Observations sur l'influence des comètes sur les phénomènes de l'atmosphère / Adressées à M. Arago.

Contributors

Forster, T. 1789-1860. Arago, F. 1786-1853.

Publication/Creation

Aix-la-Chapelle: J.J. Beaufort, 1836.

Persistent URL

https://wellcomecollection.org/works/vfbuk6kt

License and attribution

This work has been identified as being free of known restrictions under copyright law, including all related and neighbouring rights and is being made available under the Creative Commons, Public Domain Mark.

You can copy, modify, distribute and perform the work, even for commercial purposes, without asking permission.

Wellcome Collection 183 Euston Road London NW1 2BE UK T +44 (0)20 7611 8722 E library@wellcomecollection.org https://wellcomecollection.org

OBSERVATIONS

SUR L'INFLUENCE

DES

COMÈTES

SUB

LES PHÉNOMÈNES DE L'ATMOSPHÈRE.

ADRESSÉES A M. ARAGO,

MEMBRE DE L'INSTITUT DE FRANCE, DU BUREAU DES LONGITUDES ETC. ETC.

PAR T. FORSTER,

M. B. DE L'UNIVERSITÉ DE CAMBRIDGE, MEMBRE DE LA SOCIÉTÉ ROYALE DES ASTRONOMES, ET DE LA SOCIÉTÉ DE LINNÉ DE LONDRES, DE L'ACADÉMIE DES SCIENCES NATURELLES A PHILADELPHIE ETC. ETC.

AIX-LA-CHAPELLE,

DE L'IMPRIMERIE DE J.-J. BEAUFORT.

1836.

CATALOGUE

DES OEUVRES DE T. FORSTER,

qui sont encore à vendre (par ordre) chez Mrs. Hensen et comp. à Aix-la-Chapelle, et chez tous les libraires de Londres et de Paris.

1. Observations on the brumal Retreat of the Swallow withat copious index etc. by Philocheledon.

La sixième édition de l'an 1817, augmentée d'un catalogue des

oiseaux britanniques, est la meilleure. Prix 10 fr.

2. Researches about Atmospheric Phenomena etc., by T. Forster. F. L. S. London 1812. Prix 15 fr.

Une plus belle édition, ornée de gravures représentant les modifications des nuages, est publiée en 1814; et la troisième autre encore plus grande en 1823. Il y a aussi une édition allemande intitulée: Untersuchungen über die Wolken und andere Erscheinungen in der Atmosphäre, imprimée à Leipzic en 1819.

- 3. Reflections on Spiritous liquors. 8. London 1812.
- 4. Arati Diosemea, gr. et latin, avec notes, scholia etc. 8. London 1813.

L'auteur a amassé un grand nombre de citations de tous les poëtes anciens et modernes, ainsi que physiciens qui ont écrit sur la science de la météorologie et sur les prognostiques des changements du temps.

- 5. Catulli Carmina cum notis. 12. 1816.
- 6. Lieder der Deutschen. Petit 4. Cambridge 1815.
- 7. Sketch of the Phrenolagy of Gall et Spurzheim.

 Dans cet ouvrage T. Forster a donné à la science le nom de Phrénologie au lieu de Cranologie, nom qu'elle n'a jamais perdu.
- 8. Observations on the casual and periodical Influence of the Atmosphere in Diseases etc 8. London 1817. Cet ouvrage est traduit en allemand et publié à Leipzic par le

docteur Ludovic Cerutti en 1822.

- 9. Perenniel Calendar and Companion to the Almanac. By T. Forster etc. 8. London 1824. Prix 20 fr.
- 10. Pocket Encyclopaedia for Shepherds Mariners, and Husbandmen. 12. Nicholls and C. London 1826. 10 fr.

Dans ce Manuel sont rassemblés les signes des saisons, les phénomènes astronomiques et les prognostiques des changements du temps, avec un catalogue des oiseaux et des plantes.

11. Circle of the Seasons et Key to the Almanac and Calendar, avec un prolegomena sur les six saisons de l'année. 12. Hookham et Comp. London 1828. Prix 18 fr.

12. Somatopsychonologia or Body Life and Mind. 8. Chez Hunter. London 1823.

Dans cet ouvrage l'auteur expose, sous le nom de guerre « Philostratus, » son système de l'homme physique et métaphysique; il entreprend la défense de M. Laurence contre M. Aberneshyeld.

xonder 1. h betober 1 My de us his hilloughly Jose fread for Moher / The Box solled here to give you the suclosed Buch Allen Il have her lechantess have seen you at the torsay but I sur forced horety to Laft theway & Loudon ad of the Line Share toll as Bufelled from the bad water with hot leave tue aday Luy heave left to wach Leid Li Mant hed quete will be Local Authorit by ar here

5 a

RVATIONS

L'INFLUENCE

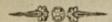
DES

ÈTES

SUR

LES PHÉNOMÈNES DE L'ATMOSPHÈRE.

ADRESSÉES A M. ARAGO,


MEMBRE DE L'INSTITUT DE FRANCE, DU BUREAU DES LONGITUDES ETC. ETC.

PAR T. FORSTER,

M. B. DE L'UNIVERSITÉ DE CAMBRIDGE, MEMBRE DE LA SOCIÉTÉ ROYALE DES ASTRONOMES, ET DE LA SOCIÉTÉ DE LINNÉ DE LONDRES, DE L'ACADÉMIE DES SCIENCES NATURELLES A PHILADELPHIE ETC. ETC.

Solum certum nihil esse certi et homine nil miserius aut superbius.

PLINE.

AIX-LA-CHAPELLE,

DE L'IMPRIMERIE DE J.-J. BEAUFORT.

1836.

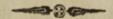
22965/11

O O O

Comos de la comos

PAR T. FORSTER.

DE R. DE L'ENEVERSEE DE CLECKEDES, REMORE DELL ECCESÉ REPLANTE.


Solum certure nibil case corti et homine nil miserius aut

AIX-LA-CHARELLE;

THOSTIANO LL I NO SINSTINGUEL

A M. ARAGO,

MEMBRE DE L'INSTITUT DE FRANCE ETC. ETC.

MONSIEUR,

JE viens d'observer dans votre petit, mais savant ouvrage sur les comètes, reçu en ce moment de Paris, un article sur mon catalogue des comètes comparées avec les phénomènes physiques et moraux qui semblent les avoir accompagnées. Il m'est évident que vous ne m'avez pas tout-à-fait compris, à cause de ma manière de m'exprimer; ou, que n'ayant examiné que la moitié de ma doctrine, vous avez fondé votre réponse à mon argument sur une opinion imparfaitement conçue! — Je n'ai jamais dit que les comètes sont les causes immédiates et déterminantes de toutes ces productions extraordinaires de l'atmosphère et de ces maux sur la terre qui, selon mon catalogue historique, les accompagnent; mais qu'il existe une coïncidence fort remarquable entre les deux classes de phénomènes,

difficile à comprendre, sans admettre que, de quelque manière inconnue, l'une soit la cause de l'autre! Loin d'être convaincu par vos observations que j'avais tort, je trouve que vous m'avez fourni des raisons encore plus puissantes pour mon opinion : car vous admettez, avec Newton, la possibilité que les queues des comètes peuvent tomber par leur gravité dans l'atmosphère des planètes et, par conséquent, dans celle de la terre; et qu'elles peuvent s'y condenser et donner naissance à bien des réactions chimiques! C'est plus cependant que je n'ose avancer, quoique je serais appuié de l'opinion de Newton. J'ai dit simplement, avec Kepler, que la coïncidence existe, que les comètes ont été les signes des catastrophes terrestres, sans prétendre développer, même supposer la manière de leur influence mutuelle. Il est possible qu'il existe bien des sortes d'influences encore inconnues. L'influence par exemple exercée par la nouvelle lune ainsi que par la pleine lune sur l'atmosphère et sur certaines maladies, reste encore un mystère, quoique les faits sont matière d'histoire. J'ai vu beaucoup de malades qui éprouvent de fortes migraines précisément à la nouvelle lune; et d'autres qui deviennent toujours malades par le vent d'est. On admet facilement l'influence lunaire, parce que l'attraction de ce corps est déjà prouvée, son influence dans la production des marées étant démontrée mathématiquement. On nie l'influence cométaire, parce que leur attraction sur nous n'est presque rien. Mais combien de causes de maladies il y a dans l'air dont l'origine et la nature sont inconnues! Une malaria semble produire aujourd'hui la peste, demain le choléra, un air malsain excite les catarrhes, un autre la fièvre jaune, un troisième l'apoplexie, et cela seulement sur les corps dans lesquels il existe une prédisposition, chose aussi mystérieuse que la cause excitante! Sydenham, Meade et les grands médecins ont constaté ces effets atmosphériques et leurs révolutions, sans songer à leurs causes. Newton en prouvant que la matière des comètes peut descendre dans notre atmosphère, rend la cause atmosphérique encore plus évidente, et donne en même temps à mon hypothèse une plus haute couleur de probabilité. Car on peut supposer facilement que la matière dont les queues des comètes sont composées, varie dans différents cas; que celle par exemple de la comète de 1680 était bien différente de celle de la comète de 1682 ou de la comète de 1811. De cette diversité des matières que plusieurs comètes laissent tomber dans notre atmosphère, mêlées avec mille autres déjà existantes sur la surface du globe, dépend probablement la variété presque infinie de nos maladies, ainsi que de ces phénomènes brillants qui appartiennent à des constitutions spécifiques de l'atmosphère.

J'ai remarqué aussi dans votre ouvrage les obser-

vations sur les brouillards; mais des circonstances qui attendent la formation de ces phénomènes, m'ont forcé de croire qu'ils résultent presque toujours de la décomposition de l'atmosphère. Dans mon voyage aërien avec un ballon gonflé de gaz hydrogène, le 30 avril 1831, à une élévation de 6000 pieds, j'ai observé attentivement la formation des brouillards; subitement, au moment où les nuages dits cumuli au niveau de notre ballon disparurent, un gros brouillard se formait au-dessous de nous, et se répandait sur la surface de la terre: mais dans l'espace entre les cumuli et le brouillard, il n'y avait point de vapeur visible. J'ai remarqué la même chose du haut des montagnes dans les alpes de la Suisse, à Naples sur le Vésuve, au pays de Galles et dans presque tous les pays de l'Europe, où je pouvais me servir des élévations pour faire mes observations. Mais je réserve les détails de ces phénomènes néphéologiques pour un autre ouvrage. Je retourne aux comètes. De mon côté, j'ai l'appui de Kepler, ce roi des astronomes, qui a inscrit son nom à jamais dans les cieux, et de presque tous les anciens observateurs: Hipparchus, Ptolomé, Tycho Brahe, Copernicus et bien d'autres. J'ai un haut respect pour l'opinion générale des anciens et la tradition presque universelle des siècles.

A présent je citerai ce que vous dites de moi, avant de répondre. Vous dites § 3. p. 106:

Newton pensait que les matières, que les exhalaisons dont les queues des comètes se composent, peuvent tomber, par leur gravité, dans les atmosphères des planètes en général, et dans celle de la terre en particulier; s'y condenser, donner naissance à toutes sortes de réactions chimiques, à mille combinaisons nouvelles.

Peu de mots suffiront pour prouver, je ne dis pas seulement que la matière cométaire diffuse, peut, en effet, tomber dans notre atmosphère, mais encore que ce phénomène est de nature à se reproduire assez fréquemment.

Les comètes paraissent être, en général, de simples amas de vapeurs. Or, puisque c'est un principe avéré que l'attraction est proportionnelle aux masses, chaque molécule de la queue d'une comète doit être très-faiblement attirée par le corps de l'astre.

L'attraction diminue quand la distance s'accroît, non pas dans le rapport de la simple distance, mais proportionnellement à son carré. Aux distances 2, 3, 4... 10, l'attraction exercée par un corps déterminé est 4, 9, 16,... 100 fois plus petite qu'à la distance un.

Ainsi, une comète, par l'effet de son manque de masse, n'exerce, même de près, qu'une attraction très faible. Quand la distance de la particule attirée à la tête de la comète est un peu grande, il ne doit donc plus rester qu'une action à peine sensible. Or, n'a-t-on pas vu des comètes accompagnées de très-longues queues? Dans la comète de 1680, les dernières molécules visibles n'étaient-elles pas, en ligne droite, à plus de 41 millions de lieues du noyau?

On comprendra maintenant qu'une planète, que la terre, par exemple, dont la masse est, le plus souvent, si supérieure à celle des comètes, doive pouvoir attirer a elle, aspirer pour ainsi dire et s'approprier entièrement les parties extrêmes des queues cométaires, lors même que dans sa course annuelle elle en reste toujours très-éloignée.

L'introduction dans l'atmosphère terrestre de quelque nouvel élément gazeux, pourrait, suivant qu'il serait plus ou moins abondant, occasioner la mort de tous les animaux, ou engendrer de simples épidémies : telle a été, en esset, suivant divers auteurs, l'origine, la véritable source de la plupart de ces sléaux dont l'histoire nous a conservé le souvenir.

Et encore p. 108:

Un anglais, dont le nom n'est pas inconnu des physiciens, M. T. Forster, vient de traiter cette même question en détail. (*) Suivant lui, il est certain que (depuis l'ère chrétienne) les périodes les plus insalubres sont précisément celles durant lesquelles il s'est montré quelque grande comète; que les apparitions de ces astres ont été accompagnées de tremblemens de terre, d'éruptions de volcans et de commotions atmosphériques, tandis qu'on n'a point observé de comètes durant les périodes salubres.

Ceux qui examineront avec un esprit de critique sévère, le long catalogue de M. Forster, n'y découvriront point, j'ose l'assurer, les conséquences qu'il a cru pouvoir en déduire.

Le nombre total de comètes proprement dites dont il est fait mention dans les historiens, à partir de la première année de l'ère chrétienne, est d'environ 500. Depuis que, dans l'intérêt des sciences, on observe le ciel avec

^(*) Illustrations of the atmospherial origin of epidemic diseases. Chelmsford, 1829; p. 139 et suivantes.

attention; depuis que les comètes télescopiques ne se dérobent plus aux regards des astronomes, le nombre moyen
de ces astres par année s'élève à peu près à deux. Accordez,
avec M. Forster, qu'une comète agissait avant son apparition, que son influence se continue un peu après, et jamais
évidemment un de ces astres ne vous manquera, quel que
soit le phénomène, le malheur ou l'épidémie que vous
vouliez leur imputer. Cette remarque ne s'applique pas
moins directement aux mémoires du célèbre Sydenham,
qui, aussi, était partisan des influences cométaires; aux
dissertations de Lubienietski, de Riccioli, etc., etc. M.
Forster a, d'ailleurs, je dois le dire, tellement étendu
dans son savant catalogue, le cercle des prétendues actions
cométaires, qu'il n'y aurait presque plus de phénomène
qui ne fût de leur ressort.

