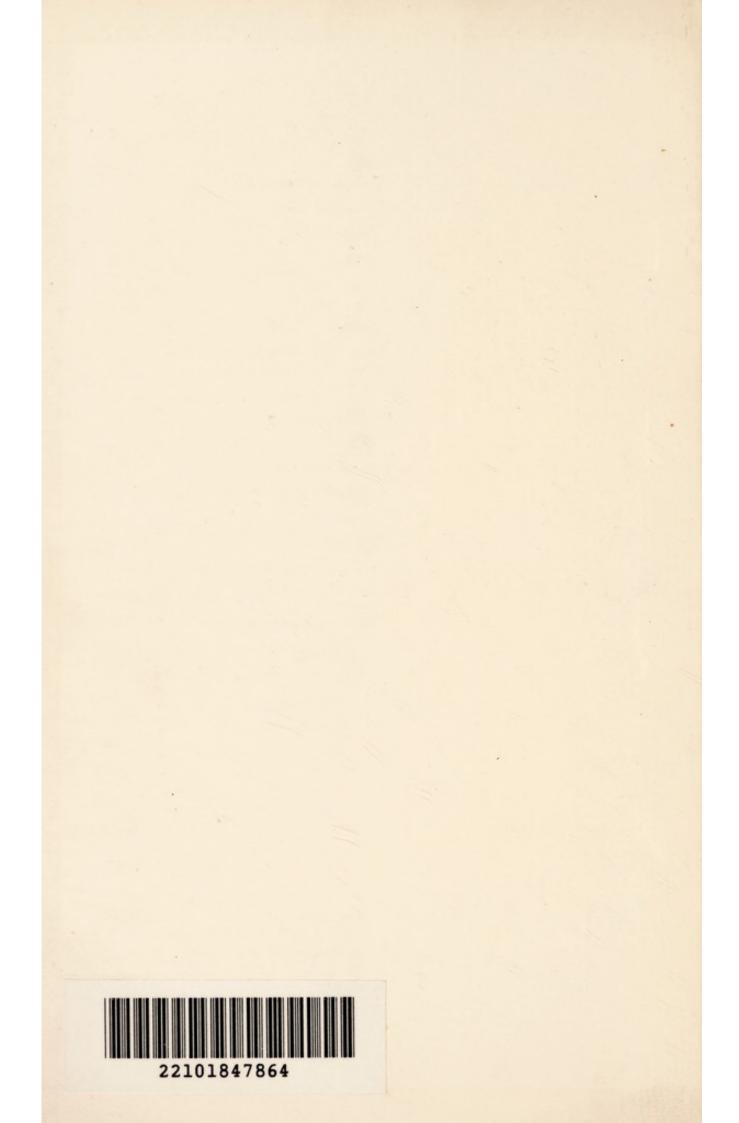
# Contributors

Price-Jones, Cecil, 1863-1943.

# **Publication/Creation**

London : Humphrey Milford, Oxford University Press, 1933.

# **Persistent URL**


https://wellcomecollection.org/works/yyn4mnkp

# License and attribution

Conditions of use: it is possible this item is protected by copyright and/or related rights. You are free to use this item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).



Wellcome Collection 183 Euston Road London NW1 2BE UK T +44 (0)20 7611 8722 E library@wellcomecollection.org https://wellcomecollection.org Unable to display this page







# RED BLOOD CELL DIAMETERS



OXFORD MEDICAL PUBLICATIONS

# RED BLOOD CELL DIAMETERS

 $\mathbf{B}\mathbf{Y}$ 

CECIL PRICE-JONES M.B. (LOND.)

HUMPHREY MILFORD OXFORD UNIVERSITY PRESS

London Edinburgh Glasgow Leipzig New York Toronto Melbourne Capetown Bombay Calcutta Madras Shanghai 1933

| WEL         | LCOME INSTITUTE<br>LIBRARY |
|-------------|----------------------------|
| Coll.       | welMOmec                   |
| Call<br>No. | WH 155<br>1933<br>P94r     |

-924798

.

PRINTED IN GREAT BRITAIN

#### PREFACE

A PREVAILING demand for reprints which I am unable to supply and an increasing desire on the part of clinicians and laboratory workers to be better acquainted with the uses of the red cell diameter distribution curves and with the methods employed in the measurement of red cell diameters, which has lately come to play a rather important part in the diagnosis and treatment of pernicious anaemia and other diseases, have induced me to collect and arrange in book form my published contributions to this subject, and in endeavouring to explain and illustrate the simple arithmetical and elementary statistical processes involved I hope I may encourage my fellow workers in a pursuit full of fascinating interest and usefulness.

I would like here to take the opportunity of saying how grateful I am for the hospitality of University College Hospital and Medical School which has made most of my work possible.

I wish also to express my thanks to the proprietors of the *Journal* of *Pathology and Bacteriology* and of the *Guy's Hospital Reports* for their kind permission to reproduce the papers and figures which I have published in their journals.

CECIL PRICE-JONES

April 1933 LONDON Digitized by the Internet Archive in 2018 with funding from Wellcome Library

https://archive.org/details/b29928849

# CONTENTS

| I. HISTO    | RY .       | •       |        |        | •      | •      | •     | 1  |  |
|-------------|------------|---------|--------|--------|--------|--------|-------|----|--|
| II. THE M   | EASUREMI   | ENT OF  | RED B  | LOOD C | ELLS   |        |       | 8  |  |
| III. THE RI | ED CELL D  | IAMETE  | ERS OF | HEALT  | HY PEI | RSONS  | • • • | 15 |  |
| IV. THE CO  | DEFFICIEN  | TOFV    | ARIATI | ON     |        |        |       | 31 |  |
| V. DIURN    | AL VARIA   | FION    |        |        |        |        |       | 33 |  |
| VI. EMPHY   | SEMA       |         |        |        |        |        |       | 40 |  |
| VII. THE R  | ED CELL D  | IAMETI  | ERS AF | TER HA | EMORI  | RHAGE  |       | 43 |  |
| VIII. PERNI | CIOUS ANA  | EMIA    |        |        |        |        |       | 47 |  |
| IX. THE E   | FFECT OF I | LIVER T | REATM  | IENT O | NPERN  | ICIOUS | \$    |    |  |
| ANA         | EMIA .     |         |        |        |        |        |       | 57 |  |
| X. THE R    | ED CELLS   | IN MICE | ROCYTI | C ANAE | MIA    |        |       | 68 |  |
| APPENDIX    |            |         |        |        |        |        |       | 74 |  |
| REFERENCE   | es .       |         |        |        |        |        |       | 78 |  |
| INDEX       |            |         |        |        |        |        |       | 81 |  |



#### CHAPTER I

#### HISTORY

The history of red corpuscles starts at the beginning of the seventeenth century. About 1610 in the small Dutch town of Middlebourg an obscure optician named Zacharie Jans made spectacles and polished lenses. It is related that his children, while playing in his workshop, were directed by 'chance' to pile the lenses like bricks one on the top of the other, revealing unconsciously to the suddenly inspired father the inherent possibilities of the combination of lenses, and the birth of the microscope. The merit of the invention, at about the same time, is also given to Jacques Meticus of Alkmaar and to Cornelius Drebbel (Alkmaar, 1572-1634), the astronomer to James the First, who showed his instrument to the King in 1619; and there is support for this in a letter by Rubens to his friend Peiresc in 1629. Rubens was staying in London on a diplomatic mission from the Spanish Court to King Charles I; he says: 'I have only seen the famous philosopher Drebble in the street, and scarcely had time to exchange a few words with him. . . . I am assured that for many years he has produced only this optic instrument with a perpendicular tube, and which enlarges enormously the objects placed beneath it . . .' (Rubens, Painter, Diplomat, by Emile Cammaerts, 1932, Faber & Faber, Ltd.). The discovery is also attributed to Galilei (Pisa, 1564-1642), who was certainly the first to apply the instrument to physiological investigations.

Some forty years after this (1658) Swammerdam (Amsterdam, 1637-80) described the oval red blood cells of the frog, and Malpighi (Bologna, 1628-94) in 1661 observed the circular corpuscles in the blood of the hedgehog, but he thought they were globules of fat and did not pursue the matter further. In 1673, with an improved form of microscope devised by himself, Leeuwenhoek (Delft, 1632-1723) discovered the red cells in human blood. He noted that the blood corpuscles of many kinds of mammals had circular contours and were spherical whilst those of birds and fish were oval, but he was unable, with the instruments he used, to see any appreciable differences of size; his scale of measurement also was very rough. He selected minute grains of sand 'as nearly as possible alike' and, arranging them in a line, he counted the number of grains occupying the length of an inch. This principle was used by later microscopists who substituted spores of the puff-ball (Lycoperdon bovista), said to have the size of 1/3,500 of an inch, or the sporules of Lycopodium with a mean

diameter of 1/940 of an inch. The micrometer devised by Dr. James Jurin (1718) was scarcely more reliable. This observer twisted a hair, or fibre of silk or fine wire, round a pin or cylinder and, ensuring that the successive twists were closely in contact, he exposed the coil under the microscope, measured the interval between the first and last twist and divided this by the number of twists, and so obtained the diameter in inches of the hair. Blood was then spread thinly over the microscope field and he counted the number of red cells corresponding to a segment of hair. But hairs vary in thickness from root to tip, and he obtained most variable values, e.g. 7, 8, 12, and 13 red cells to the transverse section of the hair. After frequently repeated experiments he estimated the mean diameter of a hair or 1/3,240 of an inch and red cells as 1/10 part of the diameter of a hair or 1/3,240 of an inch, or about  $7.75\mu$ ; from another set of measurements he noted the diameter of the red cell as 1/1,940 inch or  $12 \cdot 5\mu$ .

de Senac (1693–1770) in 1749 found that the red cells were not spherical but lens-like or disks; he thought at first that the cells were equal in size and estimated the maximum measurement at 1/300 of a line; assuming a line= $2 \cdot 116628$  mm., this corresponds to about  $7 \cdot 22\mu$ ; later he found that they varied from 1/250 to 1/300, or on average measured 1/275 of a line or about  $7 \cdot 69\mu$ .

Little more was heard about the blood corpuscles until later in the eighteenth century William Hewson (1739-74), the celebrated partner of William Hunter, published in 1770 his remarkable work on the structure, form and dimensions of the blood corpuscles, an annotated edition of which was made by Dr. George Gulliver and published by the Sydenham Society of London in 1846. Hewson gives, in a plate, representations of red cells from the blood of different animals including man. They are represented 'of the size they appeared to my eye when viewed through a lens of 1/23 of an inch focus; which, allowing 8 inches to be the focal distance of the naked eye, magnifies the diameter 184 times.' He describes the cells as flat disks, 'as flat as a guinea'. Although he gives no values of size, he finds that not only are they of different sizes in different animals, they are not all of the same size in the same animal, and in the same species they differ in size at different periods of life; those of the chick on the sixth day of incubation were found to be larger than those in the blood of a fullgrown hen; he could find no difference in size between the blood-cells of a child and those of an adult man. Hewson's work was soon discredited, and the corpuscles he figured were thought to be 'probably air bubbles'. The subject was again brought into notice in 1821 by MM. Prévost and Dumas. These observers published in the Biblio-

 $\mathbf{2}$ 

thèque universelle des sciences de Genève, 1821, t. xvii, p. 215, a paper on 'Examen du sang et de son action dans les divers phénomènes de la vie' which I have not been able to obtain in London, but which has been abstracted with abbreviations in the Annales de chimie, 1821, t. xviii, p. 280. From this it seems that these authors regarded the red cells as spherical with a central luminous point. For measuring the cells they spread very small drops of blood on glass slides so that desiccation was very rapid, and adopted the method devised by Capt. Kator, whereby the object under the microscope seen by the right eye is made to coincide with a scale divided into millimetres and half-millimetres placed laterally and seen with the left eye. Having established the magnification of the microscope-preferably 300 diameters-they deduced the real values and obtained a mean of ten observations equal to 1/150 millimetre or about  $6.6\mu$ . Capt. Kator's account of this method in the Phil. Trans., 1818, says: 'a ruler divided into inches and tenths of an inch was placed on the box which supports the microscope; a mother-of-pearl micrometer scale, each division of which was equal to 1/200 of an inch, was placed under the microscope'; viewing this with both eves open 'its image appeared to be projected on the ruler, and one division appeared to subtend the space of one inch. The micrometer scale being removed, blood sufficiently dilute was placed under the microscope [probably a dried film, but this is not stated] and, being viewed with both eyes open, a globule of blood (red cell) appeared to occupy in the first experiment 1/2 of 1/10 of an inch, and in the second experiment 1/3 of 1/10of an inch upon the ruler; hence the size of the globule by the first experiment will be 1/2 of 1/10 of 1/200 of an inch or 1/4,000 of an inch, and by the second experiment 1/3 of 1/10 of 1/200 or 1/6,000 of an inch, the mean of which or 1/5,000 of an inch may be considered as about the mean diameter of a globule of the blood', or about  $5\mu$ . This is a similar value to that obtained by Wollaston, using the microscope scale he devised for Dr. Young (Milverton, Somerset, 1774-1829).

In An Introduction to Medical Literature (2nd edition, 1823) Dr. Thomas Young discusses the observations of Hewson, and, while accepting the existence of the red corpuscles, he does not regard them as 'flat as a guinea', and with respect to the central particle 'detached within a vesicle' described by Hewson as like a 'pea in a bladder', Dr. Young cannot doubt that 'Mr. Hewson was completely mistaken'. He then describes his 'eriometer'\* ( $\check{\epsilon}\rho\iota\sigma\nu$ =cotton,  $\mu\dot{\epsilon}\tau\rho\sigma\nu$ =measure)

<sup>\*</sup> This apparatus and method has in recent years been rediscovered by Pijper (1924), and explored by Millar (1926), Emmons (1927), Eve (1928), and others.

devised by him to measure the sizes of wool fibres. This instrument is based on the observation that when a luminous object is viewed through a fluid containing particles 'it is surrounded by rings of colours, somewhat resembling those of the rainbow'. These rings of colours may also be employed for measuring the comparative and the real dimensions of these particles. 'Immediately about the luminous object we see a light area terminating in a reddish dark margin, then a ring of bluish green, and without it a ring of red; and the alternations of green and red are often repeated several times when the particles or fibres are sufficiently uniform. I observed some years ago that the rings were the larger as the particles or fibres affording them were smaller, but that they were always of the same magnitude for the same particles. It is, therefore, only necessary to measure the angular magnitude of these rings, or of any one of them, in order to identify the size of the particles which afford them; and having once established a scale, from an examination of a sufficient number of substances of known dimensions we may thus determine the actual magnitude of any other substances which exhibit the colours.' Using the micrometer scale invented by Dr. Hyde Wollaston (Phil. Trans., 1813, p. 119), the measurement he obtained for the diameter of the human red corpuscle was  $5\mu$  to  $6\mu$ .

About this period (1826-9) the celebrated optician Amici of Modena improved his microscope objectives by the addition of several achromatic systems one above the other by which chromatic and spherical aberrations of higher order were overcome; he also described a prism eyepiece attachment invented by Dr. Wollaston known as the camera lucida; to Amici also is attributed the first good immersion system. In the spring of 1827 Amici came to this country and showed his instruments to Mr. J. Jackson Lister, the father of Lord Lister. Using one of these new compound achromatic microscopes, Mr. Lister, in association with Dr. Hodgkin, made a number of observations and measurements of red blood corpuscles. The examinations were made on wet and dry preparations, as opaque and as transparent objects, under every variety of power and light and confirmed by frequent repetition. Adapting a camera lucida to the eyepiece, a stage micrometer placed in the focus of the object glass was drawn on a piece of paper at a known distance away;

The limitation of all these instruments, in common with the colour-index and volume-index methods, is that they measure the size of the corpuscles in mass and give average figures only; the details of the distribution are not known, and the variability cannot be accurately determined. But the diffraction method is obviously very convenient for quickly finding the mean diameter, especially in comparative rather than in absolute terms.

replacing the micrometer by a blood film the images of the red cells were drawn to scale on the same piece of paper. The diameter values obtained in this manner were 'pretty correctly' stated to be 1/3,000of an inch or about  $8\mu$ ; the number of cells measured to obtain this average is not stated. They found the ratio of the thickness of the disk to the diameter 1/45.

To George Gulliver, surgeon to the Horse Guards, we are indebted for the interesting Life and Works of William Hewson referred to above. In this book (1846) Gulliver gives a list of a number of measurements of blood corpuscles in man and animals; similar records are to be found in the Proceedings of the Zoological Society extending over a period of years from 1837 to 1846; they are also quoted by Milne-Edwards (p. 84). Gulliver measured the red cells of 485 species of vertebrates; his observations were made on perfectly fresh blood, and the corpuscles were measured either as 'they floated in the serum', or the cells thinly spread on glass and quickly dried. He used a compound microscope with achromatic object glass of 1/8 of an inch focal length made by Ross, and furnished with a micrometer evepiece divided into spaces corresponding to 1/4,000 of an inch. The magnifying power was exactly 800 diameters with a clear definition. 'If one space and a quarter of this micrometer were occupied by a single globule, this would, of course, measure 1/3,200of an inch; if three equally sized particles lying in a line and touching at their edges covered three spaces and a half the diameter of each of them would be 1/3,429 of an inch, if four spaces 1/3,000 of an inch. These measurements are mentioned because they are frequently obtained from the average-sized human blood disks, . . .'. I can find no mention in any of his papers of the number of cells he measured for an average estimation. In his list he gives only average diameters; he says, 'in any one of these there are red corpuscles about 1/3 smaller and 1/3 larger than the mean size.' Gulliver found that when the red cells of mammals are rapidly spread very thin and instantly dried on glass they are commonly slightly larger than when they are slowly dried, or than when they have been swimming for a few minutes either in liquor sanguinis, in the serum, or in dilute watery solutions of neutral salts. On the contrary, the red cells of birds and reptiles are usually rather smaller in the dried state however quickly it may have been done. Gulliver gives the diameter of human red cells as 1/3,200of an inch  $(7.61\mu)$ ; those of *Elephas indicus* 1/2,745 inch  $(9.1\mu)$ ; whale (Balaena boops) 1/3,099 (8.03µ); musk deer (Moschus javaicus) 1/12,325 inch  $(2.02\mu)$ ; cat (*Felis domesticus*) 1/4,404 inch  $(5.6\mu)$ ; dog (Canis familiaris) 1/3,542 inch  $(7.05\mu)$ .

The earliest mention I can find of red cell diameter 'curves' is in a paper by L. Malassez in Soc. de Biologie,\* series 9, January 5, 1889, entitled 'Sur la mésuration des globules sanguins, règle globulimetrique.' By means of a camera lucida he drew on a piece of paper the contours of 100 red cells at a magnification of 1,000 diameters; the diameters (two diameters if the cell is elliptic) of each cell are measured by a transparent scale of glass (gelatine, celluloid, or horn) on which are engraved circles progressing in size from 5 mm. to 15 mm. by intervals of 0.25 mm.; superposing this scale on the drawings the cell diameters are rapidly estimated, and by dividing by the magnification (i.e. 1,000) the mean diameter of the red cells is obtained. He apparently measured free cells in fresh preparations, and also cells dried on slides. He gives in the accompanying table (Table 1) distributions of red cell diameters of a healthy adult man; in a case of 'chlorosis'; and in a 41 months' foetus. Malassez says these diameters may also be expressed in the form of curves.

| FT3 |       |      |
|-----|-------|------|
| 100 | A TAT | 12   |
|     | ABL   | PG 1 |
|     | ***** |      |

| Diameter | Numbers per cent. |           |                               |  |  |  |  |
|----------|-------------------|-----------|-------------------------------|--|--|--|--|
| μ        | Adult man         | Chlorosis | $4\frac{1}{2}$ months' foetus |  |  |  |  |
| 6.50     | 1                 | 0         | 0                             |  |  |  |  |
| 6.75     | 2                 | 1         | 1                             |  |  |  |  |
| 7.00     | 7                 | 0         | 1                             |  |  |  |  |
| 7.25     | 13                | 0         | 1                             |  |  |  |  |
| 7.50     | 18                | 2         | 1                             |  |  |  |  |
| 7.75     | 24                | 8         | 1                             |  |  |  |  |
| 8.00     | 18                | 10        | 5                             |  |  |  |  |
| 8.25     | 9                 | 14        | 3                             |  |  |  |  |
| 8.50     | 5                 | 25        | 8                             |  |  |  |  |
| 8.75     | 2                 | 19        | 11                            |  |  |  |  |
| 9.00     | 1                 | 10        | 11                            |  |  |  |  |
| 9.25     |                   | 9         | 15                            |  |  |  |  |
| 9.50     |                   | 0         | 12                            |  |  |  |  |
| 9.75     |                   | 2         | 11                            |  |  |  |  |
| 10.00    |                   |           | 10                            |  |  |  |  |
| 10.25    |                   |           | 4                             |  |  |  |  |
| 10.50    |                   |           | 3                             |  |  |  |  |
| 10.75    |                   |           | 2                             |  |  |  |  |
| 11.00    |                   | ••        | 1                             |  |  |  |  |
| Mean d   | iameter 7.7µ      | $8.5\mu$  | $9 \cdot 2\mu$                |  |  |  |  |

#### Red cell diameter distribution (Malassez)

He does not estimate the degree of variability of the cells. I find, calculating from his figures, that the distribution of his adult man has  $\sigma = 0.46$ , and v = 6 per cent.; for his case of 'chlorosis'  $\sigma = 0.49$ 

\* C. R. Soc. Biol.

and v = 5.8; and for the  $4\frac{1}{2}$  months' foetus  $\sigma = 0.76$  and v = 8.3 per cent.

In the preceding historical sketch I feel I have shortly but sufficiently indicated the line of advance along which our knowledge of the sizes of red blood cells has progressed from the primitive times of Leeuwenhoek to the more recent days of Malassez. He it was who first really established the art of haemocytometry on a scientific basis which has been adopted with additions and personal modifications by most modern workers in the subject.

#### CHAPTER II

#### THE MEASUREMENT OF RED BLOOD CELLS

Ι

VARIATIONS in the diameters of red blood cells are conveniently observed and measured in dried films. These are spread in the usual way—the thinner the better—dried in air without heat, fixed and stained with Jenner stain for two minutes, and, after washing with distilled water and drying, are superstained with weak aqueous solution of eosin for two minutes. These details should always be adhered to since it is found that alterations in the fixing and staining reagents can produce changes in the mean diameters of the cells.

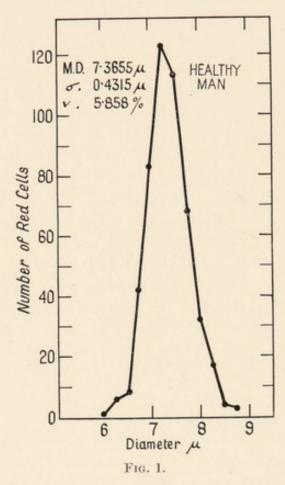
Some simple form of projection apparatus adjusted for a magnification of 1,000 diameters is then arranged to project the microscope field on to a sheet of paper lying on the table. Having chosen a thin portion of the film, the red cells being well separated are outlined in pencil; I usually draw 500 cells. Two diameters, maximum and minimum, of each of these cells are then measured to 0.5 mm. with a glass millimetre scale and can be expressed directly in terms of  $\mu$ ; the mean of these two measurements is accepted as the diameter value of the cell. The diameter values are then arranged in groups progressing in order of magnitude by intervals of  $0.25\mu$  from the smallest to the largest cells. The mean diameter of 500 cells is taken to represent the mean diameter of the red cells for any sample of blood.

It will be useful to introduce here the 'artifice' which is commonly adopted for calculating the arithmetic mean (M), the standard deviation  $(\sigma)$ , and the coefficient of variation (v) of any sample of variables. This is taken from Yule's *Introduction to the Theory of Statistics*, pp. 108–12, but I have substituted the example and figure given in that book by an actual blood-cell diameter distribution of a healthy man (Table 2), since the red cells of the blood are presumably no exception to the fact that most measurable properties and products of living things are arranged according to the normal curve of variation.

The arithmetic mean. Column 1 in this table shows the mid-points of class intervals ranging from  $6\mu$  to  $8.75\mu$  progressing by  $0.25\mu$ intervals (or  $\frac{1}{4}\mu$  units); for practical purposes all the values in each class are regarded as if they were identical with the mid-value of the class interval. Column 2 gives the frequency (f) or the number of diameters corresponding in magnitude to the various class intervals.

| 1                | 2                | 3                     | 4                              | 5                          |
|------------------|------------------|-----------------------|--------------------------------|----------------------------|
| Mid-points       |                  | Deviation from        |                                |                            |
| of Class         |                  | arbitrary             |                                |                            |
| intervals        | Frequency        | mean                  | Product                        |                            |
| $\frac{1}{4}\mu$ | f                | Ę                     | fξ                             | $f\xi^2$                   |
| 6.00             | 1                | -5                    | 5                              | 25                         |
| 6.25             | 6                | -4                    | 24                             | 96                         |
| 6.50             | 8                | -3                    | 24                             | 72                         |
| 6.75             | 42               | -2                    | 84                             | 168                        |
| 7.00             | 83               | -1                    | 83                             | 83                         |
| 7.25             | 123              | 0 (arbitrary<br>mean) | -220                           |                            |
| 7.50             | 113              | +1                    | 113                            | 113                        |
| 7.75             | 68               | +2                    | 136                            | 272                        |
| 8.00             | 32               | +3                    | 96                             | 288                        |
| 8.25             | 17               | +4                    | 68                             | 272                        |
| 8.50             | 4                | +5                    | 20                             | 100                        |
| 8.75             | 3                | +6                    | 18                             | 108                        |
|                  | N = 500          |                       | +451                           | 1597                       |
|                  | N = 500          |                       | -220                           | 1597                       |
|                  |                  |                       | -220                           | $\div 500 = 3.194$         |
|                  |                  |                       | $\Sigma(f\xi) + 231$           | -0.213                     |
|                  |                  | $\Sigma(f\xi)/$       | $_{N}=+0.462~(\frac{1}{4}\mu)$ | $\sigma^2 = 2.981$         |
|                  |                  | -05//.                | $y = 10102 (4\mu)$             |                            |
|                  |                  | 0.469                 |                                | $\sigma = 1.726$           |
|                  | M = 7.25 +       | $-\frac{0.462}{4}\mu$ |                                | $\frac{1}{4} = 0.4315 \mu$ |
|                  |                  | $-0.1155\mu$          |                                |                            |
|                  | = 7.25 - = 7.365 |                       |                                |                            |
|                  | - 1.903          |                       | 0.4315	imes100                 |                            |
|                  |                  |                       | v =                            |                            |
|                  |                  |                       | = 5.858 per cent.              |                            |

TABLE 2


Column 3 shows the deviation  $(\xi)$  or distance of each group in class intervals from an arbitrarily chosen mean, in this example  $7 \cdot 25\mu$ , separating 5 groups of smaller cells from 6 groups of bigger cells. Column 4 gives the product  $(f\xi)$ , each frequency being multiplied by its corresponding  $\xi$  value. Addition of these products gives -220 and  $+451 = +231 = (f\xi)$ ; dividing this result by 500 or the total number of cells measured,  $(f\xi)/N = +0.462$   $(\frac{1}{4}\mu)$  or  $0.1155\mu$ ; add this to the arbitrary mean,  $7.25\mu+0.1155\mu = 7.3655\mu =$  the mean diameter of this sample of 500 red cells.

The standard deviation ( $\sigma$ ) is the measure in  $\mu$  of the dispersion of the diameters, their range in size, and the way in which the numerical frequencies of the different diameters are arranged. In order to obtain some quantity that shall vary with the dispersion it is necessary to average the deviations by a process that treats them as if they were all of the same sign, and squaring is the simplest process

#### THE MEASUREMENT OF RED BLOOD CELLS

for this purpose. Column 5 gives values of  $f\xi^2$  (i.e. col. 3 multiplied by col. 4); addition of these results gives 1,597; divided by 500 =  $3\cdot194$ ; the difference of the mean (*M*) from the arbitrary mean is shown in column 4 to be  $0\cdot462$  ( $\frac{1}{4}\mu$ ); this difference squared is  $0\cdot213$ ( $\frac{1}{4}\mu$ ) and must be subtracted from  $3\cdot194$ , giving  $2\cdot981 = \sigma^2$ , or  $\sigma$ (standard deviation) =  $1\cdot7262$  ( $\frac{1}{4}\mu$ ) or  $0\cdot4315\mu$ .

The coefficient of variation (v) is the standard deviation expressed



10

as a percentage of the mean, and forms a measure of the variability which is independent of the unit in which the measurements have been made. In the example given  $v = 0.4315 \times 100/7.3655 = 5.8$ per cent.

The standard error of the mean\* is the standard deviation ( $\sigma$ ) divided by the square root of the number of cells measured  $\left(\frac{\sigma}{\sqrt{N}}\right)$ .

From columns 1 and 2 represented respectively by abscissae and ordinates a distribution curve can be drawn (Fig. 1).

II

There are in the circulating blood about  $17 \times 10^{12}$  red corpuscles, a number greater than

the human population of the earth. These red cells vary in diameter from about  $5\mu$  to  $9 \cdot 5\mu$ . To obtain the actual mean diameter measurement of all the cells is obviously impossible; it is necessary to take a sample of the population, and 500 cells is a convenient number.

