Farbenproben zur Prüfung des Farbensinnes.

Contributors

Stilling, J. 1842-1915. Hertel, Ernst, 1870-1942.

Publication/Creation

Leipzig: Thieme, 1939.

Persistent URL

https://wellcomecollection.org/works/jhxhhgvw

License and attribution

This work has been identified as being free of known restrictions under copyright law, including all related and neighbouring rights and is being made available under the Creative Commons, Public Domain Mark.

You can copy, modify, distribute and perform the work, even for commercial purposes, without asking permission.

Wellcome Collection 183 Euston Road London NW1 2BE UK T +44 (0)20 7611 8722 E library@wellcomecollection.org https://wellcomecollection.org

Tarbenproben zur Prüfung des Tarbenfinnes

STILLING'SCHEN TAFELN

VON

GEHEIMRAT PROFESSOR DR. E. HERTEL

WW100 1939 585p

GEORG THIEME / VERLAG / LEIPZIG

proben zur s Farbensinnes

ITETE AUFLAGE DER

CHEN TAFELN

VON

FESSOR DR. E. HERTEL

/ VERLAG / LEIPZIG

Farbenproben zur Prüfung des Farbensinnes

Farbenproben zur Prüfung des Farbensinnes

20., NEU BEARBEITETE AUFLAGE DER
STILLING'SCHEN TAFELN

VON

GEHEIMRAT PROFESSOR DR. E. HERTEL

GEORG THIEME / VERLAG / LEIPZIG

WW100 1939 S85p

Schulische, berufliche und nachgehende Fürsorge für Blinde und Sehschwache

Ein Nachschlagewerk für Behörden, Fürsorger, Ärzte, Erzieher, Blinde und deren Angehörige. Von Dr. Carl Strehl, Direktor der Blindenstudienanstalt Marburg/L. Erscheint im Frühjahr 1939.

Atlas der Augenkrankheiten

Sammlung typischer Krankheitsbilder mit kurzen diagnostischen und therapeutischen Hinweisen. Von Dr. Rudolf Thiel, ord. Professor an der Universität Frankfurt a. M. 1937. Lex.-8°. 203 Seiten. Mit 420, meist farbigen Abbildungen. In Ganzleinen geb. RM 24.—

Gegenwartsprobleme der Augenheilkunde

Sammlung der Vorträge vom VIII. Fortbildungskursus für Augenärzte in Frankfurt a. M. vom 21.—27. Februar 1937. Unter Mitarbeit von Fachgelehrten herausgegeben von Dr. Rudolf Thiel, ord. Professor an der Universität Frankfurt a. M. 1937. Lex.-8°. VII, 280 Seiten. Mit 164 Abbildungen und 2 farbigen Tafeln sowie 21 Tabellen, Kartoniert RM 16.—

Ophthalmologische Operationslehre

Von Dr. Rudolf Thiel, ord. Professor an der Universität Frankfurt a. M. In Vorbereitung.

Die Kuppelungen von Pupillenstörungen mit Aufhebung der Sehnenreflexe

(Adie-Syndrom, Pupillotonie, Pseudotabes, konstitutionelle Areflexie). Von Prof. Dr. F. Kehrer, Direktor der Psychiatr. und Nervenklinik der Universität Münster. 1937. Gr.-8°. 60 Seiten. Mit 2 Abbildungen. RM 4.60.

Erbleiden des Auges

Bearbeitet von Professor Dr. Max Bücklers, Tübingen; Professor Dr. Wilhelm Clausen, Halle a. d. S.; Professor Dr. Bruno Fleischer, Erlangen; Dozent Dr. habil. Heinrich Harms, Berlin; Professor Dr. Adolf Jess, Leipzig; Professor Dr. Walther Löhlein, Berlin; Professor Dr. Oswald Marchesani, Münster i. W.; Professor Dr. Wolfgang Stock, Tübingen; Professor Dr. Wilhelm Wegner, Freiburg i. Br. (Handbuch der Erbkrankheiten, herausgegeben von Ministerialdirektor Dr. Arthur Gütt, Bd. 5). 1938. Lex.-8°. XI, 310 Seiten. Mit 221, teilweise farbigen Abbildungen RM 24.—, in Ganzleinen geb. RM 26.—. Vorzugspreis für Käufer des vollständigen Werkes RM 22.—, in Ganzleinen gebunden RM 24.—

GEORG THIEME / VERLAG / LEIPZIG

22300003746

Farbenproben zur Prüfung des Farbensinnes

20., NEU BEARBEITETE AUFLAGE DER
STILLING'S CHEN TAFELN

VON

GEHEIMRAT PROFESSOR DR. E. HERTEL LEIPZIG

GEORG THIEME / VERLAG / LEIPZIG

14721360

Alle Rechte,

auch das Recht der Übersetzung in die russische Sprache, vorbehalten

Copyright 1939 by GEORG THIEME, LEIPZIG

Coll. well-40mec

Call
No. WW100

1939

S850

PRINTED IN GERMANY

Druck der Tafeln: GIESECKE & DEVRIENT A.-G., Leipzig

Druck des Textes: BIBLIOGRAPHISCHES INSTITUT AG., Leipzig

VORWORT

Die vorliegenden Farbenproben zur Prüfung des Farbensinnes haben denselben Umfang wie früher, bringen aber inhaltlich nicht unwesentliche Änderungen.

Einmal sind Tafeln mit Wiederholungen in gleicher Farbenzusammenstellung vermieden. Dadurch wurde Raum gewonnen für Einführung neuer Tafeln mit Zahlen und Buchstaben in Verwechslungsfarben aus bisher noch nicht berücksichtigten Spektralbezirken. Daraus ergab sich eine größere Mannigfaltigkeit der Proben und damit auch eine Erleichterung der Erfassung Farbenuntüchtiger, besonders bei Massenuntersuchungen.

Des weiteren konnten die Proben, die sich auf der hohen Empfindlichkeit Farbenuntüchtiger für Helligkeitsunterschiede aufbauen, wesentlich besser ausgestaltet werden, und schließlich wurden auch Tafeln beigefügt, welche die Auffindung der bei Farbenuntüchtigen so häufigen Erhöhung der Kontrastwirkung (Simultankontrast) erleichtern.

