A text-book of general bacteriology / by Edwin O. Jordan.

Contributors

Jordan, Edwin O. 1866-1936.

Publication/Creation

Philadelphia; London: W.B. Saunders, 1931.

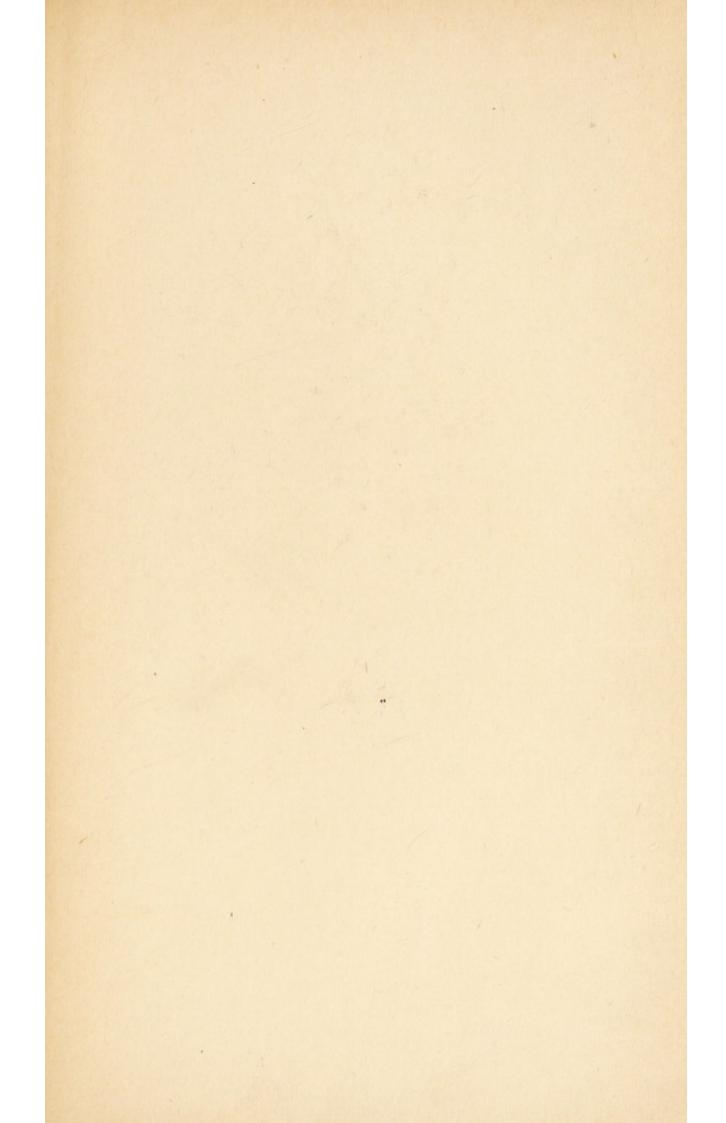
Persistent URL

https://wellcomecollection.org/works/cymxscrm

License and attribution

Conditions of use: it is possible this item is protected by copyright and/or related rights. You are free to use this item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

Wellcome Collection 183 Euston Road London NW1 2BE UK T +44 (0)20 7611 8722 E library@wellcomecollection.org https://wellcomecollection.org



M2

Presented by

The Publishers.

Digitized by the Internet Archive in 2018 with funding from Wellcome Library

A TEXT-BOOK OF GENERAL BACTERIOLOGY

BY

EDWIN O. JORDAN, Ph.D.

PROFESSOR OF BACTERIOLOGY IN THE UNIVERSITY OF CHICAGO AND IN RUSH MEDICAL COLLEGE

FULLY ILLUSTRATED

30/-

TENTH EDITION, ENTIRELY RESET

PHILADELPHIA AND LONDON

W. B. SAUNDERS COMPANY

Copyright, 1908, by W. B. Saunders Company. Reprinted April, 1909, and November, 1909.
Revised, reprinted, and recopyrighted August, 1910. Reprinted January, 1911. Revised, reprinted, and recopyrighted August, 1912. Reprinted March, 1913. Revised, reprinted, and recopyrighted September, 1916. Reprinted September, 1917.

Revised, reprinted, and recopyrighted October, 1918. Reprinted August, 1919. November, 1919, and June, 1920. Revised, reprinted, and recopyrighted September, 1921. Reprinted August, 1922. and February, 1923. Revised, reprinted, and recopyrighted November, 1924. Reprinted November, 1925, and September, 1926.

Revised, entirely reset, reprinted, and recopyrighted

February, 1928. Reprinted August, 1929. Revised, entirely reset, reprinted and recopyrighted

righted July, 1931

Copyright, 1931, by W. B. Saunders Company

WEI	WELLCOME INSTITUTE LIBRARY		
Coll.	welMOmec		
Call			
No.	QW4		
	1931		
	J82t		

MADE IN U. S. A.

PRESS OF

W. B. SAUNDERS COMPANY

PHILADELPHIA

MY MOTHER

THIS BOOK IS

AFFECTIONATELY DEDICATED

PREFACE

This book is the outgrowth of lectures given to students in the University of Chicago during the past few years. The subject is one that the writer believes should find a place in every general scientific course. Bacteriology is chiefly of professional interest to the medical student, but the subject also bears technical relations to household administration, to agriculture, to sanitation and sanitary engineering and to various industries and technological pursuits. For the general scientific student and reader bacteriology presents certain aspects that tend to widen the outlook upon a variety of human interests.

It need hardly be said that within the compass of this work an exhaustive treatment of all sides of bacteriology is impossible. The needs of the advanced worker can be met only—and that but in part—by such monumental special treatises as the Handbuch der Pathogenen Mikroörganismen, edited by Kolle and Wassermann, and the Technische Mykologie, edited by Lafar. A general introduction to the subject, however, with some regard for perspective and with emphasis on general rather than on special questions has seemed worth attempting.

The reader who wishes to acquire greater familiarity with the subject will find some bibliographical references given as a sort of first aid to the investigator. These include references to some articles of classic or historic interest, to some giving valuable summaries or bibliographies of important subjects and to a few in fields where investigation is very active or opinions considerably at variance. No pretension to completeness is made.

The fundamental principles and methods of laboratory work are treated as fully as seems desirable in a book of this class. The tendency manifested in all the natural sciences towards the elaboration of special laboratory manuals and guides has much in its favor. A number of such guides for bacteriology are in existence, among 10 PREFACE

which may be mentioned the excellent manuals of Frost, Gorham, Heinemann, Moore and Novy, to mention only American authors. In any case a proper familiarity with laboratory methods can be gained only with the assistance of a skilled laboratory instructor possessed of individuality and resource.

I have been greatly assisted by many friends and colleagues in the preparation of this work, and to all I wish to express my cordial thanks. I am particularly indebted to Professors Ludvig Hektoen and N. McL. Harris and to Drs. P. G Heinemann and Mary Hefferan, who have helped me in a variety of ways. Finally I would acknowledge my deep obligation to my wife, who has aided me in the preparation of the book at every point, especially in the revision of the manuscript and proof-sheets.

CONTENTS

	AGE
Chapter 1.—Introduction The Discovery of Bacteria, 17.—The Origin of Bacteriology, 18.— The Scope of Bacteriology, 21.—Biologic Significance, 22.	17
Chapter 2.—Methods of Studying Bacteria. Sterilization of Glassware and Instruments, 24.—Autoclave Sterilization, 26.—Discontinuous Sterilization, 27.—Preparation of Culture Media, 28.—Special Media and Biochemical Tests, 37.—The Fermentation Tube, 38.—Thermal Death-point, 40.—Methods for Testing and Standardizing Disinfectants, 41.—Sterilization by Filtration, 42.—Methods of Obtaining Pure Cultures, 43.—Technic of Making Plate Cultures, 44.—Dilution, 45.—Separation of Bacterial Species by Heat, 45.—Separation by Animal Inoculation, 45.—Method of Growing Anaërobes, 45.—Animal Inoculation, 47.—Microscopic Methods, 49.—Study of Pathologic Material, 59.—Study of Pure Cultures, 59.	24
CHAPTER 3.—THE STRUCTURE AND MODE OF DEVELOPMENT OF BACTERIA.—THE COMPOSITION OF BACTERIA. The Morphology of Individual Cells, 62.—Dimensions, 62.—Bacterial Forms and Their Interpretation, 63.—The Finer Structure of Bacteria, 64.—Motility and the Organs of Locomotion, 68.—Growth and Cell-division, 70.—Spore-formation, 72.—The Morphology of Masses of Cells, 74.—The Chemical Composition of Bacteria, 76.	62
Chapter 4.—The Effect of Physical and Chemical Agents upon Bacteria. Temperature Relations, 78.—Light, 81.—Moisture, 82.—Oxygen Supply, 83.—Food-supply, 86.—Other Environmental Influences, 88.—Adaptability of Bacteria to Varying Conditions of Life, 89.—Effect of Chemical Substances upon Bacteria, 90.—Disinfectants and Antiseptics, 92.—Theory of Disinfection, 95.—Practical Disinfection, 97.—Standardization of Disinfectants, 99.—Recommended Procedures for Disinfection, 100.	78
Chapter 5.—The Effects Produced by Bacterial Growth Physical Effects, 103.—Chemical Products, 105.—The Production of Pigment, 105.—Enzymes and Fermentation Products, 107.—The Iron Bacteria, 108.—The Sulfur Bacteria, 110.—The Production of Acid and Alkali, 112.—Putrefactive Products, 114.—The Relation of Bacteria to Food Assimilation by Higher Forms of Life, 115.—Ptomaines and Toxins, 116.	103
Chapter 6.—The Classification of Bacteria	122

	PAGE 136
Theories of Disease, 136.—Pathogenicity, 138.—Factors Affecting the Host, 139.—Factors Affecting the Microbe, 140.—Routes of Infection, 141.—Bacteremia and Toxemia, 142.—Mixed and Secondary Infections, 143.—The External Defenses of the Organism, 144.—The Transmission of Infection, 146.	
Chapter 8.—Immunity and Body Resistance to Disease Antigens and Antibodies, 149.—Natural Immunity, 150.—Acquired Immunity, 152.—Active Immunity, 152.—Passive Immunity, 152.—The Mechanism of Immunity, 157.—The Antitoxins, 157.—The Bactericidal Substances—Lysins, 163.—The Phagocytes, 168.—Ehrlich's Receptor Theory, 176.—The Neisser-Wechsberg Phenomenon, 180.—Complement Fixation or the Bordet-Gengou Phenomenon, 181.—Other Reactions Produced by Bacteria, 182.—The Agglutinins, 183.—The Precipitins, 189.—Specific Soluble Substances—Residue Antigens, 193.—Anaphylaxis or Hypersensitiveness—Allergy—Protein Sensitization, 195.	148
Chapter 9.—The Staphylococci. Morphology and Staining, 202.—Physiologic Requirements, 202.— Products of Growth, 203.—Pathogenicity for Man, 204.—Pathogenicity for Other Animals, 207.—Varieties, 208.—Immunity, 208.— Micrococcus tetragenus, 210.	201
Chapter 10.—The Streptococci. Morphologic and Cultural Characters, 211.—Classification, 214.— Hemolytic Streptococci, 215.—Green-producing Streptococci, 216.— Virulence, Toxin Production, Hemolysin, 217.—Pathogenicity for Man, 217.—Erysipelas, 223.—Pathogenicity for the Lower Animals, 226.—Streptococcus Sore Throat (Septic Sore Throat), 227.—Scarlet Fever, 229.	211
Chapter 11.—The Pneumococci	236
Chapter 12.—The Gonococcus; The Meningococcus; Neisseria Ca-	
TARRHALIS. The Gonococcus, 252.—Morphologic and Cultural Characters, 253.— Varieties, 256.—Inoculation Experiments, 256.—Results of Gonococcus Infection, 257.—Vaccination, 258.—The Meningococcus, 258.— Morphology, 259.—Cultural Characters, 260.—Epidemiology, 262— Prophylaxis, 263.—Pathogenicity for Man, 264.—Portal of Entry, 265. —Pathogenicity for Other Animals, 266.—Agglutination and Immunity: Curative Antiserum, 266.—Neisseria Catarrhalis, 268.—Neisseria Pharyngis, 269.	252
	270
Historical, 270.—Characteristics and Morphology, 271.—Spores and Spore-formation, 272.—Growth Characteristics, 274.—Pathogenicity	

