Analyses of the constituents of the flax plant, and of the soils on which the plants had been grown / by J.E. Mayer and J.S. Brazier.

Contributors

Mayer, J. E. Brazier, James S.

Publication/Creation

[Place of publication not identified] : [publisher not identified], [1850?] (Aberdeen : John Finlayson)

Persistent URL

https://wellcomecollection.org/works/trs2jdyh

License and attribution

This work has been identified as being free of known restrictions under copyright law, including all related and neighbouring rights and is being made available under the Creative Commons, Public Domain Mark.

You can copy, modify, distribute and perform the work, even for commercial purposes, without asking permission.

Wellcome Collection 183 Euston Road London NW1 2BE UK T +44 (0)20 7611 8722 E library@wellcomecollection.org https://wellcomecollection.org

ANALYSES OF THE CONSTITUENTS OF THE FLAX PLANT,

AND OF THE SOILS ON WHICH THE PLANTS HAD BEEN GROWN. BY MESSRS. J. E. MAYER AND J. S. BRAZIER, Of the Royal College of Chemistry, London.

THE daily increasing extent to which flax is cultivated by the farmer, necessarily directed the attention of chemists to the analysis of this plant, soon after the importance of the mineral constituents, strangely neglected for a considerable period, had been generally acknowledged by the scientific agriculturist.

We owe to Sir Robert Kane two excellent papers, containing the analyses both of the ashes of different specimens of flax, and of the soils on which they had been cultivated.* These specimens had been grown principally in Belgium and Holland, where the greatest care is taken in preparing and manuring the land. The analyses which we intend to communicate in the following pages, were made with different specimens of Russian growth. They were supplied to us by Dr. Hofmann,⁺ under whose guidance we have worked throughout.

The localities from which we have obtained our specimens of Flax, are the Russian districts known as Esthonia or Estland, Livonia or Lievland, Courland, and Lithuania. The first of these districts, with the second and third mentioned, are situated on the eastern shores of the Baltic; the fourth, Lithuania, is the only inland country.

These countries extend from 48° to 60° north latitude, and from 22° to 28° east longitude.

The plan we adopted for the preparation of the ash, was the following :—A handful of stems, after being inflamed, were held over a porcelain dish, and allowed to burn gently. The ashes collected in the dish by this process, in one or two instances, were remarkably white; however, in order to free them still more from the remaining carbon, they were placed, small quantities at a time, in a platinum dish over a gentle gas flame. In this manner also the sulphides, formed in the process of combustion, were entirely reconverted into sulphates. This conversion was proved by experiment previous to analysis. In order to hasten the latter part of the process, the Lithuanian and Estland ashes were burned with protoxide of mercury.

The general analyses were performed in the usual manner :---the experimental numbers in Table I. show the quantities of substance employed, the results from which are exhibited in Table II.

^{*} Philosophical Magazine, vol. xxxi. p. 43.

⁺ I am indebted for these specimens to the kindness of Mr. Arthur Marshall, of Leeds, who had them sent from Russia for analysis, being originally intended to supply the material for a continuation of Sir Robert Kane's researches; and it was only in consequence of Sir Robert's other avocations preventing him from following up the investigation any further, that Mr. Marshall sent them to the Laboratory of the Royal College of Chemistry.—Dr. A. W. Hofmann.

-	
E	
I	
B	
A	
H	

.