En lisant ces passages et d'autres dans l'ouvrage, deux choses fixent mon attention, 1° qu'en recueillant certaines observations isolées de mon livre, vous avez donné une tournure assez bizarre à mon argument, et qui est bien différente de celle qui doit résulter de tous les faits et observations constatés ensemble; 2° que, si c'est une faute dans les sciences de se servir des hypothèses, vous êtes bien plus coupable que moi; car votre petite brochure dont j'admets l'excellence et l'érudition, est pleine cependant de questions purement hypothètiques! Moi, quand je considère la peste de Londres ou celle de Florence, les épizooties dans certaines saisons, les nombreuses maladies des plantes et surtout le vaste

accroissement de certains insectes, comme choses qui suivent l'apparition des comètes, je ne fais que répéter l'opinion de presque toutes les nations de l'antiquité, et de fortifier cette opinion par un catalogue historique de ces phénomènes : mais, dites moi, à quel peuple est-il arrivé de penser que l'anneau de Saturne, ou que le brouillard qui couvre la terre, soient les productions d'une queue de comète? Sans nier cela même comme hypothèse possible, je répète que ma proposition qu'il existe quelqu'action cométaire sur l'atmosphère, fondée sur des faits, sans songer à aucune explication, est plus simple et plus philosophique. Il n'y a que trois moyens d'arriver à la connaissance des causes et effets : l'observation des coïncidences constantes, l'analogie, et l'appui de la tradition générale. De ces trois, le dernier est le plus certain; car notre raison nous trompe, et cela trop souvent. L'histoire des erreurs humaines, morales ainsi que scientifiques, nous présente une preuve humiliante de cette faiblesse de la raison. Plus j'y pense, plus je suis convaincu que l'homme, par le moyen de sa force individuelle, ne peut s'assurer d'aucune vérité physique ni morale. Et quand il étend ses recherches à la métaphysique, dans laquelle toute question se perd, il trouve encore plus de difficultés à surmonter. Avant d'arriver à une conclusion quelconque, on est forcé à renoncer aux hautes prétentions de

la raison, et de se reposer sur l'appui de la tradition, ou, en autres mots, sur ce pouvoir mystérieux qui soutient la vie de l'intelligence, et qui s'appelle la parole par excellence.

Quand une hypothèse quelconque, par exemple celle de Newton, ne contient pas de contradictions et est acceptée par les savans de tous les pays et de tous les temps, on doit la considérer comme vraie; mais telle est la faiblesse de la raison humaine, que la plus évidente vérité connue n'est pas placée, par la balance des probabilités, à l'abri de tout doute! L'opération d'une force telle que l'attraction, n'est pas une chose prouvée incontestablement; et l'existence même de la matière et des objets extérieurs à nos sens, reste encore une question que nulle métaphysique n'a su résoudre!(*) Tout

^(*) Je prendrai la liberté de répéter ici quelques passages de ma brochure intitulée : « Ontophilos ou les derniers entretiens d'un philosophe, » pour prouver que nous trouverons une pareille difficulté en expliquant toutes les sciences, rien n'étant prouvé à l'homme. Toute vérité, même les axiomes restent sur la balance des probabilités dont l'ame de l'homme est le juge : mais parce que le jugement individuel est souvent trompeur, il faut s'appuier, en tout cas où il est question de choses abstraites, sur le témoignage général, c'est-à-dire sur le jugement moyen de l'espèce humaine, autant qu'il est possible; mais ce moyen même n'est pas infail-

ce que nous connaissons immédiatement sous quelque forme qu'il soit, n'est que sensation. Mais nous nous trouvons forcés, par quelque loi de notre existence, de croire que nos sensations ont des objets, ou plutôt que les effets visibles dans le sensorium ont des causes invisibles dans un monde extérieur. Poussés constamment, en dépit de notre raisonnement philosophique,

lible, car il demande le petitio principii de l'existence d'autres hommes! Voyez deux ouvrages extraordinaires dans lesquels le système astronomique de Newton, ainsi que le système métaphysique de Berkeley sont examinés, intitulés: « Essai ou cause and effect, » et « Proofs of an external univers, » tous les deux par Lady Mary Shepherd, 8°. London 1826. Je sens bien la difficulté des questions physiques, mais je sens aussi que toute question physique se résoud dans la métaphysique.

La Phrénologie est la science qui s'approche le plus de la véritable méthaphysique de l'homme : les organes du cerveau expliquent les manifestations de nos facultés : mais il faut se rappeler que les organes mêmes considerés comme objets d'examination ne sont que des sensations. Il est donc évident qu'avant d'examiner l'organisme de l'homme, il faut s'assurer de l'existence de la matière même, dont les organes sont composés. Il y a quelque chose dans ma nature qui me persuade qu'il est plus probable que les causes des effets sont constantes et qu'elles existent hors de moi, que de supposer qu'une nou-

en présence de l'être en général, nous admettons l'existence des êtres en particulier, et par conséquent de nos semblables; et puis, en examinant la vérité d'une proposition quelconque, nous nous appuyons sur le grand témoignage de la tradition. Voilà donc, selon moi, la véritable fondation de la certitude.

Dès ma jeunesse j'ai examiné avec un plaisir infini

velle cause soit créée pour chaque apparition d'un effet. (Ontophilos p. 34.)

En chaque cas où il est question d'une sensation quelconque, il faut une raison pour confier à la raison!!!

Pour vous faire voir l'absurdité de croire en les sens seuls, il faut vous entretenir sur les songes. Vous admettez l'inférence de Des Cartes je suis parce que je sens : Mais si c'était une conséquence, cela ne prouve pas l'existence des choses hors de nous. Vous sentez en rêvant, et quand vous vous imaginez que vous vous éveillez, comment savez vous que vous ne rêvez pas encore ? Car il arrive souvent dans nos songes de rêver que nous nous éveillons ; et cette double déception arrive trois ou quatre fois, avant de s'éveiller en vérité : comment pouvez vous vous assurer que le tout n'est pas un rêve. Possiblement il n'y a qu'une série de songes enveloppés l'un sous l'autre!!! (p. 36.)

La terra, diceva io, è solamente un picciolo punto fra innumerabli mondi di grandezze e di distanze troppo vaste per esser prese nella mente, e tutti et jamais languissant les problèmes de Kepler et le système de Newton, mais m'occupant aussi de la philosophie, et essayant de sonder la base des connaissances humaines, je suis convaincu que l'homme, faible et imparfait, ne sait le tout de rien. La chose la plus nécessaire pour l'appui d'une hypothèse quelconque est l'assentiment d'un grand nombre de sa-

sostenenti la vita animale in ogni varietà di organizzazione.

Ove, allor, si trova il fine di questo universo pieno di mondi? È il spacio infinito in grandezza ed eterno in durazione? E la legge del Omnipotente un principio eterno di varietà e di variazione infinita? Sta l'Essere necessario, o potrebbe il Dio abolire il passato? Senza dubbio il mondo è un sistema di cose invisibili manifestate al nostro senso visibilmente, in qualche maniera che ci non è conosciuta.

Mentre io così delirava, io mi rivolsi dalle cose fisiche alle metafisiche, cioè a dire, dagli effecti alle cause che sono al di là degli effetti; dalla materia alla mente; e richiamando i sofismi dello scismatico Berkely, che mise in dubbio le esterne e sempre esistenti cose, io presto trovai che questa dottrina condurebbe all' universale scetticismo. Egli allora mi sovvenne, che l'ordine di ragionare era stato rovesciato; noi non dovevamo cercare perchè noi crediamo nella esistenza degli oggetti esterni, ma dovevamo piuttosto chiedere perchè noi l'avevamo messa in dubbio? Giacchè la credenza nella esistenza dei corpi esterni è antecedente a qualunque dubbio

vans de tous les siècles, moyennant toujours que l'hypothèse ne contienne pas des problèmes contradictoires. Je répète que l'influence des comètes sur l'atmosphère et, par elle, sur la santé des habitans de la terre, reste sur une pareille base; car, admettant que leurs queues peuvent tomber dans notre atmosphère et, en même temps, qu'elles sont

> sù questo sòggetto, ed è un primario sentimento della nostra propria vita, egli è svilippato colle nostre sensazione, ed è una legge tanto generale quella della nostra esistenza, quanto la stessa sensazione. Perchè dunque abbiamo noi imparato a dubitarne? Perciochè nei sogni e nelle illusorie sensazioni, sono queste imagini imitate, quando le cause essenziali sono assenti? Bene; ma quello solamente basta a condurre alla cognizione, che le nostre sensazioni sono manifestate alla mente per mezzo del sensorium, in cui esse sono vedute, come in una camera oscura, e che il sensorium ha il vivo potere di ripeterle e presentarle nuovamente alla mente dopo che le originarie cause eccitanti, di cui l'esistenza è fuori di noi, non sono più presenti. Questo sensario, diceva io, puo essere al nostro animo l'oscuro vetro o specchio menzionato da S. Paolo dentro il quale tutte le cose sono vedute imperfettamente; e le cause esterne a questo sensorio possono appartenere alla natura dell'inaccessibile Divinità stessa, che noi non possiamo mai vedere nella nostra vita, mentre noi siamo ristretti nei vincoli della carne. (La visione mitafisica p. 13.)

varieusement composées,—chose que l'analogie porte à croire, — nous gagnons une haute probabilité qu'elles sont les causes de cette variété des effets atmosphériques qui ont accompagnés les comètes dans tous les temps, et dont les savants observateurs et les historiens de tous les siècles ont été les témoins.

Examinons encore l'influence des astres, sous un autre point de vue. Admettant l'existence d'un Être infini comme cause nécessaire de tous les effets, nous ne pouvons pas éviter les conséquences; nous sommes obligés de regarder toutes les lois physiques et morales du monde comme le pouvoir de cet Etre exercé sur la matière dans la production des phénomènes. Sous quel nom que ce soit, Jehova, Jupiter, ou Dieu, il est toujours la puissance infinie, le créateur par excellence, la vérité qui est une : par conséquent je ne saurais admettre un corps quelconque aussi indépendant, qu'il existe à l'abri de l'influence, plus ou moins directe, de tous les autres. Considérant l'harmonie qui doit règner sur l'ensemble de la création, il m'est difficile de supposer, parmi les millions d'astres qui remplissent l'espace, l'existence d'une seule étoile qui n'ait pas de liaison avec le ciel entier, soit par l'attraction, soit par quelqu'autre influence. Dans tous les cas où il est question de cause et effet, il ne faut qu'examiner s'il y a un assez grand nombre de coïncidences de deux ou plusieurs phénomènes, pour

en faire dériver la probabilité d'une rélation intime existante entre eux.

Il semble que l'examen du rapport de cause et d'effet est justement celui dans lequel notre raison individuelle nous trompe le plus souvent : il y a probablement mille causes dont nous ignorons l'existence, qui opèrent continuellement sur la terre et sur ses habitants, et mille autres dont le modus operandi est inconnu. Toutes nos recherches poussées un peu trop loin, tombent insensiblement dans le vaste océan des doutes, par lequel nous sommes environnés; et quand nous essayons de regagner la certitude par le haut chemin de la métaphysique, il nous conduit à la conclusion bien peu satisfaisante que l'univers est un système de choses invisibles dont la puissance créatrice nous a permis de connaître une petite portion manifestée visiblement!

Quittons maintenant ces méditations abstraites qui ne servent qu'à l'humiliation de l'homme en démontrant la faiblesse de sa raison; et cédant au sens commun, qu'il existe un monde matériel assujetti aux lois physiques, examinons la probabilité d'une influence cométaire exercée sur notre planète; et, s'il y en a une, quelle est la nature de cette influence?

§ 1. Le témoignage de l'antiquité sur l'influence des comètes considéré.

Depuis le temps le plus reculé jusqu'à nos jours,

l'opinion publique a été constamment en faveur d'une influence exercée par les astres sur la terre; il est évident aussi que l'atmosphère a été toujours regardée comme le moyen de cette influence. Les anciens Bramins de l'Inde et les astronomes chinois, ainsi que les astrologues de Babylone et de la Grèce nous ont rendu leur témoignage à ce fait, que les comètes sont les signes des plus funestes événements : nous lisons dans l'Iliade d'Homère, au commencement du vingtième livre :

Φαίνονται πολλοισι με δάς ρασι νυκλος αμοχγω etc. etc.

Lucan craignait — crinemque timendi sideris Et terris mutantem regna cometen.

La description est fort exacte, et exprime l'opinion que je trouve presque générale dans les écrits des écrivains grecques et romains, enfin les anciens après avoir regardé la comète comme la cause des maux physiques, ont donné ordinairement une description de plusieurs signes qui démontrent la présence d'un air troublé et malsain. (*)

Pendant ce qu'on appelle les moyens âges, nous

^{(*)} Solem quis dicere falsum
Audeat? Ille etiam cæcos instare tumultus
Sæpe monet, fraudemque et operta tumescere bella,
Ille etiam exstincto miseratus Cæsare Romam,

trouvons la même opinion, et les plus anciennes hymnes à la Vierge, dans les temps de pestilence, commencent par une prière pour qu'elle ait la bonté de diminuer l'influence maligne des astres.

Quum caput obscura nitidum ferrugine texit, Inpiaque æternam timuerunt sæcula noctem; Tempore quamquam illo tellus quoque et æquora ponti, Obscenique canes, inportunæque volucres Signa dabant. Quoties Cyclopum effervere in agros Vidimus undantem ruptis fornacibus Aetnam, Flammarumque globos liquefactaque volvere saxa! Armorum sonitum toto Germania cœlo Audiit; insolitis tremuerunt motibus Alpes; Vox quoque per lucos volgo exaudita silentis Ingens; et simulacra modis pallentia miris Visa sub obscurum noctis; pecudesque loquutæ; Infandum! sistunt amnes, terræque dehiscunt; Et mæstum inlacrimat templis ebur, æraque sudant; Proluit insano contorquens vortice silvas Fluviorum rex Eridanus, camposque per omnes Cum stabulis armenta tulit; nec tempore eodem Tristibus aut extis fibræ adparere minaces, Aut puteis manare cruor cessavit; et altæ Per noctem resonare, lupis ululantibus, urbes; Non alias coelo ceciderunt plura sereno Fulgura, nec diri toties arsere cometæ. Ergo inter sese paribus concurrere telis Romanas acies iterum videre Philippi; Nec fuit indignum superis bis sanguine nostro Emathiam et latos Hæmi pinguescere campos.

Mais l'influence cométaire sur l'atmosphère, et par elle sur la santé des hommes, est attestée par les poëtes romains d'une manière digne des physiciens. Les médecins, les historiens, les pères d'église, les astronomes anciens et modernes — Hippocrate, Galene, Celsus, Avicenna, Sydenham, Herodote, Sénèque, Plutarque, Platon, St. Augustin, Ptolomé, Kepler, Bacon, Lubienenski, etc. etc., sont en accord avec les poëtes, et ont attestés cette influence des astres dans leurs écrits. Je serais content d'avoir assez de place pour citer quelques passages de ces écrivains, parce qu'ils sont très-bien exprimés et se rapportent bien avec le résultat de nos recherches physiques. Lucretius ne s'étonne pas que l'air porte tant d'influence sur les maladies et la mort, voyant qu'elle est même la cause essentielle de la vie.

Esse suprà docui quæ sunt vitalia nobis,

Et contra quæ sint morbo mortique necesse est

Multa volare, (*) etc. etc.

Virgile, Ovide, Thucidides, Livius etc. ont donné des descriptions plus détaillées des épidémies qui arrivaient en conséquence de l'influence des astres et des comètes, mais leurs citations nous menerait trop loin de l'objet de cette brochure.

^(*) De rerum Natura lib. 2?

§ 2. Quelle est la nature de l'insluence cométaire?