PAGE

for the Lower Animals, 275.—Pathogenicity for Man, 278.—Mode by Which the Anthrax Bacillus Causes Injury to Animal Organisms, 279. —Immunity, 280.—Vaccination Against Anthrax, 281.—Bacillus subtilis, 282.	
Chapter 14.—Corynebacterium (The Diphtheria Bacillus) Morphology, 286.—Cultural Characteristics, 289.—Resistance, 290.— The Diphtheria Bacillus in the Human Body, 291.—Animal Inoculations, 292.—The Diphtheria Toxin, 293.—Diphtheria Antitoxin, 296. —The Curative Value of Diphtheria Antitoxin, 298.—The Results of Antitoxin Treatment, 299.—Modes of Infection, 300.—Mixed Infections, 303.—Diphtheroid Bacilli, 303.—Method of Diagnosis, 307.— Serum Prophylaxis, 308.—The Schick Reaction, 309.—Immunity and Susceptibility, 310.—Prophylactic Inoculation, 310.	285
Chapter 15.—Bacterium (Bact. Coli, Friedländer's Bacillus) Characteristics and Subdivisions of the Group, 313.—Bact. coli, 316. —Morphology, 316.—Cultural Characteristics, 317.—Pathogenicity, 318.—Bacillus bifidus and Bacillus acidophilus, 320.—Bact. aërogenes, 321.—Bact. cloacae, 322.—The Capsulated Bacteria, 322.—Friedländer's Bacillus 322.—Bact. ozenae, 324.—Bact. rhinoscleromatis, 324.	313
Chapter 16.—The Salmonella (Paratyphoid) Group The Paratyphoid Fevers, 326.—Paratyphoid Gastro-enteritis, 328.—S. aertrycke, 328.—S. enteritidis, 329.—S. cholerae-suis, 329.—Salmonella Infections of Animals, 330.	325
Chapter 17.—Eberthella (Typhoid and Dysentery Bacilli) The Typhoid Bacillus (E. typhi), 332.—Characteristics, 332.— Methods of Isolating, 335.—Distribution in Nature, 338.—Pathogenicity for the Lower Animals, 340.—Pathogenicity for Man, 341.— Distribution of Bacilli Within the Body of the Patient, 343.—Epidemiology, 345.—Typhoid Carriers, 351.—Immunity, 352.—Agglutination, 354.—Serum Therapy and Protective Vaccination, 356.—The Dysentery Bacilli, 358.—Characteristics, 359.—Varieties, 360.—Distribution, 360.—Pathogenicity, 360.—Toxins, Serum Therapy, Etc., 362.—Eberthella alcaligenes, 363.	332
Chapter 18.—Brucella (Malta Fever, Undulant Fever) Brucella melitensis, 365.—Brucella abortus, 367.—Epidemiology, 370. —Brucella bronchiseptica, 373.	365
Chapter 19.—Pasteurella (Plague; Hemorrhagic Septicemia; Tularemia)	374
Chapter 20.—The Hemophilic Bacteria	389

		PAG
	Animals, 394.—Pathogenicity for Man, 395.—The Koch-Weeks Bacillus, 396.—Whooping-cough, 397.—Pathogenicity, 398.—The Morax-Axenfeld Diplobacillus, 400.	AU
	Tetanus (Cl. tetani), 403.—Cultural Characteristics, 404.—Tetanus Toxin, 407.—Pathogenicity for Man, 410.—Pathogenicity for Other Animals, 413.—Immunity, 413.—Gaseous Gangrene, 416.—The Vibrion Septique, Cl. septicum, 419.—Cl. welchii, 421.—Pathogenicity for Man, 424.—Pathogenicity for Animals, 425.—Cl. novyi, 426. Morphology, 427.—Physiology, 427.—Pathogenicity, 428.—Cl. sordelli, 429.—Cl. histolyticum, 429.—Morphology, 429.—Physiology, 430.—Pathogenicity, 430.—Cl. sporogenes, 431.—Morphology, 432.—Physiology, 432.—Physiology, 432.—Pathogenicity, 435.—Botulism (Cl. botulinum), 437.—Morphology, 439.—Physiology, 439.—Resistance of the Spores, 440.—Toxin, 441.—Pathogenicity, 442.—Pathogenicity for Animals, 444.—Immunity, 444.	40
Сна	PTER 22.—MYCOBACTERIUM—(1) THE TUBERCLE BACILLUS	446
	Morphology, 446.—Staining, 448.—Cultivation, 450.—Biological and Chemical Characteristics, 451.—Powers of Resistance, 452.—Tuberculous Infection in Man, 453.—Tuberculous Infection in the Lower Animals, 456.—Channels of Infection, 459.—The Relation Between Bovine and Human Tuberculosis, 463.—Predisposing Factors, 466.—Tuberculin, 469.—Tuberculin Reaction, 470.—Immunity; Protective and Curative Inoculations, 471.—Myco. paratuberculosis (Johne's Disease), 474.—Other Acid-fast Bacteria, 474.	
Сна	PTER 23.—MYCOBACTERIUM—(2) THE BACILLUS OF LEPROSY (MYCO.	
	Leprae)	477
1	Morphologic and Cultural Characters, 485.—Pathogenicity for the Lower Animals, 487.—Pathogenicity for Man, 488.—Path of Entrance, 489.—Diagnosis, 490.—Immunity and Prophylaxis, 492.—Melioidosis, 492.	485
		493
1	Pseudomonas pyocyanea, 493.—Morphology and Cultural Characters, 493.—Products of Growth, 494.—Pathogenicity, 495.—Proteus, 496.—Bartonella, 498.—Oroya Fever; Verruga Peruviana, 498.—Bartonella muria, 499.	100
t r I	Spirillum Cholerae (Vibrio cholerae), 500.—Morphology, 500.—Cultural Characters, 501.—Examination of Feces, 503.—Cholera Carriers, 504.—Pathogenicity for Man, 505.—Modes of Dissemination; Epidemiology, 506.—Animal Inoculation, 508.—Toxin, 509.—Vaccination Against Cholera, 509.—Allied Varieties, 512.—Spirillum metchnikovii, 513.	500

I	PAGE
Chapter 27.—The Spirochetes	516
Chapter 28.—Actinomyces and Related Organisms Actinomycosis, 545.—Characteristics of Actinomyces bovis, 546.— Cultivation, 549.—Pathogenicity for Cattle and Other Animals, 551.— Occurrence in Man, 552.—Method of Infection, 553.—Mycetoma or Madura Foot, 554.—White Variety, 555.—Black Variety, 555.— Related Infections, 556.—Erysipeloid, 556.	545
Chapter 29.—The Yeasts. Pathogenic Yeasts, 559.	559
Chapter 30.—The Molds	564
Chapter 31.—The Parasitic Protozoa	572
bas, 580.—Endameba gingivalis, 580.—Intestinal Flagellates of Man, 580.—The Trypanosomes, 581.—Tr. lewisi, 582.—Tr. evansi, 586.—Tr. equinum, 586.—Tr. brucei, 586.—Tr. equiperdum, 587.—Tr. gambiense, 587.—Tr. cruzi, 590.—Leishmaniosis, 590.—Leishmania donovani, 590.—Leishmania tropica, 593.—The Malarial Parasite, 594.—Introduction, 594.—The Asexual Development of the Malarial Parasite, 595.—Morphology of the Different Varieties of the Malarial Parasite, 596.—The Sexual Phase of the Parasite, 599.—Prophylaxis, 606.—Other Malarial Organisms, 610.—The Piroplasms, 611.—Babesia bigemina, 612.—Theileria parva, 613.—Babesia canis, 614.—Coccidia, 616.—Cnidosporidia, 616.—Ciliates, 617.	
Chapter 32.—The Filterable Viruses	
Chapter 33.—The Bacteriophage (Twort-D'Herelle Phenomenon) Characteristics of Bacteriophage Action, 645.—Nature of the Bacteriophage, 646.—Mode of Action, 648.—One or Several Bacteriophages, 648.—Therapeutic Use of Bacteriophage, 649.	
Chapter 34.—The Rickettsiae	

	PAGE
—The Weil-Felix Reaction, 657.—The Specific Organisms, 658.—Rickettsiae in Other Connections, 660.—Trench Fever, 660.—Heartwater Disease, 661.	
Chapter 35.—The Bacteriology of Milk and Milk Products The Fermentation of Milk, 662.—Methods of Bacterial Examination of Milk, 666.—Sources of Bacteria in Milk, 667.—Infant Diarrhea, 672. —Certified Milk, 674.—Pasteurization, 674.—Bacillus bulgaricus, 678. —Bacillus acidophilus, 678.—Milk Products, 680.—Infection from Butter and Cheese, 686.	
Chapter 36.—Bacteria and the Nitrogen Cycle	
Chapter 37.—Bacteria in the Industries. Bacteria in Tanning, 705.—The Curing of Tobacco, 707.—The Preservation of Foods, 709.—Vinegar Making, 711.—The Fermentation of Sauerkraut, 713.—The Bakery Fermentations, 713.—The Butyl Alcohol Fermentation, 715.—The Retting of Flax and Hemp, 716.—The Bacterial Destruction of Cellulose, 717.—The Bacteriology of Silage, 718.	
Chapter 38.—The Bacteria of Air, Soil, and Water Bacteria in Air, 720.—Bacteria in Soil, 722.—The Bacteriology of Water, 725.	720
Chapter 39.—The Bacterial Diseases of Plants Pear Blight (Bacillus amylovorus), 741.—The Wilt Disease of Cucurbita (Bacillus tracheiphilus), 742.—Brown Rot of Tomato, Egg Plant, and Potato (Bacillus solanacearum), 743.—The Basal Stem-rot of Potato (Bacillus phytophthorus), 744.—The Black Rot of Cabbage and Allied Plants (Bacillus campestris), 745.—Stem Blight of Alfalfa, 747.—The Yellow Disease of Hyacinths (Bacillus hyacinthi), 748.—Citrus Canker, 749.—Bacterial Blight of Beans, 749.—Olive-knot, 749.—The Crown-gall of Plants, 751.—Mode of Entrance and Spread, 752.—Other Diseases, 753.	741
APPENDIX	
Infectious Diseases of Doubtful or Unknown Causation Hodgkin's Disease, 755.—Trachoma, 755.—Colds, 756.—Mumps, 757.—Sprue, 758.—Measles, 758.—Influenza, 761.	755
Index of Authors	765
Index of Subjects	779

GENERAL BACTERIOLOGY

CHAPTER 1

INTRODUCTION

The Discovery of Bacteria.—The belief that there are living organisms too small to be seen by the unaided human eye, and that such invisible organisms play an important part in various natural phenomena, has found utterance many times since the dawn of history. Several of the philosophers of antiquity were bold enough to surmise that such organisms existed, and some writers even framed their speculations on this subject in phrases that seem like far-seeing anticipations of modern discoveries. Interesting in some degree as these speculations are, they appear to have had no influence whatever upon the course of scientific investigation and to have been let fall at random by their authors, like hundreds of similar conjectures, without any real basis in observation or experiment. The fact is that prior to the work of the Dutch microscopist, Anton van Leeuwenhoek, in the latter part of the seventeenth century, definite ocular evidence for such a belief did not exist. Leeuwenhoek (1632-1723), who was a skilled lens-maker of Delft, Holland, spent many years in examining through his microscope a great variety of natural objects, with unremitting industry if without system, and in the course of his observations chanced to come across the organisms now known as bacteria. In a letter to the Royal Society of London, dated September 14, 1683, he records in these words his observations upon some tartar scraped from the teeth and mixed with water: "I saw with wonder that my material contained many tiny animals which moved about in a most amusing fashion; the largest of these (A, Fig. 1) showed the liveliest and most active motion, moving through the water or saliva as a fish of prey darts through the sea; they were found everywhere, although not in large numbers. A second kind was similar to that marked B (Fig. 1). These sometimes spun around in a circle like a top.

and sometimes described a path like that shown in C-D (Fig. 1); they were present in larger numbers. A third kind could not be distinguished so clearly; now they appeared oblong, now quite round. They were so very small that they did not seem larger than the bodies marked E, and besides they moved so rapidly that they were continually running into one another: they looked like a swarm of gnats or flies dancing about together. I had the impression that I was looking at several thousands in a given part of the water or saliva mixed with a particle of the material from the teeth no larger than a grain of sand, even when only one part of the material was added to nine parts of water or saliva. Further, the greater part of the material consisted of an extraordinary number of rods, of widely

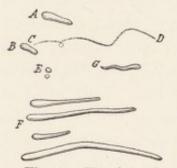


Fig. 1.—The first pictorial representation of bacteria. Leeuwenhoek, 1683 (Löffler).

different lengths, but of the same diameter. Some were curved, some straight, as is shown in F; they lay irregularly and were interlaced. Since I had previously seen living animalcules of this same kind in water, I endeavored to observe whether there was life in them, but in none did I see the smallest movement that might be taken as a sign of life." Leeuwenhoek supplemented his observations with drawings, and there is no doubt that he was the first to see bacteria

and describe them accurately.