If two samples of 500 cells each are taken simultaneously, fixed and stained and measured, and the frequency with which each diameter occurs ascertained and the mean diameter calculated, it is plain that the two means will only rarely be identical; one will be larger than the other owing to the error inherent in sampling a variable population. To such a difference no real meaning is attached

<sup>\*</sup> In my published papers I have used the 'standard' error and have mistakenly referred to it as 'probable error' (v. Yule, p. 311). Probable error = standard error  $\times 0.6745$ .

#### THE MEASUREMENT OF RED BLOOD CELLS

and it is regarded as non-significant. If, on the other hand, the two samples are not taken simultaneously from the same population a similar difference will probably be found. This may be due either to the error of sampling or to the diameter of the cells composing the population having changed in the interval between taking the two samples.

In Table 3 are given the data of seven samples of blood taken at intervals over a period of twenty-four hours from the same person.

The difference between samples C and E is  $0.614\mu$ , between F and G is  $0.007\mu$ . The natural presumption is that the former may mean much and the latter mean nothing. The meaning of the differences of intermediate value cannot, however, be determined by such subjective tests, and for their evaluation it is necessary to proceed by statistical rules.

To test the difference between two means add together the squares of their standard errors, take the square root of this sum and divide it into the difference between the two means; if the figure thus obtained is 3 or more the difference is regarded as real and significant, if less than 3 it is non-significant.

For example, taking the samples D and E (Table 3):

| Standard | error | square | ed $\left(\frac{\sigma}{\sqrt{N}}\right)^2$ | D = 0.000605            |
|----------|-------|--------|---------------------------------------------|-------------------------|
| ,,       | ,,    | ,,     |                                             | E = 0.000548            |
|          |       |        | add                                         | = 0.001153              |
|          |       | 1      | of sum                                      | = 0.033955, say $0.034$ |

Mean of D = 7.633

,, ,, E = 7.048, D - E = 0.585

0.585/0.034 = 17.2, therefore significant.

Taking samples F and G:

Standard error squared 
$$\left(\frac{\sigma}{\sqrt{N}}\right)^2 F = 0.000449$$
  
,, ,, ,, ,,  $G = 0.000428$   
add  $= 0.000877$   
 $\sqrt{\text{of sum}} = 0.0029614$ , say 0.003

Mean of F = 7.326

,

$$, \quad ,, G = 7.333, F - G = 0.007$$

0.007/0.003 = 2.3, which is not significant.

11

In like manner A/B = 2.6, not significant.

A/C = 6.3, significant. B/C = 3.4 ,, E/F = 8.8 ,, C/D = 0.8, not significant.

#### TABLE 3

| μ      | A     | B     | C     | D     | E     | F     | G     |
|--------|-------|-------|-------|-------|-------|-------|-------|
| 5.50   |       |       |       |       | 2     |       |       |
| 5.75   |       |       |       |       | 5     |       |       |
| 6.00   | 1     | 2     | 5     | 1     | 13    | 3     | 3     |
| 6.25   | 6     | 7     | 2     | 5     | 25    | 8     | 6     |
| 6-50   | 7     | 11    | 5     | 13    | 60    | 23    | 20    |
| 6.75   | 32    | 38    | 14    | 27    | 82    | 52    | 53    |
| 7.00   | 83    | 53    | 48    | 36    | 90    | 76    | 90    |
| 7.25   | 92    | 79    | 69    | 72    | 85    | 108   | 84    |
| 7.50   | 98    | 92    | 97    | 94    | 78    | 104   | 109   |
| 7.75   | 80    | 77    | 82    | 85    | 32    | 64    | 76    |
| 8.00   | 65    | 68    | 84    | 83    | 18    | 40    | 40    |
| 8.25   | 21    | 43    | 50    | 38    | 7     | 15    | 15    |
| 8.50   | 9     | 15    | 32    | 29    | 3     | 6     | 4     |
| 8.75   | 5     | 11    | 9     | 11    |       | 1     |       |
| 9.00   | 1     | 3     | 2     | 4     |       |       |       |
| 9.25   |       | 1     | 1     | 2     |       |       |       |
| Totals | 500   | 500   | 500   | 500   | 500   | 500   | 500   |
| Mean   | 7.461 | 7.546 | 7.662 | 7.633 | 7.048 | 7.326 | 7.333 |
| σ      | 0-477 | 0.552 | 0.526 | 0.551 | 0.523 | 0.474 | 0.462 |
| v      | 6.4   | 7.3   | 6-9   | 7.2   | 7.4   | 6-5   | 6.3   |

| Samples of | blood tai | ken at interval | ls fi | rom same | person |
|------------|-----------|-----------------|-------|----------|--------|
|------------|-----------|-----------------|-------|----------|--------|

| Standar | l error oj | f mean |
|---------|------------|--------|
|---------|------------|--------|

| $\left(\frac{\sigma}{\sqrt{N}}\right)$   |          | 0.0248   | 0.0236   | 0.0246   | 0.0234   |          | 0.0207   |
|------------------------------------------|----------|----------|----------|----------|----------|----------|----------|
| $\left(\frac{\sigma}{\sqrt{N}}\right)^2$ | 0.000458 | 0.000615 | 0-000557 | 0.000605 | 0.000548 | 0-000499 | 0.000428 |

This 'three times' rule is based on a great mass of varied experience as well as on theoretical considerations; it is, however, only valid if sources of error other than random sampling can be reasonably excluded.

To test this point, two series of measurements were made each of a number of films made as nearly as possible simultaneously from the same individual; in each film 500 cells were measured (Tables 4 and 5). In the first trial 8 films were made (Table 4) yielding 28 possible pairs for comparison; 17 of the differences are less than 3 times the standard error, 7 are between 3 and 4 times, 2, A/G and

12

#### THE MEASUREMENT OF RED BLOOD CELLS

D/E, between 4 and 5 times, and A/D and D/H 5.3 and 5.4 times respectively.

In the second series 10 films were made (Table 5) giving 45 differences for comparison. Of these 28 were less than 3 times, 5 between 3 and 4 times, 11 between 4 and 5 times, and 1, A/B, 5·1 times.

#### TABLE 4

#### Eight films—or 28 pairs for comparison

|   | Mean  | Standard<br>deviation |   | Mean  | Standard<br>deviation |
|---|-------|-----------------------|---|-------|-----------------------|
| A | 7.401 | 0.483                 | E | 7.376 | 0.470                 |
| B | 7.304 | 0.476                 | F | 7.294 | 0.474                 |
| C | 7.339 | 0.470                 | G | 7.269 | 0.574                 |
| D | 7.242 | 0.458                 | H | 7.400 | 0.470                 |

#### TABLE 5

|   | Mean   | Standard<br>deviation |   | Mean  | Standard<br>deviation |
|---|--------|-----------------------|---|-------|-----------------------|
| A | 7.521  | 0.492                 | F | 7.389 | 0.474                 |
| B | 7.364  | 0.488                 | G | 7.458 | 0.499                 |
| C | 7.493  | 0.469                 | H | 7.375 | 0.473                 |
| D | .7.513 | 0.511                 | I | 7.468 | 0.460                 |
| E | 7.382  | 0.462                 | J | 7.444 | 0.467                 |

It is evident, therefore, that the whole process involves errors other than those inherent in the sampling of a variable population; these are presumably due to differences in the making and rate of drying of the films, errors in measurement, and so forth. It would be possible to dissect some of them out for further analysis, but for my present purpose it is sufficient to know that an allowance of 5 times covers the whole of them in 95 per cent. of the differences tested. In other words, a difference between two means which is more than 5 times its standard error may, therefore, be regarded as a real and significant difference. For practical purposes, when, as in the present series of measurements, the means and standard deviations are all fairly close together, it is convenient to have a standard of difference which, based on the method of testing outlined above, is expressed in absolute values and the calculations omitted. With means of about  $7.4\mu$  and standard deviations of about  $0.48\mu$  and 500 cells measured, the standard error of the difference between any two means is about  $0.03\mu$ ; 5 times this or  $0.15\mu$  is, therefore, probably a significant difference. To be on the safe side I have allowed more than this, and the smallest difference on which any stress is laid is

13

# THE MEASUREMENT OF RED BLOOD CELLS

14

 $0.2\mu$ ; differences between 0.15 and 0.2 are taken as probably but not conclusively real; differences below 0.15 are disregarded.

This arbitrary standard would not be applicable if the means differed widely from about  $7.5\mu$  (e.g. goat's corpuscles  $4.5\mu$ ), or if the red cells were much more variable and had a standard deviation higher than about 0.6, or if the number of cells measured were not 500. The precision of the answer varies with the square root of the number of cells measured; if for 500 the necessary difference is taken as 0.2, for 200 it would be 0.32, for 100 cells 0.45, and for 1,000 0.15. A number between 200 and 500 gives reasonable accuracy, and does not involve too disproportionate labour.

#### CHAPTER III

#### THE RED CELL DIAMETERS OF HEALTHY PERSONS

I

In my first communication (1922) I reported the measurements of 500 red cells from each of 20 healthy persons (10,000 cells). The mean diameter ranged from  $6.96\mu$  to  $7.49\mu$  with a mean of  $7.210\mu$ . Considering that this sample was probably too small to express adequately the distribution of mean diameters in a population of healthy persons I extended the series by 80, and so obtained measurements of 500 red cells from each of 100 persons (50,000 cells). From these measurements I was able to estimate the mean of the 100 means, their standard deviation and coefficient of variation, and was then in a much better position to know the range of normality and to judge the probability of any figure being abnormal.

These 100 persons were in no way selected, they were just haphazard, presumably healthy adults from 19 to 92 years of age, and, with the exception of 4 who were old and leading sedentary lives, they were all in ordinary occupation at the hospital, which in no case involved heavy muscular work. There were 92 males and 8 females; there is no evidence to suggest that either age or sex has any influence on the size of the cells.

The dry film method described above was followed in all its details. The specimens were all obtained as nearly as possible at the same time in the forenoon. Red cell counts and haemoglobin estimations were made in most instances and corresponded to accepted normal standard limits. The complete record of the 50,000 measurements is set out in Table 6. The cell diameters ranged from  $4.75\mu$  to  $9.50\mu$ , the mean diameter was  $7.202\mu$ , the standard deviation  $0.487\mu$ , and the coefficient of variation 6.325 per cent. The 100 mean diameters of 100 persons are summarized in Table 7. They give a mean of  $7.202\mu$ , standard deviation ( $\sigma$ ) =  $0.172\mu$ , and coefficient of variation (v) = 2.3 per cent.\*

<sup>\*</sup> There is presumably a personal factor in these measurements, and the differences between the healthy means found by various observers no doubt depend to some extent on individualities of technique, the calibration of micrometers, and other details.

Using dry films, Grosh and Stifel (1925) got 7.4 $\mu$ , Bell Thomas and Means (1926) 7.7 $\mu$ , Medearis and Minot (1927) 7.55 $\mu$ , Ohno and Gisevius (1925) 7.9 $\mu$ , Pohle (1927) 7.3 $\mu$ , Wischnewsky (1928) 7.2 $\mu$ , Silvette (1927) infants 7.4 $\mu$ ; using wet methods Thomas Young (1823) found 5 to 6 $\mu$ , McCormick (1927) 7.3 $\mu$ , Holler and Kudelke (1928) 7.6 $\mu$ , Jorgensen and Warburg (1927) 7.6 $\mu$ , Ponder and Millar (1924) 8.8 $\mu$ .

# 16 THE RED CELL DIAMETERS OF HEALTHY PERSONS

# TABLE 6

Distribution of Diameters

| Mi     | d-points<br>intervo |    | 188 | Case 1<br>Sex M<br>Age 56 |       | $3 \\ M \\ 30$ | $\begin{array}{c} 4\\ M\\ 19 \end{array}$ | $5 \\ M \\ 39$ | $\begin{array}{c} 6 \\ F \\ 79 \end{array}$ | $\begin{array}{c} 7\\ M\\ 79 \end{array}$ |
|--------|---------------------|----|-----|---------------------------|-------|----------------|-------------------------------------------|----------------|---------------------------------------------|-------------------------------------------|
| 4.75 . |                     |    |     |                           |       |                |                                           |                |                                             |                                           |
| 5.00 . |                     |    |     |                           |       |                |                                           |                |                                             |                                           |
| 5.25.  |                     |    |     |                           |       |                |                                           |                |                                             |                                           |
| 5.50.  |                     |    |     |                           |       | ÷              |                                           |                |                                             |                                           |
| 5.75 . |                     |    |     |                           | 2     |                | 1                                         |                |                                             | 2                                         |
| 6.00.  |                     |    |     | 2                         |       | 7              | 3                                         | 5              | 3                                           | 14                                        |
| 6.25 . |                     |    |     | 10                        | 3     | 10             | 14                                        | 24             | 15                                          | 14                                        |
| 6.50 . |                     |    |     | 19                        | 12    | 25             | 31                                        | 50             | 28                                          | 35                                        |
| 6.75 . |                     |    |     | 54                        | 39    | 56             | 61                                        | 81             | 70                                          | 68                                        |
| 7.00 . |                     |    |     | 64                        | 63    | 88             | 77                                        | 97             | 96                                          | 91                                        |
| 7.25 . |                     |    |     | 119                       | 100   | 106            | 93                                        | 82             | 119                                         | 94                                        |
| 7.50 . |                     |    |     | 100                       | 112   | 84             | 96                                        | 84             | 76                                          | 95                                        |
| 7.75 . |                     |    |     | 68                        | 79    | 50             | 66                                        | 47             | 52                                          | 43                                        |
| 8.00 . |                     |    |     | 39                        | 57    | 45             | 37                                        | 21             | 31                                          | 25                                        |
| 8.25 . |                     |    |     | 20                        | 23    | 16             | 16                                        | 7              | 6                                           | 12                                        |
| 8.50 . |                     |    |     | 5                         | 6     | 11             | 3                                         | 2              | 4                                           | 4                                         |
| 8.75 . |                     |    |     |                           | 3     |                | 2                                         |                |                                             | 3                                         |
| 9.00 . |                     |    |     |                           | 1     | 1              |                                           |                |                                             |                                           |
| 9.25 . |                     |    |     |                           |       |                |                                           |                |                                             |                                           |
| 9.50.  |                     |    |     |                           |       | 1              |                                           |                |                                             |                                           |
|        | Total               |    |     | 500                       | 500   | 500            | 500                                       | 500            | 500                                         | 500                                       |
| Mean   | liamete             | r. |     | 7.339                     | 7.443 | 7.302          | 7.280                                     | 7.124          | 7.211                                       | 7.186                                     |
|        | ard dev             |    |     | 0.470                     | 0.470 | 0.524          | 0.503                                     | 0.484          | 0.460                                       | 0.522                                     |
|        | ility pe            |    |     | 6.4                       | 6-3   | 7.2            | 6.9                                       | 6.8            | 6.4                                         | 7.3                                       |

| Mi     | d-points<br>interva |     | 88 | Case 18<br>Sex M<br>Age 35 | $19 \\ M \\ 50$ | $20 \\ M \\ 55$ | $\begin{array}{c} 21\\ M\\ 25 \end{array}$ | $22 \\ M \\ 25$ | $\begin{array}{c} 23\\ M\\ 24\end{array}$ | 24<br>F<br>29 |
|--------|---------------------|-----|----|----------------------------|-----------------|-----------------|--------------------------------------------|-----------------|-------------------------------------------|---------------|
| ŀ75.   |                     |     |    |                            |                 | 2               |                                            |                 |                                           |               |
| 5.00.  |                     |     |    |                            |                 |                 |                                            |                 |                                           |               |
| 5.25 . |                     |     |    |                            |                 |                 |                                            | 3               |                                           |               |
| 5.50.  |                     |     |    |                            | 1               |                 | 2                                          |                 |                                           |               |
| 5.75 . |                     |     |    |                            | 3               | 2               |                                            |                 | 1                                         | 1             |
| 5.00 . |                     |     |    | 2                          | 9               | 4               | 9                                          | 5               | 5                                         | 7             |
| 3.25 . |                     |     |    | 9                          | 14              | 4               | 31                                         | 18              | 16                                        | 8             |
| 6.50 . |                     |     |    | 16                         | 43              | 31              | 55                                         | 43              | 53                                        | 23            |
| 3.75 . |                     |     |    | 64                         | 63              | 59              | 113                                        | 87              | 72                                        | 50            |
| .00.   |                     |     |    | 99                         | 94              | 96              | 103                                        | 112             | 109                                       | 93            |
| -25 .  |                     |     |    | 107                        | 105             | 114             | 104                                        | 112             | 95                                        | 121           |
| .50 .  |                     |     |    | 84                         | 87              | 86              | 55                                         | 77              | 85                                        | 99            |
| .75 .  |                     |     |    | 79                         | 48              | 68              | 24                                         | 25              | 37                                        | 61            |
| 8-00 . |                     |     |    | 27                         | 23              | 22              | 2                                          | 15              | 22                                        | 24            |
| 8.25 . |                     |     |    | 7                          | 7               | 11              | 2                                          | 3               | 4                                         | 10            |
| 8.50 . |                     |     |    | 5                          | 2               | î               |                                            |                 | 1                                         | 2             |
| 3.75 . |                     |     |    | 1                          | ī               |                 |                                            |                 |                                           | ĩ             |
| . 00.  |                     |     |    |                            |                 |                 |                                            |                 |                                           |               |
| .25 .  |                     |     |    |                            |                 |                 |                                            |                 |                                           |               |
| 9.50 . |                     |     |    |                            |                 |                 |                                            |                 |                                           |               |
|        | Total               |     |    | 500                        | 500             | 500             | 500                                        | 500             | 500                                       | 500           |
| Mean   | diamete             | r . |    | 7.280                      | 7.160           | 7.231           | 6.942                                      | 7.074           | 7.119                                     | 7.257         |
|        | ard devi            |     |    | 0.447                      | 0.494           | 0.474           | 0.413                                      | 0.442           | 0.457                                     | 0.453         |
|        | oility pe           |     |    | 6.1                        | 6.9             | 6-6             | 5.9                                        | 6.3             | 6.4                                       | 6.2           |

# in 100 healthy persons

|                 |                | 5 F                                                                                                            |                 |                |                  |            |            |                                       |                 |
|-----------------|----------------|----------------------------------------------------------------------------------------------------------------|-----------------|----------------|------------------|------------|------------|---------------------------------------|-----------------|
| 8               | 9              | 10                                                                                                             | 11              | 12             | 13               | 14         | 15         | 16                                    | 17              |
| $\frac{M}{90}$  | M<br>77        | M<br>44                                                                                                        | M<br>32         | M<br>38        | M<br>42          | M<br>44    | M<br>39    | M<br>36                               | M<br>38         |
| - 30            |                | 4.4                                                                                                            |                 | 00             | 4.5              | 44         |            |                                       |                 |
| • •             |                |                                                                                                                |                 |                | • •              |            |            |                                       |                 |
|                 |                |                                                                                                                |                 |                |                  |            |            |                                       |                 |
| 1               |                |                                                                                                                |                 | -1             |                  |            |            |                                       |                 |
| 3               | 3              | 1                                                                                                              | 3               | 5              |                  |            |            |                                       |                 |
| $\frac{5}{22}$  | $\frac{6}{25}$ | 15<br>41                                                                                                       | 1               | 4<br>12        | 2                | 1 5        | 3          | 2 6                                   | 6<br>15         |
| 47              | 36             | 61                                                                                                             | 34              | 29             | 9                | 20         | 18         | 28                                    | 41              |
| 72              | 72             | 91                                                                                                             | 74              | 57             | 25               | 55         | 53         | 51                                    | 77              |
| 121             | 106            | 101                                                                                                            | 101             | 76             | 70               | 96         | 98         | 92                                    | 106             |
| 93<br>73        | 114<br>79      | 96<br>57                                                                                                       | 103<br>86       | 102<br>89      | 102<br>112       | 110<br>118 | 103<br>105 | 106<br>88                             | 92<br>73        |
| 40              | 36             | 23                                                                                                             | 41              | 68             | 78               | 59         | 73         | 66                                    | 51              |
| 19              | 13             | 11                                                                                                             | 36              | 34             | 60               | 24         | 32         | 42                                    | 22              |
| 3               | 6              | 3                                                                                                              | 8               | 15             | 31               | 10         | 8          | 12                                    | 15              |
| 1               | 4              |                                                                                                                | 2               | 6              | 8                | 2          | 3          | 3                                     | 2               |
|                 |                |                                                                                                                |                 | i              |                  |            |            | 1                                     |                 |
|                 |                |                                                                                                                |                 |                |                  |            |            |                                       |                 |
|                 |                |                                                                                                                | • •             |                |                  |            |            |                                       |                 |
| 500             | 500            | 500                                                                                                            | 500             | 500            | 500              | 500        | 500        | 500                                   | 500             |
| 7.091           | 7.114          | 6.968                                                                                                          | 7.200           | 7.274          | 7.487            | 7.283      | 7.307      | 7.311                                 | 7.169           |
| 0.468           | 0.470          | 0.460                                                                                                          | 0.456           | 0.526          | 0.446            | 0.410      | 0.431      | 0.476                                 | 0.485           |
| 6.6             | 6.6            | 6.6                                                                                                            | 6.3             | 7.2            | 6-0              | 5.6        | 5.9        | 6.5                                   | 6-8             |
|                 |                |                                                                                                                |                 |                |                  |            |            |                                       |                 |
| 25              | 26             | 27                                                                                                             | 28              | 29             | 30               | 31         | 32         | 33                                    | 34              |
| M               | F              | M                                                                                                              | F               | M              | F                | F          | F          | M                                     | M               |
| 25              | 22             | 23                                                                                                             | 31              | 22             | 26               | (?) 27     | 22         | 21                                    | 23              |
|                 |                |                                                                                                                |                 |                |                  |            |            |                                       |                 |
|                 |                |                                                                                                                |                 |                |                  |            |            |                                       |                 |
| •••             |                |                                                                                                                |                 |                |                  |            |            | $\frac{1}{2}$                         |                 |
|                 |                | 1                                                                                                              |                 |                |                  | 2          |            | 5                                     | 1               |
| 4               | 1              | 2                                                                                                              |                 |                | 1                | 8          | 1          | 15                                    |                 |
| 14              | 5              | 22                                                                                                             | 5               | 3              | 2                | 25         | 3          | 56<br>72                              | $\frac{11}{32}$ |
| $\frac{40}{73}$ | 18<br>42       | $\frac{41}{72}$                                                                                                | $\frac{15}{48}$ | $\frac{8}{25}$ | $\frac{13}{41}$  | 50<br>86   | 17<br>37   | $\begin{array}{c} 73\\115\end{array}$ | 53              |
| 89              | 68             | 112                                                                                                            | 57              | 66             | 62               | 114        | 70         | 100                                   | 88              |
| 111             | 127            | 111                                                                                                            | 117             | 100            | 109              | 111        | 133        | 70                                    | 124             |
| 92              | 118            | 80                                                                                                             | 99<br>75        | 121            | $\frac{115}{77}$ | 69<br>10   | 106     71 | 48<br>10                              | 88<br>68        |
| $\frac{36}{25}$ | 63<br>34       | $\frac{40}{13}$                                                                                                | 75<br>57        | 87<br>50       | 50               | 19<br>11   | 39         | 5                                     | 26              |
| 11              | 16             | 4                                                                                                              | 17              | 27             | 26               | 3          | 18         |                                       | 8               |
| 4               | 6              | 1                                                                                                              | 9               | 7              | 4                | 2          | 3          |                                       | 1               |
| 1               | 2              |                                                                                                                |                 | $\frac{4}{2}$  | • •              |            | 2          | ••                                    | • •             |
|                 |                |                                                                                                                |                 |                |                  |            |            |                                       |                 |
|                 |                |                                                                                                                |                 |                |                  |            |            |                                       |                 |
| 500             | 500            | 500                                                                                                            | 500             | 500            | 500              | 500        | 500        | 500                                   | 500             |
| 7.239           | 7.360          | 7.119                                                                                                          | 7.404           | 7.487          | 7.423            | 7.034      | 7.376      | 6-841                                 | 7.252           |
| 0.479           | 0.441          | 0.425                                                                                                          | 0.463           | 0.448          | 0.440            | 0.441      | 0.432      | 0.452                                 | 0.435           |
| 6.6             | 6.0            | 6-0                                                                                                            | $6 \cdot 2$     | 6-0            | 5-9              | 6.3        | 5.9        | 6.6                                   | 6.0             |
|                 |                | the second s |                 |                |                  |            |            |                                       |                 |

# 18 THE RED CELL DIAMETERS OF HEALTHY PERSONS

### TABLE 6

Distribution of Diameters

|         | -point:<br>intervo | s of cla<br>ils μ | 88 | Case 35<br>Sex M<br>Age 22 | $36 \\ M \\ 22$ | $37 \\ M \\ 28$ | $38 \\ M \\ 30$ | $39 \\ M \\ 29$ | $\begin{array}{c} 40\\ M\\ 31 \end{array}$ | $\begin{array}{c} 41 \\ M \\ 28 \end{array}$ |
|---------|--------------------|-------------------|----|----------------------------|-----------------|-----------------|-----------------|-----------------|--------------------------------------------|----------------------------------------------|
| 4.75 .  |                    |                   |    |                            |                 |                 |                 |                 |                                            |                                              |
| 5.00 .  |                    |                   |    |                            |                 |                 |                 |                 |                                            |                                              |
| 5.25 .  |                    |                   |    | 1                          |                 |                 |                 |                 |                                            |                                              |
| 5.50 .  |                    |                   |    |                            |                 |                 |                 | 1               |                                            |                                              |
| 5.75 .  |                    |                   |    | 2                          | 1               | 1               | 1               | 5               |                                            | 1                                            |
| 3.00.   |                    |                   |    | 8                          | 5               | 1               |                 | 10              | 4                                          | 5                                            |
| 3.25 .  |                    |                   |    | 13                         | 13              | 5               | 6               | 18              | 26                                         | 15                                           |
| 3.50.   |                    |                   |    | 45                         | 28              | 16              | 12              | 61              | 47                                         | 48                                           |
| 3.75 .  |                    |                   |    | 66                         | 62              | 48              | 30              | 103             | 85                                         | 88                                           |
| 7.00.   |                    |                   |    | 95                         | 94              | 52              | 69              | 96              | 95                                         | 118                                          |
| 1.25 .  |                    |                   |    | 114                        | 126             | 150             | 91              | 96              | 115                                        | 120                                          |
| 1.50 .  |                    |                   |    | 78                         | 91              | 83              | 121             | 63              | 69                                         | 62                                           |
| 1.75 .  |                    |                   |    | 42                         | 56              | 66              | 70              | 26              | 35                                         | 33                                           |
| 8.00 .  |                    |                   |    | 23                         | 18              | 43              | 62              | 16              | 15                                         | 6                                            |
| 8.25 .  |                    |                   |    | 5                          | 4               | 22              | 28              | 3               | 5                                          | 4                                            |
| 8.50 .  |                    |                   |    | 6                          | 2               | 9               | 8               | 1               | 3                                          |                                              |
| 8.75 .  |                    |                   |    | 1                          |                 | 2               | 2               | 1               | 1                                          |                                              |
| . 00.6  |                    |                   |    | 1                          |                 | 2               |                 |                 |                                            |                                              |
| ).25 .  |                    |                   |    |                            |                 |                 |                 |                 |                                            |                                              |
| 9.50.   |                    |                   |    |                            |                 |                 |                 |                 |                                            | ·                                            |
| 5       | fotal              |                   |    | 500                        | 500             | 500             | 500             | 500             | 500                                        | 500                                          |
| Mean d  | iamete             | er.               |    | 7.160                      | 7.199           | 7.388           | 7.458           | 7.021           | 7.097                                      | 7.066                                        |
| Standar | d dev              | iation            |    | 0.501                      | 0.438           | 0.482           | 0.469           | 0.477           | 0.470                                      | 0.410                                        |
| Variabi | lity pe            | r cent.           |    | 7.0                        | 6.1             | 6.5             | 6.3             | 6-8             | 6.6                                        | 5.8                                          |

| Mie    | l-point<br>interve |   | 188 | Case 52<br>Sex M<br>Age 20 | $53 \\ M \\ 36$ | $54 \\ M \\ 27$ | $55 \\ M \\ 34$ | $56 \\ M \\ 20$ | $57 \\ M \\ 20$ | $58 \\ M \\ 21$ |
|--------|--------------------|---|-----|----------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 4.75 . |                    |   |     |                            |                 |                 |                 |                 |                 |                 |
| 5.00.  |                    |   |     |                            |                 |                 |                 |                 |                 |                 |
| 5.25.  |                    |   |     |                            |                 |                 |                 |                 |                 |                 |
| 5.50.  |                    |   |     |                            |                 |                 | 2               |                 | 1               |                 |
| 5.75 . |                    |   |     |                            | 1               |                 | 3               |                 | 2               | 1               |
| 6.00.  |                    |   |     |                            | 1               |                 | 3               | 1               | 20              | 3               |
| 6.25 . |                    |   |     | 9                          | 3               | 2               | 17              | 5               | 53              | 5               |
| 6.50.  |                    |   |     | 17                         | 10              | 10              | 29              | 14              | 78              | 21              |
| 8.75 . |                    |   |     | 50                         | 42              | 28              | 70              | 37              | 99              | 46              |
| 7.00.  |                    |   |     | 82                         | 65              | 61              | 101             | 68              | 111             | 80              |
| 1.25.  |                    |   |     | 145                        | 105             | 120             | 119             | 123             | 84              | 142             |
| 7.50.  |                    |   |     | 82                         | 100             | 127             | 85              | 93              | 36              | 97              |
| 1.75 . |                    |   |     | 60                         | 93              | 77              | 42              | 85              | 11              | 52              |
| 8.00.  |                    |   |     | 33                         | 43              | 40              | 19              | 47              | 4               | 36              |
| 3.25 . |                    |   |     | 17                         | 26              | 23              | 8               | 22              | 1               | 13              |
| 8.50.  |                    |   |     | 3                          | 8               | 11              | 2               | 4               |                 | 4               |
| 3.75 . |                    |   |     | 2                          | 2               | 1               |                 |                 |                 |                 |
| . 00.  |                    |   |     |                            | 1               |                 |                 | 1               |                 |                 |
| -25 .  |                    |   | ÷.  |                            |                 |                 |                 |                 |                 |                 |
| 9.50.  | •                  | • | •   |                            |                 |                 |                 |                 |                 |                 |
|        | Total              |   |     | 500                        | 500             | 500             | 500             | 500             | 500             | 500             |
|        | liamete            |   |     | 7.313                      | 7.438           | 7.449           | 7.162           | 7.405           | 6.850           | 7.302           |
|        | rd dev.            |   |     | 0.495                      | 0.467           | 0.426           | 0.466           | 0.448           | 0.437           | 0-441           |
|        | ility pe           |   |     | 6.8                        | 6.3             | 5.7             | 6.5             | 6.0             | 6-4             | 6.0             |

