Eltragate	aso a	H.A.B.
Iodine	9 to 98	'054	Regnault, 1840			.163	Kopp, 1865
Iridium	-186 to 18 18 to 100	·0282 ·0323		" liquid . Tantalum	119 to 147 -185 to 20	235	Person, 1847 N. & B., 1906
Iron	-192 to 20	089	Schmitz, 1903	ramaium	-185 to 20	.033 .036	v. Bolton, 1905
		119		Tellurium, crys.		048	Fabre, 1887
20	225	137	Stücker, 1905		-192 to 20		Schmitz, 1903
T	0 to 1100	153	Harker, 1905	m	20 to 100	0326	N"1 " -00-
Lanthanum . Lead	0 to 100 -192 to 20		H., 1876 Schmitz, 1903	Thorium		·028	Nilson, 1883 Behn, 1900
		0305			-186 to -79 19 to 99	0400	Voigt, 1893
Bulbalabrunry 5	300		Naccari, 1888	" molten .	240	.064	Spring, 1886
Lithium	0 to 19	.837	Be., 1906	Titanium	-185 to 20	082	N. & B., 1906
Magnation	0 to 100	1'093		20.00 1.00	0 to 100	.113	N. & P., 1887
Magnesium .	-186 to -79 18 to 99	246	Behn, 1900 Voigt, 1893	Tungsten		.162	N. & B., 1906
	225	281	Stücker, 1905	rungsten	-185 to 20 20 to 100	·036	Gin, 1908
Manganese .	14 to 97	·122	Regnault, 1862	Uranium	11 to 98	.062	Regnault, 1840
Mercury	See preced		age.		0 to 98	·028	Blümcke, 1885
Molybdenum .		'063	N. & B., 1906			115	Mache, 1897
Nickel		·072 ·086	D. & G., 1901 Behn, 1898	Zinc		·084	Schmitz, 1903
INICKCI		109	Denn, 1098		20 to 100 300	'093 '104	Naccari, 1888
Osmium	19 to 98	.031	Regnault, 1862	Zirconium		.066	M. & D., 1873
and a second							MARCAL DLATO HA

B., Berthelot ; Be., Bernini ; B. & S., Bartoli & Stracciati ; B. & W., Bettendorff & Wüllner ; D. & G., Defacqz & Guichard ; E. & G., Eckardt & Graefe ; H., Hillebrand ; M. & D., Mixter & Dana ; M. & G., Moissan & Gautier ; N. & B., Nordmeyer & Bernouilli ; N. & P., Nilson & Pettersson ; W., Waterman.

SPECIFIC HEATS

SPECIFIC HEATS OF GASES AND VAPOURS The values at const. pressure are, unless otherwise stated, all at atmospheric pressure. The specific heats given are calories per gram of gas per degree C. at the temp. stated.										
Gas.	Temp.	Sp. ht.	Observer.	Gas.	Temp.	Sp. ht.	Observer.			
AT CONST	ANT PRE	SSURE	(cp)	Ammonia, NH ₃ .	23-100	.520	Wiedemann, 1876			
	20° C.	.2417	Swann, 1909		26-103 13-172	·213 ·232	Regnault, '62			
» » · · · · · · · · · · · · · · · · · ·	100 20-440	·2430 ·2366	H. & A., 1905		27-67 20-206	1.625 .245	B. & O., 1883 Regnault, '62			
», », · · · · », », · · · ·	20-98		Witkowski, ,, 1896	$CS_2 \cdot \cdot$	86-190	·160 ·591	", " Lussana, '94			
" " 70 atmos. Argon	-50 20-90	'312) ", ", ", " D., 1897	Ethylene C_2H_4 . Benzene, C_6H_6 .	34-115	·404 ·299	Wiedemann,			
Hydrogen		3'402 3'788	Lussana, 1894	Chloroform CHCl ₃ .	27-118	.144	\$ 1877			
Nitrogen	0	.2350	* H. & H., 07	Me. alcohol CH_4O . Et. alcohol C_2H_6O .	108-220	.453	Regnault, '62 Regnault, '62			
,, (liq.) Oxygen	20-440	.43 .2419	Alt, 1904 H. & A., 1905	,, ether $(C_2H_5)_2O$. Turpentine, $C_{10}H_{16}$	25-111 179-249	·428 ·506	W., 1876 Regnault, '62			
", (liq.) Chlorine	16-343	·2497 ·347 ·115	Alt, 1904 Strecker, '81	AT CONS	21015	81-1	(c _y)			
	19-388 206-377 23-99	·055 ·034 ·242	" ^{'82} W., 1876	Air,† 1 atmos Hydrogen ‡	c. 50	2.402	Joly, 1891			
,, dioxide .		'2010	* H. & H., '07 Swann, 1909	Argon	c. 55 0-2000 0		Pier, 1909			
,, ,,	100 atmos. 100	·221 ·2670	". Lussana, '94 * H. & H., '07	Nitrogen∥ Water vapour		•175 •340				

B. & O., Berthelot & Ogier; D., Dittenberger; H. & A., Holborn & Austin (Reichsanstalt); W., Wiedemann. * H. & H., Holborn (Nitrogen $(0-1400^\circ), c_{\phi} = '2350 + '000019t$ t is temp. $(0-1400^{\circ}), c_{\rho} = .5010 + .0000742t - .0518t^{2}$ CO2 and Henning in ° C.

[Water vapour (100-1400°), $c_{\beta} = .4669 - .0000168t + .0744t^2$] (Reichsanstalt).

† Air, $c_v = \cdot 1715 + \cdot 02788\rho$ where ρ is the density (gm./c.c.). ‡ H, c_v diminishes with increasing density and falling temp. § CO₂, $c_v = \cdot 165 + \cdot 2125\rho + \cdot 34\rho^2$, ρ being density. || N, $c_v = \cdot 175 + \cdot 00016t$, t being the temp.

RATIO OF THE SPECIFIC HEATS FOR GASES AND VAPOURS

 γ = the ratio of the specific heat at constant pressure to that at constant volume. γ is usually determined directly by some method involving an adiabatic expansion, such as the determination of the velocity of sound in the gas. From a knowledge of either (1) the pressure or (2) the temperature immediately following an adiabatic expansion (Clément and Desormes, Lummer and Pringsheim's methods respectively), γ can be deduced from $pv^{\gamma} = \text{const}$, or $\theta v^{\gamma-1} = \text{const}$. (See Capstick, "Science Progress," 1895.)

Gas.	Temp.	γ	Observer.	Gas.	Temp.	γ	Observer.
Monatomic gases Helium Argon Neon Neon Krypton Xenon Mercury vapour . Diatomic gases Air (dry) " " " "		1'402 1'401 1'401	 K. & W., 1876 L. & P., 1898 Stevens, 1905 Makower, '03	" " ²⁰⁰ " " ²⁰⁰ " " atmos. } Hydrogen	0° 0 500 900 -79·3 0 -79·3 4-16 		""" Hartmann, '05 L. & P., 1898 Cazin, 1862 L. & P., 1898 Leduc, 1898

58

SPECIFIC HEATS

Gas.	Temp.	γ	Observer.	Gas.	Temp.	γ	Observer.	
Triatomic gasesOzoneWater vapourCarbon dioxide""Ammonia, NH3Nitrous oxide, N2ONitrogen N_2O_4 peroxide NO_2 H2SCS2Sulphur dioxide.{Polyatomic gasesMethane, CH4	100° (?) 4-11 500 20° 150 16-34 500	1'306 1'26 1'336 1'324	1 1 1 1	Acetylene, C_2H_2 Ethylene, C_2H_4 . Benzene, C_6H_6 . Chloroform, CHCl ₃ . Me. alcohol. , bromide. , chloride. , iodide. Et alcohol. , bromide. , chloride. , or , bromide. , iodide. , ether. , chloride. , bromide. , bromid		1'26 1'264 1'40 1'105 1'110 1'150 1'130 1'256 1'274 1'279 1'286 1'133 1'134 1'188 1'188 1'187 1'024 1'112	Pagliani, '96 Stevens, '02 Müller, 1883 Stephens, '03 Capstick, '95 Stevens, '02 Capstick, '93 " Jaeger, 1889 Stevens, '02 Capstick, '93 	

* Extrapolated; F., Fürstenau; L. & P., Lummer & Pringsheim; M. & F., Maneuvrier and Fournier.

SPECIFIC HEATS OF VARIOUS BODIES

In most cases, the specific heats given must only be regarded as rough average values.

Substance.	Temp.	Sp. ht.	Substance.	Temp.	Sp. ht.	Substance.	Temp.	Sp. ht.	
Alloys— Brass, red "yellow : Eureka (Constantan) German silver . Liquids— Alcohol, amyl . "ethyl . ""methyl Aniline * Benzene "Brine, density = 1'2 {	°C. 0 18 0-100 18 0 40 12 15 10 40 -20 0 15	*090 *088 *098 *095 *095 *55 *547 *648 *601 *514 *340 *423 *69 *71 *72	Ether, ethyl Glycerine Oil, olive , paraffin Sea-water Toluene Toluene Turpentine Basalt Ebonite Fluorspar, CaF ₂ Glass, crown , flint	17 18 18 20-100 20-100 20-100 30	-56 -58 -47 -51 to -54 -94 -40 -42 -20 -20 to -24 -33 -21 -16 -12	Glass, Jena 16"' † "Jena 59"' † Granite Ice Indiarubber . Marble, white . Paraffin wax . Porcelain ‡ Quartz, SiO ₂ . Rock salt, NaCl Sand Silica (fused) §. """	$ 18^{\circ} 18 20-100 -21 to -1 15-100 18 0-20 15-1000 0 $50 18 20-100 15-200 15-200 15-80 0 $	'174 '279 '21 '19 '200	
* Griffiths, Phil. Mag., 1893. † See p. 74. ‡ Harker, 1905. § Greenwood, 1911.									

59

LATENT HEATS

The nur into liquid	LATENT HEAT OF FUSION The number of gram calories required to convert 1 gram of substance from solid into liquid without change of temperature.											
Temp. Lt. ht. Observer, etc.												
-6·5° C. 0 0												
to Made	VARIOUS SUBSTANCES											
Substance.		Temp.	Lt. ht.	Substance.	Temp.	Lt. ht.	Substance.	Temp.	Lt. ht.			
Elements- Aluminium Bismuth . Cadmium . Copper Lead Mercury . Palladium Phosphorus	•••••	°C. 657 269 321 	cals. 77 13 14 43 5 36 5	Platinum Potassium . Silver Sulphur Tin Zinc NH ₃		cals. 27 16 22 9 14 28 108	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	°C. 311 339 10 ³ 4 5 ⁴ 13 80 16	cals. 63 47 24 44 30 42 35 39			

LATENT HEAT OF VAPORISATION

Latent heats are given as the number of gram calories required to convert I gram of substance from liquid into vapour without change of temperature. The latent heat of vaporisation vanishes at the critical temperature.

Trouton's Rule.—The latent heat of vaporisation of I gramme molecule of a liquid divided by the corresponding boiling point (on the absolute scale) is a constant (C). C = 2I for substances of which both liquid and vapour are unassociated. If the liquid is associated, C > 21 (e.g. water, C = 26); if the vapour is associated, C < 21 (e.g. acetic acid, C = 15). [See Nernst's "Theoretical Chemistry."]

STEAM

Regnault's equation connecting latent heat and temperature takes no account of the temperature variation of the specific heat of water (see p. 56). The equation gives values which are too large at low temperatures. The equations of Griffiths, Henning, and Smith have been reduced and are here expressed in terms of the 15° calorie = 4.184 joules. Griffiths' and Smith's results rest further on an attributed value of 1'433 volts for the e.m.f. of the Clark cell at 15° C. See also next page.

[The critical temp. of water is about 365° C.]

Observer.	Temp. range of expts.	Latent heat \mathbf{L}_{ε} at t° C.
Regnault, 1847 . Griffiths, 1895 . Henning, Ann. d. Phys., 1906, 1909 Smith, Phys. Rev., 1907 .	$\begin{cases} 63^{\circ}-194^{\circ} \text{ C.} \\ 30^{\circ} \text{ and } 40^{\circ} \\ 30^{\circ}-100^{\circ} \\ 100^{\circ}-180^{\circ} \\ 14^{\circ}-40^{\circ} \end{cases}$	$L_{t} = 606.5695t$ $L_{t} = 598.0605t$ $\{L_{t} = 599.460t, to .3\%$ or $L_{t} = 94.3 (365 - t)^{.3125}, to .1\%$ $L_{t} = 538.976428(t - 100)03834(t - 100)^{2}$ $L_{t} = 597.2580t$

	LATENT HEAT OF STEAM (contd.)											
In terms of Regnault, Griffiths, Joly, 1895. Callendar, Dieterici, Henning, Smith, Matthews 1905. 1906. 1907. Richards of Matthews 1911.												
L ₀	606 †	598†	the local to	595 †	596°0‡	599†	597 †					
L ₁₀₀	537	537.5 +	540§	540	_	539'4	539†	538.0				

LATENT HEATS OF VAPORISATION OF VARIOUS SUBSTANCES

The values below are for pure substances, and are due to Young, Proc. Roy. Dublin Soc., 1910. The precise calorie employed is not stated.

Temp.	SnCl ₄ .	CC14.	Pent- ane (n) .	Methyl	Ethyl	in the second	Ethyl ether.	Meth	yl Ethyl	Propyl	Acetic acid.	Ben- zene.
					AICOHOI.			1	Acetate	•		
C. 0° 20 40 60 80 100 120 140 160 180 200 220 240 280	cals. — — — 31'76 30'54 29'12 27'69 26'29 24'57 22'82 20'86 18'50 15'60	35'40 32'61 29'45 25'56 20'07	69'94 64'48 56'58 47'42 35'01 24'68*	cals. 289'2 284'5 277'8 269'4 259'0 246'0 232'0 216'1 198'3 177'2 151'8 112'5 84'5† —	cals. 220'9 220'6 218'7 213'4 206'4 197'1 184'2 171'1 156'9 139'2 116'6 88'2 40'3 —	cals. 	68·42 62·24 55·93 46·07 31·87 19·38	98.5 94.0 88.3 82.8 76.8 69.9 61.0			92'3 94'3 91'8 89'6 87'7 85'5 82'0 78'1	2 — 9 — 9 95'45 2 91'41 8 86'58 3 82'82 3 78'94 1 74'62 5 68'81 2 62'24 8 54'11 6 43'82
Crit. temp.)	3180.7	283°·1	1970-2	240 ⁰	243°'I	263°.7	1930.8	233°.7	2500.1	276°-2	3210.6	288°.5
• .	At 190°.	†	At 230°.	\$	At 190°		§ At 230	. [.]	At 249°.	1	At 275°	C.
Subs	tance.	Tem	p Lt. h	t. S	ubstanc	e	Temp.	Lt. ht.	Substa	nce.	Temp.	Lt. ht.
Mercu Sulph Phosp Liquic " " " Bromi Iodine	$\begin{array}{c} \text{ur} & \cdot & \cdot \\ \text{horus} & \cdot \\ \text{l} & \text{H}_2 & \cdot \\ \text{O}_2 & \cdot \\ \text{O}_2 & \cdot \\ \text{N}_2 & \cdot \\ \text{air} & \cdot \\ \text{Cl} & \cdot \\ \text{ine} & \cdot \end{array}$	55	362 130 123 50 6.50 67 40	Liques	, CO	[3 . 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 ·	C. -20° - 0 22 -10 46 32'5 42 0	cals. 67 341 57 32 96 85 110 ^{.5} 46 67	Chlorofo Et. brom " propi " iodid " forma Am. alco Aniline Toluene Turpenti	ide . onate e ate . hol .	C. 61° 38 100 71 50 131 	cals. 58 60 79 47 98 120 104 84 70

THERMOCHEMISTRY

THERMOCHEMISTRY

In thermochemistry the conservation of energy is assumed in accordance with experiment, and consequently (1) if a cycle of chemical change takes place so that the final state of the reacting substances is identical with the initial, then as much heat is absorbed as is given out, i.e. the total heat of the reaction is zero; (2) the heat of reaction only depends on the initial and final states of the reacting substances, and not on the intermediate stages. The results below are affected by, but have not been corrected for, any changes in the accepted values of the atomic weights since the experiments were carried out.

MOLECULAR HEAT OF FORMATION

The molecular heat of formation (H.F.) is the heat liberated when the molecular weight in grams of a compound is formed from its elements. When the state of aggregation of an element or compound is not given, it is the state in which it occurs at room temperature and pressure. A minus sign before an H.F. means that heat is absorbed in the building up of the compound.

Unit—the gram calorie (at 15° to 20° C.) per gm. molecule of compound. Aq = solution in a large amount of water. The reactions are at constant pressure.

Example.—H.F. of CuSO₄ = 183,000; of CuSO₄. Aq = 198,800. ∴ the heat of solution of CuSO₄ = 198,800 - 183,000 = 15,800 cals. per gram mol. (T.. Thomsen, "Thermochemistry," trans. by Miss K. A. Burke; B., Berthelot, Ann. d. Chim. et d. Phys., 1878; T.B., mean of both these observers' values. See also Böttger in L.B.M.) For organic compounds, see p. 64.

Compound.	Mol. H.F. in calories.	Compound.	Mol. H F. in calories.	Compound.	Mol. H. F. in calories.
Non-Metals	$\times 10^3$	42.5k	$\times 10^3$	- Serie 11	× 10 ³
HCl gas	22°0, T.	CO ₂ from }	97'3, B.T.	NH CL.Aq .	
HCl.Aq	39'3, T.	amorph. C) CO., from)	the set of the set of the	$(NH_4)_2SO_4$. $(NH_4)_2SO_4.Aq$	283, T.B. 280 ^{.6}
HBr gas	8·4, T. 28·6, T.	diamon'd	94'3, B.	NH40H.Aq.	90, B.
HBr.Aq HI gas	-6.1, T.B.	B ₂ O ₃ ; amp. B.	273, B.	BaO	126, T.
HI.Aq	+13.2, T.B.	SiO2Aq; crys.	180, B.	Ba(OH),	217, T.
HF "	+ 38.5	As203 [Si	155, T.	BaCl ₂	197, T.
H ₂ O liq	+ 38.5 68.4, T.	As205	219, T.	BaCl ₂ Aq	199'I, T.
	69°0, B.	CCl ₄ from)	76, B.	Bi_2O_3	20
" gas	58·1, B.	diamond f		BiCl ₃ · · ·	91, T.
H ₂ O ₂ . Aq	47.0	SbCl ₃ solid .	91.4, T.	$Cd(OH)_2$ · · · $Cd+O+H_2O$	66, T.
H ₂ S from }	2.7, T.	SbCl ₅ liq CS ₂ from	105, T.	$CdCl_2$ · · ·	93, T.
rhombic S)	12	diamond &	-19, B.	CdSO4	222, T.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 36.7	rhombic S.	-19, 5.	CdSO4.8/3H201	
SbH_3	-87, B.	C.N. gas	n D	on sol. in Aq	+2.66, T.
SiH ₄	25	from diam)	-74, B.	CdSO4. Aq .	232'7, T.
SO ₂ from)		H2SO4 liq	193, T.	$Cs_2O.$	100
rhombic S)	70	H2SO4.Aq		CaO}	
SO3 liq. from		from rhombic	210, T.	", Moissan.)	
rhombic S)		S		$Ca(OH)_2$, .	229
N_2O		HNO ₃ liq		$CaC_2 \cdot \cdot \cdot \cdot CaCl_2 \cdot \cdot \cdot \cdot$	-7.25 170, T.
NO		HNO ₃ . Aq . HCN gas)	21.20	CaCl ₂ . Aq.	187'4, T.
$N_2O_3 NO_2/22^\circ$	-21'4, B. -1'7, B.	from diam.		CaSO,	318, T.
,, /150°.	-7.6, B.	HCN liq		CaCO ₃	270, T.
N ₂ O ₅ liq	3.6, T.	H ₃ PO ₄ liq		$Ca(NO_3)_2$.	202, B.
P2O5 solid .			18.30 3.3	CoO	64
P.O. Aq		Metals-	0 0	CoCl ₂ · · ·	
CO from	29, T.	$Al_2O_3 \cdot \cdot \cdot$		CoSO ₄ .7H ₂ O Co(NO ₃) ₂ .6H ₂ O	234, T. 119, T.
amorph. C	Lung and	$AlCl_3$		$CuO_1O_3)_2OH_2O$	
CO from diamond .	26.1, B.	$Al_2(SO_4)_3$. Ac NH ₄ Cl		CuCl ₂	51.6
diamond .	,	Innitor	103, 111	1	1

INORGANIC COMPOUNDS

HEATS OF FORMATION

INORGANIC COMPOUNDS (contd.)										
Compound.	Mol. H.F. in calories.	Compound,	Mol. H.F. in calories.	Compound.	Mol. H.F. in calories.					
$\begin{array}{c} \textbf{Metals}(contd.)\\ CuSO_4 & . & .\\ CuSO_4 & . Aq & .\\ CuSO_4 & . Aq & .\\ CuSO_4 & . 5H_2O & .\\ on sol. in Aq & .\\ AuBr_3 & . & .\\ AuCl_3 & . & .\\ FeO & .\\ FeO & . & .\\ FeO &$	183. T. 198.'8, T. - 2.75 8.'8, T. 23, T. 64.'6 196 240 236 96, T. 50'3, T. 62.'4 83, T. 216, T. 105.'5 97.'9 140 111 94, T. 102.'4 334, T. 112, T.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	302, T. 322 91 112 24'9 T. 21'1 175 31'3 53'2 59'7 74'5, T. 229, T. 59'4 97 104, B.T. 106, B.T. 106, B.T. 106, B.T. 107, S.T. 344, T.B. 5'9, T. 7, B.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	91 to 100 102'3, T.B. 112'2, T.B. 97'8, T.B. 111, T.B. 328'3, T.B. 272, T.B. 130, T.B. 217, B. 185, T.B. 196, T. 42'2, T. 48'6, T. 221, T. 70 81, T. 128 85'4, T. 97'3, T.B. 132 230'3, T.B. 248'7					

MOLECULAR HEAT OF NEUTRALISATION

Unit—the gram calorie (at 15° to 20°) per gram molecule of base. Thus KOH.Aq + HCl.Aq = KCl.Aq + H₂O + 13,750 calories. Thomsen (= T.) observed at 18° to 20° C., and the final dilution was 3600 gms. (7200 for Na salts) per gm. mol. of base. Berthelot (= B.) used at least 2000 gms. of H₂O per 17 gms. of hydroxylion, – HO.

Base.	HCl	HF	HNO ₃	HCN	$\frac{1}{2}$ H ₂ SO ₄	$\frac{1}{2}\mathbf{H}_{2}\mathbf{CO}_{3}$	1H ₃ PO ₄	1 Oxalic.						
NOT	× 10 ³		× 10 ³			X 10 ³	× 10 ³							
INaOH .	13'74,T.; 13'7, B.		13'7, T.; 13'5, B.	2.8	15.64, T.	10°1, T.; 10°2, B.	14 [.] 8, T.	13.8,T.						
2NaOH .	-	-	-	-	31'38‡, T.		27'1*, T.	28.3,T.						
	13.85, T.	16.4 †	13 [.] 8, T.	2.93 2.8 T	15.64, T. 15.7, T.B.	то [.] г, В.		13 [.] 8,B.						
INON .	13'7, T.; 13'6, B.	19.1	130, 1.	20, 1.	157, 1.D.	ю г, в.	in and	130,D.						
INH4OH.	12'3, T.;	15.2	12.3, T.	1.3, B.	14'3, T.B.		13.5, B.	12.2						
JCaOH .	12'4, B. 14'0, B.	18.4 †	13.9, B.	3.2	15.6, T.	5'3, B. 9'3,† T.;		-						
	Antonio anto					9'8,† B.								
	13.8, T. 13.9, B.	17.8 †	13'9, B.		15'4, T.	10.4,†T.B. 11.0,†T.B.	-	_						
gDaon .	13 9, 1.	101	14.1,T.; 13.9, B.		104, D.I.	110,11.D.	Per la	110.18						
¹ / ₂ Mg(OH) ₂		15.2	13.8, T.	1.2	15'3, B.T.	8·95,† B.		- 1						
$\frac{1}{2}Cu(OH)_{2}$	7.5, 1.	10,1	7.6	10-31	9.5	S. THE		17.0						
* 2NaOH		Tel T	à p.	in sel	* 3NaOH gives 34.0 × 10 ³ , T. † Base in solid state. ‡ 1H ₂ SO ₄ . § 1H ₂ CO ₃ .									

HEATS OF COMBUSTION

HEATS OF COMBUSTION AND FORMATION OF CARBON COMPOUNDS, COAL, ETC. Molecular heats of formation (H.F.) of organic compounds are deduced from their heats of combustion (H.C.), by subtracting the latter from the heat generated on burning the carbon and hydrogen contained in the compound. Experimental errors in the H.C. thus become magnified in the H.F. Heats of combustion determined by Thomsen are for the vapour of the compound at 18° C.; for the liquid the H.C. and H.F. would be greater by the latent heat of evaporation. Thomsen assumes H.F. of CO_2 from amorphous C as = 96,960 cal.; of water as 68,360 cal, per gm. molecule. For H.F. of inorganic compounds, see p. 62.

The H.C. and H.F. of carbon compounds is an **additive property** (see Thomsen's "Thermochemistry"). Berthelot's bomb calorimeter has been of considerable importance in the modern experimental side of the subject.

Unit—the gram calorie (at 15° to 20°) per gram molecule.

Example.—16 gms. of methane, CH₄, give out 212,000 gram calories of heat when burnt at **constant pressure**, to water and CO₂ at 18° C. (T., Thomsen, "Thermochemistry;" B., Berthelot.)

Compound.	H.C.	H.F.	Compound.	H.C.	H.F.	
Methane, CH_4 { Ethane, C_2H_6 { Propane, C_3H_8 Acetylene, C_2H_2 { Ethylene, C_2H_2 { Ethylene, C_2H_4 Benzene, C_6H_6 Naphthalene, $C_{10}H_8$. Toluene, C_7H_8 Me. alcohol, CH_4O Me. chloride, CH_3Cl . Chloroform, $CHCl_3$ Et. alcohol, C_2H_6O Et. ether, $C_4H_{10}O$ Et. ether, $C_4H_{10}O$ Et. chloride, C_2H_5Cl . Acetic aldehyde, C_2H_4O Formic acid, CH_2O_2 . Acetic acid, $C_3H_6O_2$. Propionic acid, $C_3H_6O_2$.	× 10 ³ 212, T.) 213, B.) 370, T.) 372, B.) 529, T. 310, T.) 314 333, T. 799, T. 1239 956, T. 1239 956, T. 1239 956, T. 1239 956, T. 1239 956, T. 107, T. 340, T. 334, T. 282, T. 334, T. 225, T. 387, T. 241, T.	21/	Me. acetate, $C_3H_6O_2$. Carb. bisulphide, CS_2 . Methylamine, CH_5N . Dimethylamine, C_2H_7N Aniline, C_6H_7N . Pyridine, C_5H_5N . Sugar, $C_{12}H_{22}O_{11}$. Illuminating gas per cub. metre	$\begin{array}{c} \times 10^{3} \\ 399, T. \\ 265, T. \\ 258, T. \\ 420, T. \\ 838, T. \\ 675, T. \\ 1364 \\ 5.6 to \\ 6.5 \\ 7.6 to \\ 8.4 \\ 4.7 \\ 6.9 \\ 9.8 \\ \left\{ \begin{array}{c} 3.9 to \\ 4.4 \\ 5.86 \\ 5.66 \\ 5.67 \\ 8.12 \\ 5.9 \end{array} \right\}$	× 10 ³ 96.7 - 26 9.5 12.7 - 17.4 - 19.4 - per gm. """"""""""""""""""""""""""""""""""""	

MOLECULAR HEAT OF DILUTION

The heat set free or absorbed on diluting a gram molecule of liquid with water is the molecular heat of dilution: thus on diluting HCl to (HCl, **300** H₂O), 17,300 calories per 36'5 grams of HCl are set free; diluting 2NaCl, $nH_2O(n = 20)$ to (2NaCl, **100**H₂O) absorbs 1060 cal. per 2 × 58'65 gm. of NaCl. **Unit**—the gram calorie (at 15° to 20°) per gram molecule. (See Thomsen, "Thermochemistry.")

HCl n = 0	HNO ₃ n = 0	$\begin{array}{l} \mathbf{H_2 \$ 0_4} \\ \mathbf{n} = 0 \end{array}$	NaH0 n = 3	NH ₃ *	$\begin{array}{l} 2NaCl\\ n=20 \end{array}$	$\begin{array}{l} 2 NaNO_3 \\ n=12 \end{array}$	Na ₂ SO ₄ n = 50	$ 2nCl_2 \\ n = 5 $	$\begin{array}{c} \operatorname{Zn}(\operatorname{NO}_3)_2\\ n=10 \end{array}$
1 5·37 2 11·36 5 14·96 50 17·1	10 7·32 20 7·46	1 6.38 5 13.1 49 16.7		1 1.26 3 385 5.8 21 9.5 02	100 - 1.06 200 - 1.31 400 - 1.41	50 - 2.26 100 - 3.29 200 - 3.86	$\begin{array}{r} 100 &665 \\ 200 & -1.13 \\ 400 & -1.38 \\ 800 & -1.48 \end{array}$	10 1.85 20 3.15 50 5.32 100 6.81	$\begin{array}{c} H_{2}O \times 10^{3} \\ 15 & 91 \\ 20 & 115 \\ 50 & 120 \\ 100 & 1.11 \\ 200 & 1.07 \end{array}$
	* Heat developed on diluting NH3.#H2O to NH3.200H2O (Berthelot).								

64

ENERGY AND WAVE-LENGTH OF FULL RADIATION
The radiation from a full or black body radiator depends both in quality and quantity
upon the temperature. The total energy radiated (of all wave-lengths), from unit area in
unit time, is given by <i>Stefan's law</i> , $E = K\theta^4$, where K is Stefan's constant and θ is the absolute
temperature (see Optical Pyrometry, p. 47, and below).
The dependence of the quality on the temperature is expressed by Wien's displacement
$law \lambda_{-\theta} = const.$ where λ_{-} is the length of the particular waves which carry most of the

energy. Further, the energy E_m , carried by the waves of length λ_m , varies as the 5th power of the temperature (absolute) : $E_m \theta^{-5} = \text{const.}$

The energy (from unit area) radiated by some particular wave-length λ is expressed accurately by $E_{\lambda} = C_{\lambda} - 5/(e^{a/\lambda\theta} - I)$ Planck's formula

where C = 353 erg.-cm.² sec.-¹, a = 1445 cm.-deg., and e is the base of Napierian logs. At low temperatures or for short wave-lengths ($\lambda \theta < 3$ cm.-deg.) Planck's formula becomes (to 8 % at least)-

 $E_{\lambda} = C_{\lambda} - 5e^{-a/\lambda\theta}$. Wien's formula (see p. 47)

For long waves and high temperatures ($\lambda \theta > 730$ cm. deg.), we have (to 1 % at least)-

 $E_{\lambda} = C_{\lambda} - 4\theta e^{-a}/a$ Rayleigh's formula

(See Preston's "Heat," 2nd edit. ; Kayser's "Spectroscopie," II. ; Lorentz's "Theory of Electrons," 1910.)

	WIEN'S DISPLACEMENT LAW $\theta = \text{const.} = A.$ (See above). λ is red in cms.	STEFAN'S LAW Total radiation from a full radiator = $K\theta^4$ (see above). K is in erg cm. ⁻² sec. ⁻¹ deg ⁻⁴ .				
A	Observer.	K	Observer.			
·2940 ·2888 ·2902 ·2940 ·2890	Lunmer and Pringsheim, 1899 Paschen and Wanner, B. B., 1899 Wanner, 1900 Paschen, A. d. P., 1901 Rubens and Kurlbaum, A. d. P., 1901	5.32 × 10 ⁻⁵ 5.18 " { 5.3 " 5.35 "	Kurlbaum, A. d. P., 1898 Lummer and Pringsheim, A. d. P., 1901 Bauer and Moulin, C. R., 1910 Valentiner, A. d. P., 1910			

A. d. P., Ann. der Phys.; B. B., Berlin Ber.; C. R., Compt. Rend.

SOLAR CONSTANT AND TEMPERATURE OF SUN

The solar constant S is the energy received from the sun by the earth (at its mean distance) per sq. cm. in unit time, corrected for the loss by absorption in the earth's atmosphere.

The determination of the absorption loss is difficult; it is best derived from simultaneous observations at high and low stations.

Langley and Abbot ("Smithsonian Reports," 1903 et seq.) give the following relation between atmospheric absorption and wave-length :-

Wave-length ($\overset{\circ}{A}$.U. = 10 ⁻⁸ cm.)	4000	6000	8000	10,000	12,000
Fraction transmitted	•49	.74	.85	•89	·91

If R is the energy radiated in unit time from a sq. cm. of the sun's surface, then

 $R = \left\{\frac{\text{earth's solar distance}}{\text{sun's radius}}\right\}^2 \times S = \left\{\frac{9.28 \times 10^7}{4.33 \times 10^5}\right\}^2 \times S = 46,000S$

Assuming the sun to be a full or black body radiator, its "effective" absolute temperature θ may be deduced either from (1) Stefan's law, $R = K(\theta^4 - T^4)$, where K is Stefan's constant (see above) and T is the earth's absolute temperature, or (2) Wien's displacement law, $\theta \lambda_m = \text{const.}$ (see above).

Langley and Abbot (ref. above) find the distribution of the energy of solar radiation among the different wave-lengths (λ) to be as follows :-

Wave-length $(A.U.)$.			4000	4500	5000	5500	6000	7000	8000	10,000	12,000	14,500	21,000
Relative energy, E .	•	•	15.2	18.4	19	16	14	II	8.8	5.4	3.5	2 *	•6

 λ for E_{max} = 4900 × 10⁻⁸ cm. Taking Wien's displacement law to be $\theta \lambda_{max}$ = '29, and assuming the sun to be a full radiator, its temperature $\theta = 5920^{\circ}$ absolute.

SOLAR CONSTANT

SOLAR CONSTANT AND TEMPERATURE OF THE SUN (contd.)

The values of S below are expressed in both (1) calories per min. per cm.², and (2) watts per cm.² (1 calorie per sec. = 4.18 watts). The sun's mean temp. θ is in degrees C. absolute. Abbot and Fowle find the solar constant varies by about 8 %. (See Poynting and Thomson's "Heat;" Chree, *Nature*, **82**, 2090; Report (1910) of the International Union for Solar Research; and "Smithsonian Reports.")

Solar C	onst.	inglines	na aras radiated by some particular at	Observer.		
cals. min. ⁻¹ cm. ⁻²	watts cm	Sun's Temp.	Account.			
	-	Abs. 5770 [°]	Comparison with const. temp. Atmos. absorp. taken as 29 %	Wilson, 1902		
han the	10-inter	5920	Using Wien's displacement law (above)	Langley & Abbot, '03		
2.25	.124		Gorner Grat, Switzerland	Scheiner, 1908		
	-	5610	Natl. Phys. Lab., England. Atmos. absorp. taken as 29 %	Harker & Blackie, '08		
2.38	.166	56301	Mt. Blanc. Comparison with const. temp.	(Féry & Millochau		
2.1	-	5360)		(Féry, 1909		
		5630	Mt. Blanc. Atmos. absorp., 3'4%	Millochau, 1909		
2.1	.146	5970†	Washington (sea-level) and Mt. Wilson (6000 ft.)	Abbot & Fowle, '09		
2.1	.146	5970t		Bellia, 1910		
1.925*	.134	5840†	Mt. Wilson (6000 ft.) and Mt. Whitney (14,500 ft.)	Abbot, 1910		

* Mean value for period 1904-9 (Nature, 1911).

⁺ Calculated from S, taking Stefan's const. as 5.3×10^{-12} watts cm.⁻² sec.⁻¹ deg.⁻⁴.

THE CRYOSCOPIC CONSTANT

The cryoscopic constant, K, would be the depression of the freezing-point of a solvent when the molecular weight in grams of any substance (which does not dissociate or associate) is dissolved in 100 grams of the solvent, supposing the laws for dilute solutions held for such a concentration (Raoult, 1882). Van't Hoff (1887) showed that $K = R\theta^2/(100L)$, where R = the gas constant (see p. 5), θ the absolute freezing-point of the solvent, L its latent heat of fusion in ergs. **Example**.—For I gram-molecule of solute in 100 gms. of water—

 $K = 8.312 \times 10^{7} \times (273.1)^{3} / (79.62 \times 4.184 \times 10^{9}) = 18.60$

(See Whetham's "Theory of Solution," p. 149.)

K K M. Lat. ht. M. Lat. ht. Solvent. Solvent. (cals.) pt. pt. (cals.) Calcd. Obsd. Caled. Obsd. 5°C. 49, R. 18.58, G. Benzene 29'I, P.W. 53'3 o°C. 18.6 Water . 79.6 51'2, P. 18.52* 51.6 5.5 30'I, F. 8.4 57'4, Pe. 28, R. H2SO4.H2O 48, L. Formic acid 27.5 31.7, B. 50 78.6 13'4, T. 24'9, P.W. 72.7, E. SbCl₃ . . 184, T. Phenol . . 73'2 174 40 43, P.M. 43'7, Pe. Acetic acid 39, R. 39'3, C. 42'5 p. Xylol . 16 17 38.2 - 6 Aniline . 58.7, A.R

* Mean of six observers; A.R., Ampola and Rimatori, 1897; B., Berthelot; C., Colson; E., Eykman, 1889; F., Fischer; G., Griffiths (who used 0'0005 to 0'02 normal sugar solutions); L., Lespieau, 1894; P., Paternò, 1889; Pe., Pettersson; P.M., Paternò and Montemartini, 1894; P.W., Pettersson and Widman; R., Raoult; T., Tolloczko, 1899.

66

(After Bruni., L.B.M.)

VELOCITY OF SOUND

The velocity of sound (longitudinal waves) in a body, $V = \sqrt{E/\rho}$, E being the elasticity, and ρ the density. In gases and liquids E is the adiabatic volume elasticity; in isotropic solid rods or pipes E is Young's Modulus. For gases' $V = \sqrt{\gamma P/\rho}$, P being the pressure, and γ the ratio of the specific heat of the gas at constant pressure to that at constant volume. For values of γ , see p. 58.

For moderate temperature variations, the velocity of sound in gases is given by $V_t = V_0(1 + \frac{1}{2}\alpha t) = V_0 + 61t$ in cms. per sec. for dry.air ($\alpha = 0.0367$).

The velocity of sound decreases with decreasing intensity down to the normal value. In gases in tubes the velocity increases with the diameter up to a limiting value for free space. The values below are for free space. Barton's "Sound" and Poynting and Thomson's "Sound" may be consulted. [I foot = 30.48 cms.]

Substance.	Temp.	Velocity.	Observer.		
Gases—		cms./sec.	A THE REPORT		
'Air (dry)	0° C	(3·3145)× 10	Calcd. ($\gamma = 1.402$)		
,, 1994 - 4104	0	3.3136 "	Violle, 1900		
"	0	3'3132 ,,	Stevens, 1900		
	0	3'3129 ,,	Hebb, 1905		
	0	3'3192 * ,,	Thiesen, 1908‡		
	- 45.6	- 45.6 3.056 , Greely,			
	- 182.4	Cook, 1906			
in the same of the second	100	1.815 " 3.865 "	Stevens, 1900		
.,	500	5'53 ,,	,,		
	1000	7'0 ,,	· · · · · · · · · · · · · · · · · · ·		
,, (Krakatoa wave)	100000 T 1000	3.21 ,,	1883		
"Sound-wavesfrom	sparks 0	3.20-4.45 "	Töpler, 1908		
Hydrogen	0	12.86 ,,	Zoch, 1866		
Oxygen	0	3.172 ,,	Dulong, 1829		
,	- 184.7	1.737 "	Cook, 1906		
Nitrous oxide, N ₂ O	0	2.60 ,,	Wullner, 1878		
Ammonia, NH ₃ .	0	4.16 "	;;		
Carbon monoxide .	0	3'371 ,,	""		
Carbon dioxide	10-24	2'573 "	Low, 1894		
Coal-gas	0	4.9-5.15 ,,	This is a set of the s		
Sulphur dioxide	0	2.09 "	Masson, 1857		
Water-vapour	0	""			
" (satd.)	110	4.13 "	Treitz, 1903		
Tinnida					
Liquids— Water	8.1	That work	Colladon & Stummer 19an		
	4	14.35 × 104	Colladon & Sturm, 1827		
"	25	13.99 "	Martini, 1888		
" (sea) Explosion	and the second sec	14.57 ,,	Threlfall & Adair, 1889		
Alcohol (abs.), C ₂ H ₆ O	8.4	17.3-20.1 "†	Martini, 1888		
Ether, $(C_2H_5)_2O$.	0	TT'A			
Turpentine, $C_{10}H_{16}$.	3.5	11.4 "	"		
rurpentine, C101116.	00	13.7 "	**		
* Free from CO ₂ . † The r	ange of speeds is gi	ven by varying in	tensities. ‡ Reichsanstalt.		
The values for metals are	due to Wertheim,	1849; Masson,	1857 ; and Gerossa, 1888.		
Solid. Velocity cms./sec.		Velocity cms./sec.	Solid. Velocity cms./sec.		
Aluminium 51'0 × 10	4 Lead	. 12'3 × 104	Brass c. 36.5 × 104		
Cadminus	Nickel	1010			
Coholt 1710	Platinum .	26.8	Deal (along 49-50 ,, grain)		
Conney	Silver	1	Fir 12-ra		
Cold	Tin		Mahogany 11-16		
Iron (wrought) 49-51 "	Zinc	106.0	Oak 10.11		
(cost) s to	Glass (soda)	W	Pine		
Steel	(dint)		Indiatubber 15-17		
	,, (nint)	. c. 40 "	-/ "		

SOUND

						and the second			
	of Se	E 7). Velocity ound.	EAR TO	ENESS OF D PITCH th (1907). Conden- sation for same	End Correction. For a pipe with a flange at the open end, the antinode is situated '82 (radius of pipe) beyond end. With no flange, the end-correction				
atmos.	0° C.	-79·3° C.	1. 1.2. 1.34	audibility.	is .57	(radius). (See	Lamb's"Sound."		
	11000	.0.10	512		and all	Wave-le	ength [1910.)		
1 25	1.000	·842 ·831	256	I I.6	DELOTISC	L = lengt			
50	1'022	.830	128	and the second sec	tolay a				
100	1'064	.885	85	3'2 6'4	Close	d pipe 4	L, $\frac{4L}{3}$, $\frac{4L}{5}$, etc.		
150	1.132	1'047	about the o	04	" bano	S. P. Soulation	3 5		
200	1'220	1.239			Open	pipe 2	L, $\frac{2L}{2}$, $\frac{2L}{3}$, etc.		
	IN IS COL		VilosiaV		open	piper	2 3'		
L, ler	ngth; K,	radius of g ung's Moo Distance	cf Nodes	f cross-	ceiva 1908 Ampli	THE E est time pe ble by ear (H) tude of fainte	er- ill, . '007 sec. est		
	arou on		no onu.	~ Is No		ole sound (Ra , 1877)			
	1	-				(Shaw, 1904)			
Both	23		; '776L	I		ire variation			
ends			L; 868L	2.76	which	h normal ear ca	an $\left[c.4 \times 10^{-7} \text{mm}\right]$		
free	4	(644L ;	'356L }	5'40	respo	ond (Abraha	m, mercury.		
		(0441;	900L))			
	0					limitofauditi			
One	1	.22	61	I 6.27			. About 30.		
end	2		; '5L	17.5			on } 24,000 to		
fixed			6L; 644L	34.4		ons./sec			
		-) -) 55		54.4		ne range of ea ally available			
Temp. co	prrection of	Frequency	(n) of a Tu	ning-fork.	Music	any available	• 6.7 ,,		
			80, and K				Erry-Deel		
		$n_0(1 - 000)$		ong)		st pitch in pian			
	ne -	$m_0(1 - 0.00)$	01117)			st pitch in o			
T	ha mragentra	avartad hy	Sound may			ra (piccolo d'			
			Sound way		Lowes		in		
nas bee			up to '24 d	iyne/cm [*] .		st organs (6	0		
la and	(23	ltberg, 19	03)		100t I	oipe)	. 0		
ALL MAL	F	REQUEN	ICY RAT	IOS OF	MUSI	CAL SCALE			
			C I		F	G A	B c		
			Doh Ra	y Me	Fah	Soh Lah	Te Doh		
	Colored and	(28	10 1	6		8 18		
Natural	ecolo		I	5 A I	0 <u>4</u>	3 5	· 15 2		
watural	scale	1	24 27	7 30	32	36 40	45 48		
		(1.000 1.13		1'333	1.200 1.667			
Equally	tempered	scale	1.000 1.13	22 1.260	1.332	1.498 1.682	1.888 2.000		
	d forks (K		c' d'	e'	f	g'a'	b' c''		
	c' = 512 and		256 28	8 320	341.3	384 426.7	480 512		
							and the second second second		

The French Standard, "Diapason Normal" of 1859 (which adopts a fork having $\mathbf{c}'' = 522$ at 20° C.) is coming into general adoption for organs and pianos in England, the Continent, and America, as the result of a makers' conference in 1899. Other scales in vogue are Concert Pitch ($\mathbf{c}'' = 546$), Society of Arts ($\mathbf{c}'' = 528$), Tonic Sol-fa ($\mathbf{c}'' = 507$), Philharmonic ($\mathbf{c}'' = 540$). (The "middle" c of the piano is c'.)

VELOCITY OF LIGHT

Let my		due <i>in vacuo</i> ues of <i>v</i> , the							
cm./sec.		Method.	Ob	server.	cm /sec.	Mo	thod.	Observer.	
× 10 ¹⁰ 3'07 2'998 3'153 2'986 3'004	Jupi Too Rota	pse of one of ter's moons thed wheel ating mirror thed wheel	of one of s moons d wheel Fizea g mirror Fouc		ted 3.014 2.9985 62 2.9986	2'999 Rotati 3'014 Toothe 2'9985 Rotati 2'9986 "		Michelson, 1879 Young&Forbes,'8 Michelson, 1882 Newcomb, 1882 Perrotin, 1900	
		(anti-	VELC	OCITY O	F LIGHT IN		18	I be United at 1995	
Liqui	id.	Vel. in vac Vel. in liqu			tive index a D line.	Me	ethod.	Observer.	
Water CS_2 .	· · ·	1.330 1.758			33/20° 27/20°	Rotati	ng mirror "	Michelson, 1883	
		(See Blondl	121		F HERTZIA n, <i>Rep. Co.</i>			1900.)	
			ot and	l Gutto	n, Rep. Co.	ng. Phy	s., Paris,	ore Cempte Barb	
cm./se × 10 ¹ 2'989 2'001	0	Observer. Blondlot	ot and		n, <i>Rep. Co.</i> Obser Trowbri	ng. Phy ver.	s., Paris, cm./sec. × 10 ¹⁰ 2'989	Observer. Saunders	
× 10 ¹ 2'989 2'991	0	Observer. Blondlot McClean	ot and	l Guttor m./sec. × 10 ¹⁰ 3'003	n, <i>Rep. Co.</i> Obser Trowbri and L	ng. Phy ver. dge Duane	s., Paris, cm./sec. × 10 ¹⁰ 2 [.] 989 2 [.] 991	Observer. Saunders Mean	
× 10 ¹ 2·989 2·991 RATIC Thi Maxwe waves, capacit Mo	o O OF is ratiell's th throuty k. st ob	Observer. Blondlot McClean ELECTRON	AAGN pure relocit n who nd 84. used	I Gutton m./sec. × 10 ¹⁰ 3'003 ETIC T number y of elections se magn) For a "cap	n, <i>Rep. Co.</i> Obser Trowbri and I TO ELEC , and is n ctric disturnetic perm the velocit acity meth	ver. dge Duane TROST humeric bances, teability ty of light	TATIC UN ally equa such as 1 is μ and ht, see ab determini	Observer. Saunders Mean NIT OF CHARGE I to $\sqrt{\mu k}$, <i>i.e.</i> on ight and Hertzian specific inductive ove. ove. or v . (See Gray,	
× 10 ¹ 2 [.] 989 2 [.] 991 RATIC Thi Maxwe waves, capacit Mo	o O OF is ratiell's th throuty k. st ob	Observer. Blondlot McClean ELECTRON io "v" is a eory, to the v igh a medium (See pp. 7 a servers have	AAGN pure relocit n who nd 84. used	I Gutton m./sec. × 10 ¹⁰ 3'003 ETIC T number y of elections se magn) For a "cap	n, <i>Rep. Co.</i> Obser Trowbri and I TO ELEC , and is n ctric disturnetic perm the velocit acity meth	ng. Phy ver. dge Duane TROST humeric bances, heability ty of light od " of reau of .	TATIC UN ally equa such as 1 is μ and ht, see ab determini	Observer. Saunders Mean NIT OF CHARGE I to $\sqrt{\mu k}$, <i>i.e.</i> on ight and Hertzian specific inductive ove. ove. or v . (See Gray,	

PHOTOMETRY

PHOTOMETRIC STANDARDS

The Geneva Congress of 1896 proposed a set of units for measuring (1) luminous intensity, (2) flux (the "lumen"), (3) illumination (the "lux"), (4) brightness, and (5) quantity of light (see Electrician, July 14, 1911). The British unit of intensity The mean spherical candlepower of a light is the mean is the "candle." of the intensities measured in all directions from the light. The mean horizontal candlepower is the mean of all the intensities in a horizontal plane through the lamp.

The **British** " candle " is a spermaceti candle, $\frac{7}{8}$ inch in diameter (6 to the lb.) which burns at the rate of 120 grains per hour. This is, however, found to be an unsatisfactory standard, and in modern photometry the British unit is taken as being one-tenth part of the light given out by the Harcourt 10 candlepower Pentane lamp, burning at a pressure of 760 mms. mercury in an atmosphere containing 8 parts in 1000 by volume of water-vapour as measured by a ventilated hygrometer. The candlepower of this lamp

= 10 + .066(8 - w) - .008(760 - H)

where w is the number of parts in 1000 (by vol.) of water-vapour in air at a barometric pressure of H mms. of mercury.

The United States "candle" prior to April 1, 1909, was 1.6% greater than the British.

The **French unit** is the Bougie decimale, which is the 20th part of the light given out by a sq. cm. of platinum at its solidifying point. This is a difficult unit to reproduce, and the Carcel lamp burning colza oil is used in practice. The Carcel unit is taken (with some uncertainty) as 4 % less than the Bougie decimale.

The **German unit** is the light given out by the Hefner lamp (which burns amyl acetate), burning at a pressure of 760 mms. mercury in an atmosphere containing 8.8 parts in 1000 (by vol.) of water-vapour as measured by a ventilated hygrometer.

The National Physical Laboratory, the Bureau of Standards of America, and the Laboratoire Central d'Electricité of Paris have come to an agreement which involves the reduction of the old value of the American candle by 1.6%. They agree in future to employ as a common unit the proposed International candle = I British Pentane candle = I American candle = I French Bougie decimale = 10/9 German Hefner unit = '104 Carcel unit (see Paterson, Phil. Mag., 1909).

EFFICIENCIES OF VARIOUS LIGHTS

It has become customary to express efficiencies (or rather inefficiencies) in watts per candle. The value of a luminous efficiency cannot be properly appreciated without a knowledge of the distribution of the intensity. Estimates of the proportion of light energy to the total energy vary widely. S. P. Thompson ("Manufacture of Light ") quotes from 1 part in 7000 for a gas flame to 1 % for the most efficient lights.

The usual accepted "efficiencies" are given below in watts per mean spherical candlepower. They must only be regarded as approximate (see Solomon, "Electric Lamps," 1908).

Light. OTATE	Efficiency.	Light.	Efficiency.
Bat's-wing gas flame Paraffin lamps Welsbach mantle, etc High-pressure gas Carbon filament lamps Metallized carbon filament lamps Nernst lamps	c. 50 c. 15 c. 8 3'5-4'5 2'8	Tantalum lampsTungsten (osram, etc.) lampsOpen arc lampsEnclosed arc lampsYellow flame arc lampsMercury vapour lamps	.4

In high-grade standard photometry the Lummer Brodhun photometer head is usually employed. A unit of light may be maintained and reproduced with an accuracy of the order of $\frac{1}{10}$ %, by means of sets of properly seasoned glow lamps. The candlepower of a carbon glow lamp varies as the 6th power (approx.) of the

voltage ; of a metallic filament lamp, as the 3 6th power.

A candle is visible at about a mile on a clear dark night. The energy in the luminous radiation from a standard candle is about 5 × 10⁵ ergs/sec. (Rayleigh, "Collected Papers"), whence the energy falling on I sq. cm. at a distance of I metre would be 4 ergs per sec. Angström (1902) gets values about double these.