The Origin of Bacteriology.—Leeuwenhoek's observations remained practically isolated and without fruit for nearly a century. It was not until 1786 that the work of the Danish zoölogist, O. F. Müller, added anything of importance to the knowledge of bacteria. Müller recognized clearly the difficulties of studying such minute organisms. "The difficulties," he writes, in words that still appeal to the modern bacteriologist, "that beset the investigators of these microscopic animals are countless; the sure and definite determination [of species] requires so much time, so much acumen of eye and judgment, so much perseverance and practice, that there is hardly anything else so difficult." Despite the obstacles, however, Müller succeeded in discovering many structural details of which his predecessors had been ignorant. Indeed, he succeeded in depicting several kinds of bacteria so accurately that they can

be identified today as belonging to one or another of the chief divisions.

Another unequivocal advance was made by Ehrenberg (1795-1876). His principal work upon the "infusion animals," "infusoria," or "Infusionstierchen," as the animalcules found in infusions of hay, meat, and other organic substances were termed, was published in 1838, and brought together much more definite and detailed information concerning bacteria than had been previously secured. The chief merit of Ehrenberg's work lay in the system that it introduced into the study of micro-organisms. This investigator was able to establish a number of different groups among the organisms now called bacteria, and recognized clearly the fundamental differences between the larger forms, such as the screw-shaped or spirally-twisted organisms, and certain of the true protozoa with which they had heretofore been classed. Some of the names which Ehrenberg conferred upon his "infusion animals," such as bacterium and spirillum, are still current in bacteriologic nomenclature, although with changed signification.

In the two or three decades succeeding Ehrenberg's work considerable knowledge was amassed concerning the mode of development and physiology of bacteria, as well as their position in biologic classification, but the labors of Dujardin, Perty, Cohn, Nägeli, and others, although important, are quite overshadowed by the work of Pasteur.

Up to the period of Pasteur's investigations the rôle played by bacteria in various familiar natural processes, such as putrefaction, decay, and fermentation, had been, perhaps, vaguely suspected, but had not received conclusive demonstration. The memorable researches of Pasteur (1822–1895) upon spontaneous generation and fermentation imparted to the study of bacteria a broad biologic importance that it had not hitherto possessed. Bacteria and kindred micro-organisms were shown to be responsible for setting in motion and carrying out many every-day processes, the nature of which had not before been understood or which had been incorrectly assigned to "the oxygen of the air" or to other inorganic agencies. Putrefaction and decay were shown by Pasteur to be, not fields for the "spontaneous generation" of life, but manifestations of chemical disintegration due to the metabolic activities of micro-organisms engaged in satisfying their need of food. Fer-

mentation was not due, as Liebig for a time maintained, to the presence of dead and dying yeast-cells which in the course of their own molecular disintegration toppled over and dragged down certain complex organic molecules with which they were in contact, but, on the contrary, was caused by the effort of living and growing yeast-cells to satisfy their nutritional requirements.

It was almost entirely through the work of Pasteur that bacteria and their allies emerged from their relative obscurity as organisms chiefly of interest to the professional biologist and took a conspicuous position in natural science as a group of organisms whose activities and capabilities were full of a far-reaching significance for all mankind. If any one man can be looked upon as the founder of the science of bacteriology, that man is surely Louis Pasteur.

The profound importance of Pasteur's researches has been universally recognized. Lord Lister, whose own name is inseparably connected with the triumphs of antiseptic surgery, thus addressed Pasteur in 1892 at the latter's jubilee celebration: "Truly, there does not exist in the entire world any individual to whom the medical sciences owe more than they do to you. Your researches on fermentation have thrown a powerful beam, which has lightened the baleful darkness of surgery, and has transformed the treatment of wounds from a matter of uncertain and too often disastrous empiricism into a scientific art of sure beneficence. Thanks to you, surgery has undergone a complete revolution, which has deprived it of its terrors and has extended almost without limit its efficacious power."

Tyndall also has expressed in forcible words the sweeping change that was wrought in all conceptions of disease through the work of Pasteur. "We have been scourged by invisible thongs, attacked from impenetrable ambuscades, and it is only today that the light of science is being let in upon the murderous dominion of our foes."

If the researches of Pasteur mark the beginning of bacteriology, those of Robert Koch must be regarded as establishing bacteriology on the basis of an independent biologic science. In 1876 Koch brought forward convincing evidence that a specific bacterium (B. anthracis) was the cause of a specific disease in cattle (anthrax or splenic fever). The nature of the proof submitted in support of this view was so conclusive that it drew the attention of the scientific world, and incited many investigators to undertake similar

researches along the line of the "germ theory." In 1882 Koch further conferred an inestimable benefit upon practical workers in this field by his invention and application of solid culture media, a technical device by which it becomes possible to isolate single species of bacteria and obtain them in pure culture. Prior to the introduction of solid media the isolation of a single species of microbe involved much difficulty and almost always a considerable measure of doubt. So long as investigators were often not wholly secure as to whether they were dealing with a single species of bacteria or with a mixture of different kinds, the methods of work lacked uniformity and precision, and all general conclusions were hazardous. When, however, Koch showed how to obtain the descendants of a single living cell or cluster of cells free from extraneous matter and without admixture with other organisms, immediate advance became possible. It cannot be a mere coincidence that the great discoveries in bacteriology followed fast on the heels of this important technical improvement, and it is perhaps not too much to claim that the rise of bacteriology from a congeries of incomplete although important observations into the position of a modern biologic science should be dated from about this period (1882).

The Scope of Bacteriology.—As in other growing sciences, so in bacteriology a noticeable differentiation has occurred. The relation of bacteria to disease early took a conspicuous place among the subjects included within the scope of the new science, and it is highly probable that the side of bacteriology bearing upon the science of pathology and the art of medicine will always remain, what it is today, its most broadly important aspect. There is at present a tendency for the workers in this field to specialize either along strictly pathologic or along hygienic lines. In pathologic bacteriology consideration is given chiefly to the effects produced upon the animal body by the presence of bacteria and their toxins, to the distribution of the germs within the body, and to the reactions, defensive and otherwise, evoked by bacterial invasion. Hygienic or sanitary bacteriology deals more particularly with the channels by which bacteria leave the human body and pass into the outer world, with the mode and duration of life of disease germs in water, soil, and air, and with the avenues by which these disease germs are able again to approach and infect healthy individuals. No sharp line can be drawn between pathologic and sanitary bacteriology. A common meeting-ground of great importance is found in the researches upon immunity, where it is shown that the resistance of the animal organism to infection depends both upon the nature of the tissues with which the germ comes in contact, and upon the hygienic surroundings of the organism with reference to food, temperature, moisture, and the like, as well as upon the inherited qualities of the various groups of body-cells. The interweaving of pathologic and sanitary bacteriology, of preventive and curative medicine, is illustrated with especial clearness in the chapter on diphtheria (Ch. 14).

Although, from a practical point of view, the part played by bacteria in the causation of disease in man must be admitted to be of surpassing importance, it must not be forgotten that bacteria exert a marked influence upon the welfare of mankind in many other directions.

Bacteria not only disintegrate and destroy dead bodies, and attack and kill living organisms, but some forms are also constructive to a high degree, and translate important chemical elements, like nitrogen and carbon, from unavailable combinations into substances that can be utilized by higher forms of plant life.

It has been discovered, for example, that certain kinds of bacteria profoundly modify the composition of the soil and the character of crops, and are hence of importance to the agriculturist; that other kinds of bacteria impart the characteristic flavors or aromas to butter, cheese, and other dairy products; and that still others determine the success or failure of various industrial processes, such as the retting of flax, the tanning of hides, and, perhaps, the curing of tobacco. It is believed by many that the applications of bacteriology to various industries and manufactures and to agriculture are likely to become much more numerous in the near future.

Underlying all the applications of bacteriology are certain fundamental facts and principles concerning the structure, mode of development, and general physiologic requirements and capabilities of bacteria themselves. This subject-matter constitutes the ground-work of bacteriology, and is essential not only to a proper comprehension of the present practical applications of bacteriology, but also to the further development of the science.

Biologic Significance.—The fact should not be overlooked that bacteriology owes its present important place among the biologic

sciences quite as much to its general scientific significance as to the success of its practical applications. It has been often pointed out that bacteriology has produced a change in man's conceptions of the world around him so sweeping as almost to deserve the term revolutionary. Up to the middle of the nineteenth century the character of many of the most familiar of natural processes, such as decay, fermentation, and the like, was entirely misunderstood; contemporary spontaneous generation of at least the lower forms of life was the generally accepted belief of most scientific men; infectious diseases were not sharply differentiated from one another and the most fantastic hypotheses were advanced to explain their existence. Although the great mass of material phenomena elsewhere had been brought into apparent orderliness and system, here was a region in which the unscientific imagination rioted in mystery and extravagance. The penetration of this realm of obscurity by the discoveries of bacteriology gave the human race for the first time in its history a rational theory of disease, dispelled the myths of spontaneous generation, and set the process of decay and kindred phenomena in their true relation to the great cycle of living and nonliving matter.

The new conception of the microscopic underworld which bacteriology brought into biologic science must be reckoned as a conspicuous landmark, and, in so far as it has changed the attitude of man toward the universe, should be regarded as one of the most important triumphs of natural science.

Some of the aspects of the historical development of bacteriology are admirably treated in two essays by Huxley: "Discourses, Biological and Geological," New York, 1894 (Yeast, p. 110; Biogenesis and Abiogenesis, p. 229). A fairly detailed history of bacteriology to 1887 has been written by Löffler, entitled "Vorlesungen über die geschichtliche Entwickelung der Lehre von den Bacterien," Leipzig, 1887.

CHAPTER 2

METHODS OF STUDYING BACTERIA

The ubiquity of bacteria, their minute size, and their occasional high resistance to external influences gave them a prominent place in the controversy that raged in the middle of the nineteenth century over the question of spontaneous generation. It was then assumed that when organic fluids and infusions of various kinds were heated to the temperature of boiling water all life was killed. If, therefore, bacteria appeared in infusions which had been first heated and afterward supposedly protected against the ingress of micro-organisms from the air, their advent was hailed as an instance of spontaneous generation. It was, perhaps, not unreasonable to suppose that if any kind of life developed from nonliving matter, this might be expected to occur among organisms so relatively simple in structure as bacteria. The progress of investigation, however, showed that it was not altogether an easy matter either to free organic fluids and extracts from bacteria, or to prevent the entrance of germs from the air. In the endeavor to overcome these two difficulties a rudimentary bacteriologic technic was developed which laid the foundation for the latter discoveries of Pasteur and Koch. Thus the discovery that cotton plugs, while they allow the air to circulate freely, are an effectual barrier to the floating particles in the air (Schröder and v. Dusch, 1854) was the direct outcome of experiments on spontaneous generation. Modern bacteriologic technic still makes extensive use of the cotton plug in protecting culture media, etc., against atmospheric contamination.

The need of freeing glassware, instruments, and nutrient media from all forms of life before beginning bacterial experimentation of any sort is the central point of bacteriologic method. The principles of sterilization may therefore first be considered.

Sterilization of Glassware and Instruments.—As a preliminary to sterilization glassware, especially when new, should be thoroughly cleansed by boiling in soapsuds, or by soaking for an hour or more in a chromic acid cleaning mixture:

	Potassium dichromate	60	parts
	or		
	Sodium dichromate	52	44
	Water	300	"
	Concentrated sulphuric acid	460	66
h	e sulphuric acid is added slowly, with constant stirring.		