Nous convenons qu'une comète peut agir sur la terre de trois manières : par voie d'attraction, par ses rayons lumineux et calorifiques, par la matière gazeuse dont se compose sa queue, et qui, dans certaines positions, viendrait envahir l'atmosphère terrestre. Bien, examinons donc ces trois manières d'action. Quant à la première, on sait très-bien que l'attraction des comètes en général est trop petite pour qu'on puisse leur attribuer la moindre influence sensible sur la terre. Quant à la seconde, on n'a jamais pu appercevoir aucune influence produite par la lumière d'une comète sur le thermomètre, même quand elle a été concentrée au foyer du miroir et de la lentille. Outre cela, il est probable que la lumière des comètes est empruntée au soleil, comme celle des planètes : elle n'a ni l'intensité brillante ni certaines autres qualités possédées par les étoiles fixes. Il n'y a donc que la troisième explication de l'influence cométaire, qui doive arrêter l'attention des physiciens, celle qui suppose que la matière de la nébulosité et des queues de ces astres tombe dans l'atmosphère de la terre, y donnant naissance à plusieurs nouvelles combinaisons chimiques, capables à diverses occasions de produire beaucoup de phénomènes et des maladies extraordinaires. En admettant cependant cette explication, je ne voudrais pas exclure la grande influence de l'électricité atmosphérique sur tous les corps terrestres : car mes observations sur l'électromètre portent à croire que ce fluide n'est transmis de l'atmosphère à la terre, ni de la manière, ni dans la quantité ordinaire, pendant la présence des plus violentes épidemies. Je suis habitué d'enregistrer mes observations physiques dans un journal de météorologie et de l'histoire naturelle, qui a été gardé dans la famille de mon père pendant 70 ans et augmenté par des observations, tous les jours, sans intermission et presque sans une seule lacune. L'immense étendue et le travail de ce registre sont la cause que je n'ai pas encore eu le courage d'entreprendre sa publication; mais j'espère de donner, en peu de temps, des extraits qui établiront incontestablement les opinions que j'ai avancées dans mon ouvrage sur les épidémies. (*) A présent je me contenterai d'un abrégé de mon catalogue des comètes, corrigé maintenant pour la troisième fois, et comparé avec les événements qui les ont accompagnés.

Il faut cependant examiner d'avance, s'il y a des moyens de discerner la nature de la lumière cométaire, et s'il y a des faits qui portent à croire qu'il existe quelque rapport entre les comètes, les

^(*) Illustrations of the atmospherical origine of epidemic diseases. 8°. 1830.

météores lumineux et les étoiles filantes, pour qu'on ne puisse m'accuser d'avoir disposé de ces questions avec trop de négligence.

§ 3. Est-il possible de décider si la lumière des comètes émane d'elles-mémes, ou si elle est empruntée au soleil?

Comme il n'est pas nécessaire de répéter les ingénieuses observations sur la lumière des comètes qui se trouvent dans l'Extrait de l'Annuaire pour 1832, pages 82, 212, j'en citerai une qui me paraît nouvelle. Je me rappelle, qu'en 1824 je m'occupais des moyens de discerner la lumière originale de celle qui était empruntée. A cette époque une chose m'est arrivée par hazard, par laquelle j'espérais d'achever cet objet. Je m'amusais avec un télescope achromatique d'une manière bien bizarre, et plus en enfant qu'en astronome; car pendant que j'observais une étoile de la première grandeur, je donnais au télescope un léger mouvement oscillatoire de façon qu'au lieu de voir l'étoile vue dans la lunette sous la forme d'une pointe lumineuse comme à l'ordinaire, un anneau lumineux se présentait dans l'objectif. En examinant Sirius de cette manière, j'apperçus que ce cercle ou anneau lumineux était divisé en plusieurs couleurs prismatiques, ou plus proprement, en segments coloriés. En répétant cette observation sur diverses étoiles fixes, je trouvai que ces couleurs variaient en chaque cas selon la couleur propre à l'astre actuellement observé; par exemple en Betalgeus, Arcturus et Aldabaran le rouge était la couleur dominante; en Lyra et Aquila le bleu; en Capella il y avait beaucoup de jaune; cela ne m'étonnait pas, parce que la réfraction doit se varier selon la composition originale de la lumière de chaque astre, chose qui explique un phénomène que j'ai vu moi-même, la projection apparente d'Aldabaran sur la surface de la lune, dans une occultation de cette étoile. Mais en dirigeant la lunette vers Jupiter et Vénus, j'étais étonné de ne point trouver de couleur dans les cercles produits par la lumière de ces planètes : j'ai répété mille fois ces observations et toujours avec le même résultat; il n'était possible de produire aucune couleur dans le spectrum d'une planète quelconque, tandis que toutes les étoiles fixes donnaient des couleurs facilement.

Par ces observations je fus porté à croire que la lumière empruntée ne pourrait produire, en nul cas, ce brillant phénomène; et que, de ce fait, s'il était confirmé par l'observation d'une comète, nous pourrions tirer probablement des conséquences très-importantes. Enfin, j'ai saisi la première occasion d'observer la comète de Biela en 1832, ainsi que celle de Haller en 1835, de cette manière, et heureusement avec le résultat que j'avais attendu. Ni l'une ni l'autre n'ayant produit de cou-

leurs, il serait permis de conclure que la lumière de ces astres est empruntée au soleil. Il est à remarquer cependant qu'il y a une autre manière de séparer les rayons coloriés de la lumière des étoiles, par le moyen d'un prisme attaché à la lunette, qui a donné d'autres résultats encore plus intéressants. Comme j'ai déjà publié mes expériences sur ces phénomènes, et aussi celles de M. Stephen Lee, dans le *Philosophical Magazine* de Londres pour l'an 1824, je ne les répéterai pas ici. (*)

§ 4. S'il y a des rapports entre les comètes et les météores lumineux etc.

Admettant qu'une matière gazeuse tombe des queues des comètes dans l'atmosphère, et qu'elle produise des épidémies, on doit attendre aussi bien d'autres phénomènes. Je propose donc d'examiner si elle peut fournir la matière pour certains météores qui semblent dépen-

^(*) Dans ce Magazine on trouvera beaucoup d'observations sur la différente réfrangibilité des étoiles. Voyez Essay on the différent refrangibility of the red, white and blue Stars, with tables of refraction etc., dans les numéros pour avril et mai 1824. Dans mon Dictionnaire à l'usage des physiciens et des agricoles, qui est devenu rare, j'ai donné un catalogue d'environ 30 étoiles considérées sous ce rapport, avec une table des réfractions différentielles, fondée sur la diverse composition de leur lumière. 12°. Londres 1827.

dre de quelque gaz enflammé. M. de Luc regardait tous les météores comme l'effet de la combustion de gaz. D'autres physiciens les ont regardés comme de petites météorelites. En tous les cas, il y a, comme j'ai déjà prouvé, trop de rapport entre les météores et les variations atmosphériques, pour qu'on puisse leur attribuer une origine hors de l'atmosphère de la terre. Par un grand nombre d'observations, j'ai pu faire une division des météores en cinq classes principales : 1º Les étoiles filantes ordinaires qui sont trèspetites; 2º les plus brillantes qui ont la grandeur apparente de Vénus; 3º les très-grandes, celle par exemple de 1783; 4º les ignes fatui; et 5º une classe de météores qui ressemblent aux étoiles filantes, mais qui sont distinguées par de longues queues ou trainées de lumière blanche quellés laissent après elles, et qui souvent restent visibles environ trois secondes après que les étoiles mêmes sont éteintes. (*) Ce sont les météores que Virgile, Aratus et Pline ont regardés comme les signes du vent. Il n'y a pas de doute que leurs queues sont produites par la combustion de quelque matière inflammable diffuse dans l'atmosphère. Selon mes observations, elles sont bien plus fréquentes au temps des comètes :

^(*) Voyez une longue dissertation sur ces météores dans mes Researches about atmospheric Phenomena 3º édit. 8º. London 1823.

par exemple le 10 août 1811, pendant que la magnifique comète de ladite année s'approchait de notre système, je me rappelle avoir dénombré plus de cent de ces météores, entre les 9 et 10 heures du soir, dans le voisinage de Londres; et on m'assure qu'ils ont été vus, pendant toute la nuit, en très-grande quantité. De pareilles observations contemporaines ont été faites dans plusieurs parties de l'Europe. La même année au mois de juillet, j'observai à Walthamstow un phénomène très-rare dans ces régions Boréales, une pluie tombante d'un ciel parfaitement serein; les goutes n'étaient pas nombreuses, mais larges, et donnaient des indications d'une électricité positive. Je sentis pendant la chûte de cette pluie une odeur semblable à celle qui, dans certaines expériences électriques, échappe de la machine, ou à celle qui descend quelquefois par le cordon d'un cerf volant au temps d'orage.

Le 3 juillet 1819, à 11 heures du soir, j'eus le plaisir de découvrir la brillante comète de cette année, dont l'apparition subite produisit une grande impression en Angleterre; elle fut observée, la même nuit, à l'observatoire de Greenwich: pendant l'automne qui suivit, ces météores à queues blanches se montraient encore. Observant la comète attentivement, j'apperçus un mouvement à l'extrémité de sa queue. Cette comète me semblait d'une couleur plus rouge que celle des comètes

en général. — La température de l'été, comme celle de l'été précédent, était chaude, l'hiver froid. (*)

En 1832, année de la comète de Biela, ces météores traînant de longues traces lumineuses devenaient encore nombreux: à Beverley dans la province de York, le 12 novembre, le ciel en semblait rempli; ils ont été vus en même temps dans toute l'Angleterre, en Flandre, en France, en diverses parties de l'Allemagne et en Amérique; le 13 un grand météore fut observé à Boreham en Essex, et pendant ce mois et celui de janvier, ces phénomènes étaient fort communs. Une nuit où j'étais dans mon jardin à 10 heures du soir, je vis tant de ces petites étoiles à queues blanches, traînant à la fois leurs lignes blanches dans plusieurs directions, que le ciel pendant cinquante secondes présentait le spectacle d'un entrelacement de fils de coton blanc. L'année passée, voyageant sur les bords du Rhin, je remarquai plusieurs de ces petits météores blancs, et un ou deux en hiver à Aix-la-

^(*) Je n'ai jamais dit que les comètes augmentent la température moyenne, mais que les extrèmes de chaleur et de froideur, ainsi qu'un bouleversement plus ou moins général de l'ordre naturelle des saisons, accompagnaient souvent l'apparition de ces astres. Cette opinion résulte d'une laborieuse examination historique des phénomènes.

Chapelle. J'ai observé constamment que les plus brillants de ces météores arrivent avec un baromètre descendant et quand il y a des nuages dits cirrostrati dans l'air; aussi que les météores à queues blanches ont été suivis et quelquefois précédés du vent et de la pluie. Voilà, quant à moi, tout ce que je puis offrir d'expérience; mais par le catalogue des comètes que j'ai déjà fait, il semble que les années où il y avait de grandes comètes, ont été toujours les plus fertiles en météores et en divers phénomènes; comme par exemple l'an 1783. Cependant nous n'avons pas encore assez de faits pour établir un rapport indubitable entre ces phénomènes; la liaison est probable, ainsi que celle entre les comètes et les lumières boréales : il faut multiplier les observations. L'esprit inquiet de l'homme est trop porté à s'imaginer des signes et des prodiges; en 1828 le peuple attribua à la comète d'Enke, que bien peu de personnes avaient vue, le splendide arc lumineux qui, le 29 septembre, de 8 à 9 heures du soir, s'étendait de l'Ouest vers le zénith, à l'élévation d'environ dix lieues. Je vis ce phénomène en Essex et je regardai là-dedans un mouvement semblable à celui d'une colonne de fumée agitée par un très-léger vent. (*)

^(*) Je ne sais que penser du météore décrit dans l'extrait suivant d'un journal irlandais : mais mon père fut témoin d'un pareil phénomène environ l'an 1799 à

Les météores que je vis descendre du ciel vers le sommet du Vésuve pendant l'éruption de juin et juillet 1834, tombaient avec une rapidité éton-

Hackney, il le prit pendant quelque temps pour un feu d'artifice. Voilà l'extrait :

Singular Meteor. - On Saturday evening, at seven o'clock, a meteor was observed, very remarkable for its shape, duration, and small elevation from the earth, by a family residing near Annesley bridge, who watched it a intervale till twelve o'clock. It appeared to take a direction from S. E. to S. W., moving from the seaside landwards, in nearly a horizontal direction, and lower than the summit of the Wicklow and Dublin mountains, which it illuminated in passing. It was described as nearly as large as the moon, with a luminous tail of bright spots, like stars, which extended behind id, and sometimes below it in a curved direction the entire head and tail then resembling the outline of a comma (in punctuation). During the five hours it continued visible it sometimes stopped, retrograded, and described various curves. It was occasionally intercepted by clouds, which it illuminated on the edges, and rendered partially transparent. Its colour was rather paler than the planet Mars. Various meteoric appearances were also perceptible on the previous evening, but we have not as yet heard any description of them on which we could rely. - Dublin Register.

nante, et ils avaient l'apparence de communications électriques. Je remarquai qu'avant l'éruption et même dans les intervalles des vomissements de feu, il se formait au-dessus de la montagne un grand cumulus de la forme d'un cone de sapin renversé. Le lundi 7 juillet 1834, retournant avec ma famille de Pompéji à Naples, ces météores étaient accompagnés d'un orage des plus violents que j'aie jamais vus; en même temps l'éruption de lava, de pierres rouges, et de feu continua et présentait dans l'ensemble un spectacle à n'oublier jamais; passant tout près de la montagne, ma voiture fut couverte de cendres chaudes; mais n'allongeons pas trop cet article.

§ 5. Des épidémies et des comètes avant l'ère chrétienne.

En réexaminant, pour la troisième fois, mon catalogue des comètes à présent beaucoup augmenté, je trouve, en dépit de ce que disent certains astronomes, qu'une liaison entre ces phénomènes célestes et ceux qui s'appellent atmosphériques est soutenue par la balance des probabilités. Si nous admettons que les pestes, les épizooties et les maladies des plantes sont des productions de l'air, les probabilités d'une influence cométaire deviendront bien plus nombreuses. Par une longue examination de ces maladies et de leur rapport avec les variations

de l'atmosphère, je suis convaincu que leurs causes excitantes consistent en certaines conditions morbifiques de l'air qui, agissant d'une manière spécifique, sur diverses parties ou organes de la machine animale des individus prédisposés à recevoir leur influence, produisent les symptômes extraordinaires qui caractérisent les épidémies; classe de maladies qui méritent d'être étudiées par les médecins avec la plus profonde attention. Infiniment variées comme les nuances des couleurs, poursuivant une course invisible dans l'élément de la vie, attaquant les personnes en apparence les plus fortes et portant le fléau de la famine et de la mort à des nations entières, elles ont été regardées, en tous les temps, comme les plus mystérieux et les plus importants des maux de l'homme.

Combien de cités jadis fleurissantes ont été reduites en ruines par ces fléaux! Je ne doute pas que ce ne soit principalement par les épidémies que Babylone, Ninive, Thèbes, Palmyre, Echatane ont cessé d'exister; et que Tyre et Sidon ont été flétris sous le fouet de ladite justice rétributive: car les troubles civils deviennent les causes prédisponentes des pestes; et quand Bellona a joué son rôle dans la scène sanglante de dévastation, Fébris foule aux pieds les débris qui restent d'une population presque anéantie par la famine et par la guerre. Sans accepter cette explication, il serait difficile de s'imaginer comment

tant de villes immenses, des nations opulentes de l'antiquité auraient été ruinées! Examinons si ces maux ont été précédés par des comètes.