71 GASEOUS REFRACTIVE INDICES

GASEOUS REFRACTIVE INDICES AND DISPERSIONS

Dispersion.—Cauchy's equation is $\mu - I = A(I + B/\lambda^2)$, where μ is the refractive index for the wave-length λ ; A and B are constants. B is the coefficient of dispersion. The **refractivity** $(\mu - I) = A$, when $\lambda = \infty$. The values of A and B are for wave-lengths measured in cms. The refractive indices are mostly for the sodium D line ($\lambda = 5893 \times 10^{-8}$ cm.). The values of μ are reduced to a standard density at 0° and 760 mms. by assuming that $(\mu - I)/\rho$ is a constant for each gas, ρ being the density. Cauchy's formula is in general inadequate over large dispersions. (See Cuthbertson, *Science Progress*, 1908; and *Proc. & Trans. Roy. Soc.* for 1905 *et seq.*)

	-			1100.028	1000			Contraction of the			
Gas or Vapour.	Refra Index Na D	µ for		uchy's	Constan	nts. B.	Tamid ()	Observer.	(m) * 91 (1)		
				a	-			1			
Air	1'0002	810	28.71	× 10-5	5.67 2	× 10 ⁻¹¹	Scheel (Reichsanstalt), 190		lt), 1907		
Hydrogen .	1'0001		13.58	,,	7.52	17					
Helium	1.0000	350	3.48		2.3	37	Burton; Cuthb	ertson & M	letcalfe,1907		
Neon	1.0000			6.66 "		37	C. & M.	C. & M. Cuthbertson, 1909			
Argon					5.6	"	B	Burton, 1907			
Krypton .	1'0004273		27'92 ,, 41'89 ,,		6.97	,,	C. & M.	Cuthbertso	on, 1908		
Xenon	1.0002		68.23	52	10.14	,,			"		
Fluorine .	1.0001		-	-	1 22.00	-	Cuthbertso				
Chlorine .	1.0002		(10) F	-00028	1.922	- 24.24	Ma	iscart, 187	8		
Bromine .	1.0011		1115	THE REAL PROPERTY IN	N REA	- 1211	CA. HALF CARD	" "	SCRO PHIL		
Iodine	1.0010		1.7	- 64 mg	1000tt			urion, 1877			
Oxygen	1.0005		26.6		5.02	"		tschler, 19			
Sulphur	1.0011		104.6	"	21'2	17	Cuthbertse	on & Metca	alfe, 1908		
Selenium .	1.0012		1000	1000	in the	- 100	"		"		
Tellurium	1.0024	.95	-	-	-	- 10100	Cahaal "D		22		
Nitrogen .	1.0002		29'0		7.7	"	Scheel (K	eichsansta	It), 1907		
Phosphorus	1'0012		110.2	>>	15.3	"	Cuthbertso	on & Metca	alle, 1908		
Arsenic Zinc	1.0012						"		"		
Cadmium .	1'0020		-	2020			"		"		
Mercury .	1.0000		87.8	6563	22.65		"	1	"		
mercury .	1.0009	55	0/0	"	2203	"	,		"		
		Refra	ctive	1		1		Refractive	una granation		
Gas or Vap	our.	Index		Obse	rver.	Ga	s or Vapour.	Index µ for	Observer.		
		Na D						Na D line.			
Water-vapou	ır	1'000:	257	Masca	rt, '78	Tellu	irium tetra-				
		1'000:			nz, '74	ch	loride	1.002600	P. & M.		
Ammonia".		1'000	377	Masca			ph. hydrogen	1.000280*	Dulong, '26		
,, .		1 000	373		nz, '74		phorus tri-	Constanting .	and a stranger		
Nitrous oxid	e	1'000	515	Masca	rt, '78		loride	1'001730	Mascart, '78		
Nitric oxide		1.0003		,,	"		nane, CH ₄ .	1.000441	,, ,,		
Hydrochlori		1'000.		,,	,,	Pentane, C ₅ H ₁₂ .		1.001201	»» »»		
Hydrobromi					. "	Acet	ylene, C_2H_2 .	1.000000	,, ,,		
Hydriodic a	cid .	1'000	906		on, '77	Ethy	lene, C_2H_4 .	1.000210			
Carbon mon					rt, '78	1 ,		1.000621	Prytz, '80		
	ide .	1.000	4498		au, '96	Benz		1'001812	Mascart, '78		
01011	" bisulphide 1'00				rt, '78	w.		1.001262	Prytz, '91		
					10 20	VIet	yl fluoride .	0000440			
Sulph. hydro		1'000		Dulor			- la la set da		0449 Cuthbertson		
Sulph. hydro	ogen	1'000 1'000	619	Masca	rt, '78	,	, chloride .	1.000862	Mascart, '78		
Sulph. hydro Sulphur dio:	vide .	000' I 000' I 000' I	619 660	Masca Walk	er, '03		, chloride . , alcohol .	1°000865 1°000552	Mascart, '78 Prytz, '80		
Sulph. hydro Sulphur dios	xide . xide .	1'000'1 1'000'1 1'000'1	619 660 737	Masca Walk C. & M	urt, '78 er, '03 M., '08	,	, chloride . , alcohol .	1.000865 1.000552 1.000619	Mascart, '78		
Sulph. hydro Sulphur dios "trio "hexaf	xide . xide . huoride	1'000'1 1'000'1 1'000'1 1'000'1	619 660 737 783	Masca Walk C. & N	urt, '78 er, '03 M., '08	, , Chlor	, chloride . , alcohol . , roform, CHCl ₃	1.000865 1.000552 1.000619	Mascart, '78 Prytz, '80		
Sulph. hydro Sulphur dios	xide . xide .	1'000'1 1'000'1 1'000'1	619 660 737 783 895	Masca Walk C. & I	urt, '78 er, '03 M., '08	, , Chlor Carb	, chloride , alcohol , roform, CHCl ₃ tetra-	1.000865 1.000552 1.000619	Mascart, '78 Prytz, '80 Mascart, '78		

* White light. [†] Violet light. μ=1 00205 for red light. Iodine shows anomalous dispersion. C. & M., Cuthbertson & Metcalfe; P. & M., Prideaux & Metcalfe.

REFRACTIVE INDICES

REFRACTIVE INDICES

Refractive indices, μ , (against air) at 15° C. for various wave-lengths. The **temperature coefficient** given below is the change of refractive index per 1° C. rise of temperature for the case of the sodium D line.

The refractive indices are due chiefly to Gifford (Proc. Roy. Soc., 1902, 1904, 1910); Rubens and Paschen (for the infra-red) and Martens (1902). The two Jena glasses are selected as typical. Other glasses are dealt with on p. 74.

Wave-length in	Calcsp	ar, 18°.	Jena į	glass.	Flu- orite,	Quart	z, 18°.	Fused	Rock	Syl- vin,	Water
Å.U. (10 ⁻⁸ cm.).	ord. ray.	ext. ray.	Crown*	flint.†	CaF ₂ . 18°.	ord. ray.	ext. ray.	silica.	salt, 18°.	KCl 18°.	Water at 20°.
Infra-red. 223,000 94,290 42,000 21,720 12,560	1' 6210 6388	1. 	1. 	1' 6153 6268	1' 3161 4078 4230 4275	1° 	1' 	r	1° 3403 4983 5213 5262 5297	1° 3712‡ 4587 4720 4750 4750 4778	I' 3210
Visible. Li, (r) 6708 H, (C) 6563 Cd, (r) 6438 Na, (D) 5893 Hg, (g) 5461 Cd, (g) 5086 H, (F) 4861 Cd, (b) 4800 Hg, (v) 4047	6537 6544 6550 6584 6616 6653 6678 6686 6813	4843 4846 4847 4864 4879 4895 4907 4911 4969	5140 5145 5149 5170 5191 5213 5230 5235 5318	6434 6444 6453 6499 6546 6598 6637 6648 6852	4323 4325 4327 4339 4350 4362 4371 4369 4415	5415 5419 5423 5443 5462 5482 5482 5497 5501 5572	5505 5509 5514 5534 5553 5575 5590 5594 5667	4561 4564 4568 4585 4602 4619 4632 4636 4636 4697	5400 5407 5412 5443 5475 5509 5534 5541 5665	4866 4872 4877 4904 4931 4961 4983 4990 5097	3308 3311 3314 3330 3345 3360 3371 3374 3428
Ultra-violet. Sn 3034 Cd 2144 Al 1852	7196 8459	5136 5600	5552		4534 4846 5099	5770 6305 6759	5872 6427 6901	4869 5339 5743	6085 7322 8933	5440 6618 8270	3581 4032 —
Temp. co- efficient(D)	+ .022	+ .0114	*0 ₅ I	+ .023	0 ⁴ 1	- °0 ₅ 5	- •0 ₅ 6	- °0 ₅ 3	- •0 ₄ 4	- °0 ₄ 4	- '0 ₄ 8

* Light barium crown. \dagger Dense silicate flint. $\ddagger \mu = 1.3692$ for $\lambda = 225,000$.

REFRACTIVE .INDICES

Refractive indices μ_D (against air) at 15° C. for sodium D line ($\lambda = 5893 \times 10^{-8}$ cm.).

Substance.	μ _D	Substance.	$\mu_{\rm D}$	Substance.	μυ
Solids. Alum (pot ish) Cyanin Diamond Glass (see above and p. 74) Ice Mica . I 56 to Ruby Sugar Topaz Liquids. Alcohol, methyl .	1.456 1.71 2.417 1.31 1.60 1.76 1.56 1.63 1.33	Alcohol, ethyl , amyl Aniline Benzene Bromoform Canada balsam Carb. bisulphide . , tetrachloride Chloroform Ether, ethyl Ethylene dibromide Glycerine Methylene iodide .	1'362 1'41 1'590 1'504 1'591 1'53 1'632 1'464 1'449 1'354 1'540 1'47 1'744	Monobrom benzene ""naphtha- lene. Nitrobenzene Oil, cedar "cloves "cinnamon "olive "paraffin Sulphuric acid Turpentine Water (see above).	1.263 1.660 1.253 1.216 1.232 1.601 1.46 1.44 1.43 1.47 1.333

SILVERING SOLUTION

DISPERSIVE POWERS

The dispersive power (ω) given below = $(\mu_C - \mu_F)/(\mu_D - 1)$, where μ_C , μ_D , μ_F are the refractive indices corresponding to the red (C) H line (6563', the yellow Na (D) line (5893), and the green-blue (F) hydrogen line (4862).

Substance.	ω	Substance.	ω	Substance.	ω
Solids. Calcite, ord " ext Fluorite Glass (see p. 74)	.0204 .0125 .0105	Quartz, ord , ext Fused silica Rock salt Sylvin	·0143 ·0146 ·0147 ·0233 ·0226	Liquids. Carb. bisulphide . Alcohol Turpentine Water	°0545 °0171 °0206 °0180

SILVERING SOLUTION

Due to the late Dr. Common. Other recipes will be found in Baly's "Spectroscopy" (Longmans) and Woollatt's "Laboratory Arts" (Longmans).

Make up 10 % solutions of (1) pure nitrate of silver, $AgNO_3$; (2) pure caustic potash, KOH; (3) loaf sugar; and (4) ammonia (90 % water, 10 % ammonia of sp. gr. '880). To the sugar soln. add $\frac{1}{2}$ % of pure nitric acid and 10 % of alcohol. The sugar soln. is very much improved by keeping. Make up also a 1 % soln. of $AgNO_3$. Distilled water must be used for all the solns.

For silvering say a 12-in. mirror, take 400 c.c. of the $AgNO_3$ soln. and add strong ammonia until the brown precipitate first formed is nearly dissolved, then use the 10% ammonia until the soln is just clear. Add 200 c.c. of the KOH soln. A brown precipitate is again formed, which must be dissolved in ammonia exactly as before, the ammonia being added until the liquid is just clear. Now add the 1% soln of $AgNO_3$ until the liquid becomes a light brown colour about equal in density of colour to sherry. This colour is important, and can only be properly obtained by the use of the weak soln. Dilute the liquids to 1500 c.c. with distilled water.

The mirror should be thoroughly cleaned with acid and placed in a dish of distilled water.

All being ready, add 200 c.c. of the sugar soln. to 500 c.c. of water ; add the mixture to the silver-potash soln., mix thoroughly, and pour them into a clean empty dish. Then lift the mirror out of its dish of distilled water and place it face downwards in this soln., taking care to exclude all air-bubbles.

The liquid will turn light brown, dark brown, and finally black. In four or five minutes, often sooner, a thin film of silver will commence to form on the mirror, and this will thicken until in about 20 minutes the whole liquid has acquired a yellowish-brown colour, with a thin film of metallic silver floating on the surface. Half an hour is the usual time taken in silvering, but this is shortened by using warmer liquids. About 18° C. is the best temperature.

Lift the mirror out, thoroughly wash with distilled water, and stand on its edge for say 12 hours in an inclined position until it is dry. The slight yellowish "bloom" can then be polished off by rubbing softly with a pad of chamois leather and cottonwool. The subsequent polishing is done with a little dry well-washed rouge on the leather pad. The film should be opaque and brilliant, and with careful handling will be very little changed with long use.

Porcelain, glass, or earthenware dishes should be used.

If a very thick film is required, two silvering baths can be used, the article being left in the first bath for 15 minutes, then lifted out, rinsed with distilled water and at once immersed in the second bath, which should be ready in another dish. The film should not be allowed to dry during the operation of changing baths.

NOTE.—The silver-potash solution will not keep beyond a couple of hours. Any excess of this solution unused should have the silver precipitated at once with HCl. If the silverpotash is kept, say for 10 or 12 hours, a black powder collects on the surface. This powder, which is probably some form of fulminate of silver, is explosive, and may shatter the vessel.

GLASS

The raw materials for the manufacture of glass are (1) silica-usually as sand or felspar; (2) salts of the alkali metals -Na2SO4, Na2CO3, or K2CO3; (3) salts of bases other than alkalies-red lead, limestone or chalk, BaCO₃ or BaSO₄, MgCO₃, ZnO, MnO₂, Al₂O₃, As₂O₃, etc. In general, glasses rich in silica and lime are hard, while glasses in which alkali, lead, or barium preponderate are soft. Hardness is, of course, also largely dependent on annealing. Ordinary "soft" (*i.e.* easily fusible) German glass is a soda-lime glass rather rich in alkali; "hard" (refractory) glass is a potash-lime glass rather rich in lime. Jena combustion tubing is a borosilicate containing some magnesia.

Thermometry Glasses.-Glasses which contain both soda and potash to any extent give a large temporary zero depression (see p. 45). Data concerning Verre dur (71% SiO₂, 12% Na₂O, $\frac{1}{2}$ % K₂O, 14% CaO, 2% Al₂O₃ and MgO), Fena 16''' (67% SiO₂, 14% Na₂O, 7% CaO, 12% ZnO, Al₂O₃ and B₂O₃), Fena 59''' (72% SiO₂, 12% B₂O₃, 11% Na₂O, 5% Al₂O₃), Kew glass (44% SiO₂, 34% PbO, 12% K₂O, 2% Na₂O, 2% CaO, MgO, etc.), will be found on p. 45.

Optical Glasses .- In building up achromatic lens systems a knowledge of the dispersive power (w) of each glass employed is essential. This is defined as the ratio of the difference of the deviations (i.e. the dispersion) for any two colours to the deviation of some mean intermediate colour. w thus depends on the colours selected ; for visual work they are usually the red (C) line of hydrogen (wave-length $\lambda_c = 6563 \times 10^{-8}$ cm.), the yellow sodium (D) line ($\lambda_D = 5893$), and the green-blue (F) hydrogen line ($\lambda_F = 4862$). If μ_C , μ_D , μ_F are the corresponding refractive indices, $\omega = (\mu_{\rm c} - \mu_{\rm F})/(\mu_{\rm D} - 1)$ for the brightest part of the visible spectrum.

Flint glass-a term which survives from times when ground flints were extensively employed in making the best glass-now always implies a dense glass which contains lead and has a high refractive index and dispersive power.

Crown glass, originally designating only lime-silicate glasses, is now applied generally to glasses having a low dispersive power.

Jena Optical Glasses.—For ordinary flints and crowns ω and μ are roughly proportional, and this was true for all commercially available glasses prior to the advances initiated in 1881 by Abbé and Schott at Jena. They succeeded (e.g. by the addition of barium) in producing glasses which do not obey any such proportionality; e.g. the very valuable barium crown glasses (below) combine the high refractive index of a flint glass with the low dispersive power of a crown. Such glasses have brought about the excellent achromatism and flatness of field which now obtain in photographic lenses and large telescopic objectives. The introduction of boron into a glass lengthens the blue end of the spectrum relatively to the red ; the addition of phosphorus, fluorine, potassium, or sodium has the opposite effect: such control over the dispersion has made the modern microscope possible.

Some typical examples of Jena glasses are subjoined. For a complete list, see the catalogue of Schott and Genossen, Jena. The simple phosphate and borate glasses have been withdrawn on account of their lack of durability. The borosilicate crowns are among the most durable and chemically resistant of all glasses. The U.V. glasses are markedly transparent to ultra-violet light as far as about $\lambda = 2880$.

See p. 72, and Zschimmer's "History of the Jena Glass Works," Hovestadt's "Jena Glass," and Rosenhain's "Glass Manufacture," 1908 (with bibliography). (After Zschimmer, Zeit. Inst., 1908.)

Glass.	$\mu_{\rm D}$	$\omega_{\rm (C,D,F)}$	Dens.	Glass.	μ_{D}	$\omega_{(C,D,F)}$	Dens.
Crowns-	citanio	pad o	grms. c.c.	Flints (contd.)-	polishe	od red	grms. c.c.
(Silicate) crown .	1.4782 1.5127	'0152 '0175	2.23	U.V. flint 3492 Telescope (Sb) flint	1.5329 1.5286	°0131 °0194	2'50
U.V. crown 3199	1.212 1.2035	.0168 .0155	2.20	Borosilicate flint . {	1.5503 1.5753	.0203 .0218	2.81 5.81
Borosilicate crown {	1.4944 1.5141	.0151 .0156	2°33 2°47	and section in a	1.5489 1.5825	·0187 ·0216	Ξ
Barium crown . {	1.5726	.0174 .0180	3.51	Barium flint	1.5848 1.6235	0189 0256	3.67
Heavybariumcrown Flints-	1.6130	.0178	3.60	our How tenned to press	1.6570	.0276 .0340	3'95 4'49
(Silicate) flint .	1.5794 1.6138	'0244 '0271	3.25 3.58	Heavy flint	1.7782	'0378 '0461	4'99 5'92
	1.6489	.0296	3.87		1.9625	.0208	

	SPECTROSCOPY
	It is now agreed that the use of the diffraction-grating in fundamental work must
	be limited to interpolation between standard wave-lengths obtained by other means.
	The accepted standard lines are three in the spectrum of cadmium. Their wave-
	engths (λ) obtained by interference methods, and measured (by direct comparison
	with the standard metre at Paris) in dry air at 15° C. (H-scale) and 760 mms.
	nercury pressure, are given below in tenth-metres (= 10^{-8} cm. = 1 Angström unit).
(See Michelson's "Light Waves and their Uses.") $[\mu = 10^{-4} \text{ cm.}; \ \mu\mu = 10^{-7} \text{ cm.}]$
-	Observer) Cd red) Cd green) Cd blue

	Observer.					λ Cd g	reen.	λ Cd blue.
Michelson and Benoit, Fabry				6438.4 6438.4		5085-	8218	4799'9085
The followin	ng values (a	all in to	enth-met	res) are o	of cours	e only	approxi	imate :—
Hertzian Waves.	Infra-red.	Red.	Orange.	Yellow.	Green.	Blue.	Violet.	Ultra-violet.
$10^{13} - 4 \times 10^{7}$	1.1 × 10 ⁶ § 77	700 64	70 58	80 55	00 49	20 45	50 36	00 1000

STANDARD LINES-IRON ARC SPECTRUM

Obtained by an interference method, and based on Benoit, Fabry, and Perot's value for the wave-length of the red line of cadmium. The wave-lengths below are given in tenth-metres (10⁻⁸ cm.), measured in dry air at 15° (H-scale) and 760 mms. mercury. (Buisson and Fabry, *Compt. Rend.*, 1907 and 1909.)

The second				The second se	And the second se	COLUMN TWO IS NOT THE OWNER.
2373'737	2987.293	3724'379	4352.741	4878.226	5405'780	5952'739
2413'310	3030.152	3753'615	4375.935	4903.324	5434'530	6003'039
2435'159 *	3075.725	3805'346	4427.314	4919.006	5455'616	6027'059
2506'904 *	3125.661	3843'261	4466.554	4966.104	5497'521	6065'493
2528'516 *	3175.447	3865'526	4494.572	5001.880	5506'783	6137'700
2562'541	3225.790	3906'481	4531.155	5012.072	5535'418	6191'569
2588'016	3271.003	3935'818	4547.854	5049.827	5569'632	6230'732
2628'296	3323.739	3977'745	4592.658	5083.343	5586'770	6265'147
2679'065	3370.789	4021'872	4602.944	5110.415	5615'658	6318'029
2714'419	3399.337	4076'641	4647.437	5127.364	5658'835	6335'343
2739'550	3445.155	4118'552	4678.855	5167.492	5709'396	6393'612
2714'419	3399'337	4076.641	4647.437	5127'364	5658.835	6335'343
2739'550	3445'155	4118.552	4678.855	5167'492	5709.396	
2778'225	3485'344	4134.685	4707.287	5192'362	5760.843	
2813'290	3513'820	4147.677	4736.785	5232'958	5763.013	
2851.800 2874.176 2912.157 2941.347	3556.879 3606.681 3640.391 3677.628	4191'441 4233'615 4282'407 4315'089	4754°046† 4789°657 4823°521† 4859°756	5266.568 5302.316 5324.196 5371.498	5805'211 ± 5857'760 ± 5892'882 ± 5934'683	* Si. † Mn. ‡ Ni.

CHIEF ABSORPTION (FRAUNHOFER) LINES IN SOLAR SPECTRUM Rowland's wave-lengths corrected approximately by the use of Fabry and Perot's results, measured in tenth-metres (10^{-8} cm.) in air at 20° and 760 mms. Owing to atmospheric absorption, the sun's spectrum extends only to about wave-length 3000.

Line.	Subst.	Rel. Intens.	Line.	Subst.	Rel. Intens.	Line.	Subst.	Rel. Intens.
3047.5	Fe	20	L 3820'4	Fe-C	25	(Hy)4340'4	Н	20
3057.3	Ti-Fe	20	3825.8	Fe	20	F 4861.37	Η (β)	30
3059'0	Fe	20	3838.2	Mg-C	25	b2 5172.7	Mg	20
0(3440'6	Fe	20	3859.8	Fe-C	20	61 5178.22	Mg	30
3441.0	Fe	15	K 3933'6	Ca	1000	E 5269'56	Fe	8
3524.5	Ni	20	3961.5	Al	20	(D ₃ 5875.62)†		-
N 3581'2	Fe	30	H 3968.4	Ca	700	D ₂ 5889.97	Na	30
3608.8	Fe	20	4045.8	Fe	30	D ₁ 5895.93	Na	20
3618'7	Fe	20	4063.6	Fe	20	C 6562.8	H (a)	40
M 3719'9	Fe	40	(H ₈)4101.8	H	40	B 6867'3	\$	6
3734.8	Fe	40	4226'7	Ca	20	A 7661*	‡	11
3737'1	Fe	30	G 4307'9	Fe	6	Z 8228*	-	
‡ 0 * T	angley, 1 xygen in	900. earth's a	tmos.		sion line 1, 1911.	in chromospher	e alone.	citor,

EMISSION SPECTRA

EMISSION SPECTRA OF SOLIDS

For a fuller treatment of wave-lengths see Watts' "Index of Spectra" and appendices, Kayser's "Handbuch der Spectroscopie," Hagenbach and Konen's "Atlas of Emission Spectra," 1905. For recent work consult the Astrophysical Journal. The wave-lengths below are measured in tenth-metres (10⁻⁸ cm.) in air at 15° C. and 760 mms. The visible spectrum colours are indicated -r, o, y, g, b, v. The brightest lines are emphasized and the approximate boundary of the ultra-

violet region is indicated thus

	Contraction of the local distance		Contraction of the local division of the loc	the second se	
ALUMINIUM	CADMIUM	CALCIUM	MAGNESIUM	RADIUM	SODIUM
	(contd.)	(contd.)	(contd.)	(contd.)	
(arc).	4413 6	6122 0	3832	.4683 v	(NaCl in flame).
3083		6162 0			Fabry and
3093	4678 6		3838	4826 b	Perot, 1902;
	4799·908 b	6140 0	5168 g	5210 g	Rayleigh, 'o6.
3944 2	5058.822 g	6463 0	(b_2) 5173 g	5360 g	and the second se
3962 v	5338 g	6500 r	5184 g	5655 y	(D2)5889.9650
4663 b	5379 g	10. 00.00	5529 y	5685 y	$(D_1)5895.9320$
5057 g	6438·470 r	COPPER		6210 o ³	STRONTIUM
		(arc in vacuo).	MERCURY	6216 o ³	
5696 y			(Mercury lamp).		$(SrCl_2 \text{ in flame}).$
5723 y	CÆSIUM	Fabry and	Stiles, Astro.	6247 o ³	Band spectr'm
DADUUM	(CsCl in flame)	Perot, 1902.		6250 o ³	with lines at
BARIUM	3611.8	3248	Journ., 1909.	6260 o ³	
(BaCl ₂ in	3617	3274	3126	6269 o ³	4607.5 6
flame).	+ 0 mm		3131		6387 0
Full of bands,		4023 V	3650	6285 0 ³	THALLIUM
some diffuse,		4063 V		6329 <i>o</i> ³	
and some	AFFEL		4046.8 v	6349 0	(Tl or T ₁ Cl ₂ in
resolvable.	4555 b	5105.543 g	4078'I V	$(6530 r^3)$	flame).
3501	4593 6	5153·251 g	4358'343 v2	to	5350.7 g
	5664 y	5218·202 g	4916.4 bg	(6700 r ³	
3910 2	5845 y	5700 y		6653 r	TIN
	60110	5782.090 y	49597 g 5460.742 g ²	³ Bands.	(spark).
3994 2	62130	5782.159 y		Danus.	3009
4131 0	6724 r	The second s	5769.598 y ²	RUBIDIUM	3034
4554 6	6974 r	INDIUM	5790.659 y ²	(RbCl in flame).	
4934 g		(In(OH), in	6152 0	(moor in name).	3262
5536 gy	CALCIUM	flame).	6232.0 0	3349	3283
5778 y	CALCIUM	4102 v	² Fabry and	3351	
5854 y	(CaCl ₂ in		Perot, 1902,	3587	3331
6142 0	flame).	4511 v	and Rayleigh,		3596
6497 r	Bands pre-	IRON	1906.		3746
- the man	dominate ;		1900.	4202 V	4505
BORON	line at	(see p. 75).	POTASSIUM	4216 v	4525 v
(Boric acid in	4227			5648 y	5563 y
flame).	7441	LITHIUM	(KCl in flame).	5724 y	5589 y
Diffuse	(Flame arc).	(LiCl in flame)	3446	6207 0	5799 y
maxima at	3362	4132 V	3447	6298.7	6453 0
4500 6	3644	4602 b		0200 1	
4700 6		6104 0	4044 21	SILVER	ZINC
	(K) 3934 v	6707.846 +1	4047 v		(arc in vacuo).
4900 b			5802 y	(arc in vacuo).	3036
5200 g	(H) 3968 v	¹ Fabry and	7668 r	3281	3072
5450 g	4227 V	Perot, 1902.	7702 r	3383	3345
5800 y	4303 6				
6000 0	4426 6	MAGNESIUM	RADIUM	4055 2	4680.138 65
CADAUUM	4435 0	(arc).	(RaBr ₂ in	4212 V	4722.164 65
CADMIUM	4455 0		flame).	4669 b	4810.535 65
(arc).	4586 b	3091		5209.081 g 4	4912 6
3261	4878 b	3093	Runge and	5465.489 g ⁴	
3404	5270 g	3097	Precht, 1903.		
3466	5350 g	3330	3650	5472 g	6103 0
3611	5589 y	3332	3815	5623 g	6362.345 0 5
	5595 y	3337		⁴ Fabry and	⁵ Fabry and
3982 2	5858 y	3830	4341 V	Perot, 1902.	Perot, 1902.
				AND A DECEMBER OF STREET	and the second

EMISSION AND ABSORPTION SPECTRA

EMISSION SPECTRA OF GASES

The gases are all in vacuum tubes (2-4 mms. press.); only the brightest lines are given. The visible spectrum colours are indicated -r, o, y, g, b, v. See the general remarks on last page.

				NITROGEN
ARGON,	CARBON MONOXIDE or	HYDROGEN	NEON (contd.)	
Red spectrum	DIOXIDE	Elementary spec-	5853 y	(contd.)
(small current	(of common oc-	trum.	5882 0	5804 V
density).		3750	5945 0	5854 y
	currence in	3771	5976 0	5906 0
4159 v	many vacuum-	3798	6030 0	5959 0
4192 v	tube spectra).	3836		6013 0
4198 v	Numerous		6075 0	6069 0
4201 v	bands shaded	3889	6096 0	With large cur-
4259 b	towards violet		6129 0	rent densities,
4300 b	edges at	3970 V	6143 0	N gives a line
		4102 (δ) v	6164 0	•
4334 6	3590 (CN)	4340 (y) b	6182 0	spectrum.
4511 0	3884 (CN)	(F) 4861 (B) gb	6217 0	OXYGEN
4703 b		(C) 6563 (a) r	6267 0	
5452 g	4123 V	For very short	6305 0	Elementary line
5607 y	4216 (CN) v	wave-lengths	6383 0	spectrum.
5912 0	4393 b	(1030-1675) see		3919
6031 0	4511 6		6402 0	3973
6059 0		Lyman, Astro.	6507 r	
	4735 (C) b	Journ., 1906.		4070 V
	4835 b	Secondary spec-	NITROGEN	4072 V
	5165 (C) g	trum	Band spectrum	4076 V
	5198 g	(see Watson,	from positive	
	5610 y	Proc. Roy. Soc.,	column.	4415 0
-	6079 0	1909).	Many bands	5208 g
Blue spectrum			all made up of	Diffuse maxima
(large current		KRYPTON AND	fine lines.	at
density).	freez	XENON	From 3000 to	5335 g
0.00	HELIUM	Brit. Ass. Rep.,	4574 the edges	5440 g
3583	Rayleigh, 1908.	1905.	occur at inter-	61100
		NEON	vals of about 60	6170 0
4072 V	3188		Å.U.	There are three
4104 V		Baly, Phil.		other oxygen
4228 V	3889 v	Trans., 1903.	Other bands	spectra : con-
4331 6	4026 V	Very rich in	have edges at	tinuous, band,
4348 6	4471.482 6	red rays.	4648 b	
4426 b	4713144 6	3448	4666 b	and series
4430 0	4921'930 gb	3473	4723 b	spectra.
4431 0	5015'680 g	3521	4813 0	
4610 6	(D ₃) 5875.625 y	3594	5340 g	RADIUM EMANA- TION
4806 8	6678.150 r		5614 y	Royds, Phil.
40000	7065.200 r			
	1005 200 1	5765 y	5755 Y	Mag., 1909.
	the state of the second st		and the second second	

ABSORPTION SPECTRA

For wave-lengths of the Fraunhofer lines in the sun's spectrum, see p. 75. Among the enormous literature on absorption spectra, reference may be made to Kayser's "Handbuch der Spectroscopie," Baly's "Spectroscopy," Vogel's "Praktische Spectralanalyse," the writings of Prof. Hartley, Jones and Anderson's "Absorption Spectra of Solutions," 1909, Smiles' "Chemical Constitution and Physical Properties," and the British Association Reports of 1901 et seq.

Convenient substances which show good absorption spectra are—neodymium and praseodymium salts and didymium glass (which yield some extremely narrow absorption lines), iodine vapour, nitrogen peroxide, chlorine, chlorophyll, blood, and potassium permanganate solution.

OPTICAL ROTATIONS

OPTICAL ROTATIONS OF PURE LIQUIDS AND SOLUTIONS

 A_{i} = the rotation in degrees (for light of some given wave-length) of the plane of polarization by a liquid when at the temperature 1° C.

 l_i = the length of the column of liquid in **decimetres** (*i.e.* 10 cms.).

p = the number of grams of active substance in 100 grams of solution.

q = (100 - p) = the percentage (by weight) of inactive solvent in the solution. ρ_t = the density in grams per c.c. of the liquid or solution at t° .

 $c_t = p \rho_t$ = the concentration expressed as grams of active substance per 100 c.cs. of solution at t° .

 $[\alpha]_t$ = the **specific rotation** (at t°) = $\frac{\text{rotation per decimetre of sol.}}{\text{grams of active substance per c.c. of sol.}}$

For a pure liquid $[\alpha]_t = \frac{A_t}{L_0}$.

For an active substance in solution $[\alpha]_t = \frac{A_t}{l_t} \int \left(\frac{p}{p+q}\rho_t\right) = \frac{100A_t}{l_t p \rho_t} = \frac{100A_t}{l_t c_t}$, since (p+q) = 100.

The rotation depends on the wave-length of the light used ; it increases as the wave-length (λ) diminishes ($\alpha \propto \frac{1}{\lambda^2}$ approx.). α also varies with the nature of the inactive solvent and with the concentration of the solution.

The rotation is called positive or right-handed (dextro, d) if the plane of polarization appears to be rotated in an anti-clockwise direction when looking through the liquid away from the source of light. The contrary rotation is called lavo (1). The molecular rotation is the specific rotation multiplied by the molecular weight.

 $[\alpha]_{20}^{p}$ indicates that the specific rotation is measured at 20° C. using sodium (D) light.

(See Landolt's "Optical Rotations of Organic Substances and their Practical Application," and Schönrock in L.B.M.)

Optically Active Substance.	Solvent.	Conditions.	Specific Rotation [a],
Cane Sugar or Candy (d) , $C_{12}H_{22}O_{11}$ (Landolt, 1888; Pellat, 1901)	water		$\begin{bmatrix} a \end{bmatrix}_{20}^{D} = + 66.670095c$ $\begin{bmatrix} a \end{bmatrix}_{20}^{D} = \begin{bmatrix} a \end{bmatrix}_{20}^{D} \{I00037(t - 20)\}$
Invert Sugar (<i>l</i>),*C ₆ H ₁₂ O ₆ = 1 mol. of dextrose + 1 mol. of levulose (Gubbe, 1885)	water	$c = 9 \text{ to } 35$ $t = 3^{\circ} \text{ to } 30^{\circ} \text{ C}.$	$\begin{aligned} \left[\alpha\right]_{20}^{p} &= -19^{\circ}.7 - 0.36c \\ \left[\alpha\right]_{\ell}^{p} &= \left[\alpha\right]_{20}^{p} + 0.304(\ell - 20) \\ &+ 0.0165(\ell - 20)^{2} \end{aligned}$
Dextrose $(d - \text{glucose}), C_6H_{12}O_6$ (Parcus and Tollens, 1890; Tollens, 1884)	water	c = 9.1	$ \begin{aligned} \left[\alpha\right]_{20}^{D} &= +105^{\circ} \cdot 2 \text{after} 5 \cdot 5 \\ &\text{mins.} \; (\alpha \text{ modifica-tion}) \\ &= +52^{\circ} \cdot 5 \; \text{after} \; 6 \; \text{hrs.} \\ & (\beta \; \text{modification}) \end{aligned} $
	water	p = 1 to 18	$[\alpha]_{20}^{D} = +52^{\circ}.5 + .025 p$
l - Glucose , C ₆ H ₁₂ O ₆ (Fischer, 1890)	water	<i>⊉</i> = 4	$\begin{bmatrix} \alpha \end{bmatrix}_{20}^{D} = -94^{\circ} 4 \text{ after 7 mins.} \\ = -51^{\circ} 4 \text{ after 7 hrs.} \end{bmatrix}$
Levulose (1) (fruit sugar), C ₆ H ₁₂ O ₆	Coller? D	<i>c</i> = 10	$ [\alpha]_{29}^{D} = -104^{\circ} \text{ after } 6 \text{ mins.} $ = -92° after 33 mins.
(Parcus and Tollens, 1890; Ost, 1891)	water	p = 2 to 3I	$\left[\alpha\right]_{D}^{\infty} = -\partial 1_{o}.\partial11 \psi$

* The molecular weight of cane-sugar is 342; which, after conversion to invert 360. Hence the new concentration of the invert sugar solution is $\frac{360}{542}c$, where c is the number of grams of cane-sugar in 100 c.cs. of the original solution.

78

OPTICAL ROTATIONS

Optically Active Su	bstance.	Solvent.	Conditions.	e ber	Specific Rotation	1 [α],	
Galactose (d), C ₆ (Meissl, 1880)	H ₁₂ O ₆	water	p = 4 to 36 $t = 10^{\circ} \text{ to } 30^{\circ}$	P.C. $\left[\alpha\right]_{t}^{\mathbf{D}}$	$= +83^{\circ}9 + 30^{\circ}$	o78⊉	
Ordy. Tartaric a H	cid (d) , ${}_{2}C_{4}H_{4}O_{6}$	water		$\left[\alpha\right]_{2}^{D}$	b = +15.06	1316	
K	Potassium tartrate (d) , $K_2C_4H_4O_6$ (Thomsen, 1886)		c = 8 to 5	Ο [α] ¹ ₂	c = + 27.14 + - 00094		
Rochelle salt (d) KN	, aC4H4O6	water	100 To	$\left[\alpha\right]_{2}^{r}$	$r_0^2 = +29.73 - 70$	00786	
l - Turpentine,		pure liquid		$\left[\alpha\right]_{2}^{l}$	$r_0 = -37^\circ$	d'anal	
(Gernez, 1864 ; 1877)	Landolt,	vapour	at 761.7 m	ns. $\left[\alpha\right]_{1}^{1}$	$r_{68}^{0} = -35^{\circ}.5$ fo yellow	or mean	
dollatall	1.8	alcohol $(\rho_{20} = .796)$	q = 0 to q		$r_{\rm m}^{\rm o} = -37^{\circ}000$ 000136	q ²	
THIN W AL	10	benzene	q = 0 to q		$m_{\rm so}^{\rm p} = -37^{\circ}02$		
168 % D	1. 3.820	paraffin oil	Within wide	e limits ercentag	[a] increases te of paraffin.	with the	
Quinine sulpha C ₂₀ H ₂₄ N ₂ ((Oudemans, 18	D2.H2SO4	water	c about 1.6 alkaloid (calculated	Δ11	Salt $\left[\alpha\right]_{17}^{D} = -214^{\circ}$ Alkaloid $\left[\alpha\right]_{17}^{D} = -278^{\circ}$		
Nicotine (1), C10 (Landolt, 1877		pure	$t = 10^{\circ}$ to 30	о°С. [а]	$_{00}^{p} = -162^{\circ}$	a lings	
1898)		benzene	p = 8 to 1	00 [a]	$_{20}^{\rm D} = -164^{\circ}$	1502	
		water	p = 1 to	16 [a]	$_{30}^{\rm p} = -77^{\circ}$		
Ethyl malate (/ (C ₂ H ₅ (Purdie & Willia) ₂ C ₄ H ₄ O ₅	pure liquid	N. BARELE	[α]	$[\alpha]_{11}^{p} = -10^{\circ}.3 \text{ to } -12^{\circ}.4$		
Camphor (d), C10		alcohol	q = 45 to	91 [a]	$\left[\alpha\right]_{20}^{9} = +54^{\circ} \cdot 4 - \cdot 135q$		
(Landolt, 187 bach, 1892)	7; Kim-	benzene	q = 47 to	90 [a]	- B		
Traff. R. L. B. LINS	L Lugger				1 28 50		
	PTICAL	ROTATIO	N AND WA	VE-LEN	IGTH	war of	
Ag beak. Ag have	Spec	ific Rotation	at 20° C. $\left[\alpha\right]_{20}^{\lambda}$	1	QUARTZ AT	20° C.	
Wave-length (λ) in 10 ⁻⁸ cm.	Cane- sugar or Candy in H ₂ O.	Turpentine (pureliq.).		otine bliq.).	Vave-length (λ) in 10 ^{-s} cm.	Rotation for 1 mm. thick- ness.	
H (C) 6563 (r)	52°.9	- 29°.5	7°.75 - I	26° 1	6708(r)	and the second sec	
Na (D) 5893 (0)	66.5	- 37	8.86 - 1	62 N	(C) $6563(r)$ a (D) $5893(o)$	21.72*	
Tl 5351 (g)	81.8	-45	9.65 -2	07'5 H	$\begin{array}{c} 1 & 5351 \ (g) \\ \mathbf{I} \ (F) & 4861 \ (g) \end{array}$	32.7	
H (F) 4861 (g)	100'3	- 54'5	9'37 -2	53'5	$\mathbf{I} (\mathbf{\delta}) 4102 (\mathbf{\delta})$	47.48	
* For quartz a	t temperatu	re P, rotation	= 21°.72 {I +	- 0'00014	7(t - 20) for D	line.	

FARADAY EFFECT

MAGNETIC ROTATION OF POLARIZED LIGHT

This effect was discovered by Faraday in 1845. The rotation per cm. per unit magnetic field—**Verdet's constant**, $r = \alpha/(Hl)$, where α is the rotation in minutes for the substance in a magnetic field of H gauss, and l is the length of light-path parallel to the lines of force. r varies with the temperature and is roughly inversely proportional to the square of the wave-length of the light used. Films of Fe, Ni, and Co are exceptions to this rule.

If the light is travelling with the lines of force (*i.e.* from N. to S.), then the direction of rotation is positive, if the plane of polarization is rotated clockwise, to an observer looking in the direction in which the light is moving. If the light is reflected back on its path, the rotation is increased.

The **Molecular rotation** $r_m = rM/d$, where M is the molecular weight of the substance, and d is its density. r_m is an additive property in organic compounds (Perkin, *Journ. Chem. Soc.*, 1884).

The rotations below are for the sodium D line ($\lambda = 5893 \times 10^{-8}$ cm.).

(For Voigt's theory of magneto-rotation, see Schusters, "Optics," 1909. See also Becquerel's papers in *Compt. Rend.*, etc.)

Substance.	Temp.	Rotation r in mins. of arc.	Substance.	Temp.	Rotation relative to Water.
Carbon bisulphide Quartz, ⊥ axis " Jena (phosphate crown glass (heaviest flint . FeCl ₃ dens. = 1 ⁶ 93	20 0 18 20 20 20	+ 01312, R.W. + 04347, R.W. + 04200, Ra. + 01368,* Bo. + 01664, Bo. + 1587,† Bo. + 0161, D.B.	"iodide · · · · Formic acid · · · ·	16.8 15.6 19.9 19.7 5.0 18.1 20.8 21.0 20.3 15	*8637, P. 9139, P. 9888, P. 1*395, P. 1*035, P. 2*251, P. *7990, P. *7976, P. *8369, P. 2*062, B.

* $\lambda = 6439$. † $\lambda = 2194$. B., Becquerel; Bo., Borel, 1903; D.B., Du Bois, 1894; P., Perkin; Ra., Rayleigh, 1884; R.W., Rodger and Watson, 1896.

METALLIC REFLECTION OF LIGHT

(The percentage of normally incident light reflected from different surfaces.)

The column of figures (below) in the case of **speculum metal** (7 Cu, 3 Sn) reads 30% (for $\lambda = 2510$); 51%, 56%, 64%, 67%, 71%, 89%, 94% (for $\lambda = 140,000$). (See Hagen and Rubens in L.B.M.)

Wave-length λ in A.U. (10 ⁻⁸ cm.).	Cu.	Cu. Au.	Ni.	Pt.	Ag.	Steel.	Magna- lium.*	and the second se		
	A STIN				2.10.00	Rotar	the sale		Ag back.	Hg back.
Ultra- (2,510	26%	30%	38%	34%	34%	33%	. 67%	dignil.	WHOR !!
violet	3,570	27	39% 28	49	43	74	45	81		-
	4,200	33	29		52	87	52	83	86% +	73% +
Visible {	5,500	48	74	57 63	52 61	93		83	88	71
	7,000	83	92	69	69	95	55 58 63	83	90	73
1	10,000	90	95	72	73	97	63	84	1.000	1
Infra-red	40,000	97	97 98	91	91	98	88	89	* 69 A	, 31 Mg.
12000	140,000	98	98	97	96	99	96	92	$\dagger \lambda = .$	4500.

DIOPTER

In applied optics the "power" of a lens or mirror is expressed in diopters. The number of diopters equals the reciprocal of the focal length expressed in metres.

G

ELECTRICAL RESISTIVITIES

Electrical specific resistances or resistivities in ohm-cms. **Conductivities** (in reciprocal ohms) are the reciprocals of resistivities. For a table of reciprocals, see p. 136.

METALS AND ALLOYS

The resistivity depends to some extent on the state of the metal. In general, cold drawing increases, while annealing diminishes the resistance. The winding of a wire into a coil increases its resistance.

For pure metals, the resistance is roughly proportional to the absolute temperature, and would apparently vanish not far from the absolute zero. This rule does not hold even approximately for alloys.

For wire resistances, see p. 83; for temperature coefficients, next page. The thermal conductivities of the same samples of many of the substances below will be found on p. 51.

Substance.	Temp.	Sp. Re.	Observer.	Substance.	Temp.	Sp. Re.	Observer.
Metals-	° C.	× 10-6	1.4	Metals (contd.)	° C.	× 10-6	
Aluminium* .	-160	0.81) Lees,	Platinum	-203	2.4	D.&F., '96
.,	18		P. T., '08	,,	18	11.0	J. & D.,
,,	18	3.21	J. & D.,	,,	100	14'0	1 1900
,,	100	4.13		Potassium	0	6.64	B., '04
Antimony	15	.40.5	Berget, '90	Rhodium	18	6.0	
Bismuth	18	119'0	J. & D.,	Silver, 99'9 % .	-160	0.20	
- "····	100	160.3	f 1900	,,	18	1.66	
Cadmium, drawn		2.72	Lees, 'o8	,,	18	1.63	
"	18	7'54		c.". · · ·	100	5	
C	100	9.82		Sodium	0	4.74	
Copper, drawn .	-160	0.49		Strontium	20	25	M., 1857
" .	18 100	1.28		Tantalum Tellurium	18 20	14.6	M .0.0
", annealed	18	2.36	f 1900 Mean	Thallium, pure.	20		M., 1858 D.&F., '96
Calcium	20	10.5	M.&C., '05	Thorium	15		Bo., '09
Cobalt	20	9'71	R., 1901	Tin, drawn	-160		Lees, '08
Gold	-183		D.&F., '96		18		1 J. & D.,
,,	18	2'42	J. & D.,		100		1900
	100	3.11	3	Tungsten	25		Fink, '10
Iridium	18	5'3	-	Zinc, pure	-160		Lees, 'o8
Iron	18	9-15	Mean	,,	18) J. & D.,
" (·1%) · ·	18	12'0) J. & D.,		100	7'9	1 1900
" (C.)	100	16.8	\$ 1900				
., wrought .	-160	5.4	Lees, 'o8	Alloys-	1		
,, ,, † .	18	13.9) J. & D.,	Brass	-160		Lees,
» note	100	18.8	1900		17		1 1908
,, steel {`1%}.	18	19.9) J. & D.,	., I · · ·	18		Mean
, , , (C.).	100	25.6	J 1900	Constantan }	18		} J. & D.,
Lead, drawn .	-160	7'43		(Eureka)§∫	100		\$ 1900
» 00 · 8·	18	20.8	} J. & D.,	German silver	18		
Lithium	100	27.7 8.4) 1900 B., '04	» » » ·	100		} Lorenz,
Magnesium	0		D. & F.	Manganin ".	-160		∫ 1881 } Lees,
Mercury	ŏ	4'35 94'07	the second s		18		
interesting	20	95.76		,,	18		
Molybdenum .	25	4.1	Fink, '10		100		
Nickel	-160	5.9	Lees, 'o8	Phosphor-bronze			Mean
, (97%) .	18	11.8) J. & D.,	Platinoid	-160) Lees,
" (Ni.) .	100	15.7	1 1900	,,	18		1908
Osmium	20	9'5	Blair, '05	90 Pt, 10 Rh .	0		D.&F., '96
Palladium	18	10'7) J. & D.,	67 Pt, 33 Ag .	0		-
,, · .	100	13.8	\$ 1900				
 99 % Al. § 60 Cu, 40 N B., Bernini ; M., Matthiessen ; 	Bo., Bol	62 Cu, ton ; D.	"= % Si, "1 % 15 Ni, 22 Z & F., Dewa an & Chavan		70 Cu, 3 84 Cu, 4 D., Jaeg <i>P. T.</i> ,	Ni, 12 er and 1	Diesselhorst ;

RESISTIVITIES

ELECTRICAL RESISTIVITIES (contd.)

NON-METALS AND INSULATORS

The resistivities are in ohm-cms. at room temperatures unless otherwise stated. The values for insulators naturally vary widely, and the figures below are merely typical and are probably, in many cases, nothing more than the resistances of the surfaces. For a discussion of some electrical insulators, see Kaye, *Proc. Phy. Soc. Lond.*, 1911.

Substance.	Sp. Re.	Substance.	Sp. Re.	Substance.	Sp. Re.
Gas carbon Graphite C. lamp filament Selenium ‡ (1907) Silicon §		Sulphur, 70° Ebonite Glass, soda-lime * ,, Jena, com- bustion * ,, conducting†	2.10^{15} 5.10^{11} >2.10 ¹⁴	Guttapercha Mica Paraffin wax Porcelain, 50° Quartz Fused silica *	$\begin{array}{c} 2 \cdot 10^9 \\ 9 \cdot 10^{15} \\ 3 \cdot 10^{18} \\ 2 \cdot 10^{15} \\ 1^{\circ}2 \cdot 10^{14} \\ \geqslant 2 \cdot 10^{14} \end{array}$

* National Physical Laboratory. † Phillips.

Phillips. ‡ In dark.

§ Wick, 1908.

TEMPERATURE COEFFICIENTS OF RESISTANCE

To represent accurately over any considerable range the variation of electrical resistance (R) with temperature (t) requires for almost all substances a parabolic or cubic equation in t. But if the temperature interval is not large, a linear equation $R_t = R_0(1 + \alpha t)$ may be employed; and this gives a definition of the mean temperature coefficient (α) over that temperature range. The table of resistivities above will readily yield the associated values of α . The coefficients given below are average ones.

Substance.	Temp.	a	Substance.	Temp.	α
Metals-		× 10-4			× 10-4
Aluminium	18-100	38	Silver	0-100	40
Bismuth	10 100	42 40	Tantalum	0-100 0-100	33
Copper*	10	42.8	Tungsten (1910)		45 51
Cobalt		33	Zinc	18-100	37
Gold		40			
Iron, pure	18 18	62	Alloys-	18	10+
Steel	18	16-42 43	Brass		10^{\ddagger} $\int -4 to$
Mercury †		9.0	Constantan (Eureka) .	18	+11
Nickel, electrolytic .		62	German silver	18	2.3-6
,, commercial .		27	Manganin§	20	'02-'5
Palladium		37	Platinoid	18	2.2
Platinum	-100-0	35 38	90 Pt, 10 Ir	16 15	15
Molybdenum (1910) .	0-100 0-170	30 50	90 Pt, 10 Rh	16	17 2'4-3'3
morybachulii (1910) .	0-110	50	r lacinum-suver (cons)	10	- 4-3 3

* High conductivity annealed commercial. $\dagger R_t = R_0(1 + \circ_3 88t + \circ_3 1t^2)$ —Smith (N. P. L.), 1904. $\ddagger N. P. L.$ § Most samples of manganin have a zero temp. coeff. at from 30° C. to 40° C.

STANDARD WIRE GAUGE

The sizes of wires are ordinarily expressed by an arbitrary series of numbers. There are, unfortunately, four or five independent systems of numbering, so that the wire gauge used must be specified. The following are English Legal Standard wire gauge values. (See Foster's "Electrical Engineers' Pocket Book.")

Size.			Size.	Dian	neter.	Size.	Dian	neter.
S.W.G.	Mm.	Inch.	S.W.G.	Mm.	Inch.	SW.G.	Mm.	Inch.
6	4.88	.195	20	'914	.036	34	*234	'0092
8	4.06	.160	22	.711	.028	36	.193	.0076
10	3.25	.128	24	.559	'022	38	.122	.0000
12	2.64	.104	26	.457	.018	40	.122	.0048
14	2.03	.080	28	.376	.0148	42	'102	'0040
16	1.63	.064	30	'315	'0124	44	180	.0032
18	1'22	'048	32	'274	8010	46	.001	'0024

WIRE RESISTANCES

Average values in ohms per metre at 15° C. The **safe currents** for copper (high conductivity annealed commercial) are calculated at the rate of about 270 amps /cm.² for No. 12 wire, 430 amps./cm.² for No. 22 wire, and 500 amps./cm.² for smaller diameters (see the standards fixed by the Institution of Electrical Engineers). To estimate the safe currents for manganin and platinoid coils allow 10 watts per coil. Eureka is practically identical with constantan.

The average **temperature coefficient** of resistance of copper is '00428; of nickel, '0027; of manganin, '00001; of German silver, '00044; of Eureka, - '00002; of platinoid, 'c0025 per degree Centigrade. The values for the alloys may vary considerably. The **composition** of manganin is 84Cu, 4Ni, 12Mn; of German silver, 60Cu, 15Ni, 25Zn; of Eureka, c. 60Cu, 40Ni. Platinoid is said to be German silver with a little tungsten. For specific resistances, see p. 81.

	cor	PPER.	MANG		ERMAN	(orna)	0	OF	PER.		ANGA-		ERMAN
8.W.G.	Ohms pe metre.	r Safe current.	Ohm per metre		ims per netre.	S.W.G.	Ohn per metr	c	Safe curren	nt.	hms per etre.		nms per metre.
12 14 16 18 20 22 24 26 28	·0032 ·0054 ·0083 ·0148 ·0260 ·0435 ·070 ·105 ·155	amps. 15.0 9.8 6.8 4.2 2.6 1.7 1.1 1.1 .7 5	*077 *13 *204 *360 *644 1*07 1*73 2*58 3*82	1 4 5	·041 ·070 ·109 ·193 ·345 ·57 ·92 1·38 2·02	30 32 34 36 38 40 42 44 44	*22 *29 *40 *59 *95 1*48 2*10 3*30 5*90	03	amp. '4 '3 '2 '15 '1 '06 '05 '03 '02	1 2 3 5 8	5'45 7'18 9'90 4'5 3'2 6'3 3'4 1'7 5'5	2	2'90 3'83 5'27 7'74 12'4 19'4 27'8 43'5 77'4
1.0000		EUREKA d		STAN			nthy 1				D (Ma	rtin	
S.W.G.	Ohms per metre.	20° C. ten rise caus by		. W .G.	Ohms per metre.	20° C. to rise cat by		S.	W.G.	Ohms per netre	S.W	. G .	Ohms per metre.
12 14 16 18	°086 °146 °228 °405	amps. 12*2 8*2 4*9 2*7		20 22 24 26	.722 1.20 1.93 2.89	amps 1`5 '7 '3 '1			24	·622 1·03 1·67 2·50	21	0	3.69 5.25 6.81 9.55
	FUSES The fusing currents are for wires mounted horizontally.												
	F	using cur	rent.	1 amp.	3	5	10		20	30) 4	ŧO	50
Tin Coppe	er .	S.W.G	-	37 47	28 41	24 38	21 33		18 28	16 25		14 23	13 22

DIELECTRIC CONSTANTS

The inductivity, dielectric constant, or specific inductive capacity k of a material may be defined as—

(1) The ratio of the capacity of a condenser with the material as dielectric to its capacity when the dielectric is a vacuum.

(2) The square of the ratio of the velocity of electromagnetic waves in a vacuum to their velocity in the material. This ratio is dependent on the wave-length, λ , of the waves; in most cases k increases with λ . Unless otherwise stated, the inductivities below are for very long waves ($\lambda = \infty$) and at room temperatures.

If μ is the refractive index, then on Maxwell's theory of light, $k = \mu^2$, provided the frequency of the electrical oscillations is the same as that of the light vibrations. In practice we cannot find k for vibrations as rapid as those of the visible rays; the alternative is to obtain (by extrapolation) the refractive index for waves of very great wave-length, *e.g.* by the use of Cauchy's formula, p. 71. When such data are available Maxwell's relation is found to hold fairly exactly in the case of a number of gases and liquids, though there are many substances which provide marked exceptions.

In general, a rise of temperature diminishes the inductivity. The **temperature** coefficient α between t° and T° is defined by $k_{T} = k_{t} \{1 - \alpha(T - t)\}$. In the case of water Palmer (1903) finds that α increases slightly with the frequency of oscillation.

The **Clausius-Mossotti relation** $\frac{k-1}{\rho(k+2)} = \text{const.} (\rho \text{ being the density})$ has been shown by Tangl (Ann. d. Phys., 1908) to hold from 1 to 100 atmos. in the case of H₂, N₂, and air. (See Bädeker in L.B.M.)