So bringt jede Tafel für den Untersuchten andere Aufgaben. Für die richtige Deutung seiner Antworten gibt die beigefügte ausführliche Beschreibung die nötigen Richtlinien. Die Handhabung der Tafeln wird durch die genaue Gebrauchsanweisung erleichtert.

Leipzig, Februar 1939

E. Hertel

Digitized by the Internet Archive in 2019 with funding from Wellcome Library

I. BESCHREIBUNG

Die Farbenproben dienen zur Auffindung der angeborenen Farbensinnstörungen. Am häufigsten sind die Störungen der Rotgrün-Empfindung, sie sind auch praktisch am wichtigsten wegen der Verwendung von roten und grünen Farbenzeichen im Signaldienst bei der Eisenbahn, Marine, Luftfahrt usw. Demgemäß ist der bei weitem größte Teil der Tafeln (Nr. 3–31) für die Aufdeckung von Rotgrün-Empfindungsstörungen bestimmt. Tafel 32–35 finden Verwendung beim Aufsuchen der seltenen Störungen der Gelbblau-Empfindung.

A. PRÜFUNG DER ROTGRÜN-EMPFINDUNG

TAFEL 3-31

Bei der Wichtigkeit, die der Feststellung der Störungen in der Rotgrün-Empfindung auch ganz geringen Grades zukommt, sei darauf hingewiesen, daß die Tafeln 3—31 dieses Ziel auf verschiedenartigen, sich aber ergänzenden Wegen zu erreichen suchen. Es sollen daher diese Tafeln, besonders in schwierig erscheinenden Fällen, dem Prüfling in ihrer Gesamtheit vorgelegt werden, also als ein Ganzes zur Grundlage der Beurteilung des Untersuchten dienen.

Die Tafeln 3-18

bringen Lesezeichen (Zahlen oder Buchstaben), die zusammengesetzt sind aus verschiedenfarbigen Tupfen in einem aus andersfarbigen Tupfen bestehenden Grund. Durch die Farbendifferenzen heben sich für den Normalen die Zeichen vom Grunde deutlich ab, sie werden daher von ihm ohne weiteres erkannt und alle richtig gelesen (normale Trichromasie). Farbenuntüchtige aber, bei denen die Empfindung für rot und grün gestört ist, werden in dem Farbengemisch der Tupfen die roten und grünen Töne, die bei den Zeichen überwiegen, nicht oder nur unvollkommen wahrnehmen, dagegen bleiben erkennbar gelbe, bläuliche und graue Töne. Da diese in den Tupfen des Grundes vorherrschen, werden für die Rotgrün-Gestörten die Unterschiede zwischen Lesezeichen und Grund verwischt oder sie verschwinden, es ergeben sich daher für sie je nach dem vorhandenen Mischungsverhältnis Schwierigkeiten in der Erkennung der Zeichen. Gänzliches Auslassen von Tafeln spricht für Rotgrün-Blindheit, fehlerhafte Deutung der Zeichen oder Erkennen derselben erst nach längerem Suchen oder bei stärkerer Annäherung oder schiefem Draufsehen spricht für Rotgrün-Schwäche (anomale Trichromasie).

Dabei erscheinen aber die Abweichungen von der Norm durchaus nicht allen Farbenuntüchtigen in gleichartigen Tönen, daher werden auch manche Untersuchte Tafeln erkennen, die von anderen nicht erkannt werden. Aus diesem Grunde war es nötig, die Prüfungstafeln in möglichst vielseitiger Zusammensetzung, die sich aus der Untersuchung eines großen Materials von Farbenuntüchtigen ergab, auszuführen.

Es sei darauf hingewiesen, daß die Tafeln 13—18 Anhaltspunkte dafür gewinnen lassen, ob bei einem Prüfling Protanopie (Protanomalie), also Rotgrün-Störung mit vorwiegender, aber nicht alleiniger Abschwächung der Empfindung für rot, oder Deuteranopie (Deuteranomalie), also eine Rotgrün-Störung mit vorwiegender, aber auch nicht alleiniger Abschwächung der Empfindung für grün vorliegt.

Es lesen:

Protanopen (Protanomale)	Deuteranopen (Deuteranomale)	Normale	
Tafel 13 meist nicht	fast immer	als 8	
Tafel 14 oft	fast nie	,, 65	
Tafel 15 meist nicht	meist ,	,, 5	
Tafel 16 meist	meist nicht	,, 6	
Tafel 17 als 4	als 3	,, 34	
Tafel 18 als R	als Z	" RZ	

Die Tafeln 19-22

basieren darauf, daß bei Farbenuntüchtigen die Empfindung für Helligkeitsunterschiede sehr ausgeprägt ist. Auf den Tafeln unterscheiden die Normalen ohne weiteres die Lesezeichen an ihrer Färbung von dem andersfarbigen Grund. Den Farbenuntüchtigen entgehen diese Farbenunterschiede, es drängen sich ihnen aber infolge ihrer großen Empfindlichkeit für Helligkeitsunterschiede gewisse, auch in Tupfen versteckt angebrachte hellere Zeichen auf, die den Normalen gar nicht oder nur nach längerem Bemühen als Vexierzahlen erscheinen. Es kommt also bei diesen

Proben sehr darauf an, welche Angabe der Untersuchte beim ersten Hinsehen macht. Es werden leicht sichtbar sein:

für N	für Anomale		
auf Tafel	19 die Buchstaben CH	eine 31	
auf Tafel	20 die 3	eine 8	
auf Tafel	21 die 8	eine 2	
auf Tafel	22 meist keine Zeichen	eine 16	

Es werden aber selbst hochgradig Farbenuntüchtige auch Zeichen, die in sehr dunklen Tönen auf hellfarbigem Grund stehen, erkennen, nicht an ihrer verschiedenfarbigen Tönung, sondern an der Differenz in der Helligkeit. So werden z. B. Tafel 1 und 2, auf denen die Zeichen absichtlich gegenüber dem Grund sehr dunkel gehalten sind, von jedem Farbenuntüchtigen, auch hohen Grades, richtig gelesen.