Ricciolus, Eckstorm et Whiston se sont servi des traditions anciennes pour prouver que le déluge fut occasioné par une comète; et puis, chose qui est au moins curieuse, les calculs astronomiques ont rendu l'apparition de la grande comète de 1680 assez probable, à cette époque : car assumant la période de la révolution de cet astre dans son orbite elliptique à 575 ans, il correspondra avec les comètes des années 1106, 531 et de l'an 43 avant J. C.; la dernière fut la comète avant la mort de Jules César. Montant l'échelle des dates par des pas de 575 ans, nous arrivons à l'an - 618, époque où l'apparition de cette comète doit avoir eu lieu; et cela correspondra bien avec la date de la fameuse stella candens Sibillæ. (*) La tradition garde le silence sur son apparition en — 1193; mais retraçant ses retours, nous trouvons qu'elle a retourné au temps du déluge d'Ogyges; et puis, encore montant 575 ans, nous arrivons à peu près à l'époque du déluge de Noé! Une autre grande comète, selon ces chroniqueurs, fut visible

^(*) Voyez mon Catalogue des comètes et Essai on the atmospheric origin of epedemic disorders, 2° édit. r. 17. Aussi Webster on epedemics, et Chronik der Seuchen, en 2 vol. 8°. Tubingen 1823.

en - 1897, avant la destruction de Sodome et Gomorra; et quant à cela, il faut dire que le nombre immense des grands météores qui ont été observés tombant à la fois sur la terre aux temps des comètes de 1811 et 1832, porte à supposer la possibilité d'un pareil phénomène comme la cause de la combustion de ces deux anciennes villes. Nous cédons assez aux théologues qui ne voient que la justice divine dans ce cas, en disant que Dieu pouvait employer ces météores comme instruments de sa vengeance; (*) le même argument s'applique à toute question de l'origine des maux. Que ces météores ont été les causes des incendies, est déjà matière d'histoire; dans une ancienne chronique de Londres, sous la date de 1202, nous trouvons qu'après un violent orage avec de la pluie et de la grêle grosse comme des œufs, il tombait, dans la nuit, un nombre de météores semblables aux charbons ardents qui ont mis le feu à plusieurs maisons. Ces météores ve-

^(*) M. de Luc, d'après Aristote, dans ses Idées sur la Météorologie, regarde les météores comme occasionés par la combustion de l'hydrogène dans l'air. Mais avant mon ascension aërostatique, faite aux jardins des frères dominicains, voulant savoir quel serait le danger de passer par un nuage foudroyant, en montant, un collaborateur de nos travaux fit passer l'étincelle électrique plusieurs fois par un petit ballon rempli de hydrogène, sans faire enflammer le gaz.

naient quelquesois si horizontalement que le peuple s'imaginait qu'ils étaient portés par des oiseaux. (*) Encore en 1224, le 18 octobre, on a registré un ouragan qui démolit plusieurs églises et déracina une foule d'arbres, pendant que des dragons de feu volèrent dans l'air. (†) Outre les nombreuses maisons qui ont été brûlées par la foudre, il est connu qu'en Angleterre plusieurs ont été allumées par d'autres espèces de météores. Cette explication est rendue plus évidente par les circonstances qui ont accompagné la chûte des météorolites. Mon grand journal de la météorologie, dont j'ai déjà parlé, contient un nombre immense d'observations sur ces sortes de météores; mais je n'ai pas encore eu le temps de les mettre en ordre pour les publier, ayant été pendant vingt ans voyageur.

Lubienietski fait mention d'une comète visible pendant la famine au temps d'Isaac, et d'une autre qui éclairait à l'époque où les fils d'Israël allaient chercher de la farine en Égypte chez leur frère Joseph, à cause de la famine en Judée. Je voudrais bien savoir l'autenticité précise de ces comètes. Une autre chose doit être remarquée ici : les anciennes épidémics égyptiennes furent suivies par la peste des mouches ou des insectes; nos jours nous ont fourni de pareils

^(*) Chronicle of London 1202.

^(†) Idem.

exemples dans le vaste accroissement de certaines classes des insectes qui ont accompagné en quelques saisons les maladies des plantes, chose qui m'incline à penser, appuié sur l'analogie, que ces épibotaniques mêmes peuvent dépendre de certaines animacules invisibles — et si les maladies des plantes, pourquoi pas celles des hommes?

Cette grande disproportion dans le nombre des insectes en diverses saisons dépend probablement de quelques causes atmosphériques. Nous allons citer quelques exemples : l'an 1821 les guêpes devinrent par leur quantité énorme une peste en Sussex; bientot après presque toutes les abeilles disparurent; et en d'autres endroits, pendant l'hiver, millions de ces insectes utiles furent trouvés morts près de leurs ruches. En 1826, les bêtes-à-Dieu, je crois coccinella sexpunctata, traversaient en armées immenses le pays avec le vent du nord; dans leur marche vers le midi, elles sont restées, pendant la nuit, sur la coupole de l'église de St. Paul à Londres, dont le côté du nord se trouva tout-à-fait rouge à l'aube du soleil le matin suivant, au grand étonnement des gens. Que le lecteur s'imagine le spectacle d'un dôme, grand comme celui de St. Pierre de Rome, colorié d'une vive écarlate et cela subitement par l'arrivée inattendue de myriades d'insectes! Je pourrais citer de mon journal d'histoire naturelle, bien de pareils exemples.

§ 6. Des causes physiques des épidémies.

Comme nous allons entrer dans l'investigation des épidémies et des phénomènes qui les accompagnent, il ne sera pas inutile de remarquer qu'il y a trois manières par lesquelles les conditions de l'air peuvent agir sur le corps : 1º par l'électricité, 2º par l'oxygénation plus ou moins forte, et 3º par le moyen de ces mélanges inombrables de substances étrangères, dérivées des comètes ou autrement, qui agissent sur le système nerveux, ou au moins sur la vie animale et végétale d'une manière jusqu'à présent inconnue. Encore, si un de ces mélanges malsains peut agir seul, deux ou plusieurs peuvent se combiner et agir ensemble; et, si l'on réfléchit sur le nombre immense de ces combinaisons morbifiques qui agissent sur des constitutions animales varieusement prédisposées, il serait facile de concevoir des causes suffisantes à produire toutes les variétés des épidémies. J'ai déjà fait assez d'observations et d'expériences pour m'assurer de l'opération de ces trois classes de causes excitantes. Par le moyen de cet instrument ingénieux l'électroscope de M. de Luc, ainsi que par les électromètres très-délicats, j'ai prouvé que certaines maladies commencent au moment des changements électriques, et que, si ces changements arrivent au temps de la nouvelle ou de la pleine lune, les exacerbations des conséquentes maladies sont plus fortes. Ce que M. Gall et les médecins allemands appellent les périodes d'irritabilité, semble dépendre de cette influence lunaire. L'effet produit par le vent d'est, dans presque toutes les parties du monde, sur certaines personnes, est aussi remarquable que son action électrique sur les électromètres. Ce vent fait monter le sang vers la tête, donne des migraines, et en desséchant la peau, rend le malade fiévreux. Mais ce n'est pas tout : les cheveux deviennent plus petits et plus secs, et on ne coupe pas la barbe avec la facilité ordinaire; un léger brouillard se mêle avec l'air, que j'ai trouvé constamment ou sans électricité, ou électrisé négativement. Les douleurs que des malades éprouvent avant la formation ou l'approche d'un nimbus orageux, et le soulagement que, bientôt après, leur apporte la pluie tombante, prouvent incontestablement l'influence électrique sur les organes et les parties les plus faibles de la machine animale. Les expériences nombreuses de l'inspiration de l'oxygène, de l'oxyde d'azote gazeuse et d'autres airs malsains démontrent une seconde sorte d'influence morbifique que peut exercer l'atmosphère sur les fonctions nerveuses et pulmonaires; pendant que mille observations sur les gazes malsains qui se mêlent dans l'air prouvent incontestablement le nombre et la variété de leur influence. Quand deux ou plusieurs de ces causes se réunissent on a dû

supposer que les effets seraient plus forts et désastreux; il faut examiner maintenant la question, si ces mélanges et les épidémies les plus générales se rapportent avec les plus grandes comètes.

§ 7. Un mot sur les brouillards.

Quoique je ne nie pas la possibilité d'une liaison entre les corps célestes et tous les phénomènes atmosphériques en général, je ne puis concevoir aucun rapport entre les comètes et les brouillards en particulier, sans compre la belle harmonie de ce système néphéologique que j'ai adopté après vingtsept années de constante attention. Il n'est pas nécessaire de répéter ici les observations que nous avons faites, - je parle de M. Howard et de moi, - sur la formation des nuages, ni de l'opinion que nous avons adoptée d'après Aristote, de la décomposition de l'air; il suffit de dire que cette condition de l'atmosphère qui est favorable à la production des nuages en grande quantité, existe et commence à produire de pareils effets dans les lieux les plus distants et, en quelques cas, dans l'air de deux ou trois pays entiers à la fois; un brouillard n'est qu'un nuage reposant sur la surface de la terre; et il arrive, en général pendant le beau temps, que les particules d'eau

^(*) Voyez Researches etc. by T. Forster, 3° édit. 1823, et Howard's Climate of London, 1832.

ou de vapeur qui se montrent en forme de cumuli pendant la journée, se transforment au soir en brouillards; mais ce qui est remarquable c'est qu'en général, quoique les brouillards se forment justement quand les cumuli disparaissent, on ne voit pas les vapeurs descendantes. Ayant été, moi-même, posé justement entre ces deux procès simultanés et même au niveau des cumuli évaporants, un peu avant le coucher du soleil, dans des voyages aëriens et dans les alpes, j'ai eu l'occasion d'observer que l'atmosphère supérieure est restée sèche long-temps après que la surface de la terre avait été obscurcie par le stratus ou brouillard de nuit.

Le brouillard de l'année remarquable 1783 n'offre point d'exception à la règle ordinaire, à cause de son étendue et de sa sécheresse; dans des régions très-distantes, mais ayant à peu près la même longitude, les cirri, les strati, les orages etc. se forment à la même fois; et quoiqu'il est impossible que la nubification éphémérique soit momentanée dans plusieurs pays situés en long les parallèles de l'équateur, les périodes de leur formation néanmoins suivent les dégrés de la longitude, et arrivent dans des lieux fort distants, au même temps moyen et local, par la montre. Je parle de ce qui arrive ordinairement en beau temps; il y a des exceptions. Quand ces opérations générales sont augmentées en force, par quelque cause que ce soit, le résultat est un vaste

brouillard, ou une pluie très-étendue. Mon oncle, B. M. Forster de Walthamstow, observa attentivement le brouillard en 1783, qui fut un stratus électrisé positivement, et par lequel le disque du soleil apparut pâle et rougeâtre. Il observa au contraire une couleur bleuâtre du soleil, le 18 août 1821, pendant un brouillard de cette espèce; le même fut observé dans toute l'Angleterre. (*) L'année 1783 fut trèsmalsaine: l'air fut par-tout obscurci par des vapeurs avec lesquelles le tremblement de terre qui détruisit la ville de Messina, ainsi que l'éruption de Hécla ont été supposées avoir quelque rapport. Le mémorable météore du 18 août 1783 suivit, et tous ces phénomènes furent attribués à la comète qui passa son périhélie le 15 novembre.

Les brouillards sont ordinairement de trois classes:

1º les strati qui sont secs et chargés d'une électricité
positive; 2º les cirrostrati descendus sur la terre,
avec une négative électricité ou non électrisés, et
3º les brouillards qui précédent des orages et ceux
qui sont quelquefois signes de grandes pluies qui
commencent souvent avant qu'ils disparaissent; ces
derniers brouillards répandent une odeur fort désagréable. Cette odeur est égale à celle d'une briqueterie sentie à quelque distance.

^(*) Voyez Philosophical Magazine, vol. 58, p. 243.

§ 7. Examen de l'opinion de Kepler sur des comètes considérées comme signes des désastres moraux et physiques; avec réflections sur la superstition et sur les systèmes des philosophes.

On sait bien que les anciens astrologues des âges superstitieux ont attribué aux comètes de grands événements moraux ainsi que physiques; mais on s'étonne en trouvant cette opinion déclarée par un savant astronome tel que Kepler. Pour approfondir, tant qu'il est possible, la base de cette opinion apparemment si bizarre, je me suis proposé 1º d'examiner l'histoire des comètes par rapport aux événements qui les ont accompagné, et 2º de savoir s'il y a des moyens d'expliquer une liaison entre ces événements et les comètes. Quant à la première partie de la question, je trouve, par l'histoire, que l'évidence en faveur d'une influence cométaire sur les désastres et les événements moraux est bien faible. Quant à la seconde, je trouve une manière d'expliquer cette influence; car admettant avec les physiologistes la grande influence des variations atmosphériques sur le système nerveux de l'homme, et en même temps celle des comètes sur l'atmosphère, on trouve une chaîne de conséquences dérivantes de l'approche d'une comète qui se manifestent dans les troubles civils de la société. Sans doute le monde n'a pas été trop tranquille depuis la comète de Biela jusqu'à celle de

Halley! Il est vrai aussi que l'histoire nous donne de pareils exemples; mais, quant à moi, je n'ai pas la hardiesse de prononcer l'opinion que les coïncidences ne soient pas accidentelles dans l'acceptation ordinaire du terme. (*)

Ayant un grand respect pour cet astronome célèbre, je voudrais bien expliquer ses opinions. Je conviens néanmoins que nous sommes entrés dans l'arène fangeuse de la fantaisie; mais quel est le fanatisme scientifique que nous ne devions pas attendre dans ce siècle des éclaircissements, quand nous entendons d'un théoricien que les immenses progrès que le catholicisme fait à présent en Europe et particulièrement en Angleterre, est un effet de la position actuelle des planètes; et d'un autre, l'un de nos plus grands naturalistes, ecclésiastique protestant, que l'on doit considérer comme une des influences les plus intéressantes, galvaniques ou magnétiques je ne sais pas, celle que communiquent aux têtes des enfans les mains des évêques dans une cérémonie, chez nous un sacrément de l'église. (†) Malgré tout le respect qu'on doive avoir pour la religion, et surtout pour des ins-

^(*) En vérité il n'y a pas de hazard ou d'accident : tout effet étant le résultat immédiat de sa propre cause.

^(†) Voyez les articles entomologiques dans les Bridgewater Treatises, et plusieurs articles dans les journaux.

titutions catholiques, on rougit quand on voit de telles bizarreries dans des livres d'histoire naturelle; on ne saurait se moquer assez de cette démonstration ridicule de l'esprit de métier qui se confond avec le faillible jugement de l'homme.

De l'autre côté, on n'est pas moins étonné de lire dans les ouvrages de Dupuis, dans ceux de Volney, et de Drummond d'après lui, que les douze tribus d'Israël, les donze apôtres de Jésus-Christ, avaient des rapports avec les signes du Zodiaque, et représentaient des phénomènes astronomiques, que l'agneau pascal ne fut qu'Aries etc. (*) Ces essais fantastiques dirigés contre la religion ont provoqué un contrecoup de la part de l'abbé Guerrin du Rocher, qui; dans son savant traité sur les temps fabuleux, a voulu prouver que toute la mythologie égyptienne grecque et romaine fut une réflexion obscure des vérités bibliques ou des anciens événements recordés des juifs, que la fable de la toison d'or n'était que la toison de Gibeon, que la ville de Troye n'exista jamais, et que Herodote fut l'historien du peuple hébreux sans le savoir. (†) Sans nier le mérite de cet ouvrage, on dira qu'il a employé une immense érudition en développant un système purement idéal,

^(*) Voyez Dupuis, Origine des constellations — Volney, les Ruines, et Drummond's Oedipus judaicus.

⁽⁺⁾ Guerrin du Rocher, Temps fabuleux, 7 vol. Paris.

quand il essaie d'identifier Samson, Hercule et Boötes.

Le Comte de Maistre, écrivain pieux et aimable, regarde les comètes comme des signes de la vengeance de Dieu, et tous les maux et maladies de l'homme comme des visitations pénitencielles, qui servent à établir l'existence de ce principe général de justice rétributive qui règne sur les événements moraux. (*)

Fontenelle, Burnet et bien d'autres nous ont amusé de leurs systèmes, en excitant des idées sublimes sur l'origine et la pluralité des mondes, sans rien prouver. Les comètes ont été regardées comme des messagers employés par Dieu à transporter mille matières utiles et nuisibles d'une planète à l'autre. Enfin la superstition s'empare, en tous les temps, de l'imagination de l'homme, où la raison est faible, et l'ambition se sert de celle-là pour accomplir la conquète du peuple crédule.