Substance.	k.	Substance.	k.	Substand	e. k.
Solids-	Constant in			and Scools	Super Press
		Decemina		Oil namefin	
Calcite	7'5-7'7	Bromine	3.1	Oil, paraffin	4.6-4.8
Ebonite	2.7-2.9	Carb. bisulphide .	2.62	Petroleum .	
Fluorite	6.8	" tetrachloride	2.22/18°	Toluene, a =	
Glass, crown	5-7	Chloroform, 18°.	5.2	Turpentine .	
" heavy crown	7-9	Ethyl acetate	6	Vaseline oil	
" flint	7-10	" chloride	10.0	Water, $\lambda = 0$	
" mirror	6-7	,, ether, $\alpha = 005$	4'37	" λ=360	
Gypsum	6.3	Glycerine, $\lambda = 200$	39'1/15°	$,, \lambda = 120$	
Ice (-2°)	93'9	Nitrobenzene	34/17°	$,, \alpha_{17} = .$	
Indiarubber	2.1-5.3	Oil, castor	4.6-4.8	Xylene, m, a	a= '0 ₃ 5 2'4
Marble	8.3	" olive	3.1-3.5	1 10 702	200 200
Mica	5.7-7	005 200	1		un lar
Paper, dry	2-2.5	020 8.5	1.2	71	00
Paraffin wax	2-2'3	Substance.	Temp.	k.	Observer.
Pitch	1.8	Mars 1 24	01		2 de la contra de
Porcelain	44-68	and the state	76	cm. Hg. ; $\lambda = \infty$	and and
Quartz	4.5	Gases-	one line	12 20 10	
Resin	1.8-2.6	Air	o°C.	1'000586	Klemencic, 1885
Rock salt	5.6		20	1 000576	Tangl, 1908
Selenium (16°)	<u>6.1</u>	Hydrogen	0	1 000264	Boltzmann, 1875
Shellac	3-3.7		20	1 000273	Tangl, 1908
Silica, fused	3.2-3.6	Helium	0	1'000074	Hockheim, 1908
Spermaceti	6. 2'2	Nitrogen	20	1'000581	Tangl, 1908
Sulphur	3.6-4.3	Nitrous oxide, N.O	0	1'00099	Klemencic, 1885
Sylvin	4'9	Carbon monoxide	0	1.000692	,, ,,
Vaseline	2'2	" dioxide .	0	1'000985	··· ··
88	1991 1 100 C	" bisulphide	15	1'0029	
Liquids-	02.0 8.0	Ethylene	15	1'00146	··· ·· ··
Alcohol, methyl .	35.4/130.4	Sulphur dioxide .	14'7	1'00905	
" ethyl		Ammonia	20	1'00718	Bädeker, 1901
" amyl		Alcohol, methyl .		1.00000	
Aniline, $\alpha = 0.004$.	7:30	,, ethyl .		1'00647	"""
Benzene, $\alpha = 0_{37}$.	2'29/18°	Benzene	110	1'00292	33 33
-3/ -		benzener		100292	33 33

IONIC DISSOCIATION

IONIC DISSOCIATION THEORY

On the Dissociation Theory (Arrhenius, 1887), the solute is dissociated into electrically positive cathions and negative anions. For example, KCl in water exists as KCl, K⁺, Cl⁻; sulphuric acid as H₂SO₄, H⁺, H⁻, SO₄⁺⁺, HSO₄⁺. Probably, in many cases, these ions are attached to molecules of solvent. The degree of dissociation a = (number of dissociated solute molecules)/(total number of solute molecules). α is deduced from the osmotic pressure of the solution, and from its electric conductivity at different dilutions. The osmotic pressure is determined (1) directly, (2) from the raising of the boiling-point, and (3) from the depression of the freezing-point of the solvent by the presence of the solute. The equivalent conductivity (A) for different concentrations of any dilute solution is assumed to be proportional to the number of ions present. A approaches asymptotically a limiting conductivity (Λ_{∞}) for extreme dilutions, a state of things when, on this theory, the solute is completely dissociated. $\Lambda_m/\Lambda_{\infty} = \alpha$ for the equivalent concentration m. The cathion and anion with their charges +e and -e (for monovalent ions) move in unit electric field in opposite directions with speeds or **mobilities** u_+ and u_- . The electrolytic current also obeys Ohm's Law, so that $X_x = (u_+ + u_-)ne$ (Kohlrausch, 1879), where X is the potential gradient in volts per cm., *n* the number of +ive or -ive ions per c.c., κ the conductivity of the solution in ohm⁻¹ cm.⁻¹. This becomes $u_+ + u_- = 1.037 \times 10^{-5} \Lambda$ cm./sec., since $\kappa/n = \Lambda/N$, and Ne = 96,740 coulombs per gm. equivalent of ions.

The mobility of electrolytic ions has been directly observed by Lodge (1886), Whetham, Orme Masson, and D. B. Steele. The ratio $u_{-}/(u_{+} + u_{-}) \equiv n$ is for the negative ion, the migration ratio or transport number of Hittorf (1853-9). n can be determined, when complex ions are absent, from the change of concentration at the anode and cathode during electrolysis. The **mobility** of certain organic ions is approximately inversely proportional to their linear dimension a (Laby and Carse). The existence of this relation of Ohm's Law and of a relation between the viscosity (η) of the solvent and the ionic mobilities (Kohlrausch, Hosking, and Lyle) indicates that the motion of the ion through the solution may follow Stokes' Law ($v = F/6\pi \eta a$, where F is the driving force), with the numerical constant, 6π , possibly changed.

The dissociation theory postulates the conditions existing in very dilute solutions. The role of the medium is rather neglected (Lowry, Science Progress, 1908). The dissociation should be large for a solvent with a high dielectric constant, for then the attraction between the cathion and anion is small (Thomson and Nernst). This is generally true (Walden). (Kohlrausch and Holborn, "Leitvermögen der Elektrolyten;" Whetham's

" Theory of Solution.")

Solute.	t°C.	Conc. m.	Ratio <i>n</i> .	Solute.	2°€.	Conc. m.	Ratio n.	Solute.	ℓ°C.	Conc. m.	Ratio n.
	25 8 18 19	('03 to) '05 '1 ('03 to) '05	[•] 505, S.D. [•] 504, B. [•] 505, Be. [•] 497, H. [•] 604, B. [•] 629, Be. [•] 67	NH ₄ Cl TICl . CaCl ₂ . SrCl ₂ . BaCl ₂ . MgCl ₂	20 22 21 18 21	05 01 005 01 01 05	·615, Be. ·64, H.	HCl HNO₃ H₂SO₄ . KOH NaOH	10 18 11 25 21	(*05 to) *02 *25 *05 *1 *04 *05	^{•625, M.} ^{•159, N.S. ^{•17} ^{•17, Be. ^{•74} ^{•8, Be.} ^{•56, Be.} ^{•376, L.N.}}}

MIGRATION RATIOS

Hittorf's migration ratio or transport number of the anion, $n = u_{-}/(u_{+} + u_{-})$; m = equivalent concentration per litre ; t° = temp. of observation.

B, Bogdan; Be., Bein; H., Hittorf; L.N., Löb and Nernst; M., Metelka; N.S., Noyes and Sammet ; S.D., Steele and Denison.

CONDUCTIVITY OF SOLUTIONS

'00078

KC1, 1/100 //

.00097

ELECTRICAL CONDUCTIVITY OF SOLUTIONS

 κ_{18} = specific electric conductivity (in ohms⁻¹ cm.⁻¹) of the solution at 18° C.

86

p = mass of anhydrous solute per 100 gms. of solution. η = the number of gm. equivalents in 1 c.c of solution. Gm. equiv. per

litre = 1000 η . To find η note that $\kappa/\Lambda = \eta$.

v = volume in litres containing one gm. equivalent of solute = 1/1000 η . Λ = equivalent conductivity = κ/η , = the conductivity in reciprocal ohms of

1 gm. equiv. in solution between electrodes 1 cm. apart. The chemical

equiv. of, for example, " $1/2CaCl_2$ " is 111/2. Temp. coefficient = $(d\kappa/dt)/\kappa_{18}$. (See Kohlrausch and Holborn, "Das Leitver-mögen der Elektrolyten" (Teubner), and Holborn, L.B.M.) K = Kohlrausch; G = Grotrian. CONCENTRATED SOLUTIONS

111	N. ROL	State +	10.000	SAME	C	ONCEN	ITRA	TED	SOLU	TIONS		100	1.2.173	lange la	
1%	κ ₁₈	$\Lambda = \frac{\kappa}{\eta}$	Temp. coef.	1%	к ₁₈	$\Lambda = \frac{\kappa}{\eta}$	Temp. coef.	2%	κ ₁₈	$\Lambda = \frac{\kappa}{\eta}$	Temp.	P%	к ₁₈	$\Lambda = \frac{\kappa}{\eta}$	Temp.
1	KCI (K.G.)	12	10	dCl ₂ (G	.) (cont		1	1 10	1/12 >		1 H	.SO, (B	.) (conta	.).
			-	1371	n n		0	1	IHC	l (K.).		-			0
5	.0690	00.0	'0 201	30	'0282	6.5	252	. 5 3	1150	(the set	0	70	.216	9.4	256
10	1359		188		.0137	1.49	353	5		281.0	158	80	.110	3.9	349
15	2020		179		1 4	0 (7)		10		219.1	156	90	.107	3.22	320
20	.2677				IAGN	$0_{\mathfrak{z}}(\mathbf{K}.)$		20		126.2	154	100	0157		031
21	'2810			-	100006	0	.0 218	30		69.8	152		1 701	(12)	
	al new	10000		5	·0256 ·0476	83.4 74.3		40	5154	39.1	1	1000	1 KOH	L (K.).	
1	NaCl	(K.G.)).	15	.0683	67.9	217 215				and a	· · · · · ·		00	0
THE	.eda.l	1. 24	.0	40	1565	45'0	205	1	HNO	3 (K.G.)).		.1464	188	187
5	0672	76	217	60	2101	-31.1	209	1 19	1	h sints	0		272	169	186
10	1211		214		1.22	-	1	6.5	'312	307	147		.376	150	188
15	1642	57.8	212	1	(\mathbf{NH}_1)	80, (K	.).		.542	257	142		.456	131 81	193 221
20	1957	49'9	216	1476	Carl I	1. C. M	0		.690	211	137		543	39	283
25	2135			5	.0552	71'0	215			169	137	420	421	39	203
20.4	2156	39.8	233	IO	.1010	63.1	203	31	782	133	139	27.00	1 Na0	H(K.).	
778		1		20	.1223	52.7	193	1 2 1 1 1	634	61	157		1		·0
1	CaCl ₂	(K.G.).	30	.2292	43.1	191	62	496	36.4	157	2.2	109	170	194
1		1	.0		1 CnSt	0, (K.).	1					5	197	149	201
5	.0643			-	2 040	1	.0		1 H.S	04 (K.).	-	10	312	112	217
IO	.1141	58.3	1000000000	2.5	0109	34.0	213		1	1	0	15	.346	79	249
15	1505			-	.0189		216	5	.208	198	121	20	.327	53	299
20	1728	1 0 0 C 0 C 0		10	.0320	23.1	218	10	.391	180	128	30	.202	20	450
25	1781		204	17.5		17.4	236	15	.543	161	136	40	.110	8.1	65
30	·1658 ·1366		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1	20	.653	140	145	1 10	1 NH,	(1)	
35	1300	101	230	-	1 CdS	0 ₄ (G.).	-	25	717	119	154		I MA;	(A.).	
-	d CdCl	(G.)		-			.0	30	739	99	162				0
	2 ouor	2 (0.).		I	'0042	42.9	210		724	80	170		00025	4:25	246
	loor	For	0	5	.0146	29.0	206		.680	64	178		.00087	.93	238
I	0055				.0430	13.8	223		540	38	193	8	.00104	·23 ·012	262
10	·0241	20 2	21/	130	.0421	0 4 5	255	100	373	20'3	213	303	.00019	012	
1000		STAN	DAP	D SO	UTIO	NS FO	RCA	LIBR	ATING	COND	UCT	VITY	VESSEL	S	1
2.5	r for												1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Kohlrau	coh
and	Heve	dweil	pur ler)	K	for co	ndnet	ivit	V W	ater	in air i	is ab	out re	-6 ohr	1s ⁻¹ cm.	-1.
KC	1 I m		rmal	KCI	= 74	50 gm	litr	eat	18° C	: Na(1 50	t = e	aturate	ed NaC	at
tem	ip. t.	of e	xper	imen	t. U	nit-0	hm-	-1 cn	n1	(See	Koh	Irauso	h. Ho	lborn, a	and
	esselho		apor										,		
S	olution	ı.	0	C.	1	8°	1	12°		16°	1	2	0°	24°	-
Ma	C1, sa			45		688		1872	-	·2062		.220	50	.2462	-
	1, I n			45				0868		·2063		102		1098	
	1, 1/1			715		7954 0888		00007	-	'0944 '0107		'01		.0126	
	1, 1/5			0152		0190		0020		'0022		'00:		'0027	
TO	1, 10		00	192	0	0190	-	0020	2	0022	9	00.	0	002/	01

'00107

'001173

'001278

.001386

87 CONDUCTIVITY OF SOLUTIONS

EQUIVALENT ELECTRIC CONDUCTIVITY Λ OF DILUTE AQUEOUS SOLUTIONS Extrapolated numbers are indicated by (). Λ for infinite dilution is given under "O." Observers: inorganic solutes, Kohlrausch; organic, Bredig, Zeit. Phys. Chem., 1894.

Solute	Gm. eq	luiv. per	litre = 1	1000η.	Solute at	Gm. eq	luiv. per	litre $=$ 1	000η.
at 18° C.	0	·0001	·01	•5	18° C.	·0001	·0002	·01	•5
KCI KBr KI KF KSCN KNO ₃ . NaCI NaF NaNO ₃ LiCI AgNO ₃ CsCI RbCI NH ₄ CI TICI	130'1 132'3 131'0 111'3 121'3 126'5 109'0 90'15 105'3 98'9 115'8 133'6	129'1 131'1 129'8 110'5 120'2 125'5 108'1 89'3 104'5 98'1 115'0 132'3 132'3 132'3 132'3 139'2 130'3	122 124 123 104 114 118 102 83:5 98:2 99:2 108 125 125 125 125 122 120	102 105 106 83 95'7 89'2 80'9 60'0 74'0 70'7 77'5 — 101 —	¹ / ₂ CaCl ₂ . ¹ / ₂ SrNO ₃ . ¹ / ₂ BaCl ₂ . ¹ / ₂ MgCl ₂ . ¹ / ₂ ZnSO ₄ . ¹ / ₂ CdNO ₃ . ¹ / ₂ CuSO ₄ . ¹ / ₂ PbN ₂ O ₆ Acids . HCl . HNO ₃ . ¹ / ₃ H ₂ SO ₄ . ¹ / ₃ H ₃ PO ₄ . Alkalies . KOH . NaOH . NH ₃ .	115 ² 1117 [117/ 109 ⁴ 109 ⁵ [100/ 109 ⁹ 120 ⁷ 001 (377) (375) 361 (106) (234) 53/ ³ 0002	107.9 119.9 .002 .002 .376 .374 .351 102 (233) 204.5	103 99 107 98'1 72'8 96 71'7 103 •01 370 368 308 85 228 203'4 9'6	74'9 62'7 77'3 69'5 63'9 53'2 '5 327 324 205 197 174 1'35
Solut	e at 25° C	io da	Λ ₁₀₂₄	Λ_{∞}	Solute	e at 25° C.		A ₁₀₂₁	Λ
-Meth -Ethy -Dime	ate pionate rate	· · ·	98.1 85.7 81.0 77.4 77.7 125.1 114.3 117.5 109.2	100°4 87°5 83°5 79°9 80°1 127 8 117°0 120°3 111°7	-Propy (CH ₃) ₄ P (C ₂ H ₅) ₄ I (CH ₃) ₄ A Hydroch -Anilin -Meth	sCl sCl		07 [•] 5 07 [•] 4 98 [•] 3 05 [•] 5 Λ ₂₃₆ 00 [•] 3 99 [•] 4 97 [•] 4	110'3 109'8 100'8 108'2 106'1 105'2 103'7
v = 1/ "Conduct	m = volu	ime in	litres in	which	IVITY OF NO				e Tower,
NH ₃ K , Ag HCN I , S(C SO ₂ I	$ \begin{array}{c} \text{Br} & - \\ \text{NO}_3 & - \\ \text{XI} \\ \text{H}_3 \rangle_3 I \\ \text{XI} \\ \text{Y}_2 \text{H}_5 \rangle_4 I \end{array} $	15 9 0 39 0 51 0 102 0 51	Λ 0 317.6 4 188 2 298 2 327 4 112.5 2 157.1 0 63.2	υ Λ 12410 329 192 110 1024 308 1024 308 1024 332 2048 134 1024 167 750 59	POCl ₃ Formic acid Acetone '5 '7 '7	Solute. N(C ₂ H ₅), { KCl HCl KI LiCl AgNO ₃	1 25° 7 25 2 25 5 18 11 18	56 58 86 32.8 57 155 10 49.8	υ Λ 1500 44'3 512 61 46'9 33'2 2315 163 13'8 99'5 576 17'6

IONIC MOBILITIES

MOBILITIES OF IONS IN LIQUIDS

The mobility of the anion = $u_{-} = 1.037 \times 10^{-5} \text{ An.}$ (n = Hittorf's number.) **Example.**—For KCl, $\Lambda_{\infty} = 130^{\circ}1$, n = .505, $\therefore u_{-} = 1.037 \times 10^{-5} \times .505 \times 130^{\circ}1 = 6.8 \times 10^{-4} \text{ cm./sec.}$ for Cl ions at 18°. Observers, Kohlrausch and Bredig ; the latter's values have been multiplied by 1.1×10^{-5} to bring them to cm./sec. **Unit**—10⁻⁵ cm./sec. * $\frac{1}{2}$ Ca, etc. : the actual ionic velocity of the divalent ions is half the value stated here ; these values, however, fit the various equations given.

Ion.	u 18°.	Ion.	u 18 °.	Ion.	u 18°.	Ion.	<i>u</i> 18°.	Ion.	u 25°.	Ion.	u 25 °.
H . Li . Na . K . Rb . Cs .	34.6 45.2 67 70.5	NH4 Tl . Ca*. Sr*. Ba*. Mg*	68·4 53·7 53·6 57·5	Zn* . Cu* . Ag . Cd* . Pb* . OH .	56 49.2 63.5	Cl . Br . I	67.8 70 68.8	$\begin{array}{cccc} HCO_2 & . & . \\ CH_3CO_2 & . \\ C_2H_5CO_2 & . \\ n. C_3H_7CO_2 \\ Iso- & , \\ CH_3H_3N & . \end{array}$	42°1 37°7 33°8 34°0	$\begin{array}{c} C_{g}H_{5}H_{3}N\\ (C_{2}H_{5})_{4}P\\ C_{6}H_{5}H_{3}N\\ aniline\\ C_{6}H_{5}HN\\ (CH_{3})_{4}As. \end{array}$	48.5

DIRECTLY OBSERVED MOBILITIES

Deduced from the observed movement of an ionic boundary. m = equivalent concentration. **Unit**—10⁻⁶ cm./sec. at 18° C. (See Denison and Steel, *Phil. Trans.*, 1906.)

Ion.	m	u	Ion.	m	u	Ion.	111	11	Jon.	111	и	Ion.	m	n	Ion.	m	11
К	•5	55'3	Na	I	31.8	Ba	•5	33	Mg	•2	16.7	CI	•5	52.9	SO₄	•2	30.4

ELECTROMOTIVE FORCES AND RESISTANCES OF CELLS

The E.M.F.'s given are for cells on open circuit, and are only approximate ; in the case of primary batteries they refer to freshly made up cells. The internal resistances quoted are only typical; they vary very widely in practice. With many primary cells the E.M.F. drops and the internal resistance increases as the cell ages. Nearly all modern dry cells are modified Leclanché batteries.

(See Slingo and Brooker's "Electrical Engineering.")

Cell.	Description.	E.M.F.	Resistance.
		Volts.	Ohms.
Bichromate	Zn and C in 1 vol. strong H ₂ SO ₄ and 20 vols. sat. K ₂ Cr ₂ O ₇ sol.	<i>c</i> . 2'0	very low
Bunsen	Zn in 1 vol. H ₂ SO ₄ and 12 vols. H ₂ O; C in strong HNO ₃	1.8-1.9	tonband
Clark (see p. 8) .	Zn amalgam and Hg in sat. ZnSO4 sol.	1'433	c. 500
	Zn in ZnSO ₄ sol. or H ₂ SO ₄ (1 to 12); Cu in sat. CuSO ₄ sol.	1.02-1.08	c. 4
Grove	Like Bunsen with Pt instead of C	1.8-1.0	
Leclanché	Zn and C in NH ₄ Cl, C, and MnO ₂	c. 1.5	0.22-4
Secondary	Pb and PbO ₂ (etc.) in H ₂ SO ₄ of density 1'2	2.5-1.9	negligible
Tucker	"Hygroscopic cell." Zn and C with sat. CaCl ₂ sol.	1.4	-
Weston (see p. 8).	Cd amalgam and Hg in sat. CdSO4 sol.	1.018	c. 500

88

MAGNETIC INDUCTION

1! = magnetic force

- f =intensity of magnetization
 - = magnetic moment per cm.³
 - = pole strength per cm.²

 $\mathfrak{B} = \mathbf{magnetic}$ induction, or flux density = $\mathfrak{W} + 4\pi \mathbb{R}$

 $\mu = permeability = B/B$. See p. 6.

H = susceptibility = $\frac{1}{2}$ = $(\mu - 1)/(4\pi)$. See p. 6.

Coercivity, $\mathfrak{Y}_{B=0}$, is the demagnetizing force required to make $\mathfrak{B} = 0$ after saturation. **Coercive force** is the demagnetizing force required to make $\mathfrak{B} = 0$ after some particular field strength.

Remanence, $\mathcal{B}_{H=0}$, is the induction remaining when the magnetic force is removed after saturation.

The work done, *i.e.* hysteresis loss, Q_e , in taking a cm.³ of magnetic material through a magnetic cycle between limits $\pm H_e = \int \mathfrak{B} d\mathfrak{X} = \frac{1}{4}\pi \int \mathfrak{B} d\mathfrak{B}$. Steinmetz's empirical formula for the hysteresis loss is $\eta \mathfrak{B}_{\max}^n$, where η is a constant, and generally n = 1.6. The magnetic properties of a material depend not only on its chemical composition, but on its previous mechanical and heat treatment; thus only general characteristics are indicated below.

Heusler alloys (discovered by Heusler in 1903) are composed of Cu, Mn, and Al. They do not show the Kerr effect.

Good permanent **magnet steel** contains about '5 % W and '6 % C, is free from Mn, Cu, Ni, and Ti, and is hardened at 850° C. (Hannack, 1909). Cast iron, chilled from 1000° C., may also be used (Peirce and Campbell).

References.—Pure iron, Peirce, Amer. Jour. Sci., 27 and 28, 1909; Terry, Phy. Rev., 1909; iron and manganese, Burgess and Aston, Phil. Mag., 1909; Heusler alloys, Stephenson, Phy. Rev., 1910. (Ewing, "Magnetic Induction in Iron," and Kohlrausch, "Prakt. Phys.")

Material.	21,75		Perme	ability	μ.		Coer-	Rema-	ye.	Hyst. loss,
material.	112 = ·5	設 = 1	H = 5	段 = 20	政 = 60	政 = 150	civity.	nence.	He.	Qe.
Swedish wrought iron Annealed cast steel . Unannealed cast steel Cast iron Magnet { Hardened . steel { Tungsten .		3710 3500 970 —	2060 2100 1700 81 68/ 15 80/ 10	736 747 680 182 78 119	274 280 270 117 193 204	120 123 122 65 100 105	0.8 0.97 2.08 11.9 52.6 27.5	7,100 9,000 4.230 11,700	156 155	ergs/cm. ³ 6,700 11,700 20,400 34,300 211,000 116,000

Watavial Composition	71.5	Induction	1, B, for	12,939	ABY.	For Hmax.	
Material.	Qmax.	Hmax.	股 =100.	μ _{max} .	Coer.	Reman.	Hyst.loss.
a voir the permanent of the rest	1000 10	into add is	i ai mii j	0	in an		ergs/cm. ³
Mild steel **	129	18,190	17,700	8350	0.6	10,300	4,900
Steel, 2.8 % Cr, .8 % C	-			10. 100	56	6,400 ‡	
" 5 [.] 5% W, [.] 6% C	Harden	ed at 770°		N States	72	7,000 ‡	280,000
" 77% W, 19% C	"	" 800°	1051 IS 13		85	4,700 ‡	00
" 4% Mo, 1°2% C	,,	" 800°	doome b		85	6,700	Cold Street Lines
Iron †		17,100		1750	2.2*	c. 53 % Bmax.	-
Silicon iron, 6% Sit		16,000		1900	16*	c. 43% "	-
"""4·5 % Sit	50	15,100	70000000	2500	1'2*	c. 39 % "	1.7165-115
Electrolytic iron (very pure) §	210	21,250		-	18	10,000	
17 27 27	Heated	to 1200°C.	16,000		2.5	12,500	
Hadfield's manganese steel	-	-	a name a sing	1.3-1.2	-	v. small	
Nickel, annealed	100	5,137	1003	296	8	3,570	
Cobalt	140	10,000	9,500	174	12	3,400	-
, , 96%		8,237	7,800	177			19,000
Heusler alloy ¶	92	2,735		115	-	+	-
* H = 10. † § Burgess and Taylor, 1906. ¶ 24 Mn, 16 Al, 60 Cu. Mo	hard State	ut. Phys. G 1907.		1-0-01	hmidt	‡ Bar ma 12 % Mn, 1 (Reichsanstalt),	% C.

B, D, and I are in lines per cm.², and are vector quantities.

Unit: 4[#] lines start from unit magnetic pole.

MAGNETIC SUSCEPTIBILITIES OF THE ELEMENTS, ETC.

The susceptibility $H = \frac{\pi}{20} = (\mu - 1)/(4\pi)$. H = o for a vacuum. The susceptibility depends very much on the purity of the material, especially upon the absence of iron. For pure elements H appears to be independent of \mathfrak{D} , except possibly in the case of Mg, Sb, and Ru. H is a periodic property of the atomic weight; for example, P, As, Sb, and Bi are comparatively strongly diamagnetic.

The values below are per cm.³ at 18° C., except where some temperature is specified. The gases are at 1 atmosphere. [Honda (*Ann. d. Phys.*, 1910) used purest available materials and corrected H for any traces of iron; see also P. Curie, Œuvres, Paris, 1908.] + means paramagnetic; -, diamagnetic.

Elem.	H	Obs.	Elem.	н	Obs.	Elem.	H	Obs.
	- '95	L., W., H H.	Solids (contd.) P Pt	- ·9 + 1·32	H., B., C., Q.	Zn		н. К., L., Н.
B Cd . Cr . Cu . Au . I	- '71 - '17 + 3'7 - '087 - '15	Н. Н. Н.	Rh . Ru . Se . Si Ag . Na .	+ 1.1 + .56 32 12 2 + .51	H. H., F. H. H., C. H. H. H. B.,C.,L.,K.,H.	H ₂ O,15°	- '41 - '19 + '28 + '324 - '837	C., Q. Q., M., H. F., D. F., D. Du B.
Fe · Pb · Mg · Mn · Mo · Nb · Os ·	See - '12 + '55 + 10'6? + '04 + 1'3? + '04	p. 89. H., K., L. H. H. H. H. H.	Ta . Te . Tl Th . Sn . Ti	+ .93 32 c3 + 1.8 + .025 c. + 2	H. E., C., H. H. H. K., H. H. H. H.	$H_2O, 15^\circ$ Gases Air, 16° A He H N O	- '77 + '032 - '010 - '002 - '008 + '024 + '123	T. T. Q. Du B.

B., E. Becquerel, 1855; C., Curie, 1895; D., Dewar, 1892; Du B., Du Bois; E., Ettingshausen;
F., Finke; F. D., Fleming and Dewar; H., Honda; K., Königsberger, 1901; L., Lombardi, 1897; M., St. Meyer; Q., Quincke; S., Scarpa, 1905; T., Tänzler, 1907; W., Wills, 1898.

TEMPERATURE AND MAGNETIZATION

The magnetic moment (M) of a magnet diminishes as the temperature (t) rises. In $M_t = M_o(1 - \alpha t)$, α varies widely, but is of the order '0003 to '001. The permeability μ also depends on the temperature. There is a **critical temperature** above which μ is very small; in the case of iron it is one of the recalescence temperatures, and is the same as for carbon steels containing up to '45 % of C.

The critical temperature of a metal is not perfectly definite, but depends to some extent on whether the metal is being heated or cooled.

Substance.	Crit. Temp.	Observer.	Substance.	Crit. Temp.	Observer.
Iron " · · · " · · · " · · ·	690°–870° C. c. 895 855–867 757	Hopkinson Roberts-Austen Osmond Weiss, 1907	Nickel, 95% . """ Magnetite". Heusler alloys	310° 300 377 582 c. 300	Hopkinson Du Bois Weiss, 1907 Gray, 1908

TERRESTRIAL MAGNETISM

STEINMETZ'S COEFFICIENT Values of η in Steinmetz's formula $\eta \mathfrak{B}_{max}^{r'6}$ for the hysteresis loss in ergs per c.c. per cycle. Bmax, is the maximum value of the induction.									
Substance.	η	Substance.	η						
Silicon iron	'0007 '0011 '0026 '025	Grey cast iron Nickel Cobalt	.013 .012 to .038 .012						

TERRESTRIAL MAGNETIC CONSTANTS

Magnetic observatories no longer remain in large cities owing to electric tram disturbances, and thus many of the places for which reliable data exist are not generally known. The general locality of the station is indicated in many cases below. Magnetic constants obtained in most physical laboratories are usually abnormal

owing to the proximity of iron in some form. Much of the data below is derived from the Reports of Kew Observatory, and the

much of the data below is derived from the Reports of Kew Observatory, and the publications of the United States Coast and Geodetic Survey.

A W declination means that the N-seeking end of the magnetic needle points west of true north; a N inclination means that the same end of the needle points downwards.

H and V are the horizontal and vertical components of the earth's magnetic field. (See Chree, "Terrestrial Magnetism," Encyc. Brit., 11th edit., 1911.)

Place.	Latitude.	Longi- tude.	Year.	Declina- tion.	Inclina- tion.	H.	V .
North magnetic pole South magnetic pole*	°' 70 5 N 72 25 S	96 45 W 154 E	1908	• •	。, 90 o N 90 o S	c.g.s. O O	c.g.s.
Falmouth (Cornwall) Greenwich	51 28 N 51 28 N 53 48 N 49 12 N 53 51 N	2 7 W 3 12 W 5 5 W 0 0 0 19 W 1 33 W 2 5 W 2 28 W 10 15 W	1909 1909 1909 1909 1909 1909 1907 1909 1909	16 34 W 18 30 W 17 48 W 15 48 W 16 11 W 18 2 W 16 27 W 17 29 W 20 50 W	70 39 N 69 39 N 66 31 N 66 54 N 67 0 N 68 35 N 65 35 N 68 43 N 68 15 N	·163 ·1684 ·1880 ·1853 ·1851 ·176 ·1742 ·1788	·464 ·4519 ·4327 ·4343 ·4359 ·449 ·449 ·4472 ·4481
Africa— Cape Town : Helvan (Cairo) Mauritius	33 56 S 29 52 N 20 6 S	18 29 E 31 21 E 57 33 E	1885 1908 1908	30 15 W 2 56 W 9 14 W	56 o S 40 39 N 53 45 S	·199 ·3003 ·2342	•295 •2579 •3193
America— Agincourt (Toronto) Cheltenham (Washing- ton) Fairhaven (Mass.) . Goat Island (California) Greenwich (New York). Rio de Janeiro Santiago (Chili) Sitka (Alaska) Waukegan (Chicago).	22 55 S	79 16 W 76 50 W 70 54 W 122 22 W 73 37 W 43 11 W 70 42 W 135 20 W 87 51 W	1906 1909 1908 1909 1908 1906 1906 1909 1908	5 45 W 5 34 W 12 27 W 17 53 E 10 14 W 8 55 W 14 19 E 30 12 E 2 39 W	74 36 N 70 31 N 73 8 N 62 11 N 72 13 N 13 57 S 30 12 S 74 37 N 72 46 N	·1640 ·1988 ·1736 ·2525 ·1822 ·2477 ·1557 ·1830	·5950 ·5620 ·5724 ·4786 ·5680 ·0616 ·5659 ·5898
* Mawson and D	avid (with	Shackleton), 1908.		† 190	97.	

TERRESTRIAL MAGNETISM

TERRESTI	RIAL MA	GNETIC	CON	STANTS	(contd.)		
Place.	Latitude.	Longi- tude.	Year.	Declina- tion.	Inclina- tion.	H.	v .
Asia— Alibag (Bombay) Barrackpore (Calcutta) . Hong Kong Australasia— Christchurch (N.Z.) Honolulu (Hawaii) Melbourne Sydney	22 46 N 22 18 N 43 32 S 21 19 N 37 50 S	° ' 72 52 E 88 22 E 114 10 E 172 37 E 158 4 W 144 58 E 151 12 E	1908 1907 1909 1903 1909 1901 1885	° ' I 2 E I 10 E O 2 E I6 18 E 9 26 E 8 27 E 9 30 E	 o i 23 22 N 30 30 N 31 1 N 67 42 S 40 54 N 67 25 S 62 30 S 	c.g.s. '3686 '3729 '3709 '2266 '2917 '2331 '268	c.g.s. '1592 '2197 '2229 '5526 '2527 '5602 '515
Europe— Arctic { (Norway) Regions ((Spitzbergen). Odessa Pawlowsk (St. Peters- burg) Potsdam Rude Skov (Copenhagen) Uccle (Brussels) Val Joyeux (Paris)	77 41 N 46 24 N 59 41 N 52 23 N 55 51 N 50 48 N	22 58 E 14 50 E 30 48 E 30 29 E 13 4 E 12 27 E 4 21 E 2 1 E	1903 1903 1901 1906 1909 1908 1908 1908	0 43 W 10 55 W 4 27 W 1 4 E 9 11 W 9 43 W 13 37 W 14 33 W	76 21 N 80 8 N 62 18 N 70 37 N 66 20 N 68 45 N 66 2 N 64 44 N	1258 10942 12188 1653 1883 1741 1906 1973	·5178 ·5417 ·4168 ·4696 ·4297 ·4476 ·4287 ·4179

SECULAR MAGNETIC CHANGES

At the present time (1911) we are going through a remarkable secular alteration. For generations H had been steadily rising in Western Europe, but during the last ten years a wave of depression has travelled across from the east. H has steadily fallen at St. Petersburg since about 1900, at Potsdam since about 1905, at Greenwich and Kew since 1907, while in 1909 H was still rising at Falmouth and Valencia. The easterly motion of the declination needle has also increased notably since 1900. Thus secular change data based on, say, the last five years will not serve to prospect the future.

Mean chan	ge per	1908-1909.	11 110	1904-1909.					
annum at		ecln. H	. Dech	n. Incln.	H.	v .			
Greenwich Kew Stonyhurst Falmouth Valencia	· · · ·	$\begin{array}{c} ' & -5 \\ 5'9 & -5 \\ 6'1 & -9 \\ 7'0 & -10 \\ 6'3 & +4 \\ 5'4 & +7 \end{array}$	$(10^{-5}) - 5'' $	$\begin{array}{c cccc} 5 & - & 0.7 \\ 4 & - & 1.1 \\ 9 & - & 1.1 \\ 7 & - & 1.4 \end{array}$	+9 " +7 "	$\begin{array}{c} c.g.s. \\ -20 \times 10^{-35} \\ -35 \\ -25 \\ -30 \\ -25 \\ -25 \\ \end{array}$			
Year.	Decln.	Incln.	Year.	Decln.	Incln.	H.			
1580 1660 1720 1815	°, 11 17 E 0 0 13 0 W 24 27 W ⁴		1851 1875 1907 1909	° ' 22 25 W 19 21 W 16 0 W 15 48 W	67 42 N	c.g.s. *1729 *1795 *1853* *1853			

92

SPARKING POTENTIALS

The sparking voltages given below are those which will break down non-ionized air at atmospheric pressure and room temperature. The electrodes are equal smooth polished metal balls of various diameters. Russell (Phil. Mag., 1906) gives the dielectric strength of air at atmospheric pressures as between 38,000 and 39,000 volts for either direct or alternating potentials. (See J. J. Thomson, "Conduction of Electricity through Gases.")

Spark	Dia	ameter of	balls in ci	ms.	Spark					
gap.	0.2	10	2.0	5.0	gap.	05	1.0	20	5.0	
cm. 0·1 0·2 0·3 0·4 0·5 0·6 0·7 0·8	$\begin{array}{c} \text{volts.} \\ \times \ 10^3 \\ 4'8 \\ 8'4 \\ 11'3 \\ 13'8 \\ 15'7 \\ 17'2 \\ 18'3 \\ 19'0 \end{array}$		volts. × 10 ³ 4 ^{.7} 8 ^{.1} 11 ^{.4} 14 ^{.5} 17 ^{.5} 20 ^{.4} 23 ^{.2} 26 ^{.0}	$\times 10^{3}$ - - 18.4 21.6 24.6 27.4	cm. 0·9 1·0 1·5 2·0 3·0 4·0 5·0	volts. × 103 196 202 22 23 24 25 26	volts. × 103 25.6 26.7 31.6 36 42 45 47 47	volts. × 10 ³ 28.6 30.8 39 47 57 64 69	volts. × 10 ³ 30°1 32°7 46 58 77 92 105	

HOMOGENEOUS X-RAYS

Mass absorption coefficients, λ/ρ , measured in Al foil. λ is the absorption coefficient (see p. 107) of the predominant homogeneous component of the characteristic X radiation from a metal; p is the density of aluminium foil. (See Barkla & Sadler, Phil. Mag., 1909; Kaye, Phil. Trans., 1908, Science Progress, 1908; Whiddington, Proc. Roy. Soc., 1911.)

Radiator.	Al	Cr	Fe	Ni	Co	Cu	Zn	As	Se	Ag
λ/ρ	580	136	88.5	59.1	71.6	47.7	39.4	22.5	18.9	2.2

CATHODE DARK SPACE

The thickness (d) of the Crookes dark space is given by $d = (A/p) + B/\sqrt{i}$, where p is the pressure, *i* the current density, and A and B are constants for each gas. This equation is satisfied very exactly by the ordinary elementary gases, and a little less so by the gases of the helium group. Unfortunately for the use of the dark space as a pressure indicator, the current density term in the formula is almost as large as the pressure term for pressures about 1/10 mm.

The values of A and B below are for large plane aluminium electrodes. d is measured in cms., p in mms. of mercury. The unit of i is 1/10 milliampere per sq. cm. of cathode, which is about the sort of current density that obtains with an average coil discharge and a moderate-sized cathode.

(See Aston, Proc. Roy. Soc., 1907, 1911.)

Gas.	Hydrogen	Nitrogen	Air	Oxygen
A	•26	·068	.065	.057
B	.43	·40	.42	.50

RECOMBINATION AND DIFFUSION

COEFFICIENTS OF RECOMBINATION a

 α is given below in terms of 1000*e*, where *e* is the numerical value of the ionic charge : 4.7×10^{-10} in electrostatic units. For air, $\alpha = 3320e = 1.56 \times 10^{-10}$ cm.³ sec⁻¹. Room temp. and pressure.

Koom temp. and pressure.										
Gas.	Air.			(02	CO2	ab and	H ₂	2002	
a 3.42, T.; 3.38, Mc.	3.42, T.; 3.38, Mc.; 3.2, L.; 3.3, H.; 3.32*, E. 3.38, T. 3.5, T. 3.02, T; 2.94, Mc.									
E., Erikson, P.M., 1909; H., Hendren, P.R., 1905; L., Langevin, A.C.P., 1902; Mc., McClung, P.M., 1902; T., Townsend, P. T., 1899. * 17° C., 760 mm. Hg. α IN AIR AND PRESSURE										
Press. in atmos	•2	•5	1	2	3	5	L., I	Langev	vin.	
α (relative values), L.	5	12	27	30	26	18		Hendr		
Press. in cms	76	45	25	15	10	5	8·5	2	1	
α (absolute values), H	3.3	2.65	2.02	1.75	1.22	1.31	1.52	1.12	1.00	
α IN AIR AND TEMPERATURE Air at constant density. (E., Erikson ; P., Phillips, <i>Electrician</i> , 1909.)										
Temp. ° C. -179° -68 12 64 100 155 Temp. ° C. . 15° 100 155 176										
α (in terms 1000e), E. 7.5 5.64 3.47 2.31 1.73 1.38 α (relative values), P. 1 .50 .40 .36										
IONIC COEFFICIENTS OF DIFFUSION D Rate of interdiffusion (in cm. ² sec ⁻¹) of gaseous ions in dry air : D+ for positive, D_ for negative ions. (Townsend, <i>Phil. Trans.</i> , 1899, 1900.)										
Ionization	, Rönt	tgen Rays.	β and γ	Rays.		a-violet ight.	Poin	t disch	arge.	
D ₊ at 76 cm	•	·o28	.03	2			'02	47, *02	16	
D- at 76 cm	. 30	·043	•04	3	10 .	043	.03	7, '03	32	
Air,		d hydrog								
Dry Gas. D ₊ D ₋	Dry Gas.	D+ I) - Moi	st Gas	. D +	D- Mo	ist Gas.	D+	D _	
$ \begin{array}{c} \operatorname{Air} \left\{ \begin{array}{c} \operatorname{dried} \\ \operatorname{by} \\ \operatorname{CaCl}_2 \end{array} \right\} \begin{array}{c} \circ 28 \\ \circ 028 \\ \circ 25 \\ \circ 04 \end{array} \begin{array}{c} \operatorname{Co} 28 \\ \operatorname{H}_3 \end{array} \right\} $	D ₂ dried by CaCl		26 Air 9 O ₂	$\begin{cases} sat. \\ with \\ H_2O \end{cases}$	}.032 . .029 .	035 CO 036 H ₂	${}_{2} \begin{cases} \text{sat.} \\ \text{with} \\ H_{2} O \end{cases}$) .024 .128	.025 .142	
Circle and See 1	AIR	IONIZED	BY & AI	D Y F	RAYS					
Press. p. in cms. 77.2	55 40	30 2	20 Pre	ss. p. i	in ems.	77.2	55 4	0 30	20	
	·042 ·057 2·31 2·3	78 °078 °1 1 2°34 2	118 D - 136 pD		° C.	0429 0 3'3 2		78 ·10 12 3.0		
A.C.P., Ann. de C	him. et d		P.M., P Phil. Tr		ag.; P.	R., Phy.	sical Re	view ;		

IONIC MOBILITIES

MOBILITIES OF IONS IN GASES

Velocities of ions are in cm. per sec. for unit field, or in cm.2 sec.-1 volt 1 at temp. and press. of room. K₊ = mobility of positive ion, K₋ of negative. For moist air (*i.e.* saturated with H₂O), K₊ = 1'37, K₋ = 1'51. For dry air (dried by CaCl₂), K₊ = 1'36, K₋ = 1'87. (Zeleny (air blast method), *Phil. Trans*, 1900.) * Mean = (K₊ + K₋)/2.

For mobilities of natural ions in air, see p. 105.

D C		K-	Ionization and Observer.	Dry Gas.	K+	K –	Ionization and
Dry Gas	76 cr	n.Hg	Ionization and Observer.	Liy das.	76 cm	Hg	Observer.
Air .	1.32	1.80	Point disch., Chattock,	CO2	0.76	0.81	X-rays, Zeleny, 1900.
			P.M., 1899, 1901.	,,	0.85	0.00	" Langevin, '03.
	1.24	1.78	X-rays, Wellisch, Phil. Trans., 1909.	нсі	1.5.0	0.85	Th .1
	1.40	1.20		SO2			" Kutherford. " Wellisch, '09.
"	. 40	1.10	" A.C.P., 1903.	Cl ₂			, Rutherford.
,,	1.39	1.28	" Phillips, P.R.S.,	N ₂ O	0.82	0.00	" Wellisch, '09.
			1906.	NH3	0.24	0.80	77 77
"	1.30	1.87	" Zeleny, Phil. Trans., 1900.	Me. acetate .	0.33	0.36	,,
	1.40	1.78	Mean value.			0.28	
			Point disch., Chattock.			0.27	57 57 57 -5
,,	6.7	7.9	X-rays, Zeleny, 1900.	Et. acetate .	0'31	0.28	··· ·· ··
He .	5.09	6.31				0.30	
N			Pohl, V:D.P.G., '07.	Et. chloride .	0.33	0.31	" "
N ₂	1.0	-	X-rays, Rutherford, P.M, 1897.	Et. etner	0'29	0.31	" ,
O., ,	1.36	1.80	" Zeleny, 1900.			0.16	27 33 27 33
,, .	1.3	1.85	Point disch., Chattock.	C.Cl	0.30		33 33 37 33
CO .	I.1	1'14	X-rays, Wellisch, '09.	Pentane	0'36	0.35	33 33
CO_2 .	0.83	0.95	Point disch., Chattock.	Acetone · .	0.31	0.50	22 23
		-					
			IONIC MOBILITY	AND DOFESSI	DE		Lines and parts starts
Ai	r ion	ized	by Röntgen rays. (Lan			1:	
	- ion	1000	by nonigen rays. (Lan	Serin, 11.0.1 .,	1903	11	and the second second

Press. cm. 7.5 20 41 5 76 143.5 Press. cm. 7.5 20 41.5 76 142 K_ 14.8 5.45 2.61 K+ 1.40 0'75 21.9 7'35 3'31 1.7 0'0

IONIC MOBILITY AND TEMPERATURE

Air at 76 cm. press. ionized by Röntgen rays. (Phillips, P.R.S., 1906.)

Temp. ° C.	138°	126°	110°	100 °	75°	60 °	12°	-64°	-179°
K+	2.00	1.92	1.85	1.81	1.67	1.60	1.39	0.942	0.232
K _	2.49	2.40	2.30	2.31	2.12	2.00	1.785	1.53	0.532

IONIC MOBILITIES IN LIQUIDS AND SOLIDS

Ionized by radium rays. (Bohm-Wendt and v. Schweidler, Phys. Zeit., 1909; Bialobjeski, Compt. Rend., 1909.)

Substance.	$(K_{+} + K_{-})$	Substance.	$(K_{+} + K_{-})$
Petroleum ether	3.8×10^{-4}	Ozokerite at 100°	5 ^{.1} × 10 ⁻⁴
Vaseline	5.3 × 10^{-6}	" " 80°	35 ^{.0} × 10 ⁻⁴

A.C.P., Ann. de Chim et de Phys. ; P.M., Phil. Mag. ; P.R.S., Proc. Roy. Soc. ; V.D.P.G., Verh. Deutsch. Phys. Gesell.

CONDENSATION

IONIC MOBILITIES AT HIGH TEMPS

K in cm. sec.⁻¹ per volt cm.⁻¹ for coal-gas flames in most instances. The ionic mobility is independent of the acid of the salt. Gold's and Wilson's values for K-agree the best with existing theory, which makes $K_{-} = Xe\lambda/mu = 17,000$ at 1800° C. (Gold). X is the electric field per cm., λ is the mean free path, and u the velocity of the corpuscle.

Salt.	Temp.	K+	K _	Observer.
Cs, Rb, K, Na, Li	Flame, c. 2000° C.	62	c. 1000	H. A Wilson, P. T., 1899
1/20 normal KCl	Flame	260	1400)	Marx. Ann. der Phys.,
NaCl	"	340	1800 \$	1900
1/256 normal K salt .	Flame, <i>c</i> . 2000°		1320)	
1/16 normal Na salt . Concentrated sols. of	» »	-	1280	Moreau, Journ.de Phys., 1903
alkalies	,, ,,	80		
Cs, Rb, K, Na, Li .	Air at 1000°	7.2	26)	H. A. Wilson, P. T., 1899
1 13 C C		3.8	- 1	and P.M., 1906
Ba, Sr, Ca	Flame, <i>c</i> . 1800°	-	8000	Gold, P.R.S., 1907, ratio of potential grad. to current
К	Flame, <i>c</i> . 1800°	-	13,000	Poten. grad., and gas velocity
K ₂ CO ₃	Bunsen burner	Trant	9600	H. A. Wilson, P.R.S., 1909
Na	Flame, <i>c</i> . 2000°		1170	Moreau, C.R., 1909

CONDENSATION OF VAPOURS

Expansion = v_2/v_1 , where v_1 is the volume of the gas before, and v_2 the volume after expansion. **Supersaturation** of the vapour (at end of cooling by expansion) necessary for condensation = S = (density of vapour when drops are formed)/(density of saturated vapour at the same temp.). (See J. J. Thomson, "Conduction of Electricity through Gases.")

CONDENSATION ON NATURAL IONS AND MOLECULES

Dust-free gas saturated with water-vapour. (C. T. R. Wilson, P.T., '97, '99, '00.)

Gas.	Rain- Condens	and the second second second	Cloud Conden		Gas.	Rain Conden	A REAL PROPERTY AND A REAL PROPERTY AND A	Cloud Condens	and the second second second
	v_2/v_1	S.	v_2/v_1	S.	200 03	v_2/v_1	S.	v_2/v_1	S.
$\begin{array}{cccc} Air & . & . \\ O_2 & . & . \\ N_2 & . & . \end{array}$	1.252 1.257 1.262	4°2 4°3 4°4	1·38 1·38 1·38	7'9 7'9 7'9	$\begin{array}{ccc} \mathrm{CO}_2. & . \\ \mathrm{Cl}_2 & . & . \\ \mathrm{H}_2 & . & . \end{array}$	1·365 1·3	4·2 3·4 	1.535 1.45 1.38	7°3 5°9 7°9

CONDENSATION IN AIR IONIZED BY RÖNTGEN AND RADIUM RAYS (L., Laby, Phil. Trans., 1908; P., Przibram, Wien Ber., 1906.)

Vapour and Observer.	Ion.	v_2/v_1	S.	Vapour and Observer.	Ion.	v_2/v_1	S.
Water (C. T. R. Wilson) Water (C. T. R. Wilson) Et. acetate, L Me. butyrate, L Me. iso-butyrate, L Propyl acetate, L Et. propionate, L Formic acid, L Propionic acid, L	1+++.++.	1°25 1°31 1°48 1°33 1°35 1°31 1°41 1°44 1°34	5 ^{.8} 8 ^{.9} 5 ^{.3} 5 ^{.2} 5 ^{.0} 7 ^{.8}	n-Butyric acid, L iso-Butyric acid, L iso-Valeric acid, L Methyl alcohol, P Ethyl alcohol, P Propyl alcohol, P iso-Butyl alcohol, P iso-Amyl alcohol, P ""L Chloroform, P	~~~~ + +~~~ + + + +	1·38 1·36 1·22 1·25 1·17 1·18 1·2 1·22 1·22 1·18 1·54	15.0 13.3 6.0 3.1 2.3 3.0 3.6 5.5 4.1 3.0

A.C.P., Ann. de Chim. et de Phys.; C.R., Compt. Rend.; P.M., Phil. Mag.; P.R.S., Proc. Roy. Soc.; P.T., Phil. Trans.

112211		NE	FOR ELE	CTRO	LYTIC	IONS			
N is the t° C., and I	E is the c dent da	of mole harge or ata.—1	coulomb	ovalent deposite	f gas at ion in el s 1·1182;	76 cm. ectrolysi 7 mgm.	Hg (g s. Ag.	g = 980 At. w	o.6) and
Gas.	E.S.U.	E.M.U.	Gas.	E.S.U.	E.M.U.	Gas.		E.S.U.	E.M.U.
H_2 at o° C. H_2 at 15° C.		0.4300 0.4077	$O_2 \text{ at } 0^\circ$ $O_2 \text{ at } 15^\circ$	× 10 ¹⁰ 1.2924 1.2248	0.4308 0.4083	Ideal { a gas { a		× 10 ¹⁰ 1*2913 1*2241	0 [.] 43044 0 [.] 40803
N is the the ionic ch			Ne FOR o cules per c _ for nega	.c. of ai	ir at roo			6 cm. I	Ig;eis
Ionizatio	n.	Ne_	in test and	Ne+	in dectron	11 10 22	Obser	rver.	strate z
X rays . Ra rays .		$\frac{1.23 \times 10}{1.24 \times 10}$		< 10 ¹⁰	< 10 ¹⁰	ownsend laselfoot			08, 1909. 9.
In E.S. positive air			$10^8 \times \text{K/D}$		× 10 ⁸ ×				10 ¹⁰ for
Gas. Ne.	+ N	ie- (las. N	6+	Ne_	in A	Ne	+	Ne_
	10 ¹⁰ 1.38		H ₂ . 1.50 O ₂ . 1.07	· 10 ¹⁰	1.23 . 10 ¹⁰ 1.02 . 10 ¹⁰	Mean{	1.42.	10 ¹⁰ 1 1.32.1	0 ¹⁰
BOART CARLING									
e = 4.7 minations.	× 10 ⁻¹⁰		THE ION = 1 · 57 ×				in of tl	ne lates	st deter-
			= 1 ·57 ×					ne lates Obsei	199
minations.	tion. ys; neg: light o ative ion	E.S.U. = a- ba- ba- ba- ba- ba- ba- ba-	= 1.57 × Met neasuring cloud and er of ions fr Stokes' la ce (by Stol an electric	thod. total cl obtaini com size tw. kes' law c field of	E.M.U., harge on ing num- of drops	as a mea e in E.S $ \begin{pmatrix} 6 \cdot 5 \cdot 10 \\ 6 \cdot 8 \\ 1 \cdot 3 \cdot 1 \\ ,, \end{pmatrix} $	-10 J. J. H.	0bsen J. Tl P.M., 1 J. Tl P.M., 1	rver. homson, 898. homson, 899. Wilson,
minations. Ioniza Röntgen ra tive ions. Ultra - violet metal ; neg Röntgen ra	tion. ys; neg: light o rative ion ys; neg	E.S.U. = a- by by a- by by by by ch	= 1.57 × Met measuring cloud and er of ions fr Stokes' la ce (by Stol	thod. total cl obtaini com size tw. kes' law c field of p.	E.M.U., harge on ing num- of drops) exerted n a singly	as a mea e in E.S $ \begin{cases} 6.5 \cdot 10 \\ 6.8 \ 1 3.1 \ 7 \end{cases} $	J. J. J. J.	0bser J. TI P.M., I J. TI P.M., I A. P.M., I J. TI Proc.	ver. homson, 898. homson, 899. Wilson, 903. homson, <i>Camb</i> .
minations. Ioniza Röntgen ra tive ions. Ultra - violet metal ; neg Röntgen ra tive ions. Radium rays	tion. ys; nega light of ative ion ys; neg ; negative ay of ele	E.S.U. = a- br br br br br br br br br br	= 1.57 × Met measuring cloud and er of ions fr Stokes' la te (by Stol an electric arged drop observer's al charge of ions from d size of okes' law.	thod. total cl obtaini rom size tw. kes' law c field or p. origina on a clo weight f drop	E.M.U., harge on ing num- of drops) exerted n a singly l method ud. No of cloud s, using	e in E.S 6.5 · 10 6.8 " 1 3.1 " 3.4 " 3.0 "	J. J	Obser J. TI P.M., 1 J. TI P.M., 1 A. P.M., 1 J. TI Proc. Phil. Sco Phil. Sco Phil. Sco	ver. homson, 898. homson, 993. wilson, 903. homson, <i>Camb.</i> <i>oc.</i> , 1903. e n d, <i>Camb</i> <i>oc.</i> , 1897.
minations. Ioniza Röntgen ra tive ions. Ultra - violet metal ; neg Röntgen ra tive ions. Radium rays ions. Charged spr trolytic O ₂ «particles(Ra charge = - Electrolytic i Charged spr	tion. ys; neg: light o rative ion ys; neg ; negative ay of ele u,)assumint + 2e. ons. ay of ele	E.S.U. = a- by a- by a- by by a- by by ch The c- Tota of an Stu By c By c By c By c	= 1.57 × Met measuring cloud and er of ions fr Stokes' lak er (by Stole arged drop observer's clous from d size of okes' law. counting d easuring th ounting co H. A. W	thod. total cl obtaini com size w. kes' law c field or p. origina on a clo weight f drop a partic	E.M.U., harge on ing num- of drops) exerted n a singly l method ud. No of cloud s, using cles and d charge articles.	as a mea e in E.S $6.5 \cdot 10^{-1}$ 6.8 3.4 3.4 3.4 3.6 4.65	J. J	Obser J. TI P.M., I J. TI P.M., I P.M., I J. TI Proc. Phil. Sc own so Proc. Phil. Sc therfor er, P.R. rrin, C. ttey,	ver. homson, 898. homson, 899. Wilson, 903. homson, <i>Camb.</i> <i>oc.</i> , 1903. e n d, <i>Camb</i>
minations. Ioniza Röntgen ra tive ions. Ultra - violet metal ; neg Röntgen ra tive ions. Radium rays ions. Charged spr trolytic O ₂ aparticles(Ra charge = Electrolytic i	tion. ys; nega light of vative ion ys; nega ; negative ay of ele u,)assumint + 2e. ons. ay of ele Polonium) + 2e.	E.S.U. = A- by a- by a- by by a- by by ch the ch the by ch the ch ch ch ch ch ch ch ch ch ch ch ch ch	= 1.57 × Met measuring cloud and er of ions fr Stokes' lat er (by Stole arged drop observer's an electric arged drop observer's arged drop observer's arged drop observer's arged drop observer's cloud and arged drop observer's arged drop arged drop observer's arged drop observer's arged drop arged drop	10-20 I thod. total cl obtaini com size w. kes' law c field or p. origina on a clo weight f drop a partic heir tota olloid pa vilson's	E.M.U., harge on ing num- of drops of drops e) exerted n a singly l method ud. No of cloud s, using cles and d charge articles. method, cles, and d charge	e in E.S $6.5 \cdot 10^{-1}$ $6.5 \cdot 10^{-1}$ 6.8 ,, 3.1 ,, 3.4 ,, 3.4 ,, 3.6 ,, 4.65 ,, 4.7 ,, 4.77 ,, 4.79 ,,	J. J	Obser J. TI P.M., I J. TI P.M., I P.M., I J. TI Proc. Phil. Sc owns Phil. Sc therfor er, P.R. crin, C. ttey, 909. gener, Ber., 19	ver. homson, 898. homson, 899. Wilson, 903. homson, <i>Camb.</i> 0c., 1903. e n d, <i>Camb.</i> 0c., 1897. d & Gei- .S., 1908. <i>R.</i> , 1908. <i>R.</i> , 1908. <i>P. M.</i> , <i>Berl.</i>
minations. Ioniza Röntgen ra tive ions. Ultra - violet metal ; neg Röntgen ra tive ions. Radium rays ions. Charged spr trolytic O ₂ «particles(Ra charge = - Electrolytic i Charged spr trolytic O ₂ « particles (Ra charge = - Electrolytic i Charged spr trolytic O ₂ « particles (Ra charge = - Electrolytic i Charged spr trolytic O ₂	tion. ys; nega light of vative ion ys; nega ; negative ay of ele n,)assumin + 2e. ons. ay of ele Polonium) + 2e. ons.	E.S.U. = A- by By n a be by a- Force by ch The c- Tota of an By c By	= 1.57 × Met measuring cloud and er of ions fr Stokes' lak er (by Stole an electric arged drop observer's clous from d size of okes' law. counting co the counting co H. A. Wo ove. counting co the counting co	10 ⁻²⁰ I thod. total ch obtaini om size w. kes' law c field or p. origina on a clo weight f drop a partic heir tota olloid pa vilson's a partic heir tota n move	E.M.U., harge on ing num- of drops of drops of drops end a singly l method ud. No of cloud s, using cles and d charge articles. method, cles, and d charge ments.	as a mean 6 in E.S $6 \cdot 5 \cdot 10^{\circ}$ $6 \cdot 5 \cdot 10^{\circ}$ $6 \cdot 8 $ $3 \cdot 1 $ $3 \cdot 4 $ $3 \cdot 4 $ $3 \cdot 0 $ $4 \cdot 65 $ $4 \cdot 7 $ $4 \cdot 7 $ $4 \cdot 7 $ $4 \cdot 5 $	J. J	Obser J. TI P.M., I J. TI P.M., I P.M., I J. TI Proc. Phil. Sc owns Phil. Sc therfor er, P.R. crin, C. ttey, 9909. gener, Ber., 19 oglie, geman.	ver. homson, 898. homson, 899. Wilson, 903. homson, <i>Camb.</i> <i>oc.</i> , 1903. e n d, <i>Camb</i> <i>oc.</i> , 1897. d & Gei- <i>S.</i> , 1908. <i>R.</i> , 1908. <i>R.</i> , 1908. <i>P. M.</i> , <i>Berl.</i> 1909. <i>Le R.</i> ,

н

e/m

NUMBER OF MOLECULES IN A GAS

N = the number of molecules in a **gram molecule** of gas (Perrin, *Compt. Rend.*, 1908; Perrin and Dabrowski, *C.R.*, 1909—by observations on colloidal particles). The theoretical value is N = NE/e = $2.894 \times 10^{14}/(4.7 \times 10^{-10}) = 6.16 \times 10^{23}$.