Da diese Tafeln wegen der leichten Erkennbarkeit für alle Prüflinge sich zur Einführung in die Methode gut eignen, sind sie an den Anfang der Proben gestellt worden. Über ihre Verwendung als Simulationsproben siehe Seite 14.

Die Tafeln 23-28

sind eine Ergänzungsprobe, sie enthalten keine Zahlen oder Buchstaben, sondern Punkte mit Ver-wechslungsfarben in verschiedener Sättigung und Helligkeit. Der Untersuchte soll zu einem ihm bezeichneten Punkte (Wahlpunkt) alle gleichfarbigen,

die sich auf der Tafel außerdem noch befinden, heraussuchen und mit einem Stäbchen zeigen. Ein Normaler wird das schnell ausführen können, Farbenuntüchtige werden Fehler machen, die um so eindeutiger sind, wenn darauf geachtet wird, daß auch die kleinsten Punkte, die dieselbe Farbe haben wie der als Wahlpunkt bezeichnete, nicht ausgelassen werden. Diese Tafeln dienen hauptsächlich zur Auffindung von geringen Störungen der Rotgrün-Empfindung. Sie haben nicht nur qualitativen, sondern durch die gleichzeitig mögliche Farbenschwellenprüfung in gewissem Grade auch quantitativen Charakter (Brückner).

Die Tafeln 29-31

beruhen auf einem ganz anderen Prinzip als die bisher besprochenen. Sie benutzen zur Auffindung der Rotgrün-Störung die bei den Anomalen erhöhte Kontrastwirkung. Viele von diesen geben an, daß ihnen graue Punkte, die von einer leuchtendgrünen Fläche umgeben sind, wie in Tafel 29, denselben Eindruck hervorrufen, wie wenn rötliche, graurötliche oder violette Punkte vorhanden wären, sie nennen daher die auf Tafel 29 gezeichneten grauen Punkte rötlich oder graurötlich oder auch violett. Viel häufiger und viel ausgesprochener tritt diese erhöhte Kontrastwirkung hervor, wenn man braune oder bräunliche Punkte in feuerroter Umgebung zeigt (Tafel 30). Den Anomalen erscheinen diese Punkte grün, graugrün oder olivenfarbig. Nicht selten wird auch die Zahl "5" auf Tafel 31 als grünlich angesprochen.

Diese Probe kann ein sehr wertvolles Kennzeichen für Störungen der Rotgrün-Empfindung darstellen, besonders wenn beim Betrachten der anderen Tafeln schon Verdachtsmomente dafür gewonnen wurden.

Bei der Untersuchung soll der Prüfling aufgefordert werden, den Farbton anzugeben, welchen er den Innenpunkten in den grünen (Tafel 29), bezw. roten (Tafel 30) Feldern zuschreibt. Auch bei Tafel 31 kommt es darauf an, zu erfahren, in welcher Farbe der Untersuchte die Zahl 5, die von ihm als solche wohl durchweg leicht erkannt wird, sieht.

B. PRÜFUNG DER BLAUGELB-EMPFINDUNG

TAFEL 32-35

sollen zur Auffindung von Störungen der Blaugelb-Empfindung dienen. Sie sind sehr selten, es finden sich aber doch unter den Rotgrün-Gestörten manchmal solche, die auch eine Abweichung in der Blaugelb-Empfindung haben. In anderen, allerdings noch selteneren Fällen kann die Rotgrün-Empfindung normal und nur die Blaugelb-Empfindung gestört sein.

Die Auffindung derartiger Fälle hat nicht nur theoretisches Interesse. Denn bei Störungen der Blaugelb-Empfindung kommen Verwechslungen von Blaugrün mit Blau und von Gelb mit Orange und Brandgelb vor, Fehler, die bei Stellen mit höchsten Anforderungen an die Betriebssicherheit, z. B. bei der Eisenbahn, sich bemerkbar machen können. Es erscheint daher nicht unwichtig, daß unsere Farbensinnproben, im Gegensatz zu sonst noch erschienenen Pigmentproben, auch Tafeln zur Prüfung der Blaugelb-Empfindung haben. Diese Tafeln sollen erst nach Abschluß der Rotgrün-Empfindung gezeigt werden, weil ohne Kenntnis der Beschaffenheit der letzteren ein Urteil über den Blaugelb-Sinn lückenhaft oder unzulässig ist.

Die Tafeln 32 und 34, die der Normale ohne weiteres erkennt, werden einen Prüfling mit stärkeren Störungen in der Blaugelb-Empfindung durch Nichtlesen oder fehlerhaftes Lesen verraten.

Die Tafeln 33 und 35 ermöglichen das Aufsuchen von feineren Störungen der Blaugelb-Empfindung (Engelking).

Tafel 33 enthält auf orangem Grund in Rosa die Zahlen 4 und 5, die ein Normaler in etwa 1 m erkennt. Dazwischen stehen noch in helleren Punkten gehaltene Vexierzahlen 9 und 2, die dem Normalen aber kaum sichtbar sind. Wer aber einen gestörten Blaugelb-Sinn hat (Tritanopie oder Tritanomalie), liest spontan die Vexierzahlen — mancher vielleicht zögernd, kann aber die Zahlen 4 und 5 nicht entziffern.

Tafel 35 enthält für den Farbentüchtigen Zahlen in blauen Punkten 4 und 9, dazwischen eine in helleren Tönen auch dem Normalen, wenn auch mühsam, erkennbare 2. Tritanope oder Tritanomale lesen diese 2, dagegen die 4 und 9 meist nicht.

II. GEBRAUCHSANWEISUNG

Die Tafeln sollen im allgemeinen in einer Entfernung von 1 m gezeigt werden, nur die Punkttafeln 23-28 können bis 60 cm angenähert werden wegen der Kleinheit vieler Tupfen.

Die Beleuchtung soll am besten diffuses Tageslicht sein, nicht Sonnenlicht. Künstliches Licht, namentlich sogenannte elektrische Tageslichtlampen, sind bei Tafel 1—18 auch anwendbar, die Tafeln 19—35 geben bei künstlichem Licht nicht dieselben Resultate wie bei diffusem Tageslicht.