T

After being thoroughly rinsed and dried, test-tubes and flasks are plugged with a good quality of ordinary nonabsorbent cotton. The plug should completely fill the opening, but a tight plug is unnecessary and hinders easy manipulation. A simple method for test-tubes is to use enough cotton so that the empty tubes may be picked up by the plug. The plugged tubes and flasks are

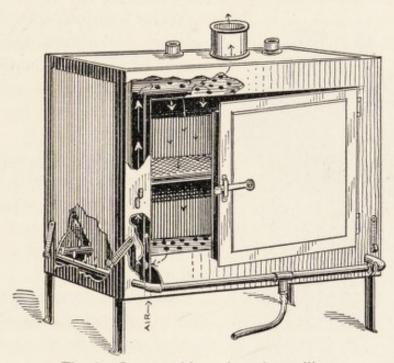


Fig. 2.—Lautenschläger hot-air sterilizer.

placed without crowding in a hot-air sterilizer. The best hot-air sterilizers, like the Lautenschläger pattern (Fig. 2), are fitted with thermometers and give a uniform temperature throughout. When the test-tubes and flasks are to contain media which is later autoclaved in them, it is only necessary to heat long enough to set the plugs. This is accomplished in fifteen to twenty minutes' exposure to a temperature of 170 to 190 C. For the destruction of all bacteria, even those in the resistant spore stage, forty-five minutes to one hour is sufficient. In many ovens and hot-air sterilizers

considerable temperature variation occurs in different parts, and this source of error must be guarded against. In the absence of exact temperature control a very slight browning of the cotton is sometimes taken as evidence that the necessary temperature has been reached. Too great charring must be avoided.

Pipets and Petri dishes, after thorough washing and drying, may be wrapped in paper or placed in metal cans before heating. Instruments may be sterilized directly in the flame or wrapped in manila paper and heated in the hot-air sterilizer at 170 C. for one hour. Scissors, forceps, knives, hypodermic needles, syringes, etc., should be boiled in water or in a 1 per cent soda solution for three to five minutes before they are used, and after use boiled again thoroughly for disinfection. Wires and loops of platinum or chrome

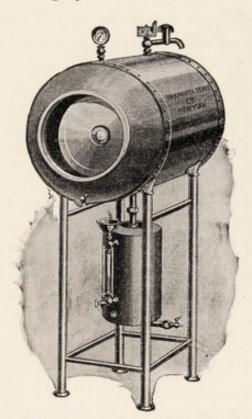


Fig. 3.—Autoclave. Horizontal form.

nickel for transferring bacteria from cultures are heated directly in a gas or alcohol flame until red hot, and then allowed to cool so that they will not injure the bacteria touched by them.

Rubber stoppers and tubing should be cleansed with soap and water and allowed to stand for one hour in 1:1000 mercuric chloride solution, then washed with sterile water before using.

Autoclave Sterilization.—In order to effect immediate sterilization of culture media, steam under pressure, and hence at a temperature higher than 100 C., is often used. The apparatus for this purpose, known as an autoclave, consists of a steam cylinder with a

covered opening that can either be securely fastened or is held tight by the pressure within, a pressure-gage, safety valve, and sometimes a thermometer (Fig. 3). Steam is generated in a boiler underneath by means of a large gas burner or is supplied by direct connection with steam heating pipes. A temperature of 120 C. (15 pounds) for ten minutes is usually sufficient to sterilize completely all tubed

media; media in bulk should be heated for fifteen to twenty minutes. Care is necessary in the manipulation of the autoclave. (1) Baskets of tubes or flasks should not be piled on top of one another so that the stoppers become wet from the dripping. (2) All air should be allowed to escape before screwing down the stop-cock, as a mixture of steam and air does not reach the temperature indicated by the gage. (3) The pressure should be allowed to drop to zero before the stop-cock is opened, as a sudden removal of pressure may cause an explosive evolution of steam which will blow the stoppers and media out of the flasks and tubes. (4) In using an autoclave connected directly with a steam pipe care should be taken to see that the pressure is increased very gradually from zero to 15 pounds, otherwise the media in tubes and particularly that in flasks will not be maintained long enough at the temperature necessary to insure bacterial destruction. Gas-heated autoclaves work so slowly that there is no difficulty of this nature.

The autoclave is much used for sugar-free broth, agar, milk and gelatin, and for sterilizing test-tubes, apparatus, and discarded cultures. In many laboratories it is used for broths containing the simpler carbohydrates. A difference of opinion exists as to the desirability of such a procedure. The more complicated carbohydrates and most body fluids are best sterilized by the discontinuous method. In the preparation of Löffler's blood-serum it was the practice for many years to sterilize in an inspissator at 53 to 70 C., but this may be done in the autoclave with good results and in a shorter time, provided sufficient care is taken to raise the medium slowly to the temperature of boiling water. In this way the air is driven from the medium before coagulation. Immersion of the tubes of blood-serum in warm water for half an hour before sterilizing, is advised.

Discontinuous Sterilization.—As just stated, certain kinds of media become to some degree unfit for bacteriologic work if subjected to the high temperature reached in the autoclave. The use of a lower temperature is hence desirable. Most bacteria are quickly killed by boiling. A serious drawback, however, to the use of simple boiling is the fact that very resistant bacterial spores are sometimes not killed even when boiled for several hours. The method of discontinuous sterilization is consequently adopted in some cases. Any simple apparatus may be used for this purpose,

such as a covered kitchen steamer over a pot of boiling water. A device in common use in the laboratory is the Arnold steam sterilizer (Fig. 4), which is constructed with a false bottom, so that a minimum volume of water is heated to produce steam quickly, while the main tank is constantly fed by the water of condensation, which is caught and collected by an outer jacket.

By the discontinuous method the medium is heated the first day for fifteen to twenty minutes after the steam has filled the sterilizer. The steaming process is repeated on one or two successive days, the medium being kept at 20 C. in the intervals. This method aims to kill by each steaming all those bacteria that are in the vegetative form, while the intervals of twenty-four hours are

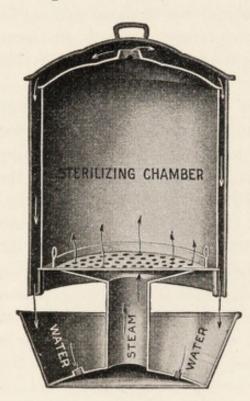


Fig. 4.—Arnold steam sterilizer (Fowler).

supposed to allow time for the resistant spores to develop into vegetative forms, which are destroyed at the next steaming. The method is not always successful. Smith1 has pointed out that the spores of anaërobes may sometimes fail to germinate during the twenty-four hour intervals in liquid media, such as the shallow layers of broth or milk where the liquid is well oxygenated, but remain dormant until favorable anaërobic conditions come about through the introduction and growth of filmproducing organisms, when they germinate and a mixed culture results. Most flasks of media will remain sterile after four steamings

if the intervals between are lengthened to forty-eight hours, but the autoclave may have to be brought into play in very obstinate cases.

Preparation of Culture Media.—The food necessary for most micro-organisms is not of a highly complicated nature. Many species find suitable conditions for nourishment and multiplication if a small amount of simple nitrogen and carbon compounds

¹ Smith, Theobald: Jour. Exper. Med., 1898, 3, p. 647.

and some salts and water are present. A neutral or slightly alkaline reaction and a temperature of about 20 C. afford excellent opportunity for the growth of micro-organisms in the presence of almost any ordinary food-stuff. A hydrogen ion concentration of 6.8 to 8.4 will permit the growth of most pathogenic species. It is largely by means of variations in the behavior of bacteria toward different carefully prepared nutrient substances that bacteriologists are able to differentiate the bacterial species. Many kinds of culture media have been devised which are in general laboratory use. The most common of these have for their basis an extract or decoction of meat to which a small amount of peptone is added. Koch found that by the addition of gelatin to this meat-peptone broth a solid, transparent medium could be obtained which greatly facilitated the study of the development of organisms. Gelatin, however, does not remain solid at 37 C., a temperature at which most pathogenic forms grow best, and, moreover, certain forms react upon the gelatin so as to produce liquefaction. To meet these conditions another gelatinous substance, of vegetable origin, agar, which remains solid up to 100 C. and is not liquefied by bacteria, has been found to possess special advantages. Nutrient agar, also called simply agar, and its numerous modifications—dextrose agar, blood agar, etc. are now the most widely used culture media. A variety of dehydrated media can now be purchased from dealers in biological supplies and are very useful for many reasons such as uniformity of composition.

Beef Broth.—Five hundred grams (about 1 pound) of chopped lean beef² are placed in 1 liter of distilled water and kept in the ice-box overnight. It is then boiled for half an hour and filtered through paper or cheese-cloth. Ten grams of peptone³ and 5 grams of salt are dissolved in the filtrate with as little heating as possible, the solution made up to a volume of 1 liter, and the reaction adjusted while hot by the addition of the required amount of normal sodium hydroxide. For the cultivation of many bacterial species meat extract may be used in place of meat infusion. In this case dissolve 3.5 grams of meat extract and 10 grams of peptone in 1

¹ First used by Frau Hesse.

² Veal has been found preferable for some bacteria, particularly those species that occur in the upper respiratory tract.

³ A number of brands of American-made peptone are now obtainable.

liter of water by gentle heating, make sure that the volume is correct, and then adjust the reaction.

The essential feature in the reaction of culture media is the hydrogen ion concentration. The hydrogen ion concentration of a medium is expressed by use of the symbol $P_{\rm H}$, as suggested by Sörensen. Numerically this is the logarithm of the reciprocal of the hydrogen ion concentration. Thus if $C_{\rm H}$, the concentration of hydrogen ions, is 10^{-6} N ($i.~e.,~\frac{1}{1,000,000}$ N), and taking $P_{\rm H} = \log \frac{1}{C_{\rm H}}$ we have $P_{\rm H} = \log \frac{1}{1,000,000} = \log 1,000,000 = 6.0$. For the

neutral point $P_H = 7.0$; because of the reciprocal relation between $P_{\rm H}$ and hydrogen ion concentration, the number decreases with increasing acidity and increases with increasing alkalinity. The hydrogen ion concentration is most accurately determined by means of a potentiometer.1 It has been shown, however, that in different flasks or tubes of the same medium, sterilized at the same time, the final hydrogen ion concentration attained varies slightly. Therefore, other methods, less time consuming and requiring less elaborate apparatus, may be used for bacteriologic work. Sörensen2 in the course of his studies on enzymes developed satisfactory colorimetric methods for determining hydrogen ions. These have been elaborated by Clark and Lubs³ and applied to bacteriologic media. Others4 have attempted to simplify the rather complicated standard solutions of these investigators. The list of indicators on page 31, as suggested by Clark and Lubs, and by Cohen, includes the limits of the P_H values required for most media.

The method is as follows: Place 4 cc. of neutral distilled water in a small (4-inch) test-tube, add 1 cc. of the medium and 5 drops of indicator. Match the color obtained with one of a series of standards made in the same way from solutions of known hydrogen ion concentration or with color plates.⁵ Various ingredients may be used in the preparation of these solutions. Those proposed by

¹ For a comprehensive discussion of methods for determining the P_H value see Clark: "The Determination of Hydrogen Ions," Williams & Wilkins, Baltimore, 1922.

² Sörensen: Biochem. Zeitsch., 1909, 21, pp. 131, 201; 1909, 22, p. 352.

³ Clark and Lubs: Jour. Bact., 1917, 2, pp. 1, 109, 196.

⁴ Barnett and Chapman: Jour. Amer. Med. Assoc., 1918, 70, p. 506; Norton: Amer. Jour. Pub. Health, 1919, 9, p. 190; Medalia: Jour. Bact., 1920, 5, p. 441.

⁵ Clark: "The Determination of Hydrogen Ions," Baltimore, 1922.

LIST OF INDICATORS

Common Name	Concen- tration, Per Cent	Range, P_H
Thymol blue	0.04	1.2-2.8
Brom phenol blue	0.04	3.0-4.6
Brom cresol green	0.04	4.0-5.5
Methyl red	0.02	4.4-6.0
Propyl red	0.02	4.8-6.4
Brom cresol purple	0.04	5.2-6.8
Brom thymol blue	0.04	6.0-7.6
Phenol red	0.02	6.8=8.4
Cresol red	0.02	7.2-8.8
Thymol blue	0.04	8.0-9.6
Cresol phthalein	0.02	8.2-9.8

Clark and Lubs are the most satisfactory, but are difficult to prepare. Sörensen used $\frac{1}{15}$ molal solutions of potassium dihydrogen phosphate (KH₂PO₄) and disodium phosphate (Na₂HPO₄.2H₂O). The table below gives the amounts of each solution in a total volume of 20 cc., corresponding to P_H values from 5.3 to 8.3. Care must be taken to ensure the purity of the salts, particularly in the preparation of the sodium phosphate. This salt loses part of its water of crystallization on standing.