Method.	Gum mastic.	Gamboge.	Method.	Gum mastic.	Gamboge.
Counting by ultra micro- scope	$N = 7 \cdot 10^{23}$	$N = 7.05 \cdot 10^{23}$	Brownian movements}	$N = 7.3 \cdot 10^{23}$	$N = 7 \cdot 10^{23}$

e/m FOR NEGATIVE ELECTRONS

e/m in E.M.U. gm.⁻¹. Velocities v in cm. sec.⁻¹. For some other values of e/m see J. J. Thomson's "Conduction of Electricity through Gases," and Wolz, A.d.P., 30, 274, 1909. The **mean** of Simon's, Becker's, Classen's, Kaufmann's, Wolz's, Bucherer's, and Bestelmeyer's values is $e/m_0 = 1.772 \times 10^7 \text{ B.M.U.gm.}^{-1}$, where m_0 is the mass of the electron associated with very small velocities. For the variation of e/m with velocity see p. 99. (See also Schuster, *P.R.S.*, 1890.)

e/m		v	Observer.	e/m	v	Observer.
		CATHODE RA	AYS	He CAL	LENARD RA	YS
1.5	× 10 ⁷		J. J. Thomson, P.M., 1897	0.68.107	3'4t010'7.10 ⁹	Lenard, A.d.P., 1898
1.77 to 1			Kaufmann, A.d.P., 1897, 1898 Simon, A.d.P.,	INCA	NDESCENT O	Gan Man
1.88 1.87		$= e/m_0 \int$ 5.7 to 7.5.10 ⁹	1899 Seitz, A.d.P., 1902	0.87.107		J. J. Thomson, P.M., 1899
1.84 1.75	>>	11.1 ")	Starke, V.D.P.G., 1903 Becker, A.d.P.,	0.50 ,,	0.1 to 1.0 . 10 ⁹	Owen, P.M., 1904 Wehnelt, A.d.P., 1904
1.85 1.774 1.767	»)))))		1905 Classen, <i>P.Z.</i> ,1908			mailtentent
1.221	"	$= e/m_0$)	an charge on the	SECONE from 2	ARY CORPUS	SCULAR RAYS, t on platinum
(1+142) (2-14) (1-14)		ß RAYS	a size of drops of the	1.773.107		Bestelmeyer, <i>A.d.P.</i> , 1907.
0.1 . 10	7	pharo	Becquerel, Rap.	an electric t	(neory)	Stine ovid
UNSON/			C.P., 1900	es the second	paties of a	Radium rayout Re
1.77 ,	101	$= e/m_0$	Kaufmann, Gött. Nachr., 1901	ULTRA	VIOLET LIGH	HT ON METAL
1.66 ,	•	$= e/m_0$ (on Lorentz's theory)	Kaufmann, A.d.P., 1906	0.76.107	-	J. J. Thomson, P.M., 1899
1.82 ,	"	$= e/m_0$ (on Abraham's	Kaufmann, <i>A.d.P.</i> , 1906	1.1 . 101	ne sta all guinn	Lenard, <i>A.d.P</i> 1900
	,	theory) = e/m_0 9.5t020.610	Bucherer, A.d.P., 1909		ZEEMAN E	FFECT
1.767 ,	,,		Wolz, A.d.P., 1909)	ZEEMAN E	A DI DI DI DI DI DI DI
,, ,	"	., 10 21 . 10	e total charge	1.775.107	and the	Mean of 4 observer's values (see below).
			Contraction of the second			D.G. D
A.a Rap. C.	P., R.	ann. der Phys. apports Congr	; P.M., Phil. Mag. ès à Paris ; V.D.P.C	; P.R.S., Pr G., Verh. Deu	tschs. Phys. G	; P.Z., Phys. Zeit. ; Fesell.

ELECTRONIC e/m FROM ZEEMAN EFFECT

For a spectrum line of wave-length λ , which becomes a normal triplet with a separation of 8x in a magnetic field H (in gauss, i.e. E.M.U.), Lorentz has shown that $e/m = 2\pi V \delta \lambda/(\lambda^2 H)$, where V is the velocity of light; e/m is in E.M.U. gm.⁻¹. The values 1'79, 1'77, 1'767, 1'771, mean 1'775. 10' E.M.U. gm.-1, agree well with e/m_0 above.

Line.	e/m	Observer.	Line.	e/m	Observer.
Hg 5791, 5770 5461, 4358 . Zn, Cd " " Cd 4678 Zn 4680 Zn 4680 Zn 4680	× 10 ⁷ 1.72 to 2.80 1.6 1.59 1.71 1.79	$\begin{cases} Blythswood & \\ Marchant, P.M., \\ 1900 [1900] \\ Reese, As. \mathcal{F}l., \\ Kent, As. \mathcal{F}l., \\ 1901 \\ Färber, A.d.P., \\ 1902 \\ Stettenheimer, \\ A.d.P., 1907 \end{cases}$		× 10 ⁷ 2 × 1.767 1.77 1.93 2.06 1.81 1.771	{Cotton & Weiss, <i>C.R.</i> , 1907 Lohmann, <i>P.Z.</i> , 1908 Baeyer & Gehrcke, <i>A.d.P.</i> , 1909 {Gmelin, <i>A.d.P.</i> , 1909

ELECTRONIC e/m AND VELOCITY

 m_0 is the electromagnetic mass of the negative electron for infinitely small velocities, *m* the transverse mass for a velocity v; $v/V = \beta$, where V is the velocity of light. (See Lorentz, L'Eclairage Électrique, July, 1905, and "The Theory of Electrons," 1909.) On the theory of Abraham (Gött. Nachr., 1902),

transverse mass $m = m_0 \Im \left(\frac{1+\beta^2}{2\beta} \cdot \log \right)$	$\frac{1}{\rho} - 1$	$ 4\beta^2 $
--	----------------------	---------------

β	Infinitely small.	01	0.2	0.9	0.99	0.999	0.9999	0. 999999
m/m_0	1.00	1.012	1.15	1.81	3.28	4.96	6.68	10.1

On the theory of Lorentz (Versl. Kon. Ac. Wet. Am., 1904) and the relativity theory of Einstein (A.d.P., 1905), $m = m_0(1 - \beta^2)^{-1/2}$. This theory has been confirmed by the experiments of Bucherer (A.d.P., 1909) and Wolz (*ibid.*), using β rays from Ra with velocities from (9 to 21) \times 10⁹ cm. per sec. Thus the mass of the negative electron is wholly electromagnetic.

β	m/m_0	β	m/m_{0}	β	m/m_0	β	m/m_0	β	m/m_0	β	m/m_0	β	m/m_0
0.10 0.20 0.25 0.30	1'001 1'005 1'020 1'033 1'048	0.36 0.38 0.40 0.42 0.44	1'072 1'081 1'091 1'102 1'114	0·50 0·52 0·54 0·56 0·58	1.155 1.171 1.188 1.207 1.228	0.64 0.66 0.68 0.70 0.72	1.301 1.331 1.364 1.400 1.441	0.78 0.80 0.82 0.84 0.84	1.538 1.598 1.667 1.747 1.843 1.960 2.105	0.91 0.92 0.93 0.94 0.95	2'412 2'552 2'721 2'931 3'203	0·98 0·99 0·999	4.113 5.025 7.089 22.36

RH AND V: MAGNETIC DEFLECTION

When negative rays of velocity v are deflected by a uniform magnetic field H (at right angles to their direction) into a circular path of radius R, then RH = $vm/e = v\phi(\beta) f(e/m_0)$, where $\phi(\beta) = (1 - \beta^2)^{-\frac{1}{2}}$ on Lorentz's theory (see above), and $e/m_0 = 1.772 \times 10^7$ E.M.U. gm.⁻¹. **v** is in 10⁸ cm. sec.⁻¹; RH in gauss cm. **Example.**—If RH = 1210 gauss

cm.², then $\mathbf{v} = 174 \times 10^8$ cm./sec.

v	0	6	12	18	24	30	36	42	48	54	60	66	72	78	84
0 90 180 270	0 532 1270 3490	33'9 572 1340 3970	67.8 612 1410 4660		0		204 784 1760	830	274 877 1980		977	1030	1090	1150	494 1210 3130
A. Mag.	.d.P., ; P.Z	Ann. a . Phys.	ler Phys Zeit.	s.; As	s. Jl.,	Astro	phy.	Journ.	; C.A	R., Con	npt. 1	Rend.	; P.1	M., I	Phil.

RANGE AND VELOCITY OF a RAYS

Range in cms. in air at 76 cm. and t° C. (see Bragg and Kleeman, *Phil. Mag.*, 1905). **Initial velocity** (v) in cms./sec. (Rutherford, *Phil. Mag.*, 1906, 1907). Some of the velocities are calculated from the ranges of the α particles; RaC, ThC, and Polonium were observed. **Energy** of RaC α ray = $mv^2/2 = \frac{1}{2}v^2 \cdot 2e \cdot m/e_{\alpha}$ = $2\cdot06^2 \cdot 10^{18}e/(5\cdot07 \cdot 10^3) = 8\cdot37 \cdot 10^{14}e = 1\cdot3 \cdot 10^{-5}$ ergs = $3\cdot1 \cdot 10^{-13}$ calories. Loss of energy in air is proportional to path traversed : thus **initial velocity** of α particle = (velocity of RaC α) × $\cdot347\sqrt{r} + 1\cdot25$ cm./sec., where r is the range of particle. Also $v = 1\cdot077r^{1}/^{3} \cdot 10^{9}$ cm./sec. (Geiger, *P.R.S.*, 1910)

a Ray. Range.	Initial Vel.	Obs.	a Ray.	Range.	Initial Vel.	Obs.
$\begin{array}{c} \mbox{cms.}\\ U&.&.&.\\ UX&.&.&.\\ UX&.&.&.\\ I^{0}7?\\ Io&.&.&.2^{\cdot 8}\\ Ra&.&.&.&3^{\cdot 50/20^{\circ}C}.\\ RaEm&.&4^{\cdot 23}&,\\ RaA&.&.&4^{\cdot 83}&,\\ RaC&.&.&7^{\circ 6}&,\\ RaF or&.&&\\ Polonium&&&\\ &,&&3^{\cdot 95}&,\\ &,&&&3^{\cdot 86} \end{array}$	cm /sec. 1·56 . 10 ⁹ 1·56 ,, 1·70 ,, 1·76 ,, 2·06 ,, 1·62 ,,	Hess. B. B. & K. B. & K.		cms. 4·8 6·55 5·8 5·5 3·5 3·5 3·9 5·7 5·5 5·0 8·6	cm./sec. 1'76 · 10 ⁹ 2'00 ,, 1'90 ,, 1'86 ,, 1'63 ,, 1'89 ,, 1'89 ,, 1'86 ,, 1'79 ,, 2'25 ,,	H. H. H. H. H. H. H. H. H.

B., Boltwood, A.J.S., May, 1908; B. & K., Bragg & Kleeman, P.M., 1905; H., Hahn, P.M., 1906; Hess, Wien. Ber., 1907; K., Kleeman, P.M., 1906; K. & M., Kucĕra & Masěk, P.Z., 1906; L., Levin, A.J.S., 1906; Mc. & R., McCoy & Ross, J.A.C.S., 1907.

NUMBER OF a PARTICLES FROM Ra

Number of a particles from Ra without its radioactive products = $3.4 \cdot 10^{10}$ per gm. per sec. Number of a particles from Ra with its radioactive products = $1.36 \cdot 10^{11}$ per gm. per sec. (Rutherford and Geiger, *Proc. Roy. Soc.*, 1908).

e/m FOR a RAYS

e/m in E.M.U. per gm. 2e/m for helium $= 2NE/\rho = 4.78 \cdot 10^3 \text{ E.M.U./gm}$. Mean for Ra, Pol, RaC $= 4.82 \cdot 10^3 \text{ E.M.U. gm}^{-1}$. Since the α particle is a helium atom with a charge of 2e, these values should be equal. * Final velocity of rays used.

Subst.	Velocity.*	e/m	Observer.	Subst.	Velocity.*	e/m	Observer.
1 Second	^{cm./sec.} 1·18 to 1·74. 10 ⁹ 1·41 . 10 ⁹ 1·57 "		Mackenzie, <i>P.M.</i> , '05 Huff (cor!); <i>P.R.S</i> , '06 Rutherford, <i>P.M</i> , '06	AcB . ThC .	cm./sec. 1'22 · 10 ⁹ 1'0 ,, 1'98 ,,	E.M.U. 5 ^{.6} .10 ³ 4 ^{.7} , ,} 5 ^{.6} , ,	Rutherford, P.M., 'o6 Rutherford & Hahn, P.M., 'o6

STOPPING POWERS OF MATERIALS

If a layer of air of density ρ and thickness *t* decreases the range of an α particle by the same amount as aluminium foil of density ρ_a and thickness t_a , then the **atomic stopping power**, S, of Al relative to air is given by $S = 27t\rho/14.4t_a\rho_a$ = (number of atoms per cm.² in air layer)/(number of atoms per cm.² in Al foil) (Bragg and Kleeman, *Phil. Mag.*, 1905; Bragg, *Phil. Mag*, 1906).

Metal.	S .	Metal.	S.	Metal.	S.	Gas.	8.	Gas.	S.
(Air at 20° C., 76 cm.) Al Cu	1 00 1.45 2.43	Ag Sn Pt Fe	3'17 3'37 4'16 2'26	$\begin{array}{cccc} Ni & . & . \\ Au & . & . \\ Pb & . & . \\ H_2 & . & . \end{array}$	2.46 4.45 4.27 2.43	$\begin{array}{cccc} O_2 & . & . \\ N_2 O & . \\ CO_2 . & . \\ CS_2 . & . \end{array}$	1.46	C ₂ H ₂ . Ethylene Benzene Methane	3.37
A.J.S., A Proc. Roy. S	Amer. 9	Journ. Sci.;	7.A.C.S	S., Journ. A			P.M., Ph	il. Mag.; P.	R.S.,

RELATIVE IONIZATIONS

NUMBER OF IONS MADE BY AN a PARTICLE Total number of ions produced by the complete absorption of an a particle with various initial velocities. Observer assumed $e = 4.65 \times 10^{-10}$ E.S.U. (Geiger, <i>Proc.</i> <i>Roy. Soc.</i> , 1909).										
ges are completely theolfied	Ra	RaEm.	RaA	RaC	RaF					
Range in air at 20° C., 76 cm.	. 3'5 cm.	4'33	4.83	7.06	3.86					
Number of ions	. 1.23 × 10 ⁵	1.24 × 105	1.87 × 10	⁵ 2.37 × 10 ⁵	1.62 × 103					
IONS PRODUCED A Number of ions made p various distances from its so	er mm. of p	ath in air	by an a	particle from	n RaC at e above).					
Distance from RaC in cm		1 2	3 4	5 6	6.5 7					
Ions per mm. of path in air at 19	Ions per mm. of path in air at 12°C. and 76 cm. 2250 2300 2400 2800 3600 5500 7600 4000									
TOTAL RELATIVE IONIZATION IN GASES BY α RAYS $I_t = total ionization (relative to air) produced by the complete absorption of \alpha particles in various gases. (B. Bragg, P.M., 1907, used RaC \alpha rays; B. and C.,Bragg and Cook, P.M, 1907; L., Laby, P.R.S., 1907, used U \alpha rays; R., Rutherford,P.M., 1899, used U \alpha rays.)$										
Gas. I	Gas.	I		Gas.	I,					
Air $1'00$ $O_2 \cdot \cdot \cdot \cdot$ $1'09$, B. ; 1'06, R $N_2 \cdot \cdot \cdot \cdot \cdot \cdot$ $0'96$, B. $N_2 O \cdot $	Ethylene . Pentane . Me. alcohol	. 1'26, B; 1'27, L. Et. ether 1'29, I . 1'28, B. Et. iodide 1'28, I . 1'35, B.; 1'345, L. Acetaldehyde 1'05, I . 1'22, B. Chloroform 1'29, I . 1'33, B. Carb. tetra- 1'29, I			1.29, B.					
RELATIVE VOLUM Relative ionization = I_r volume for the gas at a pro- mental conditions being the s β rays would also be prese 1907; X rays, C., Crowther, I_r for secondary γ rays is mu	= iP/Ip, whe ess. p , and I ame. In the ent. Observe <i>P.C.P.S.</i> , 190	re <i>i</i> is the that for ai experiment ers : for β 9; <i>P.R.S</i> ;	amount r at pres ts with γ ra and γ ra 1909; Mc	of ionization s. P, the oth ays (column ays, Kleeman , McClung, <i>I</i>	n per unit er experi- headed γ), n, <i>P.R.S.</i> , <i>P.M.</i> , 1904.					
Gas. $\beta \gamma$ Hard	X. Soft X.	Gas.	β	γ Hard X	. Soft X.					
Gas. β γ Hard X.Soft X.Gas. β γ Hard X.Soft X.Air.100100100100001.001001001.001										
P.C.P.S., Proc. Camb. 1	Phil. Soc. ; P.A	M., Phil. Me	ag.; P.R.	S., Proc. Roy.	Soc.					

HEAT OF RADIUM

Relativ	RELATIVE IONIZATION PER									
Relative ionization = (total ionization) \times (stopping power), Metcalfe, <i>P.M.</i> , 1909.										
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cl . 1.4 thane 2.08	Propane 3.05 Pentane 4.83 Butane 4.02							
For ca in various	lculated total ionization when gases, see Crowther, <i>Proc. Roy</i> .	n Röntgen Soc., 1909.	rays are completely absorbed							
HEATING EFFECT OF RADIUM In calories per sec. per gm. of metallic radium with its radioactive products. E. von Schweidler and Hess, using '795 gm. Ra enclosed in 1 mm. glass + 5 mm. Cu, obtained ' 0328 calorie gm. ⁻¹ sec. ⁻¹ = 118 cals. gm. ⁻¹ hr. ⁻¹ The heating effect of a radioactive substance is proportional to the ionization it produces (Duane, <i>Le Radium</i> , 1909). The heat emission continues at temp. of liquid hydrogen (Curie and Dewar, 1903), and is mainly due to the kinetic energy of the α rays (Rutherford, "Radioactivity"). Temp. and press. have no effect on heat emission (Schuster, Eve, and Adams, <i>Nature</i> , 1907; Rutherford and Petavel, <i>B.A. Rep.</i> , 1907; Schmidt, <i>P.Z.</i> , 1908).										
Heat.	Observer.	Heat.	Observer.							
·0278 ·0292 ·0306	278 Curie and Laborde, $C.R.$, 25% Produced by Ra R.&B. 1903 1903 44% ","," Em + RaB $P.M.$, 292 Runge and Precht., Berl. 31% ","," RaC $P.M.$, $Ber.$, 1903 '0325 Angström, $P.Z.$, 1905									
HEAT EMISSION FROM RaEm, AND THORIUM The 6×10^{-4} c.c. of RaEm (with its products) in equilibrium with 1 gm. Ra emit '75 of the '0328 calories emitted per sec. by the radium. Thus the total quantity of heat given out by 1 c.c. of RaEm during its whole life = '75 × '0328/($\lambda \times 6 \times 10^{-4}$) = 1'9 × 10 ⁷ calories. For old (mineral) thorium metal, the heat emitted is 5 × 10 ⁻⁹ calories per sec. per gm. (Pegram and Webb, <i>Phy. Rev.</i> , 1908). RADIUM EMANATION Γ is the period of decay (in days) to half initial activity. Taking $\Gamma = 3^{\circ}66$										
days, then		× 10-" sec	' (see p. 107).							
days, then	Observer, etc.	Γ in days.	¹ (see p. 107). Observer, etc.							
days, then		Γ in days.								
days, then Γ in days. 3.77 3.88 3.8 to 4.1 3.86 Final with I g atoms br \times 10 ⁻⁴ c.4	Observer, etc. Rutherford and Soddy, P.M., 1903. Bumstead and Wheeler, A.J.S., 1904. Debierne, C.R., 1909.	Γ in days. 3'75 3'58 3'75 3'85 4'4 OF RADIUM E on at o° C. a coretical w × 10 ¹⁰ /(2'75)	Observer, etc. Rümelin, <i>P.M.</i> , 1907. For first 5 days. During period 5 to 20 days. 20 to 40 days' old emanation. One sample Rutherford and Tuomikoski, <i>P.M.</i> , 1909. MANATION and 76 cm. Hg in equilibrium olume = (number of radium \times 10 ¹⁹ \times 2 [•] 19 \times 10 ⁻⁶) = 5 [•] 64							
days, then Γ in days. 3.77 3.88 3.8 to 4.1 3.86 Final with I g atoms br \times 10 ⁻⁴ c.4	Observer, etc. Rutherford and Soddy, P.M., 1903. Bumstead and Wheeler, A.J.S., 1904. Debierne, C.R., 1909. Sackur, Ber. C.G., 1905. EQUILIBRIUM VOLUME of rolume of radium emanati m. of metallic radium. The eaking up per sec.)/AN = 3'4 c. (Rutherford, "Radioactivity" sly after it is first formed.	Γ in days. 3'75 3'58 3'75 3'85 4'4 OF RADIUM E on at o° C. a coretical w × 10 ¹⁰ /(2'75)	Observer, etc. Rümelin, P.M., 1907. For first 5 days. During period 5 to 20 days. 20 to 40 days' old emanation. One sample Rutherford and Tuomikoski, P.M., 1909. MANATION and 76 cm. Hg in equilibrium olume = (number of radium $\times 10^{19} \times 2^{\cdot}19 \times 10^{-6}) = 5.64$ me of the emanation changes							
days, then Γ in days. 3.77 3.88 3.8 to 4.1 3.86 Final with I g atoms br \times 10 ⁻⁴ c.4 anomalous Observed volume	Observer, etc. Rutherford and Soddy, P.M., 1903. Bumstead and Wheeler, A.J.S., 1904. Debierne, C.R., 1909. Sackur, Ber. C.G., 1905. EQUILIBRIUM VOLUME of rolume of radium emanati m. of metallic radium. The eaking up per sec.)/AN = 3'4 c. (Rutherford, "Radioactivity" sly after it is first formed.	Γ in days. 3'75 3'58 3'75 3'85 4'4 OF RADIUM E on at 0° C. a coretical v × 10 ¹⁰ /(2'75 "). The volu	Observer, etc. Rümelin, P.M., 1907. For first 5 days. During period 5 to 20 days. 20 to 40 days' old emanation. One sample Rutherford and Tuomikoski, P.M., 1909. MANATION and 76 cm. Hg in equilibrium olume = (number of radium $\times 10^{19} \times 2^{\cdot}19 \times 10^{-6}) = 5.64$ me of the emanation changes							

EMANATIONS

VAPOUR PRES Vapour pressure of liquid RaEs ford, Nature, February, 1909; G.	m. in cm. Hg;	melting-pe	oint, - 71°	C. (R., Ruther- ne, 1909.)
Temp. ° C	-127°	-101°	-78°	$-65^{\circ} = B.P.$
Vap. press. cm. Hg		5	25	76
	000.01 550.0	000 E	100 E 1000	The state
Temp. ° C. G. $-70^{\circ} \cdot 4$ $-62^{\circ} = B.P.$ -	-00-0 -55-8	- 38 - 3 - 1	-100.	2 +104°.5 crit.t.
vap. press. cm. Hg R. 50 76	80 100	200 4	00 500	4745 crit. press.

DIFFUSION OF EMANATIONS

D = coefficient of diffusion (in cm.² sec.⁻¹) of the emanation into the gas stated at the pressure p cm. Hg and temp. t° C. indicated. According to J. J. Thomson (*Nature*, November 25, 1909): "D would only vary slowly with atomic weight," and not as the square root of the molecular weight of the emanation, as is assumed in the table below.

Russ finds pD = const. for AcEm. and for ThEm. Bruhat gives $pD/T^2 = \text{const.}$ for AcEm. between 0° and 20°. (Molec. wgt. ThEm.)/(molec. wgt. AcEm.) = 1.42 (Russ). Mol. wgt. of RaEm. = 218 (Gray & Ramsay, 1910).

	200		200		-	-			
Gas.	p. and D. t°C.	Molec. wgt.	Obs.	Gas.	p. and t°C.	D.	Molec. wgt.	Obs.	
2 01 2	RADIUM EM.			ACTINIUM EM. (contd.)					
Air " · · · · CO ₂	76? '07 to '09 76, 10° '10 76, 0° '101	<i>c</i> . 100 75 to 100 180	R.&B. C.&D. C. B.&W.	Air ,, ,,		'112 7'81 '125 '123	70 	D. R. "B.	
Diff. of Em. into air com- pared with		86 to 99	м.	"···{	76 to .9	1.00	70	n))	
O ₂ ,CO ₂ ,SO ₂ , into air Em. into) ('024 Em		tial.		THORIU	M EM.	1910-164		
H_2 compared with Hg vap. into H_2 .	250 1 '037 Hg	235	Р.	Em. into air, compared with H ₂ , O ₂ , SO ₂ , CO ₂ ,	-		<i>c</i> . 90	М.	
Star -	ACTINIUM EM		L PASS	into air Air)	.09	ations and	Ruth.	
	76, 15° 412 76, 10° 062 to 18° 106 '073	1111	B. R. "	" · · ·	76 8·2 to 76·1 76	·103 ·966 to ·103 ·103		R. "	
	76, 15° °077	-	B.	Argon	76	.084	-	"	

B., Bruhat, Le Radium, 1909; B. & W., Bumstead & Wheeler, A.J.S., 1903; C., Chaumont, Le Radium, 1909; C. & D, Curie & Danne, C.R., 1903; D., Debierne, Le Radium, 1907; M., Makower, P.M., 1905; P., Perkins, A.J.S.; R., Russ, P.M., 1909, Le Radium, 1909; Ruth., Rutherford, "Radioactivity"; R. & B., Rutherford & Miss Brooks, C.N., 1902.

A.J.S., Amer. Journ. Sci.; C.N., Chem. News; C.R., Compt. Rend.; J.C.S., Journ. Chem. Soc.; P.M., Phil. Mag.

Ra IN ROCKS

EQUILIBRIUM ACTIVITIES IN MINERALS

Relative activity of radioactive products in minerals. Boltwood ($A.\mathcal{F}.S.$, April, 1908) found U 2'22 times as active as the Ra alone in minerals (see McCoy and Ross, $A.\mathcal{F}.S.$).

Product	U	Io	Ra	RaEm.	RaA	RaB	RaC	RaF	Ac	Total.
Relative activity	I	•34	·45	•62	•54	.04 ?	·91	•46	•28	4.64

 $3'4 \times 10^{-7}$ gm. Ra is in equilibrium with 1 gm. U (Rutherford and Boltwood, $A.\mathcal{J}.S.$, 1906). $7'3 \times 10^6$ gms. U equal in activity 1 gm. of Ra + its products to RaC. *i.e.* Ra just over 30 days old (corrected by Boltwood, $A.\mathcal{J}.S.$, 1908).

RADIUM AND THORIUM IN ROCKS

Rutherford and Soddy (*P.M.*, May, 1903) and W. E. Wilson (*Nature*, July, 1903) suggested that the heat liberated by radioactive changes is one of the sources of the Earth's heat. Thus the distribution of radium and thorium in the Earth's crust is of geophysical importance. Loss of heat from the Earth's surface = temperature gradient × thermal conductivity of crust × area of Earth's surface = $(1/3200) \times :004 \times 5:1 \times 10^{18} = 6 \times 10^{12}$ calories per sec. Now, elementary radium in radioactive equilibrium (*i.e.* whole U family) gives out 6×10^{-2} cal./sec. gm. (Rutherford §), and therefore $1:1 \times 10^{14}$ grms. of radium, or $10^{14}/10^{27} = 10^{-13}$ gm. per c.c., throughout the Earth's volume would maintain it at a steady temperature. Thorium contributes 5×10^{-9} cal. /sec. gm. The **total heating effect** in calories per gram of rock per hour is for the lava indicated below by *, 30×10^{-10} ; and for the rock indicated by †, $2:9 \times 10^{-10}$; for average igneous rock, 11×10^{-10} .

(See Strutt, Proc. Roy. Soc., 1906-7 ; Joly, "Radioactivity and Geology," 1909.)

Extent :-- '50, '2'5, '5' million square miles. † 1000 feet below the surface. § Assuming that the heat due to each member of the family is proportional to the ionization it produces. Preliminary result. B., Blanc., P.M.; E.M., Eve and McIntosh, P.M.; F.F., Farr and Florance, P.M.; Fl., Fletcher; J., Joly, P.M.; S., Strutt (above). A.J.S., Amer. Journ. Sci.; P.M., Phil. Mag.

ELECTRIC ARC

RADIUM IN SEA-WATER In grams per gram of sea-water. Deduced from the observed amount of Ra Em.									
Amount.	Place.	Observer.	Amount.	Place.	Observer.				
2·3×10 ⁻¹³ ·3-·6 " ·9 " 16 "	Mid. N. Atlantic Atlantic "	Strutt, P.R.S.,'06 Eve, P.M., 1907 ,, 1909 Joly, P.M., 1908	14 ,,	Nile Mediterranean Indian Ocean	Joly, P.M., 1908 ",", 1909 ",",","				

RADIUM EMANATION IN ATMOSPHERE

RaEm. per cubic metre of air, expressed in terms of the number of grams of radium with which it would be in equilibrium. The observers below absorbed the emanation by charcoal.

RaEm.	Place.	Observer.	RaEm.	Place.	Observer.		
$\begin{array}{c} 24-27 \times 10^{-12} \\ 60 \\ 86-200 \\ \end{array},$	Montreal Chicago	Eve, <i>P.M.</i> , 1907 ,, 1908 Ashman, <i>A.J.S.</i> ,'08	35-350×10 ⁻¹² Mean 105 "	}Cam- bridge{	Satterly, <i>P.M.</i> , 1908 and 1910		

MOBILITIES OF NATURAL IONS IN AIR

Mobility or speed K is in cm.² sec.⁻¹ volt⁻¹ at room temperature and 76 cm. (see p. 95). The ions are named from their velocities : the small ions are assumed to have the velocity of X-ray ions. (See Pollock, *Science*, 1909; Eve, *Phil. Mag.*, 19, 1910; Lusby, *Proc. Camb. Phil. Soc.*, 1910.)

Ion.	Mean K.	Observer.	Ion.	Mean K.	Observer.
Small Intermediate	$ \begin{cases} K_{+} = 1.4 \\ K_{-} = 1.7 \\ c. \text{ or } \end{cases} $	Langevin, '03 Mean	Large Large Large	.0003 .0003 * .0008 †	Langevin, <i>C.R.</i> , '05 Pollock, 1908 ""

* Humidity, 19 grms. H₂O per cubic metre. † '5 'grm. H₂O per cubic metre of air. Pollock, Austl. Ass. Adv. Sci., 1908.

ELECTRIC ARCS

Mrs. Ayrton's formula for carbon arcs, $E = \alpha + \beta l + \frac{\gamma + \delta l}{i}$, has been shown by

Guye and Zébrikoff (*Compt. Rend.*, 1907) to hold for short stable arcs between metals. E is the voltage across the arc, *i* is the current in amperes, and *l* the length in mms. of the arc in air at atmospheric pressure. Mrs. Ayrton's formula does not hold for very long arcs, nor for cored carbons. For stability, an arc requires an external resistance R which must be less than $\frac{\{E_x - (\alpha + \beta l)\}^2}{4(\gamma + \delta l)}$ ohms, where E_x is the total available voltage; or E_x must exceed $\alpha + \beta l + 2\sqrt{R(\gamma + \delta l)}$. If R is too small the arc hisses, in which case the current is independent of the voltage across the terminals. The constants for carbon refer only to the particular sizes and quality used by Mrs. Ayrton.

(See J. J. Thomson, "Conduction of Electricity through Gases.")

Met	al.	a	β	Y	δ.	Metal.	α	β	Y	δ
C. · Fe · Ni · Co · Cu ·		 38.88 15.73 17.14 20.71 21.38	2.074 2.52 3.89 2.05 3.03	11.66 9.44 0 2.07 10.69	10°54 15°02 17°48 10°12 15°24	Pd Ag Pt Au	21.64 14.19 24.29 20.82	3.70 3.64 4.80 4.62	0 11.36 0 12.17	21.78 19.01 20.2 20.9

ATOMIC CONSTANTS

-

ATOMIC AND RADIOACTIVITY CONSTANTS

References : J. J. Thomson's "Conduction of Electricity through Gases," Rutherford's "Radioactivity," H. A. Lorentz, *Éclairage Electrique*, **44**, 1905, "Theory of Electrons," 1909, and Jeans' "Dynamical Theory of Gases."

Symbol.	Definition.	Value.
e	Ionic charge, half charge on an « particle	4.7.10 ⁻¹⁰ E.S.U.; 1.57.10 ⁻²⁰
/NE	Total charge carried in electrolysis by the	[E. M. U.; 1'57. 10-19]
	atoms in 1 c.c. of gas-	coulombs
-	For ideal gas at 0° and 76 cm.	1'2913. 10 ¹⁰ E.S.U. cm. ⁻³ ; '4304 E.M.U. cm. ⁻³
(if bear	,, oxygen ,, ,, ,,	1.292 . 1010 E.S.U. cm3;
	"hydrogen " " "	'4308 E.M U. cm. ⁻³ 1'290. 10 ¹⁰ E.S.U. cm. ⁻³ ;
and approx	" nyurogen " " "	'4300 E.M.U. cm. ⁻³
NmE .	Total charge carried by 1 (gm. molecule) of	2.894 . 1014 E.S.U. cm3;
(N	hydrogen ions Number of molecules per c.c. of a gas at	9'647 . 10 ³ E.M.U. cm. ⁻³ 2'75 . 10 ¹⁹ cm. ⁻³
	0° C. and 76 cm. = NE/e = 1.29 · 10 ²⁰ /4.7	Made and the Chickey Make
(N _m	Number of molecules in 1 gm. molecule of gas	6.16.10 ²³ gm. ⁻¹
(e/m _o .	Ratio of charge to electromagnetic mass for the negative electron at small velocities	5'31 . 10 ¹⁷ E.S.U. gm. ⁻¹ ; 1'77 . 10 ⁷ E.M.U. gm. ⁻¹
E/m _H .	The same ratio for the hydrogen ion in elec-	9,647 E.M.U. gm1 ; 96,470
e/ma .	trolysis (= the Faraday) = $107.88/00111827$ The same ratio for the α particle	coulombs gm. ⁻¹ 4.8.10 ³ E.M.U. gm. ⁻¹
	Calculated for helium = $2NE/\rho = 2 \times 43.10^{-6}/$	
	(2×8.987)	Tener Turk March 1 0161
(^m ° · ·	Electromagnetic mass of negative elec- tron for small velocities = $e!(e/m_{\phi})$	8.8.10 ⁻²⁰ gm.
m _H	Mass of hydrogen atom = $\rho/2N$	1.64.10 ⁻²⁴ gm.
ma	Mass of a particle, <i>i.e.</i> of helium atom	6.56.10 ⁻²⁴ gm.
(m_H/m_o) .	Number of electrons equal in mass to hydrogen atom = $(m_{\rm H} \ell)/(m_{\rm o} E)$	1835
αθ	Energy of a gas molecule at $\theta^{\circ} C_{\cdot} = \alpha = 3p/2N$	2'02.10-16 ergs/degree
R	For I gm. of oxygen, $R = pv/\theta = 1.0132$. 10 ⁶ /(273.09.1.429.10 ⁻³). Press. in dynes/	{2.5963.10° cm.²/sec.² 2.5963.10 ⁶ ergs/gm.
	cm. ² ; volume in c.c. (see p. 5)	(2 5905.10 crgs/gm.
Sec. Mg	For I gm. molecule of an ideal gas, R =	·08207 litre atm./gm.
Set counts	22.412/273.09. Press. in atmos. = 76 cm. Hg($g = 980.6$); vol. in litres (D. Berthelot,	Arton's formula is
winters of	Trav. et Mém. Bur. Intl.)	in a contract of the second
a	The radius of a negative electron = $2/3$. $e \cdot e/m_{\phi}$	1.85 · 10 ⁻¹³ cm.
b drottes	The diameter of a hydrogen molecule	2.17.10 ⁻⁸ cm. (see p. 33)
	(Sutherland (after Jeans), Phil. Mag., 1910)	and the train the second second
	ven out by I gm. of metallic radium with its	'0328 cal./sec. ; 118 cal./hr.
product	of a particles emitted by I gm. radium	3'4 . 10 ¹⁰ gm. ⁻¹ sec. ⁻¹
without	products	54.10 gm. sec.
Initial v	relocity of a particle from RaC	2.06 . 10 ⁹ cm./sec.
Initial en	ergy of a particle from RaC = $mv^2/2 = v^2e$ α) = 2.06 ² · 10 ¹⁸ × 1.57 · 10 ⁻²⁰ /(2 × 5.07 · 10 ³)	1.3.10 ⁻⁶ ergs; 3.1.10 ⁻¹³ cal.
Total nu	mber of ions produced in air by an a ray	2.37.105
(RaC)	of helium at o° and 76 cm. produced by	5117 10-9 c.c. / (sec. am.) or
I gm. r.	adium	5'17.10 ⁻⁹ c.c. / (sec. gm.), or 163 mm. ³ /(yr. gm).
Calculate	d volume = $4 \times$ number of α rays emitted/N	4'94.10 ⁻⁹ c.c./(sec. gm.);
= 4 · 3	4 . $10^{-9/2.75}$ of β particles emitted per sec. by the RaC	156 mm ³ / (yr. gm). 5 · 10 ¹⁰ gm. ⁻¹ sec. ⁻¹
	ibrium with 1 gm. Ra (Makower, Phil. Mag.,	J. 10 Sin occi
1909)		

CONSTANTS OF RADIOACTIVE SUBSTANCES

The table below is based on one compiled by Blanc, Bloch., Danne, Godlewski, Hahn, Kolowrat, Le Vin, S. Meyer, Moulin, H. W. Schmidt, Schweidler, and Szilard (*Le Radium*, Jan., 1909, Jan., 1910, and Jan., 1911).

Atomic weights: O = 16, U = 238.5, Ra = 226.4, Th = 232.4.

Rate of decay: If I is the radioactivity of a substance at a time t, then $I = I_0 e^{-\lambda t}$, where I_0 is the initial activity when t = 0. λ is given below in sec.⁻¹. If Γ is the period in which the activity decreases to half its initial value (*i.e.* $I/I_0 = \frac{1}{2}$), then $\lambda = \frac{69315}{\Gamma}$ sec.⁻¹. Γ is given below in secs. (s.), mins. (m.), hrs. (h.), days (d.), or years (y.).

Coefficients of absorption A are given in cm.⁻¹ for β rays in Al foil and for γ rays in lead foil. If J_0 is the intensity of the rays incident on foil of thickness d cm., and J is the intensity of the emergent rays, then $J = J_0 e^{-dA}$.

(See Rutherford's "Radioactivity," 2nd ed., Camb. Univ. Press, 1905.)

And a state of the state	Registered and a	A.fast bad	and the share	Absorptn. Coef	! in cm1.
Substance.	λ in sec1.	Half-period.	Rays emitted.	β Rays.	γ Rays.
the measure and	waning to 1		This los	Λ _{Al}	A _{Pb}
U	4'3.10-18	6.10° y. sevl. y.	a ·	H_O_H press	
U.X	3.7 . 10- 7	21.5 d.	β, γ	14'4 and 510	.72
	C Sender	antas 0.04		Kathe are les	
Io	2.10-12	c. 10 ⁴ y.	a	at hang-they alt	-
RaEm.	I'I. IO-11	2000 y.	α, β	312	
RaA	2'08.10-6	3.85 d.	a	Charles (drink)	-
RaB	3.85.10-3	3 m.	α β	1210 800	
RaC,	4'33.10-4 5'93.10-4	26'7 m. 19'5 m.	p a	13 to 890	116 10 100
RaC.	5 93.10	195 m. 1-2.5 m.	β, γ	13 to 53	'46 to '57
RaD	1.8.10-0	1-2 5 m. 12 y.	rayless	or-ser 23yadad	Ara .
RaE,	1.3.10-6	6.2 d.	,,	- allocities and	
RaE.	1'7.10-6	4.8 d.	,, B	44	
RaF (Polonium) .	5'73.10-8	140 d.	a	44	_
Dil make	515.00	10.01	and at a		E SE
Manual Allino	198.00	by care	perpetated.		44
Ac	oltheley -	2	rayless	and the second	
Ac · · · · · · · · · · · · · · · · · · ·	4'1.10-7	19'5 d.	α, β	170	_
AcX	7.6.10-7	10-11 d.	a		
AcEm	1.8.10-1	3'9 s.	α	NAME OF TAXABLE OF	
AcA	3'20.10-4	36'1 m.	β	1204 42 TR	
AcB	5'37.10-3	2.15 m.	a	The second second	_
AcC	2'26.10-3	5'10 m.	β, γ	29	2.0 to 3.6
Sumple Sur Hughly	- Soluble .n	Xa	Second State	and a second	
autority of Personale	mails and	-			
Th	7.10-19	3.1010 Å.	æ	Res - ong	-
MesoTh 1 MesoTh 2	4'0.10-9	5.5 y. 6.2 h.	rayless	-	-
Rad.Th	3.1 . 10-2		β, γ	20'2 to 38'5	.2
ThX	1.09.10-8	737 d.	a	in conta sector	_
ThEm.	2.17.10-6	3.71 d.	a	Cook shall	
ThA	1'31.10 ⁻² 1'81.10 ⁻⁵	53 s. 10'6 h.	ß	Ĩ40	_
ThB	2'10.10-4	55 m.	a	140	ALL ALL
ThC .	210.10	some secs.	a	alath spicetos	_
ThD	37.10-3	3'I m.	β, γ	15.7	'46 to '57
In terms Dicho av	57.10	3	de la car		10.00 57
Salarente Martin Martin	virestant.	1	- 10100 201 59	Berpanitani fra	10
	Sor white	PC The	Sh de	on In Ca,	
				1	the second se

RADIOACTIVITY

	PROPERTIES OF RADIOACTIVE SUBSTANCES Compiled by authors mentioned above (<i>Le Radium</i> , 1911).							
Substance,	Properties.	Substance.	Properties.					
U···	Sol. in excess of am. carb. Nitrate soluble in ether and acetone. Carried down by BaSO ₄	ini atuvi tivu atu tivu atu	Carried down by PbCO ₃ , and by $SnCl_2$ with Hg and Te. RaD, E ₁ , E ₂ , and F					
	and ferric hydrate. Soluble in HCl.	man 2 m	can be separated by electro- lysis.					
U.X	Less volatile than U. Volatile in electric arc. Insoluble in excess of am. carb. Soluble in water and ether. Carried	Ac	Produces helium. Precipi- tated by oxalic acid in acid solutions. Oxalate insoluble in HF; accompanies					
T-main Lavaß -	down by barium sulphate, by moist ferric hydrate, and by animal charcoal.	Rad.Ac .	thorium and rare earths. Slightly volatile at high temps. Insoluble in NH ₄ OH. Separated from Ac by elec-					
Io Ra	Soluble in excess of am. oxalate. Carried down by H ₂ O ₂ in presence of U salts. Characteristic spectrum.	AcX	trolysis, by fractional pre- cipitation, by ammonia, and by animal charcoal. Deposited by electrolysis in alkaline solution. Not					
RaEm	Spontaneously luminous. Analogous to Ba. RaCl ₂ and RaBr ₂ are less soluble than BaCl ₂ and BaBr ₂ .	AcEm	precipitated by NH ₄ OH. Behaves as inert gas. Coef. of diffusion in air 0'11. Condenses at - 120° C.					
AaLiii	One of group of inert gases. Characteristic spectrum. Coef. of diffusion in air = o'I (see p. 103). Mol. wt.	AcA	Volatile below 400° C. Soluble in NH ₄ OH and strong acids.					
RaA	= 218. Behaves as a solid. Deposited on cathode in an electric field. Volatile at 800-900°C. Soluble in strong soids	AcB	Volatile below 700°C. Soluble in NH ₄ OH and strong acids. Deposited by electro- lysis of active deposit on					
RaB	Soluble in strong acids. Like RaA. Volatile at 600– 700° C. Precipitated by BaSO4.	Th	the cathode in HCl.					
RaC	Physically like RaA. Vola- tile at 800-1300° C. Chemi- cally, like RaB. Deposited on Cu and Ni. Carried	Th · ·	Volatile in electric arc. Colourless salts not spon- taneously phosphorescent. Salts pptd. by NH ₄ OH and oxalic acid.					
-	down with precipitated copper. Perhaps a mixture of 2 or 3 products.	Rad.Th . ThX	Carried down by hydrates, precipitated by NH ₄ OH. Soluble in NH ₄ OH. Carried					
RaD	Volatile below 1000° C. Soluble in strong acids. Reactions analogous to those of Pb.	ThEm	down by iron. Deposited by electrolysis in alkaline soln. Inert gas. Condenses just					
RaE ₁ .	Volatile at red heat. Soluble in cold acetic acid. Reac- tions analogous to those of Pb.	ATT A	above -120° C. Coefficient of diffusion in air = '10.					
RaE ₂	Not volatile at red heat. Re- actions analogous to those of bismuth.	ThA ThB	Volatile under 630° C. Soluble in strong acids. Volatile below 730° C Like ThA. Deposited on Ni.					
RaF(Pol.)	Volatile towards 1000° C. Deposited from its solutions on Bi, Cu, Sb, Ag, Pt.	ThC	Separated from ThA by electrolysis. Like ThB.					

PHYSICAL CONSTANTS OF CHEMICAL COMPOUNDS

For properties of the **elements**, see : density, p. 20 ; melting and boiling points, p. 48 ; solubility in water, p. 124. **Metallo-organic** compounds are given under "Organic Compounds," p. 118.

Formulæ.—Hydrated forms (which are often crystalline) are indicated thus : $CaI_{4}(and + 6H_{2}O)$; the properties given are for the anhydrous substance.

Formula (Molecular) Weights are calculated with atomic weights for 1911.

Densities.—When no temp. is given, grams per c.c. at 15° may be assumed. When preceded by "A" the density is relative to that of air (co1293 gram per c.c. at 0° and 760 mms.). To convert this into a density relative to $O_2 = 16$, multiply by 14:47. For those gaseous densities known with accuracy, see p. 26. Other densities on pp. 20-26.

Melting and Boiling Points are for anhydrous substances at 760 mms. mercury unless some other conditions are specified. T = temp. of transition or pseudo-"melting" point of hydrated substance. For fats and waxes, see p. 50.

Solubilities are given as grams of substance in 100 grams of water at the temp. stated. "p" indicates grams per 100 grams of solution. "V" means volumes of substance at 0° and 760 mms. per 100 volumes of water at the temp. stated. "Soluble" infers solubility in either hot or cold water; "insoluble" indicates solubility in neither. (See also pp. 124, 125.)

For more complete tables, see Van Nostrand's "Chemical Annual" and Biedermann's "Chemiker-Kalender" for current year; Dammer's "Handbuch der Anorganischen Chemie;" Beilstein's "Handbuch der Organischen Chemie;" Watts' "Dictionary of Chemistry;" and F. W. Clarke's "Specific Gravities."

INORGANIC COMPOUNDS

Formula, formula (molecular) weight, density, melting and boiling points, and solubility in water.

Substance and Formula.	Formula weight $(0 = 16)$.	Density, gms./c.c.	Melting Point, °C.	Boiling Point, °C.	Solubility in Water.
Aluminiumbromide, $Al_2Br_6(and + 12H_2O)$ chloride, $Al_2Cl_6(and + 12H_2O)$ iodide, $Al_2I_6(and + 12H_2O)$ iodide, $Al_2I_6(and + 12H_2O)$ nitrate, $Al(NO_3)_3 \cdot 9H_2O$ oxide, Al_2O_3 phosphate, $AlPO_4$ sulphate, $Al_2(SO_4)_3$, $18H_2O$ Potassium alum, $Al_2(SO_4)_3K_2SO_4 \cdot 24H_2O$ Ammoniumacetate, $NH_4C_2H_3O_2$ arsenate, $(NH_4)_3ASO_4 \cdot 3H_2O$ bromide, NH_4Br carbonate, $(NH_4)_2CO_3 \cdot H_2O$ chloride, NH_4Cl chloroplatinate, $(NH_4)_2CO_4 \cdot \cdots$ iodide, NH_4I molybdate, $(NH_4)_2MoO_4$ nitrate, NH_4NO_3		at./temp. $\begin{cases} 2^{\circ}54; \\ A. 18^{\circ}62 \end{cases}$ A. 9'34/400° $\begin{cases} 2^{\circ}63; \\ A. 27 \end{cases}$ $3^{\circ}7 - 4$ $2^{\circ}59$ $1^{\circ}62$ $1^{\circ}757/20^{\circ}$ $\begin{cases} (\text{liq.}) \cdot 623/0^{\circ} \\ A. \cdot 5896 \end{cases}$ 	at./mms. 93° 190°/1910 185° T = 73° wh. heat infusible decomp. 84°.5 - 75 89 - sublimes dec. 85° decomp. sublimes decomp. sublimes decomp. 152°	at./mms. 263°/747 182°/752 360° dec. 134° 	at./temp. soluble $41/15^{\circ}(p)$ soluble insoluble insoluble $36/20^{\circ}$ $9.6/15^{\circ}$ $357/100^{\circ}$ see p. 124. $148/4^{\circ}$ soluble $\{66/10^{\circ}$ $128/100^{\circ}$ $100/15^{\circ}$ $\{35/15^{\circ};$ see p. 125. $\cdot 67/20^{\circ}$ decomp. v. soluble decomp. $200/18^{\circ}$
dec. or decom	$p_{\bullet} = decor$	mposes; $\mathbf{v}_{\cdot} = \mathbf{v}\mathbf{e}\mathbf{r}$	y ; wh. = wh	nite.	