Der Untersuchte soll die Tafeln, wie es der Normale auch tut, schnell übersehen und angeben, was er sieht. Längeres Suchen, Hin- und Hergehen mit dem Kopf, auch zuweilen Nachziehen der Zeichen mit dem Finger in der Luft deuten auf Störungen im Farbensinn.

Die Reihenfolge kann beliebig gewählt werden, doch empfiehlt es sich, mit Tafel 1 und 2 zu beginnen, da, wie oben schon gesagt, diese auch von Farbenblinden leicht gelesen werden, sich also zur Einführung in die Probe eignen.

Die Tafeln, die Zahlen oder Buchstaben enthalten, erleichtern die Massenuntersuchung. Der Untersucher ist aber nicht auf das Erkennenlassen der Zeichen allein angewiesen, man kann auch gleichfarbige Farbentüpfelchen aufsuchen lassen, wie das am ausgesprochensten für Tafeln 23–28 gilt. Man kann im Zweifelsfalle auch den Prüfling auffordern, die Zahlen oder Buchstaben mit einem stumpfen Stäbchen nachzuziehen.

Ein Normaler wird die Zeichen richtig treffen, ein Nichtnormaler dagegen kann leicht, durch die Verwechslungsfarben des Grundes verleitet, den Zug der Zeichen verpassen. Besonders eignen sich zu diesem Nachziehenlassen die Tafeln 2,11 und 12, zumal wenn man die dort gegebenen Buchstaben nicht vom Anfang, sondern von rückwärts zeigen läßt, da dann auch ein Erraten der Buchstaben wegfällt.

Die gefundenen Fehler sollen notiert, nicht aber dem Untersuchten mitgeteilt werden. Sind sie groß, fallen z. B. Tafeln ganz aus, dann ist klar, daß eine Farbensinnstörung vorliegt; sind sie aber klein, z. B. wenn nur die sich sehr ähnlichen Zahlen, wie 3 und 5, 6 und 9 usw., verwechselt oder mühsam oder falsch korrigiert werden, dann soll man sich diese Tafeln mit den kleinen Fehlern genau merken und sie am Schluß der Prüfung nochmal zeigen. Werden die Fehler dann wieder gemacht, so dürften auch diese geringen Abweichungen von dem, was ein Normaler ohne weiteres sieht, für eine Farbensinnstörung sprechen.

III. AUFDECKUNG UNRICHTIGER ANGABEN DER UNTERSUCHTEN

A. SIMULATION

Gibt der Untersuchte an, daß er gar keine der vorgelegten Proben erkennen könne, also ganz farbenblind sei, so zeigen die Augen in den meisten Fällen auch sonstige Störungen: Sehschwäche, Nystagmus, Lichtscheu usw. Fehlen diese Symptome, so ist der Verdacht auf Simulation der angegebenen Farbstörung berechtigt. Erwiesen ist die Simulation, wenn der Untersuchte auch die Tafeln 1 und 2 unserer Proben nicht entziffert, die ja selbst für höchstgradig Farbenuntüchtige wegen der großen Helligkeitsdifferenzen erkennbar sind (vgl. Seite 8).

Meist aber wird von den Simulanten angegeben, daß rot oder grün oder beides nicht erkannt werden könnte. Zur Entlarvung zeigt man zunächst beliebige Tafeln und notiert sich, was der Untersuchte für Angaben macht. Nicht selten bringen die Tafeln 13-18, die, wie Seite 7 beschrieben, von Protanopen und Deuteranopen verschieden gelesen werden, die Simulanten in Verwirrung und führen so zu Verdachtsmomenten. Verdacht auf Simulation von Rotgrün-Störung ist auch gerechtfertigt, wenn behauptet wird, daß die Tafel 34 mit den gelben Zahlen im blauen Grund nicht erkannt werde, denn die weitaus meisten Rotgrün-Gestörten lesen sie glatt. Beweisend aber ist für Simulation das Nichtlesen der Tafeln 1 und 2, weil sie wegen der Helligkeitsdifferenzen selbst für völlig Rotgrün-Blinde lesbar sind. Auch die Tafeln 19-22 können herangezogen werden, auf denen wirklich Rotgrün-Gestörte, wie oben ausgeführt, die Vexierzahlen erkennen.

B. DISSIMULATION

Daß ein Untersuchter seine Farbenuntüchtigkeit zu verbergen sucht, kommt oft vor. Das Auswendiglernen, das bei geringerer Auswahl der Farbtafeln möglich ist, dürfte jetzt bei der großen Anzahl und Mannigfaltigkeit der Probetafeln kaum mehr zu befürchten sein. Um aber auch ein glückliches Erraten möglichst auszuschalten, sollen die Tafeln außer der Reihe vorgezeigt werden, oder man läßt sie auf den Kopf gestellt lesen, es ergeben sich dann bei vielen Tafeln zwar noch lesbare, aber veränderte Zahlenbilder, die den auswendiggelernten nicht entsprechen.

Auch das Nachziehen der Buchstaben und Zahlen, das oben erwähnt wurde, ist eine gute Probe auf den Zustand des Farbensinnes, namentlich ist auf die Tafeln 2, 11 und 12 hinzuweisen. Schließlich kann man die Tafeln durch Farbenfilter (Glasplatten oder Folien) in ihrem Aussehen völlig verändern. Es gibt Tafeln, z. B. Nr. 9, 10, 12, 14 und 18, die durch ein blaues oder rotes Farbenfilter auch für einen Normalen unleserlich sind. Werden die Zahlen aber doch genannt, so muß der Untersuchte sie auswendig gelernt haben. Andere Folien in Rosa oder Grün geben die verschiedensten Variationen, so daß der Untersucher in den Filtern bei eigener Kontrolle der durch sie hervorgerufenen Veränderungen der Erkennbarkeit der Tafeln ein Hilfsmittel hat, um Dissimulanten zu überführen (Filterfalle).