# -continued

in 100 healthy persons—continued

| 42<br>M         | 43<br>M         | 44<br>M       | 45<br>M                                                   | $\frac{46}{M}$  | 47<br>M         | 48<br>M         | 49<br>M        | 50<br>M          | 51<br>M          |
|-----------------|-----------------|---------------|-----------------------------------------------------------|-----------------|-----------------|-----------------|----------------|------------------|------------------|
| 39              | 28              | 38            | 25                                                        | 35              | 22              | 27              | 20             | 23               | ?                |
|                 |                 |               |                                                           |                 |                 |                 |                |                  |                  |
|                 |                 |               |                                                           |                 |                 |                 |                |                  |                  |
| •••             | • •             |               |                                                           |                 |                 |                 |                |                  |                  |
| 1               | • •             |               |                                                           |                 |                 | 1               | •••            |                  |                  |
| 3<br>6          | 7               | $\frac{1}{2}$ | 1                                                         |                 | 2<br>8          |                 | $\frac{1}{2}$  | 2                |                  |
| 13              | 9               | 7             | 3                                                         | 6               | 17              |                 | 9              | 10<br>24         |                  |
| 34              | 26              | 35            | 21                                                        | 19              | 44              | 14              | 22             | 50               | 11               |
| 77              | 55              | 48            | 49                                                        | 54              | 76              | 50              | 61             | 86               | 33               |
| 92              | 82              | 90            | 76                                                        | 76              | 97              | 58              | 93             | 97               | 59               |
| 120             | 151             | 133           | 129                                                       | 144             | 135             | 119             | 126            | 121              | 111              |
| 78              | 85              | 92            | 108                                                       | 107             | 68              | 102             | 102            | 69               | 111              |
| $\frac{43}{26}$ | $\frac{51}{26}$ | 58<br>27      | 66<br>34                                                  | $\frac{46}{31}$ | 38<br>10        | 76              | 63             | 33               | 81               |
| 7               | 6               | 4             | 11                                                        | 13              | 4               | $\frac{45}{19}$ | 14<br>5        | 6<br>2           | $\frac{50}{27}$  |
|                 | 2               | 2             | 1                                                         | 2               |                 | 5               | 2              | 4                | 6                |
|                 |                 | ĩ             | î                                                         | ī               | 1               | 2               |                |                  | 2                |
|                 |                 |               |                                                           |                 |                 |                 |                |                  |                  |
|                 |                 |               |                                                           |                 |                 |                 |                |                  |                  |
|                 |                 |               |                                                           |                 |                 |                 |                |                  |                  |
| 500             | 500             | 500           | 500                                                       | 500             | 500             | 500             | 500            | 500              | 500              |
| 7.157           | 7.229           | 7.243         | 7.321                                                     | 7.290           | 7.097           | 7.379           | 7.233          | 7.042            | 7.426            |
| 0.467           | 0.436           | 0.434         | 0.419                                                     | 0.417           | 0.442           | 0.467           | 0.414          | 0.438            | 0.446            |
| 6.5             | 6.0             | 6.0           | 5.7                                                       | 5.7             | $6 \cdot 2$     | 6.3             | 5.7            | 6.2              | 6.0              |
|                 |                 |               |                                                           |                 |                 |                 |                |                  |                  |
| 59              | 60              | 61            | 62                                                        | 63              | 64              | 65              | 66             | 07               | 00               |
| M               | M               | M             | M                                                         | M               | M               | 05<br>M         | 00<br>M        | 67<br>M          | 68<br>M          |
| 24              | 21              | 55            | (?) 60                                                    | 36              | 32              | 39              | 47             | (?) 28           | ?                |
|                 |                 |               |                                                           |                 |                 |                 |                |                  |                  |
|                 |                 |               |                                                           |                 |                 |                 |                |                  |                  |
|                 |                 |               |                                                           |                 |                 |                 |                |                  |                  |
|                 |                 | 3             |                                                           |                 |                 |                 |                |                  |                  |
|                 | 3               | 17            |                                                           |                 |                 |                 |                |                  |                  |
| 6               | 7               | 35            | 9                                                         | 1               | 1               | 2               |                | 3                | 1                |
| 11              | 31              | 76            | 17                                                        | 13              | 4               | 7               | 3              | 4                | 6                |
| 23              | 60              | 96            | 45                                                        | 21              | 7               | 21              | 9              | 16               | 13               |
| 73<br>90        | 116     116     | 100     105   | $\frac{76}{111}$                                          |                 | $\frac{42}{65}$ | 59<br>97        | 27<br>71       | 52               | 39               |
| 123             | 101             | 46            | 103                                                       | 133             | 95              | 117             | 111            | $\frac{45}{108}$ | $\frac{59}{135}$ |
| 102             | 40              | 18            | 74                                                        | 80              | 95              | 106             | 103            | 92               | 88               |
| 44              | 20              | 2             | 45                                                        | 57              | 77              | 63              | 76             | 94               | 81               |
| 19              | 4               | 1             | 16                                                        | 31              | 56              | 20              | 55             | 52               | 44               |
| 4               | 2               |               | 3                                                         | 9               | 38              | 7               | 29             | 23               | 26               |
| 3               |                 |               | 1                                                         | 2               | 13              | 1               | 15             | 8                | 7                |
| 1               |                 |               | • •                                                       |                 | 7               |                 | 1              | 2                | 1                |
|                 |                 |               | • •                                                       |                 |                 |                 | • •            | 1                |                  |
|                 |                 |               |                                                           |                 |                 |                 |                |                  |                  |
| 500             | 500             | 500           | 500                                                       | 500             | 500             | 500             | 500            | 500              | 500              |
|                 |                 |               |                                                           |                 |                 |                 |                |                  |                  |
| 7.206           | 6.947           | 6.661         | 7.109                                                     | 7.248           | 7.492           | 7.254           | 7.476          | 7.379            | 7.411            |
| 0.443           | $0.411 \\ 5.9$  | 0.439<br>6.6  | $   \begin{array}{c}     0.451 \\     6.3   \end{array} $ | $0.439 \\ 6.1$  | $0.501 \\ 6.7$  | $0.411 \\ 5.7$  | $0.457 \\ 6.1$ | $0.503 \\ 6.8$   | 0-458<br>6-2     |
| 6.1             | 0.0             | 0.0           | 0.0                                                       | 0.1             | 0.7             | 0.1             | 0.1            | 0.0              | 0.2              |

# 20 THE RED CELL DIAMETERS OF HEALTHY PERSONS

# TABLE 6

Distribution of Diameters

|          | -point<br>interve | s of cla<br>ils μ | 88 | Case 69<br>Sex M<br>Age 34 | 70<br>M<br>(?) 25 | $\begin{array}{c} 71 \\ M \\ 26 \end{array}$ | 72<br>M<br>22 | $\begin{array}{c} 73\\ M\\ 24 \end{array}$ | $\begin{array}{c} 74\\ M\\ 37 \end{array}$ | $\begin{array}{c} 75\\ M\\ 45 \end{array}$ |
|----------|-------------------|-------------------|----|----------------------------|-------------------|----------------------------------------------|---------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|
| 4.75 .   |                   |                   |    |                            |                   |                                              |               |                                            |                                            |                                            |
| 5.00 .   |                   |                   |    |                            |                   |                                              |               |                                            |                                            |                                            |
| 5.25 .   |                   |                   |    |                            |                   |                                              |               |                                            |                                            |                                            |
| 5.50 .   |                   |                   |    |                            |                   |                                              |               |                                            | 1                                          |                                            |
| 5.75 .   |                   |                   |    |                            |                   | 2                                            |               | 1                                          | 4                                          | 1                                          |
| 6.00 .   |                   |                   |    | 6                          | 4                 | 2                                            | 1             | 5                                          | 5                                          |                                            |
| 6.25 .   |                   |                   |    | 15                         | 8                 | 16                                           | 6             | 15                                         | 37                                         | 7                                          |
| 8.50 .   |                   |                   |    | 36                         | 19                | 26                                           | 8             | 36                                         | 60                                         | 22                                         |
| 8.75 .   |                   |                   |    | 54                         | 58                | 74                                           | 42            | 64                                         | 98                                         | 67                                         |
| . 00.    |                   |                   |    | 91                         | 77                | 85                                           | 83            | 104                                        | 111                                        | 82                                         |
| 1.25 .   |                   |                   |    | 121                        | 137               | 124                                          | 123           | 111                                        | 107                                        | 125                                        |
| 7.50 .   |                   |                   |    | 100                        | 92                | 85                                           | 113           | 78                                         | 50                                         | 106                                        |
| 7.75 .   |                   |                   |    | 48                         | 64                | 54                                           | 68            | 61                                         | 20                                         | 53                                         |
| 8-00 .   |                   |                   |    | 21                         | 26                | 21                                           | 32            | 17                                         | 5                                          | 26                                         |
| 8.25 .   |                   |                   |    | 6                          | 11                | 9                                            | 17            | 5                                          | 2                                          | 8                                          |
| 8.50 .   |                   |                   |    | 2                          | 3                 | 2                                            | 4             | 2                                          |                                            | 2                                          |
| 8.75 .   |                   |                   |    |                            | ĩ                 |                                              | 3             | 1                                          |                                            | ī                                          |
| . 00.    |                   |                   |    |                            |                   |                                              |               |                                            |                                            |                                            |
| .25 .    |                   |                   |    |                            |                   |                                              |               |                                            |                                            |                                            |
| 9.50 .   |                   |                   |    |                            |                   |                                              |               |                                            |                                            |                                            |
| Л        | fotal             |                   |    | 500                        | 500               | 500                                          | 500           | 500                                        | 500                                        | 500                                        |
| Mean di  | iamete            | er .              |    | 7.198                      | 7.280             | 7.202                                        | 7.365         | 7.178                                      | 6-961                                      | 7.261                                      |
| Standar  |                   |                   | 1  | 0.451                      | 0.443             | 0.455                                        | 0.431         | 0.458                                      | 0.431                                      | 0.426                                      |
| Variabil |                   |                   |    | 6.3                        | 6.1               | 6.3                                          | 5.9           | 6.4                                        | 6.2                                        | 5.9                                        |

| Mi     | id-points<br>interva |      | 88 | Case 86<br>Sex M<br>Age | 87<br>M | 88<br>M | 89<br>M | 90<br>M | 91<br>M | 92<br>M |
|--------|----------------------|------|----|-------------------------|---------|---------|---------|---------|---------|---------|
|        | enter ett            | to p |    | (?) 27                  | 22      | (?)     | (?)     | 23      | 24      | 26      |
| 4.75 . |                      |      |    |                         |         |         |         |         |         |         |
| 5.00.  |                      |      |    |                         |         |         |         |         |         |         |
| 5.25 . |                      |      |    |                         |         |         |         |         |         |         |
| 5.50 . |                      |      |    | 2                       | 2       |         |         |         |         | 1       |
| 5.75 . |                      |      |    | 2                       | 1       |         | 3       | 3       |         | 5       |
| 5.00 . |                      |      |    | 6                       | 5       | 2       | 10      | 10      | 6       | 8       |
| 3.25 . |                      |      |    | 26                      | 10      | 8       | 17      | 27      | 25      | 39      |
| 3.50.  |                      |      |    | 50                      | 40      | 18      | 49      | 60      | 55      | 78      |
| 3.75 . |                      |      |    | 93                      | 63      | 35      | 107     | 79      | 85      | 92      |
| . 00.  |                      |      |    | 98                      | 112     | 61      | 87      | 127     | 108     | 115     |
| 7.25 . |                      |      |    | 104                     | 115     | 98      | 110     | 94      | 117     | 103     |
| 1.50 . |                      |      |    | 69                      | 76      | 99      | 60      | 67      | 66      | 39      |
| 1.75 . |                      |      |    | 35                      | 50      | 83      | 34      | 24      | 29      | 18      |
| 8.00 . |                      |      |    | 11                      | 18      | 55      | 13      | 7       | 6       | 2       |
| 3.25 . |                      |      |    | 2                       | 6       | 30      | 9       | 2       | 3       |         |
| 8.50 . |                      |      |    | 2                       | 1       | 6       | 1       |         |         |         |
| 8.75 . |                      |      |    |                         | 1       | 4       |         |         |         |         |
| . 00.  |                      |      |    |                         |         | 1       |         |         |         |         |
| .25 .  |                      |      |    |                         |         |         |         |         |         |         |
| 0.50 . |                      |      |    |                         |         |         |         |         |         |         |
|        | Total                |      |    | 500                     | 500     | 500     | 500     | 500     | 500     | 500     |
| Mean   | diamete              | r .  |    | 7.048                   | 7.161   | 7.442   | 7.062   | 7.001   | 7.025   | 6-907   |
|        | ard devi             |      |    | 0.463                   | 0.456   | 0.498   | 0.472   | 0.438   | 0.436   | 0.422   |
|        | oility per           |      |    | 6.6                     | 6.4     | 6.7     | 6.7     | 6.3     | 6.2     | 6.1     |

# -continued

in 100 healthy persons-continued

| 76                                                                                                | 77                                                                                                                                                     | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80                                                                 | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83                                                                       | 84                                        | 85                                                             |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------|
| $M_{55}$                                                                                          | $\frac{M}{24}$                                                                                                                                         | M 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M<br>42                                                            | M<br>31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M<br>35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{M}{58}$                                                           | $\frac{M}{20}$                            | M<br>36                                                        |
|                                                                                                   |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |                                           |                                                                |
|                                                                                                   |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |                                           |                                                                |
|                                                                                                   |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |                                           |                                                                |
| 1                                                                                                 |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          | 1                                         |                                                                |
| 4                                                                                                 | 9                                                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          | 5                                         |                                                                |
| 12                                                                                                | 20                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                        | 8                                         | 3                                                              |
| 20<br>56                                                                                          | 39<br>65                                                                                                                                               | 7<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{1}{19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{39}{73}$                                                    | $\frac{11}{36}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $     \begin{array}{c}       14 \\       39     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{5}{19}$                                                           | $\frac{29}{46}$                           | 6<br>30                                                        |
| 81                                                                                                | 68                                                                                                                                                     | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 122                                                                | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46                                                                       | 86                                        | 59                                                             |
| 84                                                                                                | 105                                                                                                                                                    | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 102                                                                | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 77                                                                       | 126                                       | 80                                                             |
| 116                                                                                               | 103                                                                                                                                                    | 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 85                                                                 | 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 112                                                                      | 116                                       | 133                                                            |
| 69                                                                                                | 62                                                                                                                                                     | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37                                                                 | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88                                                                       | 58                                        | 92                                                             |
| 35                                                                                                | 18                                                                                                                                                     | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19                                                                 | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 82                                                                       | 19                                        | 63                                                             |
| 16                                                                                                | 8                                                                                                                                                      | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                  | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38                                                                       | 3                                         | 21                                                             |
| $\frac{4}{2}$                                                                                     | 3                                                                                                                                                      | $\frac{12}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{34}{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                    | $\frac{11}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{22}{7}$                                                           | 3                                         | 11                                                             |
| ~                                                                                                 |                                                                                                                                                        | .4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | í                                                                        |                                           | i                                                              |
|                                                                                                   |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |                                           |                                                                |
|                                                                                                   |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |                                           |                                                                |
|                                                                                                   |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |                                           |                                                                |
| 500                                                                                               | 500                                                                                                                                                    | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 500                                                                | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 500                                                                      | 500                                       | 500                                                            |
| 7.064                                                                                             | 6-944                                                                                                                                                  | 7.279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6-889                                                              | 7.191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.367                                                                    | 6-994                                     | 7.254                                                          |
| 0-489                                                                                             | 0.489                                                                                                                                                  | 0.456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.433                                                              | 0.463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.473                                                                    | 0.426                                     | 0.437                                                          |
| 6-9                                                                                               | 7.0                                                                                                                                                    | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6-3                                                                | $6 \cdot 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.4                                                                      | 6-1                                       | 6.0                                                            |
|                                                                                                   |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |                                           |                                                                |
| 93                                                                                                | 94                                                                                                                                                     | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 97                                                                 | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                      | 1                                         |                                                                |
| М                                                                                                 | M                                                                                                                                                      | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M                                                                  | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F                                                                        |                                           |                                                                |
| 27                                                                                                | 48                                                                                                                                                     | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26                                                                 | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25                                                                       | Te                                        | otal                                                           |
|                                                                                                   |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |                                           | 2                                                              |
| • •                                                                                               |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |                                           | · 6                                                            |
|                                                                                                   |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                        |                                           | 29                                                             |
| 1                                                                                                 |                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                        |                                           | 149                                                            |
| 4                                                                                                 | 8                                                                                                                                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                                                                  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19                                                                       |                                           | 517                                                            |
| 11                                                                                                | 15                                                                                                                                                     | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                                                  | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48                                                                       |                                           | 530                                                            |
| 30                                                                                                | 37                                                                                                                                                     | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19                                                                 | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 92                                                                       |                                           | 429                                                            |
| 76                                                                                                | 63                                                                                                                                                     | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 58                                                                 | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 106                                                                      |                                           | 568                                                            |
|                                                                                                   |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |                                           |                                                                |
| 84                                                                                                | 109                                                                                                                                                    | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 77                                                                 | 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 116                                                                      |                                           | 956                                                            |
| 127                                                                                               | $     109 \\     100 $                                                                                                                                 | 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 77     120                                                         | 113     97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $     117 \\     102   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 71                                                                       | 11,                                       | 214                                                            |
| $     \begin{array}{c}       127 \\       83     \end{array} $                                    | $     \begin{array}{r}       109 \\       100 \\       83     \end{array}   $                                                                          | $     \begin{array}{r}       113 \\       52     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 118     98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $77 \\ 120 \\ 104$                                                 | $     \begin{array}{r}       113 \\       97 \\       75     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $     \begin{array}{c}       117 \\       102 \\       79     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 71<br>33                                                                 | 11,<br>8,                                 | $\frac{214}{388}$                                              |
|                                                                                                   | $     \begin{array}{r}       109 \\       100 \\       83 \\       53     \end{array} $                                                                | $\begin{array}{c}113\\52\\24\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $     \begin{array}{r}       118 \\       98 \\       53     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $77 \\ 120 \\ 104 \\ 59$                                           | $     \begin{array}{r}       113 \\       97 \\       75 \\       42     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $     \begin{array}{r}       117 \\       102 \\       79 \\       46     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 71                                                                       | 11,<br>8,<br>5,                           | $214 \\ 388 \\ 154$                                            |
| 127     83                                                                                        | $     \begin{array}{r}       109 \\       100 \\       83     \end{array}   $                                                                          | $     \begin{array}{r}       113 \\       52 \\       24 \\       8 \\       5     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 118     98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $77 \\ 120 \\ 104$                                                 | $     \begin{array}{r}       113 \\       97 \\       75     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $     \begin{array}{r}       117 \\       102 \\       79 \\       46 \\       20     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $     \begin{array}{c}       71 \\       33 \\       9     \end{array} $ | 11,<br>8,<br>5,<br>2,                     | 214<br>388<br>154<br>570                                       |
| $     \begin{array}{r}       127 \\       83 \\       52 \\       21     \end{array} $            | $     \begin{array}{r}       109 \\       100 \\       83 \\       53 \\       18     \end{array} $                                                    | $     \begin{array}{r}       113 \\       52 \\       24 \\       8     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $     \begin{array}{r}       118 \\       98 \\       53 \\       30     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $77 \\ 120 \\ 104 \\ 59 \\ 35$                                     | $     \begin{array}{r}       113 \\       97 \\       75 \\       42 \\       10     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $     \begin{array}{r}       117 \\       102 \\       79 \\       46     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $     \begin{array}{c}       71 \\       33 \\       9     \end{array} $ | 11,<br>8,<br>5,<br>2,<br>1,               | 214<br>388<br>154<br>570<br>070<br>319                         |
| $     \begin{array}{r}       127 \\       83 \\       52 \\       21 \\       8     \end{array} $ | $     \begin{array}{r}       109 \\       100 \\       83 \\       53 \\       18 \\       9     \end{array} $                                         | $     \begin{array}{r}       113 \\       52 \\       24 \\       8 \\       5     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $     \begin{array}{r}       118 \\       98 \\       53 \\       30 \\       9     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $77 \\ 120 \\ 104 \\ 59 \\ 35 \\ 11$                               | $     \begin{array}{r}       113 \\       97 \\       75 \\       42 \\       10 \\       4     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $     \begin{array}{r}       117 \\       102 \\       79 \\       46 \\       20 \\       4     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $     \begin{array}{c}       71 \\       33 \\       9     \end{array} $ | 11,<br>8,<br>5,<br>2,<br>1,               | 214<br>388<br>154<br>570<br>070<br>319<br>81                   |
| $     \begin{array}{r}       127 \\       83 \\       52 \\       21 \\       8     \end{array} $ | $     \begin{array}{r}       109 \\       100 \\       83 \\       53 \\       18 \\       9 \\       4     \end{array} $                              | $     \begin{array}{r}       113 \\       52 \\       24 \\       8 \\       5     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $     \begin{array}{r}       118 \\       98 \\       53 \\       30 \\       9 \\       2     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $77 \\ 120 \\ 104 \\ 59 \\ 35 \\ 11 \\ 3$                          | $     \begin{array}{r}       113 \\       97 \\       75 \\       42 \\       10 \\       4 \\       4     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $     \begin{array}{r}       117 \\       102 \\       79 \\       46 \\       20 \\       4 \\       1     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $     \begin{array}{c}       71 \\       33 \\       9     \end{array} $ | 11,<br>8,<br>5,<br>2,<br>1,               | 214<br>388<br>154<br>570<br>070<br>319                         |
| 127 83 52 21 8 3                                                                                  | $     \begin{array}{r}       109 \\       100 \\       83 \\       53 \\       18 \\       9 \\       4 \\       \\       \\       \\       \\       $ | $     \begin{array}{r}       113 \\       52 \\       24 \\       8 \\       5 \\       2 \\       \dots \\      \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\      \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\   $                | $     \begin{array}{r}       118 \\       98 \\       53 \\       30 \\       9 \\       2 \\       1 \\       \dots \\       \dots     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $77 \\ 120 \\ 104 \\ 59 \\ 35 \\ 11 \\ 3 \\ 1 \\ \cdots \\ \cdots$ | $     \begin{array}{r}       113 \\       97 \\       75 \\       42 \\       10 \\       4 \\       4 \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\      \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\  $ | $     \begin{array}{r}       117 \\       102 \\       79 \\       46 \\       20 \\       4 \\       1     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 71<br>33<br>9<br>1<br><br><br>                                           | 11,<br>8,<br>5,<br>2,<br>1,               | 214<br>388<br>154<br>570<br>070<br>319<br>81<br>17             |
| 127<br>83<br>52<br>21<br>8<br>3<br><br>                                                           | 109<br>100<br>83<br>53<br>18<br>9<br>4<br><br>                                                                                                         | 113<br>52<br>24<br>8<br>5<br>2<br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $     \begin{array}{r}       118 \\       98 \\       53 \\       30 \\       9 \\       2 \\       1 \\       \dots \\      \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\ $ | 77 $120$ $104$ $59$ $35$ $11$ $3$ $1$ $$ $$ $$                     | $     \begin{array}{r}       113 \\       97 \\       75 \\       42 \\       10 \\       4 \\       4 \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\      \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\  $ | $     \begin{array}{r}       117 \\       102 \\       79 \\       46 \\       20 \\       4 \\       1 \\       1 \\       \dots \\      \dots \\       \dots \\      \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\$ | 71<br>33<br>9<br>1<br><br><br>                                           | 11,<br>8,<br>5,<br>2,<br>1,               | 214<br>388<br>154<br>570<br>070<br>319<br>81<br>17<br><br>1    |
| 127<br>83<br>52<br>21<br>8<br>3<br><br><br>500                                                    | 109<br>100<br>83<br>53<br>18<br>9<br>4<br><br><br>500                                                                                                  | 113<br>52<br>24<br>8<br>5<br>2<br><br><br>500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 118<br>98<br>53<br>30<br>9<br>2<br>1<br><br><br>500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $77 \\ 120 \\ 104 \\ 59 \\ 35 \\ 11 \\ 3 \\ 1 \\ \\ \\ 500$        | $ \begin{array}{c} 113 \\ 97 \\ 75 \\ 42 \\ 10 \\ 4 \\ \\ \\ 500 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{c} 117\\ 102\\ 79\\ 46\\ 20\\ 4\\ 1\\ 1\\\\\\ 500 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 71<br>33<br>9<br>1<br><br><br><br>500                                    | 11,<br>8,<br>5,<br>2,<br>1,<br>1,<br>50,  | 214<br>388<br>154<br>570<br>070<br>319<br>81<br>17<br>1<br>000 |
| 127<br>83<br>52<br>21<br>8<br>3<br><br>                                                           | 109<br>100<br>83<br>53<br>18<br>9<br>4<br><br>                                                                                                         | $     \begin{array}{r}       113 \\       52 \\       24 \\       8 \\       5 \\       2 \\       \dots \\      \dots \\       \dots \\      \dots \\       \dots \\      \dots \\      \dots \\      \dots \\      \dots \\      \dots \\      \dots \\      \dots \\      \dots \\      \dots \\       \dots \\      \dots \\      \dots \\      \dots \\      \dots \\      \dots \\      \dots \\      \dots \\      \dots \\      \dots \\      \dots \\      \dots \\      \dots \\      \dots \\      \dots \\      \dots \\      \dots \\      \dots \\       \dots \\      \dots \\      \dots \\      \dots \\      \dots \\      \dots \\    $ | 118<br>98<br>53<br>30<br>9<br>2<br>1<br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 77 $120$ $104$ $59$ $35$ $11$ $3$ $1$ $$ $$ $$                     | $     \begin{array}{r}       113 \\       97 \\       75 \\       42 \\       10 \\       4 \\       4 \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\      \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\       \\  $ | $     \begin{array}{r}       117 \\       102 \\       79 \\       46 \\       20 \\       4 \\       1 \\       1 \\       \dots \\      \dots \\       \dots \\      \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\       \dots \\$ | 71<br>33<br>9<br>1<br><br><br>                                           | 11,<br>8,<br>5,<br>2,<br>1,<br>50,<br>7.2 | 214<br>388<br>154<br>570<br>070<br>319<br>81<br>17<br><br>1    |

#### TABLE 7

| Mean diameter               | Number of persons |                    |
|-----------------------------|-------------------|--------------------|
| 6.650-6.699                 | 1                 |                    |
| 6.700 - 6.749               | 0                 |                    |
| 6.750 - 6.799               | 0                 |                    |
| $6 \cdot 800 - 6 \cdot 849$ | 2                 |                    |
| $6 \cdot 850 - 6 \cdot 899$ | 2                 |                    |
| 6-900-6-949                 | 4                 |                    |
| 6-950-6-999                 | 4                 | Minimum $6.661\mu$ |
| 7.000 - 7.049               | 6                 | Maximum 7.492µ     |
| 7.050 - 7.099               | 8                 |                    |
| $7 \cdot 100 - 7 \cdot 149$ | 6                 |                    |
| $7 \cdot 150 - 7 \cdot 199$ | 13                |                    |
| $7 \cdot 200 - 7 \cdot 249$ | 12                |                    |
| $7 \cdot 250 - 7 \cdot 299$ | 13                |                    |
| $7 \cdot 300 - 7 \cdot 349$ | 7                 |                    |
| 7.350 - 7.399               | 7                 |                    |
| 7.400 - 7.449               | 9                 |                    |
| $7 \cdot 450 - 7 \cdot 499$ | 6                 |                    |
|                             | 100               |                    |

Mean diameters of 100 normal persons

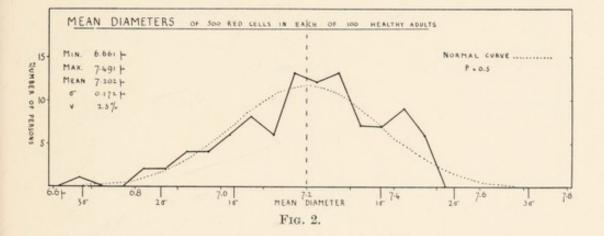
Mean  $\mu$  7.202 Standard deviation ( $\sigma$ ) 0.172 Coefficient of variation (v) 2.3 per cent.