	1		10000	Source and	0.00
Substance and Formula.	Formula weight $(0 = 16)$.	Density, gms./c.c.	Melting Point, °C.	Boiling Point, °C.	Solubility in Water.
Ammonium (contd.) -	6.000	at./temp.	at./mms. decomp.	at./mms.	at./temp. soluble
nitrite, NH_4NO_2 oxalate, $(NH_4)_2C_2O_4$. H_2O_4 .	64.05 142.1	1.2		e observer ter	4/15°
persulphate, (NH ₄) ₂ S ₂ O ₈ .	228'2	are sperdied.	decomp.	THEFT SHOT	58/0°
phosphomolybdate, (NH ₄) ₃ PO ₄ .12MoO ₃ .3H ₂ O	1931	an so f _ beauti	due bosentes		·03/15°
sulphate, (NH ₄) ₂ SO ₄ sulphocyanate, NH ₄ CNS	132.2	1.77/20°	140°	dec. 280°	76/20°
sulphocyanate, NH ₄ CNS	76.12	1.31/13°	159	dec. 170°	162/20°
bromide, SbBr ₃	360.0	4.12/23°	93	280°	decomp.
chloride, tri-, SbCl ₃	226.6	{3.06/26°}	73'2	223	(816/150
" penta-, SbCl ₅	297.5	A. 8.1 5 2.35/20°	-6	102°/68	$1 \propto /72^{\circ}$ decomp.
hydride, SbH ₃	123.2	A. 4'3/15	- 91.5	- 18	20 V.
iodide, tri-, SbI3	501.0	\$4.85/260	167	401	decomp.
oxide, tri-, Sb ₂ O ₃	288.4	A. 17.6 5.2-5.7	subl. 114°) red heat	1550	.002/15°
, tetr-, Sb_2O_4	304.4	4.07	O/800°	A States of the	insoluble
" pent-, Sb ₂ O ₅	320.4	3.8	0/300°	O ₂ /800°	insoluble
potassium tartrate, $K(SbO)C_4H_4O_6.\frac{1}{2}H_2O$	332'3	2.6	$\frac{1}{2}H_{2}O/100^{\circ}$	decomp.	\$5/9° 36/100°
sulphide, tri-, Sb ₂ S ₃	336.6	4.65	fusible	volatilizes	insoluble
, penta-, Sb_2S_5 Arsenic-	400.7	4.12/0°	fusible		insoluble
bromide, AsBr ₃	3147	{3.7/15° A. 10.91}	31°	221°	decomp.
chloride, AsCl ₃	181.3	2'2/0°; A. 6'3	- 18	130.2	decomp.
fluoride, tri-, AsF ₃	132.0	2.7; A. 4.57	- 8.2	63	decomp.
,, penta-, AsF_5 hydride, AsH_3	170 ^{.0} 77 [.] 98	A. '415 A. 2'7	- 80	- 53 - 54.8	soluble slgtly sol
iodide, di-, AsI ₂	328.8		-	-	-
" tri-, AsI3	455'7	4.4/13°	146	{394-414 V.D. 16·1	30/100°
, pent-, AsI_5	709.6	3.93	70 subl. 218°	V.D. 13.8	decomp.
oxide, tri-, As_2O_3 , pent-, As_2O_5	197'9 229'9	3.6-4.1 3.9-4.2	red heat	decomp.	1.7/16° 245/12°
Barium-					and the second second
bromide, BaBr ₂ . 2H ₂ O carbonate, BaCO ₃	333'2	3.85/24°	anhy. 880° 795°	2H ₂ O/100° dec. 1450°	103/15° .0022/18°
chloride, BaCl ₂ . 2H ₂ O	197'4 244'3	4'3 3'1/24°	anhy. 960°	2H20/113°	see p.125.
hydride, BaH ₂	139.4	4.2/0°	volatile	1400°	decomp.
iodide, BaI_2	391'2	4 ^{.92} 3 ^{.24/23°}	740° 575	_	170/0° 5/0°
oxide, BaO	261.4	$\frac{324}{47} = 5.5$	BaO2/450°	_	1.2/0°
" per-, BaO ₂	169.4	4.96	BaO/450°	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	insoluble
sulphate, BaSO ₄ Beryllium—	233'4	c. 4'5	infusible	· Tuke	°0323/18°
bromide, BeBr ₂	168.9	001 - VH	601°	HIV IRGII	soluble
chloride, BeCl ₂	80'02		c. 600	all Oland	v. soluble
sulphate, $BeSO_4 \cdot 4H_2O$	177'2	1.2/10°	dec. r. ht.	2H2O/100°	44/30°

INORGANIC COMPOUNDS (contd.) For general heading, see p. 109.						
Substance and Formula.	Formula weight $(0 = 16)$.	Density, gms./c.c.	Melting Point, °C.	Boiling Point, °C.	Solubility in Water.	
Bismuth-		at./temp.	at./mms.	at./mms.	at./temp.	
bromide, BiBr ₃	1	5.6 5 4.6/11°)	200 ⁶ -215 [°]	453°	decomp.	
chloride, tri-, BiCl ₃	314.38	{ A. 11.35 }	227	429	decomp.	
nitrate, Bi $(NO_3)_3 \cdot 5H_2O$.	484.11	2.8	74	$5 H_2 O/80^\circ$	decomp.	
oxide, Bi_2O_3	464.0 512.21	8·8 - 9 7 - 7·8	820-860 decomp.	D (Simple)	insoluble insoluble	
Boron—	512 21	/ - / 0	decomp.	Danis Og	moordbie	
chloride, BCl ₃	117.38	1.35/0°; A.4/17°		180.3	decomp.	
fluoride, BF ₃	68.0	A. 2.3	- 127°	- 101	decomp.	
oxide, B ₂ O ₃	70.0	1.83/4°	577	chioride.	16/1020	
Boric acid, H_8BO_8 .	62.0	1.43/15°	184-186	H20/100°	4/18°	
Cadmium-			6 . (110)	1120/100		
bromide, $CdBr_2 \cdot \cdot \cdot \cdot$	272.24	4.7-4.9/14° 3.6/15°	571	806-812	48.9/18°p.	
chloride, $CdCl_2$	183.32 308.48	3.6/15	590	c. 900	140/20° 127/18°	
oxide, CdO \ldots	128.4	2.4 6.9-8.1	59'5 infusible	132	insoluble	
sulphate, anhy. CdSO4	208.47	4.7/15°	10000	O.o.Tobiro	59/23°	
" hydr. 3CdSO ₄ .8H ₂ O	769.54	3.02		22 23 11 19 11 19 11 19 11 19 11 19 11 19 11 19 11 19 11 19 11 19 11 19 11 19 11 19 11 19 11 19 11 19 11 19 11	see p. 125.	
Cæsium—	222.62		< red heat	dec. 610°	v. soluble	
carbonate, Cs_2CO_3	325.62 168.27	3.97/20°	< red heat 631°	sublimes	174/10°	
hydride, CsH	133.82	2.7	decomp.		decomp.	
hydroxide, CsOH	149.82	4.02	red heat	Contraction of the second	soluble	
nitrate, CsNO ₃	194.82	3.69/28°	414°	decomp.	15/100	
Calcium — bromide, $CaBr_2 \cdot \cdot \cdot \cdot \cdot$	199'93	3.3/20°	760	c. 800°	125/0°	
carbonate, CaCO ₃		2.7-2.9	dec. 825°		'0018 cold	
chloride, anhy, CaCl.	111.0	2°3/20°	780°	14H2O/30°	63/10°	
"hydr. CaCl ₂ . 6H ₂ O.	219.1	1.65	29	$(6H_2O/200^{\circ})$	96/0°	
hydride, $CaH_2 \dots \dots$ hydroxide, $Ca(OH)_2 \dots$	42'II 74'II	1.7 2.08			decomp. see p. 125.	
iodide, $CaI_2(and + 6H_2O)$.	293.1	4'9/20°	740	c. 710	192/0°	
nitrate, Ca(NO3)24H2O	236.17	1.82	561	dec. 132°	54 [.] 8/18°	
oxide, CaO ·	56.09	3.08	infusible		·13/0°	
phosphate, $Ca_3(PO_4)_2$ sulphate, $CaSO_4$	310.3	3.2 2.96	60 - 3	608,50	.003008 .18/0°	
Carbon-	13010	- 90			10/0	
chloride, tetra-, CCl ₄	153.84	1.282/21°	- 23°.8	76° · 7	insoluble	
oxide, sub- (1906), C_3O_2 .	68.00	A	-	7°/761		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28.00 44.00	A. '967 liq. '772/20° †	-207 -65	- 190 - 78°2	see p. 124.	
sulphide, mono- CS \ldots	44.00	1.6-1.83	-05		see p. 124.	
,, bi-, CS_2	76.14	1.292/0°	-110	46'2	·2/0°	
Cerium-	auto	0.00/2 -0.4				
chloride (cerous), $CeCl_3$ oxide (cerous), Ce_2O_3	246.63 328.5	3.88/15°.5 6.9-7	v. fusible	hereafters	soluble	
, (ceric), CeO_2	172.25	6.74		1 · · ·	insoluble	
sulphate (cerous), Ce ₂ (SO ₄) ₃ 8H ₂ O	712.84	3.22	8H2O/630°	H .htps birm	16°5/0°	
Chlorine-				11 Inited	and	
oxide, mon-, Cl_2O	86.92	${ {liq. 3.87 \\ A. 3.007 } }$	explosive	- 19	200V/0°	

Substance and Formula.					
	Formula weight $(0 = 16)$.	Density,	Melting Point, °C.	Boiling Point, °C.	Solubility in Water.
Chlorine (contd.)— oxide, di-, ClO ₂	67.46	at./temp. 1'5 ; A. 2'3	at./mms. - 76°	at./mms. 9 [.] 9 [°] /731	at./temp. 20V/4°
Chromium — chloride (chromous), $CrCl_2$.	122.92	2.75/14° 12.76/15°	o -	2.000	v. soluble
,, (chromic), $CrCl_3$. oxide, Cr_2O_3	158.38 152.0	{ A. 11/1200°}	white heat	c. 1300°	slgtly sol.
sulphate, $Cr_2O_3 \cdot \cdot \cdot \cdot \cdot$ sulphate, $Cr_2(SO_4)_{3} \cdot 5H_2O$. Cobalt —	100.0 662.65	2.74 1.867/17°	190 15H ₂ O/100°	decomp.	62'1/0°(<i>p</i>) 120/20°
cobaltous chloride, CoCl ₂ (and+6H ₂ O) ,, hydrate, Co(OH) ₂	129'9 93'02 74'98	2·94 3·6/15° 5·7	subl. c. 87° dec. 100°		29.5/0° insoluble insoluble
", sulphate, CoSO ₄ .7H ₂ O cobaltic chloride, CoCl ₃ .	281·2 165·35	1.918/15° 2.94	96°•8 sublimes		26/3° soluble insoluble
", oxide, Co ₂ O ₃ ", sulphate, Co ₂ (SO ₄) ₃ Columbium. See Niobium. Copper—	165.95 406.15	5.1	dec. r. ht.	international and a state	soluble
cuprous chloride, Cu ₂ Cl ₂	198.06	{3.7 A. 6.6/1690°}	410	c. 1000°	insoluble
" oxide, Cu ₂ O cupric chloride, CuCl ₂	143 ^{.14} 134 ^{.49}	5.8-6.1 3.05	red heat 498	decomp.	insoluble 75/17°
" nitrate, Cu(NO ₃) ₂₃ H ₂ O	241.64	2.17	114.5	{ ^{170°} dec. r. ht.	}60/25°(\$)
" oxide, CuO	79'57	6.30	(4H2O/100°)		insoluble
,, sulphate, CuSO ₄ 5H ₂ O	249.65	2°28/15° {liq. °866/17° }	15HO2/240°5	dec. r. ht.	see p. 125.
Cyanogen, $C_2N_2 \cdot \cdot \cdot \cdot$ Erbium —	52.02	{ A. 1.806 }	- 35°	- 20'7°	4.5 V/20°
oxide, $Er_2O_3 \dots \dots$ sulphate, $Er_2(SO_4)_38H_2O$ Gadolinium—	382.8 767.14	8.6 3.18	infusible dec. 950°	T.T	insoluble 23/20°
sulphate, $Gd_2(SO_4)_3$ Gallium —	602.81	4.14/12°	1	I O I D O O	2.3/34°
chloride, tri-, GaCl ₃ Germanium—	176-28	A. 12.2/240°	75°.5	220	decomp.
chloride, tetra-, $GeCl_4$ oxide, di-, GeO_2 Glucinum . See Beryllium.	214'34 104'5	1.89/18° 4.70/18°	Ξ	86 —	decomp. •4/20°
Gold — chloride, AuCl ₃ Hydrazine, NH ₂ .NH ₂	303.5 32.05	1.01/12°	288° * 1'4	dec. 180° 113°	68 v. soluble
" hydroxide, N ₂ H ₄ . H ₂ O	50.07		< - 40	119	v. soluble
Hydrobromic acid, HBr	80.93	{ ^{1.78} A. 2.79}	- 86	- 68.7	(130/100°
Hydrochloric acid, HCl Hydrocyanic acid, HCN .	36·47 27·02	·929/0°† ·697/18°	- 112.5	- 83°·1/755 26·1	see p. 124. ∞

liq. = liquid; r. ht. = red heat; subl. = sublimes; v. = very; ∞ = soluble in all proportions.

I

	INORGANIC COMPOUNDS (contd.) For general heading, see p. 109.						
Substance and Formula.	Formula weight $(0 = 16)$.	Density, gms./c.c.	Melting Point, °C.	Boiling Point, °C.	Solubility in Water.		
		101	00000	No. of Concession, No. of Conces			
Hydrofluoric acid, HF	20'01	${{}^{\rm at./temp.}_{{\rm (988/15^{\circ})}}}{{\rm A. \cdot 691}}$	at./mms. - 92°•3	at./mms. 19 ⁰ •4	at./temp. 111/35°		
Hydriodic acid, HI	127.93	A. 4.38	-51.3	- 36°.7/752	{42,500 V/I0°		
Hydrogen-	1	stri sin		1. Carlon M	(1/10		
peroxide, H ₂ O ₂	34'02	1.428/0°	-2	80° 2/47	v. soluble		
selenide, H2Se	81.22	A. 2.805	-64	-42°	331V/13°		
sulphide, H ₂ S	34.08	{liq. '9	- 86	-61.6 {	305V/15°		
telluride, H. Te	129.52	\ A. 1·178∫ A. 4·39	- 48	0	see p.124. soluble		
Hydroxylamine, NH ₂ OH	33.03	1.439 1.227/14°	33°	70°/60	soluble		
trichloride, ICl ₃	233.3	3.11	101°/16atm.	dec. 25°	soluble		
Iodic acid, HIO ₃	175.93	4.63/0°	$\frac{1}{2}H_{2}O/170^{\circ}$		75/16° p.		
Iron—		\$1.494/0°J	n Oast	0.14			
carbonyl, $Fe(CO)_{\delta}$	195.85	A. 6.5	- 19.7	102°•7/764	T		
ferrous chloride, FeCl ₂	126.8	2.99/18°	- 0	volatilizes	50/19°		
" oxide, FeO	71.85		-	-	insoluble		
,, sulphate, FeSO ₄ .7H ₂ O	278.03	1.88	64	6H20/100°	20 [.] 8/10 ⁰		
" amm.sulphate, FeSO4.	2/005	100	04	01120/100	20 0/10		
	202115	1.81		-	(18/0°		
(NH ₄) ₂ SO ₄ 6H ₂ O	392.15		1 Contract	Part Source	1 78/75°		
oxide (magnetic), Fe_3O_4 .	231.22	5-5.4	12 - (PP		insoluble		
ferric chloride, FeCl ₃	162.23	$\left\{ \begin{array}{c} 2.8/11^{\circ} \\ A. 11.2/320^{\circ} \end{array} \right\}$	301	280°-285°	537/100°		
" nitrate, Fe(NO ₃) ₃ 9H ₂ O	404.02	1.683/20°	47.2	decomp.	v. soluble		
,, oxide, Fe ₂ O ₃	159'7	5.2-5.3	-		insoluble		
" sulphate,		1.00		in second	Central R.		
$Fe_2(SO_4)_3(and+9H_2O)$ Lead—	399.91	3.1/180		This	v.slgt.sol.		
acetate, $Pb(C_2H_3O_2)_2$. $3H_2O$	379'2	2.2	3H20/75°	280	46/15°		
carbonate, $PbCO_3$	267.1	6.4		HE LOW	decomp.		
chloride, PbCl ₂	277.8	5.8	447°	<i>c</i> . 900	·7/0°		
iodide, PbI2	460'94	6.13	373	861-954	.04/0°		
oxide, mon- (litharge), PbO.	223'I	c. 9.3	red heat dc.500°-530°		'002/20°		
,, red lead, Pb_3O_4 , ,, per- (brown), PbO_2 .	685'3 239'I	9.09/15° 8.91-9.5	decomp.	OEA.	insoluble insoluble		
sulphate, PbSO4	303.2	6.23	937°	D shid	·004/18°		
Lithium-		101 A. L.					
carbonate, Li ₂ CO ₃	73.88	2.11	618-710	dag on hi	see p.125.		
chloride, LiCI	42.40	2-2.07	491-600	dec. w. ht.	72/0°		
nitrate, $LiNO_3$	68.95 29.88	2°3-2°4 2°10/15°	c. 258	n and man	35/0° 5/0°		
phosphate, Li3PO4. H2O.	133.8	2.4/15	857		·04		
sulphate, Li ₂ SO ₄	110.0	2.21/15°	818-853	peot <u>es</u> ide,	26/0°		
Magnesium-	d.	19085	1	Ser South States	- Contraction		
carbonate, MgCO ₃	84.32	3.0 1.26/12°	dec. 350° 2H ₂ O/100°	decomp.	10'		
chloride, MgCl ₂ .6H ₂ O nitrate, Mg(NO ₃) ₂ 6H ₂ O	203.34 256.44	1.46	90°	143	54/20° 42/18° p.		
oxide, MgO	40'32	3'2-3'7	>2000	-	.001		
phosphate, Mg ₃ (PO ₄) ₂ .4H ₂ O	335.2	1.64/15°	-		' 02		
sulphate, $MgSO_4.7H_2O$.	246.5	1.678/16°	$5 H_2 O / 150^{\circ}$	-	27/0°		
atm. = atmospheres ; dc., dec.,		np. = decompose w. ht. = white		uid ; slgt. $=$ s	lightly;		

INORGANIC COMPOUNDS (contd.) For general heading, see p. 109.						
Substance and Formula.	Formula weight (0 = 16).	Density, gms./c.c.	Melting Point, ° C.	Boiling Point, °C.	Solubility in Water.	
Manganese-		at./temp.	at./mms.	at./mms.	at./temp.	
carbonate, MnCO3	114.93	3.1-3.2	decomp.		v. slgt. sol.	
chloride, MnCl ₂ . 4H ₂ O	197.9	1.82	87°.6		107/10°	
nitrate, $Mn(NO_3)_2 \cdot 6H_2O$. oxide, -ous, MnO	287°05 70°93	5.1	87.5 white heat	dec. 129°.4	54.5/11°p. insoluble	
, -ic, Mn_2O_3	157.86	4.3-4.8	white heat	- <u>D</u> , H,	insoluble	
,, tetr-, Mn ₃ O ₄	228.79	4'7-4'9			insoluble	
" di-, MnO ₂ "	86.93	4.7-5.0	dec. 390	_2 H	insoluble	
sulphate,* MnSO44H2O	223.06	2.1	18° and 30°		111/54°	
Mercury			No. 14		www.levelli	
mercurous chloride, HgCl .	235.46	${6.48 \text{ and } 7.2 \\ A. 8.21}$	400-500	sublimes	·0002/18°	
" nitrate, HgNO ₃ .2H ₂ O	298.04	4.78	decomp.		v. soluble	
culphoto Hg SO	496.07	7.56	melts, dec.	decomp.	'2 cold	
mercuric bromide, HgBr ₂ .	359.84	5.7	244	subl. c. 322°		
" chloride, HgCl ₂ .	270.92	{5.3-5.5 A. 9.8}	287	303-307	(5.4/20°(p) (see p.125.	
,, iodide, red, HgI_2 .	453.84	{ ^{6·2-6·3} A. 15·6}	241-257	349	.003/17°	
" " yellow, HgI ₂	453.84	{5'9-6'1 A. 15'6}	241	349	insoluble	
., oxide, HgO	216.0	11.14	dec. r. ht.	R.(1993)	.005/25°	
", sulphate, HgSO4 .	296.07	6.47	dec. r. ht.	Agost Fe	decomp.	
Molybdenum-		A		- (00	desame	
chloride, MoCl ₅	273.3	A. 9.5/350° 6.4/10°	194°	268°	decomp. insoluble	
oxide, di-, MoO_2 , , tri-, MoO_3	128°0 144°0	4.4/21°	759	sublimes	'2 cold	
Nickel—	1440	44/~1	139	Submites	2 0010	
carbonyl, Ni(CO) ₄	170'7	1'318/17°	-25	43°	insoluble	
chloride, NiCl	129.6	2.26	sublimes	-	35/0°(p)	
nitrate, Ni(NO ₃) ₂ .6H ₂ O.	290.8	2.06/14°	56°.7	136.7	48.5/18° p.	
sulphate, NiSO ₄ .7H ₂ O Niobium —	280.86	1.98	98-100	e Po c o,	31.5/9	
chloride, penta-, NbCl ₅	270.8	{4 [.] 4-4 [.] 5 A. 9 [.] 6/360°}	194	240.2	decomp.	
Nitrogen — nitric acid, HNO ₃	63.02	1.23/12°	-41.3	dec. 86	00	
nitrous oxide, $\rm N_2O$	44.02	${1.226/-89^{\circ}4}$ A. 1.614	- 102	- 89°•4/741	{74V/15° (see p.124.	
nitric "NO	30.01	{ :0013 }	- 167	- 153	5.1V/15°	
nitrogen trioxide, N2O3		(A. 1.039)	1		(seep.124. soluble	
", peroxide, NO ₂ or	76.02	1.442/-2°	- 111	decomp.	Solutie	
" peroniuc, 1102 01 N ₂ O ₄	46.01	1.40/0° §	- 10,1	26°	soluble	
" pentoxide, N ₂ O ₅ .	108.02	1.64/18°	30	dec. 45-50	soluble	
" oxychloride, NOCI.	65.47	1.416/-12°	- 60	- 5° 6/751	decomp.	
Osmium — oxide, tetr-, OsO_4	254.9	A. 8.89	20	100	soluble	
Ozone, O_3	48.00	(00214)	dec. 270°	-119	v. slgt. sol.	
	4000	(A. 1.659)		119	0	
Palladium — chloride, $PdCl_2 \cdot 2H_2O$	213.65	10-17	dec. r. ht.	19	soluble	
* The ordinary salt ; also six o	ther hydr	ates.		ween temps. g		
[‡] Also anhy. and 6H ₂ O.	§ Densi	ty, p. 26.		omp. = decom		
r. ht. = red heat ; slgt. = slightly	; subl. =	sublimes ; v. =	very; $\infty = sc$	nuble in all pi	oportions.	

INORGANIC COMPOUNDS (contd.) For general heading, see p. 109.							
Substance and Formula.	Formula weight (0 = 16).	Density, gms./c.c.	Melting Point, °C.	Boiling Point, °C.	Solubility in Water.		
Perchloric acid, HClO ₄ Phosphorus —	100.47	at./temp. 1'76/22 ⁰	at./mms. - 35	at./mms. 19 [°] /11	at./temp. soluble		
bromide, tri-, PBr ₃	270.8	$ \begin{cases} 2.92/0^{\circ} \\ A. 9.706 \end{cases} $	-41°.5	175	decomp.		
chloride, tri-, PCl3	137.3	$ \begin{cases} 1.612/0^{\circ} \\ A. 4.875 \end{cases} $	-112	. 76	53		
" penta, PCl ₅	208.3	A. 3.6/296°	148	162	"		
fluoride, tri-, PF_3 oxide, tri-, P_4O_6	88°04 220°2	A. 3.02 1.94/25°	- 160 22.5	-95	soluble		
, tetr-, P_2O_4	126.1	2.54/23°	>100	173 c. 180			
, pent-, P_2O_5	142'1	2.39	subl. r. ht.		v. soluble		
Phosphine, PH3	34.06	A. 1.185	-133°	- 85	slgtly sol.		
" liquid, P2H4	66.11	1.002-1.010	<-10°	57/735	insoluble		
Phosphonium chloride, PH4Cl	70.53		26°	sublimes	decomp.		
Platinum-			1	C. Na, OO	AROCALS-		
chloride, tetra-, PtCl ₄	337'0	-	decomp.	The second	v. soluble		
Potassium-		0006/000					
bromide, KBr	119'02	2.76/20°	750°	subl. w. ht.	see p. 125.		
carbonate, $K_2CO_3 \cdot \cdot \cdot \cdot$ chlorate, $KCIO_3 \cdot \cdot \cdot \cdot \cdot$	138.2	2°29 2°34/17°	c. 880	dec. 810°	89/0° 3/0°		
chloride, KCl.	122.56	1.99/15°	370 c. 770	dec. 400° subl. w. ht.	see p. 125.		
chromate, bi-, K ₂ Cr ₂ O ₇	74.56 294.2	2.69/4	400	decomp.	5/0°		
cyanide, KCN	65.11	1.52/16°	red heat	red heat	122/103°		
ferricyanide, K3Fe(CN)6	329.21	1.82/17°	decomp.	-	33/4°		
ferrocyanide,	innel		2H 0/62 82		20/120		
K4Fe(CN)6.3H2O	422.36	1.85/17°	3H ₂ O/60-80 red heat		28/12°		
hydroxide, KOH	56.11	2°04 3°97/18°	560	subl. w. ht.	8/20°		
	214.02	∫ 3°04/24° \		/oral sta	(127/0°		
iodide, KI	100.1	{A. 5'5/1320°}	614-723	0.2.++	see p.125		
nitrate, KNO ₃	101.11	2°1/4°	c. 345	decomp.	ee p 125.		
permanganate, KMnO4	158.03	2'70/10°	dec. 240°		6.4/15		
sulphate, K ₂ SO ₄	174.27	2.66/20°	1070	sublimes	9'2/10°		
" acid, KHSO ₄	136.18	2.24 * ; 2.61 †	200	decomp	36/0°		
sulphocyanate, KCNS	97.18	1.01	161	-	217/20°		
Radium — bromide, $RaBr_2 \cdot \cdot \cdot \cdot$	386.24	191-1-	728	- 0	soluble		
Rubidium-			0				
carbonate, Rb ₂ CO ₃	230.9		837	dec. 740°	v. soluble		
chloride, RbCl	120'9	2'2	710	-	84/10°		
sulphate, Rb ₂ SO ₄	266.97	3.61	0 1	×	43/10°		
Selenium-	220122	2:01/120		dag a tir	decomp		
chloride, $Se_2Cl_2 \cdot \cdot$	229'32 111'2	2.91/17° 3.95/15°	sub. c. 260	dec. c. 145	decomp. v. soluble		
Selenious acid, H ₂ SeO ₃	129 22	3.01/150.7	decomp.	steed lighteou	PERMISSION I		
Selenic acid, H ₂ SeO ₄	145'22	2.95/15°	58	260	"		
Silicon-	15	-)) -)			"		
chloride, tetra-, SiCl,	170.14	{1.520 }	- 89	57.5	decomp.		
fluoride, SiF4	104.3	A. 5.94 A. 3.57	- 102	- 107			
	1043	1. 5 5/	100	107	,,		
* Monoclinic. amorph. = amorphous; cryst. = crystalline; dec. or decomp. = decomposes; r. ht. = red heat; sub. or subl. = sublimes; v. = very; w. ht. = white heat.							

INORGANIC COMPOUNDS (contd.) For general heading, see p. 109.						
Substance and Formula.	Formula weight (0 = 16).	Density,	Melting Point, °C.	Boiling Point, ° C.	Solubility in Water.	
Silicon (contd.)— oxide (silica), amorph, SiO ₂ .	60°3 60°3	at./temp. 2*2/16° 2*66	at./mms. indefinite 1500-1600°	at./mms.	at./temp. c. '001 insoluble	
., ,, cryst., SiO ₂ . Silico chloroform, SiHCl ₃ .	135.69	{ ^{1.65} A. 4.6}	-1'3	34°	decomp.	
Silver-	. 0 0	-0 A 6 87		dec Too ⁰	10 8/200	
bromide, AgBr	187.8 143.34	6.47/25°	427 460	dec. 700°	[•] 0 ₅ 8/20° [•] 0 ₃ 15/20°	
iodide, AgI	234.8	A. 5'7/1735°) 5'67/25°	c. 540	partes PO	'063/21°	
nitrate, $AgNO_3$	169.89 311.83	4 35/19° 5 4	218 654-676	dec. r. ht. decomp.	see p. 125. .77/17°	
borate (borax), Na ₂ B ₄ O ₇ . 10H ₂ O	382.16	169/17°	red heat		soluble	
bromide, NaBr	102.92	3.1	733-765		77/0°	
carbonate, Na ₂ CO ₃ ,, bi-, NaHCO ₃	106'0 84'01	2·4-2·5 2·2	849 CO ₂ /270°	decomp.	see p. 125. 8/10°	
chloride, NaCl	58.46 40.01	2°17/20° 2°13	801*	w. heat w. heat	see p. 125. 63.5/15°	
iodide, NaI	149.92	3.65/18°	603-695		178/20°	
nitrate, $NaNO_3$ peroxide, Na_2O_2	85°01 78°00	2°27/20° 2°8	<i>c</i> . 313 decomp.		73/0° sol.; dec.	
phosphate, di-, Na ₂ HPO ₄ .12H ₂ O	358.2	1.22/16°	38	3H2O/c.160°	3.9/10°	
sulphate, anhy., Na ₂ SO ₄ ,, hydr.,	142.07	2.67/20°	884	ide, Willer	see p. 125.	
$\mathrm{Na_2SO_4.10H_2O}$	322.23	1.492/20°	${880^{\circ} \\ T.32^{\circ}383}$	7H2O/150°{	5/0° 50.6/32.7°	
sulphite, Na ₂ SO ₃ .7H ₂ O thiosulphate (hypo'),	252.18	1.26	7H2O/150°	decomp.	25/15°	
$Na_2S_2O_3.5H_2O$ Strontium-	248.22	1.23/12°	32-48	dec. 220°	60/10°	
bromide, $SrBr_2 \cdot \cdot \cdot \cdot \cdot \cdot \cdot carbonate$, $SrCO_3 \cdot \cdot$	247 ^{.5} 147 ^{.6}	4 ^{.2/24°} 3 ^{.6}	498-630 dec. 1160°	dec. r. ht.	93/10° '001/24°	
chloride, $SrCl_2(and + 6H_2O)$	158.5	3.05	796-854	{4H ₂ O/60° (6H ₂ O/100°)	{ 48/10° see p.125	
nitrate, $Sr(NO_3)_2$	211.6	3/17° 3.6	dec. 645 3000	-	55/10° 35/0°	
,, per-, SrO_2 sulphate, $SrSO_4$	119 ^{.6} 183 ^{.7}	·546 3·7-4	decomp. dec. w. ht.	0.7.9	decomp. '011/18°	
Sulphur— dioxide, $SO_2 \cdot \cdot \cdot \cdot \cdot \cdot$	64.07	{ ^{1.434/0°} A. 2.23	-76°	- 10°.1	{4730 V./ 15°; p.	
trioxide, SO $_3$	80.07	{1.97/20° A. 2.77	14.8	46	decomp.	
Sulphuretted hydrogen. See Sulphuric acid, H ₂ SO ₄ Tellurium —	Hydroge 98.09	n sulphide. 1.834/18°	10.2	dec. 40°	00	
chloride, TeCl ₂	198.42	T. T	175	327	decomp.	
oxide, di-, TeO_2 ,, tri-, TeO_3	159°5 175°5	5'9/0° 5'07/15°	dull r. ht. decomp.	< 700	insoluble	
* Practically same	for and			(T. 1.)		

Practically same for ordinary table salt as for pure salt (Harker).
 anhy. = anhydrous; dec. or decomp. = decomposes; hydr. = hydrated; r. ht. = red heat;
 w. ht. = white heat; ∞ = soluble in all proportions.

INORGANIC COMPOUNDS (contd.) For general heading, see p. 109.							
Substance and Formula.	Formula weight $(0 = 16)$.	gms /c. c	Melting Point, °C.	Boiling Point, °C.	Solubility in Water.		
Thalliumcarbonate, $Tl_2CO_3 \dots \dots$ chloride, tri-, $TlCl_3 \dots \dots$ oxide (thallous), $Tl_2O \dots \dots$ sulphate, $Tl_2SO_4 \dots \dots$ Thorium	468°0 310°38 424°0 504°07	at./temp. 7*1 6*77	at./mms. 272° 25 300 632	at./mms. decomp. decomp.	at./temp. 4/15° v. soluble v. soluble 4'7/15°		
nitrate, $Th(NO_3)_4 \cdot 12H_2O$. oxide, $ThO_2 \cdot \cdot \cdot \cdot \cdot$.	696 · 2 264·0	9 ^{.87/15°}	infusible	E	v. soluble insoluble		
chloride (stannous), SnCl ₂ . ,, (stannic), SnCl ₄ .	189 [.] 92 260 [.] 84	${2^{2}27/20^{\circ} \\ A. 9^{2}}$	249° - 33	620° 114'1	270/15° soluble		
oxide (stannous), SnO ,, (stannic), SnO ₂ Titanium —	135°0 151°0	6·3 6·6-6·9	dec. r. ht. 1130		insoluble "		
chloride, tetra-, TiCl ₄	189.94	$ \begin{cases} {}^{1.76/0^{\circ}}_{\text{A. 6.836}} \end{cases} $	- 25	136	decomp		
oxide, di-, $TiO_2 \cdot \cdot \cdot \cdot \cdot$ Tungsten —	80.1	3.7-4.2	c. 1500	(Arren) .	insoluble		
chloride, hexa-, $WCl_6 \dots$ oxide, tri-, $WO_3 \dots \dots$ Uranium	396.76 232.0	A. 13'3/350° 7'2	275 red heat	347	" "		
oxide, di-, UO ₂	270°5 843°5 286°5	10'9 7'3 5'1	oxidises decomp. decomp.				
, (black), U_2O_5 Uranyl chloride, UO_2Cl_2	557 ^{.0} 341 [.] 42	8·4-9·2	fusible	decomp.	320/18°		
, $UO_2(NO_3)_2 \cdot 6H_2O$ Vanadium —	502.62	2.81	59°*5	1180	200		
chloride, tetra-, VCl ₄	192.9	{1.86 \ \ 6.60}	- 18	154	soluble		
oxide, pent-, V_2O_5 Zinc —	182.1	\ A. 6.69∫ 3.5/20°	658	hid - hard	0.8/20°		
carbonate, ZnCO3	125·37 136·29	4.4 2.91/25°	dec. 300° 262°?	730	0'001/15° 330/10°		
sulphate, $ZnSO_4 \cdot 7H_2O$	287.55	{ ^{1.96} 3.4 anhy.}		${7 H_2 O at }{red heat.}$			
sulphide, $ZnS.$	97'44 122'6	4°0 5°1–5'7	1050° infusible		insoluble "		

anhy. = anhydrous; dec. or decomp. = decomposes; r. ht. = red heat; v. = very.

FREEZING MIXTURES

Parts by weight.	Temp.	Parts by weight.	Temp.
1 of NH_4NO_3 , 1 of water	- 15° C.	2 of snow or crushed ice, 1 of	- 18°
8 of Na_2SO_4 , 5 of water	- 17	NaCl	- 48

PHYSICAL CONSTANTS

.

ORGANIC COMPOUNDS Formula (Molecular) Weight, Density, Melting and Boiling Points. For general heading, see p. 109.											
Substance and Formula.	Formula weight $(0 = 16)$.	Density, gms./c.c.	Melting Point, °C.	Boiling Point, °C.							
Acetaldehyde, CH ₃ . CHO	44.03	at./temp. '788/16° C.	at./mms. - 120°	at./mms. 20 ⁰ ·8							
Acetic acid, CH ₃ . COOH Aceto-acetic ether, CH ₃ CO . CH ₂ CO ₂	60.03	1.02/20°	16.7	118.5, Y							
C_2H_5	130°1 58°05	1.028/20° .797/15°	<-80 -95	181 56.5							
Acetylene, C_2H_2	26.02	${46/-7^{\circ} \\ A. \cdot 91}$	- 81.5/895*	- 85							
Acrylic acid, $CH_2 : CHCO_2H $ Alizarine, $C_6H_4(CO)_2C_6H_2(OH)_2$	72'03 240'1	1.062/16°	10 290	140 430							
Allyl alcohol, CH ₂ : CH . CH ₂ OH .	58.05	·858/15°	liquid	96.7							
", chloride, CH ₂ : CHCH ₂ Cl ", thiocyanate, CH ₂ : CHCH ₂ CNS	76 · 46 99 · 08	.937/19° 1.017/10°	liquid liquid	46							
Amyl acetate, $C_5H_{11} \cdot CH_3CO_2 \cdot \cdot \cdot$,, alcohol (n.), $CH_3(CH_2)_3CH_2OH$	130'I 88'IO	·879/20° ·812/20°	liquid liquid	148 137							
$,, ,, (act.), CH_3C_2H_5CHCH_2-OH$	88.10	·825/0°	liquid	129							
", , (sec.),C ₃ H ₇ CH(OH)CH ₃ ", , (tert.), (CH ₃) ₂ C(OH)-		·825/0°	liquid	118.5/753							
$\begin{array}{c} C_2H_5 \cdot \cdot \cdot \cdot \cdot \cdot \cdot \\ \text{Aniline, } C_6H_5 \cdot NH_2 \cdot \cdot \cdot \cdot \cdot \cdot \cdot \end{array}$	88·10 93·07	*814/15° 1°023/15°	-12° -8	102°5 183°9							
Anisol, $C_6H_5OCH_3$ Anthracene, C_6H_4 : $C_2H_2C_6H_4$	108.1	·99/25°	- 37.8 216	155							
Antimony trimethyl, Sb(CH ₃) ₃	165'3	1.12 1.22/12°	liquid	351 86							
Asparagine(l_{2})C ₂ H ₃ NH ₂ CO ₂ H.CONH ₂ B enzaldehyde, C ₆ H ₅ CHO	100.1	1°55/4° 1°05/15°	decomp. $-13^{\circ}.5$	decomp. 179'5							
Benzene, C_6H_6 Benzoic acid, C_6H_5 . COOH	78.05 122.0	·879/20° 1·20/21°	5'4 121'4	80°2 Y. 249°2							
Benzophenone, $(C_6H_4)_2CO$ Benzoyl chloride, C_6H_5COCl	182.1 140.5	1.098/20° 1.212/20°	48 - I	306 198/749							
Benzyl alcohol, $C_8H_5CH_2OH$ Beryllium ethyl, $Be(C_2H_5)_2$	108°1 67°18	1.043/20°	liquid	206·5 187							
Bismuth triethyl, $Bi(C_2H_5)_3$	295'1	2.3/18°	210	107 sublimes							
Borneol (i.), $C_{10}H_{17}OH$ Bromo benzene, C_6H_5Br	154.1	1'01 1'49/20°	-31.1	156, Y.							
Butyl alcohol (n.), CH ₃ (CH ₂) ₂ CH ₂ . OH "," (sec.), CH ₃ CHOH. C ₂ H ₅	74.08	·81/20° ·819/22°	liquid —	117 ^{.5} 99 ^{.8}							
" carbinol(tert.), (CH ₃) ₃ C. CH ₂ OH " chloride, CH ₃ (CH ₂) ₃ Cl	88·10 92·53	·812/20° ·887/20°	52 liquid	113 78							
,, ether, $(C_4H_9)_2O$ Butyric acid (n.), $CH_3(CH_2)_2COOH$.	130'I 88'06	•77/20° •96/19°	-8	141 162'3							
"" (iso), (CH ₃) ₂ CHCOOH. Cacodylic acid, (CH ₃) ₂ AsO.OH.	88.06 138.0	·950/20°	-79 200	155							
Caffeine, $C_8H_{10}N_4O_2$. H_2O	212'3	1.23/19° .992/10°	234 176·4	sublimes 205'3							
Camphoric acid (d.), C ₈ H ₁₄ (COOH) ₂ .	200'I	1.10	178	decomp.							
Caproic acid, CH ₃ (CH ₂) ₄ COOH Carbolic acid. See Phenol.	110.1	*929/20°	8	205							
Carbon bisulphide, CS_2	76.14 60.07	1.292/0° 2.104	-110	46.2 gas							
,, tetrachloride, CCl_4	153.8	1.282/21°	-30	76.7, Y.							

ORGANIC COMPOUNDS (contd.) For general heading, see p. 109.										
Substance and Formula.	Formula weight (0 = 16).	Density, gms./c.c.	Melting Point, ° C.	Boiling Point, °C.						
		at./temp.	at./mms.	at./mms.						
Cellulose, $(C_6H_{10}O_5)_x$	162.1	1.225	H Thene	Anna Trillia						
Chlor acetic acid, CClH2. COOH	94.48	1.39/75°	63°	186°						
,, benzene, C ₆ H ₆ Cl	112'5	1.118/100	-40	132, Y.						
Chloral hydrate, $CCl_3 \cdot CH(OH)_2 \cdot \cdot$ Chloroform, $CHCl_3 \cdot \cdot \cdot \cdot \cdot \cdot$	165.4 119.4	1.9 1.526/0°	- 57 - 70	97°5 61°2						
Chrysene, $C_{18}H_{12}$	228.1	-	250	sublimes						
Cineol, $C_{10}H_{18}O$	154'2	'92	-1	176						
Cinnamic acid, C ₆ H ₅ CH : CHCOOH	148.1	1'247	133	300 .						
" aldehyde, C ₆ H ₅ CH : CH- CHO	132.1	1.05/24°	-7.5	a article						
Citric acid, $(CO_2HCH_2)_2C(OH)CO_2H$ + H_2O	192'1	1 54	153	decomp.						
Collidine, a CH ₃ . C ₅ H ₃ N. C ₂ H ₅ .	1921	'953/22°	-55	180						
Coniine (d.), $1:2, C_5H_{10}N \cdot C_3H_7$.	127'2	·849/25°	- 2.2	170						
Cresol (o.), $CH_3C_6H_4OH$	108.1	1'005	30	191						
Cyanic acid, HCNO	43.02	1.14/0°	liquid	dec. o						
Cyanogen, C_2N_2	52.02	${liq. \cdot 866/17^{\circ} \\ A. 1 \cdot 806}$	- 35	-20'7						
Cymene (p.), $CH_3 \cdot C_6H_4 \cdot C_3H_7 \cdot \cdot$	134'12	·852/25°	liquid	175						
D extrin, $C_{12}H_{20}O_{10}$	324'2	1.04	R(0,000) ,615	Family						
Diacetyl, CH ₃ CO. COCH ₃	86.05	·973	100 - 0.11	87.7						
Dichlor acetic acid, $CHCl_2 \cdot COOH \cdot$ Diethyl amine, $(C_2H_5)_2NH \cdot \cdot \cdot$	128.9	1'522/15° '706/20°	-4 -40	190						
, aniline, $(C_2H_5)NC_6H_5$.	73'13 149'2	·94/18°	liquid	55°5 213°5						
, ketone, $C_2H_5COC_2H_5$	86.08	·83/0°		103						
Dimethyl amine, (CH ₃) ₂ HN	45.07	·686/-6°	liquid	8 to 9						
" tartrate, (CH ₃) ₂ C ₄ H ₄ O ₆ .	178.1	1.341/15°	48	280						
Dinitrobenzene (m.), $C_6 H_4 (N O_2)_2$.	168.1	1.37	91	297						
Diphenyl, C_6H_5 . C_6H_5 Diphenylamine, $(C_6H_5)_2HN$	154'I 169'I	1.10	70'5	255						
E pichlorhydrine, C_3H_5ClO	92.49	1.1203/0°	54	310 116						
Erythrite, (CH2OH . CHOH ')	122'1	1.42/17°	112	330						
Ethane, CH_3 , CH_3 ,	30'05	${ {liq. '446/0° } \\ {A. 1'036 } }$	- 171.4	-85.4/749						
Ether, $C_2H_5OC_2H_5$	74.08	·718/17°	-117	34.6, Y.						
Ethyl acetate, CH ₃ CO ₂ . C ₂ H ₅ ,, aceto-acetate, CH ₃ COCH ₂ CO ₂ .	88.06	·903/18°·5	- 83.8	77.1						
$. C_2 H_5$	130.1	1.028/20°	<-80	181						
" alcohol, C_2H_5OH	46.05	'7937/15°	-112.3	78·3, Y.						
" amine, $C_2H_5H_2N$	45.07	•699/8°	-85	18.7						
,, benzoate, $C_6H_5CO_2$. C_2H_5 ,, bromide, C_2H_5 . Br	150'1 108'96	1.05/16° 1.45/15°	- 116	211'2 38'4						
, butyrate, C_3H_7 . COOC ₂ H ₅ .	116.1	·898/18°	-	30 4 120						
,, chloride, C_2H_5Cl	64.50	{'921/0° A. 2'219}	liquid	12.2						
" cyanide, C2H5. CN	55.05	.794/7°	-103	97						
" formate, HCOOC ₂ H ₅	74.05	.938/0°		54°3, Y.						
,, iodide, C_2H_5I	156.0	1'944/14°	liquid	72'3						
" isobutyrate(CH ₃) ₂ CHCOOC ₂ H ₅ " mercaptan, C ₂ H ₅ SH	116'I 62'HI	*890/0° *839/20°	- 22	36.2						
, nitrate, $C_2H_5NO_3$	91.08	1°116/15°	- 112	87						
dec. or decomp. = decomposes.	Y., Yo	ung, Journ. de Ph	hys., Jan., 190	9.						

	ORGANIC COMPOUNDS (contd.) For general heading, see p. 109.											
Substance and Formula.	Formula weight $(0 = 16)$.	Density, gms./c.c.	Melting Point, °C.	Boiling Point, °C.								
Ethyl propionate, $C_2H_5CO_2C_2H_5$. , salicylate, $C_6H_4(HO)CO_2C_2H_5$, sulphide, $(C_2H_5)_2S$. , tartrate (d.), $C_4H_4O_6(C_2H_5)_2$. , valeriate, $C_4H_9CO_2C_2H_5$. Ethylene, $CH_2: CH_2$. , bromide, di-, CH_2Br . CH_2Br .	102'1 166'1 90'15 206'1 130'1 28'03 187'9 98'93 44'03 98'93 154'1 164'1 96'04 46'02 30'02	at./temp. *896/16° 1'184/20° *837/20° 1'206/20° *876/20° {liq. '61 A. '9784} 2'19/11° 1'28/0° *897/0° 1'186/12° '927/20° 1'0779/0° 1'024/20° 1'22/20° ('815/-20°)	at./mms. liquid 	at /mms. 99° ·0 231 · 5 92 · 6 280 144 · 5 - 102 7 131 · 6 83 · 7 13 · 5/746 59 · 9 176 247 · 5 85 · 2, Y. 100 · 8 - 21								
Fructose (d.), $CH_2OH[CHOH]_3CO-CH_2OH$ CH_2OH Fumaric acid, $(COOH \cdot CH :)_2$ Furfural, $C_4H_3O \cdot COH$ Galactose (d.), $CHO[CHOH]_4CH_2OH$ Glucose (d.), $CHO(HCOH)_4CH_2OH$ Glutaric acid, $COOH(CH_2)_3COOH$ Glycerine, $OHCH_2$. $CHOH \cdot CH_2OH$ Glycocoll, $CH_2OH \cdot CH_2OH$ Glycol, $CH_2OH \cdot CH_2OH$ Glycolic acid, $CH_2OH \cdot COOH$ Glycolic acid, $CH_2OH \cdot COOH$ Glyoxal, $CHO \cdot CHO$ Glyoxalic acid, $CHO \cdot COOH + H_2O$ Grape sugar. See Glucose. Heptane (n.), $CH_3(CH_2)_5CH_3$, di-isopropyl, $[(CH_3)_2CH]_2$	180°1 116°0 96°03 180°1 198°1 132°1 92°06 75°03 62°05 76°03 58°02 92°03 100°1 86°12 86°12	A. r6 f r55/0° r625 r159/20° r54-r57 r26/20° r161 r125/25° syrup °688/15° °658/21° °668/17°	95 286 liquid 163 146 91 17 c. 234 -17'4 78 17'4 78 liquid liquid									
Hydrocyanic acid, HČN Indigo, $C_6H_4 <_{NH}^{CO} > C:C <_{NH}^{CO} > C_6^{-1}$	27'05	·697/18°	- 14	26.1								

,, di-isopropyl, $[(CH_3)_2CH]_2$.	80.15	'008/17°	liquid	58.1, Y.
Hydrocyanic acid, HCN	27'05	·697/18°	-14	26.1
$\mathbf{I}ndigo, C_6H_4 <^{CO}_{NH} > C:C <^{CO}_{NH} > C_{6}$	0.00	i dossioni		TRACK ACCOUNT
H4	262 2	1'35	- 11-	subl. 156°
Indol, C ₆ H ₄ NHCH : CH	117.1		52	245
lodoform, CHI ₃	393.8	2.22/22°	119	subl. & dec.
Isatine, $C_6H_4 < \frac{CO}{N} > COH$	147.1	-	201	sublimes
Isoamyl acetate, CH3. COOC5H11 .	130.1	·876/15°	- H_Decastat	140
" alcohol,(CH ₃) ₂ CH(CH ₂) ₂ OH	88.10	·81/20°	- 134	1297
Isobutane, (CH ₃) ₂ CHCH ₃	58.08	1	_	116.3
Isobutyl alcohol, (CH3)2CH . CH2OH	74'08	·800/18°	liquid	108.4
,, amine, (CH ₃) ₂ CHCH ₂ NH ₂ .	73'13	'736/15°	610 <u>11</u> 300	68
Isobutyric acid, (CH _s) ₂ CH.COOH.	88.06	·949/20°	-79	155'5
Isopentane, (CH ₃) ₂ CHCH ₂ CH ₃	72'10	'628/14°	11.2 - 0100	27.9
Isopropyl acetate, CH ₃ COOCH(CH ₃) ₂	102°1	'917	H_ And	90-93
,, alcohol, $(CH_3)_2HC(OH)$.	60.00	·789/20°	liquid	82.8
			2000	

d., dextro-rotatory (see p. 78); dec. or decomp = decomposes; subl. = sublimes; Y., Young, Journ. de Phys., Jan., 1909.

ORGANIC COMPOUNDS (contd.) For general heading, see p. 109.										
Substance and Formula.	Formula weight (0=16).	Density, gms./c.c.	Melting Point, °C.	Boiling Point, ° C.						
Substance and Formula. Isopropyl amine, $(CH_3)_2CHNH_2$, cyanide, $(CH_3)_2CHCN$ Isoquinoline, $C_6H_4C_3H_8N$ Isovaleric acid, $(CH_3)_2CHCH_2COOH$ Lactic acid (i.), CH_3CHOH .COOH Lactose. See Milk sugar. Maleic acid, $(COOH$.CH:) ₂ Malic acid, $(COOH$.CH:) ₂ Malic acid, $(COOH$.CH:) ₂ Malonic acid, $COOH$.CH ₂ .COOH. Maltose, $C_{12}H_{22}O_{11} + H_2O$ Mercury methyl, $(CH_3)_2Hg$ Mercury methyl, $(CH_3)_2Hg$ Methane, CH_4 methyl alcohol, CH_3OH methyl ether, CH_3OOO methyl ether, $CH_3OOOOCH_3$ methyl ether, $CH_3OOOOCH_3$ methyl ether, $CH_3OOOOCH_3$ methyl ether, $CH_3OOOOCH_3$ methyl ether, $CH_3OOOOCH_3$ methylene bromide, $CH_3OOOOCH_3$ methylene bromide, $CH_3DOOOOCH_3$ methylene bromide, $CH_3DOOOOCH_3$ methylene bromide, $CH_3DOOOOCH_3$ methylene bromide, $CH_3DOOOOCH_3$ methylene bromide, $CH_3DOOOOOOOCH_3$ methylene bromide, $CH_3OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO$	weight (0 = 16). 59'11 69'07 129'1 102'1 90'05 116'0 134'0 104'0 360'2 230'0 120'1 16'03 32'03 74'05 31'08 104'1 50'48 46'05 60'06 60'03 142'0 102'1 48'09 77'03 61'03 48'04 88'06 152'1 62'12 173'9 360'2 303'2 128'1 144'1									
Nicotine (l.), $C_{10}H_{14}N_2$ Nitro benzene, $C_6H_5NO_2$	282.3 256.3 132.1	1.01/20° 1.187/14° 1.056 1.144/15° .719/0° .891/12° .846/7.6° .994/20°	dec. 250° 3'6 194-196 liquid liquid 14 62'6 10'5	246.7/745 209.4/745 114.4 101.7 125.8, Y. 286/100 278/100 124 50.6						
Penta methylene, $(CH_2)_5$ "diamine (cadaverine $NH_2(CH_2)_5NH_2$, 70 [.] 08	·751/20° ·917/0°	-	178						
dec. or decomp. = decomposes; 1., læv	Jan., 190		Young, Jour	n. de Phys.,						

.

ORGANIC COMPOUNDS (contd.) For general heading, see p. 109.											
Substance and Formula.	Formula weight $(0 = 16)$.	Density, gms./c.c.	Melting Point, °C.	Boiling Point, ° C.							
Pentane (n.), $CH_3(CH_2)_3CH_3$ Phenetol, $C_6H_5OC_2H_5$ Phenol, C_6H_5OH Phenyl acetic acid, $C_6H_5CH_2COOH$. " cyanide, C_8H_5CN ", hydrazine, $C_6H_5(N)$.NH2 Phloroglucin, 1:3:5, $C_6H_3(OH)_32H_2O$ Phthalic acid, $O. C_6H_4(COOH)_2$ ", anhydride, $C_6H_4(COOH)_2$ ", anhydride, $C_6H_4(COOH)_2$ ", anhydride, $C_6H_4(COOH)_2$ ", anhydride, $C_6H_4(COOH)_2$ Propionic acid, $CH_3.C_3H_4N$ Picric acid, 1:2:4:6, $C_4H_2OH(NO_2)_3$. Propane, $CH_3.CH_2.CH_3$ Propyl acetate (n.), $CH_3CH_2CH_2.OH$ ", choride (n.), $CH_3CH_2CH_2.OH$ ", choride (n.), $CH_3CH_2CH_2.OH$ ", choride (n.), $CH_3CH_2CH_2.OH$ ", choride (n.), $CH_3CH_2CH_2.OH$ ", iodide, $CH_3.CH_2.CH_2I$ Propylene, $CH_3.CH:CH_2$ Propylene, $CH_3.CH:CH_2$ Propylene, $CH_3.CH:CH_2$ Pyrogallol (-ic acid, or "pyro"), 1:2:3, $C_6H_3(OH)_3$ Pyrrol, $(CH)_4 > NH$ Quinoline, $C_9H_{24}N_2O_2$ " sulphate, $(C_{20}H_{24}N_2O_2)_2$ H_2SO_4 + 7H_2O Racemic acid, $(COOH.CH(OH))_2$ + H_2O Raccharin, $C_6H_4 < CNSO_2 > NH$. Salicylic acid, $OH.C_6H_4$.COOH Sodium ethyl, NaC ₂ H_5 Stearic acid, $COOH(CH_2)_2COOH$ Succinic acid, $COOH(CH_2)_2COOH$ Sulphanilic acid (P.), $NH_2.C_6H_4.SO_3H$.2H2O " (L), $COOH(CHOH)_2$ " (CHOH]_2COOH.H_2O " (COOH " " (CHOH)_2COOH.H_2O " " (COOH.CHOH)_2COH " " (L), $COOH(CHOH)_2$ " " (L), $COOH(CHOH)_2$		gms./c.c. at./temp. ·634/15° ·963/25° I'06/33° I'23 I'008/17° I'1/23° - I'59 I'53/4° ·933/22° I'813 ·535 ·995/20° ·891/18° ·804/20° ·891/18° ·804/20° ·891/18° ·909/17° I'745/20° A. I'498 ·879/20° ·985/15° I'46/40° ·967/21° I'094/20° - I'69/7° - I'69/7° - I'48/4° ·843/80° ·924/65° I'55 I'588/20° - I'67 I'76/7° P. I'76	Point, ° C. at./mms. liquid - 34 42°7 76°5 - 17 23 218 anhy. 180-200 128 liquid 122°5 - 195 - 22 liquid 122°5 - 195 - 22 liquid 133 liquid 19°5 174 9 205, dry 205 - 220 dec. 158 - 69°3 185 - chars 125 142 anhy. 170 170 170 170	Point, ° C. at./mms. 36°·2, Y. 171 181°5 265 190 233 sublimes 							
Terpenol, $C_{10}H_{18}O$	154'I ory (see p.		70 dec. = decon	1.112							

L)

ORGANIC COMPOUNDS (contd.)