Tafeln mit Umschlagfarben zum Nachweis von relativer Rot- und Grünsichtigkeit

Von Dr. med. Ernst Wölfflin

a. o. Professor an der Universität Basel

Mit einem Vorwort sowie einer Gebrauchsanweisung in besonderem Beiheft 1926. 8°. 8 Seiten und 8 Tafeln. Gebunden RM 5.10

Sehproben nach Snellens Prinzip

entworfen von Dr. A. Roth † Generalarzt a. D.

Unveränderter Neudruck der 4. Aufl. 1939. Gr.-8°. Tafel I bis V mit 4 Textbeilagen und Tafel A und B. RM 3.60

Grundriß der Augenheilkunde für Studierende und praktische Arzte

Von Prof. Dr. A. Brückner
Direktor der Universitäts-Augenklinik Basel
und Prof. Dr. W. Meisner

Direktor der Universitäts-Augenklinik Greifswald

Zweite, verbesserte Auflage. 1929. Lex.-8°. XXV, 602 Seiten. Mit 221 Abb. im Text und 9 farbigen Tafeln. RM 10.—, in Ganzleinen geb. RM 12.—

Die Röntgendiagnostik und -Therapie in der Augenheilkunde

Von Dr. Wolfgang Hoffmann
Privatdozent, Oberarzt an der Universitäts-Augenklinik Königsberg i. Pr.
(Radiologische Praktika, Band XIX)
1932. Lex.-8°. VI, 72 Seiten. Mit 20 Abbildungen. In Ganzl. geb. RM 8.70

Röntgenbehandlung in der Augenheilkunde

Von Prof. Dr. Wolfgang Stock Direktor an der Universitäts-Augenklinik Tübingen 1928. Lex.-8°. IV, 39 Seiten. Mit 20 Abbildungen. RM 2.—

Leitfaden der Pathologie und Therapie der Kampfstofferkrankungen

Von Dr. med. Otto Muntsch

Oberstarzt, Div.-Arzt der 3. Panzerdivision und Kommandeur der San.-Abt. 39, Privatdozent an der Universität Berlin, Mitglied des Pr. Landesgesundheitsrates

Fünfte, verbesserte und vermehrte Auflage 1939. Gr.-8°. 150 Seiten. Mit 58, davon 21 farbigen Abb. Kart. RM 10.80

GEORG THIEME / VERLAG / LEIPZIG

Der Offentliche Gesundheitsdienst

Zeitschrift des Reichsausschusses für Volksgesundheitsdienst E. V., der Staatsakademie des Öffentlichen Gesundheitsdienstes Berlin und der Wissenschaftlichen Gesellschaft der deutschen Ärzte des öffentlichen Gesundheitsdienstes

Schriftwalter:

Dr. H. Eckhardt, Berlin, Oberregierungs- und -medizinalrat Dr. F. Redeker, Berlin, Stadtmedizinalrat Dr. med. habil. E. Schröder, Oberhausen, Oberregierungs- und -medizinalrat Dr. H. Wex, Berlin

4. Jahrgang 1938/39

Jährlich 24 Hefte im Umfang von je 64 Seiten Bezugspreis vierteljährlich RM 6.50 zuzüglich Postgebühren

Deutsche Medizinische Wochenschrift

Organ der Berliner Medizinischen Gesellschaft und anderer Vereinigungen

Schriftwalter:

Professor Dr. R. von den Velden; Privatdozent Dr. Artur Pickhan

Monatliche Beilage: "Deutsches Tuberkulose-Blatt"

Herausgegeben von

Professor Dr. Kurt Klare, Scheidegg im Allgäu

65. Jahrgang 1939

Bezugspreis vierteljährlich RM 6.20 zuzüglich Postgebühren
Für Studierende der Medizin und Ärzte, die noch nicht fest angestellt
sind (Medizinalpraktikanten, Volontär-, Assistenzärzte), vierteljährlich
RM 4.80 zuzüglich Postgebühren

Fortschritte der Therapie

Schriftwalter: Professor Dr. R. von den Velden, Berlin

15. Jahrgang 1939 - Jährlich 12 Hefte

Bezugspreis vierteljährlich RM 3.— zuzüglich Postgebühren Für Bezieher der "Deutschen Medizinischen Wochenschrift" und Studierende vierteljährlich RM 2,50 zuzüglich Postgebühren

Fortschritte der Erbpathologie, Rassenhygiene und ihrer Grenzgebiete

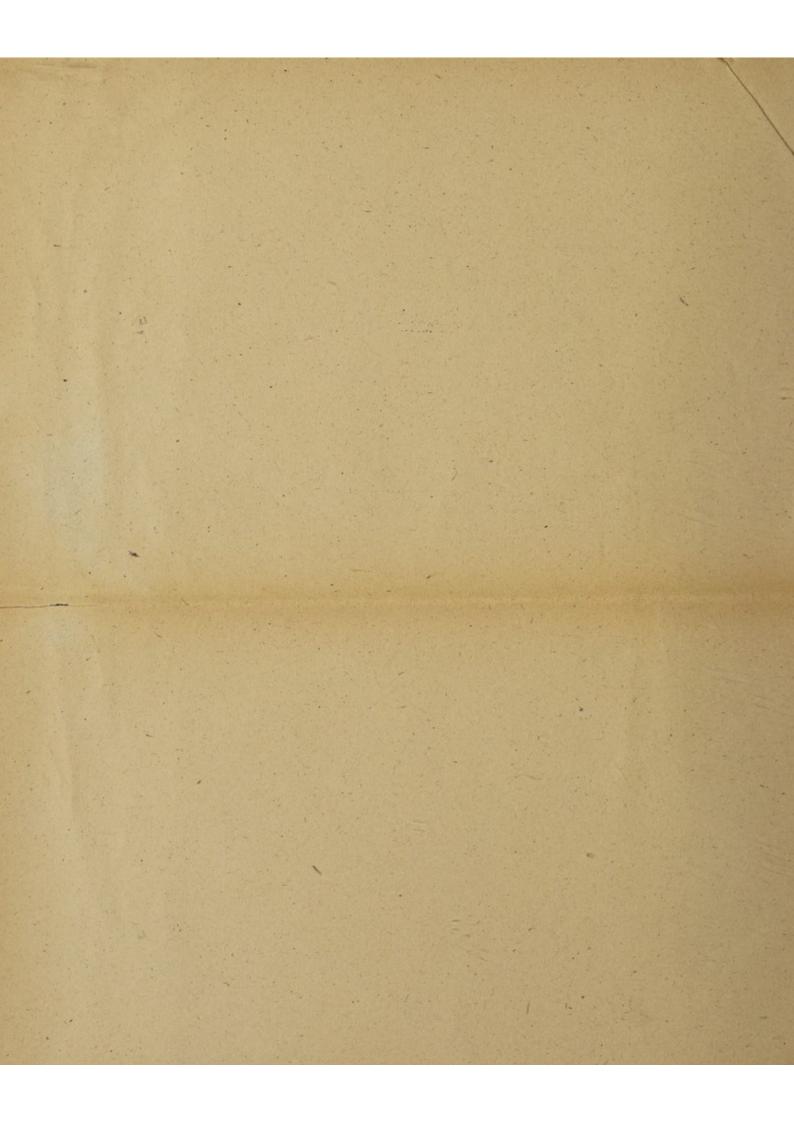
Unter Mitwirkung von zahlreichen Fachgelehrten herausgegeben von Ober-Medizinalrat Dr. Johannes Schottky, Hildburghausen und Professor Dr. Frhr. v. Verschuer, Frankfurt a. M.