The 80 fresh cases have extended my previously observed normal range from  $6.968-7.487\mu$  to  $6.661-7.492\mu$ , but only 10 of the diameters fall outside the range of the series of 20 persons, and the mean is emended only from  $7.210\mu$  to  $7.202\mu$ .

The distribution of the means is irregular; the curve (Fig. 2) ends abruptly on the right. This may represent the fact. If the distribution is compared by the  $\chi^2$  method with a 'normal' curve (calculated from the observed mean and standard deviation), P works out at 0.52,\* so that the observed distribution may quite well represent the normal distribution which we should expect.

Π

It is necessary here to consider the nature of the 'normal' curve and 'goodness of fit'.

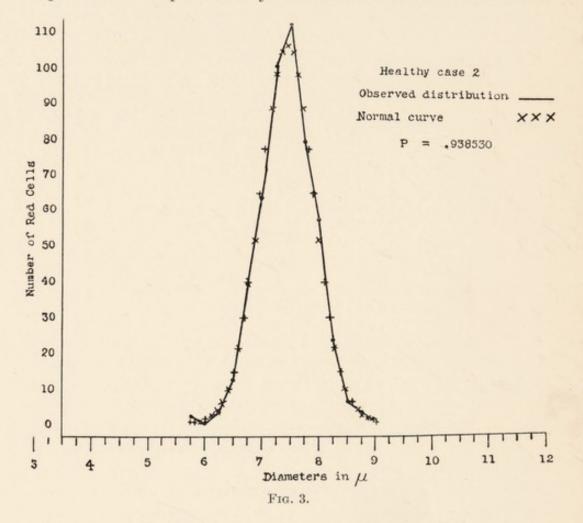

As stated above, most measurable properties and products of living things are arranged according to the normal curve of variation, and it may be presumed that the red cells of the blood are no exception. In other words the majority of the cells will have a diameter

<sup>\*</sup> This value of P means that in 52 trials in 100 we should get by random sampling a correspondence between observation and theory as bad or worse; other groupings of the figures gave P = 0.43 and 0.78.

#### THE RED CELL DIAMETERS OF HEALTHY PERSONS 23

near to the mean diameter, and at increasing distances on either side of the mean the number of cells will be progressively fewer. Thus in a case where the mean diameter is  $7 \cdot 28\mu$ , two-thirds of the cells are found to lie between  $6 \cdot 50\mu$  and  $8 \cdot 0\mu$ , and only about six per thousand are smaller than  $6 \cdot 0\mu$  or greater than  $8 \cdot 50\mu$ . More precisely the 'normal' or Gaussian curve is a symmetrical binomial curve, the nature and properties of which are discussed in books on statistics (Yule, 1919, chap. xv; Bowley, 1920, Bk. II, chaps. ii-iii).

An ideal symmetrical curve with its base-line bounds an area or polygon which is divided into two equal parts by the mean ordinate,



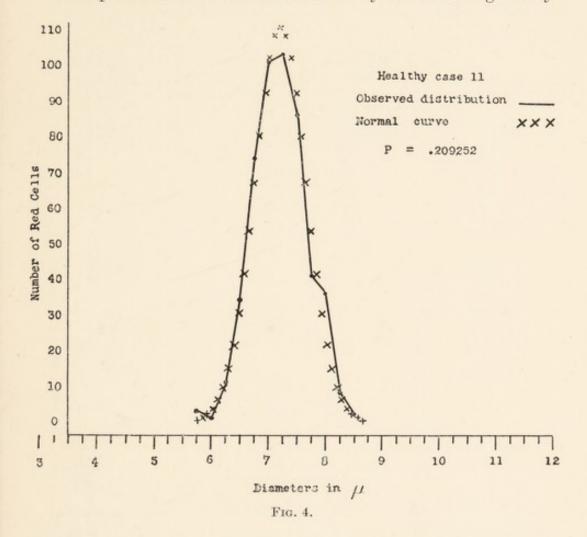

the mode, the median, and the mean being identical. Given the number of observations (frequencies), the mean value, and the standard deviation, it is possible to construct a corresponding normal curve for any sample of a population or collection of variables, from a calculation of the values of the ordinates at different distances from the mean ordinate.

Since the mean ordinate divides the polygon into two equal parts, each portion is 50 per cent. or 0.50. With an ordinate at a distance of 0.1 times the standard deviation from the mean, there will be 0.53983 of the whole area on one side and 0.46017 on the other. With an ordinate at a distance from the mean equal to the standard deviation, about 16 per cent. of the area will be cut off and the greater portion will be 0.84134. With an ordinate at a distance from the mean equal to twice the standard deviation, only 2.3 per cent. will be cut off and, therefore, the greater fraction will be 0.97725 and the rest of the area will be  $1-0.9772 = 0.0228 = 2\frac{1}{4}$  per cent., or about 23 per 1,000, i.e. 43.4 to 1 against. Again, with an ordinate at a distance equal to 3 times the standard deviation the greater fraction will be 0.9987 and the rest of the area will be 1-0.9987 =0.0013 = 13 per 10,000 or 770/1, which means that the chances of

any frequency occurring in that small area are 770 to 1 against.\* Tables have been constructed giving the calculated values for the areas at any distance from the mean (Yule, loc. cit., p. 310); the symmetrical curve formed by these ordinates is the normal curve.

The theoretical curve which is calculated in this way could be expected to correspond exactly with the curve of the observed data




only if the whole of a large population (in this case all the red cells in the whole blood) had been measured. In practice it is possible to examine only a sample, and 500 cells is a convenient number, bearing in mind, as stated above, that the precision of the result varies as the square root of the number measured.

Owing to the error of random sampling the correspondence between the actual and calculated curves of distribution will in the great majority of these samples be more or less imperfect. When the correspondence is so slight that it would seem unlikely or impossible that the measured sample could belong to a population of cells distributed according to size exactly on the normal curve, there is

\* See Pearl, Medical Biometry, 1923, pp. 244 and 365.

strong presumption that the population is not homogeneous but is composed of a mixture of two or more groups of individuals, each group varying according to its normal curve. If, on the other hand, the correspondence between the observed and the calculated curves is good there is no prima facie reason to suspect heterogeneity.

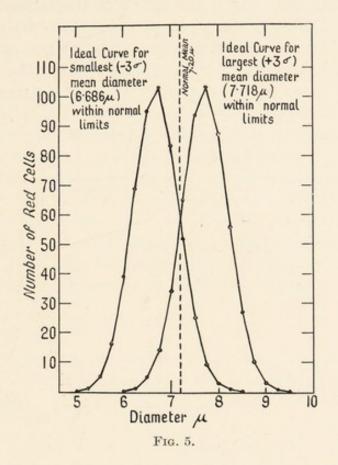
Examples of normal curves calculated by the method given by



Yule (p. 307) are shown in Figs. 3 and 4; the observed curves of red cell diameters from healthy persons are superposed on their respective normal curves. It is well to emphasize the fact that the comparison of curves by the mere ocular inspection of the graphs is apt to be extremely misleading, and excepting in cases of wide and obvious divergence such comparisons would be of small value.

The quantitative measure of the goodness or badness of correspondence or 'fit' was carried out by Karl Pearson's 'chi square'  $(\chi^2)$  method (*Biometrica*, 1914, part 1, p. 85). There finally emerges from this procedure a figure 'P' which is a measure of the goodness of fit. When P = 0.50 it means that 50 out of 100 samples from a

population varying according to the normal curve would diverge more from the normal distribution than the sample under consideration, in other words, the fit is fairly good. When P = 0.9999999 it means that with 999,999 out of 1,000,000 samples there would be a worse fit, or the sample under consideration is practically a perfect fit. When P = 0.001 it means that only once in 1,000 samples would


|           | Frequencies                            | Frequencies                            | Frequencies      |
|-----------|----------------------------------------|----------------------------------------|------------------|
| Units     | $-3\sigma$                             | $+3\sigma$                             | Healthy mean     |
| Diameters | M = 6.686                              | M = 7.718                              | M = 7.202        |
| μ         | $= 7 \cdot 202 - 3 \times 0 \cdot 172$ | $= 7 \cdot 202 + 3 \times 0 \cdot 172$ | $\sigma = 0.487$ |
| 5.25      | 1                                      |                                        |                  |
| 5.50      | 5                                      |                                        | ~                |
| 5.75      | 16                                     |                                        | 2                |
| 6.00      | 39                                     |                                        | 5                |
| 6.25      | 69                                     | 1                                      | 15               |
| 6.50      | 95                                     | 5                                      | 34               |
| 6.75      | 102                                    | 14                                     | 66               |
| 7.00      | 84                                     | 34                                     | 90               |
| 7.25      | 52                                     | 65                                     | 112              |
| 7.50      | 25                                     | 93                                     | 84               |
| 7.75      | 9                                      | 103                                    | 51               |
| 8.00      | 2                                      | 87                                     | 26               |
| 8.25      | 1                                      | 56                                     | 11               |
| 8.50      |                                        | 28                                     | 3                |
| 8.75      |                                        | 10                                     | 1                |
| 9.00      |                                        | 3                                      |                  |
| 9.25      |                                        | 1                                      |                  |
| 9.50      |                                        |                                        |                  |
|           | 500                                    | 500                                    | 500              |
| М         | 6.686                                  | 7.718                                  | 7.202            |
| σ         | 0.480                                  | 0.484                                  | 0.487            |
| v         | 7.1                                    | 6.2                                    | 6.3              |

| - TD |   | - |   |      | 0 |
|------|---|---|---|------|---|
| T    | А | в | L | EG 👘 | 8 |

a worse fit be met with, and the divergence is so great that it is impossible to imagine that the sample belongs to a normal population. The value of P depends to some extent upon the judgement used in forming the groups of figures for the calculation. Inasmuch as 'good' and 'bad' are relative terms, the interpretation of P is dependent on the stringency of the criteria which are chosen for dealing with the question of chances. It seems reasonable to regard P+0.5 and over as a good fit, and when P is less than 0.1 it is a bad fit. On the whole the goodness of fit of the observed curves of the red cell diameters of healthy persons with their respective normal curves is satisfactory.

We are now in better state to discuss the distribution curves of 100 healthy persons as expressed by Fig. 2. The highest observed

mean diameter is  $7 \cdot 492\mu$ , but it would be rash to assume that this is the highest limit of normality. By the ordinary + or  $-3\sigma$  rule for normal or near normal distributions this should be  $7 \cdot 202 +$  $(3 \times 0.172) = 7 \cdot 718\mu$ , and it would be unwise to be quite sure that any mean diameter less than  $7 \cdot 8\mu$  was abnormally large. Similarly  $7 \cdot 202 - (3 \times 0.172) = 6 \cdot 686\mu$  will represent the smallest  $(-3\sigma)$  mean diameter within normal limits. We noted above that with 3 times  $\sigma$ ,



the smallest area of the polygon would be 1-0.9987 = 0.0013, so that with 1,000 healthy persons we should expect to get about 1 with a mean diameter greater than  $7.718\mu$  or less than  $6.686\mu$ . In other words, the chances against  $7.718\mu$  and  $6.686\mu$  being normal diameters are 13 per 10,000, or over 770 to 1. With  $2.5\sigma$  we should expect 6 diameters greater than  $7.632\mu$  or less than  $6.772\mu$ , the chances against normality being 157 to 1; and about 23 per thousand with + or  $-2\sigma$ , the chances of  $7.546\mu$  and  $6.858\mu$  being normal are about 43 to 1.

There is no arbitrary limit to normality. Which limit anybody chooses for working purposes depends on their psychological attitude towards questions of chance. I believe, however, that all experience goes to show that it is not safe to trust to a less stringent criterion

than a deviation from the mean of 3 times the standard deviation, though this will sometimes involve the classification of really abnormal bloods as normal. I conclude therefore that the normal range of mean diameters determined by my method is from  $6.686\mu$ to  $7.718\mu$ ; a mean diameter outside these limits is almost certainly abnormal and one which is larger than  $7.546\mu$  or smaller than  $6.854\mu$  is open to suspicion.

In Table 8 I have set out the calculated frequencies for normal curves ranged about mean diameters of  $-3\sigma$  (6.686 $\mu$ ) and  $+3\sigma$  (7.718 $\mu$ ) ideal curves, and contrast them with the observed frequencies of diameters in the healthy mean (7.202 $\mu$ ). From these frequency distributions three curves can be drawn; they are represented in Fig. 5. To simplify the chart I have omitted the mean healthy curve, indicating it only by the ordinate of the healthy mean (7.202 $\mu$ ). To the right is drawn the ideal normal curve for the largest  $+3\sigma$  mean diameter (7.718 $\mu$ ) within normal limits, to the left the ideal curve for the smallest  $-3\sigma$  mean diameter (6.686 $\mu$ ) within normal limits. These curves define the limits of normality, and cells occurring outside the boundaries on either side are regarded as abnormal: by counting those outside the bounds it is possible to estimate the degree of microcytosis or megalocytosis as the case may be.

### III

The coefficient of variation of these 100 mean diameters is  $2 \cdot 3$  per cent. The figure seems low, but I do not know of any measurements of linear dimension which are exactly comparable, except those of Wischnewsky.\*

The variation from one person to another is perhaps in part due to factors to be described later. The red cells are not always the same size in the same person. By my method they are shown to be smallest when the blood is most alkaline at the end of a deep sleep and largest after violent exercise; the extreme mean diameters so expressed

\* Wischnewsky (1928; kindly translated for me by Prof. V. Korenschewsky) has measured the red cell diameters by the dry film method in 179 persons of various races—Mongols, Persians, Turks, Finns, and Caucasians—who were collected in Moscow and examined after several months' stay, by which they were presumably acclimatized to their new surroundings. He concludes that racial and climatic differences have no appreciable influence. He measured varying numbers of cells, seldom less than 200. Allowing for some personal factor, from which the method can scarcely be wholly free, his results are in good agreement with mine. His average mean diameter is  $7.248\mu$ , or  $0.046\mu$  greater than the mean of my 100 cases, which is not significant; only two cases—one at each end—fall outside my calculated normal range. The variability of his series is 3.0 per cent., of the same low order as that of my series. Some of his results are set out in my 1929 paper, *Journ. Path. Bact.* xxxii, p. 482, and are here repeated in Table 9, p. 29.

in one individual may differ by as much  $(1\cdot0\mu)$  as the extremes found in the series of 100 healthy people. In making the present observations these exaggerated conditions have been carefully avoided. From errors of sampling and method, films made from the same person at the same time may give means differing by as much as  $0\cdot158\mu$ , and repeated observations on the same person show that in the ordinary course of the working day differences of  $0\cdot2\mu-0\cdot3\mu$  may occur. Variations due to these causes presumably on the whole cancel one another and in any case they can account only for a small part of the normal range which has been found.

It seems, therefore, that red cells are inherently larger in some healthy persons than in others, and to further this view I have selected two persons whose mean red cell diameters on the first examination were  $6.815\mu$  and  $7.492\mu$  respectively, and I have examined a series of films taken from them under approximately similar conditions extending over periods of time. The results are

TABLE 9 (see footnote, p. 28)

Mean diameters of 170 healthy persons in Moscow (Wischnewsky)

| Mea | n diameter         | Number of persons |                   |
|-----|--------------------|-------------------|-------------------|
| 6.6 | 00-6-649           | 1                 |                   |
| 6.6 | 50-6-699           | 0                 |                   |
| 6.7 | 00-6.749           | 1                 |                   |
| 6.7 | 50-6.799           | 0                 |                   |
| 6-8 | 00-6.849           | 2                 |                   |
| 6.8 | 50-6-899           | 3                 |                   |
| 6.9 | 00-6.949           | 8                 |                   |
| 6-9 | 50-6.999           | 10                |                   |
| 7.0 | $00 - 7 \cdot 049$ | 13                |                   |
| 7.0 | 50-7.099           | 13                | E CONTRACTOR      |
| 7.1 | 00-7.149           | 8                 |                   |
| 7.1 | 50-7.199           | 12                | Minimum $6.64\mu$ |
| 7.2 | 00-7.249           | 13                | Maximum 7.83µ     |
| 7.2 | $50 - 7 \cdot 299$ | 15                |                   |
| 7.3 | $00 - 7 \cdot 349$ | 17                |                   |
| 7.3 | 50-7.399           | 17                |                   |
| 7.4 | 00-7.449           | 12                |                   |
| 7.4 | $50 - 7 \cdot 499$ | 10                |                   |
| 7.5 | $00 - 7 \cdot 549$ | 8                 |                   |
| 7.5 | $50 - 7 \cdot 599$ | 5                 |                   |
| 7.6 | $00 - 7 \cdot 649$ | 8                 |                   |
| 7.6 | $50 - 7 \cdot 699$ | 1                 |                   |
| 7.7 | 00-7.749           | 1                 |                   |
| 7.7 | 50-7.799           | 0                 |                   |
| 7.8 | 00-7.849           | 1                 |                   |
|     |                    | Total 179         |                   |
|     | Mean               |                   | $7.248\mu$        |
|     |                    |                   | $0.218\mu$        |

set out in Table 10. In the case of N the mean diameters taken at intervals are not significantly different over a twelve months' period; with V a similar fairly constant value is maintained for three months. Two other cases, T and B, show similar constancy after ten years' interval.

# TABLE 10

# Red cell mean diameters

|       | I      | v    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                    |                                                       | V                                                     |                                                       |                                                       |                                                        |
|-------|--------|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|
|       |        |      | Mean | a diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |                                                       |                                                       | 1                                                     | Iean                                                  | diameter                                               |
|       |        |      |      | of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                       |                                                       |                                                       |                                                       | of                                                     |
|       |        |      | 50   | 0 red cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date                                                 |                                                       |                                                       |                                                       | 500                                                   | red cells                                              |
|       |        |      |      | $6.815\mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | xii.28                                               |                                                       |                                                       |                                                       |                                                       | $7.492 \mu$                                            |
|       |        |      |      | $6.798\mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.iii.29                                             |                                                       |                                                       |                                                       |                                                       | $7.403 \mu$                                            |
|       |        |      |      | $6.885\mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.iii.29                                             |                                                       |                                                       | ~                                                     |                                                       | $7.390\mu$                                             |
|       |        |      |      | $6.955\mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.iii.29                                            |                                                       |                                                       |                                                       |                                                       | $7.230\mu$                                             |
|       |        |      |      | $6.859\mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13.iii.29                                            |                                                       |                                                       |                                                       |                                                       | $7.678\mu$                                             |
|       |        |      |      | $6.950\mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13.iii.29                                            |                                                       |                                                       |                                                       |                                                       | $7.586\mu$                                             |
|       |        |      |      | $6.869\mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (2nd film)                                           |                                                       |                                                       |                                                       |                                                       |                                                        |
|       |        |      |      | $7.094\mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.iii.29                                            |                                                       |                                                       |                                                       |                                                       | $7.260\mu$                                             |
| cise) |        |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16.iii.29                                            |                                                       |                                                       |                                                       |                                                       | $7.533\mu$                                             |
|       |        |      |      | $6.804 \mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18.iii.29                                            |                                                       |                                                       |                                                       |                                                       | $7.233\mu$                                             |
| ed re | spirat | ion) |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20,111.29                                            |                                                       |                                                       |                                                       |                                                       | $7.346\mu$                                             |
|       |        |      |      | $6.749\mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23.iii.29                                            |                                                       |                                                       |                                                       |                                                       | $7.436\mu$                                             |
|       |        |      |      | $6.950\mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.iii.29                                            |                                                       |                                                       |                                                       |                                                       | $7.482\mu$                                             |
|       |        | -    |      | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                    |                                                       |                                                       |                                                       |                                                       |                                                        |
|       | Aver   | age  |      | 0.994h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      |                                                       | Aver                                                  | age                                                   | •                                                     | $7 \cdot 422 \mu$                                      |
|       | 1      | ,    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |                                                       | В                                                     |                                                       |                                                       |                                                        |
|       |        |      | Mean | a diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |                                                       |                                                       | 1                                                     | Iean                                                  | diameter                                               |
|       |        |      | of   | red cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Date                                                 |                                                       |                                                       |                                                       | of n                                                  | ed cells                                               |
|       |        |      |      | $6.968\mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.vi.19                                             |                                                       |                                                       |                                                       |                                                       | $7.443\mu$                                             |
|       |        |      |      | $6.974 \mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.xii.29                                            |                                                       |                                                       |                                                       |                                                       | $7.476\mu$                                             |
|       |        |      |      | Mean           50           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           .           . <tr td=""> <tr tr=""> <tr tr="">     .</tr></tr></tr> | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |
|       |        |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |                                                       |                                                       |                                                       |                                                       |                                                        |
|       |        |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |                                                       |                                                       |                                                       |                                                       |                                                        |
|       |        |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |                                                       |                                                       |                                                       |                                                       |                                                        |

#### CHAPTER IV

#### THE COEFFICIENT OF VARIATION

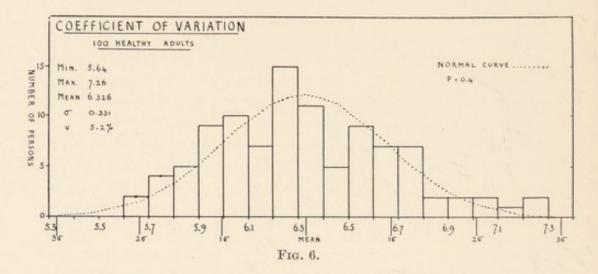
### THE VARIABILITY OF RED CELL DIAMETERS IN ONE POPULATION

THE coefficients of variation of the populations, each of 500 cells, from 100 healthy persons are summarized in Table 11, and expressed in Fig. 6. The mean is 6.326 per cent. and by the  $\pm 3\sigma$  rule the normal range should be 5.333 to 7.319 per cent., which corresponds fairly well with the observed range, 5.64 per cent. to 7.26 per cent. The distribution compared with its normal curve gives P = 0.40.

The coefficient of variation may be greater than the extreme limit of the healthy range under three conditions: (1) the range of red cell diameter may be increased, the distribution remaining normal, as in some examples of anaemia following haemorrhage (Fig. 12); (2) the range of size may be normal but the distribution within it too irregular; (3) the range of sizes may be too great and their distribution irregular, as happens in most cases of active pernicious anaemia. A population of red cells which shows an excessive variability may be homogeneous or heterogeneous.

#### TABLE 11

| Coefficient               | Number of persons                                                                                                                                                                                                                       |                                                       |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| $5 \cdot 60 - 5 \cdot 69$ | 2                                                                                                                                                                                                                                       |                                                       |
| 5.70 - 5.79               |                                                                                                                                                                                                                                         |                                                       |
| $5 \cdot 80 - 5 \cdot 89$ | 5                                                                                                                                                                                                                                       |                                                       |
| 5.90 - 5.99               | 9                                                                                                                                                                                                                                       |                                                       |
| 6.00-6.09                 | 10                                                                                                                                                                                                                                      |                                                       |
| 6.10-6.19                 | 7                                                                                                                                                                                                                                       |                                                       |
| $6 \cdot 20 - 6 \cdot 29$ | 15                                                                                                                                                                                                                                      | Minimum 5.64                                          |
| 6.30-6.39                 | 11                                                                                                                                                                                                                                      | Maximum 7.26                                          |
| $6 \cdot 40 - 6 \cdot 49$ | 5                                                                                                                                                                                                                                       |                                                       |
| 6.50-6.59                 | 9                                                                                                                                                                                                                                       |                                                       |
| 6.60-6.69                 | 7                                                                                                                                                                                                                                       |                                                       |
| 6.70-6.79                 | 7                                                                                                                                                                                                                                       |                                                       |
| 6-80-6-89                 | 2                                                                                                                                                                                                                                       |                                                       |
| 6.90-6.99                 | 2                                                                                                                                                                                                                                       |                                                       |
| 7.00-7.09                 | 2                                                                                                                                                                                                                                       |                                                       |
| 7.10-7.19                 | 1                                                                                                                                                                                                                                       |                                                       |
| $7 \cdot 20 - 7 \cdot 29$ | 2                                                                                                                                                                                                                                       |                                                       |
|                           | m . 1 100                                                                                                                                                                                                                               |                                                       |
| •                         | Total 100                                                                                                                                                                                                                               |                                                       |
| Meen                      |                                                                                                                                                                                                                                         | 6.326                                                 |
|                           |                                                                                                                                                                                                                                         | 0.331                                                 |
|                           | $\begin{array}{c} 5.60-5.69\\ 5.70-5.79\\ 5.80-5.89\\ 5.90-5.99\\ 6.00-6.09\\ 6.10-6.19\\ 6.20-6.29\\ 6.30-6.39\\ 6.40-6.49\\ 6.50-6.59\\ 6.60-6.69\\ 6.70-6.79\\ 6.80-6.89\\ 6.90-6.99\\ 7.00-7.09\\ 7.10-7.19\\ 7.20-7.29\end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |


#### Coefficients of variation of 100 healthy persons

|         | · · · · · · · · · · · · · · · · · · · |         |    | <br>                 |  |
|---------|---------------------------------------|---------|----|----------------------|--|
| ndard   | devia                                 | ation   |    | 0.331                |  |
| fficien | t of v                                | ariatio | on | $5 \cdot 2$ per cent |  |

Coef

#### THE COEFFICIENT OF VARIATION

The coefficient of variation is important because it is probably the most delicate test for a departure from the normal in red cell diameters, and the great majority of active cases of pernicious anaemia show an abnormally high variability as well as an excessive mean diameter. The two do not necessarily go together. As will be



shown later (p. 41) in emphysema the mean diameter may be considerably greater than normal with a variability within the healthy range, and (p. 39) if the blood-cells are swollen by violent exercise their variability remains unchanged. Contrariwise, as in anaemia from haemorrhage (p. 43), the red cells may on the whole be smaller than usual and the variability very high. In pernicious anaemia a high variability is almost more constant (though less characteristic) than a high mean diameter.

#### CHAPTER V

# DIURNAL VARIATION

THAT there is a diurnal variation in the diameters of red cells, namely, a gradual increase during the day and a diminution during sleep, appears from Fig. 7 and Table 12, which show three sets of observations taken during ordinary working days, the first film in the morning being taken immediately on waking.

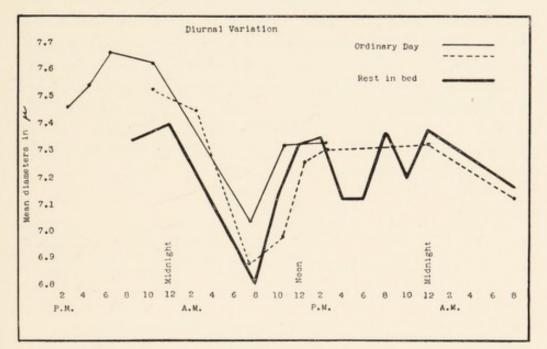



FIG. 7. \*

| 1 | ľA   | R   | Г.) | 54  | - 1 | 9 |  |
|---|------|-----|-----|-----|-----|---|--|
|   | 1.23 | 20. |     | 1.2 |     | - |  |

| 1         |          | 2          |          | 3          |          |  |
|-----------|----------|------------|----------|------------|----------|--|
| Time      | Diameter | Time       | Diameter | Time       | Diameter |  |
| 2.30 p.m. | 7.461    | 10.30 p.m. | 7.526    | 11 p.m.    | 7.267    |  |
| 4.30      | 7.546    | 2.30 a.m.  | 7.452    | 6.45 a.m.  | 7.019    |  |
| 6.30 ,,   | 7.662    | 7.30 ,,    | 6.904    | 8.20 ,,    | 7.040    |  |
| 10.30 ,,  | 7.633    | 10.30 ,,   | 6-983    | 9.20 ,,    | 7.508    |  |
| 7.30 a.m. | 7.048    | 12.30 p.m. | 7.265    | 12.30 p.m. | 7.422    |  |
| 10.30 ,,  | 7.326    | 2.30 ,,    | 7.315    | 3.30 ,,    | 7.194    |  |
| 2.30 p.m. | 7.333    | Midnight   | 7.332    | Midnight   | 7.349    |  |
|           |          | 8 a.m.     | 7.135    | 6.30 a.m.  | 6.925    |  |
|           |          |            |          | 1 p.m.     | 7.281    |  |

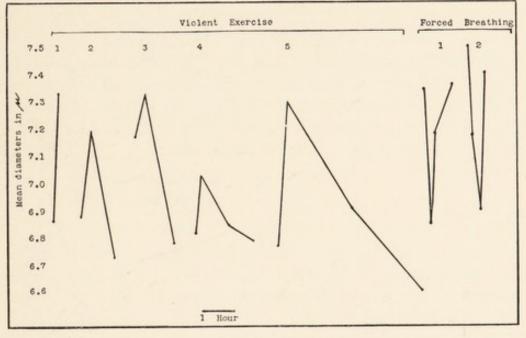
These particularly striking variations, amounting in some cases to as much as  $0.6\mu$ , obviously suggest that the red cells swell and shrink in association with bodily activity. For example, in series 3 of the preceding table, the quick rise of  $0.46\mu$  between 8.20

and 9.20 a.m. was recorded after a short push-bicycle ride with a trailer.