For general heading, see p. 109.

Substance and Formula.	Formula weight $(0 = 16)$.	Density, gms./c.c.	Melting Point, ° C.	Boiling Point, ° C.
Terpineol, $C_{10}H_{11}$; HO	154'1 343'8 180'2 59'09 76'12 150'1 179'1 92'06 107'1 107'1 163'4 101'2 162'1 118'1 59'08 120'0 253'1 74'08 76'07 213'1 136'1 60'11 106'1 106'1 106'1 123'5	at./temp. '936/20° 	at./mms. 35° 53 330° -12.5 180° 50° -97° liquid 45° 52.3° liquid liquid liquid 121.2° 25° liquid 121.2° 132° -58.5° -28° -54° 15° -28°	at./mms. 218° decomp. 200 dec. 232 78 111 197 198 195 89 {140/736 dec. 127/744 375 <100 110 82.9 41 decomp. 159 decomp. 186.4 142 139.8 138 118 118
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	95.42	1.386/10°	-40	46

dec. or decomp. = decomposes.

ELECTROCHEMICAL EQUIVALENTS

Faraday's laws of electrolysis are expressed by m = izt, where m is the mass in grammes of an ion liberated in t secs. by a current of i amperes; z is the electro-

chemical equivalent of the ion, *i.e.* the mass liberated by I ampere in I second. The exactness of Faraday's laws is obscured in many cases by secondary chemical reactions, and the values of the different electrochemical equivalents are practically always derived by calculation from that of silver, which has been accurately determined (see p. 8). Electrochemical equivalents are proportional to chemical equivalents.

> atomic weight of element Chemical equivalent = $\frac{1}{\text{valency of element for electrolyte used}}$

Element.				Che	mical equiv	vale	ent.	Z.	
Silver					107.88/1			0'0011183 gm.	sec1 amp1
Copper					63.57/2			0.003294 "	32
Hydrogen.	•	•	•		1.008/1	•	•	0.11968 "	" (see p. 106)

SOLUBILITIES

SOLUBILITIES OF GASES IN WATER

AIR IN WATER

1000 c.cs. of water saturated with air at a pressure of 760 mms. contain the following volumes of dissolved oxygen, etc., in c.cs. at 0° and 760 mms.

grante Paint, C. Peter	Temperature of Water.									
	0° C. 5° 10° 15° 20° 25°									
Nitrogen, argon, etc	29.2	16·8 25.7	7'9 15'0 22'8 34'5	7.0 13.5 20.5 34.2	6.4 12.3 18.7 34.0	5.8 11.3 17.1 33.8	5°3 10°4 15°7 33°6			

GASES IN WATER

S indicates the number of c.cs. of gas measured at 0° and 760 mms. which dissolve in 1 c.c. of water at the temperature stated, and when the pressure of the gas plus that of the water-vapour is 760 mms.

A indicates the same, except that the gas itself is at the uniform pressure of 760 mms. when in equilibrium with the water. (For other values, see p. 109.)

Gas.	0 ° C.	10°	15°	20°	30°	40 °	50°	60 °
A	c cs.		0			phine, d	phos	-
Ammonia, A	1300	910	802	710	595/28°		11000	10.7751
Argon, A	.028	'045	.040	.037	.030	.022	-	
Carbon dioxide, A	1.213	1.194	1.010	.878	•66	'53	'44	.36
Carbon monoxide, A	'035	.028	.025	.023	.020	.018	.019	'015
Chlorine, S	-	3.09	2.63	2'26	I'77	1.41	1'20	1.0
Helium, A	'0150	.0144			.0138	'0139	'0140	
Hydrogen, A	'0215	.0198		.0184	-	-	- (-
Hydrochloric acid, S	506	474	458	442	411	386	362	339
Nitrogen, A	.0239	.0196	.0179	'0164	.0138	.0118	.0100	'0100
Nitrous oxide, A	1.02/2°	.88	.74	.63	-	-	-	U total
Nitric oxide, A	.074	.057	'051	.047	.040	'035	.031	.029
Oxygen, A	.049	.038	'034	.031	.026	.023	'021	.019
Sulphuretted hydrogen, A	4.68	3.22	3.05	2.67	-	-	-	-
	79.8	56.6	47'3	39'4	27.2	18.8	Stored	in the second

Ne, '0147/20°; Kr, '0670 - '0788/20°; Xe, '1109/20° - Antropoff, 1910.

MUTUAL SOLUBILITIES OF LIQUIDS

The data for the uppermost layer of the two solutions in equilibrium are given in the first line in each case. The pressure in some cases exceeds one atmosphere. Numbers are grams per 100 grams of solution. (From data in Seidell's "Solubilities.")

Liquids.	0 °C.	10°	20	30°	40 °	50 [°]	6Ő	70 [°]	80 [°]	100
{Water in ether; ethereal layer Ether in water; aqueous layer	1'0 12	1.1 8.2	1.2 6.5	1.50				2°0 3°2		-
$ \begin{cases} Aniline (C_6H_5NH_2) \text{ in water ; aqueous layer} \\ Aniline \text{ in water ; aniline layer} & . & . & . \end{cases} $	++		3.2 95.5				3.8 95	++	4°5 93	6 92
$ \begin{cases} Phenol (C_6H_5OH) \text{ in water ; aqueous layer} \\ Phenol in water ; phenol layer \end{cases} $	-	7'5 75	8·3 72	8·8 70	9 ^{.6}	12 63	17 55	33.4	1 400	crit. mp.
$ \{ \begin{array}{l} Triethy lamine \ in \ water \ ; \ amine \ layer \ . \ . \\ Triethy lamine [N(C_2H_5)_3] \ in \ aqueous \ layer \end{array} .$	51.9) 51.9)	at 18°.6	72 14'2		96 3.6			amali 227		
$\left\{ \begin{matrix} CS_2 \text{ in methyl alcohol ; alcoholic layer} \\ CS_2 \text{ in CH}_3 \text{OH} \text{ ; carbon bisulphide layer} \end{matrix} \right.$	-	45 98	51 97		80°5 80°5		crit 40°	. ten	np.	

S	DLU	BILITI	ES OF	SOL	IDS IN	WAT	ER		The					
s = number of gra of water make a sat p = no. of grams The formula give solution. (See Seide and accurate data with	tura of a en i ell's	ted solu nhydrou s that o "Solut	tion at the solitites,"	the temp ance per olid pha New Y	100 gra ise which ork, 19	stated. ms of s ch is in 07, whe	aturated equilib re the r	l solut i rium w	ion. ith the mplete					
Substance. 0° C. 10° 15° 20° 40° 60° 80° 100°														
Am. chloride, NH₄Cl Barium chloride,	5	29'4	33'3	35.2	37'2	45.8	55'2	65.6	77'3					
BaCl ₂ . 2H ₂ O Barium hydrate,	5	31.6	33.3	34.4	35'7	40.7	46.4	52.4	58.8					
Ba(OH) ₂ .8H ₂ O. Bromine (<i>liquid</i>), Br.	s s	1.67 4.22	2°48 3°4	3.23 3.25	3.89 3.20	8·22	20'9	101'4	_					
Cadmium sulphate, CdSO ₄ .8/3H ₂ O. Ca.hydrate, Ca(OH) ₂	s s	76.5	76°0 176	76.3	76.6	78.5 .141	83.7	69 ^{.7} *	60.77* .077					
Copper sulphate, CuSO ₄ .5H ₂ O.	s	14'3	17.4	18.8	20'7	28.5	40'0	55.0	75'0					
Li. carbonate, Li ₂ CO ₃ Merc. chloride, HgCl ₂ Potass. chloride, KCl	s p s	1.54 3.50 27.6	1'43 4'50 31'0	1.38 5.00 32.4	1.33 5.40 34.0	1'17 9'30 40'0	1'01 14'0 45'5	-850 23.1 51.1	720 38.0 56.7					
Potass. bromide, KBr Potassium iodide, KI	s	53'5 127'5	59°5 136	62°5 140	65°2 144	75°5 160	85°5 176	95°0 192	104 208					
Potassium hydrate, KOH.2H ₂ O Potass.nitrate, KNO ₃	5	97.0	103	107	112	138§ 64		169	178§					
Silv. nitrate, AgNO ₃ Sodium carbonate,	s s	13.3	20'9 170	25 ^{.8} 196	32 222	376		669	246 952					
Na ₂ CO ₃ . 10H ₂ O. Sod. chloride, NaCl	s s	7'0 35'7	12.5 35.8	16.4 35.9	21.5 36.0	46.1 36.6	46°0 37	45 ^{.8} 38	45°5 39°0					
Sodium sulphate, Na ₂ SO ₄ . 10H ₂ O. Strontium chloride,	s	5.0	9.0	13.4	19.4	49†	45 †	44 †	42 †					
SrCl ₂ .6H ₂ O Succinic acid,	s	43	48	50	53	65	82	91‡	101 ‡					
$(CH_2)_2(COOH)_2$. Sugar (Cane),	s	2.80	4.20	5.7	6.9	16.2	35.8	70.8	125					
$C_{12}H_{22}O_{11}$	5	179	190	197	204	238	287	362	487					

* Solid phase becomes $CdSO_4$. H_2O at 74° . ‡ Becomes Na_2SO_4 at $32^\circ 38$. ‡ Becomes $SrCl_2 \cdot 2H_2O$ at 70° . § Becomes $KOH \cdot \frac{3}{2}H_2O$ at $32^\circ 5$ and $KOH \cdot H_2O$ at 50° . | Becomes $Na_2Co_3 \cdot H_2O$ at 35° .

COMPOSITION OF DRY ATMOSPHERIC AIR

(Ramsay, Proc. Roy. Soc., 1908; G. Claude, Compt. Rend., 1909.)

	N ₂	02	A	C02	Kr	Xe	Ne	He
By weight . By volume .	75°5 78°05	23.5 51.0 *	1·3 '95	·046 to ·4 ·03 to ·3	•028 —	.005 —	•0 ₃ 86 •0 ₂ 123	•0456 •0340
27 13 13	1. 20	* 20	91 accor	ding to Kre	eusler.	. 05, FE	Juliet, C	

MINERALS

The numb				INERAL HA		e of hardi	ness.		
Hardness.	Mineral.	Hardn	ess.	Mineral.	Hardness.	Mine	ral.		
1	Talc	5	a la	Apatite	9	Corun	dum		
2	Rock salt	6	2.2.	Felspar	10	Diamo	ond		
3 4	Calcspar Fluor spar	78	07,70	Quartz Topaz	c. 2.5	Finge			
		_			c. 6 [.] 5	Penkn			
				ARDNESS (
Radioactive	minerals are	indicated	thus *	and Append ; see Szilard,	Le Radium,	August,	1909.		
			Hard-				Hard-		
Name and	l Formula.	Density.	ness.	Name and	Formula.	Density.	ness.		
Albite, Na2	$Al_2Si_6O_{16}$.	c. 2.6	6-7	Mica (comm	ion, Musco-	2.2-3.1	2-2.5		
Amber (foss		1.08	2-2.5	vite),	65:0 all 0	anabra	real pale		
Anhydrite, O Anorthite, O	$CaSO_4$ $Ca_2Al_4Si_4O_{16}$.	2.8-2.9 c. 2.7	3-3.5 6-7		6SiO ₂ .2H ₂ O e, Magnesia	2.7-3.1	2.5-3		
Apatite,		2.9-3.2	5	mica)					
	$F,OH)(PO_4)_3$	2:02	2.5.1		CeLaDi)PO4	5	5'2		
Aragonite, Augite,	caco3	2.93 3.2-3.5	3°5-4 5-6	(1-16% Th Nepheline,		2.5-2.6	5.5-6		
Mg,Fe,	Ca,Al silicate			Na,	K6AlsSi9O36	CONST.			
Barytes, He	eavy spar, BaSO,	4'5	3-3.2	Olivine, Mg ₂ Orthoclase,	Fe ₂ SiO ₄ .	3.3-3.5	6-7		
Beryl, Be ₃ A		2.6-2.7	7-8	Pitchblende,		2.4-2.6 6.4	0		
Bröggerite,	* a pitch-	(56-68%	(2-8%	oxides of 1	Pb, and Ca,	(mas-			
blende wi thorium	nich contains	U)	Th)	Fe,Bi,Mn,	Mg, Cu, Si,	sive)	5.5		
	cspar,Iceland	2.6-2.7	c. 3	1-6% Th)	5-80 % U;	9'7 (cryst.)			
spar, CaC		o ferso		Pyrites (iron), FeS2	4.8-5.1	6-6.5		
Carnallite,	MCICIO	1.6	I		per), CuFeS2		3.5-4		
Carnotite,*	.MgCl ₂ 6H ₂ O	(c. 55%	(yel-	Pyrolusite, M Quartz, SiO		4.8-5 2.5-2.8	2-5.5		
)2V2O5.3H2O	U)	low)	Rock salt, N		2.1-2.5	2-2'5		
Celestine, S	$SrSO_4$	3.9	3-3'5	Rutile, TiO2		4.2-4.3	6-6.5		
Cerussite, I Chalcolite,*		6.4 3.4-3.6	3-3.5 2-2.5	Selenite-cr	yst. gypsum H ₄ Mg ₃ Si ₂ O ₉	c 2.6	3-4		
Cu(UO ₂)(PO4)2.8H2O;	(48% U)		Spinel, MgC)Al ₂ O ₃	3.2-3.6	8		
Cléveite *-	-pitchblende	(0. 60%	(c. 4%	Sylvine, KC	1	1.9-2	2		
	ntains Th & Y		Th)	Talc, H ₂ Mg		2.5-2.8	I		
Corundum, Dolomite,		3.9-4.2	9 3.5-4		Th, U ox- (4-10% U;		7 (black		
Felspar, Al	2K2Si6O16	2.4-2.6	6	c. 60% Th)	contains He		cubes)		
Flint ; agar		2.6	c. 6		hSiO ₄ (1-9%	4.6	(tetra-		
Galena, Pb	Fluorite, CaF ₂	3-3.3	4	U; 40-60 Tourmaline,	hydrated si-	2.0-3.3	gonal) 7-7'5		
Gummite,*	Pb,Ca,U,silic	ate(50-	65% U)	licate and	borate of Al,	1. 1. M. T.			
	aSO42H2O	2'3	1.2-5	Na with L	i or Fe or Mg		Ind		
Hæmatite, Hornblend		4.5-5.3	5-5-6-5		As20812H20	(53% U)	(yel- low)		
Ca,Mg,Fe,	Na,Al, silicate	e	50	Uraninite *	 crystalline 	(Black	octahe-		
	SO4KCl3H2C		-	pitchblend			dra)		
Kaolin, H ₄ Kieserite, 1	$MgSO_4H_2O$	2'5	I 3	Uranite lim CaO(UO ₂)	e,* ₂ (PO ₄) ₂ 8H ₂ O	3-3.5	2-2.2		
Lepidolite	(Lithia mica)	2.8-3	2.5-4		2(1 04/201120				
	Li,K,Na) ₂ Al ₂ ·	-	-	Willemite, 2		4	5		
Limestone,	CaCO.	2.5-2.8	1 mar	Wolfram, (F Wollastonit	e, Mn)WO4.	2'7-2'9	5-5.5		
Magnesite,		6.3	3.5-4.		Cu,U arse-		(tetra-		
Magnetite,	Fe ₃ O ₄	4'9-5'2	5.5-6.	5 nate		Ŭ)	gonal) 7'5		
Meerschau 2MgO, 3	m_{2} SiO ₂ . 2H ₂ O	c. 26	2-2.5						
1_2mg0.3	5102.2H20	.1		Zincbiende,	2115	. 3.9-4.2	3.5-4		

GRAVIMETRIC FACTORS

		VIMETRIC ANALYS	SIS
Example.—1 9	atomic weights for 19	11 (p. 1). nically equivalent to	'5303 gram Al. or
	ent to 1/ 5303 Al ₂ O ₃ .	A table of reciprocals	s is given on p. 136.
	(See Van	Nostrand's "Chemica	l Annual," London.)
1 part by weight of	is equivalent (by weight) to	1 part by weight of	is equivalent (by weight) to
Aluminium.	and a last start	Calcium (contd.)-	Manganese
Al ₂ O ₃	·5303 Al	$\begin{array}{cccc} Ca_{3}(PO_{4})_{2} & . & . & . \\ Mg_{2}P_{2}O_{7} & . & . & . \\ P_{2}O_{5} & . & . & . & . \end{array}$	'5422 CaO
Ammonium.	3.320 Al2(SO4)3	$Mg_2P_2O_7$	$1^{\circ}3935 \text{ Ca}_{3}(\text{PO}_{4})_{2}$
N	1:216 NH.	\mathbf{Carbon} .	$2.1844 \text{ Ca}_3(\text{PO}_4)_2$
		CO ₂	4.4860 BaCO.
	3.819 NH Cl	Chlorine.	2.2748 CaCO3
NH3	2.028 NH ⁴ OH	Chlorine.	
Antimony.	uton Sh O	AgCl NaCl	·2474 CI
Sb	1.3328 Sb ₂ O ₅	Chromium.	0000 CI
Sb ₂ O ₃		Cr_2O_3	·6846 Cr
Sb ₂ O ₄	'7897 Sb		1.3154 CrO ₃
,,	'9474 Sb2O3	Cobalt.	
	1.0226 Sb2O2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.52113 CoO
Arsenic. $As_2O_3 \cdot \cdot \cdot \cdot \cdot$	'7575 As		10006 600
,	1'1617 As.O.	$Co(NO_2)_3$. $(KNO_2)_3$	1306 Co
$As_{2}O_{5}$.6521 As		'1661 CoO
MgNH4AsO4.1H2O	·3938 As	$(CoSO_{4})_{2} \cdot (K_{2}SO_{4})_{3}$	'1416 Co
,, ,,	'5199 As ₂ O ₃	Copper.	
Mg ₂ As ₂ O ₇	'6040 As ₂ O ₅	Cu	1.5211 CuO
		Fluorine.	.0// E
»» · · · ·	7403 As ₂ O ₅	$CaF_2 \cdot \cdot \cdot \cdot \cdot$.4800 F
Barium.	The second secon	Glucinum. See Beryllium.	126
BaCO ₃		Gold.	
BaSO4.	'7771 BaO	Au	1.2305 AuCl.
		Hydrogen.	- ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
"·····	'7255 BaO2	H ₂ O	'1119 H
Beryllium.	12)) 2002	Iodine.	NAVE OF A
BeO	·3626 Be	AgI	·5405 I
Bismuth.	D' O	Iron.	
Bi	1.1154 Bi ₂ O ₃ -8966 Bi	Fe	1.2865 FeO 1.4297 Fe ₂ O ₃
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	·8017 Bi	·, · · · · · · · · · · · · · ·	7'0218 FeSO4.
,,	·8942 Bi2O3		(NH ₄) ₂ SO ₄ .6H ₂ O
Boron.		FeO	'7773 Fe
B_2O_3	·3143 B		1'1113 Fe ₂ O ₃
	2.7297 Na ₃ B ₄ O ₇ . 10H ₂ O	Fe_2O_3	1.4508 FeCO ₃ .9666 Fe ₃ O ₄
Bromine	101120	CŐ	1.6330 FeO
AgBr	·4256 Br	,,	2.6330 FeCO3
Cadmium.	STOR 1 601 1	Lead.	1000
CdO	·8754 Cd	Pb	1.0223 PpO
Cæsium . Cs	1.060 Cs.0	PbSO ₄	·6831 Pb
Cs_2PtCl_6	*3945 Cs	,,	7358 PbO 7887 PbO
	·4184 Cs20		7536 Pb ₃ O ₄
Calcium.		Lithium.	100 0 - 4
Ca	1.399 CaO	Li ₂ CO ₃	·1879 Li
$CaCO_3$	·4005 Ca	I: no · · · ·	·4044 Li2O
CO ₂	*5604 CaO 2*275 CaCO ₃	Li_3PO_4	'1797 Li '3868 Li ₂ O
	2 2/3 Oaco3	,,	3000 El ₂ O

GRAVIMETRIC FACTORS

FACTO	ORS FOR GRAVIN	METRIC ANALYSIS	(contd.)
1 part by weight of	is equivalent (by weight) to	1 part by weight of	is equivalent (by weight) to
Magnesium.	Nostrado Chemic	Potassium (contd.)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.6032 Mg	$\begin{array}{cccc} \mathrm{K}_2\mathrm{SO}_4 \ \cdot \ \cdot \ \cdot \ \cdot \ \cdot \\ \mathrm{K}_2\mathrm{PtCl}_6 \ \cdot \ \cdot \ \cdot \ \cdot \end{array}$	1.1604 KNO ⁸
$Mg_2P_2O_7$	'2184 Mg	K ₂ PtCl ₆	·1609 K
	·3621 MgO	Rubidium.	
Manganese.	California in anticia (anti	Rb ₂ PtCl ₆	·2953 Rb
MnO		Silicon.	
Mn ₃ O ₄	•7203 Mn	SiO ₂	·4693 Si
"	'9307 MnO	Silver.	and the second sec
,,	1.0320 Mn2O3	AgCl .	.7526 Ag
	1.1399 MnO ₂	AgBr	.5744 Ag
Mercury.		AgI	'4595 Ag
Hg	1.1603 HgS	Sodium.	1575 0
HgS	·8963 Hg2O	AgCl	·4078 NaCl
Nickel.	•9308 HgO	NaHCO	'3601 Na.O
Nickel.	N'O	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·3238 Na
Ni	1'2727 N10		'4364 Na.O
Nitrogen.	NO.	N.O	1.5740 NaNO3
N	3.8551 N ₂ O ₅	Strontium.	
Phosphorus.	succe D	SrCO ₃	"7010 SrO
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	'4362 P	SrS04	·5641 SrO
	·2787 P	Sulphur.	
"	·8534 PO ₄ ·6378 P ₂ O ₅	BaSO4	'1460 H.S
Platinum.	03/0 F 205		1374 S
	·4015 Pt	» · · · · · · · · · · ·	'2744 SO2
K_2PtCl_6	·6933 PtCl	"	'3429 SO3
Potassium.	0933 1104	" · · · · ·	'4115 SO4
AgCl	'5202 KCl	Tin.	
AgCl	·6338 KBr	SnO ₂	•7881 Sn
AgI	'7071 KI	Uranium.	
AgI	·4863 KCN	$U_{3}O_{8}$	·8482 U
KCl	·5244 K		'9620 UO,
KBr	·3285 K	$U\ddot{O}_2$ \vdots \vdots \vdots \vdots	·8817 U
КОН		Zinc.	
	·8395 K.O	Zn	1.2448 ZnO
K ₂ SO ₄	·5403 K20		·8033 Zn
2 1	010 2		

SOME BOILING-POINT MIXTURES Boiling-points under 760 mms. of mercury. Percentage compositions by weight. A large number of minimum boiling-point mixtures are known. (Sidney Young, "Fractional Distillation," 1903.)

		Mixture.	Boi	ling Points	5.	% of A	Ob-
in the second	A .	B.	A.	B.	Mixt.	in mixt.	server.
Maximum boiling- point mixtures.	Water " Me. ether	Nitric acid Hydrochloric acid Formic acid Hydrochloric acid	100	86° c. – 80 100 [.] 8 c. – 80	125° 110 107 - 2	32% 80 23 61	Roscoe " Friede
boiling- point	Water Pyridine Benzene Me.alcohol	Ethyl alcohol Water Methyl alcohol Acetone	100 117 80°2 64°7	78'3 100 64'7 56'5	78°1 92°5 58°3 55°9		Y. & F G. & C Y. & F Pettit

	0	-	x
1	-		-

8.8			T					NEN				·600					22)		
- 0	2 = 2.7	71828	. 10	o deriv				lewma						-		., 1	з,	188	3.)
		For v	alues	of x	from	0000	to .	0999.				S	ubt	ract	t Di	ffer	ence	es.	
x	0	·001	.002	.003	·004	.005	·006	.007	.008	.009	.000	1 2	3	4	5	6	7	8	9
.00	1.000	.9990	.9980	.9970	.9960	9950	9940	.9930	.9920	9910	I	2	3	4	5	6	7	8	9
.01				.9871								2	3	4	55	6		8	9
·02 ·03				9773								2 2	3	4	5	6		8	9
.04				9579								2	33	44	55	6	777	8	9 9
.02	9512	.9502	9493	.9484	'9474	9465	9455	9446	.9436	.9427	I	2	3	4		6	7	8	9
.06	9418	9408	9399	.9389	9380	9371	9361	9352	9343	9333	I	2	3	4	5	6	7	8	98
·07 ·08				'9296 '9204								2 2	33	4	55	6	777	87	8
.09	.9139	.9130	9121	9112	.9103	.9094	.9085	.9076	·9066	.9057	I	2	3	4	5	6	6	7	8
]	For V	alues	of x f	rom ·	100 t	0 2.9	99.		1		St	ıbtı	ract	Di	ffere	ence	s.	
x	0	•01	.02	.03	•04	•05	•06	•07	·08	.09	·001	2	3	4	5	6	7	8	9
•1	.9048	8958	.8860	.8781	·8694	.8607	.8521	.8437	.8353	.8270	0	17	26	34	43	52	60	60	77
.2	8187	.8106	.8025	7945	.7866	.7788	7711	'7634	7558	.7483	8	16	23	31	39	47	55	62	70
·3 ·4				·7189 ·6505							7	14	21	28	35	42 38	49	56	121
.5	10000			.5886	100 C 100 C 10					10.000				23		35			57
•6		100		.5326	1.000				10000	State of the second second	1.1				26				
.7	.4966	4916	.4868	'4819	'4771	4724	4677	'4630	'4584	'4538	5	9	14	19	24	28	33	38	43
·8 ·9				·4360 ·3946								9 8	13	17	21	26 23	30	34	38
1.0	1.		10000	3570	100.00	1000000		100000000000000000000000000000000000000		18177 CO.	4	7		10.24		21			32
1.1	3329	3296	.3263	.3230	.3198	3166	3135	3104	.3073	.3042	3	6		1000		19			-
1.2	3012	2982	2952	2923	·2894	2865	2837	2808	2780	2753		6	9	II	14	17	20	23	26
1·3 1·4	2725	2098	2071	·2645 ·2393	2010	2592	2322	2541	2510	2491	32	55	7			16 14			
	2231		1000 0000		1 (1 × 1 × 1 × 1 × 1 × 1		100 C (0.000)					4	6	-		13			0.000
1.6	100000000		1220	.1959			1		1000000	10 CA. 10 CA.	1.12	4	6	8	1000	1.353	13		
1.7	1827	1809	1791	1773	1755	1738	1720	1703	1686	1670			5	76	9 8	10	12	14	16
1.8 1.9				'1604 '1451							2 I	333	554	6	7		II IO		
2.0		1.		.1313	100 100 100 100 100				ALC: NOT THE REAL	100000000	I	3	4	5	6	8		10	
2.1	1225	1212	1200	.1188	1177	1165	1153	'1142	1130	1119	I	2	4	5	6	76	8	9	II
2·2 2·3	.1108	1097	1086	1075 0973	1065	1054	1044	1033	1023	'IOI3	I	2 2		4	5	6	7	8	9
2.4				.0880								2	333	43	54	5	76	7	9.8
2.5		0.000		.0797	(100) - 100 ()		100000000000			100000	I	2	2	3	4	5	5	6	7
2.6	0743	.0735	.0728	.0721	0714	.0707	.0699	.0693	.0686	.0679	I	I	2	1000	4	4	5	6	6
2.7	·0672 ·0608	.0665	.0659	.0652	.0646	.0639	.0633	.0627	0620	'0614	I	I	22	330	3	4	4	6 5 5	6
2.9	.0550	0545	.0539	.0534	0529	0523	.0518	.0513	0508	0503	I I	I I	2 2	2 2	33	33	4 4	54	5
		1. 1. 1. 1.		s of a								Su	btr	act	Dif	fere	nce	s.	
x	0	-1	•2	•3	•4	•5	•6	•7	•8	•9						1		-	-
8	.0408	0450	.0408	.0368	.0334	.0302	0273	.0247	0224	0202						1			
4	.0183	0166	'01 50	.0136	'0123	IIIO.	1010.	10091	0082	0074	Mean differences no longer								er
	'0067 '0025																		
7	'0009	.0008	.0007	.0007	.0000	.0009	.0002	.0005	0004	.0004									
	.0003														-				

K

130

FOUR-FIGURE LOGARITHMS

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
10 {	0000	0043	0086	0128	0170		0253	0294	0334	0374	4	98	13 12	17 16	21 20	25 24	30 28	34 32	38 36
11 {	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755	4	8 7	12 11	15 15	19 18	23 22	27 26	31 30	35 33
12 {	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106	43				18 17				
13 {	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430	33	76			16 16	100000	-		
14 {		1492		1553	1584		1644	1673	1703	1732	33	6			15 15				
15		51	1818		1875	1903	1931	1959	1987	2014	33	6	98 0	11	14 14	17	19	22	25
16 {		100 0	2095		2148		2201	2227	2253	2279	33	55	8	10	13	16	18	21	23
17 {	2304	6 1	2355 2601		2405 2648	2430	2455	2480	2504	2529	52	55 5	877	10	13 12 12	15	17	20	22
18	0.65	2810	1. 10	1. 1.	2878	2672	2695	2718	2742	2765	2	5 5	7 7	9		14	16	19	21
19 20			3054	3075	1 Sector	2900 3118	2923 3139		2967 3181	2989 3201		4	7 6	9	11 11	13	15	18	20
21 22	3222	3243 3444	3263 3464	3284 3483	3304 3502	3324 3522	3345 3541	3365 3560	3385 3579	3404 3598	22	4	6	88	10	12 12	14	16	18 17
23 24	100	3820	3655 3838	3674 3856	3874	3711 3892	3909	3927	3766 3945	3784 3962		4 4	5	77	9	II II	12	14	16
25 26 27	4150	3997 4166	4183	4200	4216	4065 4232 4393	4249	4265	4116	4133 4298		3 3	5 5	7 76	9 8 8	10	10.20	13	15
28 29	4472		4502 4654	4518	4533	4393 4548 4698	4564	4579	4440 4594 4742	4450 4609 4757	2 1	233	554	66	87	1. 1.	11 11 10		1.10
30 31	10.00		4800 4942	1. 12		4843 4983	1.000		4886 5024	4900 5038	10	3	4	6 6	7	9 8	10	11	
32 33 34	5051 5185	5065 5198 5328	5079 5211	5092 5224	5105 5237	5119 5250 5378	5132 5263	5145 5276 5403	5159 5289 5416	5172	I I	3333	444	55	766	88	9 9	11 10 10	12 12
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551	I	2	4	5	6	7	9	10	
36 37 38	5682 5798	5809	5705 5821	5832	5729 5843	5623 5740 5855	5752 5866	5763 5877	5888	5670 5786 5899	I	2 2 2	433	555	6 6	7777	888	9	11 10 10
39 40	5911 6021	100	5933 6042	12	10000	5966 6075	10000	361	Sector Par	11.2		2 2	3	4	5 5	76	8 8	9	10 10
41 42 43	6232		6149 6253 6355	6263	6274		6294	6304	6314	6325	I	2 2 2	30330	4 4 4	5555	666	777	888	9 9 9
44	6435	6444	6454 6551	6464	6474	6484	6493	6503	6513	6522	I	2 2	33 3		5 5	6	777	8	9
46 47	6628 6721	6637 6730	6646 6739	6656 6749	6665 6758	6675 6767	6684 6776	6693 6785	6702 6794	6712 6803	I	22	33	4	55	65	76	777	8 8
48 49			6830 6920	6839 6928	6848 6937	6857 6946	6866 6955	6875 6964	6884 6972	6893 6981	I	22	33	4	44	5	6	777	8 8
	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9

FOUR-FIGURE LOGARITHMS

														-	-				
8.8	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	I	2	3	3	4	5	6	7	8
51 52							7126			7152		2 2	32	3	4	5	6	7	8
53	10000	7168		7267			7292	7300	7308	7235 7316	I	2	2	33	4	55	6	76	77
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396	I	2	2	3	4	5	6	6	7
55		7412				7443			7466			2	2	3	4	5	5	6	7
56 57		7490		7505 7582			7528		7543 7619		I	2 2	2 2	33		5	5	6	77
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701	I	I	2	3	4	4	5	6	7
59		7716		7731			7752			1		I	2	3	4	4	5	6	7
60	10000	7789	1.1.1.1.1.1				7825	7832	7839	7846	I	I	2	3	4	4	5	6	6
61 62		7860		7875		7889	7896 7966	7903	7910	7917		I I	2 2	3	4	4	55	6	6
63							8035				100.00	I	2	33	3	4	5	5	6
64							8102				I	I	2	3	3	4	5	5	6
65		10000					8169			8189		I	2	3	3	4	5	5	6
66 67	8195	8202	8209	8215	8222	8228	8235 8299	8241	8248	8254	I	I	2 2	3	33	4	5	5	6
68							8363					I	2	33	3	4	5 4	55	6
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445	I	I	2	2	3	4	4	5	6
70			15.0				8488					I	2	2	3	4	4	5	6
71 72	8513	8519	8525	8531	8537	8543	8549 8609	8555	8561	8567		I I	2 2	2 2	33	4	4	5	5
73							8669			1		I	2	2		4	4	55	5 5
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745	I	I	2	2	3	4	4	5	5
75	100000		10000	10022-002	11202		8785		8797	8802		I	2	2	3	3	4	5	5
76 77	8808	8814	8820	8825	8831	8837	8842 8899	8848	8854	8859	I	I	2 2	2 2		3	4	54	5 5
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971		I	2	2		33	4 4	4	5
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025		I	2	2		3	4	4	5
80			La come	13.2.53		10000	9063	1				I	2	2	3	3	4	4	5
81 82							9117 9170			9133 9186		I I	2 2	2 2		33	4	4 4	55
83				9206	9212	9217	9222	9227	9232	9238		ī	2	2	3	3	4	4	5
84		9248	1	1000	10000000	10000	9274	9279	9284	9289		I	2	2		3	4	4	5
85	10.00			9309	1000	1000			9335	9340		I	2	2	3	3	4	4	5
86 87		9350				9370 9420	9375		9385 9435	9390 9440		I	2	2 2	32	33	4 2	4	5 4
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489	0	I	I	2	2	3	33	4	4
89		9499	10000	9509	9513	9518	9523		9533	9538		I	I	2	2	3	3	4	4
90	1	9547	10000		1.2		9571			9586		I	I	2		3	3	4	4
91 92		9595 9643	9647	9605 9652			9619 9666	9624 9671	9628 9675	9633 9680	0	II	I	2 2		33	33	4	4
93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727	0	I	I	2	2	3	3	4	4
94		9736					9759			1000		I	I	2	2	3	3	4	4
95		9782		1000			9805	9809				I	I	2		3	3	4	4
96 97		9827 9872					9850 9894					I	I	2 2		33	33	4	4 4
98	9912	9917	9921	9926	9930	9934	9939	9943	9948	9952	0	I	I	2	2	3	333	4	4
99	9956	9961	9965	9969	9974	9978	9983	9987	9991	9996	0	I	I	2	2	3	3	3	4
8.8	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9

ANTILOGARITHMS

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
·00	1000	1002	1005	1007	1009	1012	1014	1016	1019	1021	0	0	I	1	I	I	2	2	2
·01	1023		and the second second		1033	1035	1038	1040	1042	1		0	I	1	I	I	2	2	2
·02 ·03	1047			1079	1081	1084	1062 1086	1089	1091	1094		0	I	I	I	I	2 2	2 2	2 2
•04	1096	1	11120200	1	1107							I	I	I	I	2	2	2	2
.05	1122	-	1		1132			1				I	I	1	1	2	2	2	2
·06 ·07	1148		1153 1180		1159 1186		1164					I I	I	I	I I	22	2 2	2 2	2 2
·08 ·09	1202 1230	1 C		1211	1213 1242				1225	1227 1256		II	I	I	I	2	2	2 2	3
.10	1259		1.25		1271			10.201				I	I	I	I	2	2 2	2	3
-11	1288	1291	1294	1297			1306		1 martin			I	I	Ĩ	2	2	2	2	3
.12	1318	1321	1324	1327	1330	1334	1337	1340	1343	1346	0	I	I	1	2	2	2	2	33
18 14	1349 1380		1355 1387	1358 1390			1368 1400			1377	0	I J	I	I	2 2	2 2	2 2	33	33
•15	1413	1416	1419	1.862	1426	1429	1432	1435	1439	1442	0	I	I	I	2	2	2	3	3
·16	1445	1449	1452	1455			1466			a second second		I	I	I	2	2	2	3	3
-17 -18	1479	1483 1517	1486	1489			1500 1535			1510		I	I	I	2 2	2 2	2 2	3 3	3
-19	1549	1552	1556	1560	1563	1567	1570	1574	1578	1581		I	I	I	2	2	3	33	33
.20	1585	1589	1592	1596	1.000	1603	1.1.1.1.1	1611	10 miles	1618		I		I	2	2	3	3	3
·21 ·22	1622	1626	1629	1633 1671	1637	1641	1644	1648	1652	1656		II		2	2 2	2 2	3	3	3
.23	1698	1702	1706	1710	1714	1718	1722	1726	1730	1734	0	I	I	2	2	2	33	33	3 4
•24	1738	1742	1746		1754	12 . 10		1766		1774				2	2	2	3	3	4
.25	1778	1782	1786 1828	1791	1795	1799		1807 1849				1		2	2	2	3	3	4
·26 ·27	1862	1866	1871	1832 1875	1879			1892	1897	1858 1901		I		2	2	33	33	33	4
·28 ·29	1905	1910 1954	1914	1919 1963		1928 1972		1936 1982	1941 1986	1945		I			2	3	3	4	4
.30			1959		2014	1.3526				1991 2037					2	3	3	4	4
.81	2042	2046			2061					1. 1999		r			2	2	2	4	4
.32	2089	2094	2099	2104	2109	2113	2118	2123	2128	2133	0	I			2	3	3	4	4 4
·33 ·34	2138 2188	2143 2193	2148 2198	2153	2158				2178	2183 2234		II			2	33	34	4 4	4 5
.35	2239			2254						2286		I			3	3	4	4	5
.36	2291	2296	2301	2307	2312			2328	2333	2339		I			3	3	4		
.37	2344	2350	2355	2360	2366	2371	2377	2382	2388	2393	I	I	2 2		3	3	4	4	5 5
·38 ·39	2399 2455	2404 2460		2415				2438 2495		2449 2506		I I	2 2 2		3	33	4	4 5	5 5
.40	2512	2518	2523	2529	2535	2541	2547	2553	2559	2564	I	I	2 2		3	4	4	5	5
.41		2576			2594			2612	2618	2624	I	I	2 2		3	4	4	5	5
·42 ·43	2630	2636 2698			2655 2716		2667 2729	2673 2735	2679 2742	2685 2748	I T	I I	2 2 3		3	4 4	4 4	55	6
.44					2780			2799	2805	2812	I		2 2 2		3	4	4	5	6
•45	1000	54.00		2838	2844	2851	2858	2864		2877	I	I	2 3		3	4	5	5	6
·46 ·47	2884					2917	2924		2938 3006	2944			2 3		3	4	5	5	6
.48	2951 3020			3041	3048	3055	3062	3069	3076	3013 3083			2 3		3	4	55	56	6
•49	-				3119		3133	3141	3148	3155			2 3	4		4	5	6	6
	0	1	2	3	4	5	6	7	8	9	1	2	3 4	1	5	6	7	8	9

ANTILOGARITHMS

	0	1	2	3	4	.5	6	7	8	9	1	2	3	4	5	6	7	8	9	
•50	3162	3170	3177	3184	3192	3199	3206	3214	3221	3228	I	I	2	3	4	4	5	6	7	
·51 ·52		3243					3281		3296	3304	I	2	2	3	4	5	5			
·53 ·54		3396	3404	3412	3420	3428	3357 3436		3451	3459	1	2 2	2 2	33	4	55	6	6	7	
.55	1	3475 3556		15.50	18.000		3516	3524	1000			2	2	3	4	5	6		1	
.56	1	3639	12.00		1		3681	3690	3698	3707		2	3	3	4	5			8	
·57 ·58	1 - 24	3724	1				3767 3855	3776				2	33	34	44	55	6		8	
•59	1000	3899		0			3945		1		1	2	3	4	5	5	6		8	
·60 ·61	3981	3990	1. 1. 1.		Sec. 1	1. 33.2	4036	a la la la	4055	1.1		2 2	3	4	5 5	6		8	8	
·62 ·63	4169	4178	4188	4198	4207	4217	4227	4236	4246	4256	I	2 2	3	4 4	5	6	7	8	9	-
•64	4365	4375	4385				4,426					2	33	4 4	55	6		8		
.65		4477		1000	1.000		4529					2	3	4	5	6	'	8	- 1	
·66 ·67	4677	4581	4699	4710	4721	4732	4742			4775	I	2 2	33	4	556	67	8		10	
·68 ·69		4797 4909		4819 4932			4853 4966	4864 4977	4875			2 2	33	4 5	6	777	8		10	
.70	5012	5023	5035	5047	5058	5070	5082	5093	5105	5117	I	2	4	5	6	7	8	9	11	
·71 ·72		5140 5260		5164 5284		5188 5309	5200	5212 5333	5224 5346			2 2	4	55	6	777			II II	
.78	5370	5383	5395	5408 5534	5420	5433	5445 5572	5458 5585	5470	5483	I	33	4 4	555	6	88	9	10	11	
.75		5636				5689		5715	5728	1 3		3	4	5	7	8	1		12	
.76	5754	5768	5781	5794	5808	5821	5834	5848	5861	5875	I	3	4	5	7	8			12	
·77 ·78	6026	5902 6039	6053	6067	6081	6095	5970 6109	6124	6138	6152	I	33	4 4	56	77	8	10	11	12	
·79 ·80		6180			12000	1.10						3	4	6	7	9			13	
-80		6324 6471			1000							3	4 5	6		1			13	
·82 ·83	6607	6622 6776	6637	6653	6668	6683	6699	6714	6730		2	3	5	6	8	9	II	12	14 14	
.84	6918	6934	6950	6966	6982	6998	7015	7031	7047			33	55	6	8	10	11	13	15	
.85		7096								7228		3	5	7		10				
·86 ·87	7413	7261 7430	7447	7295 7464	7482	7499	7516	7362 7534		7568		33	5555	77	9	10 10	12	14	16	
·88 ·89		7603 7780						7709 7889		7745 7925		4	5 5	77		II II			16 16	
.90	7943	7962	7980	7998	8017	8035	8054	8072	8091	8110	2	4	6	7	9	11	13	15	17	
·91 ·92	8128 8318	8147 8337	8166	8185	8204 8305	8222 8414	8241 8433	8260	8279 8472	8299 8492	2	4		8		11 12				
·93 ·94	8511	8531 8730	8551	8570	8590	8610	8630	8650	8670	8690	2	4 4	6	8	10	I2 12	14	16	18	
.95		8933	100	1000		10000			100			4				12				
·96 ·97	9120	9141	9162	9183	9204	9226	9247	9268	9290	9311	2	4	6	8	11	13	15	17	19	
·97 ·98 ·99	9550	9354 9572	9594	9616	9638	9661	9683	9705	9727	9750	2	4 4	7	9	11	13	16	18	20	
99	9772	9795	9817	9040	9903	9000	9908	9931	9954	9977	2	5	7	9	11	14	10	18	20	
	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9	

FIVE-FIGURE LOGARITHMS

	0	1	2	3	4	5	6	7	8	9.	1	2	3	4	5	6	7	8	9
10{	00000	00432	00860	01284	01703	02119	02531	02938	03342	03743			127 121						
11{	04139	04532	04922	05308	05690	06070	06446	06819	07188	07555			116 111						
12{	07918	08279	08636	08991	09342	09691	10037	10380	10721	11059			106 102						
13{				12385	11	1 3033	13354	13672	1 3988	14301	33 32	66 63	95	126	158	190	221	262 253	284
14{	14613	14922	15229	15534	15836	16137	16435	16732	17026	17319	31 30	61 59						244 236	
15{	17609	17898	18184	18469	18752	19033	19312	19590	19866	20140		57· 55						228 221	
16{	20412	20683	20951	21219	21484	21748	22011	22272	22531	22789		53 52						214 208	
17{	23045	23300	23553	23805	24055	24304	24551	24797	25042	25285		50 49	76 73					201 196	
18	25527				1 5	26717	26951	27184	27416	27646	24 23	48 46	71 70	93	116	139	162	190 185	209
19{	27875	28103	28330	28556	28780	29003	29226	29447	29667	29885	23 22	45 44	68 66					181 176	
1.11	30103		1000		10000		111111111		1000	Concernance of			64		1000			170	
21 22 23	32222 34242 36173	34439	34635	34830	35025	35218	35411	35603	35793	35984	19	39	61 58 56	77	97	116	135	162 155 148	174
	38021	38202	38382	38561	38739	38917 40654	39094	39270	39445	39620	18	35	53 51	71 68	89	106	124	142 136	160
26	41497	11664	41830	41996	42160	42325	42488	42651	42813	42975	16	33	49	66	82	98	115	131	148
28	43136 44716 46240	44871	45025	45179	45332	45484	45637	45788	45939	46090	15	30	47 46 44	63 61 59	76	91	107	126 122 118	137
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	47712		E. CORDO		0.000		1000000000		1.12.2.2.3				43	57				114	
31 32	49136	50650	50786	50920	51054	49831 51188	51322	51455	51587	51720	13	28	41 40	55 53	67	So	94	110 107	120
34	51851 53148	53275	53403	53529	53656	53782	53908	54033	54158	54283	13	25	39 38	52 50	63	76	88	104 101	113
35 36	54407	000000		1.000000		55023 56229			1.12	1.18.5			37 36	49 48	100.00	10	86 83		110 107
37 38	56820 57978	56937 58092	57054 58206	57171 58320	57287 58433	57403 58546	57519 58659	57634 58771	57749 58883	57864 58995	12 11	23 23	35 34	46	58 56	70 68	81 79	93 90	104 102
1	59106 60206		12	100	1. 1. 1.		10000			1.1			33 32	44			77 75	88 86	99 97
41 42	61278					61805 62839							31 31	42 41			73 72	84 82	94 92
43 44	63347	63448	63548	63649	63749	63849 64836	63949	64048	64147	64246	10	20	30 29	40 39	50	60	70 68	80 78	90 88
45 46						65801				1.1.2.2.2			29	38			67	76	86
40 47 48	67210	67302	67394	67486	67578	66745 67669 68574	67761	67852	67913	68034	9	19 18 18	28 27 27	37 37 36	46	55	65 64 63	75 73 72	84 82 81
49	6902C	69108	69197	69285	69373	69461	69548	69636	69723	69810	9	18	26	35			61	70	79
	0	1	2	8	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9

. .

FIVE-FIGURE LOGARITHMS

	0	1	2	8	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
1			+								-				-		-		
50	69897	69984	70070	70157	70243	70329	70415	70501	70586	70672	9	17	26	34	43	52	60	69	77
51 52	70757 71600					71181													
53	72428	72509	72591	72673	72754	72835	72916	72997	73078	73159	8	16	24	32	41	49	57	65	73
54	10000	10000	125.0			73640			1000	10000									
21.0-	74036	1.1.1.1.1.1.1	1.1.1.1.1.1.1	10.0 (0.02)	1000000	CT COST	1.19.201	100000	10030039	No. of the second s				1993	1000	1000			
56 57	74819	74896	74974	75051	75128	75205 75967	75282	75358	75435	75511 76268	8	15	23	31	39 38	40	54	62 60	69 68
58	76343	76418	76492	76567	76641	76716	76790	76864	76938	77012	7	15	22	30	37	44	52	59	67
	77085	1.1.2.1	1 2 2 2 1	C. C. C.	1. 2. 3. 4. 19		4	1.1.1.2	1.	12.2.3.2.2				1001		160			
61	77815	1	0.0		Sale and		1211	0-1,08	1000	12									33.4
62	79239	79309	79379	79449	79518	78888 79588	79657	79727	79796	79865	7	14	21	28	35	42	49	56	63
63 64	79934 80618	80003 80686	80072	80140	80209 80880	80277 80056	80346 81023	80414	80482 81158	80550	7	14	21	27	34	41	48	55	62
1. 1.	81291	10.200	1 2 3 7 1 2	10. 16.00	1.2. 7. 0	1.1.5.5.1	1	1.2 5.6.8	122.233	1258.00				1.1	1000	1990			60
66	81954			10.000						2.4									
67	82607	82672	82737	82802	82866	82930	82995	83059	83123	83187	6	13	19	26	32	39	45	51	58
68 69	83251 83885	83315 83948	83378	83442 84073	83506	83569 84198	83032 84261	83696	83759 84386	83822 84448	6	13	19 19	25	32	38	44	51	57
1	84510	227.28.2		1.1.1.1		1.1860	1000	1000	1. 1. 1. 1. 1	1.000.000									
71	85126	85187	85248	85300	85370	85431	85491	85552	85612	85673	6	12	18	24	31	37	43	49	55
72 73	85733	85794	85854	85914	85974	86034	86094	86153	86213	86273	6	12	18	24	30	36	42	48	54
	86923	86982	87040	87099	87157	86629 87216	87274	87332	87390	87448	6	12	17	23	29	35	41	47	53 52
75	87506	87564	87622	87679	87737	87795	87852	87910	87967	88024	6	12	17	23	29	35	40	46	52
76	88081	88138	88195	88252	88309	88366	88423	88480	88536	88593	6	11	17	23	29	34	40	46	51
77	88649 89209	88705	88762	88818 80376	88874	88930 89487	88986 89542	89042	89098	89154 89708	6	II	17	22	28 28	34	39	45	50
79	89763	89818	89873	89927	89982	90037	90091	90146	90200	90255	6	11	17	22	28	33	39	44	50
80	90309	90363	90417	90472	90526	90580	90633	90687	90741	90795	5	11	16	22	27	32	38	43	49
81	90848	90902	90956	91009	91062	91116	91169	91222	91275	91328	5	11	16	21	27	32		43	
83	91381 91908	91434 91960	91487 92012	91540 92064	91593 92117	92169	91098	91751 92273	91803 92324	91855 92376	5	11 10	10	21 21	20	32 31	37 36	42 42	47
84	92428	92480	92531	92583	92634	92686	92737	92788	92840	92891	5	10	15	21	26	31	36	41	46
- 21. CT	92942	92993	93044	93095	93146	93197	93247	93298	93349	93399	5	10	15	20	26	31	36	41	46
86 87	93450 93952	93500	93551	93601	93651	93702	93752	93802	93852	93902	5	IO	15	20	25	30	35	40	45
88	94448	94498	94547	94596	94645	94694	94743	94792	94841	94890	5	10	15	20	25	29	34	39	43
1. 1. 18	94939				1000		Constant of the	1 1 1 2 1		1021.00							-	1995	44
1	95424		1.2.00		aber is		a second i	67.9 mile	Constant B	1.2.1.5.1.1					1.2	1.2		Jun.	43
91 92	95904 96379	95952 96426	95999 96473	96047 96520	96095 96567	90142 96614	96190	96237 96708	96284	96332 96802	55		14 14					38	43
98	96848	96895	96942	96988	97035	97081	97128	97174	97220	97267	5	9	14	19	23	28	33	37	42
	97313		1.1.1.1.1.1.1.1		198	Real Property in			1.00	100000000			14	1		1.12			42
	97772					200				1.11	10		14					-	41
97	98227 98677	98722	98767	98811	98856	98900	98945	98989	99034	99078	4	9	13	18	22	27	31	36 36	40
98	99123 99564	99167	99211	99255	99300	99344	99388	99432	99476	99520	4							35 35	
-											-	-		-				00	
1	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
	1200		20183	EUS .								1.32	-	-				_	_

RECIPROCALS

					.	_						Su	ibti	act	D	ffe	ren	ces.	
· # . 93	0	1	2	8	4	5	6	7	8	9	1	2	3	4	5	-	7	8	-
10												0							
	122	1111	9804																
11 12	9091 8222	9009	8929 8197	8850	8772	8696 8000	8621	8547	8475	8403	8	15	23	30	38	45	53	61	68
13	7692	7634	7576	7519	7463	7407	7353	7299	7246	7194	5	II	16	22	27	33	38	44	49
14	7143	7092	7042	6993	6944	6897	6849	6803	6757	6711	5	10	14	19	24	29	33	38	43
15	6667	6623	6579	6536	6494	6452	6410	6369	6329	6289	4	8	13	17	21	25	29	33	38
16			6173									7	11	15	18	22	26	29	33
17 18	5882	5848	5814 5495	5780	5747	5714	5682	5650	5618	5587	3	-		-	16				
19	5263	5236	5495	5181	5435	5128	5102	5076	5051	5025	3	5	8	II	13	16	18	21	24
20	5000	4975	4950	4926	4902	4878	4854	4831	4808	4785	2	5	7	10	12	14	17	19	21
21			4717									4	7	9	II	13	15	17	19
22	4545	4525	4505	4484	4464	4444	4425	4405	4386	4367	2	4	6		10				S
23 24			4310 4132									43	55	77	8	IO	13	14 13	15
25	4000	3984	3968	3953	3937	3922	3906	3891	3876	3861	2	3	5	6	8	9	11	12	14
26	3846	3831	3817	3802	3788	3774	3759	3745	3731	3717	I	3	4	6	7	8	ю	II	13
27 28	3704	3690	3676	3663	3650	3636	3623	3610	3597	3584		32	4	5	76	8		11 10	100.00
29	3448	3436	3546 3425	3413	3401	3390	3378	3367	3356	3344		2	43	55	6				10
30	3333	3322	3311	3300	3289	3279	3268	3257	3247	3236	I	2	3	4	5	6	7	9	10
31			3205									2	3	4	5	6	7	8	9
32 33			3106									2 2	3	4		6	76	87	8
34			3012 2924									2	33	43	4	55	6	7	8
35	2857	2849	2841	2833	2825	2817	2809	2801	2793	2786	I	2	2	3	4	5	6	6	7
36	2778	2770	2762	2755	2747	2740	2732	2725	2717	2710	I	2	2	3	4	5	5	6	7
37	2703	2695	2688	2681	2674	2667	2660	2653	2646	2639	I	I	2 2	3	4	4	5	6	6
38 39	2564	2558	2618	2545	2538	2532	2525	2504	2513	2506	1	1		-	33	4	5 4	55	6
40	2500	2494	2488	2481	2475	2469	2463	2457	2451	2445	I	I	*2	2	3	4	4	5	5
41	2439	2433	2427	2421	2415	2410	2404	2398	2392	2387	I	I	2						5
42	2381	2375	2370	2364	2358	2353	2347	2342	2336	2331	I	I			3		4		5
43 44			2315												3	33	4	4	
45	2222	2 2217	2212	2208	2203	2198	2193	2188	2183	2179	0	I	I	2	2	3	3	4	4
46	2174	2160	2165	2160	2155	2151	2146	2141	2137	2132	20	I	I	2	2	3	3	.4	4
47	2128	212	3 2119	2114	2110	2105	2101	2096	2092	2088	30	I	I		2	3	33333	433	4
48 49	208	2079	2075	2070	2000	2002	2058	2053	2049	204	0	I			2		3	3	4
50	2000	1996	5 1992	1988	1984	1980	1976	1972	1969	1965	; 0	I	I	2	2	2	3	3	4
51	106	105	1953	1040	1046	1042	1025	1024	1931	1023	0	I	I	2	2	2	3	3	3
52	1923	1910	1916	1912	1908	1905	1901	1898	1894	1890	0	I	I	I	2	2	3	333	333
53 54	1887	188:	3 1880	1876	1873	1869	1866	1862	1859	1855	0	I	I						
54	105	1040	8 1845	1042	1038	1035	1032	1020	1025	1021	1							5	5
	0	1	2	3	4	5	6	7	8	9	1	-	_	4			7	8	9
1	1	1	-	-	T	1	1	+ "	0	0	1	S	ubt	rac	t D	iffe	ren	ces	
-	-	-	-			-	-		_	-	-	-		-		-			