3. Jahrgang 1939 — Jährlich 6 Hefte

Bezugspreis jährlich RM 16.— zuzüglich Postgebühren

GEORG THIEME / VERLAG / LEIPZIG

COLOUR PLATES


FOR

TESTING COLOUR - VISION

BY

Cehaimrat Professor Dr. E. HERTEL

LEIPZIG.

DES (RIPTION

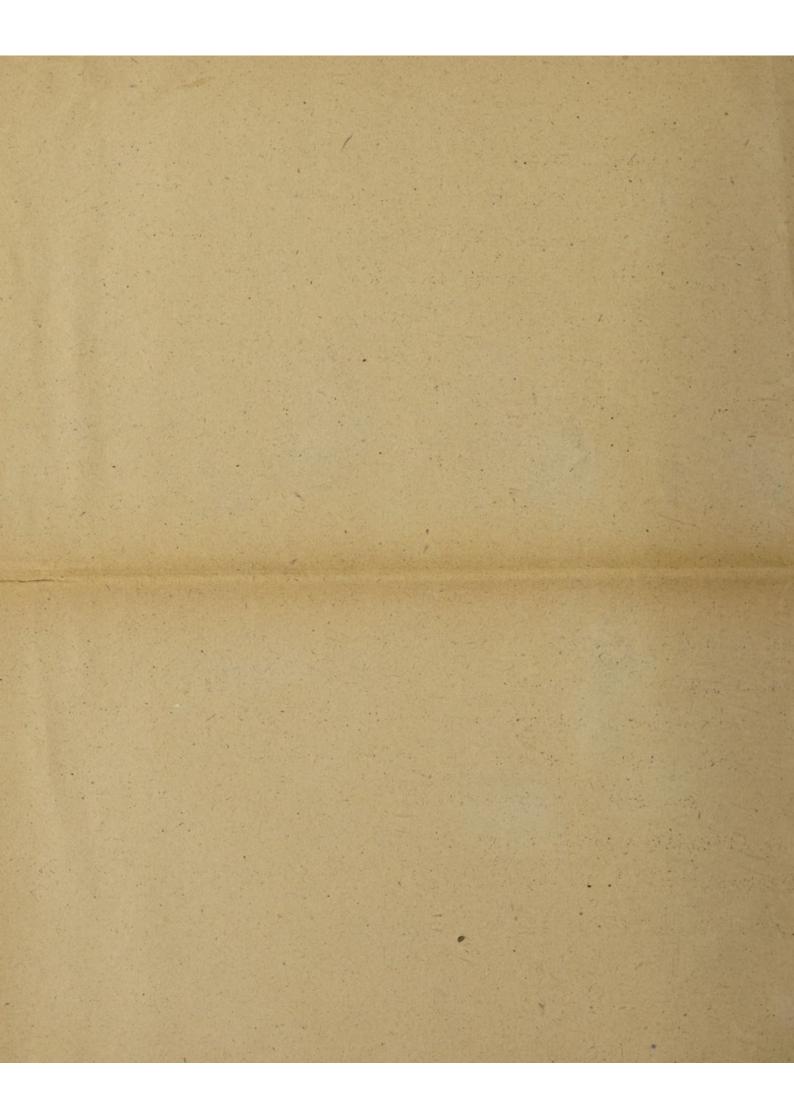
The colour plates are used for detecting defects of colour-vision. Disturbances of Red-Green-Perception are common: red and green signs are very important as they are used for Railway, Naval, Aircraft and Traffic Signals. Accordingly the greater number of the plates (Nos. 3-31) are intended for detecting defects of Red-Green-Perception. Tables 32-35 are for detecting the less common defects of Yellow-Blue-Perception.


A. Testing for Red-Creen-Perception.

Plates 3-31

As it is important to detect defects of Red-Green-Perception, and also minor degrees of these, it is pointed out that tables 3.31 are designed to achieve this aim in different but supplementary ways. Therefore all the plates should be shown to the subject, so that assessment of his colour vision can be complete.

Plates 3-18


These show characters (Numbers or Letters) which are composed of variegated dots and a background consisting of different coloured dots. For the normal person the colours of the prominent detail contrast sharply with the background and they can be read by him without difficulty. (Normal Trichromatic Vision).

Those persons, however, whose red-green perception is defective will either perceive imperfectly, or not at all, the red and green tones which preponderate in the colour-blending of the ots; but the yellow, bluish and grey tones are quite visible to them. As these are the colours of the dots of which the background is composed, the difference between the detail and background is indistinct or absent for Red-Green-Defectives and they have difficulty in recognising the detail. Complete failure to recognise the detail is a result of Red-Green-Blindness; incorrect interpretation of the detail or the recognition of it after prolonged effort, intense gazing or oblique poering, shows Red-Green weakness. (Anomalous Trichromatic Vision).