	II.	gru.	(23-9870	23-0280	25*8150 }		.8418	
ESTLAND.		4.4630	280.7400			~			
	Ľ	gtm.		20-3340	{ 22-6950 }	{ 28.0500 } { 22.7700 }	1-3159	0896-	2.4930
NIAN.	II.	grm. 5.8256	206-9200	28-1370	28.0232	25.4352		.7480	
LITHUANIAN.	i	grm. 6-1526	242.5620	28-8473	27-4080	$\left\{\begin{array}{c} 28.8495\\ 28.4630 \right\}$	1.0017	1108-	3-3575
COURLAND.	Ή	grm. 1-2953	293-495	27-4094	$\left\{\begin{array}{c} 27{\cdot}1031\\ 27{\cdot}2480 \right\}$	$\left\{\begin{array}{c} 21 \ 9975 \\ 19 \cdot 2260 \\ 27 \cdot 5790 \end{array}\right\}$		1608.	
COUR	I.	grm. 5-3100	293-495	24-2960	26-6230	$\left\{\begin{array}{c} 31.7940\\ 19.9430\\ 31.7940\end{array}\right\}$.8360	-7023	1.4577
ND.	П.	grm. 4-6640	197-5950	16*8415	30-7767	30-7767	1-3249	9188-	5.4247
LIEVLAND.	Ľ	grm. 4.7076	324-0300	0702.21	$\left\{\begin{array}{c} 27.8896\\ 29.1392 \end{array}\right\}$	30-2702	2.0813	.8532	6-0140
		Quantity of ash employed for the general analysis	Whole amount of the hydrochloric } acid solution ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Hydrochloric acid solution employ-	ed for sulphuric and phosphoric	quioxide of iron, lime, and mag-	estimation of chlorine ~ }	estimation of carbonic soid of 100°	C.for the estimation of the amount of ash ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

26 MESSRS. MAYER AND BRAZIER ON THE

MINERAL CONSTITUENTS OF THE FLAX PLANT.

TABLE II.

	LIEVI	LIEVLAND.	COUR	COURLAND.	LITHU.	UTHUANIAN.	ESTLAND.	AND.
	I.	II.	I.	H	I.	II.	Γ.	II.
Silicic acid ~ ~ ~ ~ ~ ~	0-3098	0-3260	erm. 0-3590	PTTD.	grm. 0-2850	grm. 0-2597	erm. 0-2010	, Erg
Sand and charcoal ~ ~ ~ ~ ~ ~ ~	0-3240	0-0128	0-1485	0-0331	0-0750	0.0689	0-1145 2-3332	2.3349
Bichloride of platinum and potassium ~	8-7439	8 6829	8-1660	8-1734	8-8082	8-7819	5.3430	5-3521
Chloride of sodium ~ ~ ~ ~ ~			0.3778	0-3797	0-4407	0.4409	0-7030	1002-0
Sulphate of baryta for sulphuric acid ~ ~	0.6369	0-6382	0-7222	0.6692	0.4299	0-5047	0-5424	
Pyrophosphate of magnesia for phosphoric acid	0.6492	0-6504	0.5512	1092.0	1.0257	1-0394	0126-0	0-9818
Phosphate of sesquioxide of iron ~ ~	0.1338	0.1333	0-1477	0.1413	0.1513	0.1459	0-1252	0.1301
Carbonate of lime ~ ~ ~ ~	1.4451	1.4314	1.8998	1-9077	1.9832	1-9955	1.8913	1.8814
Pyrophosphate of magnesia for magnesia ~	0.8028	0.7324	0-9046	0.8801	0.8818	0-9592	1.3006	1.2817
Chloride of silver	0 0409	0.0277	0.0320		0.0692		0.0487	
Carbonic acid ~ ~ ~ ~ ~ ~ ~	0.1500	0.1550	0.1300	0.1500	0.1830	0.1700	0.0750	0-0650
Amount of ash left on incineration	0-2532	0-2240	0.0530		0.0773		0-1020	

These numbers correspond to the following composition per cent.

I.-LIEVLAND FLAX ASH.

The stems, upon incineration, gave in average 4.1292 per cent. of ash. Composition of the ash directly found :---

		I.	II.	MEAN.
Potash	-	35.0670	34.8588	34.9629
Lime	-	17.1892	17.1833	17.1862
Magnesia	-	6.2197	6.3278	6.2738
Sesquioxide of iron	-	0.9235	0.9286	0.9260
Chloride of potassiun	n	1 0849	1.0201	1.0525
Phosphoric acid -	-	8.8048	8.8224	8.8136
Sulphuric acid -	-	4.5097	4.6012	4.5554
Silicic acid	-	6.5812	6.9216	6.7514
Carbonic acid -		17.5914	17.4648	17.5281
Sand and charcoal	-	0.6788	0.3425	0.5106
		98.6502	98.4711	98·5605

The above numbers, after deducting sand and charcoal, which are considered but as accidentally present, and also carbonic acid, give the following composition per cent. :---

Potash .	-	-	-	-	43.42
Lime	-	-	-	-	21.35
Magnesia -	-	-	-	-	7.79
Sesquioxide of ir	on	-	-	-	1.15
Chloride of potas	sium	-	-	-	1.31
Phosphoric acid	-	-	-	-	10.94
Sulphuric acid	-	-	-	-	5.66
Silicic acid -	-	-	-	-	8.38
					100.00

II .--- COURLAND FLAX ASH.