RECIPROCALS

								-			1	Su	btra	act	Di	ffer	end	ces.	
	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
55	1818	1815	1812	1808	1805	1802	1799	1795	1792	1789	0	I	I	I	2	2	2	3	3
56			1779									I	I	1251	2	2	2	3	3
57 58	1754	1751	1748 1718	1745	1742	1739	1736	1733	1730	1727	0	I	I	100	2	22	2.2	22	33
59			1689									I	I	I	I	2	2	2	3
60	1667	1664	1661	1658	1656	1653	1650	1647	1645	1642	0	I	I	I	I	2	-2	2	3
61			1634									I	I	I	I	2	2	2	2
62 63	1587	1010	1608 1582	1505	1003	1575	1597	1595	1592	1590	0	1	I	·I	I	2	2 2	2 2	2 2
64	1563	1560	1558	1555	1553	1550	1548	1546	1543	1541	0	0	I	I	I	1	2	2	2
65	1538	1536	1534	1531	1529	1527	1524	1522	1520	1517	0	o	I	I	I	ı	2	2	2
66			1511									0	I	1	I	I	2	2	2
67 68			1488									0	I	. 1	I	I	2.	2	2
69			1466 1445									0	I	1	I		2	2 2	2 2
70			1425			-								I	I	I	I	2	2
71					- and			1 8						2				-	200
72	1380	1387	1404 1385	1382	1401	1399	1397	1395	1393	1391	0	0	I	I	I	I	I	2 2	2 2
78	1370	1368	1366	1364	1362	1361	1359	1357	1355	1353	0	0	ī	I	I	I	I	2	2
74	1351	1350	1348	1346	1344	1342	1340	1339	1337	1335	0	0	I	I	I	I	I	I	2
75	1333	1332	1330	1328	1326	1325	1323	1321	1319	1318	0	0	I	I	I	I	I	I	2
76			1312									0	I	1	I	I	I	I	2
77			1295									0	0	I	I	I	I	I	I
78 79			1279 1263									0	0	I	II	I	I	I	I
80	1.00		1247	1 1		Contract of	1000	15 8 2 P	100.00	1000	1.1		0	I	I	I	I	I	I
81	1	1 10	1000		0.00	1.1.1	1.0.1.1	1 2 3 1	01222	02.00			0						
82	1235	1233	1232 1217	1230	1229	1227	1225	1224	1222	1221	0	0	0	I	I	I	I	I	I
83	1205	1203	1202	1200	1199	1198	1196	1195	1193	1192	0	0	0		I	I	ī	I	I
84	6	1.14	1188	1212	2002	1.54	1 2 1	1.6.1	10 6 6	100.00					I	I	I	I	I
85	1176	1175	1174	1172	1171	1170	1168	1167	1166	1164	0	0	0	I	I	I	I	I	I
86	1163	1161	1160	1159	1157	1156	1155	1153	1152	1151	0	0	0	I	I	I	I	I	I
87 88			1147										0	I	I	I	I	I	I
89	1124	1135	1134 1121	1133	1131	1130	1129	1127	1120	1125	0	0	0	1	I	I	I	I	I
	. F	1	1109	1.11				0.613		11.61	100			I	1	I	I	I	I
91	1000	1008	1096	1005	1004	1003	1002	1001	1080	1088	0	0	0	0	I	I	I	I	I
92	1087	1086	1085	1083	1082	1081	1080	1079	1078	1076	0	0	0	0	1.00	I	I	I	I
93	1075	1074	1073	1072	1071	1070	1068	1067	1066	1065	0	0		0	1251	1	I	I	I
94	1064	1063	1062	1060	1059	1058	1057	1056	1055	1054	0	0	0	0	1	1	I	I	I
95	1053	1052	1050	1049	1048	1047	1046	1045	1044	1043	0	0	0	0	I	I	I	I	I
96			1040										0	0	I	I	I	1	I
97	1031	1030	1029	1028	1027	1026	1025	1024	1022	1021	0	0	0	100	I	I	I	I	I
98 99	1020	1019	1018 1008	1017	1016	1015	1014	1013	1012	1001	0	0	0	0	1000	I	I	I	I
		1009	1000	1007		1005	1004	1003	1002					Ĭ			-	-	20
	0		2	8	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
	0	1	4	0	4	5	0		0	9	1	Sub	otra	ict	Di	ffer	enc	es.	
											-					-		-	

SQUARES

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
1.0	1.000	1'020	1.040	1'061	1.082	1.103	1.124	1.145	1.166	1.188	2	4	6	8	10	13	15	17	19
1·1 1·2						1.323						55						18 20	
1·3 1·4	1.900	1.210	1'742	1.769	1.200	1.823	1.850	1.872	1'904	1.935	3	56	8	II	13	16	19	22 23	24
1.2					1000	2.403		10000	100					1				25	
1.6 1.7 1.8	2.890	2'924	2.928	2.993	3.058	2.723 3.063 3.423	3.008	3.133	3.108	3'204	3	7	10 10 11	14	17	21	24	28	31
1.9	3.010	3.648	3.686	3.725	3.764	3.803	3.842	3.881	3.920	3.960	4	8	12	16	19	23	27	31	35
2·0	4.000				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Les alter					12	10					
2·2 2·3	4.840	4'884	4'928	4'973	5'018	4.623 5.063 5.523	5'108	5153	5.108	5'244	4	9	13 13 14	18	22	27	31	36	40
2·4 2·5	5.200	5.808	5.856	5.902	5.954	6.003	6.022	6.101	6.120	6.200	5	10	15	20	24	29	34	39	44
	6·250 6·760	6.812	6.864	6.917	6.970	7'023	7.076	7.129	7.182	7.236	5	11	16	21	26	32	37	42	48
2.7 2.8	7°290 7°840	7:344 7:896	7.398	7'453	7.508	7.563 8.123	7.618	7.673	7.728 8.294	7.784	56	II II	16 17	22	27 28	33 34	38 40	44 46	49 51
	8·410 9·000		and the																
3.1 {	9.610	9.672	9.734	9.797	9.860	9 923	9.986	10.02	10.11	10.18		13	19 2	25				50	57
3·2 3·3	10.89	10.00	11'02	11.00	11.10	10.26	11.39	10.69	10.76	10.82 11.49	I I	I I I	2 2	0 00 00 00	in co co	4444	555	5556	6
3·4 3·5	11.20	1101			1286	11.00						I	2	3 3		4	5 5	6	6
3.6	12.96	13.03	13.10	13.18	13.25	13.32	13.40	13.47	13:54	13-62	I	I	2		4	4	5	6	7
	13:09 14:44 15:21	14'52	14'59	14.67	14.75		14'90	14'98	15.02	15.13	I	2 2 2	2 2 2	in in in	4 4 4	455	556	066	777
4 ·0		1.1		1.1.1.2		16.40	1.000	and the				2	2	3	4	5	6	6	7
4·1 4·2	16.81	16.89	16.97	17.06	17.14	17.22	17.31	17.39	17:47	17.56	II	2 2	23	33	4	55	6 6	777	78
	18.49 19.36	18.28	18.66	18.75	18.84	18.92	19.01	19.10	19.18	19'27	I	2 2	2 3 3 3	33334	4	5555	6	7 7	8
4.2	20.22	20.34	20.43	20.22	20.61	20'70	20.79	20.88	20.98	21.02	I	2	3	4	5	5	6	7	8
4.6	22.09	22.18	22.28	22.37	22'47		22.66	22.75	22.85	22'94	I	2 2	333	4 4	5	6 6	777	788	8 9
4·8 4·9	23'04 24'01											2 2	33	4 4	55	6	777	88	9 9
5.0	1.19	1.1		18 0		25.20	and a la	in and	1 and a	1201.1		2	3	4		6	7	8	9
5·1 5·2 5·3	27'04	27'14	27.25	27:35	27:46	26.52 27.56 28.62	27.67	27.77	27.88	27.98	I	2 2 2	333	444		666	7777	8 8 9	9 9 10
5.4	29.16	29.27	29.38	29.48	29.59	29.70	29.81	29.92	30.03	30.14	I	2	3	4	5	7	8		10
	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9

SQUARES

2.2	0	1	2	3	4	5	6	7	8	9	1	2	3 4	5	6	7	8	9
5.2	30.25	30.36	30.47	30.28	30.69	30.80	30.91	31 '02	31.14	31.25	I	2	3 4	6	7	. 8	9	10
5.6						31.92						2			7	8	~	10
5·7 5·8						33'06						2 2		6		8		IO
5.9						35.40						2	4 3	6		. 8	10	II
6.0	36.00	36.13	36.24	36.36	36.48	36.60	36.72	36.84	36.97	37.09	I	2	4 5	6	7	8	10	11
6.1	37.21	37.33	37.45	37.58	37.70	37.82	37'95	38.07	38.19	38.32	I	2		6	1 5		10	
6·2 6·3						39°06 40°32						33	4	6	1 12		10 10	
6.4						41.00						3	4		8		10	
6.2	42.25	42.38	42.21	42.64	42.77	42.90	43'03	43.16	43.30	43.43	I	3	4 :	5 7	8	9	10	12
6.6	43.56	43.69	43.82	43.96	44.09	44'22	44.36	44.49	44.62	44.76	I	3	4	5 7	8		II	
6.7	44.89	45'02	45'16	45'29	45'43	45'56	45'70	45.83	45'97	46'10	I	3	4 !	5 7	8	9		
6·8 6·9						46'92 48'30						33	4	5 7	0	10 10		1000
7.0						49'70						3		11				13
7.1	50'41	50'55	50.60	50.84	50.08	51.12	51.27	51'41	51.55	51 70	I	3	4	5 7	9	10	II	13
7.2	51.84	51.98	52.13	52.27	52.42	52.26	52.71	52.85	53.00	53'14	I	3	4 1	5 7	9			13
7·3 7·4						54'02 55'50						33		5 7	9	10 10		
7.5						57.00		1	1			3		5 8				14
7.6	57.76	57'01	18:06	18:22	58.27	58.52	\$8.68	E8.82	18:08	50'14	2	3	5 (5 8	0	II	12	14
7.7	59.29	59'44	59.60	59'75	59.91	60.00	60'22	60.37	60.53	60.68	2	3	5 (5 8	9	II	12	14
7.8						61'62						3		5 8				14
8.0	1.2		1			63°20		100				3	-					14
0.4	100000		1.000	Concerned a	100000	1000			1.000	100000								
8·1 8·2						66.42 68.06						3 2	5 1					15
8.3	68.89	69.00	69.22	69.39	69.56	69.72	69.89	70'06	70'22	72.39	2	3	5	8	10	12	13	15
8.4			1		1000	71.40		100						8				
8.2	72.25	72 42	72.59	72.70	72.93	73.10	73-27	73.44	73.02	73 79	2	3	5. 1	.9	10	12	14	15
8.6						75.82						3	5 1			12		
8·7 8·8						76.56 78.32						4	5 5			12 12		
8.9	79.21	79'39	79.57	79.74	79.92	80.10	80.28	80.46	80.64	80.82	2		5 5	9		13		
9.0						81.90						4	5 1			13		
9·1 9·2	82.81	82.99	83.17	83.36	83.54	83.72 85.56	83.91	84.09	84'27	84.46	2	4	56			13		
9.3	86.49	86.68	86.86	87.05	87.24	87.42	87.61	87.80	87.98	88.17	2	4 4	6	99	II	13 13	15	17
9.4	88.36	88.55	88.74	88.92	89.11	89.30	89.49	89.68	89.87	90.06	2	4	6 8	99	II	13	15	17
9.2	90.25	90.44	90.63	90.82	91.01	91.30	91.39	91.28	91.78	91.97	2	4		8 10				
9.6	92.16	92.35	92'54	92.74	92.93	93.12	93.32	93.51	93.70	93.90	2	4	6 5	10	12	14	15	17
9·7 9·8	94'09	94'28	94'48	94.67	94.87	95.06	95'26	95'45	95.65	95.84	2	4		8 10 8 10				
9.9	98.01	98.21	98.41	98.60	98.80	97'02 99'00	99'20	99.40	99.60	99.80	2	4		8 10				
	0	-1	2	3	4	5	6	7	8	9	1	2	3	1 5	6	7	8	9

NATURAL SINES

8 8	0'	6'	12'	18′	24'	30'	36′	42'	48'	54′	1'	2'	3' 4	5'
0°	.00000	.0012	.0032	.0052	.0070	.0087	.0102	.0122	.0140	.01 57	3	6	9 12	15
1 2 3	·0175 •0349 ·0523	0192 0366 0541	0209 0384 0558	0227 0401 0576	0244 0419 0593	0262 0436 0610	0279 0454 0628	0297 0471 0645	0314 0488 0663	0332 0506 0680	333	6 6 6	9 12 9 12 9 12	2 15
4	.0698	0715	0732	0750	0767	0785	0802	0819	0837	0854	3	6	9 12	2 14
5 6	·0872	0889	0906 1080	0924 1097	0941	0958	0976	0993	1011	1028	3	6	9 12	
7 8 9	·1219 ·1392 ·1564	1236 1409 1582	1253 1426 1599	1271 1444 1616	1288 1461 1633	1305 1478 1650	1323 1495 1668	1340 1513 1685	1357 1530 1702	1374 1547 1719	5000	1.1	9 12 9 12 9 11	2 14
10	.1236	1754	1771	1788	1805	1822	1840	1857	1874	1891	3	6	9 11	14
11 12 13 14	1908 2079 2250 2419	1925 2096 2267 2436	1942 2113 2284 2453	1959 2130 2300 2470	1977 2147 2317 2487	1994 2164 2334 2504	2011 2181 2351 2521	2028 2198 2368 2538	2045 2215 2385 2554	2062 2233 2402 2571	3333	6	9 11 9 11 8 11 8 11	14 14
15	-2588	2605	2622	2639	2656	2672	2689	2706	2723	2740	3	6	8 11	14
16 17 18 19	·2756 ·2924 ·3090 ·3256	2773 2940 3107 3272	2790 2957 3123 3289	2807 2974 3140 3305	2823 2990 3156 3322	2840 3007 3173 3338	2857 3024 3190 3355	2874 3040 3206 3371	2890 3057 3223 3387	2907 3074 3239 3404	3333	6 6	8 11 8 11 8 11 8 11	14
20	'3420	3437	3453	3469	3486	3502	3518	3535	3551	3567	3	5	8 11	14
21 22 23 24	·3584 ·3746 ·3907 ·4067	3600 3762 3923 4083	3616 3778 3939 4099	3633 3795 3955 4115	3649 3811 3971 4131	3665 3827 3987 4147	3681 3843 4003 4163	3697 3859 4019 4179	3714 3875 4035 4195	3730 3891 4051 4210	3333	5 5	8 11 8 11 8 11 8 11 8 11	13 13
25	•4226	4242	4258	4274	4289	4305	4321	4337	4352	4368	3	5	8 11	13
26 27 28 29	'4384 '4540 '4695 '4848	4399 4555 4710 4863	4415 4571 4726 4879	4431 4586 4741 4894	4446 4602 4756 4909	4462 4617 4772 4924	4478 4633 4787 4939	4493 4648 4802 4955	4509 4664 4818 4970	4524 4679 4833 4985	33333	5 5	8 10 8 10 8 10 8 10 8 10	13
30	.2000	5015	5030	5045	5060	5075	5090	5105	5120	5135	3	5	8 10	13
31 32 33 34	·5150 ·5299 ·5446 ·5592	5165 5314 5461 5606	5180 5329 5476 5621	5195 5344 5490 5635	5210 5358 5505 5650	5225 5373 5519 5664	5240 5388 5534 5678	5255 5402 5548 5693	5270 5417 5563 5707	5284 5432 5577 5721	2 2 2 2 2	5	7 10 7 10	12 12 12 12 12
35	.5736	5750	5764	5779	5793	5807	5821	5835	5850	5864	2	5	79	12
36 37 38 39	·5878 ·6018 ·6157 ·6293	5892 6032 6170 6307	5906 6046 6184 6320	5920 6060 6198 6334	5934 6074 6211 6347	5948 6088 6225 6361	5962 6101 6239 6374	5976 6115 6252 6388	5990 6129 6266 6401	6004 6143 6280 6414	2 2 2 2 2	5 5	7 - 9 7 9 7 9 7 9 7 9	
40	·6428	6441	6455	6468	6481	6494	6508	6521	6534	6547	2	4	79	11
41 42 43 44	·6561 ·6691 ·6820 ·6947	6574 6704 6833 6959	6587 6717 6845 6972	6600 6730 6858 6984	6613 6743 6871 6997	6626 6756 6884 7009	6639 6769 6896 7022	6652 6782 6909 7034	6665 6794 6921 7046	6678 6807 6934 7059		4 6 4 6	5 9 8	11 11 11 10
	0'	6′	12'	18'	24′	30 [′]	86′	42'	48′	54′	1'	2' 8	3′ 4′	5'

	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	11	2'	3'	4	5'
10.10				10								-		_	
45°	.2071	.7083	.7096	.7108	.7120	.2133	.7145	.7157	.7169	.2181	2	4	6	8	10
46 47	·7193 ·7314	7206	7218 7337	7230 7349	7242 7361	7254 7373	7266	7278 7396	7290 7408	7302	2	4	6	8 8	10 10
48 49	7431	7443	7455	7466	7478	7490	7501	7513	7524	7536	2	4	66	8	IO
50	7547	7559	7570	7581	7593	7604	7615		7638	7649	2	4			9
	.7660	7672	7683	7694	7705	7716	7727	7738	7749	7760	2	4	6	7	9
51 52	.7771 .7880	7782 7891	7793 7902	7804 7912	7815 7923	7826 7934	7837 7944	7848 7955	7859 7965	7869 7976	22	4 4	55	777	9 9
53 54	·7986 ·8090	7997 8100	8007 8111	8018 8121	8028 8131	8039 8141	8049 8151	8059 8161	8070 8171	8080 8181	22	33	5555	77	8
55	.8192	8202	8211	8221	8231	8241	8251	8261	8271	8281	2	3	5	7	8
56	.8290	8300	8310	8320	8329	8339	8348	8358	8368	8377	2	3	5	6	8
57 58	·8387 ·8480	8396 8490	8406 8499	8415 8508	8425 8517	8434 8526	8443 8536	8453 8545	8462 8554	8471 8563	22	333	555	6	8
59	.8572	8581	8590	8599	8607	8616	8625	8634	8643	8652	I	3	4	6	7
60	·8660	8669	8678	8686	8695	8704	8712	8721	8729	8738	I	3	4	6	7
61 62	·8746 ·8829	8755 8838	8763 8846	8771 8854	8780 8862	8788 8870	8796 8878	8805 8886	8813 8894	8821 8902	I	3	4	6	7
63 64	·8910 ·8988	8918	8926	8934	8942	8949	8957	8965	8973	8980	I	5000	4 4	555	766
65	and and	8996	9003	9011	9018	9026	9033	9041	9048	9056	I	3	4		
100	·9063	9070	9078	9085	9092	9100	9107	9114	9121	9128	I	2	4	5	6
66 67	'9135 '9205	9143 9212	9150 9219	9157 9225	9164 9232	9171 9239	9178 9245	9184 9252	9191 9259	9198 9265	I I	2 2	33	54	6
68 69	·9272 ·9336	9278 9342	9285 9348	9291 9354	9298 9361	9304 9367	9311 9373	9317 9379	9323 9385	9330 9391	I I	2 2	33	4 4	55
70	.9397	9403	9409	9415	9421	9426	9432	9438	9444	9449	I	2	3	4	5
71	.9455	9461	9466	9472	9478	9483	9489	9494	9500	9505	I	2	3	4	5
72 78	'9511 '9563	9516 9568	9521 9573	9527 9578	9532 9583	9537 9588	9542 9593	9548 9598	9553 9603	9558 9608	I I	2 2	32	200	4
74	.9613	9617	9622	9627	9632	9636	9641	9646	9650	9655	I	2	2	3	4
75	•9659	9664	9568	9673	9677	9681	9686	9690	9694	9699	I	I	2	3	4
76 77	·9703 ·9744	9707 9748	9711 9751	9715 9755	9720 9759	9724 9763	9728 9767	9732 9770	9736 9774	9740 9778	I	I I	2 2	33	3
78 79	·9781 ·9816	9785	9789	9792	9796	9799	9803	9806	9810	9813	I	I	2	2	33
80	·9848	9820	9823	9826	9829	9833 9863	9836 9866	9839 9869	9842	9845	1	I	2	2	3
		9851	9854	9857	9860				9871	9874	0	I	I	2	2
81 82	·9877 ·9903	9880 9905	9882 9907	9885 9910	9888 9912	9890 9914	9893 9917	9895 9919	9898 9921	9900 9923	0	II	I	2 2	2 2
83 84	'9925 '9945	9928 9947	9930 9949	9932 9951	9934 9952	9936 9954	9938 9956	9940 9957	9942 9959	9943 9960	0	I I	I I	I I	2 1
85	.9962	9963	9965	9966	9968	9969	9971	9972	9973	9974	0	0	I	I	I
86	·9976	9977	9978		9980	9981	9982	9983	9984	9985		0		I	
87	'9986	9987	9988	9979 9989	9990	9990	9991	9992	9993	9993	0	0	0	I	I
88 89	*9994 *9998	9995 9999	9995 9999	9996 9999	9996 9999	9997 1'000	9997 1'000	9997 1'000	9998	9998 1'000	0	0	0	0	0
	-	120		100	-	1 102	1 -20	-				2.52		-	-
2001	0′	6'	12'	18'	24'	30′	36'	42'	48'	54'	1'	2'	3'	4'	5'

NATURAL COSINES

Subtract Differences. 54' 0' 12' 6' 18' 24'30' 36' 42' 48' 1' 2' 3' 4' 5' 0° 1'000 1'000 1'000 I'000 1.000 1'000 '99999 .9999 '9998 T I I I I I I I '9903 I I I I I I I I I I I I I I I .9272 т I I I .8829 I .8746 I .8660 .8480 .8290 .8192 .7880 .7660 1' 2' 3' 4' 5' 0' 42' 6' 12' 30' 18' Subtract

Differences.

NATURAL COSINES

	1	1					1					ubt		
A De	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'		fere 2' 3	-	5'
45°	.7071	.7059	.7046	.7034	.7022	.7009	.6997	·6984	.6972	.6959	2 4	+ 6	8	10
46	.6947	6934	6921	6909	6896	6884	6871	6858	6845	6833	2 4	+ 6		11
47 48	·6820 ·6691	6807 6678	6794 6665	6782 6652	6769 6639	6756 6626	6743 6613	6730 6600	6717 6587	6704 6574	1.00	6		II II
49	·6561	6547	6534	6521	6508	6494	6481	6468	6455	6441	1.10		3	200 B
50	.6428	6414	6401	6388	6374	6361	6347	6334	6320	6307	2 4	+ 7	9	11
51	.6293	6280	6266	6252	6239	6225	6211	6198	6184	6170	2	; 7	9	11
52	.6157	6143	6129	6115	6101	6088	6074	6060	6046	6032	2	7		12
53 54	·6018 ·5878	6004 5864	5990 5850	5976 5835	5962 5821	5948 5807	5934 5793	5920 5779	5906 5764	5892 5750	2	5 7		12 12
55	.5736	5721	5707	5693	5678	5664	5650	5635	5621	5606	2 !	5 7	10	12
56	.5592	5577	5563	5548	5534	5519	5505	5490	5476	5461	2	5 7	10	12
57	.2446	5432	5417	5402	5388	5373	5358	5344	5329	5314	2 !	5 7	10	12
58 59	·5299 ·5150	5284 5135	5270 5120	5255 5105	5240 5090	5225 5075	5210 5060	5195 5045	5180 5030	5165	2	7 8		12 13
								1.1.1.1.1.1.1			3.			
60	.2000	4985	4970	4955	4939	4924	4909	4894	4879	4863	199	5 8		13
61 62	·4848 ·4695	4833 4679	4818 4664	4802 4648	4787 4633	4772 4617	4756 4602	4741 4586	4726 4571	4710 4555	3	8 8		13
63	4540	4524	4509	4493	4478	4462	4446	4431	4415	4399	3	0		
64	.4384	4368	4352	4337	4321	4305	4289	4274	4258	4242		; 8	11	13
65	•4226	4210	4195	4179	4163	4147	4131	4115	4099	4083	3	; 8	11	13
66	•4067	4051	4035	4019	4003	3987	3971	3955	3939	3923	3 5	8		14
67 68	·3907 ·3746	3891 3730	3875 3714	3859 3697	3843 3681	3827 3665	3811 3649	3795 3633	3778	3762 3600	3 3			14 14
69	.3584	3567	3551	3535	3518	3502	3486	3469	3453	3437	3 3			
70	.3420	3404	3387	3371	3355	3338	3322	3305	3289	3272	3 5	8	11	14
71	.3256	3239	3223	3206	3190	3173	3156	3140	3123	3107	3 6			
72	.3090	3074	3057	3040 2874	3024	3007 2840	2990	2974	2957	2940	3 6		11	
73 74	·2924 ·2756	2907 2740	2890 2723	2706	2857 2689	2672	2823 2656	2807 2639	2790 2622	2773 2605	3 6	8	II II	14
75	.2588	2571	2554	2538	2521	2504	2487	2470	2453	2436	3 6		11	
102,004			2385	2368										22
76 77	'2419 '2250	2402 2233	2305	2308	2351 2181	2334 2164	2317 2147	2300 2130	2284	2267 2096	3 6		II II	14
78	2079	2062	2045	2028	2011	1994	1977	1959	1942	1925	3 6	9	II	14
79	.1908	1891	1874	1857	1840	1822	1805	1788	1771	1754	3 6	9	11	14
80	.1736	1719	1702	1685	1668	1650	1633	1616	1599	1582	3 6	9	11	14
81	1564	1547	1530	1513	1495	1478	1461	1444	1426	1409	3 6	1	12	
82 83	'1392 '1219	1374 1201	1357 1184	1340 1167	1323 1149	1305 1132	1288	1271 1097	1253 1080	1236	3 6	-	12 12	
84	.1045	1028	1011	0993	0976	0958	0941	0924	0906	0889	3 6	0.00	12	
85	.0872	0854	0837	0819	0802	0785	0767	0750	0732	0715	3 6	9	12	14
86	·0698	0680	0663	0645	0628	0610	0593	0576	0558	0541	3 6	· · · · ·	12	15
87 88	·0523	0506	0488	0471 0297	0454 0279	0436	0419 0244	040I 0227	0384	0366	3 6			15
89	.0349 .0175	0332 0157	0314 0140	0122	0105	0087	0070	0052	0209	0192	3 6	-	12 12	
				-	19%					201	1' 2	3	4'	5'
	0′	6'	12'	18'	24'	30'	36'	42'	48'	54'		abtr		-
					9					1		ere		

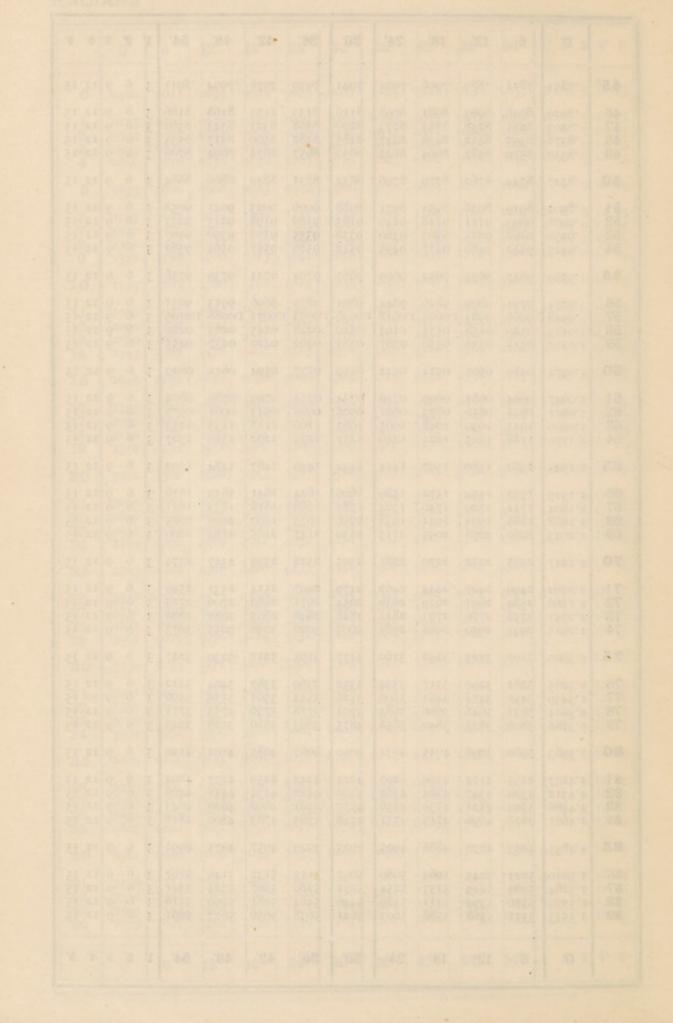
NATURAL TANGENTS

2015 0 001 6 1 8	0'	6'	12′	18′	24'	30'	36'	42'	48'	54'	1'	2'	3′	4'	5'
0°	.0000	.0012	.0035	.0052	.0070	.0087	.0102	.0122	.0140	.0157	3	6	9	12	15
1 2 3	.0175 .0349 .0524	0192 0367 0542	0209 0384 0559	0227 0402 0577	0244 0419 0594	0262 0437 0612	0279 0454 0629	0297 0472 0647	0314 0489 0664	0332 0507 0682	333	666	9	12	15 15 15
4	·0699	0717	0734	0752	0769	0787	0805	0822	0840	0857	3	6	-	12	100 March 100 Ma
5	·0875	0892	0910	0928	0945	0963	0981	0998	1016	1033	3	6	-	12	
6 7 8 9	1051 1228 1405	1069 1246 1423	1086 1263 1441	1104 1281 1459	1122 1299 1477	1139 1317 1495	1157 1334 1512	1175 1352 1530	1192 1370 1548	1210 1388 1566	3330	6666	99	12	15 15
10	·1584 ·1763	1602 1781	1620 1799	1638 1817	1655 1835	1673 1853	1691 1871	1709	1727 1908	1745 1926	3	6		12	
11	.1944	1962	1980	1998	2016	2035	2053	2071	2089	2107	3	6	-	12	
12 13 14	·2126 ·2309 ·2493	2144 2327 2512	2162 2345 2530	2180 2364 2549	2199 2382 2568	2217 2401 2586	2235 2419 2605	2254 2438 2623	2272 2456 2642	2290 2475 2661	333	666	9	12 12 12	
15	•2679	2698	2717	2736	2754	2773	2792	2811	2830	2849	3	6	9	13	16
16 17 18 19	·2867 ·3057 ·3249 ·3443	2886 3076 3269 3463	2905 3096 3288 3482	2924 3115 3307 3502	2943 3134 3327 3522	2962 3153 3346 3541	2981 3172 3365 3561	3000 3191 3385 3581	3019 3211 3404 3600	3038 3230 3424 3620	3333	6	10 10	13 13 13 13	16 16
20	.3640	3659	3679	3699	3719	3739	3759	3779	3799	3819	3			13	-
21 22 23 24	·3839 ·4040 ·4245 ·4452	3859 4061 4265 4473	3879 4081 4286 4494	3899. 4101 4307 4515	3919 4122 4327 4536	3939 4142 4348 4557	3959 4163 4369 4578	3979 4183 4390 4599	4000 4204 4411 4621	4020 4224 4431 4642	3334	7	10 10	13 14 14 14	17 17
25	.4663	4684	4706	4727	4748	4770	4791	4813	4834	4856	4	7	11	14	18
26 27 28 29	·4877 ·5095 ·5317 ·5543	4899 5117 5340 5566	4921 5139 5362 5589	4942 5161 5384 5612	4964 5184 5407 5635	4986 5206 5430 5658	5008 5228 5452 5681	5029 5250 5475 5704	5051 5272 5498 5727	5073 5295 5520 5750	4 4 4	78	11 11	15 15 15 15	18 19
30	.5774	5797	5820	5844	5867	5890	5914	5938	5961	5985	4	8	12	16	20
31 32 33 34	·6009 ·6249 ·6494 ·6745	6032 6273 6519 6771	6056 6297 6544 6796	6080 6322 6569 6822	6104 6346 6594 6847	6128 6371 6619 6873	6152 6395 6644 6899	6176 6420 6669 6924	6200 6445 6694 6950	6224 6469 6720 6976	4 4 4	88	12 13	16 16 17 17	20 21
35	.7002	7028	7054	7080	7107	7133	7159	7186	7212	7239	4	9	13	18	22
36 37 38 39	7265 7536 7813 8098	7292 7563 7841 8127	7319 7590 7869 8156	7346 7618 7898 8185	7373 7646 7926 8214	7400 7673 7954 8243	7427 7701 7983 8273	7454 7729 8012 8302	7481 7757 8040 8332	7508 7785 8069 8361	-	9	14 14	18 18 19 20	23 24
40	·8391	8421	8451	8481	8511	8541	8571	8601	8632	8662	5 1	0	15	20	25
41 42 43 44	*8693 *9004 *9325 *9657	8724 9036 9358 9691	8754 9067 9391 9725	8785 9099 9424 9759	8816 9131 9457 9793	8847 9163 9490 9827	8878 9195 9523 9861	8910 9228 9556 9896	8941 9260 9590 9930	8972 9293 9623 9965	5 1	II	16 :	21 21 22 23	27 28
101	0'	6'	12′	18′	24'	80'	36′	42'	48′	54'	1′ \$	2' :	3'	4'	5'

NATURAL TANGENTS

1		1								-		-	-		
	0′	6'	12'ı	18′	24'	30′	36′	42'	48'	54'	1'	2'	3'	4'	5'
45°	1,0000	.0035	.0070	.0102	·0141	·0176	.0212	·0247	·0283	·0319	6	13	18	24	30
46	1.0322	0392	0428	0464	0501	0538	0575	0612	0649	0686	6		18	25	31
47 48	1'0724	0761	0799 1184	0837 1224	0875 1263	0913	0951	0990 1383	1028 1423	1067 1463		13	19 20	25 27	32
49	1'1504	1544	1585	1626	1667	1708	1750	1792	1833	1875		14	21	28	33 34
50	1.1918	1960	2002	2045	2088	2131	2174	2218	2261	2305	7	14	22	29	36
51	1'2349	2393	2437	2482	2527	2572	2617	2662	2708	2753	8	15	23	30	38
52	1.2799	2846	2892	2938	2985	3032	3079	3127	3175	3222	8	16	24	31	39
58 54	1'3270 1'3764	3319 3814	3367 3865	3416 3916	3465 3968	3514 4019	3564 4071	3613	3663 4176	3713 4229	89	16 17	25 26	33 34	41 43
55	1.4281	4335	4388	4442	4496	4550	4605	4659	4715	4770	9		27	36	45
56	1.4826	4882	2028	1001	FOFT	5108	5166	5224	5282	5340	In	10	20	38	48
57	1.5399	5458	4938 5517	4994 5577	5051 5637	5697	5757	5224 5818	5880	5941		0.000	29 30	40	50
58	1'6003	6066	6128	6191	6255	6319	6383	6447	6512	6577		21	32	43	53
59	1.6643	6709	6775	6842	6909	6977	7045	7113	7182	7251	11	23	34	45	57
60	1.7321	7391	7461	7532	7603	7675	7747	7820	7893	7966			36	48	60
61 62	1.8040	8115	8190	8265	8341	8418	7495	8572	8650	8728			38	51	64 68
63	1.8807	8887 9711	8967 9797	9047 9883	9128	9210 2'0057	9292 2'0145	9375 2'0233	9458	9542 2 041 3	10 A 10 A 10 A		41 44	55 58	73
64	2.0503	0594	0686	0778	0872	0965	1060	1155	1251	1348			47	63	79
65	2.1445	1543	1642	1742	1842	1943	2045	2148	2251	2355	17	34	51	68	85
66	2.2460	2566	2673	2781	2889	2998	3109	3220	3332	3445	18	37	55	73	92
67 68	2.3559	3673	3789	3906	4023	4142	4262	4383	4504	4627		40	60	79	99
69	2°4751 2°6051	4876 6187	5002 6325	5129 6464	5257 6605	5386 6746	5517 6889	5649 7034	5782 7179	5916 7326	10000	37.50	65 71	87 95	108 119
70	2.7475	7625	7776	7929	8083	8239	8397	8556	8716	8878	26	52	78	105	131
71	2'9042	9208	9375	9544	9714	9887	3'0061	3.0237	3.0415	3.0595	29	58	87	116	145
72 73	3.0777	0961	1146	1334	1524	1716	1910	2106	2305	2506	32	64			
74	3°2709 3°4874	2914 5105	3122 5339	3332 5576	3544 5816	3759 6059	3977 6305	4197 6554	4420 6806	4646 7062					
75	3.7321	7583	7848	8118	8391	8667	8947	9232	9520	9812					
76	4'0108	0408	0713	1022	1335	1653	1976	2303	2635	2972	-	-			-
77	4'3315	3662	4015	4374	4737	5107	5483	5864	6252	6646					
78 79	4.7046	7453	7867	8288	8716	9152	9594	5'0045	5.0204						28
	5.1446	1929	2422	2924	3435	3955	4486	5026	5578	6140					11
80	5.6713		7894	8502	9124	10/2	6.0402	6.1066							
81 82	6.3138		4596	5350	6122	6912	7720	8548 8062	9395	7.0264 8.0285	Me	ean	diff	ferer	ices
83	8.1443	2636	3002 3863	3962 5126	4947 6427	5958 7769		9.0579	2.20	0 0000	n	0 1	onge	er s	utti-
84	9.214	9.677	9.845	10'02	10 20	10.39				11.30		ent	ly a	ccur	ate.
85	11.43	11.66	11.91	12.19	12.43	12.71	13.00	13.30	13.62	13.95					
86	14.30		15.06		15.89			17'34	17.89	18.46					
87	19.08	19'74	20'45	21.20	22'02	22'90	23.86	24'90	26.03	27'27					
88 89	28.64 57.29		31.82	33.09			40'92 143'2		47'74 286'5	52°08 573°0					
1															
1	0′	6′	12'1	18′	24′	30'	36'	42'	48'	54'					

L


RADIANS

	0'	6'	12'	18′	24'	30'	36'	42'	48'	54'	1	2	3	4	ʻ 5'
0	'0000	.0017	.0035	.0052	.0070	.0087	.0102	.0122	.0140	.0157	3	6	9	1:	2 15
1 2 3	·0175 ·0349 ·0524	0192 0367 0541	0209 0384 0559	0227 0401 0576	0244 0419 0593	0262 0436 0611	0279 0454 0628		0314 0489 0663	0332 0506 0681	333	666	9 9 9	12	
4	·0698	0716	0733	0750	0768	0785	0803	0820	0838	0855	3	6	9	12	15
5	·0873	0890	0908	0925	0942	0960	0977 1152	0995	1012	1030 1204	3	6	9		15
6 7 8	·1222 ·1396	1239 1414	1257 1431	1274 1449	1292 1466	1309 1484	1326 1501	1344 1518	1361 1536	1379	33	6	999	12	15
9	1571	1588	1606	1623	1641	1658	1676	1693	1710	1728	3	6	1		15
10	·1745 ·1920	1763 1937	1780 1955	1798 1972	1815 1990	1833 2007	1850 2025	1868 2042	1885 2059	1902 2077	3	6	9	12	15
12 13	·2094 ·2269	2112 2286	2129	2147 2321	2164	2182 2356	2199	2217	2234	2251	332	6 6	9	12	15
14	•2443	2461	2478	2496	2339 2513	2531	2374 2548	2391 2566	2409 2583	2426 2601	33	6		12	15
15	·2618	2635	2653	2670	2688	2705	2723	2740	2758	2775	3	6			15
16 17	·2793 ·2967	2810 2985	2827 3002	2845 3019	2862 3037	2880 3054	2897 3072	2915 3089	2932 3107	2950 3124	33	66	9	12	15 15
18 19	·3142 ·3316	3159 3334	3176 3351	3194 3368	3211 3386	3229 3403	3246 3421	3264 3438	3281 3456	3299 3473	33	6		12	15 15
20	·3491	3508	3526	3543	3560	3578	3595	3613	3630	3648	3	6	9	12	15
21 22	·3665 ·3840	3683 3857	3700 3875	3718 3892	3735 3910	3752 3927	3770 3944	3787 3962	3805 3979	3822 3997	33	6	9	12 12	15 15
23 24	•4014 •4189	4032 4206	4049 4224	4067 4241	4084 4259	4102 4276	4119 4294	4136 4311	4154 4328	4171 4346	33	6	-	12	15 15
25	4363	4381	4398	4416	4433	4451	4468	4485	4503	4520	3	6	9	12	15
26 27	·4538 ·4712	4555 4730	4573 4747	4590 4765	4608 4782	4625 4800	4643 4817	4660 4835	4677 4852	4695 4869	33	6		12 12	15 15
28 29	'4887 '5061	4904 5079	4922 5096	4939 5114	4957 5131	4974 5149	4992 5166	5009 5184	5027 5201	5044 5219	33	6		12	
30	.2236	5253	5271	5288	5306	5323	5341	5358	5376	5393	3	6	9	12	15
31 32	·5411 ·5585	5428 5603	5445 5620	5463 5637	5480 5655	5498 5672	5515 5690	5533 5707	5550 5725	5568 5742		6	9	12.	15
33 34	·5760 ·5934	5777 5952	5794 5969	5812 5986	5829 6004	5847 6021	5864 6039	5882 6056	5899 6074	5917 6091		6	91		15 15
35	.6109	6126	6144	6161	6178	6196	6213	6231	6248	6266			9 1	12	15
36 37	·6283 ·6458	6301 6475	6318 6493	6336 6510	6353 6528	6370 6545	6388 6562	6405 6580	6423 6597	6440 6615	3		-	12	15 15
38 89	°6632 '6807	6650 6824	6667 6842	6685 6859	6702 6877	6720 6894	6737 6912	6754 6929	6772 6946	6789	3		91		
40	·6981	6999	7016	7034	7051	7069	7086	7103	7121	7138	3	6	9 1	12	15
41 42	·7156 ·7330	7173 7348	7191 7365	7208	7226	7243	7261 7435	7278 7453	7295 7470	7313	<i>v</i>	-	91		15
43 44	·7505 ·7679	7522 7697	7540 7714	7557 7732	7575 7749	7592 7767	7610 7784	7627 7802	7645 7819	7662	3	6	-	2	15
	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1'	2'	3'	4'	5'

RADIANS

	0'	6'	12'	18′	24′	30′	36'	42′	48'	54′	1'	2'	3'	4'	5'
4 5°	.7854	.7871	•7889	.7906	.7924	.7941	.7959	.7976	.7994	·8011	3	6	9	12	15
46 47	·8029 ·8203	8046 8221	8063 8238	8081 8255	8098 8273	8116 8290	8133 8308	8151 8325	8168 8343	8186 8360	33	6		12 12	15
48 49	·8378 ·8552	8395 8570	8412 8587	8430 8604	8447 8622	8465 8639	8482 8657	8500 8674	8517 8692	8535 8709	333	6	9	12	15
50	.8727	8744	8762	8779	8796	8814	8831	8849	8866	8884	3	6	9	12	15
51 52	·8901 ·9076	8919 9093	8936	8954 9128	8971 9146	8988 9163	9006 9180	9023 9198	9041 9215	9058 9233	33	6			15
53 54	·9250 ·9425	9268 9442	9285 9460	9303 9477	9320 9495	9338 9512	9355 9529	9372 9547	9390 9564	9407 9582	333	6	9	12	15 15
55	.9599	9617	9634	9652	9669	9687	9704	9721	9739	9756	3	6	9		15
56 57	·9774 ·9948	9791 9966	9809 9983	9826 1'0001	9844 1'0018	9861 1'0036	9879 1.0053	9896 1'0071	9913 1'0088	9931	33	6			15
58 59	1.0123	0140 0315	0158 0332	0175 0350	0193 0367	0210 0385	0228 0402	0245 0420	0263 0437	0280	333	6	9	12	15 15
60	1'0472	0489	0507	0524	0542	0559	0577	0594	0612	0629	3	6			15
61 62	1.0647	0664 0838	0681 0856	0699 0873	0716	0734 0908	0751	0769 0943	0786 0961	0804 0978	33	6	~		15 15
63 64	1.0996 1.1120	1013 1188	1030 1205	1048 1222	1065 1240	1083 1257	1100 1275	1118 1292	1135 1310	1153 1327	333	6	9	12	15 15
65	1.1342	1362	1380	1397	1414	1432	1449	1467	1484	1,502	3	6	9	12	15
66 67	1.1519	1537 1711	1554 1729	1572 1746	1589 1764	1606 1781	1624 1798	1641 1816	1659 1833	1676 1851	33	6			15 15
68 69	1.1868 1.2043	1886 2060	1903 2078	1921 2095	1938 2113	1956 2130	1973 2147	1990 2165	2008 2182	2025 2200	33	6 6	9	12	15 15
70	1.2217	2235	2252	2270	2287	2305	2322	2339	2357	2374	3	6	9	12	15
71 72	1.2392	2409 2584	2427 2601	2444 2619	2462 2636	2479 2654	2497 2671	2514 2689	2531 2706	2549 2723	33	6			15 15
73 74	1°2741 1°2915	2758 2933	2776 2950	2793 2968	2811 2985	2828 3003	2846 3020	2863 3038	2881 3055	2898 3073	33	6 6	9	12	15 15
75	1.3090	3107	3125	3142	3160	3177	3195	3212	3230	3247	3	6	9	12	15
76 77	1.3265	3282 3456	3299 3474	3317 3491	3334 3509	3352 3526	3369 3544	3387 3561	3404 3579	3422 3596	33	6 6			15
78 79	1·3614 1·3788	3631 3806	3648 3823	3666 3840	3683 3858	3701 3875	3718 3893	3736 3910	3753 3928	3771 3945	33	6 6			15 15
80	1.3963	3980	3998	4015	4032	4050	4067	4085	4102	4120	3	6	9	12	15
81 82	1'4137 1'4312	4155 4329	4172 4347	4190 4364	4207 4382	4224 4399	4242 4416	4259 4434	4277 4451	4294 4469	33	6 6			15 15
83 84	1°4486 1°4661	4504 4678	4521 4696	4539 4713	4556 4731	4573 4748	4591 4765	4608 4783	4626 4800	4643 4818	33	6			15 15
85	1.4835	4853	4870	4888	4905	4923	4940	4957	4975	4992	3	6	9	12	15
86 87	1.2010 1.2184	5027 5202	5045 5219	5062 5237	5080 5254	5097 5272	5115 5289	5132 5307	5149 5324	5167 5341	33	6		12 12	15 15
88 89	1.2329 1.2233	5376 5551	5394 5568	5411 5586	5429 5603	5446 5621	5464 5638	5481 5656	5499 5673	5516 5691	33	6		12 12	15 15
	0'	6'	12'	18'	24'	30'	36′	42'	48'	54'	1'	2'	3'	4'	5'

RADIARS

	PAGE
ABERRATION, constant of	. 13
Abraham, electronic theory of	. 99
Absolute temperature scale	44, 54
,, zero of temperature	44, 54
Absorption coefficients, β and γ rays	. 107
", ", Xrays.	. 93
Absorption spectra	. 77
Actinium emanation, diffusion of .	. 103
Activities, equilibrium (minerals) .	. 104
Air, composition of	. 125
,,, (damp),, ,,	. 21
,, , (dry) density of	25, 26
,, (saturated) water in	. 39
Alloys, composition of 20, 27, 51,	F2. 81. 80
	. 100
a rays, e/m of	101, 102
	100, 100
,, , number of	101, 106
	100, 100
,, , range and velocity of	
", stopping powers	. 100
Altitudes above sea-level	. II
", , determination of, by barom	eter . 35
,, , determination of, by barome Ampère, determinations of	. 8
,, , international	. 6
Angles of contact	· 37
Angström unit	. 9
Antilogarithms	. 132
Apothecaries' units	. 9
Arcs, electric	. 105
Aries, first point of	. 3
Astronomy	13-15
Astronomy	. 125
,, , Ra Èm. in	. 105
"Atmosphere," value of	. 5
Atomic constants	. 106
Atomic weights, international	. 1, 2
Attomic weights, international .	100000
BABINET's altitude formula	• 35
Barometer, capillarity corrections .	. 17
1 is a finite of a little day	
reduction to lat 450	. 18
reduction to 0° C	. 18
, , reduction to be c	. 18
	. 21
Baume's hydrometer	
β rays, absorption coefficients of .	. 107
,, , e/m of	. 98
,, , ionization by	. 101
,, , number of	. 106
,, , velocity of	. 98
Black body radiation	• 47
Board of Trade unit (electric energy)	. 5
Bode's Law	. 14
Boiling points, effect of pressure on .	. 50
,, ,, ,, elements	. 48

			PAGE
Boiling points, inorganic	compounds	109	-117
", ", ", mixtures,	maximum		128
·· · · · · · · · · · ·	minimum		128
", ", ", ", ", ", ", ", ", ", ", ", ", "	mpounds	. 118	-123
Water			41
			50
,, , wax		•	
Boyle's Law, deviation fr		• •	10
British Association screw		• •	16
British coinage		. I	0, 20
British thermal unit			9
British units	and a second second		4
British weights and meas	ures		4
British weights and meas	uichings	110 101	
Buoyancy correction of w	eignings	• •	19
,, ,, of d	ensities	• •	21
Bursting strengths of glass	s tubing		39
Conserve and determin	linna of		8
GADMIUM cell, determin	actions of	· _ :	6
Calories, values of .		· 5, 5	5, 50
Calories, values of . Candle, standard .			70
,, , energy from			70
,, , visibility of			
Capacity, specific inducti	ve		\$4
Capacity, specific inducti	vc	· · · ·	
Capillarity corrections (m	ercury com	mus).	17
Carcel light unit .		• •	70
Cathode rays, e/m of			98
Cathode rays, e/m of			98
Cauchy's dispersion form	ula .		71
Calle am fla of			
Cells, e.m.f.'s of			88
,, , resistances of	licenso ,	• •	
Centigrade and Fahrenhe			
Centimetre, definition of			3
C.G.S. units Charge on the ion .		. 07.	106
Clark cell, e.m.f. and tem	in coef of		8
Clark cell, e.m.i. and tell	ip. coci. or	• •	
Clausius-Mossotti relation		• •	84
Coefficients of expansion,	gases	• •	54
,, ,, ,	liquids		55
,	solids .		52
Coercive force .			89
			89
Coercivity			
Coins (British), composit	ion of	• •	20
", ", density of		• •	20
,, , , , dimension ,, , , , weight of	ns of .		10
weight of			10
Combustion, heats of			64
Composition of air			125
Composition of all .			
Composition of air . ,, of alloys	20, 27, 51,	53, 01	, 09
,, of minerals		• •	120
, of minerals Compressibility		. 2	7-29
Condensation of vapours			96
Conductivities, electrical			-ST
Conductivities, ciccultar	(colutions)		86
Conductivities, thermal	(solutions)		00
Conductivities, thermal	• •	• •	51
Conversion factors .		• •	9,4
		L3	
		5 3	

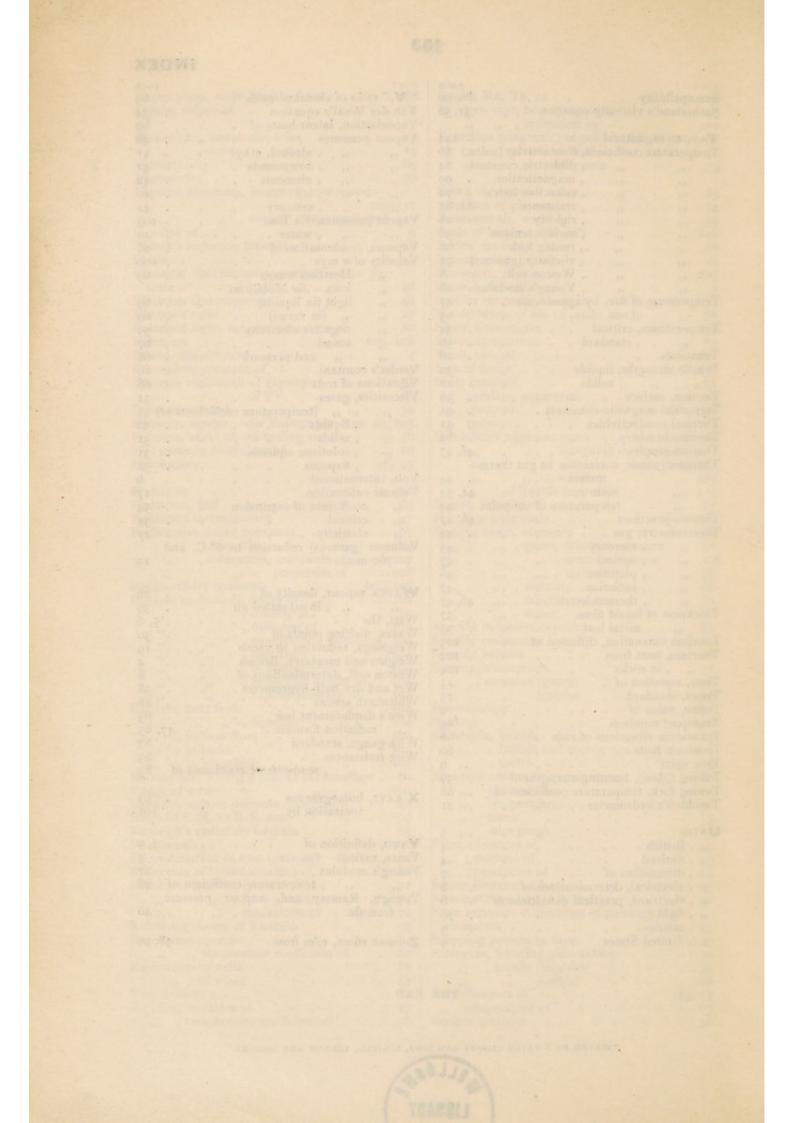
		PAGE
Cosines, natural	•	. 142
Critical data	•	34, 61
,, temperature (magnetization)		. 90
Crookes dark space		. 93
Cryoscopic constant		. 66
DARK space		. 93
Dates of isolation of elements .		. 2
Day, definition of	1	
Day, definition of	•	. 3
Declination, magnetic	•	. 91
Densities, acids ,, , air (dry)	•	. 23
,, , air (dry)	•	25, 26
,, , ,, (damp)	•	. 21
,, , alcohol (ethyl) .		. 22
,, , alkalies		. 24
aqueous solutions		. 25
calcium ablarida		. 24
,, , common substances	1	. 20
,, , common substances		
,, , elements	•	. 20
,, , elements	•	26, 10
		109-117
,, , Jena glasses ,, , mercury		. 74
", mercury.		. 22
minerals		. 126
,, , organic compounds		
", , organie compounds	•	110-123
,, , steam	•	. 26
,, , water		. 22
,, , water vapour .		. 26
Density determination corrections		. 21
Depression of freezing point .		. 66
Depression of ice point of mercury	he	rmo-
meters		
Dew point		. 38
		. 68
Dielectric constants .		
Dielectric strength of air		. 93
Diffusion of Ac, Ra, Th emanations		. 103
,, of gases		25
,, of gases		. 55
", of ions (gaseous) Dilution, heats of Dimensions of units		. 94
Dilution, heats of	•	. 64
Dimensions of units	*1	. 7
Dianter the		20
Discoverers of elements .		. 2
Dispersions, optical		. 71
Diepereive nowers		73. 74
Dispersive powers	-	85
Dissociation, ionic		. 05
Distances of stars	•	. 15
Dispersions, optical Dispersive powers Dissociation, ionic Distances of stars Distances on earth's surface		. 12
Drachm, value of		• 9
ϵ (exponential), value of .		. 9
e, the jonic charge		97, 106
For		68
Lat		68
Eas sensitiveness of		. 00
e, the ionic charge	•	**
Ear, sensitiveness of Earth, density of, etc	• •	. 13
Ear, sensitiveness of Earth, density of, etc	• • •	· 13 · 13
Ear, sensitiveness of Earth, density of, etc ,, , elements of ,, , size and shape of		. 13 . 13 . 13
Earth, density of, etc		· 13 · 13 · 13 · 13
Earth, density of, etc		· 13 · 13 · 13 · 13
Earth, density of, etc		. 13 . 13 . 13 . 13 . 70
Earth, density of, etc		. 13 . 13 . 13 . 13 . 70
Earth, density of, etc		. 13 . 13 . 13 . 13 . 70
Earth, density of, etc		. 13 . 13 . 13 . 13 . 70
Earth, density of, etc		. 13 . 13 . 13 . 13 . 70
Earth, density of, etc		. 13 . 13 . 13 . 70 . 99 . 27 . 81 . 86, 87 . 8
Earth, density of, etc		. 13 . 13 . 13 . 70 . 99 . 27 . 81 . 86, 87 . 8 . 105
Earth, density of, etc		. 13 . 13 . 13 . 70 . 99 . 27 . 81 . 86, 87 . 8 . 105
Earth, density of, etc		. 13 . 13 . 13 . 70 . 99 . 27 . 81 . 86, 87 . 8 . 105 . 123
Earth, density of, etc		. 13 . 13 . 13 . 70 . 99 . 27 . 81 86, 87 . 8 . 105 . 123 . 82
Earth, density of, etc	***********	. 13 . 13 . 13 . 70 . 99 . 27 . 81 86, 87 . 8 . 105 . 123 . 82 . 88
Earth, density of, etc	***********	. 13 . 13 . 13 . 70 . 99 . 27 . 81 86, 87 . 8 . 105 . 123 . 82 . 88