Not all those suffering from Anomalous Trichromatic Vision have the same type of disturbance of colour-perception, therefore, some of the subjects will be able to recognise details which others cannot. For this reason it was necessary to assemble numerous types of plates, selected from the examination of a large number of colour-blind persons and those with weak-colour-vision.

It is pointed out that tables 13-18 show whether the subject is suffering from Protanopy (Protanomalie), i.e. red-green defect present, but principally a defect of perception of red; or from Deuteranopy (Deuteranomalie) i.e. red-green defect present but principally a length of perception of green.

Protanopes	Deuteranopes	Normal Forsons
Plate 13 mostly_not	nearly always	as 8
Plate 14 often Plate 15 mostly not	nearly never	as 65
Plate 16 mostly	mostly not	as 6.
Plote 17 as 4	as 3	as 34
Plate 18 as R	as Z	as RZ


Plates 19-22

differences in intensity of colour found in colour-blind subjects. With these plates, normal subjects distinguish without difficulty the details by their colouring from the background. These colour variations escape those with defective colour vision but, owing to their great powers of perception of differences of intensity they appreciate some lighter detail which appears hidden to ordinary subjects. In these terms lot depends on the statement and at first sight by the subject.

These will be easily visible:-

For normal subjects		Ron dere	etave suo jo	ects
Plate 19 letters CH Plate 20 3			31	
Plate 21 8			2	
Plate 22 mostly no si	gns		16	

Subjects who are severely colour-blind will recognise the very dark tones on a light-coloured back ground, not by the colouring but by the difference in intensity. On plates 1 and 2 the detail is very dark in contrast with the background and so they will be read correctly by everyone.

including the severely colour-blind. As these plates, on account of their easy perception by all subjects, are suitable for introduction in the use of the tests they are placed at the beginning. (For their use as simulation tests turn to page 9)

Platos 23-28

only dots, in colours that are easily confused, in different shades and degrees of intensity. One dot is chosen and shown to the subject who has to pick out all equally coloured dots and to indicate them on the plate with a pointer.

Normal subjects can do this very quickly but others will make mistakes, especially if it is ensured that the smallest dots of the chosen colour are also indicated. These plates serve chiefly for tracing defects of Roa Green-Perception. They have not only a qualitative but also, to some extent, a quantitative character.

Plates 29-Jl

These are based on a completely different principle from these hitherto discussed. They make use of the contrast-effect which is increased in defective people, to detect Red-Green defects. Many of them state that the grey dots, surrounded by a light-green surface, as in Plate 29, give them the same impression as if they were reddish, reddish-grey or violet dots. They, therefore identify the grey dots on Place 29 as reddish, reddish-grey or violet.

This contrast effect can be seen more often and more clearly if one shows brown or brownish dots on a bright red background (Plate 30). To defective people they seem to be green, grey-green or clive coloured. The figure 5 on Plate 31 is often identified as greenish. This test can be very important for defects of Red-Green-Perception especially if, while using other Plates, suspicion has already been aroused. During the test the subject should be asked to state the shade of colour of the central dot of the green (Plate 29) or of the red (Plate 30) squares. The figure 5 of Table 31 can easily be recognised by the subject but it is important to know in which colour he sees it.

TESTING OF BLUE-YELLOW-PERCEPTION. Plates 32-35

These set out to detect disturbances of Blue-Yellow-Perception. This is very uncommon but among those suffering from Red-Green Disturbance there are sometimes subjects whose perception for Blue-Yellow is also defective. In other rarer cases Red-Green-Perception can be quite normal and Blue-Yellow-Perception defective. The tracing of such cases is not only of theoretical interest. Those who suffer from such defects cannot distinguish blue-green or blue; yellow or orange. This might become obvious in occupations with exacting demands, e.g. railwaymen. It is important, therefore, that our colour-vision tests should include also Plates for examining blue-yellow

perception, (in contrast with other types of pigment tests). These plates should be shown after the completion of the Red-Green-Perception test, because without knowing the condition of the latter, a judgement on the blue-yellow sense would be incomplete.

Plates 32 and 34 will be read by normal subjects without any effort, but subjects with more serious defects of Blue-Yellow-Perception cannot read them at all or only imperfectly. Tables 32 and 35 are intended to detect less seriously defective Blue-Yellow-Perception.

Plate 33 shows on an orange background the numbers 4 and 5 in pink, which can be recognised by a normal personel at about 1 metre. Among these there are in lighter dots the Numbers 9 and 2, which are, however, not visible to a normal subject. Those whose blue-yellow vision is defective (Tritanopie) read quickly these numbers but cannot decipher the figures 4 and 5. Those who are able to distinguish colours can see of Plate 35 the figures 4 and 9 in blue dots. Among these is shown a 2 in lighter colouring which can be recognised by normal subjects with some effort. Tritanomalous subjects read only the 2; but cannot see the figures 4 and 9.

II DIRECTIONS FOR USE.

Generally the Plates should be shown at a distance of 1 metre; on account of the smallness of the dots on Plates 23-28 the distance can be shortened to 60 cm. The best lighting is diffuse daylight, not sunlight.

Artificial light, especially the so-called electric daylight lamps, are also suitable for Plates 1-18. Plates 19-35 give different results when they are shown in artificial light instead of daylight. Like the normal subjects the examinee should look at the Plates and then say quickly what he sees.

Prolonged effort, moving the head or drawing the digits with the finger in the air, signify defects of colour-vision.

The order in which the plates are shown can be chosen as required, but it is recommended that plates 1 and 2 be shown at the beginning, as they can easily be read by colour-blind persons and are therefore suitable as an introduction to the test.

Plates, showing figures or letters, permit an extensive examination.

The examiner is, however, not limited by mere identification of digits, but can also get the subject to point out similarly coloured dots, especially.

Plates 23-38. If doubts arise the subject can be asked to draw the figures or letters with a pointer. A normal person can do this correctly but others become confused by the colour mixture of the background and lose the digit.

Plates 2, 11 and 12 are suitable for drawing the digit. It is wisest to show the Plates in a different order to each subject, so that they cannot be guessed.