By experiment it has been found that (a) violent exercise increases these changes, (b) gentle exercise has no apparent influence, and (c) rest in bed does not abolish these diurnal variations.

(A) Violent Exercise increases Diameters. In these experiments 'violent' exercise meant running as quickly as I could up and down six flights of steps three times both ways, until I felt unable to run any more and was distressed in breathing. Films were made immediately before and after the exercise. From the observations recorded in Table 13 it appears that it is possible by means of violent exercise to produce in the course of a few minutes quite remarkable increases in the diameters of the red cells; in one case the increase was followed by a much greater diminution, the increase indeed being only of doubtful significance, but the time of day (3 p.m.) and the possibility that the diameters were relatively large before the exercise may account for this small increase (Fig. 8).

| No. | Time       | Diameter before<br>Exercise | Diameter after<br>Exercise | Change in<br>Diameter |
|-----|------------|-----------------------------|----------------------------|-----------------------|
| 1   | 11.0 a.m.  | 6-868                       |                            |                       |
|     | 11.10 "    |                             | 7.330                      | 0.46                  |
| 2   | 11.10 "    | 6.884                       |                            |                       |
|     | 11.30 ,,   |                             | 7.197                      | 0.313                 |
|     | 12.10 p.m. |                             | . 6.736                    | 0.46                  |
| 3   | 3.0 ,,     | 7.173                       |                            |                       |
|     | 3.20 ,,    |                             | 7.330                      | 0.16                  |
|     | 4.0 ,,     |                             | 6.786                      | 0.6                   |


TABLE 13

The violent exercise in this experiment (3) was with two 12 lb. dumb-bells. The results of these three experiments are derived from the measurement of 200 cells.

(B) Gentle exercise has no special influence. I walked from Gower Street to Jack Straw's Castle, Hampstead, about 4 miles, and back, in  $2\frac{1}{2}$  hours; it was a hot day. Films were made immediately before and after the walk, and the mean diameters were  $7.22\mu$  and  $7.27\mu$  respectively. On another occasion I walked along the Portsmouth Road at Hindhead, a measured 8 miles, in about 2 hours. It was a fresh morning and I did not get hot. The diameters before and after were respectively  $6.93\mu$  and  $7.26\mu$ , an increase of  $0.28\mu$ . This

34

rise, however, is no greater than that recorded in series 1 of Table 13 between 7.30 and 10.30 a.m. on an ordinary working day, or so great as the rise of  $0.32\mu$  on July 10, 1919, between 8 and 10 a.m., while I was resting in bed (see below). Other observations on another subject with moderate exercise that caused no sense of fatigue gave similar results.



| 12 | IG. | 0  |
|----|-----|----|
| r  | 16. | 0. |

In one experiment to demonstrate the effect of violent exercise on the diameters, both dry and moist specimens were measured; the diameters in both showed an increase of over  $0.55\mu$ , followed by a diminution of about the same amount.

TABLE 14

| Dry        | Moist       |                   |
|------------|-------------|-------------------|
| 6.81 (100) | 7.744 (100) | Before exercise   |
| 7.40(108)  | 8.300 (107) | Immediately after |
| 6-86 (100) | 7.731(100)  | Two hours later   |

(C) Rest in bed does not abolish the diurnal variations. On two separate occasions I remained lying down in bed for twenty-four hours; I took my usual meals, and employed my time in reading. The results which are recorded in Table 15 show, especially on one occasion, remarkable variations which are in similar direction and in no less degree than the variations recorded from an ordinary working day.

|           |          | 2        |          |            |          |
|-----------|----------|----------|----------|------------|----------|
| Time      | Diameter | Time     | Diameter | Time       | Diameter |
| 8.30 p.m. | 7.348    | 4 p.m.   | 7.128    | Midnight   | 7.349    |
| Midnight  | 7.403    | 6 ,,     | 7.126    | 8 a.m.     | 7.061    |
| 8 a.m.    | 6.811    | 8 ,,     | 7.374    | 2 p.m.     | 7.429    |
| 10 ,,     | 7.136    | 10 ,,    | 7.208    | 11.30 p.m. | 7.434    |
| 12 Noon   | 7.335    | Midnight | 7.384    |            |          |
| 2 p.m.    | 7.350    | 8 a.m.   | 7.174    |            |          |

#### TABLE 15

(D) Local cyanosis increases diameters. In taking blood from the finger it is of practical value to note that application of a tourniquet producing venous congestion of the part increases the diameter of the red cells and should either not be used or allowed for. Three examples of this increase are given in the table:

|   |  | Wit | hout tourniquet | With | tourniquet | Increase    |
|---|--|-----|-----------------|------|------------|-------------|
| 1 |  |     | $6.749\mu$      |      | $7.157\mu$ | $0.408 \mu$ |
| 2 |  |     | $7.476\mu$      |      | $7.680\mu$ | $0.204 \mu$ |
| 3 |  |     | $7.168\mu$      |      | $7.359\mu$ | $0.191\mu$  |

All the facts obtained from the observations recorded above suggest that the variations in size of the red cells are due to differences in the reaction of the blood. Experiments in vitro in which  $CO_2$ , lactic acid, or sodium carbonate was added to defibrinated rabbits' blood showed that the red cells swell with an increase of acidity and shrink when the blood is made abnormally alkaline. The reactions of the blood were determined by the method described by Boycott and Chisolm (1910), in which whole blood is used and  $CO_2$  counts as an acid; the results are given as c.cm. N/10 acid per 100 c.cm. blood required to produce flocculation of the nucleo-protein in the red cells. The results of these in vitro experiments are given in Table 16. The relations of the changes in the reaction of the blood and the corpuscular volume are well shown, but the changes produced in the diameters as measured from the dried films are not so marked, especially in those specimens to which saline, lactic acid, or sodium carbonate were added. The addition of these solutions appears to affect the preparation of the films, which showed many crenated and distorted cells, so that an error of selection was unavoidably added to the error of sampling. This notwithstanding, it is seen that the changes produced in the diameters moved in the same direction as the changes in volume. Similar experiments were made by Gürber (1895), von Limbeck (1895), and by Hamburger (1897) by which they showed that the addition of  $CO_2$  to blood increased the volume of the red cells; Hamburger and also von Limbeck found that the

| No. | Tube          | Procedure                        | Reaction | Volume | Diameter |
|-----|---------------|----------------------------------|----------|--------|----------|
| 10  | 1             | Addition of 0.9 per cent. saline | 27       | 100    | 6.260    |
|     | 2             | ., lactic acid .                 | 13       | 112    | 6-445    |
|     | 3             | " sodium carbonate               | 39       | 93     | 6.314    |
| 14  | 1             | Addition of 0.9 per cent. saline | 26       | 100    | 6.123    |
|     | 2             | lactic acid .                    | 12       | 111    | 6.325    |
|     | $\frac{2}{3}$ | ,, sodium carbonate              | 42       | 92     | 6-077    |
| 15  | 1             | Addition of 0.9 per cent. saline | 22       | 100    | 6.543    |
|     | 2             | ,, lactic acid .                 | 6        | 112    | 6-657    |
|     | 3             | ,, sodium carbonate              | 48       | 87     | 6.364    |
| 11  | 1             | Blood alone                      | 38       | 100    | 6-169    |
|     | 2             | Addition of expired air .        | 30       | 103    | 6.436    |
|     | 3             | ,, CO <sub>2</sub>               | 18       | 115    | 6.712    |
| 13  | 1             | Blood alone                      | 12       | 100    | 6-389    |
|     | 2             | Addition of expired air .        | 7        | 102    | 6.535    |
|     | 3             | " CO <sub>2</sub>                | 2        | 114    | 6.796    |

TABLE 16

red cells of venous blood are bigger than the red cells of arterial blood. Von Limbeck points out that the swollen blood-cells in the lung give up  $CO_2$  and become smaller, and he regards this as a morphological expression of chemical and physiological processes analogous to the volume changes in gland-cells before and after secretion. The swelling of red cells in venous blood may perhaps be considered as an ingenious arrangement for slowing the passage of the blood through the lungs until the cells have got rid of  $CO_2$ .

Several simultaneous determinations of blood reaction and red-cell diameters have also been made on myself before and after short violent exercise. The results are given in Table 17.

| No.  | Time      | Reaction<br>of Blood | Diameter before<br>Exercise | Diameter after<br>Exercise |
|------|-----------|----------------------|-----------------------------|----------------------------|
| 4    | 2.10 p.m. | 43                   | 6.823                       |                            |
|      | 2.26 ,,   | 35                   |                             | 7.038                      |
| 1/1/ | 3.0 ,,    | 40                   |                             | 6.830                      |
|      | 3.45 "    | 40                   |                             | 6.791                      |
| 5    | 12.30     | 46                   | 6.770                       |                            |
| 19   | 12.50 ,,  | 37                   |                             | 7.301                      |
|      | 2.45 ,,   | 40                   |                             | 6.912                      |
|      | 5.5 ,,    | 42                   |                             | 6.603                      |

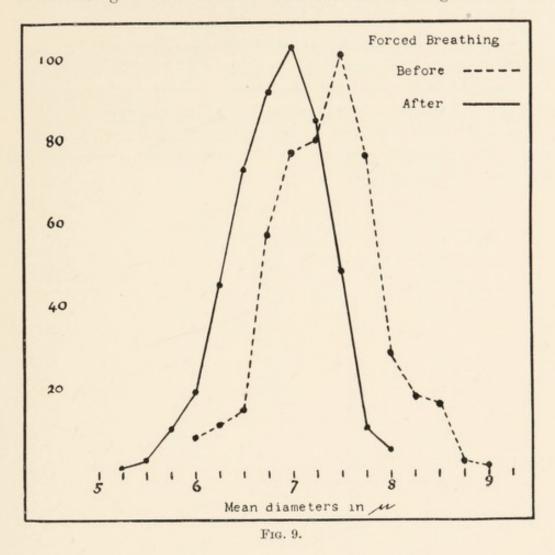
TABLE 17

In each case an increase in diameter has been associated with a diminution in alkalinity. The observations of Ryffel (1910) have shown that there is a considerable increase in the lactic acid in the

blood at the end of short violent exercise (running to exhaustion in the laboratory) but not with moderate exercise of longer duration (walking in competition), which corresponds with my findings in respect to the variations in the red cell diameters. The increase of alveolar  $CO_2$  which is caused by violent exercise suggests that under these conditions there is also an accumulation of  $CO_2$  in the blood, which is got rid of during the hyperpnoea which lasts for a short time after the end of the exercise, and Campbell, Douglas, and Hobson (1920) have also concluded that during severe muscular work  $CO_2$ is dammed back in the body. If this is the cause or a cause of the swelling of the red corpuscles, a diminution of the  $CO_2$  in the blood by forced breathing should lead to a diminution in diameters. Such I have found to be the case in two experiments (Table 18) (Figs. 8 and 9).

| No. | Time                                          | Blood Reaction   | Diameter |   |
|-----|-----------------------------------------------|------------------|----------|---|
| 1   | 1.47 p.m.                                     | 28               | 7.347    |   |
|     | 1.51 to 1.571 p.m.                            | forced breathing |          | 1 |
|     | 1.58 p.m.                                     | 34               | 6.852    |   |
|     | 2.5 ,,                                        | 29               | 7.185    |   |
|     | 2.37 ,,                                       | 26               | 7.365    |   |
| 2   | 1.40 ,,                                       | 23               | 7.508    |   |
|     | 1.41 <sup>1</sup> / <sub>2</sub> to 1.47 p.m. | forced breathing |          |   |
|     | 1.47½ p.m.                                    | 30               | 7.175    |   |
|     | 2.3 ,,                                        | 30               | 6.908    |   |
|     | 2.101 .,                                      | 22               | 7.408    |   |

| T | ABI | E | 18 |
|---|-----|---|----|
|   |     |   |    |


These results show that after about six minutes forced breathing the mean diameter of the red cells has diminished by about  $0.5\mu$ ; subsequently, as the CO<sub>2</sub> reaccumulates and the alkalinity of the blood returns to normal, there is a rapid restoration of the normal diameter.

It will be gathered from all these experiments and observations that the diurnal variation in the diameter of red blood cells is presumably due to altered reaction of the blood, though of the details of this alteration there is little direct evidence. It is, however, known that at the dreary moment of first awakening the blood is a good deal more alkaline than later on during the day (Boycott and Chisolm, 1910, p. 29); and Leathes (1919) shows that while the kidney produces an acid urine during the night, in the morning the reaction swings strongly over to the alkaline side, the plan presumably being to have the blood more alkaline during the night and less alkaline during the day.

These diurnal variations of red cell diameter, and those observed

38

with violent exercise and after forced breathing, oscillated within the normal diameter limits. The distribution curve retained more or less its original form and was shifted *en masse* to the right or to the



left as the case might be, supporting the notion that the effects were produced by some factor acting simultaneously on all the circulating cells, and probably not influencing the haemopoietic organs. The slight changes of the coefficient of variation which were not always parallel with those of the mean diameter may perhaps be explained by some difference in the degree or rate of response by different cells in the samples.

39

#### CHAPTER VI

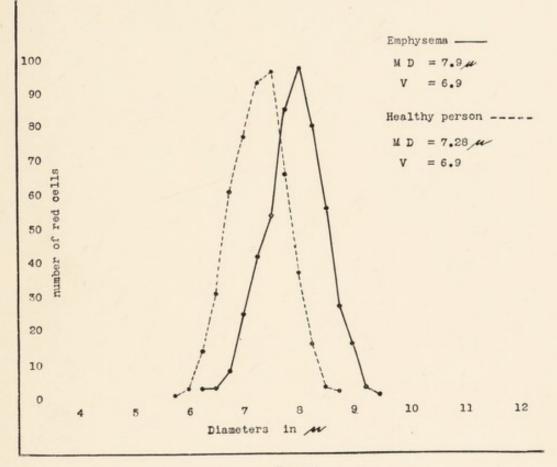
### EMPHYSEMA

WHILST collecting samples for the measurement of red cells from healthy persons my attention was directed to five men whose cells were significantly larger than the others. On further investigation it was found that these men were suffering from emphysema. I then examined the red cells of 22 cases of emphysema and found that the mean diameters ranged from  $7.33\mu$  to  $8.17\mu$ , the mean diameter of the series being  $7.69\mu$ .

| No.          | Age | Mean<br>Diameter | σ    | v<br>per cent. |  |
|--------------|-----|------------------|------|----------------|--|
| <i>o</i> . 1 | 35  | 8.17             | 0.49 | 5.9            |  |
| b. 2         | 43  | 7.60             | 0.51 | 6.7            |  |
| o. 3         | 48  | 7.59             | 0.51 | 6.7            |  |
| 0. 4         | 50  | 7.80             | 0.55 | 7.0            |  |
| 0. 5         | 53  | 7.23             | 0.61 | 8.4            |  |
| o. 6         | 53  | 7.63             | 0.48 | 6.5            |  |
| b. 7         | 54  | 7.41             | 0.47 | 6.3            |  |
| o. 8         | 56  | 7.78             | 0.53 | 6.5            |  |
| o. 9         | 60  | 8.05             | 0.61 | 7.7            |  |
| o. 10        | 62  | 7.63             | 0.54 | 7.0            |  |
| o. 11        | 63  | 7.70             | 0.56 | 7.5            |  |
| o. 12        | 63  | 7.91             | 0.65 | 8.2            |  |
| o. f. 13     | 64  | 7.87             | 0.56 | 7.1            |  |
| b. 14        | 64  | 7.93             | 0.55 | 6.9            |  |
| o. 15        | 66  | 7.90             | 0.57 | 7.8            |  |
| b. f. 16     | 71  | 7.33             | 0.52 | 7.0            |  |
| b. f. 17     | 73  | 7.80             | 0.55 | 7.4            |  |
| b. 18        | 75  | 7.68             | 0.55 | 7.1            |  |
| b. 19        | 76  | 7.61             | 0.51 | 6.7            |  |
| b. f. 20     | 78  | 7.45             | 0.52 | 6.7            |  |
| b. f. 21     | 80  | 7.36             | 0.52 | 7.0            |  |
| b. f. 22     | 100 | 7.73             | 0.56 | 7.2            |  |
| Means        |     | 7.69             | 0.54 | 7.06           |  |

| <b>F</b> 1 | 1    |   | 10 |
|------------|------|---|----|
|            | ABLE |   | •  |
| _          | ABLE |   | 24 |
| -          |      | - | ×c |

The results are set out in Table 19, and a curve of one case is given in Fig. 10, which shows the characteristic shift to the right of a healthy curve without any extension of the diameter range or increase of the coefficient of variation.


Diurnal variation in diameter also occurs in these patients; their large red cells are quite as mobile as healthy red cells. A man aged 35, suffering from severe emphysema, when first examined

#### EMPHYSEMA

had red cells with mean diameter  $8 \cdot 17\mu$ . After admission the diameters varied from  $8 \cdot 53\mu$  (p.m.) to  $7 \cdot 34\mu$  (a.m.), a range of  $1 \cdot 19\mu$ . On four successive days the measurements at

| 5 a.m. were | 7.87 | and at 9 | p.m. | 8.19         |
|-------------|------|----------|------|--------------|
| ,,          | 7.87 | ,,       | ,,   | 8.53         |
| ,,          | 7.94 | ,,       | ,,   | $8 \cdot 23$ |
| ,,          | 7.92 | ,,       | ,,   | $8 \cdot 40$ |

The mean coefficient of variability of the red cell diameters of these





emphysema cases was 7.06 per cent., which is not significantly different from the healthy mean variability coefficient.

The distribution curve, like that of diurnal variation, has been moved *en masse*, retaining its original shape but shifted to the right of the mean healthy curve; all the circulating red cells have been acted on by some common agent; there is no evidence of any influence on the haemopoietic organs. The curves are symmetrical, and, like the healthy curves, show great similarity among themselves; they all fit fairly well with their respective 'normal curves'.

### EMPHYSEMA

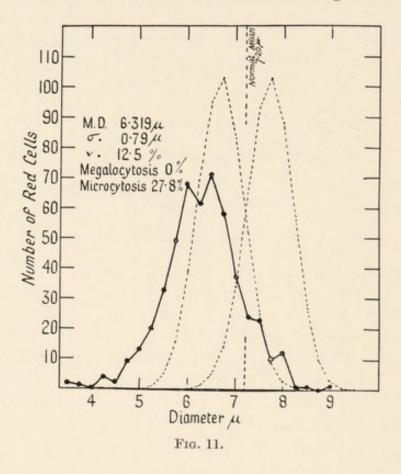
It seems probable that the increased size of the red cell diameters in emphysema is associated with an increased quantity of  $CO_2$  in the blood, in spite of normal reaction (Scott, 1920). It follows that  $CO_2$  must have a special swelling action on the corpuscles out of proportion to its acidity, analogous to its action on the respiratory centre, described by Scott (1918) as that of a 'specific respiratory hormone'.

#### CHAPTER VII

# THE RED CELL DIAMETERS AFTER HAEMORRHAGE

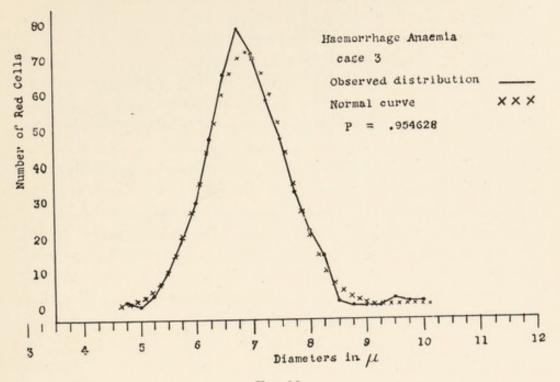
I HAVE examined only 10 cases of haemorrhage. They were all suffering from varying degrees of anaemia, at various periods after the haemorrhage from different sources—gastric and uterine—and of presumably varying amounts. Only one examination was made in each case. This collection of people is too small and too varied to give very useful results from statistical treatment. I have set out the data of the examinations in Table 20.

# TABLE 20

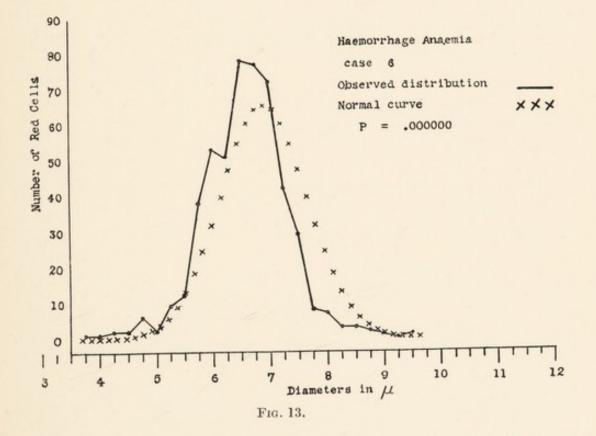

|                           | Number |       |             |       |       |          |          |          |          |       |        |
|---------------------------|--------|-------|-------------|-------|-------|----------|----------|----------|----------|-------|--------|
|                           | 1      | 2     | 3           | 4     | 5     | 6        | 7        | 8        | 9        | 10    | _      |
| Iaemoglobin               | 20     | 20    | 26          | 30    | 38    | 40       | 40       | 42       | 44       | 60    |        |
| Red cells, mill.          | 1.80   | 2.50  | 3.45        | 2.80  | 3.60  | 3.30     | 2.64     | 2.13     | 3.97     | 3.07  |        |
| Colour index              | 0.55   | 0.40  | 0.37        | 0.53  | 0.53  | 0.60     | 0.75     | 0.98     | 0-56     | 0-99  |        |
| Iean diameter             | 6.319  | 7.225 | 6-900       | 6-611 | 7.179 | 6.891    | 7.215    | 6-943    | 6.702    | 6.813 | 6.850  |
| standard de-<br>viation   | 0.79   | 0.69  | 0.70        | 0-57  | 0.92  | 0.76     | 0.61     | 0.51     | 0-66     | 0.62  | 0.75   |
| Variability               | 12.5   | 9.5   | 10.1        | 8.6   | 12.8  | 11.0     | 8.4      | 7.4      | 9.8      | 9.5   | 10-9   |
| ficrocytosis<br>per cent. | 27.8   | 0.6   | $2 \cdot 2$ | 8.6   | 0.6   | 13-0     | 0-2      | 1.0      | 6.6      | 2.4   |        |
| per cent.                 |        |       |             |       |       | -        |          |          |          |       | Total  |
| 3·50µ                     | 2      |       |             |       |       |          |          |          |          |       | 2      |
| 3.75                      | 1      |       |             |       |       | 1        |          |          |          | ••    | 101 02 |
| 4.00                      |        |       |             | 1     |       | 1        |          |          |          | 1     | -      |
| 4.25                      | 4      |       |             |       |       | 2        |          |          | 1        | 2     |        |
| 4.50                      | 2      |       |             |       |       | 2        |          | 3        |          |       | 24     |
| 4.75                      | 9      | 1     | 1           |       |       | 6        | 1        | 1        | 2        |       | 21     |
| 5.00                      | 13     | 1     |             | 1     | 1     | 2        |          | 1        | 25       | 2     | 41     |
| 5.25                      | 20     | 1     | 3           | 3     | 3     | 9        | 1        |          |          | 6     | 91     |
| 5.50                      | 33     | 1     | 10          | 12    | 5     | 12       | 2        | 1        | 15<br>21 | 14    | 189    |
| 5.75                      | 49     | 7     | 19          | 29    | 5     | 38       | 6        | 1        | 48       | 26    | 350    |
| 6.00                      | 68     | 19    | 29          | 58    | 25    | 53       | 9        | 15<br>30 | 58       | 41    | 435    |
| 6.25                      | 61     | 25    | 47          | 61    | 44    | 51       | 17       | 58       | 83       | 83    | 661    |
| 6.50                      | 71     | 40    | 65          | 97    | 54    | 78<br>77 | 32<br>60 | 102      | 79       | 86    | 731    |
| 6.75                      | 58     | 52    | 78          | 78    | 61    |          | 85       | 102      | 55       | 87    | 72     |
| 7.00                      | 37     | 64    | 71          | 69    | 77    | 72<br>42 | 92       | 90       | 50       | 64    | 601    |
| 7.25                      | 24     | 75    | 58          | 45    | 61    | 92<br>29 | 82       | 54       | 35       | 34    | 465    |
| 7.50                      | 23     | 85    | 47          | 26    | 47    | 29       | 50       | 26       | 26       | 25    | 269    |
| 7.75                      | 10     | 46    | 32          | 13    | 33    | 7        | 36       | 10       | 13       | 11    | 17     |
| 8.00                      | 12     | 40    | 21          | 5     | 22    | 3        | 18       | 3        | 3        | 3     | 8      |
| 8.25                      | 1      | 26    | 14          | 1     | 16    | 3        | 5        | -        | 2        | 5     | 2      |
| 8.50                      | 1      | 6     | 1           | 1     | 12    | 2        | 3        | 1        | 2        | 3     | 2      |
| 8.75                      |        | 5     |             | •••   | 12    | ĩ        |          |          |          |       | 1      |
| 9-00                      | 1      |       |             |       | 8     |          | 1        |          |          |       | 1      |
| 9.25                      |        | 2     |             |       | 3     | 1        | ·        |          | 1.1      |       |        |
| 9.50                      |        | -     | 2           |       | 4     | 1.000    | 10.00    |          | 1        |       |        |
| 9.75                      |        |       | 1           |       | 3     |          |          |          |          |       |        |
| 10.00                     |        |       | -           |       | 1     |          |          |          |          |       |        |
| 10.25                     |        |       |             |       |       |          |          |          |          |       | 1      |
| 10.50                     |        |       |             |       | 2     |          |          |          |          |       |        |
| 10.75                     |        |       |             |       | 2     |          | 1        |          |          |       |        |
| 11.00                     |        |       | 500         | 500   | 500   | 500      | 500      | 500      | 500      | 500   | 5,00   |

### Anaemia after Haemorrhage

Averages: diameter, 6.879; standard deviation, 0.686; coefficient of variation, 9.98.


# 44 THE RED CELL DIAMETERS AFTER HAEMORRHAGE

From this it appears that the mean diameter of the red cells after haemorrhage is lower than the mean of healthy persons, averaging  $6\cdot879\mu$  and ranging from  $6\cdot3\mu$  to  $7\cdot225\mu$ . The distribution curve is shifted to the left of the healthy curve, e.g. case 1 (Fig. 11). The curves are usually of a less symmetrical type than the healthy curves, they show less similarity among themselves, and do not fit so well with their respective normal curves. Fig. 12 shows the




distribution of case 3 superposed on its normal curve and giving a very good fit; P = 0.95, or in other words there would be a worse fit 95 times out of a 100. This contrasts with the distribution of case 6 (Fig. 13), where the fit is very bad, in fact there could not be a worse fit in 1,000,000 times. The coefficient of variation is raised in all these cases, averaging about 10 per cent., and ranging from 7.4 to 12.5 per cent. This increase in the variability might be expected if we assume, as seems legitimate, that there may be two classes of cells in the blood after haemorrhage, the sample being heterogeneous, each component being distributed according to its respective normal curve; (a) small cells newly formed by the sudden over-stimulation of the bone marrow following the anaemia caused by the loss of corpuscles, and (b) normal cells still remaining in the

# THE RED CELL DIAMETERS AFTER HAEMORRHAGE 45







# 46 THE RED CELL DIAMETERS AFTER HAEMORRHAGE

circulation. The dominance of one kind of cell would be expressed by a more or less symmetrical curve, and the relative share taken by these two classes of cells would depend on the amount of the haemorrhage, on the period after the cessation of the haemorrhage at which the examination of the blood was made, and also probably on the specific rate at which the individual was able to return to health.

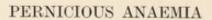
It is noteworthy that even in those cases where the mean diameter was not significantly different from that of healthy blood-cells, the degree of anisocytosis (v) was always greater than in health. In this condition the influencing factor, the loss of blood, is acting not on the circulating cells and affecting them all in common, as occurs with the changes in diameter found after violent exercise, after forced breathing, and in emphysema, but operates as a direct disturber and exciter of the haemopoietic system.

#### CHAPTER VIII

### PERNICIOUS ANAEMIA

THE diameters of the red cells in this condition vary from  $3.75\mu$  to  $13.0\mu$ ; taking samples of 500 cells the average mean diameter of 68 observations was  $8.31\mu^*$  or over  $1\mu$  greater than the average mean diameter of healthy red cells, or about  $0.6\mu$  greater than the normal  $+3\sigma$  limit  $(7.718\mu)$ .