AMOUNTS OF SOLUTIONS ACCORDING TO PH VALUE

P_{H}	M/15 KH ₂ PO ₄	$M/15 N_{A_2}HPO_4$
5.3	19.5	0.5
5.5	19.2	0.8
5.8	18.4	1.6
6.0	17.5	2.5
6.2	16.1	3.9
6.4	14.5	5.5
6.6	12.3	7.7
6.8	10.0	10.0
7.0	7.8	12.2
7.2	5.7	14.3
7.4	4.0	16.0
7.6	2.6	17.4
7.8	1.6	18.4
8.0	1.0	19.0
8.3	0.5	19.5

¹ Sörensen: Biochem. Zeitschr., 1909, 22, p. 355.

The medium may be adjusted by trial or titrated in the following manner: Place 5 cc. of the medium in 20 cc. of neutral distilled water and add 10 drops of indicator (determined by the desired hydrogen ion concentration). From a buret add N/20 sodium hydroxide until the color matches a solution prepared in the same way from the $P_{\rm H}$ standards. The number of cubic centimeters of N/20 alkali used, multiplied by 10, gives the quantity of normal sodium hydroxide necessary to adjust 1 liter of the medium. The reaction obtained should be checked by a test after adjustment.

After adjustment the broth is heated in a flask in the autoclave at 120 °C. for ten minutes, allowed to cool again to bring down the precipitate, and its final reaction determined, then it is filtered, placed in flasks or tubes, and sterilized.

It is probable that the precise initial "reaction" of bacterial culture media is not of so much importance as is sometimes assumed, at all events, so far as ability to multiply is concerned. The sensitiveness to hydrogen ion concentration supposed to be possessed by certain bacteria needs investigation by more accurate methods than those hitherto employed. It must not be forgotten that when growth has once started, bacteria themselves are the primary factors in determining the reaction of the medium. Little is known about the extent to which products of bacterial growth other than hydrogen ions interfere with continuance of multiplication.

Dextrose-free Broth.—Meat, and also extract of meat, often contain a slight amount of muscle sugar or dextrose. If sugar-free broth is required, a simple method of removing the muscle sugar is employed (Theobald Smith): 10 to 20 cc. of a pure, young broth culture of Bact. coli is added to the infusion of meat, and incubated eighteen hours at 37 C. The broth is then boiled to kill the organisms and the preparation carried on as above. Control tests should always be made, since prolonged activity of Bact. coli may cause the development of indol or other products. Special broth media are prepared by adding 0.5 or 1 per cent of dextrose, lactose, saccharose, or other carbohydrate to the sugar-free broth. Broth containing carbohydrate is preferably sterilized by the discontinuous method.

Gelatin.—Ordinary nutrient gelatin is prepared by adding from 10 to 12 per cent of the best grade sheet gelatin to broth prepared as above. The medium should be heated over a water-bath or an

asbestos pad only long enough to dissolve the gelatin; it should be stirred constantly. It is then cooled to 60 C., the reaction adjusted, and an egg, dissolved in 30 cc. of water, stirred slowly in. The medium is placed in a flask and cautiously heated in an autoclave to 10 pounds' pressure for five minutes in order to coagulate the albumin. Filtration through a towel moistened with hot water should give a clear filtrate which can then be tubed and sterilized. Gelatin may be autoclaved for five minutes at 120 C. and still solidify if placed at once in the ice-box. In warm weather

12 per cent of gelatin is necessary. Special care should be taken to prepare gelatin each time in a uniform way, since otherwise the bacterial growth will vary considerably due to the differences in the media.1 The usual method of determining the gelatin-liquefying properties of bacteria is to study stab- or plate-cultures in this medium incubated at 20 C. for one to six weeks. The appearance of stab cultures is sometimes quite distinctive (see Fig. 102, p. 406). The progressive liquefaction of the medium should be noted at

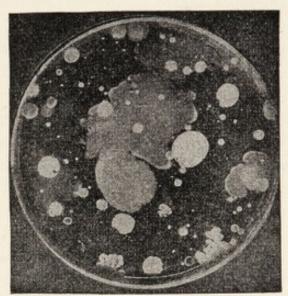


Fig. 5.—Gelatin plate showing liquefying and nonliquefying colonies (From "The Nature of the World and of Man," (1926) Courtesy of the University of Chicago Press).

intervals. In the form of growth and the extent or shape of the liquefied zone, plate colonies sometimes contribute important information concerning the metabolism of the organisms, and may aid materially in their identification (Fig. 5). Rothberg² has suggested that organisms which do not grow rapidly or at all at 20 C. may be grown in gelatin at 25 to 37 C. (according to their temperature relations) for eighteen to forty-eight hours, and then a portion of the culture inoculated on the surface of gelatin in a test-tube and incubated for fifteen days at 20 C. The production of gelatinases

¹ Whipple: Tech. Quart, 1902, 15, p. 127.

² Rothberg: Abstracts of Bact., 1917, 2, p. 12. See also Rush and Palmer: Jour. of Bact., 1921, 6, p. 571.

(gelatin-liquefying enzymes) in the original culture will be evidenced by liquefaction in the subculture. A more rapid but somewhat less reliable method is to incubate gelatin cultures at 37 C. for eighteen to seventy-two hours (the gelatin becomes fluid at this temperature) and then plunge the cultures into ice-water. If no gelatinases have been produced and there has been no enzymatic liquefaction of the medium, the gelatin solidifies; if liquefying enzymes have been produced, the gelatin remains fluid or semi-solid.¹

Agar.—To the standard beef broth add 1.5 per cent of pure shredded agar. Complete solution of the agar requires a boiling temperature and some little time. This can be more easily accomplished if the agar is finely cut and allowed to soak over night in a small amount of water or if it is dissolved in a minimum quantity of boiling water before the hot broth is added. After solution it is necessary to replace the evaporated water and to adjust the reaction again. The filtration of agar through paper is unnecessary. A medium of sufficient clearness may be obtained if a wet towel is used for filtration and if the medium is kept near the boiling-point. Sterilize in the autoclave.

Dextrose and Lactose Agar.—To agar made with sugar-free broth 1 per cent of dextrose or lactose may be added before sterilization in the Arnold steam-bath at 100 C. Other carbohydrates may be used in the same proportions. It has been customary to add sufficient litmus solution to the agar to give a distinct color, either before sterilization or, preferably, just before plating or inoculation. In the latter case the litmus solution must be sterile. In recent years it has been difficult to obtain a supply of satisfactory litmus, with the result that other indicators have come into use which have proved to be better than litmus. In the carbohydrate media either brom-cresol-purple² or Andrade's indicator³ may be used. Since these indicators are stable they may be added before sterilization.

Milk.—Milk is a useful medium for determining the production by bacteria of acids or enzymes which precipitate or digest the

¹ Levene and Carpenter (Jour. Bact., 1923, 8, p. 297) have suggested the use of formol amino acid titrations and measurements of viscosity changes as indices of liquefaction during the course of bacterial growth in gelatin.

² Five cubic centimeters of a 0.25 per cent alcoholic solution per liter of medium.

³ Five-tenths per cent acid fuchsin in distilled water, decolorized to a yellow by N/1 NaOH. Ten cubic centimeters of this solution per liter of medium.

casein, or act upon the lactose. Fresh milk, or in large cities "certified" milk, should be obtained, steamed for fifteen minutes in the Arnold sterilizer, and placed in the ice-box overnight to allow the cream to separate. The middle portion of the milk should then be siphoned off, avoiding both cream and sediment. The usefulness of milk as a diagnostic culture medium is enhanced by the addition of an indicator such as brom-cresol-purple.\(^1\) Milk may be sterilized for five minutes at 120 C. in the autoclave. Many prefer the Arnold steamer for three or four successive days. Skim milk powder may be used in place of fresh milk for routine laboratory work; 150 grams should be rubbed in a mortar with sufficient cold water to make a smooth paste, and the whole made up to 1 liter. It is necessary to sterilize the milk powder suspension for fifteen minutes at 10 pounds pressure.

Blood-agar.—This medium is especially useful for cultivating the organisms found in the respiratory tract, such as the pneumococci, streptococci, etc. Veal infusion broth-agar (P_H 7.4 to 7.6) is used as a base. The agar is melted, cooled to 50 to 55 C., and 5 per cent of defibrinated blood added under aseptic conditions. Either horse, sheep, rabbit, or human blood may be used, depending on the particular organisms to be grown.

Blood-serum.—This medium is used mainly for cultivating the diphtheria bacillus. Usually beef blood is allowed to clot, and the straw-colored serum pipeted off either directly or after centrifuging. Löffler's blood-serum mixture consists of 3 parts of beef-serum mixed with 1 part of neutral broth containing 1 per cent of dextrose. This may be sterilized in the autoclave provided that great care is taken to raise the temperature of the medium slowly in order to prevent the formation of bubbles. Hiss serum-water is made by adding 1 part of beef-serum to 3 of water and sterilizing in the Arnold for three successive days.

Potato.—Many nonpathogenic organisms grow readily and characteristically on potato. Of the several methods of preparing potato, the simplest is as follows: Cut a cylindric piece of potato 5 cm. long by means of an apple-corer. Halve this by a diagonal cut lengthwise. The pieces should be placed in cold running water for a few hours and then slipped into potato tubes so that they present a slant surface uppermost for inoculation. Spe-

¹ See footnote (2) on page 34.

cial potato tubes are made with a constriction in the glass, which holds the potato about 1 inch from the bottom. It is well to fill the tube below with distilled water or broth to provide moisture. Sterilize in the autoclave. Heinemann¹ has devised a medium which has been found advantageous as a substitute for potato. The following medium also has been found to be useful, since yeasts and molds as well as the chromogenic bacteria develop readily on it: Cut 250 grams of potato into pieces about the size of a walnut, place in 500 cc. of distilled water, and steam for one hour. Pour the liquid through a wet towel, add 1 per cent dextrose and 1.5 per cent agar, heat until dissolved, make up to 500 cc. with distilled water, tube, and sterilize.

Synthetic Media.—Media whose exact chemical composition is known offer certain advantages for the careful study of bacteria. Environment may thus be reduced to its simplest terms, or varied definitely and at will. Certain bacteria will develop in water which has been redistilled in glass, and has a trace of MgSO₄ added. Others refuse to multiply in more complex solutions. One of the simplest synthetic or "nonprotein" media is as follows:²

Redistilled water. Asparagin. $MgSO_4$. K_2HPO_4 .	2 Gm. 1 "
Uschinsky's medium (Fränkel's modification): ³ Water	
Asparagin	4 Gm. 6 "
Na ₂ HPO ₄ NaCl	2 " 5 "

For cultivation of organisms of the colon-aërogenes group Ayers and Rupp⁴ have used the following medium containing inorganic nitrogen and lactose as the only available carbohydrate:

	Per Cent
Sodium ammonium phosphate	 . 0.4
Acid potassium phosphate	 . 0.2
Lactose	
Agar	 . 1.5

¹ Heinemann: Jour. Infect. Dis., 1907, 4, p. 283.

² Jordan: Bot. Gaz., 1899, 27, p. 19; Jour. Exper. Med., 1899, 4, p. 627.

³ Fränkel: Hyg. Rundsch., 1894, 4, p. 769. For other formulas see Erwin Smith: "Bacteria in Relation to Plant Diseases," Washington, 1905, p. 197.

⁴ Ayers, S. H., and Rupp, P.: Jour. Bact., 1918, 3, p. 433.

At the time of plating there is added to every 100 cc. of the above medium while hot 0.5 cc. of a 1 per cent alcoholic basic fuchsin solution and 0.5 cc. of a freshly prepared 5 per cent sodium sulfite solution. On this medium members of the colon-aërogenes group give medium-sized red colonies, usually surrounded by a deep red ring. Other organisms that develop give pink or uncolored colonies.