Mais il faut toujours distinguer entre les superstitions vagues et ces usages religieux que le temps a consacrés pour leur utilité pratique. On lit dans

^(*) Voyez les Soirées de St. Pétersbourg, 2 vol. 8°, par le Comte de Maistre, ouvrage fort intéressant. — M. l'abbé de la Mennais, philosophe encore plus profond que les autres sans être moins érudit, a placé la certitude dans le consentement universel des hommes: voyez Essai sur l'indifférence etc. vol. 2.

l'essai « Des Comètes » etc. p. 114 que nous sommes redevable, à la comète de Halley, de la petite prière dite l'Angelus, ordonnée par Calixte III en 1456. Je suis content que nous devions à la comète une si douce harmonie, et les meilleures occasions, le matin, le midi et le soir, pour faire des observations sur le passage des sons, sous diverses conditions de l'atmosphère, comme je l'ai souvent éprouvé. L'effet de cette Ave Marie du soir à Rome est très-agréable, quand presque toutes les cloches de quatre cents églises commencent à sonner à la fois avec une merveilleuse diversité de tons, remplissant l'air d'une musique de vibration délicieuse. La question, pourquoi il nous est ordonné de prier au temps des comètes, du tonnerre etc. ? — qui provoque la risée de nos écrivains, est, en fait, la question : si nous devons prier pour une chose quelconque?! On peut raisonner làdessus comme ça. Considérant qu'on a déjà dénombré plus de cinq cents comètes, et qu'il est bien possible qu'une d'elles heurterait la terre, selon la doctrine des probabilités, la meilleure espérance que ce choque fatal n'arrivera pas, par quelque hazard, serait trouvée dans la doctrine métaphysique que la première cause comprend des causes finales; ou en autres mots, que tout l'univers est un système de motions harmonieuses dirigées rigoureusement vers un objet; rien n'étant laissé au gré de ce que nous appellons accident. La question donc est toujours : si les prières des hommes

entrent dans la catégorie des choses qui servent à former la chaîne des causes et effets par lesquelles la consommation serait accomplie? Les conseils de l'église dans tous les siècles répondent que oui, en nous commandant de nous confier à Dieu, et de lui demander la protection journalière. Il faut laisser là la question!

Des mille hypothèses contradictoires, il s'écoule une espèce d'opinion moyenne et négative, qui mérite le nom de l'ignorance, semblable à la résolution des forces antagonistes en mécanique. De cette insouciance même qu'on se sent en réfléchissant sur l'origine des choses et les systèmes des spéculateurs, on est forcé pour ainsi dire de rentrer en soi-même et de chercher là la fondation des connaissances humaines. Voulant toujours passer ce voile qui est suspendu entre l'être créateur et les êtres créés, le philosophe fait rouler perpétuellement la pierre de Sisyphe jusqu'aux limites de la raison, mais il retombe toujours de ce vain travail sur les simples vérités que la nature lui présente en forme de phénomènes, et se contente de multiplier ses observations de leur variété et de leur ordre.

Je voudrais bien m'épargner le ridicule de ces réflexions; mais voyant que pendant que les physiciens du xviiie siècle se moquent de toute théologie, ceux du xixe, par quelque réaction assez bizarre, cherchent à mèler leurs spéculations religieuses avec

les plus simples inductions de la science; je crois de mon devoir de faire tout mon possible, pour leur indiquer la vraie course de la philosophie par des éclaircissements métaphysiques, afin qu'en évitant Scylla, ils ne tombent pas dans Charybde. L'athéisme, véritable génie du néant, est passé comme un orage, après avoir dévasté l'empire du fanatisme; mais il est à craindre, voyant que l'intelligence moyenne de tous les hommes ensemble, dépend d'une organisation célébrale constante ou peu variable, que la superstition, pas encore déracinée, regagnerait son influence sur la société. Pour éviter ce malheur, il faut faire répandre sur la terre la science actuellement achevée, comme base de celle qu'on attend à l'avenir. Il faut se rappeler que c'est toujours la société et non pas les individus, qui fait progrès, que la science ne s'avance d'un seul pas utile qu'en vertu de celui qu'elle a déjà fait!

La haute astronomie tend toujours à débarrasser l'imagination de l'homme des préoccupations du fanatisme en étendant la carrière de ses recherches. Forcé, par l'analogie, en contemplant les millions d'astres qui remplissent l'espace apparemment illimité, d'admettre l'existence des myriades des habitants vivants, notre espèce orgueilleuse ne saurait plus s'approprier un paradis exclusif à condition d'un culte intollérant, ni se regarder comme le seul objet du soin divin et les autres animaux comme faits à son

usage, erreur fatale, source abondante des cruautés et des crimes! Après avoir examiné la variété infinie des animaux vivants sur la terre par le microscope, le philosophe prend la lunette et, pénétrant l'espace, se trouve au milieu des cieux, théâtre immense de la puissance créatrice de Dieu; il y contemple la même loi de variété et de combinaisons innombrables constamment manifestée par la production des systèmes solaires et sydéréales, maintenus par toute sorte de mécanisme qu'il trouve sur la terre, et en divers dégrés de progression, de la plus diffuse nébulosité jusqu'à la plus parfaite étoile. Il ne se laisse plus effrayer par les queues des comètes, ni ne s'étonne par l'anneau de Saturne; les questions en particulier se résolvent dans la question générale : il demande, il cherche l'être d'où s'écoulent les conséquences immenses dont il a vu les signes visibles dans l'univers, et croyant, par un acte de foi naturelle, en Dieu comme le pouvoir générateur de tout le mécanisme céleste, comme le père universel de tous les êtres existants; il y repose son esprit fatigué du travail, des vaines recherches.

§ 9. Si la lune peut influencer les épidémies, et en quelle manière?

Nous avons prouvé que la lune exerce une influence sur l'atmosphère et par elle sur la santé de l'homme, et que cette influence a rapport avec les marées. (*) J'ai donné un grand nombre d'épreuves de ce fait, dans mon ouvrage sur les épidémies. Il me semble que cette influence lunaire augmente l'irritabilité générale du système nerveux, fait monter le sang à la tête, et produit quelquesois des symptômes spécifiques, certaines sortes de migraines, les paroxysmes de manie, etc.; le mot lunatique est dérivé de cette observation. Mais la lune n'exerce point d'influence dans la production des épidémies, excepté qu'elle augmente les symptômes, qu'on trouve quelquefois plus sévères aux périodes de la nouvelle et de la pleine lune. J'ai remarqué encore que ces douleurs de la tête, que quelques personnes éprouvent, avant l'approche d'un orage, sont bien plus fortes quand elles coïncident avec ces périodes lunaires.

Quant aux épidémies, j'ai déjà démontré, dans ma brochure sur le choléra, (†) que ces maladies ne sont pas contagieuses, qu'elles dépendent de quelques conditions de l'air jusqu'à présent inconnues, et que

^(*) Voyez mes Researches about atmospheric Phenomena, 8°. 3° édit. 1823 — Beobachtungen über den Einfluß etc. Leipzig 1822, et Howard's Climate of London, 3 vol. 8°. 1832.

⁽i) Essay or the atmospherical origin of cholera morbus etc. 8°. 1832.

la position des planètes et de la lune n'a point d'influence directe sur elles. J'ai examiné l'opinion de certains médecins que ces fléaux sont produits par des insectes invisibles, et prouvé que, quoique les insectes microscopiques habitent dans la matière morbide de certaines maladies, la cause déterminante n'est pas animale, qu'elle consiste dans des mélanges morbifiques diffus dans l'air. La prédisposition à recevoir ces maladies est la seule chose soumise à l'influence de la médecine. Quand une épidémie arrive, elle attaque ceux qui sont prédisposés, mais il y a tant de variétés dans cette prédisposition que dans les causes excitantes; la médecine ne semble rien faire pour une personne fortement attaquée. Il est une question importante, s'il y a des moyens de dispenser le corps de l'homme de ces causes prédisponentes? Il est à remarquer que, quand le choléra arriva à Manchester, où il fit des ravages funestes, les membres d'une nombreuse société des herbivores qui ne mangent jamais de nourriture animale, échappèrent tout-à-fait à cette maladie, chose qui prouve que les fruits et les végétaux sont très-salubres en fortifiant le corps contre une épidémie. En général la gourmandise, l'air infecté des salles de danse etc., où les fenêtres sont fermées, la débauche, et particulièrement l'exercice de l'amour physique des sexes, prédisposent à ces maux, tandis que l'abstinence, quelquesois le jeûne périodique, et ensin une vie

naturelle dans l'air pure, semblent détruire la prédisposition à les recevoir. (*) Enfin toutes mes recherches confirment l'opinion que j'ai déjà donnée au public dans l'ouvrage questionné; et j'entreprends la défense de cette opinion, avec une confiance augmentée, en publiant un extrait de mon catalogue historique à la suite de ces observations.

§ 10. La comète de Halley; les changements observés dans sa forme sont-ils réels ou phénomènes produits par des vapeurs interposées?

J'observai cette comète pour la première fois à Francfort sur le Mein le 11 octobre 1835 à vue simple et aussi avec une bonne lunette de Frauenhofer. Depuis ce temps elle a montré des changements fort considérables dans la longueur de sa queue, et encore dans sa clarté. Mais ce qui me semble le plus remarquable c'est qu'entre deux observations contemporaines, l'une faite en Angleterre par un de mes correspondants, et l'autre faite par moi à Aix-la-Chapelle, il y avait beaucoup de différence : la queue semblait bien plus longue vue en

^(*) A présent les anglais, d'après Abernethy, ne prennent presque point de médecine, excepté les purgatives, prises dans tous les cas, et la santé en Angleterre est en conséquence beaucoup augmentée.

Angleterre que vue ici. Est-il possible que ces variations dépendent des causes atmosphériques? Sans doute l'air de ce pays a été terriblement obscur presque tout l'hiver; du 16 jusqu'au 21 novembre il était impossible de faire aucune observation à Aixla-Chapelle, le ciel étant tout-à-fait couvert. De la comparaison des observations que j'ai reçues de Londres, avec les miennes, il résulte que la queue a toujours apparu beaucoup plus longue et plus brillante en Angleterre qu'en cette partie de l'Allemagne. A présent je ne dis rien de la cause de ce fait, mais j'invite les astronomes à communiquer leurs observations aux journaux scientifiques. J'ai remarqué encore que la scintillation des étoiles fixes est plus prononcée en Angleterre qu'en des pays où l'air est plus sec. Ce phénomène est là souvent trèsbrillant, particulièrement en Antares. Je l'ai regardé comme prouvant quelque mouvement ondulatoire dans l'atmosphère, par lequel l'action prismatique de l'air est perpétuellement variée. (*)

^(*) Voyez mon Essai on the Changes of Colour in the alternate fits of dilatation and contraction, observed in the Twinkling of Stars, in philosophical Magazine 1825, et le Pocket Encyclopedia, 12°. 1827.

Les variations de l'atmosphère, pendant l'approche et la durée de la comète de Halley, ne laissent point de doute qu'elles ont été produites par quelque cause

Quant à son influence, il faut dire que la comète de Halley a été précédée des étés chauds et suivie d'un hiver froid et malsain, comme dans ses apparitions antécédentes. Bien, qu'est-ce que ça fait. Le monde ne doit pas se terrifier de ces choses. Les épidémies entrent sans doute dans le plan général du créateur, et il est à se rappeller que pendant leur règne, peu de personnes, en comparaison, meurent d'autres maladies; la mortalité moyenne n'était pas augmentée à Londres par le choléra; et les médecins ont remarqué que ceux qui n'étaient pas attaqués durant la chûte de cette effroyable épidémie étaient plus forts et plus sains qu'à l'ordinaire. Les Parques, en jettant les prédispositions de chaque individu dans l'urne de ses destinées, n'ont pas laissé le sort de l'homme au gré des accidents.

extraordinaire; la moyenne température de cet hiver a été basse, et les changements subits; le ciel a été couvert de nuages et l'air obscurci par de légers brouillards d'une grande étendue. En examinant les dernières apparitions de cette comète, je trouve de pareils phénomènes registrés, et particulièrement des hivers forts, chose qui presque toujours suit les grandes comètes, et surtout celles qui passent leurs perchélies en été. L'hiver après la comète de 1819 fut trèsrigoureux. Le thermomètre de Farenheit, le 14 janvier 1820, descendit jusqu'à — 10°, ou dix dégrés au-dessous de zéro. (Extrait du journal météorologique.)

§ 11. Catalogue des comètes depuis l'ère chrétienne, comparées avec les épidémies etc. et accompagnées de remarques. (*)

Certains auteurs ont regardé l'étoile de Bethlehème comme une comète, mais comme ce n'est pas prouvé, je commencerai par l'an 15, où la première grande comète depuis J. C. fut observée. Depuis la publication de mon catalogue, je trouve par hazard en Allemagne ce fameux ouvrage le Chronik der Seuchen, auquel j'invite l'attention du lecteur; il offre la plus grande confirmation de mon opinion, et il est plein de faits historiques fort intéressants.

ANNÉES
DESCRIPTION DES COMÈTES ET REMARQUES.

- 15. Grande, peste générale en Asie.
- 40. Peste et famine à Rome.
- 53. Peste à Rome et partout, parhélie.
- 62. Peste, naufrage de St. Paul. (†)
- 67. Avec une grande queue, peste et épizootie.
- 79. Grande, éruption du Vésuve, Herculanum et Pompéji détruites, une grande peste suivit, mort de Vespasian.
- 117. Peste des mouches, Antioche détr. par trembl.
- 127. Nicopolis détr., peste, mais pas générale.

^(*) L'authenticiité pour les faits recordés est toute donnée dans mon ouvrage sur les épidémies.

^(†) Les notices historiques sont insérées seulement pour vérifier les dates.

ANNÉES.

DESCRIPTION ET REMARQUES.

- 154. Destruction de Rhodes, peste.
- 169. Épidémie universelle et d'un caractère extraord.
- 211. Peste à Londres et en toute l'Europe.
- 218. Aucune peste recordée.
- 240. Peste générale, hiver fort, météores.
- 250. Hiver très-sévère, partout, une longue période de pestilence aussi générale que Gibeon eut la hardiesse de dire que la moitié de la race humaine avait péri par elle; puis famine, météores.
- 289. Comète très-large, hiver sévère, la peste carbuncutaire commença.
- 323. Peste, et puis famine presque générale.
- 335. Comète très-grande, peste de Syrie et de Cilicia.
- 339. Tremblement de terre, Angleterre couverte d'une neige profonde.
- 363. Comète, plusieurs gros météores.
- 383. Comète décrite par Nicephorus, peste de Cocuster à Gaza et Ascalone.
- *400. Comète de Halley? suivie, comme toujours, d'un hiver très-sévère dans tous les pays, la mer Euxine gélée pendant vingt jours, tremblement de terre.
 - 407. Comète décr. par Nicephorus comme une cone de feu, pestilence et famine.
- 418. Pestilence; orages de grêle très-destructifs, hiver froid.
- 441. Marée extraordinaire en pays de Galles.
- 444. Peste, mortalité générale des poissons, famine en Angleterre et dans l'Europe.
- 450? Comète? sécheresse terrible, peste.
- 455. Antioche détr. par trembl. de terre, sécheresse.

ANNEES.

DESCRIPTION ET REMARQUES.