The stems, upon incineration, gave in average 3.6358 per cent. of ash. Composition of the ash directly found :---

		I.	II.	MEAN.
Potash		29.6786	29.5988	29.6387
Soda	-	2.9640	2.9433	2.9536
Lime	-	20.1184	20.0355	20.0769
Magnesia	-	6.1111	6.2123	6.1617
Sesquioxide of iron	-	0.9038	0.8646	0.8842
Manganese -	-	trace	trace	trace
Chloride of sodium	-	1.5562	1.5562	1.5562
Phosphoric acid -	-	6.5948	6.7027	6.6487
Sulphuric acid -	-	4.6647	4.3220	4.4933
Silicic acid		6.7027	6.7604	6.7316
Carbonic acid -	-	18.5106	18.5253	18.5179
Sand and charcoal	-	2.5559	2.7966	2.6762
		100.3608	100.3177	100.3390

MINERAL CONSTITUENTS OF THE FLAX PLANT.

Potash	-	-	-	-	37.44
Soda	-	-	-	-	3.74
Lime	-	-	:	-	25.39
Magnesia -	-	-	-	-	7.71
Sesquioxide of ir	on	-	-	-	1.13
Chloride of sodiu		-	-	-	1.94
Phosphoric acid	-	-	-	-	8.31
Sulphuric acid	-	-	_	-	5.89
Silicic acid -	-	-	-	_	8 45
					100.00

Per-centage after deducting sand, charcoal, and carbonic acid :--

III .--- LITHUANIAN FLAX ASH.

The stems, upon incineration, gave in average 2.3023 per cent. of ash.

Composition of the ash directly found :--

And an entry		I.	II.	MEAN.
Potash	-	27.5459	27.4770	27.5114
Soda	-	2.3055	2.3065	2:3060
Lime	-	18.0526	18.1648	18.1087
Magnesia	-	5.6794	5.5154	5.5974
Sesquioxide of iron	-	0.7991	0.7710	0.7850
Chloride of sodium	-	2.8115	2.8115	2.8115
Phosphoric acid -	-	10.5868	10.8972	10.7420
Sulphuric acid -	-	2.6755	2.8137	2.7446
Silicic acid	-	4.6346	4.4532	4.5439
Carbonic acid -	-	22.8302	22.7272	22.7787
Sand and charcoal	-	1.2190	1.1828	1.2009
		99.1401	99.1203	99.1301

Per-centage after deducting sand, charcoal, and carbonic acid :---

Potash		-	-	-	-	36.61	
Soda -	-	-	-	-	-	3.06	
Lime -	-	-	-	-	-	24.09	
Magnesia	a -	-	-	-	-	7.45	
Sesquiox	ide of i	ron	-	-	-	1.04	
Chloride	of sodi	um	-	-	-	3.75	
Phospho	ric acid	1 -	-	-	-	14.30	
Sulphuri	c acid		-	-	-	3.65	
Silicic ac		-	-	-	-	6.05	
						100.00	

IV .- ESTLAND FLAX ASH.

The stems, upon incineration, gave in average 4:0914 per cent. of ash.