Special Media and Biochemical Tests.-A great variety of special media are used in connection with the study of different organisms, either because such media are particularly favorable to the growth of those organisms or because they reveal certain characteristic features and biochemical reactions. The addition of glycerol to nutrient agar, for example, favors the development of the tubercle bacillus. Certain organisms, of which the so-called "influenza bacillus" is the type, are favored by the presence of hemoglobin in the culture medium, and are often designated on that account as the hemophilic bacilli.1 A few media have a decisive differential value: the typhoid bacillus does not produce either gas or acid in lactose broth, whereas a closely allied bacillus, Bact. coli, found in the normal human intestine, actively ferments lactose. In general, the ability to ferment carbohydrates or substances like mannitol and glycerol which are added to the ordinary sugar-free culture media, constitutes one of the most important differential characters of bacteria.

The reducing power of bacteria may be measured by the loss of color of litmus (as in litmus milk) or of methylene-blue, or by the reduction of nitrates to nitrites. The reduction of nitrates may be determined in the following way: After four days' incubation at 37 C. in nitrate broth (0.1 per cent peptone, 0.02 per cent nitrite-free potassium nitrate) add to 3 cc. of the culture in a clean test-tube 2 cc. each of the following solutions: (1) Sulphanilic acid solution made by dissolving 8 grams of the purest sulphanilic acid in 1000 cc. of 5N acetic acid (sp. gr. 1.041); (2) α -amidonaphthalene acetate solution prepared by dissolving 5.0 grams solid α -naphthylamine in 1000 cc. of 5N acetic acid and filtering the solution through absorbent cotton. The development of a rose color indicates the presence of nitrites. An uninoculated tube of the medium should always be treated in the same way for a control.

¹ Davis: Jour. Infect. Dis., 1907, 4, p. 73.

Nitrate solution may also be inoculated in the fermentation tube, where the evolution of gas indicates a still further reduction to free nitrogen gas.

The production of *indol* may be determined in Dunham's peptone solution (1 per cent peptone and 0.5 per cent NaCl in water). More satisfactory are the trypsinized media of Rivas¹ and Cannon.² After four days' incubation the presence of indol may be detected by cautiously adding 1 cc. of Ehrlich's reagent so that it forms a layer on the surface of the medium. A red color (due to the formation of a compound soluble in amyl alcohol) indicates a positive result. The test may be made quantitative. Ehrlich's reagent is prepared as follows:

Paradimethylamidobenzaldehyde	4 Gm.
Alcohol, 96 per cent	380 cc.
Concentrated, C. P., HCl	80 "

The vanillin test³ is a satisfactory substitute.

The Fermentation Tube.—As already pointed out, various forms of bacteria differ greatly in their ability to ferment carbohydrate substances. The use of special tubes for studying fermentation and gas production was first recommended by Theobald Smith.⁴ To determine the mere presence or absence of gas formation, the Dunham inverted vial is now generally used. Culturetubes are one-third filled with broth from which the muscle-sugar has been removed and to which a definite amount, usually 0.5 to 1 per cent, of some carbohydrate has been added. An inverted vial is then slipped into each tube. After sterilization it will be found that the air in the vial has been replaced by the broth. If the Smith tube (Fig. 6) is used it is completely filled with the carbohydrate broth. The growth of a gas-forming organism leads to the collection of gas in the closed arm, the displaced broth being forced out into the bulb. The amount of gas is measured in terms of percentage of the length of the closed arm, most conveniently by Frost's gasometer card (Fig. 6). At the end of forty-eight hours the gas may be roughly analyzed in the following way: After the total quantity of gas is measured, the bulb is filled with a 2 per cent

² Cannon: Jour. Bact., 1916, 1, p. 535.

³ Nelson, V. E.: Jour. Biol. Chem., 1916, 24, p. 527.

¹ Rivas: Centralbl. f. Bakt., I, Orig., 1912, 63, p. 547.

⁴ Smith, Theobald: "The Fermentation Tube," Wilder Quarter Century Book, Ithaca, 1893, p. 187.

NaOH solution and the mouth of the tube closed tightly with the thumb. The gas is tilted back and forth between the bulb and the closed arm several times and finally allowed to collect in the closed arm. When the thumb is released the fluid rises in the arm, due to the fact that the sodium hydrate has absorbed the carbon dioxide; the residual gas, which is usually chiefly hydrogen, can then

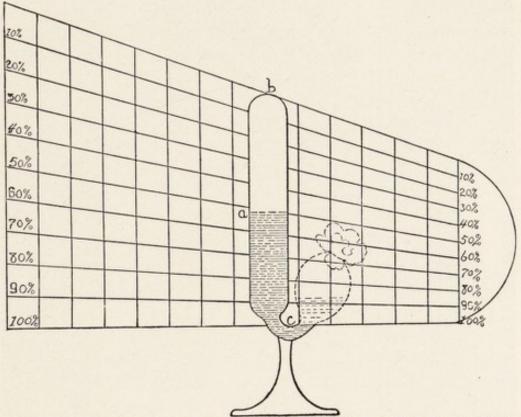
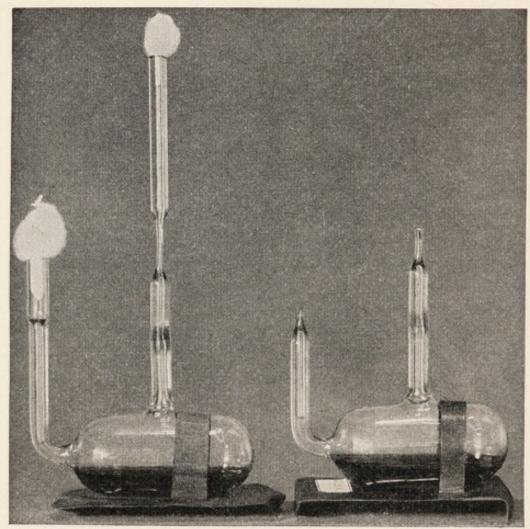


Fig. 6.—Frost's chart for measuring gas in the fermentation tests (Heinemann's "Laboratory Guide").

be measured. The ratio of hydrogen to carbon dioxide or the gas formula of an organism may be stated, for example, as follows:

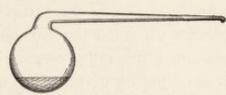

$$H_2: CO_2::30:15::2:1.$$

It is evident that results obtained in this manner can never be precise. The solubility of carbon dioxide leads to the retention in the medium of a varying percentage of this gas dependent on the acidity of the medium, the opportunities for loss into the atmosphere, and other factors. It has been shown, especially by Keyes,¹ that more uniform and comparable results can be obtained by using bulbs sealed after the exhaustion of the air. A modified form (Figs.

¹ Keyes: Jour. Med. Research, 1909, 21, p. 69.

7 and 8) has been successfully used by Rogers¹ and his collaborators in a study of gas production in the colon group of bacteria.

Thermal Death-point.—The importance of knowing the condition and the time necessary for the destruction of bacteria has caused the introduction of certain exact methods for testing the death-point of various organisms subjected to the influence of heat


Figs. 7 and 8.—Fermentation bulb (Rogers, Clark, and Davis). The side arm serves for introduction of the medium and inoculation; it is then sealed off. The other tube is used for exhaustion of the air (by the Boltwood mercury pump) and is then sealed as shown.

and to the action of disinfectants. The heating test is best made by use of a small glass bulb devised by Sternberg (Fig. 9). To fill the tube, warm the bulb slightly to drive out the air and then insert the stem at once into the bacterial suspension, which is drawn by suction into the bulb as it cools. The neck is then sealed in the flame. An ordinary thin glass test-tube may be used if drawn out in the glass flame to form a narrow neck in the middle, through

¹ Rogers, Clark, and Davis: Jour. Infect. Dis., 1914, 14, p. 426.

which a definite amount of culture may be run into the bottom of the tube. The neck is then drawn out in the flame and sealed off. Heating should be done with the bulbs completely immersed in a water-bath and held suspended by a wire away from the bottom frame. It is advisable to begin by exposing to a temperature of 50 C. for five minutes and then for ten minutes, repeating for every two degrees up to 70. Spores require still higher temperatures for their destruction. After being cooled quickly the bulb contents are emptied into a Petri dish and melted agar added, to determine by the development of colonies the number of live organisms present. Eijkman¹ has called attention to an important error in such experiments. Many cells are so damaged by exposure to heat (and probably the same is true of other disinfecting agents) that they develop exceedingly slowly, although their vitality is not destroyed. In one

experiment with Bacterium coli no colonies were visible on a gelatin plate within three days after incubation of the heated culture, but on the same plate after fifteen days 670,000 colo- Fig. 9.—Sternberg's bulb for nies could be enumerated. In order

testing thermal death-point.

to discover whether all the organisms have been killed the contents of the bulb should be emptied, preferably into a fluid medium composed of equal parts of litmus milk and broth (Harris).

Methods for Testing and Standardizing Disinfectants.-The earlier attempts to determine the efficiency of disinfectants were carried out in a very simple fashion. Koch tested the action of disinfectants on anthrax spores by placing in the disinfectant solution silk threads which had been dipped in an emulsion of the spores and dried. The threads were then washed and laid upon the surface of agar. Hill2 devised a simpler and more exact method of preparing test objects. Sterilized glass rods are dipped to a depth of 1 inch into forty-eight-hour-old broth cultures of the organism to be used in the test. The rods are then placed in test-tubes fitted with cotton plugs, carefully dried in the thermostat, and immersed in the disinfectant solution for accurately timed periods, varied as desired. Each rod, on removal, is gently but thoroughly washed

¹ Eijkman: Centralbl. f. Bakt., II, 1909, 22, p. 508.

² Hill: Rep. and Papers, Amer. Pub. Health Assoc., 1898, 24, p. 264.

with sterile physiologic salt solution, then placed in a tube of sterile broth, and incubated at 37 C.

There are so many factors concerned in such tests, however, that the results of different workers show great variation. The temperature at which the experiments are made, the number of bacteria, the nature of the culture medium from which the bacteria are derived, and the solvent in which the disinfectant is employed all influence the results. Differences between bacterial species and between different strains of the same species are further complicating factors. Because of such modifying influences much of the earlier work on the efficiency of disinfectants contains inconsistencies and discrepancies.

The Rideal-Walker method first led to a more accurate standard of comparison. The method consists essentially in determining what is known as the carbolic acid coefficient or, better, the phenol coefficient, since the carbolic acid of commerce may vary in the amount of phenol present. The phenol coefficient of a disinfectant is obtained by dividing the dilution of the disinfectant that kills an organism in a given time by the dilution of phenol that kills the same organism in the same time under exactly the same conditions.

A modification of the Rideal-Walker method was devised by Anderson and McClintic.² The phenol coefficient determined according to their method is known as the "Hygienic Laboratory phenol coefficient."

A still later method of standardization has been prepared by Reddish and is thought to combine the best features of the Rideal-Walker and Hygienic Laboratory tests while eliminating the objectionable features.³

Sterilization by Filtration.—It is often found desirable to sterilize water and other fluids, such as culture media in which bacteria have been growing, without subjecting them to heat or to the action of disinfectants. The method of sterilization by filtration is especially useful in obtaining soluble bacterial products, such as toxins and enzymes, which might be injured by chemicals or heat. The

¹ Rideal and Walker: Jour. Roy. San. Inst., 1903, 24, p. 424.

² Anderson and McClintic: Jour. Infect. Dis., 1911, 8, p. 1; Bull. 82, Hyg. Lab., U. S. Public Health Service, April, 1912.

³ Reddish: Am. Jour. Pub. Health, 1927, 17, p. 320. This is the report of the referee on Standardization of Disinfectants presented to the Committee on Standard Methods of the Am. Pub. Health Assoc.

bacterial products are separated from the bacteria by filtration of the culture through unglazed porcelain cylinders, which, together with the glass and rubber connections forming part of the filtration apparatus, have been previously sterilized by autoclaving. The porcelain cylinders in use for this purpose vary in form and in the size of their pores, one of the most commonly used being the "Chamberland B" pattern. The passage of fluids is usually very slow through the most compact cylinders, and may be hastened by a water suction-pump. An overflow bottle should be interposed between the filter and the tap to prevent any back-flow of water from entering the filter flask (Fig. 10). A very useful form of apparatus for filtering such fluids as blood-serum under pressure is shown in Fig. 11. The small Berkefeld filter with cylinders made

Fig. 10.—Apparatus for the rapid filtration of toxins, etc.: a, Filter flask; b, Woulff bottle to guard against regurgitation of water from the pump; c, reservoir for the filtrate; d, water vacuum pump (McFarland).

of infusorial earth is most convenient for obtaining clear solutions, but the coarser grades of Berkefeld filters permit the passage of very small bacteria. Minute defects in the cylinders sometimes occur, and the filtrate should be tested for sterility by inoculation of a small amount into culture media. Bacterial fluids after filtration should be protected from light and kept in the ice-box.