467. Peste en Grèce, puis peste générale.

(*)475. Point de comète observée.

480. 482. 499. Pendant ces petites comètes pas de désastres recordés.

531. Comète avec une queue brillante : on suppose que c'est celle de Jules César dont la période est 575 ans. Le soleil était pâle pendant long-temps, et on s'étonnera de voir que la même couleur pâle du soleil fut observée, à l'approche de cette comète, l'an 1767 avant J. C.

539. Comète p. pass. oct. 20; c'est la première comète recordée dans le catalogue de l'Encyclopédie de Rees, par M. Steph. Lée. La peste et la famine la suivirent.

*550. Comète de Halley, précédée et suivie d'hivers trèsrigoureux; tremblements de terre fréquents.

565. P. p. juillet 9, épidémies variées.

590. Comète, suivie d'une peste presque universelle et d'une longue durée. Le pape Pelagius mourut de cette épidémie. St. Grégoire institua de longues processions contre cette peste. La coutume de faire le signe de la croix après avoir bâillé, et de dire à quelqu'un après un éternuement Dieu vous bénisse, prend son origine de cette peste, parce que ces fonctions furent des signes de

^(*) Quoique la comète de Halley ne fut pas observée à cette époque, néanmoins des hivers froids qui l'ont toujours accompagné, furent recordés, chose qui rend le retour de cette comète fort probable.

ANNEES.

DESCRIPTION ET REMARQUES.

la mort, comme j'ai déjà prouvé dans mon grand ouvrage.

- 672. Comète, suivie par la peste.
- 678. Comète, visible trois mois, peste.
- 713. Comète d'un éclat étonnant, commencement d'une période pestilencielle.
- 729. Comète avec aur. boréale, peste partielle.
- 745. Comète, grande peste en Asie.
- 774. Comète, sécheresse, brouillard général, peste.
- 750. Comète, tremblement de terre, épidémies générales.
- 761. Comète, suivie d'hivers forts.
- 779. Comète, peste de Constantinople etc.; cette comète fut précédée d'une obscurité atmosphérique qui continua quatorze jours.
- 812. Comète, épizootie, éruption de l'Etna.
- 817. Comète, pluie de feu, probablement météores.
- 828. Comète, peste.
- 837. Per. pass. mars 7.
- 839. Peste, pas générale.
- 842. Point d'épidémies recordées.
- *855. Comète de Halley? peste en Allemagne etc., suivie d'un mauvais hiver, et puis par famine.
- 882. Avec une longue queue, peste et famine. (*)
- *930. Comète de Halley, grande, épidémies, mauvais hiver, un sable rouge tombe du ciel en Bengale.
 - 940. Comète recordée par le Chronik der Seuchen,

^(*) Je ne donne ici que de très-petites notices des maladies; elles ont été décrites plus en détail dans l'ouvrage anglais.

ANNÉES.

DESCRIPTION ET REMARQUES.

suivie d'un hiver fort rigoureux; (*) la petite vérole commence d'être générale.

- 974. Comète, l'authenticité pas bonne; hiver sévère, épizootie parmi les vaches.
- 989. P. pass. sept. 12.
- *1006. Comète de Halley, météores, peste de carbuncles.
 - 1066. P. p. mai 30, commotions dans l'atmosphère.
 - 1097. P. p. sept. 31, épidémies pas générales.
- 1103. Comète d'une coleur extraordinaire.
 - 1106. Comète avec une queue immense, peste.
 - 1219. Comète sans pestilence etc.
 - 1222. Comète très-grande, été chaud, hiver froid, épid.
- *1230. Pestilence, déluge en plusieurs pays, éclipse solaire prochaine; la couleur de l'air fut jaune;
 - 1231. hiver malsain.
 - 1240. Saison très-malsaine, peste des poissons.
 - 1255. Grandes inondations en Europe.
 - 1256. Orages, suivis par la famine.
 - 1264. Juillet 6, aucune épidémie recordée.
 - 1268. Grande queue, peste de la terre sainte.
 - 1274. D'une espèce vive, épizootie des moutons.
 - 1285. Obscurité de l'air, famine.
 - 1293. Grande neige en mai, épidémies.
 - 1299. P. p. mars 31, épidémies, grande mortalité parmi les juifs.

^(*) Il a été remarqué que les hivers dont l'énumération est 9, 0 ont été en général rigoureux et avec beauconp de neige, comme ceux les années 929 et 30, 939 et 40, 1739 et 40 etc.; mais cette règle, comme celle qui nous rend un temps venteux par une nouvelle lune tombant sur le samedi, sont peut-être accidentelles.

ANNÉES.

DESCRIPTION ET REMARQUES.

- 1301. P. p. sept. pestilence générale.
 - 1301. P. p. oct. 22.
- *1305. Celle de Halley avec une grande queue, vers la fête de Pâques. Certains historiens l'appellent Cometa horrendæ magnita dinis. Les épidémies se répandent par toute l'Europe.
 - 1315. Famine en Bohème et en Pologne.
 - 1337. P. p. juin 2, peste de Florence, moissons ravagées par les sauterelles.
 - 1339. Éruption du mont Hecla, diluvies.
- 1347. Très-grand, au temps d'Edw. III une grande peste et mortalité presque universelle : à Londres 50,000 personnes moururent, à Cuba 90,000, à Florence 90,000, à Vénise 100,000, en Espagne encore plus que 10,000,000. L'année suivante l'épidémie a varié sa forme et le Sorte Diod ou Morte Noire, une espèce de choléra, commençait en Danemarque.
- 1351. Grande, p. p. nov. 26, les épidémies et les épizoties continuèrent jusqu'à 1363 etc.
- 1362. Avec une longue queue, p. p. mars 11, hiver rigoureux, épidémies.
- *1380. Celle de Halley, d'une magnitude prodigieuse avec une longue queue; épidémies partout.
 - 1402. Dont la période est 342 ans (vid. 1744), l'influenza générale en Europe et en Amérique.
 - 1406. La peste : 30,000 moururent à Londres ; un hiver très-froid. (*)

^(*) Der Rhein war von Strafsburg bis Cöln mit Wagen passierbar. (Chronik der Seuchen, bei Schnurrer, 1835.)

DESCRIPTION ET REMARQUES. ANNÉES. 1408. Eruption de l'Etna, influenza. Petite vérole, et toutes sortes d'épidémies. 1427. 1449. Peste en Asie, en 1450 en Europe. 1445. Petite, et mal observée? De Halley, p. p. juin 8, peste, beaucoup d'orages * 1456. dans l'été et mauvais hiver. 1472. P. p. fév. 28, peste de Paris; on écrit de deux autres petites comètes, suivies de la Sudor Anglicus. *1531. P. p. oct. 19. Halley suppose qu'elle fut la même qui apparut en 1661. Oct. 19, avec période de 129 ans. 1532. P. p. juin 16. 1533. 1538. Éruption de l'Etna, peste et Troup gellant. † 1556. La même qu'en 1264, p. p. avril 21, petite vérole. P. p. en mars? éruption des volcans. 1550. P. p. août 10, l'été chaud. 1558. 1560. Peste à Londres et tremblement de terre. 1564. Inondations, aur. boréales, épidémies. (*) 1569. Une espèce de fièvre pétéchiale etc. Ladite comète fut décrite comme une nouvelle 1572. étoile en Cassiopcia, durant 60 jours. 1577. Avec une longue queue, p. p. oct. 26, peste.

Mal observée, pestilence générale.

rurent au grand Caire.

P. p. mai 6, tremblements de terre.

P. p. nov. 28, peste, 500,000 personnes mou-

1578.

1580.

1582.

^(*) Quand je ne dis rien au contorniate, les épidémies sout générales; il n'y a point de maladie registrée ici qui ne fut pas recordée en cinq pays au moins.

- ANNÉES. DESCRIPTION ET REMARQUES.
- 1585. P. p. oct. 7, inombrables épidémies.
- 1590. P. p. fév. 8, influenza, peste des mouches de Hesse.
- 1593. P. p. juillet 18; il est à remarquer qu'on avait prédit l'apparition de cette comète par le nombre des maladies.
- 1596. P. p. août 10.
- 1597. Influenza, hiver sévère.
- *1607. De Halley, p. p. oct. 16; sa couleur pâle, suivie d'un hiver fort rigoureux par tout le monde, épidémies.
 - 1609. Terrible pestilence sur la mer, temps orageux.
 - 1618. P. p. août 17. Pendant le temps de ces deux co-
 - 1618. P. p. nov. 9. mètes la peste ravagea l'Amérique.
 - 1620. Suivie d'un hiver froid, variole.
 - 1622. Peste commence encore.
 - 1625. Un temps généralement malsain.
- 1633. Suivie d'un hiver rigoureux et de la peste.
- 1647. Peste en Europe, influenza en Amérique.
- 1652. P. nov. 12, fièvres générales en Europe.
- 1661. P. janv. 26, supposé la même qu'en 1532, Cynanche trachealis, épizootie, peste. Sydenham croyait que les épidémies devenaient en général plus fatales à cette époque.
- 1664. P. déc. 4, comète brillante, suivie d'une grande froideur en fév. 1665.
- 1665. P. avril 24, peste de Londres, suivie d'une peste presque générale, hiver froid, la comète fut brillante; incendie de Londres sept. 2 1666.
- 1668. Avec vaste queue, mal observée? Cette comète

DESCRIPTION ET REMARQUES.

n'est pas dans les catalogues astronomiques. L'Angleterre devient très-insalubre.

- 1669. Avec une longue queue, p. p. oct. 7?
 - 1672. P. p. mars 1er, petite vérole etc.
 - 1677. P. mai 4, vue tous le mois, variola.
 - 1678. P.août 26, peste, obscurité du ciel, hiver rigoureux.
- 1680. P. p. déc. 18, grande, avec une queue immense; à cette époque commence une période malsaine; l'hiver froid, l'été chaud et sec, météores. On parle d'une comète en 1681?
- *1682. De Halley avec une grande queue, p. p. sept. 14; la peste dans tous les pays du midi de l'Europe etc., l'hiver fort rigoureux.
- 1683. P. juillet 13, épizooties et épidémies.
- 1684. P. juin 8, dysenterie maligne partout.
- 1686. P. sept. 16, grèle très-grande, épidémies.
- 1689. P. déc. 1, épizootie des moutons, fièvres.
- 1695. P. nov. 17, apoplexie épidémique, épizooties.
- 1698. P. oct. 18, influenza, épizootie des chevaux.
- 1699. P. janv. 13, peste irruptive, angina etc.
- 1701. P. p. oct. 17, épidémie des enfans générale.
- 1702. P. mars 13, éruption de l'Etna, petite vérole, fièvres et d'autres épidémies.
- 1706. P. janv. 30, temps pestilenciel, gros vents.
- 1707. Déc. 11, éruption du Vésuve, influenza par toute l'Europe, peste de Danzig etc.
- 1718. Janv. 14, l'été chaud, en mars 1719 grand météore observé par Halley à la hauteur de vingt lieux.
- 1723. Sept. 27, peste, vérole confluente.
- 1729. Juin 23, influenza universelle.

ANNÉES.	D	ESCRIPTION ET REMARQUES.			
1737.	Janv. 30,	toute sorte d'épidémies, mais prin-			
1737.	Juin 8,	cipalement angina, et fièvre jaune.			
1739.	Juin 17, s	uivie d'un hiver fort et long, dit			
en Angleterre the long Frost; famine.					
1742.	Févr. 8.	Les médecins remarquent une période fort malsaine pendant les deux années, et celle de 1744, en tous les pays.			
1743.	Jany 10	riode fort malsaine pendant les deux			
1743.	Sent 20	années, et celle de 1744, en tous			
1740.	cept. 20.	les pays.			
1744.	Mars 1er, 1	me des plus brillantes, hiver froid,			
	la Seine	gélée, éclipse de soleil 22 avril 1745.			
1747.	Fév. 28, p	peste de l'Amérique, tornado.			
	birm ut en	On parle de trois comètes de cette			
1748.	Juin 18.	année; période malsaine, été chaud,			
1748.	Avril 17.	hiver froid, tremblement de terre à			
		Lisbonne le 1er nov. 1755.			
1757.	Oct. 21, in	nfluenza en Amérique, météore.			
1758.	Juin 11.	Yest of the cher I, episode des			
*1759.	Celle de H	alley p. p. mars 12, suivie d'un hi-			
		rigoureux comme toujours.			
1759.		7,1 peste, typhus etc. en Europe, épi-			
1759.	Déc. 16, démies de toutes sortes.				
1762.		fluenza en Amérique.			
1763.		pestilence en Amérique.			
		'été chaud, dysenterie.			
1766.	Fév. 17,	l'été chaud, l'hiver froid, l'air mal- sain, suivie, l'année prochaine, des épizooties de chevaux et de l'influen- za; (*) neige à Naples.			
1766.	Avril 22	épizooties de chevaux et de l'influen-			
de rimiter	de la la la	za; (*) neige à Naples.			
		Total toury			

^(*) Après cette époque les observations sont tirées du journal météorologique registré dans la famille de Forster à Walthamstow.

ANNÉES. DESCRIPTION ET REMARQUES.

1769. P. p. oct. 7, année malsaine partout.

P. août 9, P. nov. 22, P. nov. 22, P. nov. 22, P. nov. 22, 1770.

1770.

Avril 18, orbite hyperbolique, épizootie. 1771.

1772. Fév. 18, angina, peste, grande neige.

Sept. 5, petite vérole, peste. 1773.

1774. Août 14, scarlitina anginosa.

1779. Janv. 4, suivie d'un hiver fort rigoureux.

1780.

Sept. 30, Printemps froid, peste en Levante, violents tornados, the Breakbone fever en Amérique. 1780.

Juillet 7, leurs, en fév., mars et sept. Les han-1781.

Nov. 29, netons nomb., les hirondelles du ri-1781. vage nombreuses à Londres.

Nov. 15, le transit du Mercure de 12 nov. 1782, 1783. l'influenza l'avait précédé - journal. Cette année fut une des plus prodiges. Brouillard général, aurore boréale, grand météore vu dans toute l'Europe lundi le 18 août à 8 heures du soir; épidémies en tous les pays.

1784. Janv. 21. On a registré un temps malsain.

1785.

Janv. 27, Avril 8, grêle terrifique en Lombardie, ter-ribles épizooties et épidémies en Amérique. 1785.

1786. Janv. 30, 1 trans. de Mercure, l'année froide

1786. Juill. 7, 1 avec des aurores boréales.

1787 P. mai 10. La première année de comète registrée comme salubre.

1788. Nov. 10, hiver froid, la Seine gélée.

ANNERS.	DESCRIPTION	ET	REMARQUES.

1788. Nov. 20, (*)	macula	grandis in	solis facie	die
Lunce nov.	9 1789	- journal.		

	string tribular	un temps malsain commençait en
1790.	Janv. 15,	Amérique en 1789, avec famine;
1790.	Janv. 28,	l'an 1790 fut plus sain, ce qui s'ap-
1790.	Mai 21,	pelle the floating fog , brouillard
	1 1000	volant ou en Angleterre.

1792. Janv. 13, scarlatina anginosa en Amérique, guérie tout de suite par changement de l'air.

1793. Nov. 4, point de peste générale recordée;

1793. Nov. 18, 1 cette année fut une d'exception.

1795. Déc. 15, la comète de l'an 1786 probablement, famine, scarcity of Bread in England; on était obligé de faire le pain de châtaignes et de pommes de terre; du pain blanc défendu à Londres.