Composition of the ash directly found :---

		I.	II.	MEAN.
Potash	-	23.1083	23.0432	23.0757
Soda	-	7.5111	7.5323	7.5217
Lime	-	23.8567	23.6070	23.7318
Magnesia	-	10.6274	10.4718	10.5496
Sesquioxide of iron	-	0.9115	0.9363	0.9239
Chloride of sodium	-	1.5069	1.5069	1.5069
Phosphoric acid -	-	13.8098	13.9642	13.8870
Sulphuric acid -	-	4.1678	4.1678	4.1678
Silicic acid	-	4.4815	4.4815	4.4815
Carbonic acid .	-	7.7559	7.7215	7.7387
Sand and charcoal	-	2.5878	2.5878	2.5878
Status		100.3247	100.0203	100.1724

Per-centage after deducting sand, charcoal, and carbonic acid :--

Potash	-	-		-	25.70
Soda	- 0	-			8.37
Lime	-			-	26.41
Magnesia -	-	-	-		11.74
Sesquioxide of ir		-	-	-	1.02
Chloride of sodiu	m	-		-	1.67
Phosphoric acid	-	-			15.47
Sulphuric acid	- 11	24			4.64
Silicic acid -	- 1	-		-	4.98
					100.00

From the foregoing analyses, the following comparative table has been made, from which it will be readily seen, in what points the ashes of these different specimens agree in composition :---

			-	0		
			Lievland.	Courland.	Lithuanian.	Estland.
Potash			I. 43·42	11. 37·44	111. 36.61	IV. 25.70
Soda -	-	-	-	3.74	3.06	8.37
Lime -		-	21.35	25.39	24.09	26.41
Magnesia		-	7.79	7.71	7.45	11.74
Sesquioxi		ron	1.15	1.13	1.04	1.02
Manganes		-	_	trace	_	102
Chloride o	of sodiu	im		1.94	3.75	1.67
>>		ssium	1.31		_	107
Phosphori		-	10.94	8.31	14.30	15.47
Sulphuric		-	5.66	5.89	3.65	4.64
Silicic acid	1 -	-	8.38	8.45	6.05	4.98
			100.00	100.00	100.00	100.00

We also append, in a tabular form, the results of Sir R. Kane's analyses of this plant, taken from his paper, read before the Royal Dublin Society, on the 6th of April, 1847.

To facilitate comparison, we have re-calculated these analyses after deducting the carbonic acid.

		A B Courtrai District.		C D Antwerp District.		F	G
	Heestelt.	Escamafiles.	Hammezog.	Not named.	District in Holland.	Dubiln.	Armagh.
Potash	- 9.69 - 24.16 19.37 - 4.34 - 5.66 - 0.56 - trace - 7.93 - 14.10 - 3.85 - 10.34 - 100.00	30.62 none 22.04 4.45 2.03 0.58 trace 8.33 15.78 4.54 11.63 100.00	26.67 16.88 22.15 4 70 1.31 0.86 trace 8.18 10.66 3.20 5.49	28.62 0.48 21.19 4.05 2.53 73.43 12.19 3.36 14.15 100.00	$\begin{array}{r} 21\cdot35\\12\cdot65\\21\cdot30\\3\cdot50\\2\cdot74\\1\cdot67\\\dots\\11\cdot22\\12\cdot82\\6\cdot18\\6\cdot57\\100\cdot00\end{array}$	11.78 11.82 14.85 9.38 7.32 3.19 13.05 25.71 2.90 100.00	$\begin{array}{r} 6.60\\ 6.61\\ 23.67\\ 4.22\\ 14.10\\ \hline \\ 1.12\\ 9.30\\ 7.29\\ 0.94\\ 26.15\\ \hline \\ 160.00\\ \end{array}$

On comparing the results of our analyses with those of Sir Robert Kane, we find at once that the general features of both are identical, although, as might be expected, discrepancies present themselves respecting the individual constituents. In the ashes, both of the Belgian and of the Russian specimens, we meet with a very large amount of alkali (nearly 40 per cent.): the quantity, too, of phosphoric acid is very considerable (from 10 to 15 per cent.). Our analyses then furnish a further proof that flax must be classed among the most exhausting crops, for the amount of valuable mineral substances which we remove from the soil in this plant considerably exceeds the quantity which is generally extracted from it in the form of wheat or corn.