The means of the 68 observations ranged from  $7.487\mu$  to  $9.673\mu$ ; the mean diameter of 50 consecutive cases, which had the same range, was  $8.263\mu$ , and the coefficient of variation of these means was 4.9per cent.


The curves of distribution of diameters in all these cases lie to the right of the healthy mean and usually to the right of the healthy curve, and, depending on the degree of megalocytosis, are more or less extended outside to the right of the  $+3\sigma$  limit of normality.

In Fig. 15 is an example of a distribution curve from a case with mean diameter  $8.060\mu$ , and v = 16.3 per cent., showing its relation to the area of normality. In this case the excess of big cells was 202 so that the degree of megalocytosis is 40.4 per cent. In this case also there was an extension of the curve to the left of the area of normality, the number of extra small cells was 24, i.e. a microcytosis of 4.8 per cent. Megalocytosis occurred in all the samples of pernicious anaemia blood, varying in degree from 5 per cent. to over 66 per cent.; microcytosis was also present in about 75 per cent. of the cases.

Fig. 15 also shows the relation of the distribution of diameters in this case to its calculated ideal curve to which it has no fit (P = 0.000000), and suggests the heterogeneous nature of its population of red cells.

Similar curve relations are shown in Fig. 16, where there is a megalocytosis of 22.8 per cent. and a microcytosis of 1 per cent.; the correspondence with the ideal curve is not so bad as in Fig. 15, yet it is not at all good : P = 0.095947 or a worse fit would be expected in 96 out of 1,000 samples.

\* Jorgensen and Warburg (1928), in their interesting and valuable monograph, point out that S. T. Sorensen as long ago as 1876 maintained that megalocytosis was characteristic of pernicious anaemia. Direct micrometric measurements were used by him and others, but the method was soon neglected and superseded by the easier estimation of the colour index and less commonly the volume index (e.g. Capps, 1903; Campbell, 1922; Haden, 1924).







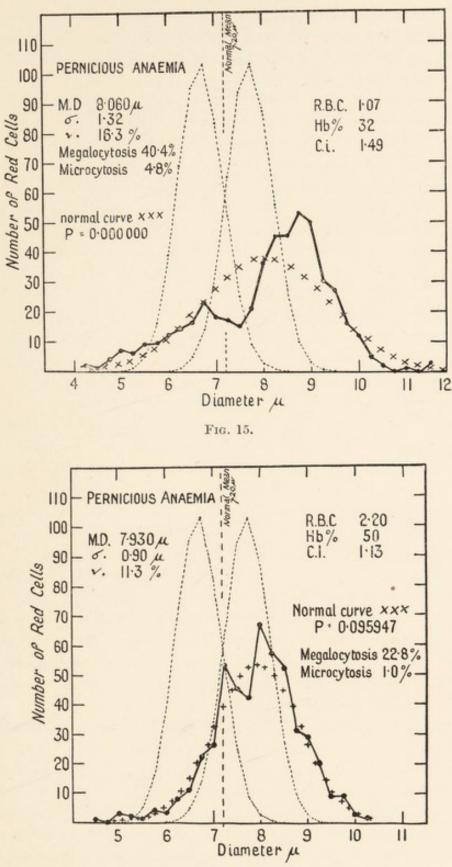



FIG. 16.

49

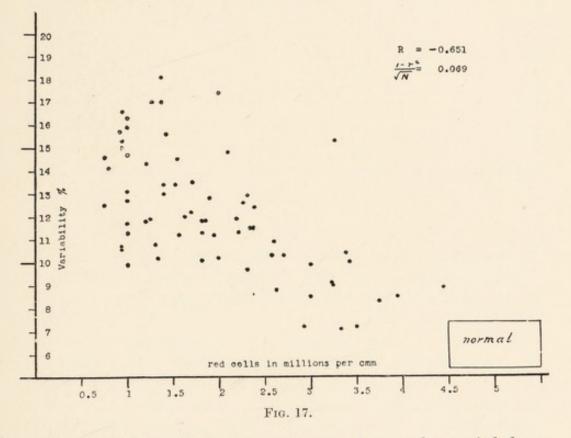
н

This want of correspondence of the observed curves with their respective ideal curves is characteristic of the majority of cases of pernicious anaemia. Among 20 cases that were examined by the ' $\chi^2$ ' method only 2 gave P = 0.5 or over; the best fit was P = 0.597, and 9 cases gave P = 0.000000, that is to say that generally the correspondence was very bad.

The symmetrical curves from healthy persons are generally in good agreement with their respective ideal curves; the curves of haemorrhage anaemia have only a fair though variable agreement; the curves of pernicious anaemia, which are mostly asymmetrical, often grotesque, in shape, agree very badly with their ideal curves and strongly suggest that they are composite curves such as might arise from two or more sets of cells in a heterogeneous population of red cells.

From this suggestion I have been led to regard the composite appearance of these curves as compatible with the assumption that the blood in these cases contains three classes of red cells; (1) abnormally large cells derived from megaloblasts which fail to mature owing to the absence of the 'intrinsic' factor; (2) normal sized cells derived from normally acting marrow; for I conceive it is probable, at least at the earlier stages of the disease, that the deficiency of the liver ('intrinsic') substance is not extremely developed and that there may yet be sufficient to activate a part of the marrow to function in a healthy way; (3) small cells resulting from the extra stimulation of the bone marrow to combat the anaemia caused by the abnormal destruction of red cells.

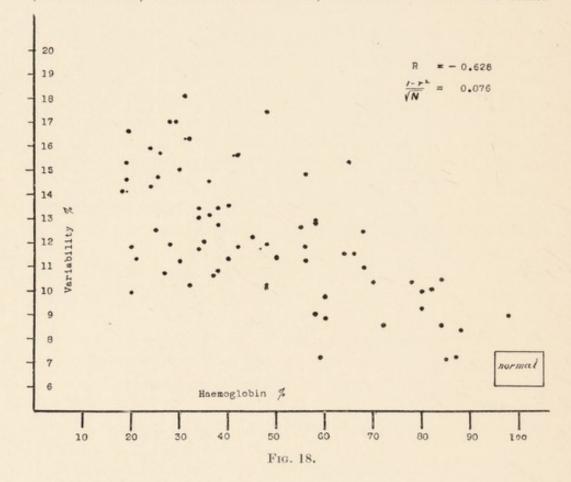
Most of my cases were examined only on one occasion; by repeated examinations it would be possible to observe the changes that take place in the distribution curves of the cell diameters during the course of the disease, and by the consideration of the component curves some conception might be formed of the relative activities of the three groups of cells at any particular period or clinical condition.


A prominent feature of the blood-cells in pernicious anaemia is the high degree of variability or anisocytosis; this is even more constant, though perhaps less characteristic, than the high mean diameter which is also almost always present. In Fig. 14 I have set out the values of 50 consecutive cases at their first examination (before treatment) and compared them with those of the 100 healthy people. It shows that the lowest variability among the pernicious anaemia cases is well to the right of the healthy range and differs from the healthy mean by  $6\sigma$  (Table 11) ( $6 \times 0.331 = 1.9$ ). But five

of the mean diameters are within the healthy range and might pass for normal were it not for their high variabilities and the presence of too many large cells (Table 21).

| Mean diameter<br>μ | Difference from<br>healthy mean in<br>terms of σ | Variability    | Difference from<br>healthy mean in<br>terms of σ |
|--------------------|--------------------------------------------------|----------------|--------------------------------------------------|
| 7.487              | 1.7                                              | 11.3 per cent. | 15                                               |
| 7.577              | 2.2                                              | 12.5 "         | 18                                               |
| 7.650              | 2.6                                              | 18.2 ,,        | 36                                               |
| 7.670              | 2.7                                              | 9.9 ,,         | 11                                               |
| 7.717              | 3.0                                              | 14.2 ,,        | 24                                               |

| TA  | DT | 12   | 91 | L  |
|-----|----|------|----|----|
| 177 | DI | 1151 | -  | ۰. |


If Fig. 14 was drawn on a scale of standard deviations, the spread of the variabilities would be reduced to about one-half (0.172/0.331), but on any method of comparison they show a larger proportionate variation than the mean diameters.



The coefficients of variation of these 50 samples varied from 8.3 to 18.8 per cent., giving a mean of 13 per cent., or just twice that of the healthy cells.

In Fig. 17 I have plotted out 68 red cell counts according to their respective coefficients of variation. In the right-hand corner of the chart are shown the corresponding relations and limits for healthy

red cells. It is at once seen that there is probably some correlation between the number of red cells per c.mm. and the variability of the red cell diameter. On calculating the coefficient of correlation (Yule, pp. 183-6) I found R = -0.651, and the standard error (Karl Pearson) of this value is 0.069, so that R is over nine times



the standard error, or in other words the coefficient of correlation -0.651 is significant and may be regarded as a good correlation. It expresses the fact that the greater the variability the fewer are the number of red cells.

In Fig. 18 is a similar plotting of haemoglobin percentages and their respective red cell diameter variabilities. In the right-hand corner are the corresponding relations and limits for healthy blood. Here again a definite correlation is suggested. On calculation it is found that R = -0.628, and the standard error is 0.076, so that Ris over eight times the standard error, and may be regarded as a significant and good correlation, expressing the fact that the greater the variability the lower is the haemoglobin percentage.

Taken together these two charts seem to establish conclusively that the degree of anisocytosis varies directly with the degree of anaemia.

52

Fig. 19 shows a similar plotting of mean diameters and their respective variabilities. The presence of any correlation is only doubtfully suggested. On calculation R = -0.27 with a standard error of 0.112, so that R is only just over twice the standard error, and therefore on the three times rule it cannot be regarded as significant.

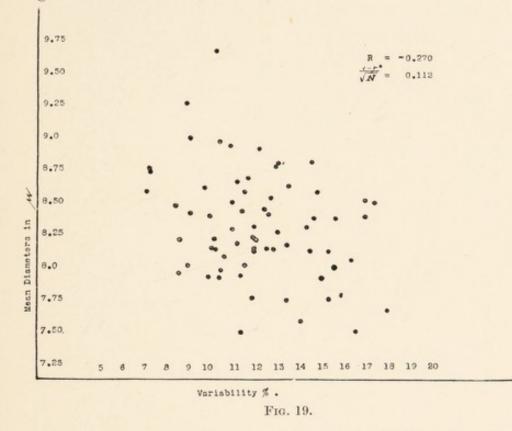



Fig. 20 is a plotting of mean diameters and their respective red cell counts. There is obviously no correlation, and on calculation R = 0.115 with a standard error of 0.119. Similarly in Fig. 21, showing plottings of mean diameters and their respective haemoglobin percentages, there is obviously no correlation. R = 0.126 and the standard error is 0.119.

The absence of correlation in these last two charts establishes a remarkable characteristic of the blood in this condition, viz. that the red cell diameters are independent of the severity of the anaemia. This is also exhibited in Table 22, in which it appears that the large mean diameter of the red cell persists throughout the illness, and even when the patient is apparently convalescent. In case 4, when first examined by me, the red cell count was 4,440,000 per c.mm., Hb per cent. 98, and colour index 1.1. From these values it would have been difficult to diagnose 'pernicious anaemia'. Measurement of the red cell diameters gave a mean of  $8.02\mu$ , with a variability of

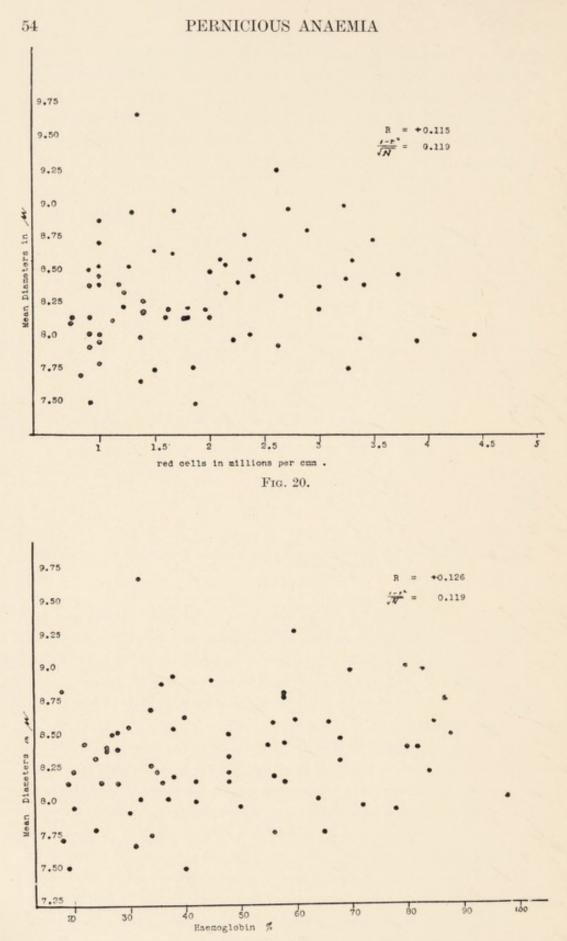



FIG. 21.

| Case | Date                                                              | Red cells<br>in millions<br>per c.mm.                                                                                                                              | Hb<br>per cent.                                                                                               | Mean red<br>cell<br>diameter                       | Variability<br>per cent.                                           |                              |
|------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------|------------------------------|
| 1    | 12.xi.21                                                          | 1.37                                                                                                                                                               | 28                                                                                                            | 8.369                                              | 17.08                                                              |                              |
|      | 3.v.22<br>13.xii.22<br>16.i.23                                    | $2 \cdot 29$<br>$1 \cdot 06$<br>$1 \cdot 40$                                                                                                                       | 60<br>38<br>38                                                                                                | 8-585<br>8-533<br>8-172                            | 9.7<br>12.7<br>13.4                                                |                              |
|      | 31.i.23<br>14.ii.23                                               | $1.40 \\ 1.26$                                                                                                                                                     | $\frac{34}{28}$                                                                                               | $8.259 \\ 8.118$                                   | $     \begin{array}{r}       13.0 \\       11.9     \end{array} $  |                              |
| 2    | 27.x.22<br>6.xii.22<br>22.xii.22<br>8.i.23<br>31.i.23<br>28.ii.23 | $     \begin{array}{r}       1 \cdot 59 \\       2 \cdot 00 \\       2 \cdot 66 \\       3 \cdot 06 \\       3 \cdot 00 \\       3 \cdot 90 \\       \end{array} $ | $     \begin{array}{r}       36 \\       48 \\       68 \\       80 \\       84 \\       72     \end{array} $ | 8.133<br>8.478<br>8.290<br>8.365<br>8.190<br>7.940 | 14.5<br>17.4<br>10.9<br>9.9<br>8.5<br>8.5                          |                              |
| 3    | 6.ii.22<br>13.ix.22<br>17.i.23                                    | 2.15<br>2.38<br>3.39                                                                                                                                               | 48<br>66<br>84                                                                                                | 8-314<br>8-570<br>7-965                            | 11.9<br>11.5<br>10.4                                               |                              |
| 4    | 6.x.21<br>28.iii.22<br>22.iv.22                                   | $4.44 \\ 2.62 \\ 2.02$                                                                                                                                             | 98<br>78<br>48                                                                                                | $8.022 \\ 7.913 \\ 8.131$                          | $8.9 \\ 10.3 \\ 10.2$                                              |                              |
| 5    | 22.viii.22                                                        | 0.75                                                                                                                                                               | 25                                                                                                            | 8.137                                              | 12.5                                                               |                              |
|      | 31.viii.22                                                        | 0.93                                                                                                                                                               | 30                                                                                                            | 7.915                                              | 15.0                                                               | 2 days after<br>transfusion. |
|      | 16.ix.22<br>29.ix.22<br>12.x.22<br>1.xi.22                        | 1.03<br>1.31<br>1.04<br>0.93                                                                                                                                       | 36<br>38<br>34<br>37                                                                                          | 8-856<br>8-919<br>8-685<br>8-093                   | $13.1 \\ 10.8 \\ 11.7 \\ 10.6$                                     |                              |
|      | 20.xi.22                                                          | 0.93                                                                                                                                                               | 27                                                                                                            | 8.487                                              | 10.0                                                               | (2 days before               |
| 6    | 31.i.21<br>26.iv.22<br>23.v.22                                    | $3.25 \\ 1.21 \\ 0.90$                                                                                                                                             | $58 \\ 24 \\ 26$                                                                                              | $8.418 \\ 8.310 \\ 8.363$                          | $9.0 \\ 14.3 \\ 15.7$                                              | (death.                      |
| 7    | 16.xi.22<br>27.xi.22<br>4.xii.22<br>13.xii.22                     | 2.28<br>2.40<br>2.36<br>1.78                                                                                                                                       | $55 \\ 68 \\ 64 \\ 58$                                                                                        | 8-408<br>8-440<br>8-036<br>8-124                   | $12 \cdot 6$<br>$12 \cdot 4$<br>$11 \cdot 5$<br>$12 \cdot 8$       |                              |
|      | 20.xii.22<br>27.xii.22                                            | $\frac{1.94}{1.85}$                                                                                                                                                | 56<br>56                                                                                                      | 8-176<br>7-751                                     | $\frac{11 \cdot 2}{11 \cdot 8}$                                    |                              |
| 8    | 20.ii.22<br>29.xi.22                                              | $1.37 \\ 2.10$                                                                                                                                                     | $31 \\ 56$                                                                                                    | 7.650<br>8.577                                     | $     \begin{array}{r}       18.18 \\       14.8     \end{array} $ |                              |
| 9    | 16.ix.22<br>11.x.22<br>27.xii.22                                  | $1.82 \\ 1.82 \\ 1.53$                                                                                                                                             | $\begin{array}{c} 48\\ 42\\ 34 \end{array}$                                                                   | 8·198<br>8·133<br>7·737                            | $10.1 \\ 11.8 \\ 13.4$                                             |                              |
| 10   | 23.x.22<br>30.x.22<br>9.xi.22                                     | $3.27 \\ 1.04 \\ 0.93$                                                                                                                                             |                                                                                                               | $7.748 \\ 7.787 \\ 8.125$                          | $15.3 \\ 15.9 \\ 15.3$                                             |                              |
| 11   | 11.x.23<br>24.x.23<br>21.xi.23                                    | $1.34 \\ 2.63 \\ 2.90$                                                                                                                                             | $32 \\ 60 \\ 58$                                                                                              | $9.673 \\ 9.250 \\ 8.748$                          | $10 \cdot 2 \\ 8 \cdot 8 \\ 7 \cdot 2$                             |                              |
| 12   | 19.vii.22<br>24.x.22<br>20.iii.22                                 | $3.30 \\ 3.50 \\ 3.74$                                                                                                                                             | 85<br>87<br>88                                                                                                | $8.572 \\ 8.719 \\ 8.456$                          | $7 \cdot 1 \\ 7 \cdot 2 \\ 8 \cdot 3$                              |                              |
| 13   | 29.xi.22<br>31.i.23<br>14.iii.23                                  | $2.30 \\ 3.41 \\ 3.24$                                                                                                                                             | 58<br>82<br>80                                                                                                | $8.764 \\ 8.374 \\ 8.982$                          | $12.9 \\ 10.0 \\ 9.1$                                              |                              |

TABLE 22

8.9 per cent. Five months later the patient was readmitted to hospital, and a blood examination then gave red cells 2,620,000, Hb per cent. 78, colour index 1.5. The mean diameter of the red cells was 7.91, or practically unchanged. The variability had risen to 10.3 per cent. in association with the increased anaemia.

Table 22 comprises measurements from 13 cases which I have examined on several occasions during the course of the disease.\* It also exhibits fairly constantly the correlation demonstrated above between the variability and the degree of anaemia. In case 1 a rise in the red cell count of 900,000 per c.mm. and Hb per cent. of 32 is accompanied by a fall in the variability of 7.3 per cent., and a subsequent fall in the red cell count of 1,230,000 and Hb per cent. of 22 was associated with a rise of 3 per cent. in variability. In case 2 a rise in red cell count of 1,900,000 per c.mm. and Hb per cent. of 24 is accompanied by a fall in variability of 6.9 per cent. In case 6 a fall in the red cell count from 3,250,000 to 906,000 per c.mm., and Hb per cent. from 58 to 26 is associated with a rise in variability from 9 per cent. to 15.9 per cent. The same principle holds in most of the other cases, with the marked exception of case 10, where the variability remains constant in spite of a very great alteration in the degree of anaemia.

In case 5 the examination made two days after transfusion showed, as might be expected, a lowered mean diameter of the red cells and an increased variability owing to the introduction of normal-sized cells.

\* These cases were observed before the introduction of liver treatment.

#### CHAPTER IX

# THE EFFECT OF LIVER TREATMENT ON PERNICIOUS ANAEMIA

THE effect of liver treatment on the red cell diameters is illustrated by 12 cases (summarized in Table 23 and set out in detail in Table 24) treated at University College Hospital under the haematological care of Dr. Janet Vaughan (1928) at first as in-patients and afterwards for long periods as out-patients and partly with various liver extracts but mostly with whole liver. Two cases (3 and 9) were complicated with symptoms of subacute combined degeneration of the cord.

Anaemia. After treatment the anaemia was cured in all cases, in the sense that anaemic symptoms had disappeared. The haemoglobin percentage was above 80 in all and above 90 in 7.

Mean diameter. In 11 cases the mean diameter became smaller and in 9 it came back to within the normal range (less than  $7 \cdot 718\mu$ ); after treatment 3 mean diameters differ from the healthy mean  $(7 \cdot 202\mu)$  by less than the standard deviation  $(0 \cdot 172\mu)$ , that is they are smaller than  $7 \cdot 374\mu$ , and 3 mean diameters by less than twice the standard deviation that is smaller than  $7 \cdot 546\mu$ . But, with one exception, and that only on one occasion, no mean diameter was brought to the left of the healthy mean. If the red cells were completely restored to the healthy condition and if pernicious anaemia occurs in persons whose mean diameters before the onset of the disease were distributed in a normal fashion, one would have expected some at least of these 9 cases to show mean diameters at and below the healthy mean  $(7 \cdot 202\mu)$ . The failure to reach the healthy mean is perhaps most striking in those cases (8, 10, 11) which before treatment had mean diameters within the healthy range.

In 3 patients the mean diameter remains outside the healthy limit. In case 3 (Fig. 22) it has fallen  $0.586\mu$  but is still very high at  $7.939\mu$ ; the megalocytosis in this case, which was as much as 55.4 per cent. (more than half the cells being too large and distributed outside to the right of the normal limit), though much reduced is still 18.4 per cent.; there is no anaemia and the variability is normal. The general condition of the patient is excellent; he is a Thames pilot and is able to carry on his work; his symptoms of cord degeneration have also improved; he says he takes liver regularly.

In case 9 (Fig. 23) which, like case 3, was complicated with subacute combined degeneration of the cord, after fifteen months' treatment,

|                                                        | LIT LO             | I OF LIVEN                                                                                                      | INEATMENT ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cases of pernicious anaemia before and after treatment | 12<br>F<br>16      | $1.20 \\ 29 \\ 1.20 \\ 8.357 \\ 13.4 \\ 48.6 \\ 48.6$                                                           | 16<br>5-20<br>82<br>0-78<br>7-276<br>8-5<br>0-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                        | 11<br>M<br>54      | 1.56<br>34<br>1.09<br>7.577<br>12.5<br>8.8                                                                      | $\begin{array}{c} 4 \\ 4.24 \\ 90 \\ 1.07 \\ 7.392 \\ 7.9 \\ 0.2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                        | 10<br>M<br>27      | $\begin{array}{c} 1.96 \\ 48 \\ 1.23 \\ 7.717 \\ 14.2 \\ 18.4 \end{array}$                                      | 8<br>4-93<br>90<br>0-90<br>7-407<br>8-2<br>1-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                        | 9<br>F<br>50       | $\begin{array}{c} 1.52 \\ 42 \\ 1.40 \\ 7.823 \\ 14.7 \\ 26.0 \end{array}$                                      | 15<br>5-30<br>92<br>0-86<br>6-0<br>0-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                        | 8<br>F<br>50       | $1.04 \\ 22 \\ 1.10 \\ 7.670 \\ 9.9 \\ 7.4 \\ 7.4$                                                              | 8<br>4-34<br>82<br>0-9<br>7-552<br>7-552<br>7-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                        | F - 1<br>52        | $\begin{array}{c} 1.04 \\ 2.4 \\ 1.20 \\ 7.738 \\ 16.0 \\ 19.6 \end{array}$                                     | 17<br>4-05<br>80<br>1-0<br>7-922<br>8-2<br>8-2<br>16-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                        | 6<br>F<br>31       | ${\begin{array}{c} 1.00\\ 22\\ 1.10\\ 8.136\\ 12.1\\ 29.2\\ 29.2 \end{array}}$                                  | 6<br>4-7<br>84<br>0-89<br>7-372<br>6-5<br>0-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                        | 5<br>F             | 2.63<br>62<br>1.19<br>7.946<br>10.2<br>22.4                                                                     | 16<br>4-7<br>84<br>0-89<br>7-590<br>7-2<br>1-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                        | 4<br>M<br>74       | 1.70<br>44<br>1.30<br>8.334<br>8.334<br>11.0<br>44.0                                                            | 10<br>4-3<br>96<br>1-1<br>7-732<br>8-7<br>9-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                        | 3<br>M<br>58       | 2.64<br>78<br>1.50<br>8.525<br>8.7<br>55.4                                                                      | $10 \\ 5.0 \\ 96 \\ 0.96 \\ 7.939 \\ 5.7 \\ 18.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                        | 2<br>F<br>46       | 2.65<br>68<br>1.28<br>8.132<br>311.0<br>36.8                                                                    | $14 \\ 5.0 \\ 90 \\ 7.453 \\ 5.7 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 $ |
|                                                        | 1<br>M<br>45       | $\begin{array}{c} 1.70 \\ 41 \\ 1.20 \\ 8.622 \\ 8.622 \\ 10.4 \\ 57.8 \end{array}$                             | 8<br>5-2<br>110<br>1-05<br>7-557<br>6-0<br>0-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                        |                    |                                                                                                                 | . <u>д</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                        | Case<br>Sex<br>Age | Red cells in millions<br>Hb per cent<br>Colour index<br>Wean diameter in $\mu$<br>v per cent<br>Megalocytosis . | Liver treatment<br>months Red cells in millions<br>Hb per cent Colour index Mean diameter in $\mu$<br><i>v</i> per cent Megalocytosis .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                        |                    | Before treatment                                                                                                | fter treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

TABLE 23

58

THE EFFECT OF LIVER TREATMENT ON

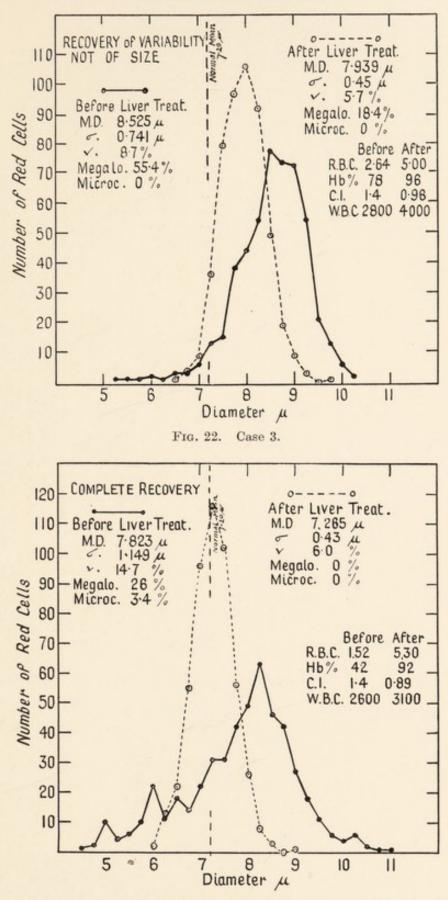



FIG. 23. Case 9.