1796. Avril 2, petite, rougeole épidémique.

1797. Juillet 10, télescopique, point de peste.

1798. Avril 4,) suivie d'un été chaud et d'un hiver

1798. Déc. 31, i rigoureux; peste et fièvres.

1799. Sept. 7. J'ai vu cette comète distinctement en

^(*) Les observations faites depuis ce temps-ci appartiennent, pour ainsi dire, à mon temps. Je suis né à Londres nov. 9 1789. Depuis ce temps mon père registrait les observations dans le journal, jusque 1807, où je commençai moi-même à les faire, et je les ai continuées jusqu'à présent, adjointé constamment par le savant physicien Mr. B. M. Forster de Walthamstow et par plusieurs membres de ma famille.

ANNÉES.

DESCRIPTION ET REMARQUES.

août, pendant un voyage à Bath etc.; elle fut suivie d'un hiver rigoureux; gros vent fév. 11.

- 1799. Déc. 25, une comète télescopique; encore un gros vent le 9 nov. 1800.
- 1801. Août 8, influenza universelle.
- 1802. Sept. 9, influenza, pas encore finie.
- 1804. Fév. 13, fièvre typhoide, aurores boréales.
- 1805. Nov. 18. peste en Orient, influenza et épi-
- 1805. Déc. 31. J zootie en Europe.
- 1806. Déc. 28, sirocco, vent en Allemagne.
- 1807. Sept. 18. Le 9 mars de cette année il y avait un grand météore, vu à Génève et à la fois à Glasgow; typhus etc.
- 1808. Juil. 12, maio, lumen lambens circa plantas journal.
- 1810. Oct. 5. Année extraordinaire; l'hiver avait été froid et nivose; tous les arbres platani orientales moururent en Angleterre; en automne l'hypochondriasis fut épidémique; l'action des électroscopes extraordinaire ect., météores.
- 1811. Sept. 15. Mon père entra dans ma chambre le 5 sept. avant le jour, disant : voilà une grande comète; elle fut en fait une des plus magnifiques qu'on a vu; pestilence en Europe, bonne récolte générale; les vins de cette année étaient fort estimés.
- 1811. Nov. 9, télescopique, l'année saine.
- 1812. Sept. 14. L'année fut saine.
- 1813. Mars 5, 1 l'été magnifique, fièvre suivit avec
- 1813. Mai 19, I un hiver froid.
- 1815. Avril 25, hypochondriasis en juillet.

ANNÉES.	DESCRIPTION ET REMARQUES.
1818.	Fév. 27, peste, accroissement extraordinaire
1818.	Déc. 5, de toutes sortes de Fungi.
1819.	Janv. 24, comète d'Enke.
1819.	Juin 27. Juin 27. Juin 27. Juin 27. Vit; le therm. de Farenheit juin 14
1819.	Juill. 20.)
1819.	Nov. 16, 1820 fut 10 dégr. infra 0. La comète
	d'une couleur rougeâtre.
1821.	Mars 21, cholera morbus aux Indes.
1822.	Mai 5, le printemps et l'été chauds.
1822.	Mai 23, comète d'Enke, orages en juillet, plu-
	sieurs épidémies en Europe.
1823.	Télescopique? l'air sain.
1825.	Comète en sept. grande, mais la queue petite;
13 15070	je l'ai observée en octobre.
1826.	Transit solaire de cette comète, nov. 26.
1828.	Comète d'Enke, épidémies, lumière zodiacale,
ni est un Pidente,	et an lumineux, sept. 29; l'année 1829 était malsaine partout; mortalité augmentée.
1832.	Comète de Biela; le Choléra Morbus entra en
finerit on	Europe en 1831 et fit des progrès funestes
	jusqu'à la fin de 1833.
1834.	Fetite comète découverte à Rome?
1835.	Comète de Halley, épidémies etc., hiver fort
ton	et extrêmement malsain; la petite vérole fait
in fire	des ravages en Europe, météores etc.
The state of the state of	

J'ose dire que l'année 1836 sera malsaine, et que les épidémies ne manqueront pas.

§ 12. Catalogue de quelques grandes comètes avant l'ère chrétienne.

Extrait du Catalogue de LUBIENENSKI.

Il est connu que Lubienenski, dans son gros volume intitulé *Cometarium*, a donné un catalogue des comètes correspondantes à presque tous les grands désastres et événements moraux dont l'histoire fait mention. Doutant de l'authenticité de plusieurs des comètes registrées là, je ne donne qu'un petit extrait, recueillant celles dont l'existence est confirmée par des écrits historiques ou rendu probables par le calcul.

ANNÉES

DES COMÈTES DESCRIPTION DES COMÈTES ET REMARQUES.

AVANT J. C.

- 2340. Comète de Newton (*) ou celle de 1680; déluge général selon les traditions et la bible.
- 1897. Grande comète; Sodome et Gomorra brûlées.
- ...? Au temps d'Isaac famine en générale.
- 1707. Vue en Arabie, rotae similis, famine de Joseph etc.
- 1764. Comète de Newton, déluge d'Oxyges, « la planète Vénus change son orbite? »
- 1515. Comète observée en Égypte, peste de Pharoe pendant la captivité d'Israël, les pyramides bâties.
- 1194. Comète de Newton, bellum Trojanum, Electra una pleiadum perduta. Ovid.

^(*) Je l'appelle comète de Newton pour la distinguer de celle de Halley.

ANNÉES. DESCRIPTION ET REMARQUES. 619. Comète de Newton, stella candens Sibillæ. Comète à grande queue, observée en Chine; 525. tempore Cambyses. 480. Comète cum forma cornu, retr. de Xerxès, peste. 466. Comète, saxum e sole cadutum (secundum recentiores Luna), peste. 431. Comète, peste d'Athènes, et puis générale. 400. Peste à Rome et générale, hiver rigoureux. 373. Comète nommée Aristeum. 358. Comète forma prius comæ posteà lanceæ, bellum pro templo Delph. 341. Comète, gros vent en Europe. 204. Comète du siége de Corsica. 183. Comète très-grande, brûlant 80 jours avant la mort de Hannibale. 168. Grande comète de Seneca, dite Hircus. 146. Comète avant la capt. de Carthage par Scipio. Comète de la mort de Hostillius Manlius. 136. 130. Grande comète, Antioche en Syrie detr. 120. Pendant ces trois comêtes une grande éruption 119. de l'Etna et la peste générale. 119. 99. Comète dite Fax ardens Tarquiniorum; Lusitania fut prise par Dolabella. Comète de la guerre Mithir. 90. Comète observée en Chine, Scylla pr. Athènes, 87. pestilence.

Comète de Newton, avant la mort de Jules

César, dite Astrum Dionæi Cæsaris.

Comète avant la peste de Jérusalem.

44.

30.

ANNÉES.

DESCRIPTION ET REMARQUES

- 13. Comète avant la mort d'Agrippa.
 - 0. Comète vel Stella Bethlehemi?

Que le lecteur compare ces comètes avec les innombrables épidémies et pestes recordées sous les mêmes dates dans les anciennes chroniques et particulièrement dans le Chronik der Seuchen.

SUPPLÉMENT.

Je me sers de cette occasion de faire quelques observations et de donner des extraits de mon grand journal encore en manuscrit.

Courants des vents.

On ne peut pas lire sans plaisir l'admirable « Traité sur les causes générales des Vents» par Mr. D'Alembert; mais on a découvert, depuis ce temps là, certaines choses dans l'histoire des vents, purement physiques, qui méritent la plus grande attention. J'ai remarqué par exemple, qu'en six cas de changements de vents, cinq commencent par les courants supérieurs qui descendent et remplacent ceux qui ont eu lieu sur la surface de la terre. Cette chose si importante pour les marins et les agricoles comme un moyen de prévoir les changements de vent, m'est connue premièrement par accident.

Je me suis accoutumé, pendant les soirées des dimanches, à m'amuser de mille jeux d'enfans, principalement des cerfs volants; j'en ai faits de très-grands; et attachant l'un à l'autre jusqu'à trois à cinq, je les ai fait monter à une immense hauteur. A plusieurs occasions j'ai remarqué que la plus haute de ces machines indiquait un courant d'air bien distérent de ceux qui se montraient plus bas. Je répétais ces observations, et les longues queues de ces dragons de papier servant à une espèce de girouette, je pouvais toujours observer les directions varieuses des courants. Enfin les courants supérieurs en général ont remplacé les inférieurs. Résolu de faire des recherches plus exactes et étendues, je fis un grand nombre de petits ballons de papier gonflés par le feu, et encore d'autres de soie gonflé de hydrogène, pour examiner par eux les plus hautes régions de l'atmosphère. Je commençais une série des expériences, dont j'ai déjà constaté le résultat. Quelques uns de ces ballons ont descendu à une immense distance; d'autres retournant par des vents supérieurs, ont tombé auprès du lieu de leur ascension.

Ces contrecourants qui traversent le ciel sont quelquefois indiqués par des nuages; ils sont souvent de 36 à 48 heures avant de descendre sur la surface de la terre; rarement de plus long temps. Sans doute les capitaines de vaisseaux pouvaient se servir de petits ballons pour faire leurs calculs sur le temps propre à sortir du port, ou pour lever l'ancre.

Voyages aëriens.

On sait que tous les ballons en montant revolvent lentement, de façon que dans l'espace de deux au trois minutes l'aëronaute, restant tranquille dans la chaise, voit tous les points de l'horizon devant lui; mais j'ai encore remarqué, chose assez singulière si elle est accidentelle, que cette révolution lente des ballons sur leurs axes est dans l'ordre de signes, au moins en neuf cas de dix. En outre, pour me mieux expliquer, supposons que le vertex du ballon représente le nord ou le pole arctique, la rotation est de l'ouest à l'est: par conséquent les objets situés sur l'horizon semblent avoir un mouvement de gauche à droite. J'ai remarqué ces effets presque toujours des ballons montants, et je suis monté sous les mêmes circonstances.

Dans mon singulier voyage, du 30 avril 1831, j'apperçus que le ballon, après avoir monté au-dessus de tous les courants d'air, et entré dans une région calme et tranquille, acquit, je ne sais pas comment, deux motions: l'une fut ladite révolution fort lente autour de son axe, dont j'ai déjà parlé; l'autre, qu'on doit appeller sa course, fut circulaire ou plutôt spirale; mais ce mouvement, cette course spirale même, par laquelle je montais, fut aussi de l'ouest à l'est, c'est-à-dire en supposant le vertex du spirale comme le nord. Arrivé au sommet, le mouvement du ballon dans sa course (ou orbite diminuée jusqu'à 0) s'est perdue dans celui de sa rotation; et enfin la machine est devenue parfaitement tranquille à une grande élévation, de laquelle le plus magnifique panorama de la terre et du ciel se présentait à ma vue. En haut, les légères modifications des nuages se montraient en toutes sortes de figures grotesques; au niveau du ballon les cumuli disparaissent graduellement, en bas les brouillards commençaient à couvrir la terre; mais avant leur formation, pendant que le soleil était au-dessus de l'horizon, la terre, par une déception optique facile à concevoir aux mathématiciens, avait l'apparence d'être concave; elle se présentait comme un grand bassin divisé en échèques, et les divers objets, s'étendant jusqu'à l'horizon et presque trop petits pour être distingués, semblaient être arrangés, pour ainsi dire, comme les figures des maisons et des arbres autour d'une grande tasse chinoise, ou comme les choses peintes dans l'intérieur d'une jatte. En descendant, les objets terrestres encore assez près pour être distingués, la terre était semblable à une grande charte. Eh bien, j'apperçus tout à coup un léger mouvement dans la machine, qui avait acquis une rotation de l'est à l'ouest, ou le reverse de celle avec laquelle elle était montée. A ce moment et pendant que je faisais quelques observations, je ressentis dans les oreilles un tintement et je devins sourd, comme presque tous les

aéronautes. (*) Je voudrais savoir, par les rapports d'autres aéronautes, si le mouvement des ballons autour de leurs axes est généralement de l'ouest à l'est. Toutes mes observations portent à croire qu'il existe quelque cause spécifique de ce mouvement.

La course spirale que suivit le ballon, quand il fut à l'abri des conrants, fut produite sans doute par quelque léger tourbillon d'air. Il semble que ces vortices sont plus communes qu'on s'imagine; et selon les observations d'un physicien américain qui correspond avec moi, les tornados et les plus violents orages sont de grands tourbillons, produits possiblement par des causes électriques ainsi que les trombes. Il n'est pas douteux que ces coups de vent que les bâtiments sur la mer éprouvent avec tant de danger, ont une course courbée, et qu'ils sont aussi produits par l'électricité. M. Howard a donné des illustrations fort curieuses de ces tourbillons, et de ce vent fort, sortant des nuages, que nous appellons Ecnephias dans notre nomenclature. (†) Comme je m'occupe à présent des expériences touchant l'électricité des nuages, j'espère d'offrir au public en peu de temps quelques résultats intéressants. (:')

Le vent d'est.

Dans tous les pays du monde le vent d'est est considéré comme malsain. Mon beau-père, colonel Beaufoy, qui avait un observatoire à Bushy Heath, m'a dit souvent qu'il ne saurait faire aucune bonne observation astronomique quand le vent

^(*) J'ai discuté les causes probables de cette surdité passagère que les voyageurs aëriens et alpines éprouvent en descendant rapidement des plus grandes élévations, dans un papier lu à la société de l'histoire naturelle à Francfort en janvier 1835.

^(†) Climate of London, vol. 1. p. 218.

^(:) Je répète encore que j'aimerais mieux communiquer avec une société météorologique; il faut une réunion des observations amassées par divers physiciens.

venait d'est. En examinant la cause de ce fait, j'ai remarqué quelque mouvement de l'air, par lequel l'astre vu dans le télescope, n'apparait jamais tranquille. Les étoiles semblent en ces tems comme des choses brillantes vues par de l'eau courante. Par ce vent aussi le lait est souvent tourné et devient aigre, comme s'il avait fait de l'orage. Par ce vent viennent les innombrables aphides qui soudainement couvrent nos jardins et orchards en été. Quand le vent d'est vient dans la nuit, le sommeil est rompu ou troublé par de mauvais songes et souvent par le cauchemar. Les bêtes dans les prairies ne mangent pas bien, et si ce vent dure longtemps, elles deviennent maigres. Quand tous les nuages sont coloriés d'un beau rouge au coucher du soleil, il est un signe de ce vent, et certains malades se préparent contre une migraine le matin suivant. Mon électromètre n'indique presque jamais une positive électricité avec ce vent; en général il est peu électrisé.

Les systèmes de philosophie et de physique.

Voilà une fantaisie sur la formation du monde : «S'il est permis de fonder des systèmes de philosophie sur des hypothèses, je dirai que celui de Pythagore se rapportait mieux avec tous les phénomènes connus que les autres thèories, que la mythologie n'était rien d'autre que la représentation figurative de ce système. Qui ose dire que le purgatoire n'est pas fait par moyen d'une espèce de métempsychose, par laquelle la justice rétributive soit accomplie? Examinons ce système sous son rapport à l'astronomie. On voit dans le ciel la matière chaotique illuminée dans les nébulosités ainsi que dans les queues de comètes. On voit une tendance à un centre et la formation des étoiles et des mondes : voilà donc la lumière faite avant le soleil, chose qui choque les opinions de quelques soi-disants physiciens. Encore si l'on examine les hauts cieux, on y voit une progression de phénomènes dans le procès par lequel les systèmes sydéréales et solaires sont produits; on voit, pour ainsi

dire, une succession de pas dans la marche de perfection, premièrement les diffuses nébulosités, puis les nebulae avec un centre, puis les étoiles nébuleuses, les groupes d'étoiles, les systèmes sydéréales plus ou moins compliqués avec un centre hypothétique, les systèmes solaires avec leurs planètes, satélites et comètes. L'univers présente un changement de forme perpétuel. Certains mélanges peuvent donner naissance aux animalcules spontanées; celles-ci, douées d'une vie la plus simple, exercent un peu d'énergie, et meurent. Si leurs âmes ou capacités de sensation se réunissent avec d'autres corps, selon Pythagore, elles peuvent passer par les insectes, les oiseaux, les quadrupèdes jusqu'à l'homme, et de l'homme, selon leurs mérites, passant par le purgatoire des êtres ou supérieurs ou inférieurs, elles peuvent entrer en anges et faire un progrés envers le pouvoir créateur, sans jamais y arriver, comme l'assemptote à l'hyperbole ; idée magnifique de la création, où rien n'est créé en vain, ouvrage d'une puissance perpétuellement créatrice, dont la loi essentielle est celle de variété et des combinations innombrables exercées éternellement sur la matière animée dans l'espace infini!