From a statement of Mr. Mac Adam,* it appears that one rood of land yields about 12.7 cwt. of recently-pulled flax plant. If we take this number as the basis of calculation, and the average per-centage of ash at 3.53 lbs., of alkalies at 39.58 lbs., and of phosphoric acid at 12.51 lbs, we find that a flax crop removes from a rood of land not less than 19.87 lbs. of alkalies, and 6.28 lbs. of phosphoric acid; on

* Royal Agricultural Journal, vol. viii., p. 361.

the other hand, we have learnt from the researches of Mr. Way,* that a rood of land, which has served for the cultivation of wheat, loses (an average taken from a great number of analyses) about 7.5 lbs. of alkali and 6.9 lbs. of phosphoric acid. These figures show that the amount of phosphoric acid in the flax crop closely approaches that of the wheat, whilst the latter extracts only about half the quantity of alkali which we find in the former. Hence, it would appear that a flax crop is at least as exhausting as a crop of wheat.

There is, however, one striking point of dissimilarity between the cultivation of wheat and that of flax, and we are indebted to Sir Robert Kane for having for the first time brought this point under the notice of the farmer in a forcible manner—viz.: that while the mineral ingredients which we remove from our fields in wheat, or cerialiæ in general, become constituents of food, and enter in this manner into a circulation, from which, even under very favourable circumstances, they return to the soil only after the lapse of some time; the woody fibre of flax, as a necessary preliminary to its being used by man, is separated to a considerable extent from those very mineral substances which are so essential for its successful growth. This mineral matter, when economized in a proper manner by the farmer, may be returned to his field to keep up the equilibrium of its fertility.

The vegetation of the flax plant resembles in this respect the growth of the sugar-cane, from the culture of which, we expect a material consisting entirely of atmospheric constituents. The inorganic substances taken up by the plant are only instruments used in its production, which should be as carefully preserved as tools in a manufactory, and will then do further duty in promoting the elaboration of future crops.

The analysis of the flax ash suggests a few remarks respecting an interesting feature in the nature of ashes generally, which was first noticed by Professor Liebig in his celebrated Agricultural Chemistry. On comparing the composition of the ashes of specimens of the same plant, cultivated under different circumstances, he observed, that, notwithstanding very considerable discrepancies in the constitution, the entire basic power of the different bases, united with a certain class of acids, for instance the organic acids, remained constant for different specimens of the same plant: or, in other words, the basicity of an oxide being measured by its oxygen, the total amount of oxygen contained in the bases forming organic salt, was found to be identical in the different specimens. The views respecting this typical basicity, which Liebig pointed out in a few instances, and only

* Royal Agricultural Journal, vol. vii. p. 593.

MINERAL CONSTITUENTS OF THE FLAX PLANT.

for the salts of organic acids, were afterwards extended by other chemists. Indeed, the total amount of oxygen contained in the form of basic oxides seems to vary only within narrow limits for different individuals of the same class of plants. Sir Robert Kane has calculated the quantity of oxygen in the bases of his flax ashes, the constancy of which certainly seems to support this view; our analyses lead to a similar conclusion, as may be seen from the following figures :—

Name of the ash.	Quantity of basic oxygen in 100 parts.	Name of the ash.	Quantity of basic oxygen in 100 parts.
Heestert Escamaffles - Hamme Zog - Unknown district Holland Dublin Armagh	16:95 14:00 17:71 13:36 15:83 16:36 15:68 <i>Mean</i> 15:68	Lievland - Courland - Lithuanian Estland -	16.80 17.89 17.12 17.86 Mean 17.42

The composition of several wheat-ashes, as resulting from Mr. Way's analysis, likewise appears to be favourable to this view.*

Specimen	No. 1.	Hopetoun wheat	-	-	11.64	per cent.
"	No. 2.	Creeping wheat	-	-	11.52	. ,,
"	No. 3.	Red straw white wh	heat	-	11.02	"
"	No. 4.	Hopetoun wheat, N	0.2	-	11.94	33
"	No. 5.	French wheat -	-	-	12.59	37
37	No. 6.	Egyptian wheat	-	-	12.19	35 33
"	No. 7.		-	2	12.08)) 27
,,	No. 8.	Marianople wheat	-		14.46	32
**	No, 9.	Hopetoun wheat, N			12.89	1) 37
"	No. 10.	Red straw white w		-	11.53	
"		White wheat -			12.24	"
				-		"
				7.1	10.10	

Mean 12.19

The argument, however, drawn from these ashes, is of minor importance, the discrepancies in their composition being far less conspicuous than in the former cases.