The mistakes observed should be noted, but should not be told to the subject. If there are many errors, i.e. digits are not recognised, it will be obvious that there is defect of colour vision. If the errors are

unimportant, e.g. similar numbers like 3 and 5, 6 and 9 are confused, these Plates should be noted and shown again at the end of the examination. If these errors are repeated these slight variations indicate some defect.

III DISCLOSING OF WRONG STATEMENTS OF THE EXAMINEE A. Simulation

If the examinee states that he cannot recognise any of the tests and that he is quite colour blind, he will, in most cases, also be suffering from some other eye disease; such as optical weakness, Nystagmus, Photophobia.

In the absence of these conditions, there are grounds for suspecting simulation of colour-blindess. Simulation will be proved, if the subject does not interpret Plates 1 and 2 correctly; these are visible to all on account of the differences in intensity.

Malingerers mostly state that they cannot recognise red or green. To detect simulation, any Plates are shown to the examinee and his statements are noted. Tables 13-18 chiefly confuse malingerers as they are read differently by Protanopes and Denteranopes (described on page 3).

There are reasonable grounds for suspecting simulation if the subject maintains that he cannot read Table 34 w h the yellow figures on a blue background, as most people suffering from red-green defects read this plate without difficulty. Proof of simulation is failure to read Plates 1 and 2 which can be read even by red-green-blind subjects owing to the differences

in intensity. Tables 19-22 can be used also as real red-green defectives can read the figures.

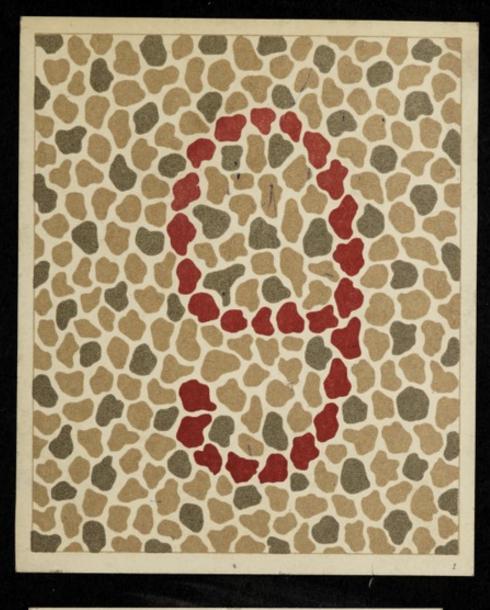
B. DISSIMULATION.

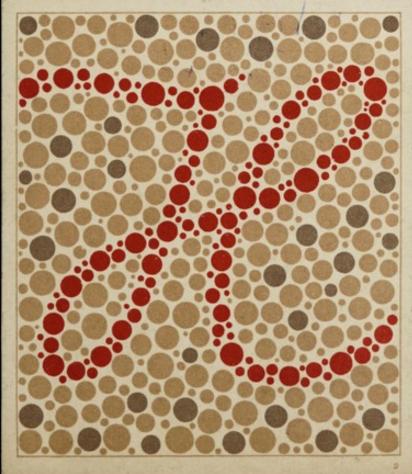
It often happens that a subject tries to conceal his colour-blindness. The memorising which might be possible with a small selection of Plates, is not possible owing to the great number and variety of these Plates. To avoid a fortunate guess, Plates should not be shown in order. They can also be turned upside down and with many plates quite readable details can be seen in this way, but memorising the plates it useless.

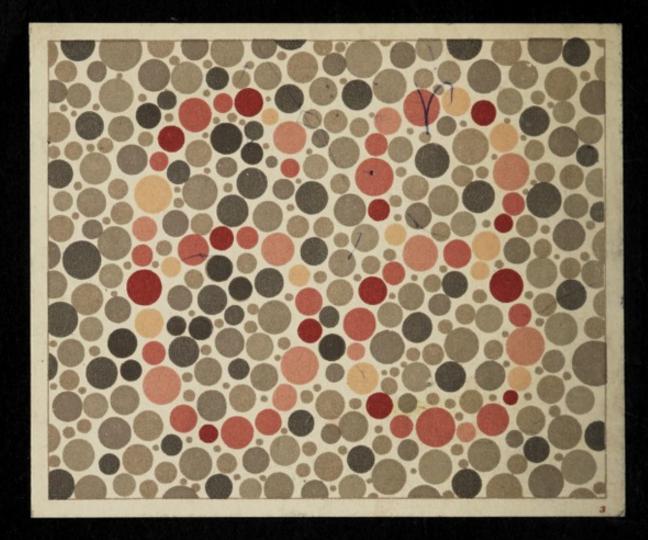
Sketching the letters and figures, as entionel above is a good test of the state of colour vision, especially Plates 2, 11 and 12.

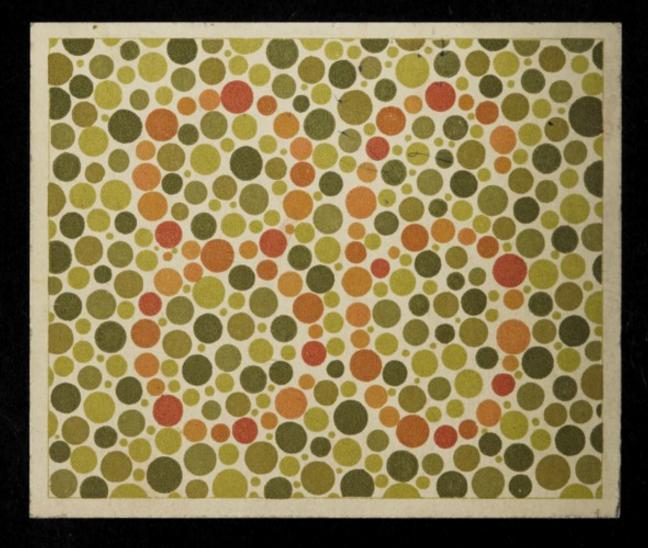
Finally one can change the Plates by colour filters (e.g. glass plates)

Some Plates (Numbers 9, 10, 12, 14 and 18) are quite unreadable by normal


persons through a blue or red colour filter. If the figures are identified


under these conditions the subject has learnt them by heart. Other filters in


pink or green cause several variations so that the examiner may catch out


such a subject more easily (Filter trap).