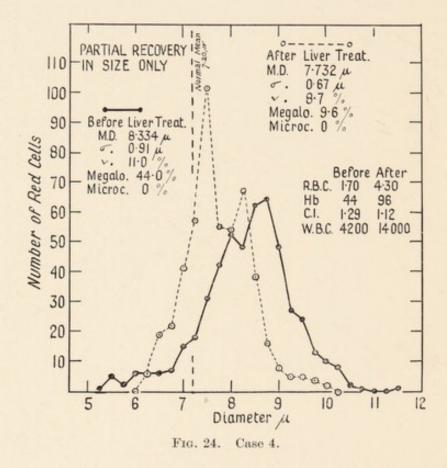
59

## TABLE 24

Cases of pernicious anaemia

| Mid-point of class<br>intervals µ |       |        | Case<br>Age<br>Sex | 1<br>45<br>M | 2<br>46<br>F | ,     | 3<br>58<br>M |       | 4<br>74<br><i>M</i> |       | 5<br>58<br>F |        |        |         |
|-----------------------------------|-------|--------|--------------------|--------------|--------------|-------|--------------|-------|---------------------|-------|--------------|--------|--------|---------|
|                                   |       |        |                    |              | Before       | After | Before       | After | Before              | After | Before       | After  | Before | After   |
| 4-00                              |       |        |                    |              |              |       |              |       |                     |       |              |        | 1      |         |
| 4.25                              |       |        |                    |              |              |       |              |       | • •                 |       | • •          |        | 0      |         |
| 4.50                              |       |        |                    | •            |              |       |              |       |                     |       | • •          |        | 1      |         |
| 4.75                              |       |        |                    |              |              |       | • •          |       |                     |       | ••           |        | 1      |         |
| 5.00                              |       |        |                    |              |              |       | 1            |       |                     |       |              |        | 1      |         |
| 5.25                              |       |        |                    |              | 1            |       | 0            |       | 1                   |       | 1            |        | 2      |         |
| 5.50                              |       |        |                    |              | 2            |       | 7            |       | 1                   |       | 5            |        | 1      |         |
| 5.75                              |       |        |                    |              | 1            | 1     | 4            |       | 1                   |       | 2            |        | 3      |         |
| 6.00                              |       |        |                    |              | 5            | 1     | 6            |       | 2                   |       | 6            |        | 3      |         |
| 6.25                              |       |        |                    |              | 4            | 6     | 9            | 4     | 1                   |       | 6            | 6      | 6      | 4       |
| 6.50                              |       |        |                    |              | 2            | 5     | 13           | 11    | 3                   | 1     | 6            | 19     | 6      | 12      |
| 6.75                              |       |        |                    |              | 4            | 12    | 8            | 29    | 3                   | 4     | 7            | 22     | 10     | 31      |
| 7.00                              |       |        |                    |              | 8            | 37    | 13           | 69    | 6                   | 9     | 15           | 41     | 22     | 53      |
| 7.25                              |       |        |                    |              | 18           | 107   | 26           | 98    | 13                  | 36    | 18           | 57     | 35     | 85      |
| 7.50                              |       |        |                    |              | 18           | 125   | 23           | 111   | 15                  | 79    | 31           | 101    | 50     | 84      |
| 7.75                              |       |        |                    |              | 18           | 101   | 66           | 101   | 38                  | 95    | 42           | 55     | 66     | 90      |
| 8.00                              |       |        |                    |              | 40           | 57    | 50           | 50    | 44                  | 105   | 52           | 54     | 83     | 61      |
| 8.25                              |       |        |                    |              | 49           | 28    | 49           | 19    | 54                  | 91    | 48           | 67     | 57     | 31      |
| 8.50                              |       |        |                    |              | 57           | 11    | 67           | 5     | 77                  | 48    | 63           | 38     | 51     | 27      |
| 8.75                              |       |        |                    |              | 68           | 5     | 63           | 3     | 73                  | 19    | 64           | 16     | 43     | 13      |
| 9-00                              |       |        |                    |              | 74           | 2     | 43           |       | 72                  | 9     | 48           | 8      | 33     | 9       |
| 9.25                              |       |        |                    |              | 52           | 2     | 23           |       | 54                  | 3     | 27           | 5      | 14     |         |
| 9.50                              |       |        |                    |              | - 29         |       | 14           |       | 21                  | 0     | 24           | 5      | 6      |         |
| 9.75                              |       |        | •                  |              | 16           |       | 10           |       | 13                  | 1     | 13           | 4      | 4      |         |
| 10.00                             |       |        | •                  |              | 13           |       | 5            |       | 6                   |       | 10           | 2      | 0      |         |
| 10.25                             |       |        | •                  | •            | 9            |       |              |       | 2                   |       | 8            |        | Ő      |         |
| 10.50                             |       |        | •                  | •            | 6            |       |              | •••   |                     |       | 2            |        | 0      |         |
| 10-30                             | •     |        | •                  |              | 3            | 1.1   |              |       |                     |       | 1            | 1.5.25 | Ő      |         |
| 11.00                             | •     |        |                    |              | 2            | ••    |              | •••   |                     |       | 0            |        | 0      |         |
| 11.25                             |       | •      | •                  | •            | 0            |       |              |       |                     |       | 0            |        | 1      |         |
|                                   |       |        | •                  |              | 1            |       |              |       |                     |       | 1            |        |        | 1.233.3 |
| 11.50                             | •     |        |                    |              | 1            |       |              |       |                     |       |              |        |        |         |
| 11.75                             | •     | 1      | •                  | •            |              | ••    | •••          |       |                     |       |              |        |        |         |
| 12-00                             |       | •      | •                  | •            | ••           |       |              |       |                     |       |              |        | ••     |         |
| Т                                 | otal  |        |                    |              | 500          | 500   | 500          | 500   | 500                 | 500   | 500          | 500    | 500    | 500     |
| M.D.                              |       |        |                    |              | 8-622        | 7.557 | 8.132        | 7.453 |                     | 7-939 |              | 7.732  |        |         |
|                                   |       |        |                    |              | 0.90         | 0.46  | 0.90         | 0.43  | 0.75                | 0.46  | 0.92         | 0.68   | 0.81   | 0.55    |
| υ.                                |       |        |                    |              | 10-4         | 6.0   | 11.06        | 5.7   | 8.7                 | 5.7   | 11.0         | 8.7    | 10.2   | 7.2     |
| Megal                             | ocyto | sis pe | r cent             |              | 57-8         | 0.2   | 36-8         | 0-0   | 55-4                | 18.4  | 44.0         | 9.6    | 22.4   | 1.8     |

# TABLE 24 (contd.)


# before and after treatment

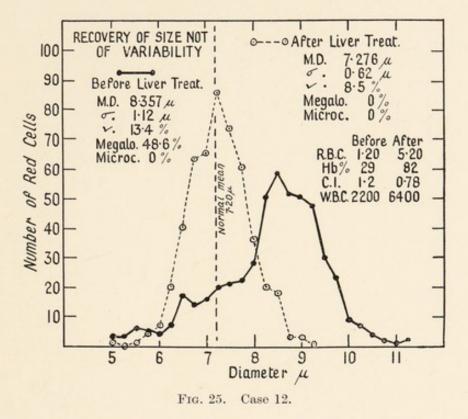
| $\begin{array}{ccc} 6 & 7 \\ 31 & 52 \\ F & F \end{array}$ |          |          | 8<br>50<br>F |          | 9<br>50<br>F |          | 10<br>27<br>M |                 | 11<br>54<br>M |          | 12<br>16<br><i>F</i> |        |       |
|------------------------------------------------------------|----------|----------|--------------|----------|--------------|----------|---------------|-----------------|---------------|----------|----------------------|--------|-------|
| Before                                                     | After    | Before   | After        | Before   | After        | Before   | After         | Before          | After         | Before   | After                | Before | After |
|                                                            |          |          |              |          |              |          |               | 1               |               |          |                      |        |       |
|                                                            |          |          |              |          |              |          |               | 1               |               |          |                      |        |       |
|                                                            |          | 1        |              |          |              | 1        |               | 1               | • •           | 2        |                      | ••     |       |
| ••                                                         |          | 5        |              | 1        |              | 2        |               | 2               | ••            | 2        | 1                    |        |       |
| 1                                                          |          | 6        | ••           | 0        | ••           | 10       |               | 1               | ••            | 1        | 2                    | 3      | 1     |
| 1                                                          |          | 5        | ••           | 1        | ••           | 4        | ••            | 2               |               | 6        | 0                    | 3      | 0     |
| 2                                                          |          | 10       | • •          | 4        |              | 6        | ••            | 8               |               | 6        | 3                    | 6      | 1     |
| 2                                                          |          | 9        | 1            | 4        | ••           | 10       |               | 14              |               | 14       | 1                    | 5<br>4 | 47    |
| 8                                                          | 5        | 15       | 0            | 5        | 1            | 22       | 2             | 16              | 3             | 10       | 4 9                  | 7      | 20    |
| 6                                                          | 7        | 17       | 0            | 9        | 2            | 11       | 13            | 16              | 9             | 14<br>18 | 23                   | 17     | 40    |
| 9                                                          | 19       | 26       | 4            | 16       | 13           | 18       | 22            | $\frac{16}{27}$ | 28<br>49      | 23       | 32                   | 14     | 63    |
| 13                                                         | 45       | 18       | 19           | 28       | 38           | 14       | 55<br>96      | 29              | 73            | 39       | 80                   | 16     | 65    |
| 15                                                         | 66       | 32       | 30           | 38       | 56           | 22       | 116           | 33              | 94            | 47       | 75                   | 20     | 85    |
| 32                                                         | 107      | 43       | 43           | 55<br>77 | 77           | 31<br>31 | 102           | 47              | 87            | 57       | 101                  | 21     | 73    |
| 43                                                         | 104      | 40       | 63<br>79     |          | 103<br>78    | 42       | 56            | 55              | 68            | 75       | 70                   | 22     | 60    |
| 59                                                         | 73       | 46<br>42 | 81           | 57<br>73 | 58           | 49       | 26            | 53              | 36            | 51       | 56                   | 28     | 36    |
| 68<br>54                                                   | 45<br>21 | 46       | 67           | 54       | 42           | 63       | 8             | 45              | 24            | 50       | 30                   | 50     | 20    |
| 59<br>59                                                   |          | 30       | 54           | 32       | 17           | 46       | 3             | 47              | 6             | 34       | 6                    | 58     | 18    |
| 41                                                         | 6<br>2   | 18       | 29           | 20       | 8            | 42       | 0             | 26              | 10            | 14       | 3                    | 51     | 3     |
| 32                                                         |          | 27       | 15           | 11       | 3            | 27       | 1             | 21              | 7             | 13       | 3                    | 50     | 3     |
| 21                                                         |          | 12       | 5            | 9        | 2            | 18       |               | 11              | 1             | 11       | 0                    | 47     | 1     |
| 4                                                          |          | 21       | 4            | 3        | 2            | 11       |               | 7               | 3             | 5        | 0                    | 30     |       |
| 4                                                          |          | 8        | 1            | 2        |              | 6        |               | 8               | 0             | 5        | 1                    | 23     |       |
| 3                                                          |          | 7        | 3            | 1        |              | 4        |               | 5               | 2             | 1        |                      | 9      |       |
| 5                                                          |          | 4        | 0            |          |              | 6        |               | 0               |               | 1        |                      | 7      |       |
| 5                                                          |          | 5        | 1            |          |              | 2        |               | 3               |               | 1        |                      | 4      |       |
| 5                                                          |          | 3        | 0            |          |              | 1        |               | 4               |               |          |                      | 2      |       |
| 3                                                          |          | 2        | 0            |          |              | 1        |               | 1               |               |          |                      | 1      |       |
| 2                                                          |          | 0        | 0            |          |              |          |               |                 |               |          |                      | 2      |       |
| 2                                                          |          | 2        | 1            |          |              |          |               |                 |               |          |                      |        |       |
| 0                                                          |          |          |              |          |              |          |               |                 |               |          |                      |        |       |
| 1                                                          |          |          |              |          |              |          |               |                 |               |          |                      |        |       |
| 500                                                        | 500      | 500      | 500          | 500      | 500          | 500      | 500           | 500             | 500           | 500      | 500                  | 500    | 500   |
|                                                            |          |          |              |          |              |          |               |                 | -             |          |                      | 0.055  |       |
| 8.136                                                      | 7.372    |          | 7.922        |          | 100000       |          | 7.265         |                 | 7.407         |          | 7.392                |        | 7.27  |
| 0.99                                                       | 0.48     | 1.24     | 0.65         | 0-76     | 0.54         | 1.15     | 0.44          | 1.1             | 0-61          | 0.95     | 0.59                 | 1.12   | 0-62  |
| 12.1                                                       | 6.5      | 16.0     | 8.2          | 9-9      | 7.1          | 14.7     | 6.0           | 14.2            | 8.2           | 12.5     | 7.9                  | 13-4   | 8.5   |
| 29.2                                                       | 0.0      | 19-6     | 16.6         | 7-4      | 0.6          | 26-0     | 0.0           | 18-4            | 1.8           | 8-8      | 0.2                  | 48-6   | 0.0   |

### THE EFFECT OF LIVER TREATMENT ON

the curve shows complete recovery, the mean diameter is 7.265, the variability 6.0 per cent., and there is absence of megalocytosis.

In case 7 (Fig. 30) the mean diameter has increased, though hardly significantly, to  $7.922\mu$  and the megalocytosis has been reduced only from 19.6 to 16.6 per cent.; this woman took liver badly. However, the haemoglobin has risen from 24 to 80 per cent., and the variability has fallen from 16 to 8 per cent. Case 4 (Fig. 24) has taken liver




conscientiously, is clinically well; his mean diameter has fallen by  $0.602\mu$  but is still too high  $(7.732\mu)$ ; the megalocytosis has been reduced from 44 to 9.6 per cent. He is an elderly man, a retired chemist.

Coefficients of Variation. The variabilities before treatment were all well outside the healthy maximum (7.3 per cent.). After treatment 7 came within the healthy range, and 4 fell below the healthy mean (6.2 per cent.). Of the other 5, 2 have excessive mean diameters and 3 have diameters compatible with health. On the other hand, the 'cured' case (3), Fig. 22, with the largest mean diameter has a variability nearly down to the healthy minimum.

In considering these reciprocal relations it should be borne in mind that the variability is influenced as much by the presence of

#### PERNICIOUS ANAEMIA

cells which are too small (as in anaemia from haemorrhage) as by megalocytes, and in different specimens of pernicious anaemia bloods the relative share of the two groups varies a good deal.



*Megalocytosis* before treatment varied from 7.4 to 57.8 per cent. (average 31.5 per cent.). It disappeared after treatment except in the three cases 3, 4, and 7, which still had abnormally large mean diameters.

Taking one criterion with another, therefore, the red cells became normal in 6 of the 12 cases; the others are still abnormal in one or more particulars. Considering that liver provides something which the body lacks and does not remove the cause of the disease, this is perhaps what we should expect.

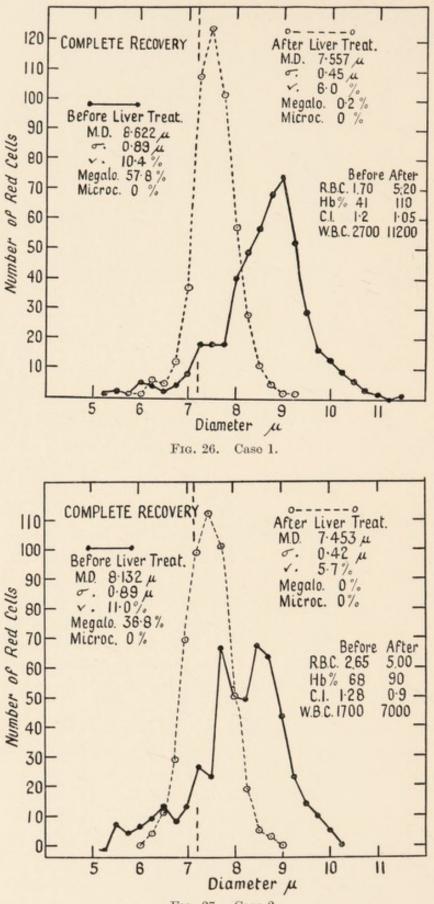
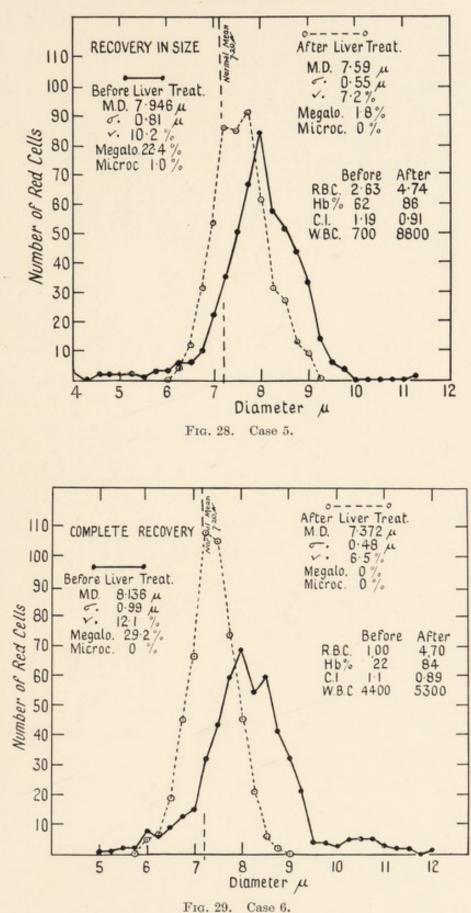




FIG. 27. Case 2.

#### PERNICIOUS ANAEMIA



 $\mathbf{K}$ 

THE EFFECT OF LIVER TREATMENT ON

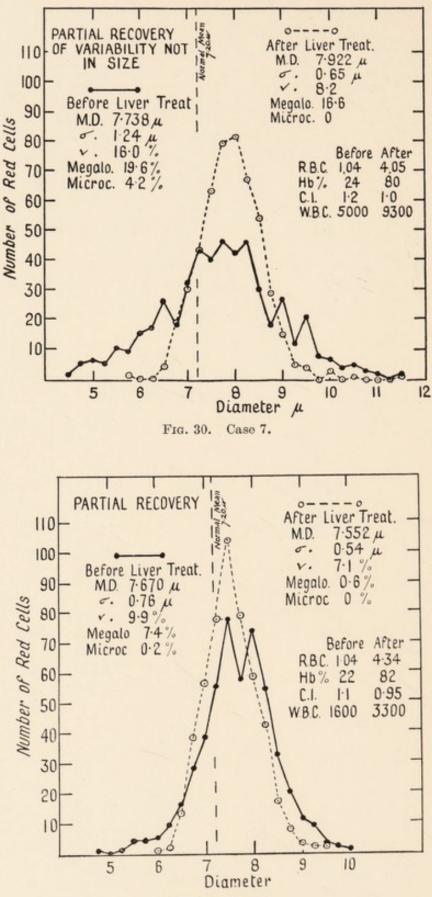



FIG. 31. Case 8.

### PERNICIOUS ANAEMIA

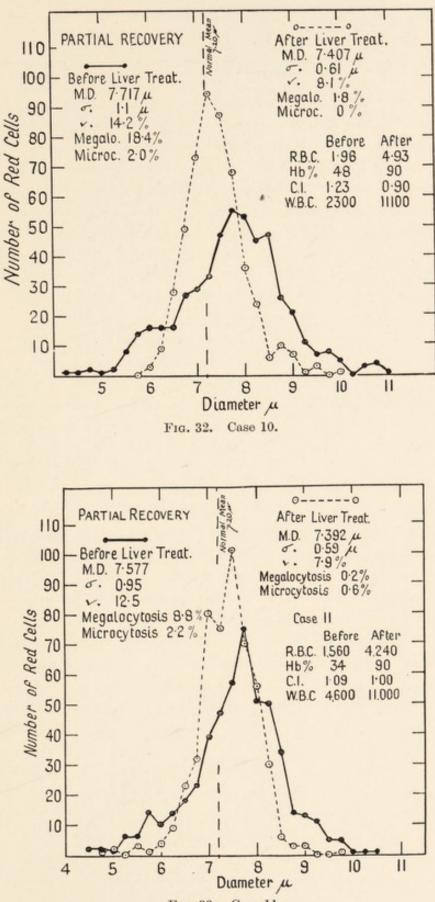



FIG. 33. Case 11.

#### CHAPTER X

### THE RED CELLS IN MICROCYTIC ANAEMIA (WITTS)

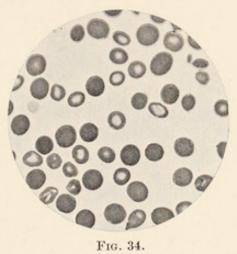
THIS form of secondary anaemia has been brought to notice in this country by Witts (1930), who names it 'simple achlorhydric anaemia'; it has also been described by Kaznelson (1929) as 'achylic chloranaemia'; by Schulten (1930) as 'hypochromatic anaemia', and by Waugh (1931) as 'hypochromic anaemia with achlorhydria'. None of these names is quite satisfactory or specific, and their variety illustrates the difficulty of definitive as opposed to eponymous nomenclature.

The condition is a 'secondary' or 'chlorotic' anaemia resulting from a deficient production of haemoglobin. Whereas the red cell count is usually only moderately reduced, the Hb percentage is remarkably lower, so that the colour index is lowered to about 50 per cent. of the normal value. This form of anaemia occurs in women :\* it is confined to the reproductive epoch and persists in varying intensity throughout the child-bearing period; it is much aggravated by pregnancy and tends to spontaneous cure after the menopause. It is frequently associated with hypochlorhydria or achlorhydria; according to Witts in 80 per cent. of cases. In the 8 cases under consideration there was complete achlorhydria in 5, a trace after histamine injection in 2, and later hyperchlorhydria in 1 case; these results do not suggest a causative association and do not bear out the attractive notion derived from the work of Mettier and Minot (1929) that, iron being more potent for blood formation when absorbed from an acid medium, there would with achlorhydria tend to be an iron deficiency and consequently an anaemia of this type.

The haematological features of this disease are anaemia, microcytosis, anisocytosis, and changes in the staining reaction of the red cells.

Anaemia. In all cases, examination before treatment shows a lowered red cell count (Table 26) usually only to a slight degree. In the eight cases I have studied the lowest count was 2.8 millions per c.mm., the highest 4.7 millions, and the average for the series was 4.03 (see Table 26). The Hb percentage was much more reduced: the lowest value was 24 per cent., the highest 56 per cent., the average 47 per cent. The colour index ranged from 0.42 to 0.72 with an average of 0.54.

Microcytosis. The sizes of the red cells are obviously smaller than


\* Cases are reported of its occurrence in men.

in health. The mean diameters ranged from  $6.2\mu$  to  $6.7\mu$  with an average of  $6.48\mu$ . In all these cases there was microcytosis, 6 per cent. to as much as 37 per cent. of the cells lying outside the left-hand boundary of the  $-3\sigma$  curve.

Morphology. Blood films, stained and fixed with Jenner, and superstained with aqueous eosin (10 per cent.) for 5 minutes, show on microscopic examination that most of the red cells are badly stained, giving the appearance of unstained disks enclosed by pink rings of varying width, often barely distinguishable; many of these pale

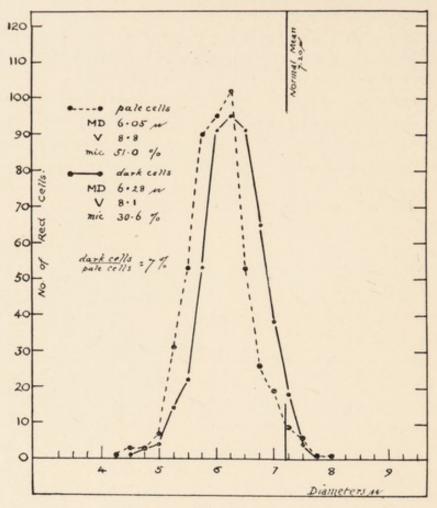
cells are oval in shape, some flattened to rods (biscuit shaped) with the stain limited to the ends of the rod; poikilocytes and fragments only occasionally occur.

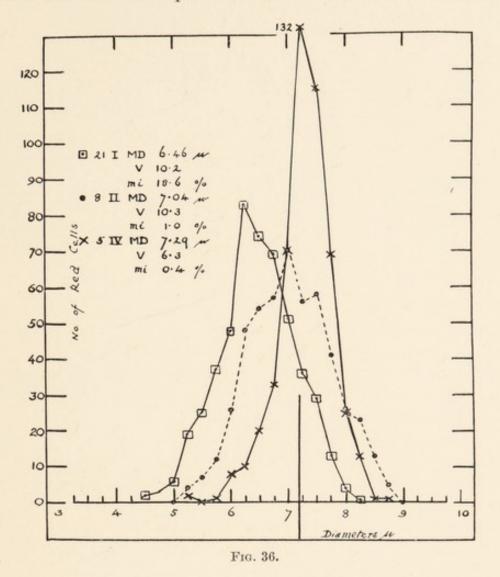
In striking contrast to these pale cells there are a few deeply stained cells; these are scattered irregularly through the film, but though on first examination before treatment they may be very few, yet I have observed them in all the cases, and have estimated their number, varying from



5 to 26 per cent. in counts of 500 red cells. They vary in depth of stain and size, and give the impression of being larger than the pale cells and hyperchromic. In films made from a mixture of my own blood and that of the patient, I was not able to distinguish these deep-stained cells from the healthy cells of my own blood, and I believed that these 'orthochromic' cells were healthy cells. If, however, I measured 500 of these cells and compared the distribution curve with that of 500 pale cells, it was at once clear (Fig. 35) that neither the pale cells nor the deep-stained cells are healthy; both are microcytic; the mean diameters are too small and the variability of their distribution or degree of anisocytosis is too high. Measurement of pale cells and dark cells for each case before or at commencement of treatment are given in Table 25.

The presence of 'well-stained' cells among faintly stained cells in the blood of secondary anaemia and chlorosis was recognized by Ewing (1901) and also by Cabot (1901); Waugh (1931) says there is in this hypochromic anaemia marked anisochromia of the red cells, which are poorly and irregularly stained. Watkins (1929) distinguishes 'hypochromasia' in which the red cells are uniformly pale, and 'anachromasia' in which there is a piling up of haemoglobin in





FIG. 35.

| 1 | CA. | BI | LE | 2. | 5 |
|---|-----|----|----|----|---|
|   |     |    |    |    |   |

|                   |                         | 500 pa | le cells | 500 da | rk cells |
|-------------------|-------------------------|--------|----------|--------|----------|
| Number of<br>case | Dark cells<br>per cent. | M.D.   | v.       | M.D.   | v.       |
| 1                 | 8.0                     | 6-66   | 8.4      | 7.03   | 8.6      |
| 2                 | 17.0                    | 6-67   | 9.2      | 7.02   | 8.5      |
| 3                 | 26.6                    | 6.44   | 8.8      | 7.11   | 12.8     |
| 4                 | 19.0                    | 6-51   | 8.4      | 6.49   | 7.5      |
| 5                 | 10.8                    | 6.65   | 6-9      | 6.51   | 9.4      |
| 6                 | 5.4                     | 6.27   | 9-0      | 6.38   | 10.2     |
| 7                 | 7.0                     | 6-05   | 8.8      | 6.28   | 8.1      |
| 8                 | 7.6                     | 6.45   | 10.3     | 6.45   | 10.4     |
| Averag            |                         | 6.46   | 8.7      | 6-66   | 9.4      |

# Before treatment

a narrow ring around the peripheral portion of the cell, leaving a wide colourless central zone. It is possible that his hypochromasic cells correspond to the orthochromic cells I have described above which had not been superstained with eosin, which I had found



necessary to bring out the distinction clearly. I have not found any reference to these differently stained cells in the work of other observers.

Perhaps the most remarkable feature of this anaemia is the rapidity and degree with which it reacts to large doses of iron. The index of the reaction is the increase in number and size of the dark-staining (orthochromic) cells. Fig. 36 shows the progress of case 8 from January 21, when treatment (three 5-gr. Blaud's pills t.d.s.) was started, to April 5. At the first examination the deep-stained cells were only 7.6 per cent. in a count of 500 red cells, the mean diameter of the pale and dark cells together was  $6.46\mu$ , with a

variability of 10.2 and a microcytosis of 18.6 per cent. After 15 weeks' treatment the deep-stained cells had increased to 87 per cent.; the microcytosis had disappeared; the mean diameter had risen to  $7.29\mu$  with a variability of only 6.3, the estimated normal value for v, and the character of the distribution is that of an ideal normal curve.

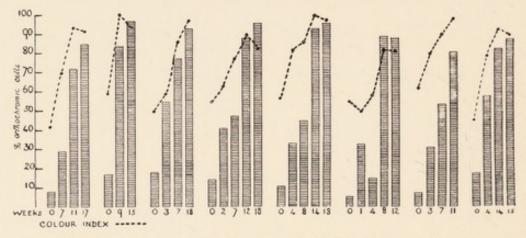
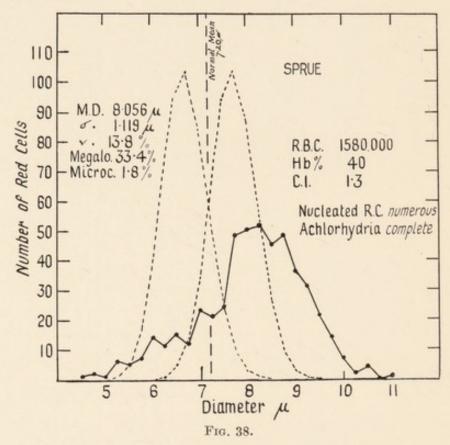



FIG. 37. Increase in percentage of orthochromic cells and colour index during treatment.