The number representing the basic power of the sum of the metallic oxides in the ash varying within trifling limits, it is but a

* Royal Agricultural Society Journal, vol. vii. p. 666.

natural consequence that we should likewise find a certain constancy in the acidity of the total amount of acids. Without going into detail, a glance at the tables will show, indeed, that a replacement of the acids occurs to a certain extent. Whenever the amount of carbonic acid, which represents the organic acids, diminishes, we find the quantity of inorganic acid, as sulphuric and phosphoric, increases, and vice verså.

Our attention was next directed to the soils upon which the different specimens of flax had been grown, samples of which, through the kindness of Mr. Marshall, had likewise been forwarded to Dr. Hofmann.

These soils all gave a brownish colour to boiling water, owing to a portion of the organic matter being soluble in that menstruum.

The following table shows the behaviour of these soils with solvents :---

ana and a state of the second second	Lievland.	Courland.	Lithuanian.	Estland.
Soluble in water, $\left\{ \begin{array}{l} {\rm Inorganic\ matter}\\ {\rm Organic\ matter} \end{array} \right.$	$0.0864 \\ 0.2290$	0.1700 0.3125	$0.1528 \\ 0.4417$	0·1497 0·4578
Total	0.3154	0.4825	0.5945	0.6075
Soluble in hydrochloric acid " Insoluble residue" " " "	7·2596 92·4250	$6.9166 \\ 92.6009$	$7.2433 \\ 92.1622$	8.7119 90.6806
State and the state of the	100.0000	100.0000	100.0000	100.0000

The following tables contain the details of the individual determinations :---

TABLE I.

and the second second second	Lievland.	Courland.	Lithuanian.	Estland.
Quantity of soil employed for	grm;	grm.	grm.	grm.
general analysis	20.0480	22.3010	18.5560	22.9480
lution ~ ~ ~ ~	270.0400	232.3550	324.1250	263.98
Hydrochloric solution for alkalies Hydrochloric solution for sul-	64.1800	67.4600	74.3800	56.1600
phuric acid Hydrochloric solution for phos-)	58.0350	65.2700	69.9400	45.53
phoric acid, sesquioxide of iron, alumina, lime, and mag- nesia	$\left\{\begin{array}{c} 84.3700 \\ 73.4400 \end{array}\right\}$	69-7700	75.9150	$\big\{ { 88.7600 \atop 50.9400 } $
Hydrochloric solution for the				
sesquioxide of iron ~ ~	23.8400	46.9195	60.7950	22.1800
Quantity of soil for chlorine	13.2600	11.3701	11.6611	14.4190
of organic matter	7.5850	4.9130	5.6485	7.3205
Quantity of soil for total amount soluble in water ~ ~ ~	164.8400	205.1700	228-2350	104.6100

.34

"MINERAL CONSTITUENTS OF THE FLAX PLANT.

T	A	B	L	E	1	[]	1

	Lievland,	Courland.	Lithuan.	Estland.
Residue ~ ~ ~ ~	18.5294	20.7465	17.1003	20.8094
Mixed chlorides of potassium & sodium	0.1684	0.1757	0.1839	0.1738
Bichloride of platinum and potassium	0.5217	0.3758	0.5255	0.4419
Chloride of sodium	0.0091	0.0609	0.0236	0.0388
Sulphate of baryta for sulphuric acid	0.0999	0.0243	0.0784	0.8897
Pyrophosph. of magnesia for phosph. acid	0.0448	0.0190	0.0234	0.0577
Sesquioxide of iron and alumina	0.6214	0.9477	0.9864	0.9250
Sesquioxide of iron ~ ~ ~	0.8624	0.5300	0.2911	0.4537
Carbonate of lime	0.1204	0 3113	0.1494	0.3237
Pyrophosphate of magnesia for magnesia	0.1103	0.1075	0.0918	0.2228
Chloride of silver for chlorine	0.0120	0.0071	0.0123	0.0580
Amount of soil left after ignition -	7.2120	4.7150	5.4031	6.9645