Methods of Obtaining Pure Cultures.—When fluid culture media are inoculated with such substances as soil or water, many kinds of organisms develop simultaneously side by side, and a heterogeneous mixture of bacteria results. Koch¹ was the first to devise a method of using solid media which permitted the separation of one kind of bacterium from another. If nutrient gelatin and agar are inoculated while fluid (for example, at 42 C.), and are then solidified and kept under favorable temperature conditions, many of

¹ Koch: Mitth. a. d. kais. Gesundh., 1881, 1, p. 1.

the living bacteria that have been introduced are able to multiply. Since the bacteria cannot move about freely, but are fixed in the stiffened medium, the progeny of each germ forms distinct masses or colonies. If the colonies are not closely crowded, a pure culture,

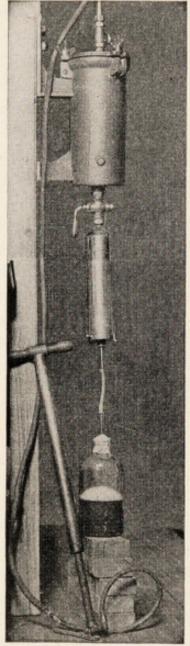


Fig. 11.—Pressure filter (Heinemann).

that is to say, the descendants of a single germ, may be obtained by touching a colony with the tip of a sterile needle (a process technically known as "fishing a colony") and inoculating tubes of fresh culture media. In order to secure a large surface upon which the colonies shall be spread out and made easily accessible, the gelatin or agar, after inoculation, is poured while still fluid into sterilized flat shallow dishes (Petri dishes) fitted with glass covers.

Technic of Making Plate Cultures .-Three tubes of agar (1, 2, and 3), melted at 100 C., are placed in a water-bath at 42 C., a temperature that is just above the solidifying point of agar and is not injurious to bacteria.1 Tube 1 is inoculated with a loopful of the material to be plated. The cotton plug is then replaced and the contents of the tube mixed by carefully tilting back and forth and rotating the tube on its long axis. From this tube two loopfuls of agar are transferred to tube 2, and after mixing, two more loopfuls carried from tube 2 to tube 3. The contents of the several tubes are then poured into Petri dishes. As soon as the cotton plug is removed, the mouth of each tube should be passed through the flame, inserted under the edge of the lifted Petri dish cover, and the agar quickly poured out. The

covered Petri dish may then be tipped cautiously back and forth to distribute the agar evenly before it solidifies. Agar plates placed in the incubator after solidification should be inverted in order to avoid

¹ It is often desirable to make first a suspension in salt solution, as, for example, in dealing with material like pus.

spreading of the growth through condensation of the moisture. If there are a great many bacteria in the original material, the plate from tube 3 will probably contain the organisms in small enough numbers to develop well-isolated colonies. On the other hand, if there are very few bacteria in the material inoculated, plate 1 will probably present more satisfactory conditions. Gelatin plates are made in the same manner as agar except that gelatin may be cooled as low as 25 C. without solidifying.

Dilution.—It is sometimes of advantage before plating to make accurate dilutions of highly polluted fluids, such as sewage, in order to get colonies few enough in number to be well isolated. If there is reason to suppose that the number of bacteria is 200 per cc., or more, 1 cc. of the sample is mixed with 9 cc. of sterile water. If a higher dilution is required, proceed in a similar manner.

(A)	To dilute	1	:	10	use	1	cc. of	sample	to	9	cc. of	sterile	water
(B)	44		:	100		"	44	44		99	**	"	44
(C)		1	:	1,000		"	66	(A)	"	99	4.	"	44
(D)	66	1	:	10,000		"		(B)	"	99	"	"	"
(E)	**	1	:	100,000		"	"	(C)	66	99	44	44	**
(F)	**	1	:	1,000,000		"	"	(D)	"	99	"	"	"

Separation of Bacterial Species by Heat.—Spore-forming organisms are sometimes separated from other bacteria by heating mixed cultures containing spores to 80 C. for fifteen minutes. This procedure kills off any vegetative forms that may be present, but leaves the heat-resistant spores able to develop if placed under favorable conditions. A further separation of different varieties of spore-forming organisms must then be effected by plating or animal inoculation.

Separation by Animal Inoculation.—Certain pathogenic bacteria that often occur in the animal body mixed with other species, as is the case, for example, with Myco. tuberculosis or Cl. tetani, are sometimes obtained free from other bacteria by inoculating an animal with the material containing the mixture of organisms. After allowing time for the bacteria to develop, the animal is killed, and tubes of suitable media are inoculated from the characteristic lesions; in such cases the specific bacillus will often be found in pure culture in the tissues.

Methods of Growing Anaërobes.—A number of devices have been used for the cultivation of certain organisms known as anaërobes (p. 402), which will not grow in the presence of free oxygen. Pasteur spread a layer of oil over the surface of media in order to shut off the air. Koch grew anaërobes on agar or gelatin plates under a piece of sterile mica. Liborius employed the method of inoculation deep into solid media, a simple method still in use. A "shake culture" in dextrose agar may be made by previously boiling the agar for fifteen to twenty minutes to drive off the absorbed air, then cooling quickly to 42 C., and inoculating. The tubes of agar are then solidified at once in cold water and incubated; under these conditions anaërobic organisms often develop well in the depths of the agar.

Hydrogen Method.—Success is still more certain if the tubes are placed in a Novy anaërobic jar (Fig. 12). The air in the jar is



Fig. 12.—A, Novy's jar for plate cultivations; B, Novy's jar for tube cultivations (Eyre).

The Novy jar is especially useful for making anaërobic plates.

Absorption of Oxygen.—Any vessel with a tight cover, such as a Novy jar, an ordinary chemical desiccator, or a Mason fruit-jar, may be used for Buchner's pyrogallic acid method. The principle of this method is the absorption of oxygen. Dry pyrogallic acid (10 grams per liter of air-space) is placed in the bottom of the jar, 150 cc. of a 1 per cent solution of NaOH poured on the pyrogallic acid, the cultures put in place, and the jar closed at once. This method may also be used directly in culture-tubes, a stopper of absorbent cotton being pushed down to leave an inch space at the top of the tube, pyrogallic acid and NaOH solution placed in this

space, the cotton saturated, and the tube closed at once with a tight-fitting rubber stopper.¹

Vacuum Method.—An unpublished method first used by Gwyn in combination with the pyrogallic acid method has been found practicable by itself. The cultures are placed in a desiccator jar which has a cover with a single stop-cock. A piece of filter-paper saturated with alcohol is put into the jar, a lighted match applied, and the vaselined cover, with stop-cock closed, placed quickly in position. A good vacuum is formed, and if care be taken that the paper is well saturated with alcohol, no deleterious gaseous products of combustion are formed. It is necessary to open the cock before the cover can be removed. This is a simple and ready method if cultures are being made and examined often.

Wright² and Smith³ have suggested good and simple methods of anaërobic culture in fluid media. Important points to observe in working with anaërobes are: (1) The culture media should be freshly prepared. (2) The medium employed, whether gelatin, agar, or broth, should contain 1 per cent dextrose and should be freshly boiled and cooled before using. (3) The reaction of the medium should be nearly neutral to phenolphthalein.

At the present time the methods most in favor involve deep implantation in culture media, the use of fresh tissue media and, particularly for plate cultures, the anaërobic jar as described by Laidlaw, McIntosh and Fildes, and Richardson and Dozler. In this jar the oxygen is removed by reacting with hydrogen in the presence of heated palladinized asbestos. The catalyzer is surrounded by a coil of chrome nickel wire through which an electric current is passed to provide the necessary heat.

A more detailed account of anaërobic methods will be found in the chapter on Pathogenic Anaërobes, as well as in a paper by Hall.⁷

Animal Inoculation.—Animal inoculations may be made for various purposes: (1) To obtain pure cultures of a pathogenic organism

Wright: Jour. Bost. Soc. Med. Sci., 1900, 5, p. 114.

² Wright: Jour. Bost. Soc. Med. Sci., 1900, 4, p. 119.

³ Smith: Jour. Bost. Soc. Med. Sci., 1899, 3, p. 315.

 ⁴ Laidlaw, P. P.: Brit. Med. Jour., 1915, 1, p. 497.
 ⁵ McIntosh, J., and Fildes, P.: Lancet, 1916, 1, p. 768.

⁶ Richardson and Dozler: Jour. Infect. Dis., 1922, 31, p. 617.

⁷ Hall, Ivan: Jour. Infect. Dis., 1920, 27, p. 576.

from contaminated material. (2) To determine the virulence of an organism which is under study or to observe the changes that it evokes in the animal body. (3) For continuing the life of an organism that does not grow except in the animal body (for example, the virus of hydrophobia or of smallpox).

The animals most used for laboratory purposes are guinea-pigs, rabbits, white mice, and white rats. Guinea-pigs and rabbits are usually inoculated subcutaneously or intraperitoneally. Subcutaneous inoculation is generally made under the skin of the abdomen by means of a hypodermic needle. Pus or similar material may be suspended in sterile physiologic salt solution. The animal is conveniently held by an assistant, who turns its abdomen upward. The hair about the proposed site of inoculation should be clipped close. The site of inoculation is then rubbed with cotton soaked in iodine solution, in 1:1000 HgCl or in 95 per cent alcohol. Make the puncture behind and to one side of the umbilicus, and if a large quantity of fluid is to be injected, run the needle carefully forward its full length through the subcutaneous tissue. An egg-shaped swelling of the skin will form about the point of the needle as the syringe is emptied; when the needle is withdrawn, apply a drop of collodion to close the wound. "Pocket" inoculations are carried out by making a small incision in the skin, and separating the skin from the muscles by pushing in sterile scissors, which are then slightly expanded, closed again, and removed; a piece of tissue may then be inserted and the wound closed with collodion or with one or two sutures.

Intraperitoneal inoculation is made in essentially the same manner as subcutaneous, passing the needle first beneath the skin, then holding it at about a right angle to the peritoneal wall, and carefully thrusting it through, taking care not to penetrate the intestines. Rabbits may be inoculated intravenously in the marginal vein of the ear; they are convenient animals to use in experiments where the blood is to be tested after inoculation, because of the readiness with which blood may be obtained from the large veins of the ears. Blood may be obtained from the heart if relatively large amounts (20 to 30 cc.) are needed.

Mice are usually inoculated subcutaneously on the back at the root of the tail. A small wire cylinder mouse-holder aids in manipulation. Microscopic Examination of Living Bacteria.—In order to determine form, motility, spore formation, and reaction with specific serum, it is often necessary to study bacteria alive. The hanging-drop method is commonly used for this purpose.

A special slide for the hanging drop has been devised, which has a circular pit ground into the glass on one side. When bacteria are growing in fluid media, a drop may be transferred with the wire loop to the center of a cover-slip which has been sterilized by flaming, and the cover-glass then inverted over the hollow chamber with the top depending freely downward. If the bacteria are removed from solid media, they should be suitably mixed with sterile physiologic salt solution and a drop of the suspension placed on the cover-slip. The hollow chamber is sealed by cedar oil or vaselin smeared on the edge, so that the drop is not disturbed by air-currents and does not evaporate rapidly.

Extreme care must be taken in focusing upon the hanging drop, as unstained organisms are very difficult to see. The diaphragm of the microscope should be adjusted to a small aperture in order to take advantage of the lights and shadows caused by the difference in light transmission of the bacterial bodies. The edge of the hanging drop should first be found with a low-power lens and exactly centered, and then the high power turned in place and cautiously brought into focus.

Barber¹ has devised a method of making cultures from isolated single cells which has been used in the study of bacterial variability. The special technic is described in the articles cited.^{1,2}

The so-called "hanging block" for studying the development of bacteria was invented by Hill.³ It consists of a thin slice of nutrient agar (or of gelatin if a warm chamber is not necessary) which is seeded on its surface with a number of organisms and then inverted on a cover-glass and fastened by searing its edges with a hot needle. The cover-slip should be sealed over a moist chamber with paraffin. The organisms are thus held in one position on the solid medium, and the mode of cell division can be advantageously followed.