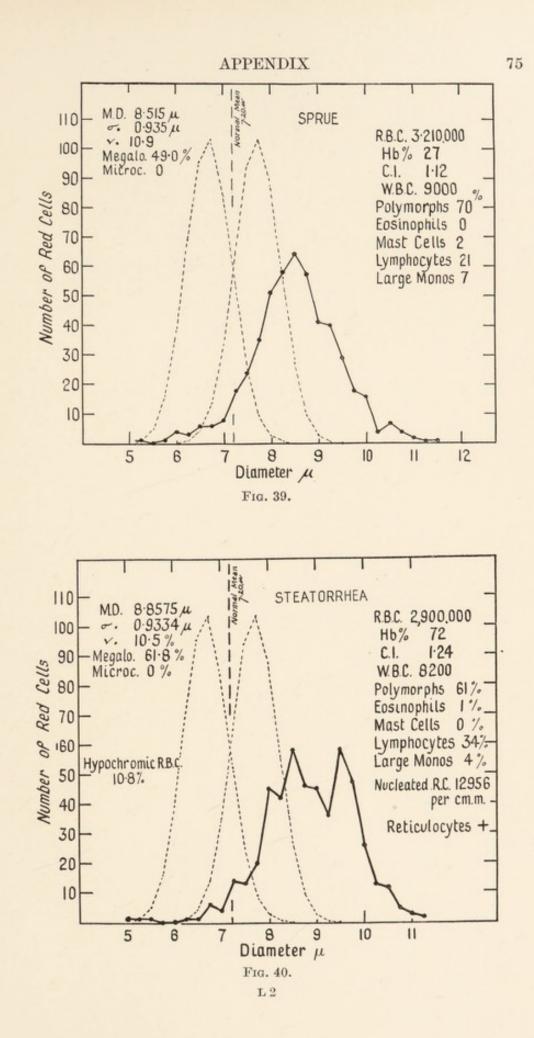
All the 8 cases show similar progresses. In Fig. 37 it is seen that corresponding with the increase of orthochromic cells there is a rise in the colour index. The effect of the treatment on the 8 cases is collected in Table 26. The mean diameter of the red cells is significantly moved to the right in every case and increased on average from  $6.48\mu$  to  $6.99\mu$ ; the coefficient of variation decreased on average from 9.25 to 6.62 per cent. The number of orthochromic cells increased on average from 12 per cent. to 90 per cent. In all but one case the microcytosis had disappeared, but this case was only 11 weeks under treatment.

|                                                      |        | -                                                  |                                                                                                                                                                                                      |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |
|------------------------------------------------------|--------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| T                                                    | C1     |                                                    | 33                                                                                                                                                                                                   |                                                        | 4                                                      |                                                        | 5                                                      |                                                        | 6                                                      |                                                        | L                                                      |                                                        | 8                                                      |                                                        |
| Before After Before                                  | Before | After                                              | Before                                                                                                                                                                                               | After                                                  | Before                                                 | After                                                  | Before                                                 | After                                                  | Before                                                 | After                                                  | Before                                                 | After                                                  | Before                                                 | After                                                  |
|                                                      |        |                                                    |                                                                                                                                                                                                      |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |
| 5.8                                                  | 4-7    | 5-27                                               | 5.28                                                                                                                                                                                                 | 5-05                                                   | 4.12                                                   | 4-53                                                   | 4-6                                                    | 4-95                                                   | 3.49                                                   | 4.64                                                   | 4.03                                                   | 5.3                                                    | 5.1                                                    | 5.49                                                   |
| _                                                    | 56     | 98                                                 | 55                                                                                                                                                                                                   | 98                                                     | 45                                                     | 75                                                     | 53                                                     | 94                                                     | 38                                                     | 75                                                     | 49                                                     | 98                                                     | 46                                                     | 96                                                     |
|                                                      | 0-59   | 0-92                                               | 0.52                                                                                                                                                                                                 | 0.97                                                   | 0.55                                                   | 0.83                                                   | 0-57                                                   | 0.98                                                   | 0-55                                                   | 0.81                                                   | 0.61                                                   | 0.92                                                   | 0-45                                                   | 0.88                                                   |
| _                                                    | 6.7    | 7.3                                                | 6-6                                                                                                                                                                                                  | 6.86                                                   | 6-3                                                    | 7.38                                                   | 6-29                                                   | 6-9                                                    | 6.3                                                    | 6.86                                                   | 6-2                                                    | 6.6                                                    | 6.6                                                    | 7-29                                                   |
|                                                      | 9-3    | 6-3                                                | 11.9                                                                                                                                                                                                 | 7.0                                                    | 9-7                                                    | 6-3                                                    | 6-1                                                    | 9-9                                                    | 0-6                                                    | 6-8                                                    | 8.3                                                    | 7-5                                                    | 9-5                                                    | 6.3                                                    |
| 0                                                    | 5.8    | 0.4                                                | 12.6                                                                                                                                                                                                 | 0                                                      | 27-2                                                   | 0                                                      | 7.8                                                    | 0                                                      | 22.8                                                   | 0                                                      | 37-2                                                   | 5.8                                                    | 9-2                                                    | 0.4                                                    |
| -                                                    |        |                                                    |                                                                                                                                                                                                      |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |
| 8.0 85.8                                             | 17.0   | 0-16                                               | 18.2                                                                                                                                                                                                 | 93-0                                                   | 14.4                                                   | 96-4                                                   | 10-8                                                   | 95-8                                                   | 5-4                                                    | 88.2                                                   | 7-0                                                    | 80.8                                                   | 17-0                                                   | 87.2                                                   |
| 4                                                    | 4      |                                                    | 4                                                                                                                                                                                                    |                                                        | 4                                                      |                                                        | 4-                                                     | -4-                                                    |                                                        |                                                        | 67                                                     | +                                                      |                                                        |                                                        |
| 2.8<br>24<br>0.43<br>8.6<br>8.6<br>8.6<br>8.0<br>8.0 |        | 5.8<br>102<br>0.92<br>6.8<br>6.2<br>0<br>85.8<br>1 | 5.8         4.7           102         56           0.92         0.59           6.8         6.7           6.2         9.3           6.2         5.8           85.8         17.0           4         4 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |


TABLE 26

Showing effect of iron treatment

 $\mathbf{L}$ 


#### APPENDIX

In the preceding pages I have stated the principles and methods involved in measuring the sizes of red blood cell diameters, and have given in some detail examples of the application of these measurements to diagnosis and prognosis. These examples, of course, could be extended to several other diseases, but as it is not my present purpose to write a textbook on haematology it may suffice if I include here a few curves from miscellaneous cases.



Figs. 38 and 39 are from cases of sprue, and Fig. 40 from a case of anaemia associated with steatorrhea. All these three curves show a high degree of megalocytosis and variability and a type of distribution indistinguishable from that of pernicious anaemia. Figs. 41 and 42 are from cases of aplastic anaemia both showing megalocytosis and high mean diameter.

Figs. 43 and 44 are from cases of Vaquez polycythaemia. Both curves show small mean diameter and raised variability, but the distribution is not characteristic or different from that of secondary anaemia; the degree of microcytosis in these cases is never very high. In spleno-megalic polycythaemia the bone marrow is intensely producing red cells. To enable the heart to overcome the increased work due to the greater viscosity of the blood the blood volume is increased. It was estimated in one of these cases that if the red cells had been of normal size the volume of his red cells would have been 93 per cent., in which case the blood would have been almost too thick to circulate; but the mean diameter was reduced by  $0.6 \mu$ . Throughout a long series of examinations the blood picture of these cases remained remarkably constant.



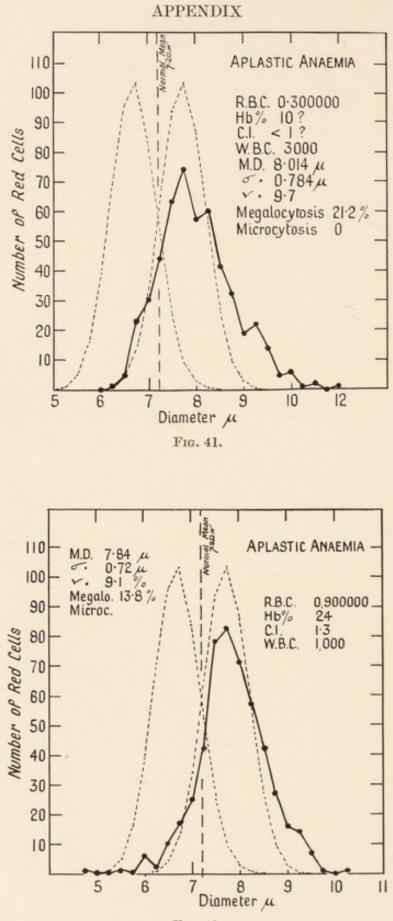



FIG. 42.

### APPENDIX

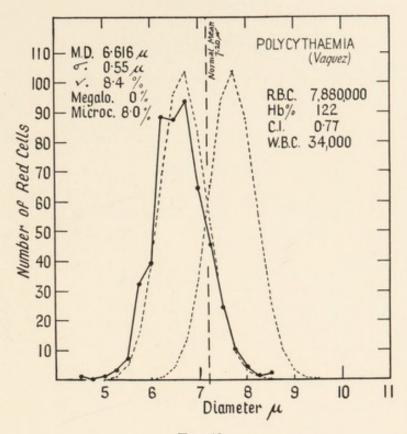
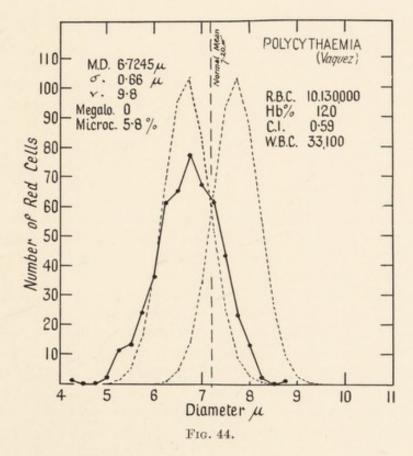




FIG. 43.



#### REFERENCES

- AMICI. Milne-Edwards, p. 45; Ann. de chimie et de physique, t. xxii, 1823, p. 137; Ann. des sci. naturelles, 1824; ref. 'Microscope', Encyclo. Brit., 11th ed., vol. xviii, p. 400.
- BELL, J. R., THOMAS, F. K., AND MEANS, J. H. Journ. Clin. Investig., 1926, vol. iii, p. 229.

BOYCOTT AND CHISHOLM. Biochem. Journ., 1910, vol. v, p. 23.

BOWLEY. Elements of Statistics, 4th ed., 1920, Book II, chap. ii, p. 259.

CABOT, R. C. A Guide to the Clinical Examination of the Blood, 1901, p. 83.

CAMMAERTS, E. Rubens, Painter, Diplomat, Faber & Faber, Lond., 1932, p. 211.

CAMPBELL, DOUGLAS, AND HOBSON. Phil. Trans. Roy. Soc., 1920, series B, vol. ccx, p. 1.

CAMPBELL, J. M. H. Brit. Journ. Exp. Path., 1922, vol. iii, p. 217.

CAPPS, J. A. Journ. Med. Res., 1903, vol. x, p. 367.

DREBBEL, C. Milne-Edwards, p. 40; Descartes, *Dioptrique*, p. 1; Cammaerts, p. 211.

EMMONS, W. F. Quart. Journ. Med., 1927, vol. xxi, p. 83.

Eve, F. C. Lancet, 1928, vol. i, p. 1070.

EWING, J. Clinical Pathology of the Blood, 1901, p. 166.

GALILEI. Milne-Edwards, p. 40.

GROSH, L. C., AND STIFEL, J. L. Archiv. Int. Med., 1925, vol. xvi, p. 874.

- GULLIVER, G. Proc. Zool. Soc., 1837–46; The London and Edinburgh Philosoph. Mag., Jan.-Feb., 1840, vol. xvi, p. 23.
- GÜRBER. Sitzungsb. d. phys. med. Gesellsch. zu Würzburg, 1895, No. 3, S. 33.

HADEN, R. L. J.A.M.A., 1924, vol. lxxxiii, p. 671.

HAMBURGER. Zeitschf. f. Biol. München, 1897, Bd. XXXV, S. 252.

HEWSON, W. Milne-Edwards, p. 44; Sydenham Society, London, 1846; ref. Majendie, F., Précis élémentaire de physiologie, Paris, 1817, i, p. 305.

HOLLER, G., AND KUDELKA, O. Folio Haemat., 1928, vol. xxv, p. 97.

JANS, Z. Milne-Edwards, p. 40.

JORGENSEN, S., AND WARBURG, E. J. Acta med. Scand., 1927, vol. lxvi, p. 109 (lit.)

JURIN, J. Phil. Trans. Roy. Soc., 1718, vol. xxx, p. 762.

KATOR. Phil. Trans. Roy. Soc., 1818, p. 187.

KAZNELSON, P., AND OTHERS. Klin. Woch., 1929, viii, p. 1071.

LEATHES. B.M.J., Lond., 1919, vol. ii, p. 165.

LEEUWENHOEK. Phil. Trans. Roy. Soc., 1673–1723 (1684, p. 789); Opera omnia seu arcana naturae delecta, 4 vols. 1719–22.

VON LIMBECK. Archiv f. exper. Path. u. Pharmakol., Leipsig, 1895, Bd. XXXV, S. 309.

LISTER, J. J., AND HODGKIN. Ann. des sci. naturelles, Paris, 1827, t. xii, p. 53, Phil. Trans. Roy. Soc., 1829.

#### REFERENCES

MALASSEZ, L. Comptes Rendus de la Soc. Biol., Jan. 5, 1889, p. 2.

- MALPIGHI. Milne-Edwards, p. 41; Opera Omnia, printed in London, 1686.
- MCCORMICK, A. R. Archiv Int. Med., 1927, vol. xxxix, p. 799.
- MEDEARIS, D. N., AND MINOT, G. R. Journ. Clin. Invest., 1927, vol. iii, p. 543.
- METICUS, J. Milne-Edwards, p. 40; Descartes, Dioptrique, p. 1.
- METTIER, S. R., AND MINOT, G. R. Journ. Clin. Invest., 1929, vol. vii, p. 510; Am. J. M. Sci., 1931, vol. clxxxi, p. 25.
- MILLAR, W. G. Proc. Roy. Soc., B, 1926, vol. xcix, p. 246.
- MILNE-EDWARDS, H. Leçons sur la physiologie et l'anatomie comparée de l'homme et des animaux, Paris, 1857, t. i, pp. 40, 50.
- OHNO, M., AND GISEVIUS, O. Pflügers Archiv, 1925, vol. ccx, p. 315 (lit.). PEARL. Medical Biometry, 1923, pp. 244 and 365.
- PEARSON, K. Tables for Statisticians and Biometricians, 1914, p. 3.
- PIJPER, A. Lancet, 1924, vol. ii, p. 367; Journ. Med. Assoc. S. Africa, 1928, vol. ii, p. 483; Journ. Path. and Bact., 1931, vol. xxxiv, p. 771.
- POHLE, K. Zeitschr. f. klin. Med., 1927, vol. cvi, p. 651.
- PONDER, E., AND MILLAR, W. G. Quart. Journ. Exper. Physiol., 1924, vol. xiv, pp. 67–319.
- PRÉVOST, J. L., AND DUMAS, J. Milne-Edwards, p. 45; Ann. de chimie et de physique, 1821, t. xviii, p. 280; Bibl. univ. des sciences de Genève, 1821, t. xvii, p. 215.
- PRICE-JONES, C. (1) 'The Variations in the Sizes of Red Blood Cells,' Brit. Med. Journ., London, 1910, vol. ii, p. 1418.
  - (2) 'Observations on Changes produced in the Blood and Bone Marrow by Haemorrhage and Blood-destruction,' Journ. Path. and Bact. (Cambridge), 1911, vol. xvi, p. 48.
  - (3) 'The Diurnal Variation in the Sizes of Red Blood Cells,' Journ. Path. and Bact. (Cambridge), 1920, vol. xxiii, p. 371.
  - (4) 'The Sizes of Red Blood Cells in Emphysema,' Journ. Path. and Bact. (Edinburgh), 1921, vol. xxiv, p. 326.
  - (5) 'The Diameter of Red Blood Cells in Pernicious Anaemia and in Anaemia following Haemorrhage,' *Journ. Path. and Bact.* (Edinburgh), 1922, vol. xxv, p. 487.
  - (6) 'Anisocytosis with special reference to Pernicious Anaemia,' Guy's Hospital Reports, January 1924, p. 10.
  - (7) 'Red Cell Diameters in One Hundred Healthy Persons and in Pernicious Anaemia. The Effect of Liver Treatment,' Journ. Path. and Bact. (Edinburgh), 1929, vol. xxxii, p. 479.
  - (8) 'The Red Cells in Microcytic Anaemia (Witts),' Journ. Path. and Bact. (Edinburgh), 1932, vol. xxxv, p. 659.
- RYFFEL. Journ. Physiol., London, 1910, Proc., vol. xxxix, p. 29.

SCHULTEN, H. Münch. med. Woch., 1930, vol. lxxvii, p. 355.

- Scott. Amer. Journ. Physiol., 1917, vol. xliv, p. 196; ibid., 1918, vol. xlvii, p. 43; Archiv Int. Med., 1920, vol. xxvi, p. 544.
- DE SENAC. Traité du Cœur, 1783, 2nd ed., t. ii, p. 276; Milne-Edwards, p. 43.

#### REFERENCES

SILVETTE, H. Journ. Lab. Clin. Med., 1927, vol. xiii, p. 245.

SWAMMERDAM. Milne-Edwards, p. 42; Biblia Naturae, 1738, t. ii, p. 835.

VAUGHAN, J. M. Lancet, 1928, vol. i, 1063.

WATKINS, C. H. J.A.M.A., 1929, vol. xciii, p. 1365.

WAUGH, T. R. Archiv Int. Med., 1931, vol. xlvii, p. 71.

WISCHNEWSKY, W. G. Russian Journ. Tropical Med., 1928, vol. vi, 187– 208.

WITTS, L. J. Guy's Hosp. Reports, vol. lxxx, p. 253; Lancet, 1932, vol. i, p. 551.

WOLLASTON, W. H. Phil. Trans. Roy. Soc., 1813, p. 119.

Young, T. Introduction to Medical Literature, 1823, p. 578.

YULE, U. An Introduction to the Theory of Statistics, 5th edition, 1919.

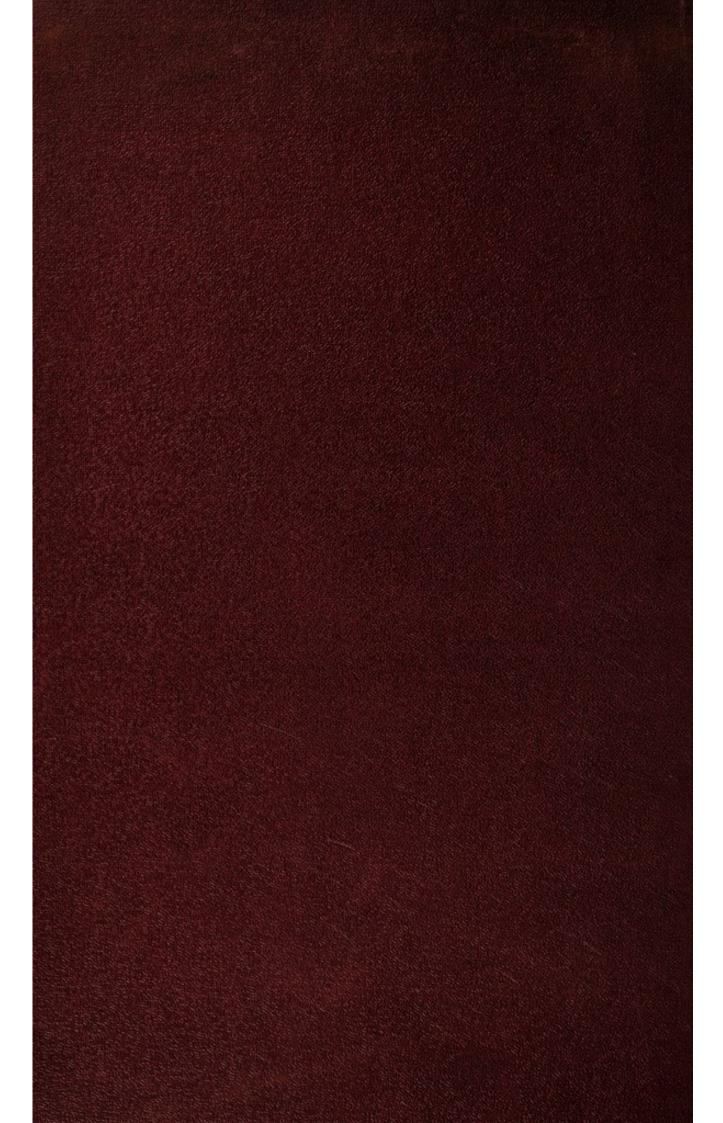
# INDEX

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |           | PAGE       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|-----------|------------|
| Achlorhydria, in microcytic anaemia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |          |           | . 68       |
| Achromia, of red cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |          |           |            |
| Achromia, of red cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |          |           | . 76       |
| haemorrhage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |          |           | . 43       |
| microeytic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |          |           | . 68       |
| pernicious                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |          |           | 47, 49     |
| " and liver treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |          |           |            |
| ,, correlation with variability .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | <u> </u> |           | -1 -0      |
| " conclution with variability .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |           |            |
| ,, ,, ,, mean diameter<br>Anisocytosis, unequal size of cells, see variability per cer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t (e)   |          |           |            |
| Anisocytosis, unequal size of cens, see variability per cer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10. (0) |          |           |            |
| Blood-cells, early measurements of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |          |           | . 1-7      |
| diameter measurement, method of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1       |          |           | . 8        |
| diameter measurement, method of .<br>,, ,, statistical treatment<br>stained films, preparation of .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of      | 0        |           | 8-14       |
| etained films preparation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 3 I.     |           | . 8        |
| stanied inns, proparation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |          |           |            |
| Camera lucida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |          |           | . 4, 6     |
| CO <sub>2</sub> (alveolar) influence on mean diameter .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |          |           |            |
| Coefficient of variation, see variability per cent. $(v)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |          |           | 8, 10      |
| Colour index and orthochromic colls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |          |           | =0         |
| Colour index, and orthochromic cells<br>Constancy of mean diameter in individuals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |          |           | 29, 30     |
| Common and dispetan distribution on mon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |          |           | 6 10       |
| ,, composite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | •        | •         | 44 50      |
| ,, composite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | • •      |           | 36         |
| Cyanosis (local), influence on mean diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •       | • •      |           | . 50       |
| Diameter distribution surres after eversion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |          |           | 34         |
| Diameter distribution curve after exercise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | • •      |           | 76         |
| aplastic anaemia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and     | ideal?   |           | 94 95 96   |
| emphysema                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | anu     | Ideal    | <i></i> , | 40         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |           |            |
| haemorrhage anaemia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | • •      |           | . 10       |
| healthy man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •       | • •      |           |            |
| 'ideal' (Gaussian) .<br>microcytic anaemia .<br>pernicious anaemia .<br>polycythaemia (Vaquez)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •       | • •      |           |            |
| microcytic anaemia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •       |          |           | 10         |
| pernicious anaemia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •       | • •      |           |            |
| polycythaemia (Vaquez)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |          |           |            |
| sprue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |          |           |            |
| steatorrhoea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |          |           | . 75       |
| Diurnal variation of mean diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •       | • •      |           | . 33       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |           | 40         |
| Emphysema, red-cell diameters in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | • •      |           |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •       | • •      |           | . 3        |
| Exercise, and red-cell diameters, influence of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | • •      |           | . 34       |
| The set is a set of the set of th |         |          |           | 34-9       |
| Forced breathing, influence on mean diameter .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | • •      |           |            |
| Frequency distribution $(f)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |          |           | 8, 9       |
| Course in a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |          |           | 22, 23     |
| Gaussian curve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •       |          |           | 24, 25, 26 |
| 'Goodness of fit'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •       |          |           | 24, 20, 20 |
| Haemorrhage anaemia, red-cell diameters of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |          |           | . 43       |
| Healthy persons, red-cell diameters of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |          |           | 15-22      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | : :      |           | 25, 44, 50 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | • •      |           | . 25       |
| Homogeneity """""""                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |          |           | . 68       |
| Hypochlorhydria in microtic anaemia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | • •      |           | . 00       |
| Iron and red-cell diameters, effect of treatment with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |          |           | . 71       |
| from and red-cen diameters, effect of treatment with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | • •      |           |            |
| Liver treatment in pernicious anaemia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |          |           | 57-67      |
| An or broadmone in permetous anachina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -       |          |           |            |

## INDEX

| Mean diameters, o   | coefficient of variation                | n       |         | -     |   |   | . 28, | 28n.,    | 29,   | 30  |
|---------------------|-----------------------------------------|---------|---------|-------|---|---|-------|----------|-------|-----|
| (                   | constancy in individ                    | uals    |         |       |   |   |       |          | 29,   | 30  |
| (                   | correlation with ana                    | emia    |         |       |   |   |       |          | 53,   | 54  |
|                     | ,, ,, vari                              | ability | y per o | cent. |   |   |       |          |       | 53  |
| (                   | yanosis (local) influ                   |         |         |       |   |   |       |          |       | 36  |
|                     | healthy persons                         |         |         |       |   |   |       |          | 15-   |     |
| 1                   | normal range .                          |         |         |       |   |   |       |          | 27,   |     |
| Megalocytosis, est  | imation of .                            |         |         |       |   |   |       |          |       |     |
| pe                  | rnicious anaemia                        |         |         | 1     |   |   |       |          | 47,   |     |
| . spi               | imation of .<br>rnicious anaemia<br>rue |         |         |       |   |   |       |          | 74,   |     |
| ste                 | atorrhoea .                             | -       |         |       |   |   |       |          |       |     |
|                     | ia, blood-cells in                      |         |         |       |   |   |       |          |       |     |
|                     | nation of .                             |         |         |       |   |   |       |          |       |     |
| hand hand           | norrhage anaemia                        |         |         |       |   | • |       | •        |       |     |
| mier                | norrhage anaemia                        |         | •       |       |   |   |       |          | 68,   |     |
| mic                 | rocytic anaemia                         | •       | •       |       |   | • | •     | •        |       |     |
| peri                | nicious anaemia<br>/cythaemia (Vaquez)  |         |         |       |   |   |       |          | 1     |     |
| poly                | (vaquez)                                | •       |         | -     |   | : |       |          |       |     |
| spru                | 10                                      |         |         |       | • |   | •     |          | 74,   |     |
|                     | torrhoea                                |         |         |       |   |   |       |          | •     |     |
| Micrometers .       |                                         |         |         |       |   |   | *     |          | . 1   | -7  |
|                     |                                         |         |         |       |   |   |       |          |       |     |
| Normal curve .      |                                         |         |         |       |   |   |       |          |       |     |
| Normality limit, o  | estimation of .                         |         |         |       |   |   |       |          | 27,   | 28  |
|                     |                                         |         |         |       |   |   |       |          |       |     |
| Orthochromic cell   | ls                                      |         |         |       |   |   |       |          |       | 69  |
|                     |                                         |         |         |       |   |   |       |          |       |     |
| Pernicious anaem    | ia, composite curves                    |         |         |       |   |   |       |          |       | 50  |
|                     | diameter distribu                       | tion o  | urve    |       |   |   |       |          | 47,   | 49  |
|                     | liver treatment, e                      |         |         |       |   |   |       |          | 57-   | 67  |
|                     | megalocytosis in                        |         |         |       |   |   |       |          | 47,   | 63  |
|                     | microcytosis in                         |         |         |       |   |   |       |          |       |     |
|                     | variability per ce                      | nt.     |         |       |   |   |       |          | 47-   |     |
| Probable error .    | variability per ce                      |         |         |       |   |   |       | <u>.</u> | 10    |     |
| riobuble ciror .    |                                         |         |         |       |   |   |       |          |       |     |
| Reaction of the h   | lood, influence on m                    | ean d   | iamete  |       |   |   |       |          | 36    | 28  |
|                     |                                         |         |         |       |   |   |       |          | 3, 4  |     |
| Refractometers      | · · ·                                   |         |         |       |   |   |       |          | 0, 4  |     |
| Son influence on    | mean diameter                           |         |         |       |   |   |       |          |       | 15  |
| Sex, innuence on    | mean diameter<br>nces, testing of       |         |         | •     |   |   | •     | . 11     | 10    | 10  |
| Significant differe | nces, testing of                        | •       | •       | •     |   |   | •     | . 11,    | 12,   | 10  |
|                     | listribution curve                      |         |         |       |   |   |       |          |       |     |
|                     |                                         |         |         |       | • | • |       |          |       | 9   |
|                     |                                         |         |         | •     |   |   |       |          |       | 13  |
|                     |                                         |         |         |       |   |   |       |          |       | 10  |
|                     | ent of diameter mea                     |         | ients   |       |   |   |       |          |       | , 9 |
| Steatorrhoea, dia   | meter distribution co                   | irve    |         |       |   |   | •     | 10       |       | 75  |
|                     |                                         |         |         |       |   |   |       |          |       | 115 |
| Variability per ce  | ent. $(v)$ , emphysema                  |         |         |       |   |   |       |          |       |     |
|                     | estimation o                            | f       |         |       |   |   |       |          | 8,    |     |
|                     | haemorrhage                             |         |         |       |   |   |       |          | 43,   |     |
|                     | healthy pers                            | ons     |         |       |   |   | . 15, | 28, 2    | 8 n., | 31  |
|                     | pernicious a                            |         |         |       |   |   |       |          | 47-   | -69 |
|                     | populations                             |         |         |       |   |   |       |          | 31,   | 32  |
|                     |                                         |         |         |       |   |   |       |          | 1000  |     |

LIBRARY


PRINTED IN GREAT BRITAIN AT THE UNIVERSITY PRESS OXFORD BY JOHN JOHNSON PRINTER TO THE UNIVERSITY