From the former tables we obtain, by calculation, the following amounts of constituents of 100 parts in the soils :---

		Lievland,	Courland.	Lithuan.	Estland.
Potash ~ ~ ~	~ ~	0.5011	0.3241	0 5466	0.3726
Soda	· ··		0.1320	0.0452	0.0480
Lime	~ ~	0.3751	0.7816	0.4980	0.7955
Magnesia	~ ~	0.2006	0.1304	0.1802	0.3619
Alternations	~ ~	1.1919	1.8731	2.1418	2.0102
Sesquioxide of iron		1.8076	2.3767	3.1900	2.0206
Manager	~ ~	trace	trace	trace	trace
11.1	~ ~	0.0455	0.0247	0.0421	0.0790
Line where the	~ ~	0.1539	0.0880	0.1206	0.1618
Phosphoric acid	~ ~	0.1399	0.0538	0.0802	0.1597
On and the second second	~ ~	4.7176	4.0300	4.3442	4.8630
Insoluble residue after of	leduct-}	91.0634	89.4872	88.4724	88-2364
		100.1966	99.3016	99-6619	99 1087

The insoluble residue constituting the greater portion of the soil, was fused with carbonate of potash. The following are the experimental numbers :---

	Lievland.	Courland.	Lithuania.	Estland.
Amount of residue employed ~ ~	0.9790	1.2955	0.8620	0.9780
Amount of hydrochloric acid solution }	82.35	213.9450	270.3300	91.9300
Amount of hydrochloric solution for the determination of sesquioxide of iron and alumina	17.11	26.9730	29 5835	30 [.] 1800
Amount of hydrochloric solution for the determination of lime		27 7520	26.0968	26.1700
Amount of silicic acid obtained ~	0.852	1.1353	0.7958	0.8930
Amount of sesquioxide of iron and alumina obtained	0.0260	0.0106	0.0023	0.0210
Amount of carbonate of lime obtained		0.0061	0.0015	0.0120

The insoluble residues, upon calculation, yield the following results per cent.

Manager 1 . Ser 1	-	1			Lievland.	Courland,	Lithuania.	Estland,
Lime	~	1 1 1 1	1 1 1 1	1 1 1 1	traces 11.6270 traces traces 79.3424	1.8727 6.1145 traces traces 81.5000	0.8778 2.2452 traces none	2.0120 5.7549 traces traces
Silicic acid ~	~	~	~	~	90.9694	92.6224	85 0938 88·2168	80.5676 88.3345

In all the four soils we find, comparatively speaking, considerable quantities of alkali, especially potash, and also of phosphoric acid. They closely resemble the Belgian soils analysed by Sir Robert Kane, as may be seen from the tables, which we borrow from Sir Robert's paper :--

			Heestert.	Escamaffles.	flamme Zog.	Not named.	Holland.
Potassa		-	0 1 60	0.123	0.068	0.151	0.583
Soda		-	0.298	and the second sec		0.206	
Lime		-	0.357	0.227	0.481	the second se	
Magnesia -		-	0.202	0.153	0.140	0 142	
Alumina -		-	2.102	1.383	0.125	0.988	5.626
Sesquioxide of iron	n -	-	3.298	1.663	1.202	1.543	6.047
Manganese -		-	trace			notrace	trace
Chloride of sodiun	n -	-	0 017			0 0 0 9	0.023
Sulphuric acid		-	0.025			0.026	0.023
Phosphoric acid		-	0.121	0.152	0.064	0.193	0.159
Organic matter r off at 100° per ce	not dri ent	ven }	3.123	2.361	4.209	3.672	5.841
Clay		-	14.920	9.280	5.760	4.400	17.080
Sand	• •	-	75.080	84 065	86.797	88.385	the second se
			99.703	99.600	99.975	100 081	99.783

In conclusion, we beg to express our warmest thanks to Dr. Hofmann for his instruction and valuable advice during the prosecution of these analyses, and for the uniform kindness we have at all times experienced at his hands.

PRINTED AT THE ABERDEEN HERALD OFFICE, BY JOHN FINLAYSON.