	,	AGE
Electric e/m, change of, with velocity		99
", , from Zeeman effect .	•	99
Electrons (negative), magnetic deflection		
e/m of a rays		98 100
" electrons		, 99
		106
" helium		106
Emergent-column, thermometer correction		45
Emission spectra	•	
Equation of time	:	65 15
Equilibrium activities (minerals)		104
Equivalents, electrochemical		123
Expansion anofficients masses		54
,, ,, ,, liquids		55
,, ,, ,, solids		
		129
Factors, gravimetric		127
Fahrenheit and Centigrade degrees .		IO
Faraday effect		
Faraday effect		82
Fats, melting points of .		50
Fire, temperature of		47
Fire, temperature of	•	96
Tuna ounce		9
Foil (metal), thickness of	•	35
Fraunhoter lines		117
Freezing mixtures		66
Full radiation		65
Full radiation Fuses Fusion, latent heats of		83
Fusion, latent heats of		60
Conserve Auforition of		
G ALLON, definition of \cdot \cdot \cdot \cdot \cdot \cdot γ rays, absorption coefficients of \cdot	•	4,9
, , ionization by	-	107
Gas constant	5.	
Gaseous volumes, reduction of		19
Gas thermometers, thermodynamic corr	rec-	
tions to		44
Gas thermometry	•	44
Gauge, standard wire	•	83
Gauss, the	•	7
Geographical mile		10 39
Glass		74
Jena		74
Glass tubing, bursting strengths of .		39
Grain		9
Gramme, definition of		3
Gravimetric factors	•	127
Gravitation, constant of	•	13 18
Gravity correction of barometer . Gravity, values of		II
orany, rando or		
HARDNESS, of minerals		126
,, , scale of (Mohs')	•	126
Half-periods, radioactive substances		107
Heat conductivities		51
	102,	100
,, ,, Ra Em		104
thorium		102
Heat, mechanical equivalent of		55
Heats, latent		60
Heats of combustion	•	64

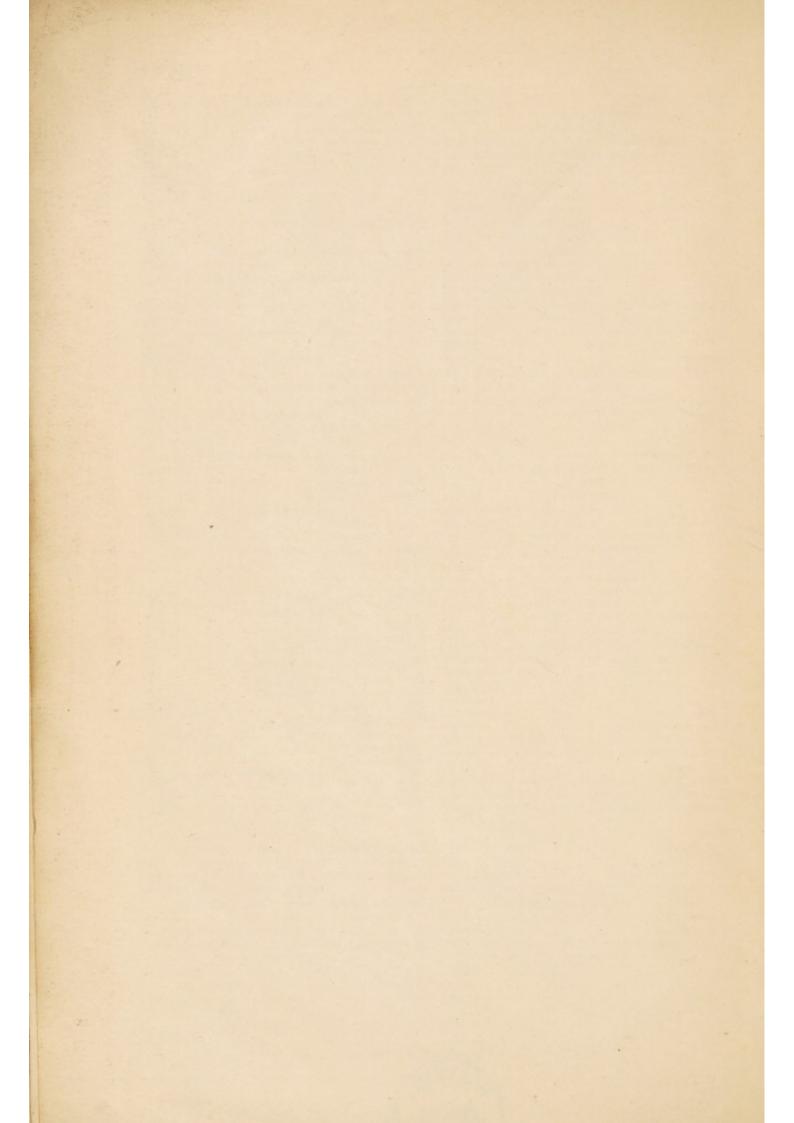
		PAGE
Heats of dilution		. 64
,, formation		62, 64
, neutralization		. 64
Heats, specific, elements		. 56
", ", gases		. 58
Heats, specific, mercury		. 56
miscellaneous		
", ", " miscellaneous .	•	· 59
,, ,, , , water		. 56
Hefner light unit		. 70
Heights above sea-level		. 11
Helium from radium		. 106
Henry, the	1	. 7
Hertzian waves, velocity of .		. 69
Heusler alloys		. 89
Humidity, relative		. 38
Hydrometers		. 21
Hygrometer, chemical .		· 39
,, , wet and dry bulb		. 38
Hygrometry		. 38
Hygrometry . Hyperbolic logs, conversion factor		. 9
Hysteresis, magnetic		. 89
		tion willing
For saint the made and the term		a of
ICE-point, thermodynamic tempera	tur	
		44, 54
Inclination, magnetic		. 91
Inductive capacity, specific .		. 84
Inductivity		. 84
Inertia, moments of		. 16
Ionic charge		97, 106
dissociation		
, dissociation	•	. 85
,, mobilities (gaseous)	•	95, 105
", ", (gaseous) at high t	emp	bera-
tures		. 90
,, ,, (liquids)		0.0
·· ·· (Inquirus) · ·		88, 95
,, ,, (inquids)		88, 95
,, ,, (solids)		. 95
,, ,, (solids) Ionization by α , β , γ , and X rays	••••••	· 95 101, 102
,, (solids) Ionization by α , β , γ , and X rays Ions gaseous (diffusion of) .		· 95 101, 102 · 94
,, ,, (solids) Ionization by α , β , γ , and X rays		· 95 101, 102
,, ,, (solids) Ionization by α , β , γ , and X rays Ions gaseous (diffusion of) . ,, ,, recombination of .		· 95 101, 102 · 94
,, ,, (solids) Ionization by α , β , γ , and X rays Ions gaseous (diffusion of) . ,, ,, recombination of . JENA glasses, density of .	•••••••••••••••••••••••••••••••••••••••	· 95 101, 102 · 94
,, ,, (solids) Ionization by α , β , γ , and X rays Ions gaseous (diffusion of) . ,, ,, recombination of . JENA glasses, density of .	•••••••••••••••••••••••••••••••••••••••	· 95 101, 102 · 94 · 94 · 94
 ,, ,, (solids) Ionization by α, β, γ, and X rays Ions gaseous (diffusion of) . ,, ,, recombination of . JENA glasses, density of . ,, ,, dispersive power of 	•••••••••••••••••••••••••••••••••••••••	· 95 101, 102 · 94 · 94 · 74 · 74
,, ,, (solids) Ionization by α , β , γ , and X rays Ions gaseous (diffusion of) . ., ,, recombination of . JENA glasses, density of . ., ,, dispersive power of ., ,, optical .	•••••••••••••••••••••••••••••••••••••••	· 95 101, 102 · 94 · 94 · 74 · 74 · 74
,, ,, (solids) Ionization by α , β , γ , and X rays Ions gaseous (diffusion of) . ., ,, recombination of . JENA glasses, density of . ., ,, dispersive power of ., ,, , optical . ., ,, , refractive index of	•••••••••••••••••••••••••••••••••••••••	· 95 101, 102 · 94 · 94 · 74 · 74 · 74 · 74 · 74
,, ,, (solids) Ionization by α , β , γ , and X rays Ions gaseous (diffusion of) . ., ,, recombination of . JENA glasses, density of . ., ,, dispersive power of ., ,, optical . ., ,, refractive index of ., ,, thermometric .	•••••••••••••••••••••••••••••••••••••••	· 95 101, 102 · 94 · 94 · 74 · 74 · 74 · 74 · 74 · 72 45, 74
,, ,, (solids) Ionization by α , β , γ , and X rays Ions gaseous (diffusion of) . ., ,, recombination of . JENA glasses, density of . ., ,, dispersive power of ., ,, optical . ., ,, refractive index of ., ,, thermometric .	•••••••••••••••••••••••••••••••••••••••	· 95 101, 102 · 94 · 94 · 74 · 74 · 74 · 74 · 72 45, 74 · 5
,, ,, (solids) Ionization by α , β , γ , and X rays Ions gaseous (diffusion of) . ., ,, recombination of . JENA glasses, density of . ., ,, dispersive power of ., ,, optical . ., ,, refractive index of ., ,, thermometric .	•••••••••••••••••••••••••••••••••••••••	· 95 101, 102 · 94 · 94 · 74 · 74 · 74 · 74 · 74 · 72 45, 74
,, ,, (solids) Ionization by α , β , γ , and X rays Ions gaseous (diffusion of) . ., ,, recombination of . JENA glasses, density of . ., ,, dispersive power of ., ,, optical . ., ,, refractive index of ., ,, thermometric .	•••••••••••••••••••••••••••••••••••••••	· 95 101, 102 · 94 · 94 · 74 · 74 · 74 · 74 · 72 45, 74 · 5
,, ,, (solids) Ionization by α , β , γ , and X rays Ions gaseous (diffusion of) . ., ,, recombination of . JENA glasses, density of . ., ,, dispersive power of ., ,, optical . ., ,, refractive index of ., ,, thermometric .	•••••••••••••••••••••••••••••••••••••••	· 95 101, 102 · 94 · 94 · 74 · 74 · 74 · 74 · 74 · 72 45, 74 · 5 · 55
", ", (solids) Ionization by α , β , γ , and X rays Ions gaseous (diffusion of) . ", ", recombination of . JENA glasses, density of . ", ", dispersive power of ", ", optical . ", ", refractive index of ", ", thermometric . Joule, the Joule's equivalent Joule-Thomson effect		· 95 101, 102 · 94 · 94 · 74 · 74 · 74 · 74 · 72 45, 74 · 5 · 55 · 44
 ", ", (solids) Ionization by α, β, γ, and X rays Ions gaseous (diffusion of) . ", ", recombination of . JENA glasses, density of . ", ", dispersive power of ", ", optical ", ", refractive index of ", ", thermometric . Joule, the Joule's equivalent Joule-Thomson effect 		· 95 101, 102 · 94 · 94 · 74 · 74 · 74 · 74 · 72 45, 74 · 5 · 55 · 44
", ", (solids) Ionization by α , β , γ , and X rays Ions gaseous (diffusion of) . ", ", recombination of . JENA glasses, density of . ", ", dispersive power of ", ", optical . ", ", refractive index of ", ", thermometric . Joule, the Joule's equivalent Joule-Thomson effect		· 95 101, 102 · 94 · 94 · 74 · 74 · 74 · 74 · 72 45, 74 · 5 · 55 · 44
 ", ", (solids) Ionization by α, β, γ, and X rays Ions gaseous (diffusion of) . ", ", recombination of . JENA glasses, density of . ", ", dispersive power of ", ", optical ", ", refractive index of ", ", thermometric . Joule, the Joule's equivalent Joule-Thomson effect KIRCHHOFF, vapour pressure form Knot, the 		· 95 101, 102 · 94 · 94 · 74 · 74 · 74 · 74 · 74 · 72 45, 74 · 5 · 55 · 44 · 40 · 10
,, ,, (solids) Ionization by α , β , γ , and X rays Ions gaseous (diffusion of) . ,, ,, recombination of . JENA glasses, density of . ,, ,, dispersive power of ,, ,, optical . ,, ,, optical . ,, ,, refractive index of ,, ,, , thermometric . Joule, the . Joule's equivalent . Joule's equivalent . Joule-Thomson effect . KIRCHHOFF, vapour pressure form Knot, the .		· 95 101, 102 · 94 · 94 · 74 · 74 · 74 · 74 · 72 45, 74 · 5 · 55 · 44 · 40 · 10
,, ,, (solids) Ionization by α , β , γ , and X rays Ions gaseous (diffusion of) . ,, ,, recombination of . JENA glasses, density of . ,, ,, dispersive power of ,, ,, optical . ,, ,, optical . ,, ,, refractive index of ,, ,, , thermometric . Joule, the . Joule's equivalent . Joule's equivalent . Joule-Thomson effect . KIRCHHOFF, vapour pressure form Knot, the .		· 95 101, 102 · 94 · 94 · 74 · 74 · 74 · 74 · 72 45, 74 · 5 · 55 · 44 · 40 · 10
 ", ", (solids) Ionization by α, β, γ, and X rays Ions gaseous (diffusion of) . ", ", recombination of . JENA glasses, density of . ", ", dispersive power of . ", ", optical ", ", optical ", ", optical ", ", refractive index of . ", ", thermometric . Joule, the Joule's equivalent Joule-Thomson effect KIRCHHOFF, vapour pressure form Knot, the LANGLEY and Abbot's solar work Latent heat of fusion		$\begin{array}{c} & 95 \\ 101, 102 \\ & 94 \\ & 94 \\ & 74 \\ & 74 \\ & 74 \\ & 72 \\ 45, 74 \\ & 55 \\ & 55 \\ & 44 \\ & 40 \\ & 10 \\ & 65 \\ & 60 \\ \end{array}$
 ", ", (solids) Ionization by α, β, γ, and X rays Ions gaseous (diffusion of) . ", ", recombination of . JENA glasses, density of . ", ", dispersive power of . ", ", optical ", ", optical ", ", optical ", ", refractive index of . ", ", thermometric . Joule, the Joule's equivalent Joule-Thomson effect KIRCHHOFF, vapour pressure form Knot, the LANGLEY and Abbot's solar work Latent heat of fusion		$\begin{array}{c} & 95 \\ 101, 102 \\ & 94 \\ & 94 \\ & 74 \\ & 74 \\ & 74 \\ & 72 \\ 45, 74 \\ & 55 \\ & 55 \\ & 44 \\ & 40 \\ & 10 \\ & 65 \\ & 60 \\ \end{array}$
 ", ", (solids) Ionization by α, β, γ, and X rays Ions gaseous (diffusion of) . ", ", recombination of . JENA glasses, density of . ", ", dispersive power of . ", ", optical ", ", optical ", ", optical ", ", refractive index of . ", ", thermometric . Joule, the Joule's equivalent Joule-Thomson effect KIRCHHOFF, vapour pressure form Knot, the LANGLEY and Abbot's solar work Latent heat of fusion		$\begin{array}{c} & 95 \\ 101, 102 \\ & 94 \\ & 94 \\ & 74 \\ & 74 \\ & 74 \\ & 72 \\ 45, 74 \\ & 55 \\ & 55 \\ & 44 \\ & 40 \\ & 10 \\ & 65 \\ & 60 \\ \end{array}$
 ", ", (solids) Ionization by α, β, γ, and X rays Ions gaseous (diffusion of) . ", ", recombination of . JENA glasses, density of . ", ", dispersive power of . ", ", optical ", ", optical ", ", optical ", ", refractive index of . ", ", thermometric . Joule, the Joule's equivalent Joule-Thomson effect KIRCHHOFF, vapour pressure form Knot, the LANGLEY and Abbot's solar work Latent heat of fusion		$\begin{array}{c} & 95 \\ 101, 102 \\ & 94 \\ & 94 \\ & 74 \\ & 74 \\ & 74 \\ & 72 \\ 45, 74 \\ & 55 \\ & 55 \\ & 44 \\ & 40 \\ & 10 \\ & 65 \\ & 60 \\ \end{array}$
", ", (solids) Ionization by α , β , γ , and X rays Ions gaseous (diffusion of) . ", ", recombination of . JENA glasses, density of . ", ", dispersive power of ", ", optical . ", ", optical . ", ", refractive index of ", ", thermometric . Joule, the . Joule's equivalent . Joule's equivalent . Joule-Thomson effect . KIRCHHOFF, vapour pressure form Knot, the . ", ", of vaporisation . ", ", of vaporisation . Latitudes . Lenard rays . Light, magnetic rotation of .		· 95 101, 102 · 94 · 94 · 74 · 74 · 74 · 74 · 72 45, 74 · 5 · 55 · 44 · 40 · 10 · 65 · 60 · 11, 91 · 98 · 80
 ", ", (solids) Ionization by α, β, γ, and X rays Ions gaseous (diffusion of) . ", ", recombination of . JENA glasses, density of . ", ", dispersive power of ", ", optical ", ", optical ", ", refractive index of ", ", thermometric . Joule, the Joule's equivalent Joule-Thomson effect KIRCHHOFF, vapour pressure form Knot, the LANGLEV and Abbot's solar work Latent heat of fusion ", ", of vaporisation . Lenard rays Light, magnetic rotation of . ", optical rotation of . 	· · · · · · · · · · · · · · · · · · ·	· 95 101, 102 · 94 · 94 · 74 · 74 · 74 · 74 · 74 · 72 45, 74 · 5 · 55 · 44 · 40 · 10 · 65 · 60 · 11, 91 · 98 · 80 · 78
 ", ", (solids) Ionization by α, β, γ, and X rays Ions gaseous (diffusion of) . ", ", recombination of . JENA glasses, density of . ", ", dispersive power of . ", ", optical ", ", optical ", ", refractive index of . ", ", thermometric . Joule, the Joule's equivalent Joule-Thomson effect KIRCHHOFF, vapour pressure form Knot, the LANGLEY and Abbot's solar work Latent heat of fusion ", ", of vaporisation Lenard rays		· 95 101, 102 · 94 · 94 · 74 · 74 · 74 · 74 · 74 · 72 45, 74 · 5 · 55 · 44 · 40 · 10 · 65 · 60 · 10 · 98 · 80 · 78
 ", ", (solids) Ionization by α, β, γ, and X rays Ions gaseous (diffusion of) . ", ", recombination of . JENA glasses, density of . ", ", dispersive power of . ", ", optical ", ", optical ", ", refractive index of . ", ", thermometric . Joule, the Joule's equivalent Joule-Thomson effect KIRCHHOFF, vapour pressure form Knot, the LANGLEY and Abbot's solar work Latent heat of fusion ", ", of vaporisation Lenard rays		· 95 101, 102 · 94 · 94 · 74 · 74 · 74 · 74 · 74 · 72 45, 74 · 5 · 55 · 44 · 40 · 10 · 65 · 60 · 10 · 98 · 80 · 78
 ", ", (solids) Ionization by α, β, γ, and X rays Ions gaseous (diffusion of) . ", ", recombination of . JENA glasses, density of . ", ", dispersive power of . ", ", optical ", ", optical ", ", refractive index of . ", ", thermometric . Joule, the Joule's equivalent Joule-Thomson effect KIRCHHOFF, vapour pressure form Knot, the LANGLEY and Abbot's solar work Latent heat of fusion ", ", of vaporisation Lenard rays		· 95 101, 102 · 94 · 94 · 74 · 74 · 74 · 74 · 74 · 72 45, 74 · 5 · 55 · 44 · 40 · 10 · 65 · 60 · 10 · 98 · 80 · 78
 ", ", (solids) Ionization by α, β, γ, and X rays Ions gaseous (diffusion of) . ", ", recombination of . JENA glasses, density of . ", ", dispersive power of . ", ", optical ", ", optical ", ", refractive index of . ", ", thermometric . Joule, the Joule's equivalent Joule-Thomson effect KIRCHHOFF, vapour pressure form Knot, the LANGLEY and Abbot's solar work Latent heat of fusion ", ", of vaporisation Lenard rays		· 95 101, 102 · 94 · 94 · 74 · 74 · 74 · 74 · 74 · 72 45, 74 · 5 · 55 · 44 · 40 · 10 · 65 · 60 · 10 · 98 · 80 · 78
"," (solids) . Ionization by α, β, γ, and X rays Ions gaseous (diffusion of) . "," recombination of "," refractive index of Joule, the . Joule, the . Joule-Thomson effect . Joule-Thomson effect . MIRCHHOFF, vapour pressure form Knot, the . "," of vaporisation Latitudes . Lenard rays . Light, magnetic rotation of . "," reflection of . "," relocity of	· · · · · · · · · · · · · · · · · · ·	· 95 101, 102 · 94 · 94 · 74 · 74 · 74 · 74 · 74 · 74 · 74 · 7
"," (solids) . Ionization by α, β, γ, and X rays Ions gaseous (diffusion of) . "," recombination of "," refractive index of Joule, the . Joule, the . Joule-Thomson effect . Joule-Thomson effect . MIRCHHOFF, vapour pressure form Knot, the . "," of vaporisation Latitudes . Lenard rays . Light, magnetic rotation of . "," reflection of . "," relocity of	· · · · · · · · · · · · · · · · · · ·	· 95 101, 102 · 94 · 94 · 74 · 74 · 74 · 74 · 74 · 74 · 74 · 7
"," (solids) . Ionization by α, β, γ, and X rays Ions gaseous (diffusion of) . "," recombination of "," refractive index of Joule, the . Joule, the . Joule-Thomson effect . Joule-Thomson effect . MIRCHHOFF, vapour pressure form Knot, the . "," of vaporisation Latitudes . Lenard rays . Light, magnetic rotation of . "," reflection of . "," relocity of	· · · · · · · · · · · · · · · · · · ·	· 95 101, 102 · 94 · 94 · 74 · 74 · 74 · 74 · 74 · 74 · 74 · 7
", ", (solids) Ionization by α, β, γ, and X rays Ions gaseous (diffusion of) . ", ", recombination of . JENA glasses, density of . ", ", optical . ", ", thermometric . Joule, the . Joule's equivalent . Joule-Thomson effect . Joule-Thomson effect . KIRCHHOFF, vapour pressure form Knot, the . ", ", of vaporisation . Latent heat of fusion . ", ", of vaporisation . Light, magnetic rotation of . ", optical rotation of . ", units of . ", velocity of . ", velocity of . Light-year . Light-year . ", four-figure .	· · · · · · · · · · · · · · · · · · ·	· 95 101, 102 · 94 · 94 · 74 · 74 · 74 · 74 · 74 · 74 · 72 45, 74 · 5 · 55 · 44 · 40 · 10 · 65 · 60 · 10 · 65 · 60 · 11, 91 · 98 · 80 · 78 · 80 · 78 · 80 · 78 · 80 · 78 · 78 · 80 · 78 · 78 · 78 · 78 · 78 · 78 · 79 · 74 · 74 · 74 · 74 · 74 · 74 · 74 · 74
", ", (solids) Ionization by α, β, γ, and X rays Ions gaseous (diffusion of) . ", ", recombination of . JENA glasses, density of . ", ", optical . ", ", thermometric . Joule, the . Joule's equivalent . Joule-Thomson effect . Joule-Thomson effect . KIRCHHOFF, vapour pressure form Knot, the . ", ", of vaporisation . Latent heat of fusion . ", ", of vaporisation . Light, magnetic rotation of . ", optical rotation of . ", units of . ", velocity of . ", velocity of . Light-year . Light-year . ", four-figure .	· · · · · · · · · · · · · · · · · · ·	· 95 101, 102 · 94 · 94 · 74 · 74 · 74 · 74 · 74 · 74 · 72 45, 74 · 5 · 55 · 44 · 40 · 10 · 65 · 60 · 10 · 65 · 60 · 11, 91 · 98 · 80 · 78 · 80 · 78 · 80 · 78 · 80 · 78 · 78 · 80 · 78 · 78 · 78 · 78 · 78 · 78 · 79 · 74 · 74 · 74 · 74 · 74 · 74 · 74 · 74
"," (solids) . Ionization by α, β, γ, and X rays Ions gaseous (diffusion of) . "," recombination of "," refractive index of Joule, the . Joule, the . Joule-Thomson effect . Joule-Thomson effect . MIRCHHOFF, vapour pressure form Knot, the . "," of vaporisation Latitudes . Lenard rays . Light, magnetic rotation of . "," reflection of . "," relocity of	· · · · · · · · · · · · · · · · · · ·	· 95 101, 102 · 94 · 94 · 74 · 74 · 74 · 74 · 72 45, 74 · 5 · 55 · 44 · 40 · 10 · 65 · 60 · 10 · 65 · 60 · 10 · 65 · 60 · 10 · 98 · 80 · 78 · 80 · 78 · 80 · 79 · 15 · 4, 10 · 134 · 130 II, 9I

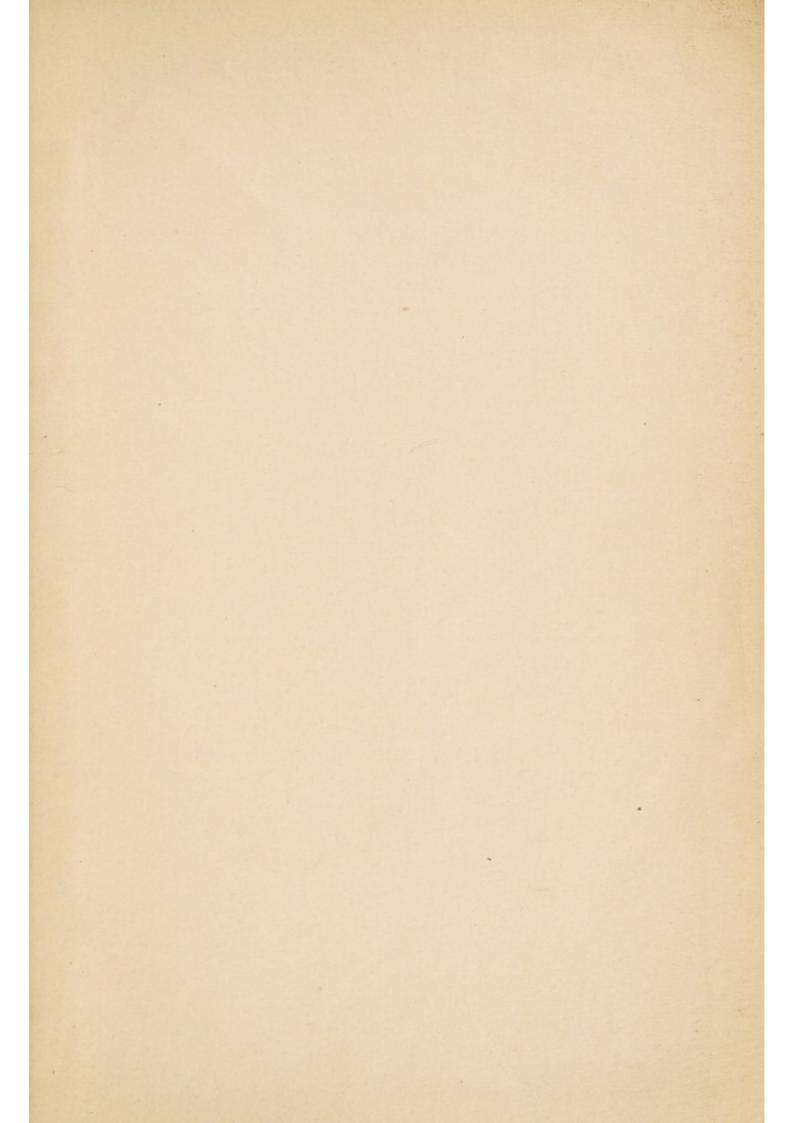
		1	PAGE
MAGNETIC constants, terrestri		• (1) (a)	91
,, deflection of electro	ns	• • •	99
Magnetic induction . Magnetic rotations of polarized	light	• •	89
Mathematical constants .	inght		80
Maximum boiling-point mixtur	es.		9 128
Maxwell's relation .			84
Maxwell, the			7
Mechanical equivalent of heat			55
Megabar, value of		. 5	, 27
Melting points, elements			48
,, ., , fats and waxes			50
,, ,, , inorganic comp			109
,, ,, , organic compo			118
Mercury thermometers, depress	ion of	zero of	45
,, ,, , , reducti			
			45
,, ,, ,stem e	xposu on	re cor-	
,, thermometry .		• • •	45
Metal leaf, thickness of .			45 35
Metallic reflection of light			30
Metre, definition of .			3
Metric units			3
Meyer's viscosity equation		. 31	, 32
Micron μ (and $\mu\mu$) .		-	9
Migration Ratios	1000 B		85
Mil, value of			9
Minerals, activities in .			104
,, , composition of			126
,, , density of .		• • • •	126
,, , hardness of .			126
,, , radioactive . ,, , scale of hardness (Me	in a	. 104,	
Minim, value of	ons j	• •	126
Minimum boiling-point mixtur	• •	• •	9 128
Miscellaneous data .	C 3		, 10
			00
			96
,, ,, , gaseous			90 95
,, ,, ,, gaseous ,, ,, , gaseous at h tures			-
,, ,, , , gaseous ,, ,, , gaseous at h		mpera-	95 96
., ,, gaseous ,, , gaseous at h tures ,, ,, liquids ,, ,, natural	igh tei	mpera- 88,	95
., ,, gaseous ,, , , gaseous at h tures ,, ,, , liquids ,, ,, , solids .	igh tei	mpera- 88,	95 96 95
<pre>,, ,, , , gaseous ,, ,, , gaseous at h tures ,, ,, , liquids ,, ,, , natural ,, ,, , solids . Mohs' scale of hardness .</pre>	igh tei	mpera- 88	95 96 95 105 95 126
 ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	igh tei	mpera- 88	95 96 95 105 95 126 32
 ,, ,, , , , , , , , , , , , , , , , ,	igh tei	mpera- 88	95 96 95 105 95 126 32 106
 ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	igh tei	mpera- 88	95 96 95 105 95 126 32 106 32
 ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	igh tei	mpera- 88	95 96 95 105 95 126 32 106 32 32
 , , , , , , , , , , , , , , , , , , ,	igh tei	mpera- 88 97, 98,	95 96 95 105 95 126 32 106 32 32 16
 , , , , , , , , , , , , , , , , , , ,	igh tei	mpera- 88 97, 98,	95 96 95 105 95 126 32 106 32 32 16 13
 ,, ,, , , , , , , , , , , , , , , , ,	igh tei	mpera- 88, 97, 98,	95 96 95 105 95 126 32 106 32 32 16 13 84
 , , , , , , , , , , , , , , , , , , ,	igh tei	mpera- 88 97, 98,	95 96 95 105 95 126 32 106 32 32 16 13
 ,, ,, , , , , , , , , , , , , , , , ,	igh tei	mpera- 88 97, 98,	95 96 95 105 95 126 32 106 32 32 16 32 13 84 15
 , , , , , , , , , , , , , , , , , , ,	igh tei	mpera- 88, 97, 98,	95 96 95 105 95 126 32 106 32 32 16 13 84 15 68
 , , , , , , , , , , , , , , , , , , ,	igh tei	mpera- 88, 97, 98,	95 96 95 105 95 126 32 106 32 32 16 13 84 15 68
 , , , , , , , , , , , , , , , , , , ,	igh tei	mpera- 88, 97, 98, 98,	95 96 95 105 95 126 32 106 32 32 16 13 84 15 68 106 106
 , , , , , , , , , , , , , , , , , , ,	igh tei	mpera- 88, 97, 98, 98,	95 96 95 105 95 126 32 106 32 32 16 13 84 15 68 106 106 106
 , , , , , , , , , , , , , , , , , , ,	igh tei	mpera- 88, 97, 98, 98,	95 96 95 105 95 126 32 106 32 32 16 13 84 15 68 106 106 106 106 98
 , , , , , , , , , , , , , , , , , , ,	igh tei	mpera- 88, 97, 98, 98,	95 96 95 105 95 126 32 106 32 32 16 13 84 15 68 106 106 106 98 63
 , , , , , , , , , , , , , , , , , , ,	igh tei	mpera- 88, 97, 98, 98,	95 96 95 105 95 126 32 106 32 32 16 13 84 15 68 106 106 106 106 98
 , , , , , , , , , , , , , , , , , , ,	igh tei	mpera- 88, 97, 98, 98,	95 96 95 105 95 126 32 106 32 32 16 13 84 15 68 106 106 106 98 63 68
 , , , , , , , , , , , , , , , , , , ,	igh tei	mpera- 88, 97, 98, 98,	95 96 95 105 95 126 32 16 32 32 16 13 84 15 68 106 106 106 98 63 68 8
 , , , , , , , , , , , , , , , , , , ,	igh tei	mpera- 88, 97, 98, 98,	95 96 95 105 95 126 32 16 32 32 16 32 32 16 32 32 16 13 84 15 68 106 106 106 98 63 68 86
 , , , , , , , , , , , , , , , , , , ,	igh tei	mpera- 88, 97, 98, 98,	95 96 95 105 95 126 32 16 32 32 16 13 84 15 68 106 106 106 98 63 68 79
 , , , , , , , , , , , , , , , , , , ,	igh tei	mpera- 88, 97, 98, 98,	95 96 95 105 95 126 32 16 32 32 16 32 32 16 32 32 16 13 84 15 68 106 106 106 98 63 68 86

	PAGE
Organ pipes, wave lengths from .	. 68
Ounce, values of	. 9
and indication	
PARALLAX, equatorial solar	. 13
,, , , stars	. 15
Permeability	
Photometry	. 70
Physical constants, inorganic compounds	9-117
,, ,, , organic compounds 11	9-117
π , value of	
Planck's radiation formula	. 65
	. 14
Platinum thermometers, reduction to ga	
scale	. 46
Platinum thermometry	. 46
Poisson's ratio	. 27
Poisson's ratio Polarized light, magnetic rotation of	. 80
Polonium 107	, 108
Pound, definition of	4
Precession, constant of	13
Pressure coefficient of expansion .	54
	10
Pressure, critical	34
Pressure, vapour. See Vapour pressure 40 Pressure, effect of, on boiling points	
	50
Pyrometers 4	6, 47
Tyrometers	0, 4/
RADIANS	, 146
	65
No. N	47
Radioactive decay constants	107
	104
., substances, constants of .	107
,, ,, properties of .	108
Radioactivity constants 106	
	102
3:00	10
,, ,, , diffusion of	103
,, ,, , equilibrium, volume of ,, ,, , heat from	
	102
molecular weight of	105 103
Papour program of	103
	102
	104
	104 106
,, ,, ,, , , in rocks	104
,, ,, , in rocks . . ,, , helium from . . . ,, , in rocks . . . ,, , in sea water . . .	106 104 105
,, ,, ,, , , in rocks	106 104 105
, , , , , , , in rocks	106 104 105
, , , , , , , in rocks	106 104 105 40 100 40
,, ,, ,, ,, , in rocks	106 104 105 40 100 40 69
,, ,, , in rocks . ,, , helium from . . ,, , in rocks . . ,, , in rocks . . ,, , in sea water . . Ramsay and Young's vapour pressure law . . Range of α rays . . . Rankine, vapour pressure formula of . . . Ratio of E.M. to E.S. unit . . . Rayleigh's radiation formula . . .	106 104 105 40 100 40 69 65
,, ,, , in rocks . ,, , helium from . . ,, , in rocks . . ,, , in rocks . . ,, , in sea water . . Ramsay and Young's vapour pressure law . . Range of α rays . . . Rankine, vapour pressure formula of . . . Ratio of E.M. to E.S. unit . . . Rayleigh's radiation formula . . . Reciprocals 	106 104 105 40 100 40 69 65 136
", ", ", in rocks	106 104 105 40 100 40 69 65 136 94
,, ,, , in rocks . ,, , helium from . . ,, , in rocks . . ,, , in sea water . . Ramsay and Young's vapour pressure law . . Range of a rays . . . Rankine, vapour pressure formula of . . . Ratio of E.M. to E.S. unit . . . Rayleigh's radiation formula . . . Reciprocals Reflection of light (metallic) . . .	106 104 105 40 100 40 69 65 136 94 80
", ", ", in rocks	106 104 105 40 100 40 69 65 136 94 80 71
"," "	106 104 105 40 69 65 136 94 80 71 2, 74
",",",", in rocks ",", helium from ",", in rocks ",", in rocks ",", in sea water	106 104 105 40 100 40 69 65 136 94 80 71 2, 74 72
,, ,, ,, in rocks . ,, , helium from . . ,, , in rocks . . ,, , in rocks . . ,, , in sea water . . Ramsay and Young's vapour pressure law . . Range of α rays . . . Rankine, vapour pressure formula of . . . Ratio of E.M. to E.S. unit . . . Rayleigh's radiation formula . . . Reciprocals Reflection of light (metallic) . . . Refractive indices, gases Reciprocals 	106 104 105 40 69 65 136 94 80 71 2, 74
", ", ", ", in rocks	106 104 105 40 100 40 69 65 136 94 80 71 2, 74 72 99
",",",", in rocks ",", helium from ",", in rocks ",", in rocks ",", in sea water Range of a rays "Rankine, vapour pressure formula of Ratio of E.M. to E.S. unit Rayleigh's radiation formula Reciprocals "Recombination of ions (gaseous) Reflection of light (metallic) "Refractive indices, gases ",",", Jena glasses ",",", ", Jena glasses ",",", ", inscellaneous ",",", temperature coefficient ",", temperature coefficient of Resistances of cells	106 104 105 40 69 65 136 94 80 71 2, 74 72 99 81 82 88
",",",", in rocks ",", helium from ",", in rocks ",", in rocks ",", in sea water Range of a rays Rankine, vapour pressure formula of Ratio of E.M. to E.S. unit Rayleigh's radiation formula Reciprocals ",", addiction formula ",",", Jena glasses ",",",", Jena glasses ",",",", Jena glasses ",",",", Jena glasses ",",",", niscellaneous ",",", temperature coefficient of ",", temperature coefficient of ",", of wires	106 104 105 40 69 65 136 94 80 71 2, 74 72 99 81 82
",",",", in rocks ",", helium from ",", in rocks ",", in rocks ",", in sea water Range of a rays Rankine, vapour pressure formula of Ratio of E.M. to E.S. unit Rayleigh's radiation formula Reciprocals ",", addiction formula ",", ",", Jena glasses ",",",", Jena glasses ",",",", Jena glasses ",",",", Jena glasses ",",", ", niscellaneous ",", ", temperature coefficient of Resistances of cells , of wires , of wires , of wires	106 104 105 40 69 65 136 94 80 71 2, 74 72 99 81 82 88
",",",", in rocks ",", helium from ",", in rocks ",", in rocks ",", in sea water Range of a rays Rankine, vapour pressure formula of Ratio of E.M. to E.S. unit Rayleigh's radiation formula Reciprocals ",", addiction formula ",",", Jena glasses ",",",", Jena glasses ",",",", Jena glasses ",",",", Jena glasses ",",",", niscellaneous ",",", temperature coefficient of ",", temperature coefficient of ",", of wires	106 104 105 40 69 65 136 94 80 71 2, 74 72 99 81 82 88 83


Rocks, Ra, Th, in .				IO4
Röntgen rays, homogeneous				93
,, ,, , ionization by				101
Rotations (magnetic) of polari	zed li	ght		80
" (optical) of liquids	•	•	•	78
,, ,, of quartz			•	79
SAFE currents for wires .				83
Satellites of planets .				14
Saturated air, water in .				39
Scale of hardness (Mohs')				126
Scales, musical		•		68
Screws, pitch of, etc Sea-water, radium in .	•	• .		16
Second, definition of	•			105
Secular magnetic changes			1	3
Sensitiveness of ear to pitch				68
Sikes' hydrometer				21
Silvering solution				73
Sines, natural	•			140
Size of drops Solar constant			•	37
,, parallax, equatorial	•	•	•	65
,, spectrum	1	:	•	13 75
,, system				14
Solubilities aqueous, gases				124
,, ,, , inorganic	comj	bound	8	
		IC	9-	
", ", solids	•	•	•	125
,, of liquids (mutual) Sound, velocity of .	•		•	124 67
Sparking potentials .				93
Specific heats, elements .				56
,, ,, , gases, constant		ure		58
,, ,, ,, ,, constant	volur	ne		58
,, ,, ,, ,, , ratio of	•	•	•	58
,, ,, , mercury .		:	•	56
,, , , , mercury .			:	56 59
,, ,, ,, mercury . ,, ,, , miscellaneous ,, ,, , water . Specific inductive capacity		•		56 59 56
,, ,, ,, mercury . ,, ,, , miscellaneous ,, ,, , water . Specific inductive capacity Specific resistances .		•	:	56 59
,, ,, ,, mercury . ,, ,, , miscellaneous ,, ,, , water . Specific inductive capacity Specific resistances . Specific volume		•	:	56 59 56 84 81 22
", ", ", mercury . ", ", miscellaneous ", ", water . Specific inductive capacity Specific resistances . Specific volume . Spectra, absorption		•	•	56 59 56 84 81 22 77
", , , , mercury . ", , , miscellaneous ", , , water . Specific inductive capacity Specific resistances . Specific volume . Spectra, absorption . ", , emission (gases)		•	•	56 59 56 84 81 22 77 77
", , , , mercury . ", , , , miscellaneous ", , , water . Specific inductive capacity Specific resistances . Specific volume . Spectra, absorption . ", , emission (gases) ", , , (solids)		· · · · · · · · · · · · · · · · · · ·	•	56 59 56 84 81 22 77 76
", , , , mercury . ", , , miscellaneous ", , , water . Specific inductive capacity Specific resistances . Specific volume . Spectra, absorption . ", , emission (gases) ", , , (solids) . Spectroscopy .		· · · · · · · · · · · · · · · · · · ·	• • • • • • • • •	56 59 50 84 81 22 77 76 75
", , , , mercury . ", , , , miscellaneous ", , , water . Specific inductive capacity Specific resistances . Specific volume . Spectra, absorption . ", , emission (gases) ", , , (solids)		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	56 59 50 81 22 77 76 75 38
", ", ", mercury . ", ", ", miscellaneous ", ", water . Specific inductive capacity Specific resistances . Specific volume . Spectra, absorption . ", emission (gases) ", ", " (solids) Spectroscopy . Squares . ", ", British and metric e			•••••••••••••••••••••••••••••••••••••••	56 59 56 81 22 77 76 75 38 4
", ", ", mercury . ", ", ", miscellaneous ", ", water . Specific inductive capacity Specific resistances . Specific volume . Spectra, absorption . ", emission (gases) ", ", " (solids) Spectroscopy . Squares . Standards, British . ", ", British and metric e ", ", ", ", ", ", ", ", ", ", ", ", ", "	quiva		•••••••••••••••••••••••••••••••••••••••	56 59 50 81 22 77 76 75 38
 ,, ,, , mercury . ,, ,, miscellaneous ,, , , water . Specific inductive capacity Specific resistances . Specific volume . Spectra, absorption . ,, , emission (gases) ,, , , (solids) Spectroscopy . Squares . Standards, British . ,, British and metric e ,, metric . Standard conductivity solutions 	quiva		•••••••••••••••••••••••••••••••••••••••	56 59 58 81 22 77 76 58 4 9 36 86
 ,, ,, , mercury . ,, ,, miscellaneous ,, , , water . Specific inductive capacity Specific resistances . Specific volume . Spectra, absorption . ,, , emission (gases) ,, , , (solids) Spectroscopy . Squares . Standards, British . ,, British and metric e ,, metric . Standard conductivity solutions ,, spectrum lines . 	quiva		•••••••••••••••••••••••••••••••••••••••	56 59 56 81 227 776 58 49 36 57 875
", ", ", mercury . ", ", miscellaneous ", ", water . Specific inductive capacity Specific resistances . Specific volume . Spectra, absorption ", emission (gases) ", ", " (solids) Spectroscopy . Squares . Standards, British . ", British and metric e ", metric . Standard conductivity solutions ", spectrum lines . ", temperatures .	quiva		••••••••	56 59 56 81 27776 58 49 36 59 8750 8750
 ,, ,, , , , , , , , , , , , , , , , ,	quiva		••••••••	56 59 54 1 2 77 76 58 4 9 36 50 51 5
", ", ", mercury . ", ", miscellaneous ", ", water . Specific inductive capacity Specific resistances . Specific volume . Spectra, absorption ", emission (gases) ", ", " (solids) Spectroscopy . Squares . Standards, British . ", British and metric e ", metric . Standard conductivity solutions ", spectrum lines . ", temperatures .	quiva		••••••••	56 59 58 81 22 77 77 6 58 4 9 36 75 9 50 58 4 9 36 75 9 50 50 50 83
 ,, ,, , mercury . ,, ,, miscellaneous ,, , , water . Specific inductive capacity Specific resistances . Specific volume . Spectra, absorption . ,, , emission (gases) ,, , , (solids) Spectroscopy . Squares . Standards, British . ,, British and metric e ,, metric . Standard conductivity solutions ,, spectrum lines . ,, temperatures . ,, times . ,, wire gauge . Stars, distances of . ,, motions of . 	quiva		••••••••	56 59 56 481 22 77 77 6 58 4 9 36 75 0 5 1 5 3 1 5 1 5
 ,, ,, , mercury . ,, ,, miscellaneous ,, , , water . Specific inductive capacity Specific resistances . Specific volume . Spectra, absorption . ,, , emission (gases) ,, , , (solids) Spectroscopy . Squares . Standards, British . ,, British and metric e ,, metric . Standard conductivity solutions ,, spectrum lines . ,, temperatures . ,, times . ,, wire gauge . Stars, distances of . ,, parallaxes of . 	quiva		••••••••	56 59 58 81 22 77 77 58 4 9 36 75 51 53 51 53 51 53 51 53 51 53 51 53 51 53 51 53 55 54 55 55 55 56 56 56 56 56 56 56 56 56 56
 ,, ,, , , , , , , , , , , , , , , , ,	quiva		••••••••	56 95 84 1 2 77 77 75 8 4 9 36 75 0 5 1 8 1 5 5 5 1 5 5 5 1 5 5 5 5 5 5 5 5
 ,, ,, , , , , , , , , , , , , , , , ,	quiva		· · · · · · · · · · · · · · · · · · ·	56 59 58 81 22 77 77 58 4 9 36 75 51 53 51 53 51 53 51 53 51 53 51 53 51 53 51 53 55 54 55 55 55 56 56 56 56 56 56 56 56 56 56
 ,, ,, , , , , , , , , , , , , , , , ,	quiva		· · · · · · · · · · · · · · · · · · ·	56 59 56 481 22 77 77 6 58 4 9 36 75 0 15 3 15 15 56 90
 ,, ,, , , , , , , , , , , , , , , , ,	quiva		· · · · · · · · · · · · · · · · · · ·	56 59 56 481 22 77 77 6 58 4 9 36 75 0 15 3 15 15 5 5 15 3 15 15 5 5
 ,, ,, , , , , , , , , , , , , , , , ,	quiva		· · · · · · · · · · · · · · · · · · ·	56 59 56 481 22 77 77 6 58 4 9 36 75 0 15 3 15 15 56 90 45
 ,, ,, , , , , , , , , , , , , , , , ,	quiva		· · · · · · · · · · · · · · · · · · ·	56 95 84 1 2 77 77 75 8 4 9 36 75 0 15 3 15 15 55 9 400 39 9
 , , , , , , , , , , , , , , , , , , ,	quiva	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	56 95 84 12 77 77 75 8 4 9 36 75 0 15 3 15 15 56 90 400 39 98 10 39 88 100 39 88 100 39 88 100 38 1000
 , , , , , , , , , , , , , , , , , , ,	quiva	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	56 59 56 481 22 77 77 6 58 4 9 36 75 0 15 3 15 15 56 90 400 39 98 4
 , , , , , , , , , , , , , , , , , , ,	quiva	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	56 95 84 12 77 77 75 8 4 9 36 75 0 15 3 15 15 56 90 400 39 98 10 39 88 100 39 88 100 39 88 100 38 1000

Susceptibility So. 00	"V," r
Susceptibility	Van de
Sutherland's viscosity equation . 51, 52	
_	Vaporis
TANGENTS, natural	Vapour
Temperature coefficient, conductivity (solns.) 86	,,
", ", dielectric constant 84	,,
,, ,, , magnetization . 90	,,
,, ,, , , , , , , , , , , , , , , , ,	,,
,, ,, , resistance . 82, 83	,,
,, ,, , rigidity 28	Vapour
curface tension 26	-
60 Long Long Long Long Long Long Long Long	Vapour:
	Velocity
,, ,, ,, viscosity (gaseous) 32 ,, ,, ,, Weston cell 8	verocity
No. 1 Julia al	33
", ", Young's modulus. 28	,,
Temperature of fire, by appearance 47	**
remperatures, critical	,,
Temperatures, critical 34	,,
,, , , standard	,,
Tenacities	,,
Tensile strengths, liquids 39	Verdet's
",", standard 50 Tenacities 28 Tensile strengths, liquids 39 ",",", solids 28 Tension, surface 36 Terrestrial magnetic constants 91 Thermal conductivities 51 Thermochemistry 62 Thermochynamic correction to gas thermo-	Vibratio
Tension, surface	Viscosit
Terrestrial magnetic constants	
Thermal conductivities	,,
Thermachemistry 62	,,
Thermoenenistry	99
Thermo-couples	**
a normous name concerton to gas mermo	
meters 44	Volt, in
,, scale	Volume
meters	,,
Thermo-junctions	,,
Thermo-junctions	,,
Thermometry, gas <td>Volume</td>	Volume
., , optical	760
.,	
radiation	144
thermoelectric 46.47	WATER
Thickness of liquid films 27	"
motel loof	Watt, t
Thereium emenation diffusion of	Waxes,
Thorium emanation, diffusion of 103	Weighi
I norium, neat from 102	Weight
,, , in rocks 104	Weston
Time, equation of 15	Wet an
Times, standard 15	Whitwo
Tonne, value of 9	Wien's
Transport numbers 85	
Time, equation of11Times, standard15Tonne, value of15Transport numbers9Transverse vibrations of rods85Transverse vibrations of rods68Trouton's Rule60	Wire ga
Trouton's Rule 60	wire ga
Troy units 9	Wire re
Tubing (glass), bursting strengths of . 39	59
Tuning fork, temperature coefficient of . 68	
Twaddell's hydrometer 21	X RAYS
I wadden's nydrometer	>>
Harma	
UNITS 3	YARD,
,, , British	VARD,
UNITS	Years,
,, , dimensions of	Young's
,, , electrical, determinations of 8	
., electrical, practical definitions of , o	Young's
,, light	for
, metric	
,, , light	Zeeman
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	


	PAGE
"V," ratio of electrical units	. 69
Van der Waal's equation	. 34
Vaporisation, latent heats of	. 60
Vapour pressures	. 40
alashal athul	
	. 41
", ,, , compounds	. 42
,, ,, , elements	. 42
,, ,, , ice	. 40
", ", ", mercury	. 41
Vapour pressures, Ra Em	. 103
,, ,, ,, water	. 40
Vapours, condensation of	. 96
Velocity of a rays	. 100
,, Hertzian waves	. 69
,, ions. See Mobilities	
" light (in liquids)	. 69
,, ,, (in vacuo)	. 69
,, negative electrons	. 99
,, sound	. 67
and measure	. 68
	. 80
TTIL	. 68
Viscosities, gases	. 31
", ", (temperature coefficients	
,, , liquids	. 30
	. 31
,, , solutions aqueous	. 31
,, , vapours	· 31
Volt, international	. 6
Volume calibration	. 17
,, coefficient of expansion .	. 54
., critical	. 34
,, elasticity	. 27
Volumes (gaseous) reduction to o° C. and	d ~/
760 mm	. 19
/** mm · · · · ·	9
	-
WATER vapour, density of	. 26
,, ,, , in saturated air .	. 39
Watt, the	. 5, 6
Waxes, melting points of	. 50
Weighings, reduction to vacuo .	. 19
Weights and measures, British .	. 4
Weston cell, determinations of .	. 8
Wet and dry bulb hygrometer	-0
Whitworth screws	. 38
Whitworth screws	. 65
,, radiation formula 4	
" radiation formula 4	
Wire gauge, standard Wire resistances	. 83
wire resistances	. 83
", ", temperature coefficient of	83
X RAYS, homogeneous	· 93
" ionization by	. 101
YARD, definition of	. 4,9
Vears various	
Years, various Young's modulus	. 3
roung's modulus	27
Young's, Ramsay and, vapour pressur	20
Young's, Ramsay and, vapour pressur	e
formula	. 40
Zeeman effect, e/m from	98, 99


THE END

FRINTED BY WILLIAM CLOWES AND SONS, LIMITED, LONDON AND BECCLES.