Ce système ne répugne à aucun culte, car en nous enseignant un code de morale et de religion, Dieu ne nous a pas dit en quelle manière la loi morale de la justice sera consommée. Mettons ensemble le discours de Pythagore dans le xv° livre d'Ovide et la v° éclogue de Virgile, et nous aurons une création décrite par le philosophe de Samos, suivie d'une millenium chantée par la Sybille.»—Floreligeum.

L'approximation des nombres 4, 7, 10, 16, 28, 52, 100, 196 aux distances des planètes, et la probabilité qui en d'écoule que 28 représente une masse planétaire rompue par une comète, en quatre pièces devenues Juno, Vesta, Pallas et Cérès, est fort curieuse: elle porte à croire que c'est de cette manière que les planètes sont détruites, quand le pouvoir productif de leur surface est épuisé; car il n'est pas probable que la terre, par exemple, pourrait soutenir des générations des habitants à l'infini. Le choque, en changeant les con-

ditions, les mélanges etc., peut donner naissance à une antre espèce d'êtres? Ceux qui ont des idées cosmogoniques tirées des Indes, pensent que les étoiles changeantes et même les étoiles rouges sont en progrès de destruction, et que celles qui sont devenues fort brillantes avant de disparaître ont été brûlées et dissipées encore en matière chaotique pour servir à faire d'autres systèmes. Mais en tous les cas il faut admettre une cause première et finale : sans cela tout serait confusion.

Passons de ces rêveries à un indice des auteurs qui ont écrit sur les maladies épidémiques et périodiques et sur leurs causes atmosphériques et cométaires.

HOFFMANN, Dissertatio de Morbis. MEYER, de Morbis Endemiis. 1737.

Tully, Essai sur les Maladies de Dunkerque.

WINTRINGHAM, Treatise of Endemic Diseases.

GALENUS, Fragment. ex Aph. p. 34.

ALBERTI, Dissert. de Morbis Aestivis. Hal. 1745.

Wilson, Short Remarks upon Autumnal Disorders, 1765.

BAECK, Tal om Farsoter, etc.—Stockholm, 1765. Comm. Lips. Suppl. Dec. II. p. 69. Vogel, N., Med. Bibl. vi. B. p. 189.

Berger, Diss. de Aëris Potentia in Epidemicorum Morborum Generatione.—Hal. 1727.

Borelius, Observat. Cent. iv. n. 42.

CARANTA, de Nat. Auri, (in nauibus cum ingenti numero murium.)
COMMERC. Lit. Nor. 1782, p. 204. (Uffenheimensis.)

DE DARGUIVILLE, Morb. Epidem.—Anni 1693, etc.—Emetic. et Phlebot. Laudes.—Paris 1693.

EPHEM. Nat. Cur. Dec. II. Ann. v. Obs. 169, et alibi.

FORSTER, Researches about Atmos. Phaen. 2d. Ed. London 1815, p. 165.

FARINA, Ortus et Occasus Morb. Epidem.-Romae 1672-12.

FISCHER, Diss. de Morbis Epidem.-Erf. 1727.

FORWATTNING, of Provincial Doctorernas Berättelser. - Stockh. 1765. DE GORTER, Morbi Epedemii Brevis Descriptio et Curatio per Dia-

phoras.-In Harderov. 1733.

DE HAHN, Epidemia Verna quae Uratislavium. - Anno 1737, affixit.

IΠΠΟΚΡΑΤΗΣ, lib. vii. Epidem.

Husweder, Bericht, wie bei einfallender Krankheit jeder sich verhalten soll .-- Hamburg 1633.

Koker, Diss. de Morbo Epidemico, Anni 1719 .- Lugd. 1720.

KRUGER, Beschreibung der einheimischen Krankheiten, wie dieselben durch himmlische Influenz aus der Lust die Menschen Anno 1692 inficirt.—Braunschw. 1692-4.

Lepeco, de la Clôture, Journal de Med. xlvii. p. 387, 483.—T. lvi. p. 193. (Normandiae.)

----, Anleitung, epidemische Krankheiten zu beobachten.-Leipzig 1785. A. D. B. lxviii. p. 105.

Löscher, Diss. de Phenom. Septentrionale Luminoso nec non Morbo Epidemico, Anni currentis.—Witeb. 1721.

Ludolfé, Diss. gen. Febr. Epidem. Concép.-Erf. 1753.

Ludwic, Advers. I. ii. 1.

Menzer, de Morb. Epidem. Antiquis .- Basil 1740.

Mertens, praktische Bemerkungen über verschiedene Volkskrankheiten. 1785.

Nun, de Spieciebus Morb. Epidem. etc. etc.-1758.

Ponlius, de Morb. Epidem. ab aere Atmos.-Lips. 1749.

SAUVAL, an Morbi omnes, omnibus fiant temporibus.—Paris 1706. Schenck, Obs. vi. 103.

Sydenham, Op. p. 42. 129. 137. et passin.

VABER, Morb. Epidem .- Viteb. 1717.

WINTRINGHAM, Works, I. n. 1.

Act. NAT. Cur. Vol. vi. obs. 6, et alibi.

Alberti, Diss. de Palendromia Morborum.-Hal. 1750.

BUCHNER, Diss. de Primis Viis Morborum periodicorum sede frequentissimâ.—Hal. 1768.—Bald. Auszug. I. 81.

---, De Morb. periodicis, (in general).-Hal. 1754.

DARWIN, Zoon. Sect. xxxii. 6.-xxxvi. ii. 3. etc.

EPHEM. Nat. Cur. I. iv. and v.-II. iii. 40.

FRANCK, De Period. Affect.-Pavia 1791.

MARESCOT, Period. in Morbis, etc. etc.-Paris 1575.

Medicus, (Fr. Cas.) Geschichte period. Krankheiten. - Carlsr. 1764.

DE NEUFVILLE, Diss. indol. Morb. Period. Hypochon. -Gött. 1785.

PLOUQUET, de Morbis Periodicis.—Tubing. 1783. Du Porv, Ergo περιωδων Causa, etc.—Paris 1623.

RIEDLIN, Lin. Med. 1695.

Spichessesces De Morbis Period

STAND, De Affectibus Periodicis. - Hal. 1702.

Testa, Bemerkungen über die periodischen Veränderungen und Erscheinungen in Krankheiten und gesundem Zustande des menschlichen Körpers.-Leipz. 1790. Salzb. Med. Chir.-Zeitung. 1791. III. 5.

VALENTINI, Decl. Panyg. n. 3 de Morb. Period .- Francf. 1701.

Spurzheim, Physiog. System .- London 1816.

--- On Insanity .- London 1817 , p. 190, et sequel.

CRAUSE, Dissert. de Morbis Nocturnis et Nocturnis Morborum Exacerbationibus. - Jena 1709.

SCARPA, Malatie deglie Occhi, (al fino del libro.)

On the Nocturnal Blindness.

DARWIN, Zoon. Vol. ii. (Curious case of), and Class IV. ii. 4. et sequel.

Annam. Fulden ses, 810.

Annual Regist. 1772, 310, et alibi.

BAECK, Tal. om. Forsot .- Pub. at Stockholm 1765.

BARONIUS; vol. ix. 809.

BADHAM's Memoirs, vi. 389.

COURANT, 1798.

CURRIE'S Mem. 135.

FORSTER'S Atmos. Diseas. - London 1817, et Essay on Fever. - London 1819. Essay on Cholera Morbus. - Chelmsford 1832.

FRIEND's Hist. of Med. p. 564.

HIST. COLL. 318.

HOFFMAN, Dissert. de M. R .- 1705.

JAMAICA GAZETTE, Jan. 29, 1798.

Justin, lib. xix. cap. 2.

LANCISCUS, 146.

Livy, Lib. vii. 1.

LIND, On Trop. Climat. 122, and alibi.

MAGDEBURG, Aist. Cent. ix.

MURATORI, ii. 513, and sequel.

MAITLAND, Hist. Lond.

MEM. Am. Acad. i. 129.

MEYER, de Morb. Epidem. 1737.

Orosius, vol. 4.

PARKER'S Hist. Brit. 360.

PAULUS Diac. alibi.

PISTORIUS, Germania Script. ii, 38.

PLUTARGE, in Vit. Marcel.

RUTTY, On Weather, 413.

Rush's Works, ii. 238.

Schnurrer, Chronik der Seuchen.-Tübingen 1825.

SINCLAIR, vi. 672.

Seneca, N. Quest. vii. 16.

Sydenham, Op. alibi.

Short's Hist. of the Air, 2 vols. 8°.

Smith's History of Cork, p. 40.

Thuanus, Lib. i. and iv.

Van Troil, Hist. Iceland.

Webster's Hist. Epidemics, 2 vols. 8°. 1800.

SOCIÉTÉ DE PHYSICIENS.

Il m'est arrivé souvent, dans mes voyages, de souhaiter que nous eussions une Société des Physiciens
de l'Europe, ayant son centre, peut-être, à Paris
et des branches qui s'étenderaient dans toutes les
parties du globe habitable, de manière que les observations météorologiques, astronomiques etc., faites
en divers lieux, seraient réunies dans la bibliothèque
de la société. Par une telle société, en correspondance
avec les savants de tous les pays, un nombre immense d'observations pourrait être amassé, qui, reduites en forme par des rédacteurs capables, conduiraient à la construction d'un système de météorologie, chose qui reste un desideratum en science.
J'offre cette notice à votre attention, vous pouvez
mieux décider que moi si la chose est possible.

J'ai l'honneur d'être etc.

30 avril 1836.

T. F.

13. Origenal Letters of Locke, Shaftesbury and Algeron Sydney, with a metaphysical preface. 12. Nicholls et Son. London 1830. Prix 10 fr.

Dans la préface de ce livre T. Forster a fait une longue revue de tous les systèmes de philosophie anciens et modernes, et les a comparés avec la philosophie du Christianisme; à la fin il prouve que la doctrine de Locke n'a point de base, étant également opposée à la religion catholique et à la phrénologie.

14. Memorial of the Essex Election. 8. 1830.

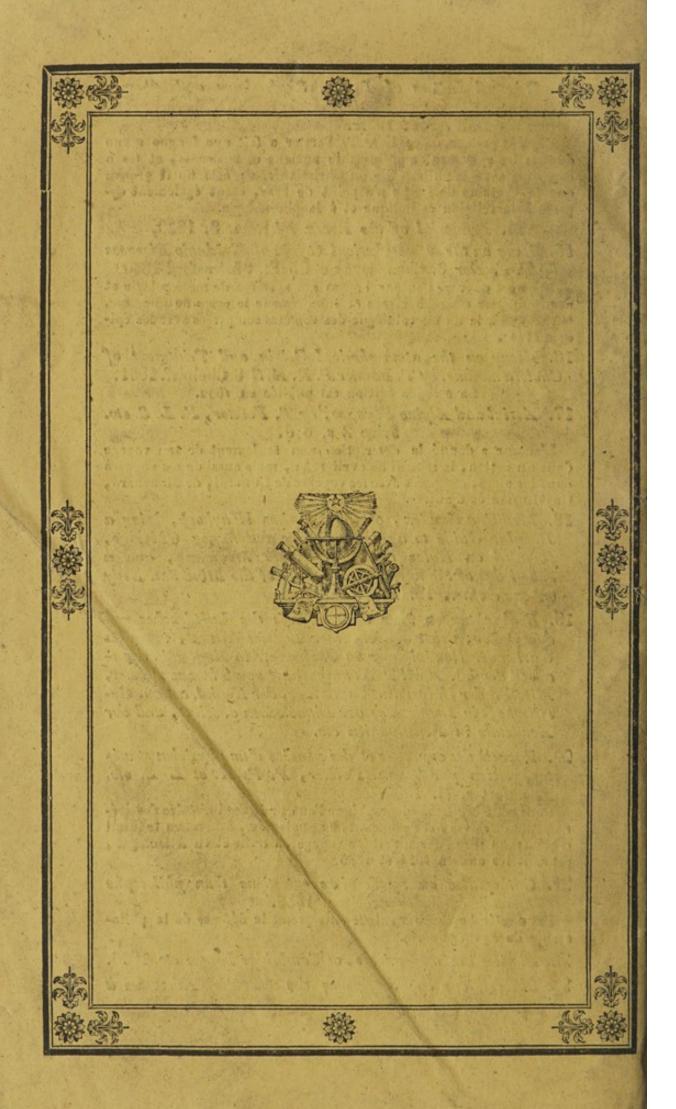
15. Essay on the Atmospherical Origin of Epidemic Diseases by T. Forster. 8. Chez Meggy et Chalk. Chelmsford 1830.

Dans cet ouvrage l'auteur expose son système de météorologie et des influences atmosphériques et lunaires sur le corps de l'homme. On trouve à la fin un catalogue des comètes comparées avec les épidémies etc.

- 16. Essay on the atmospherical Origin and Triatment of Cholera morbus, by T. Forster F. R. A. S. 8. Chelmsf. 1831.

 La seconde édition est publiée en 1832.
- 17. Aerial and Alpine Voyages, by T. Forster, F. L. S. etc.
 Price 2 s. 6 d.

L'auteur a donné la description non seulement de son voyage dans un ballon, le samedi 30 avril 1831, mais aussi de ses voyages dans les alpes, comparés avec les voyages de Lunardi, de Blanchard, Gay-Lussac et d'autres.


- 18. Medicina simplex, or the Pilgrims Waybook, being a Popular Guide to a Healthy Life and happy Old Age, founded on Rules of Diet, simple Medicines, and a knowledge of the reciprocal influence of the Mind and Body on each other. 12. 1830.
- 19. Beobachtungen über den Einfluss des Luftdruckes auf das Gehör, nebst Bericht einer Luftschifffahrt, von dem Garten der Dominikaner zu Chelmsford in England, Sonnabend den 30. April 1831, ausgeführt von Thomas Forster, Mitglied der Universität Cambridge, der Königl. astron. Gesellschaft in London, so der Linné'schen daselbst, und der Academie in Pensilvanien etc.
- 20. Recueil des ouvrages et des pensées d'un physicien et métaphysicien par Thom. Forster, F. R. A. et L. S. etc. Francfort s. M. 1835.

Dans cette brochure biographique l'auteur donne l'histoire des événements de sa vie, commençant de sa naissance, à Londres le lundi 9 nov. 1789 jusqu'à son dernier voyage en Italie et en Allemagne, pendant les années 1834 et 1835.

21. Onthophilos ou les derniers entretiens d'un philosophe catholique. 1836.

Dans cette brochure l'auteur entreprend la défense de la philosophie de Pythagore etç.

- 22. Florilegium aspirationis, or Cambridge Nugae etc. 1836.
- 23. Observations sur l'influence des Comètes. Adressées à M. Arago. Aix-la-Chapelle 1836.