¹ Barber, M. A.: See Bull. Kansas Univ., 1907, 4, p. 3; Jour. Infect. Dis., 1908, 5, p. 380; 1909, 6, p. 634; Philippine, Jour. Sci., 1913, 8, p. 539.

² Chambers, R.: Jour. Bact., 1923, 8, p. 1; Johnson, H. W.: Jour. Bact., 1923, 8, p. 573.

³ Hill: Jour. Med. Res., 1902, 7, p. 202.

Young, vigorous cultures not more than twenty-four hours old should be used for studying cell division and also for determining motility in the hanging drop.

Examination of Stained Bacteria.—Film Preparation.—Slides for making stained preparations should be thoroughly clean and sterile. If new, they should be washed in soapsuds or NaOH solution, boiled in potassium dichromate cleaning fluid, or placed in nitric acid (1 part concentrated HNO₃ to 1 part water) for one hour, rinsed well in distilled water, and stored in 95 per cent alcohol or in alcohol and ammonia. They are then ready for use, and need only be dried with a clean soft linen cloth and freed from grease by passing them two or three times through the Bunsen flame.

Fresh young cultures twenty-four to forty-eight hours old grown on agar are usually the best for ordinary stained preparations. A loop of filtered water is placed on a slide, and a small amount of bacterial growth mixed with this and spread evenly over the surface. If the glass is not clean, the mixture will gather in droplets instead of spreading in an even film. This film is then allowed to dry in the air, and when well dried the preparation is passed three times slowly through the Bunsen flame, film side up, to fix the film. Fixing may be accomplished also by means of absolute alcohol or glacial acetic acid, which must be washed off before the next step. The fixed film is covered with the stain, allowed to stand fifteen to thirty seconds, washed thoroughly with clean water, and mounted in water for examination; if desired, it can be dried later and mounted permanently in balsam.

Stains.—The basic aniline dyes most commonly used for staining bacteria are, in order of merit, gentian-violet, methylene-blue, and fuchsin. Saturated solutions of these stains in 95 per cent alcohol should be kept in stock, so that for immediate use it is only necessary to filter a little of the alcoholic solution into ten times its bulk of distilled water. Except in special cases (tubercle bacillus, spores, etc.), bacterial films stain very quickly with fuchsin or with gentian-violet. The action of methylene-blue may be hastened by gentle heating; some organisms, like the bacilli of glanders and of typhoid fever, take up a stain slowly and are best colored by the more intense stains. Methylene-blue is especially satisfactory for examining fluids from the body (blood, pus, etc.). The staining power of solutions may be increased by heating, by the use of substances

which act as mordants, by prolonging the staining process, and by the addition of alkalis. Some of these special methods and stains are as follows:

Löffler's Methylene-blue.1

Sat. sol. methylene-blue in alcohol	30 cc.
Sol. KOH in distilled water (1:10,000)	100 "

Aniline Gentian-violet.

- (a) Aniline oil water is made by adding 2 cc. aniline to 98 cc. distilled water; shake violently. Filter several times through filter-paper.

Carbolic Gentian-violet (Nicolle) is prepared as follows:

Gentian-violet	(sat.	alco	holic	sol.)	 	10 cc.
Carbolic acid.					 	1 Gm.
Water					 	90 cc.

Gram's Method.²—Certain organisms, when stained and afterward treated with a solution of iodine and washed in 95 per cent alcohol, give up the stain; others retain the color when subjected to this process. These latter organisms, examples of which are the anthrax bacillus and the pneumococcus, are said to be "grampositive," or to "stain by Gram's method." Those losing the stain are "gram-negative."

Apparently the mechanism of the gram stain is a matter of permeability. Gram-positive organisms are those that permit the entrance of the water-soluble dye but do not permit the egress of the alcohol-soluble iodine-dye compound; gram-negative organisms are not readily penetrable by the water-soluble dye, but are easily permeable by the alcohol-soluble, iodine-dye compound.

Many modifications of the gram stain have been devised. One of the best is that of Burke.³

- Air-dry thinly spread film and fix with least amount of heat necessary to kill the organisms and fix them to the slide (A).
- 2. Flood smear with a 1 per cent aqueous solution of the dye to be used. Mix with the dye on the slide 3 to 8 drops of a 5 per cent solution of sodium bicarbonate, allow to stand two to three minutes (B).

¹ Löffler: Mitt. a. d. kais. Gesundh., 1884, 2, p. 421.

²Gram: Fortschr. d. Med., 1884, 2, p. 185.

³ Burke, V.: Jour. Bact., 1922, 7, p. 159.

- 3. Flush off the excess stain with the iodine solution (1 Gm. iodine, 2 Gm. potassium iodide, 100 cc. distilled water) and cover with fresh iodine solution and let stand one minute or longer (C).
- 4. Wash in water as long as described and blot off all free water until surface of film is practically free of water, but do not allow the film to become dry (D).
- 5. Decolorize with acetone or acetone and ether (1 part ether to 1 to 3 parts acetone) until decolorizer flows from slide practically uncolored. This usually requires less than ten seconds (E).
 - 6. Blot dry. The slide quickly dries without blotting (F).
- Counter stain for five to ten seconds or longer if desired with a 2 per cent aqueous solution of Safranin 0 (G).
 - 8. Wash off excess stain by short exposure to water, blot and dry (H).

Immerse in xylol or turpentine for several minutes or until clear. Examine.

If the first attempt at staining a smear does not give satisfactory results it is advisable to wash off the oil with xylol, wash off the xylol with acetone and restain.

Sterling's Gentian-violet.—Five grams of gentian-violet are ground in a mortar with 10 cc. of 95 per cent alcohol. After practical solution, 2 cc. of aniline oil are added and then 88 cc. of distilled water. The grinding is continued a short time and after the mixture is permitted to rest a day or two, it is filtered through paper. It has the merit of staining quickly and intensely and of keeping many months.

The film, air-dried and passed through the flame, or preferably fixed in methyl alcohol, is stained as follows: The gentianviolet is applied for five seconds and washed off. The Gram's solution is applied for half a minute, and after washing or blotting away the excess, the preparation is decolorized and counterstained as above.

Pappenheim's Stain.—A good general stain for pus preparations:

Sat. aqueous sol. of methyl-green	3-4	parts
Sat. aqueous sol. of pyronine	$1-1\frac{1}{2}$	"
Apply cold for thirty seconds.		

Bacteria are stained bright red and the nuclei of cells blue or purple.

Stain for Tubercle Bacilli and Other "Acid-fast" Bacilli.— Tubercle bacilli require a powerful stain containing a mordant, and with this aid stain only with difficulty; when once stained, however, they resist decolorizing with equal tenacity. The following method is most commonly used:

Ziehl-Neelsen Carbol-fuchsin Stain.1

Basic fuchsin	1 part
Absolute alcohol	10 parts
5 per cent sol. carbolic acid	100 "

- Flood the slide with carbol-fuchsin and heat gently over the flame until the film seems deeply stained.
- 2. Wash and decolorize with a 2 per cent solution of hydrochloric acid in 80 to 95 per cent alcohol. It is well to decolorize until the thinner portions of the film show no red color.
 - 3. Wash in water.
 - 4. For a contrast stain use methylene-blue.
 - 5. Wash and examine.

Möller's Spore Stain.²—Like the tubercle bacillus, bacterial spores are resistant to staining and to decolorizing. The method of treating them is as follows:

- Prepare films from a twenty-four-hour agar culture.
- 2. Place in chloroform for two minutes.
- 3. After drying in the air, cover with a 5 per cent solution of chromic acid for two minutes.
 - 4. Wash thoroughly in water.
- 5. Cover with carbol-fuchsin, and heat for five minutes over the water-bath at 100°, or over a small flame, simmering gently.
- Decolorize with 1 per cent sulfuric acid for twenty-five to thirty seconds.
 - 7. Wash thoroughly in water.
- 8. Mount in water and examine under the microscope to see if the spores are cherry-red and the protoplasm colorless or faintly pink.
- Counterstain with methylene-blue for ten to fifteen seconds without heat.
 - 10. Wash, examine in water, and mount in balsam.

The body of the cell should appear blue; the spore, red.

Capsule Stain.—Welch's method³ is used for staining encapsulated organisms.

1. Cover the film with glacial acetic acid.

¹ Ziehl: Deut. med. Wochenschr., 1882, 8, p. 451.

² Möller: Centralbl. f. Bakt., 1891, 10, p. 273.

³ Welch: Bull. Johns Hopkins Hosp., 1892, 3, p. 128.

Draw off acetic acid and treat the film several times with aniline gentian-violet.

3. Wash in 0.85 per cent NaCl solution and examine in the same solution. Avoid the use of water at any stage. The capsule appears as a pale violet halo around the deeply stained bacterium.

Hiss's Capsule Stain.—Preparations are best made by direct films from pneumococcic exudates. Dry in air and fix by heat. Stain for a few seconds with saturated alcoholic solution of fuchsin or gentian-violet (5 cc.), in distilled water (95 cc.). Flood the slide with the dye and hold the preparation for a second over a free flame until it steams. Wash off the dye with 20 per cent aqueous copper sulphate solution. Blot (do not wash in water).

By this method the capsule appears as a faint blue halo around a dark purple cell body. Better results may frequently be obtained by omitting heat fixation and by washing off the dye with the copper sulphate solution as soon as it begins to steam. Water should not be applied at any stage of the procedure.

Flagella Staining.—For staining the flagella of bacteria, young agar cultures (eighteen-hour growth) should be used. A highly successful, but elaborate, method is described by Craige.¹ A simpler method (Löffler's stain modified) which gives consistently good results is the following.²

- 1. Clean the slides by dropping them one at a time into potassium dichromate-sulfuric acid solution and leaving over night. Rinse with running tap water and wash in distilled water. Cover for a few minutes with twenty parts of 95 per cent alcohol to 1 part of NH₄OH, concentrated. Pick out one by one, wash in distilled water and keep in distilled water until used; or dry in oven at 275–300 F, for an hour.
- 2. Make a suspension of the organism in 2 cc. sterile tap water which has been incubated for thirty minutes. Let the suspension stand in the incubator for thirty minutes. With a very small loop, place several drops on the clean slide; do not spread; dry in the air.
- Flood with fixing solution (1 part of 40 per cent formaldehyde to 1 part of distilled water) for two minutes; then wash.
- 4. Mordant.—Solution A: One part ferric chloride (5 per cent aqueous solution) to 3 parts of tannic acid (saturated aqueous sol-

¹ Craige, J.: Jour. Roy. Mic. Soc., 1929, 49 (Series 3), pp. 9-13.

² Shunk, I. V.: Jour. Bact., 1920, 5, p. 181.

ution). This solution improves with age, and should be kept for at least a week before it is to be used. It should be filtered before use. Solution B: 1 part of aniline oil to 4 parts of 95 per cent alcohol. Place 8 drops of solution A on the slide, then 1 drop of B. After two minutes wash and drain (do not blot).

5. Stain for two to three minutes with either (a) a fresh mixture of Löffler's methylene-blue (10 parts) and solution B of the mordant (1 part), or (b) carbol fuchsin. The latter is desirable when the flagella are to be photographed.

In this method of staining, the flagella themselves are not stained, but, when solution B is added to solution A, a precipitate is formed, which adheres to the flagella and makes them visible.

In Van Ermengem's method¹ for flagella staining three solutions are necessary, as follows:

Solution A-

Osmic acid, 2	per cent sol	1 part
Tannin, 10 to	25 per cent sol	2 parts

Place the films in this for one hour at room temperature or heat over water-bath at 100° for five minutes. Wash with water, then with absolute alcohol, then with water, and treat with

Solution B-

0.5 per cent sol. of AgNO3 in distilled water.

Allow films to be in this a few seconds; then, without washing, transfer to

Solution C-

Gallie acid	5	Gm.
Tannin	3	44
Fused potassium acetate	10	"
Distilled water		cc.

Keep in this for a few seconds. Then treat again with solution B till the film begins to turn black. Wash and examine.

Romanowsky Stain.—This stain, depending upon a combination of eosin with altered methylene-blue, is extensively used in studying protozoan parasites.

¹ Van Ermengem: Centralbl. f. Bakt., 1894, 15, p. 969.

Solution A1-

Methylene-blue (medicinally pure)	2	Gm.
Sodium bicarbonate	9	- 66
Distilled water 25	-30	cc.

Mix the dry ingredients and gradually add the water. Cover and steam in the Arnold sterilizer one and one-quarter hours. Wash the residue with water, to remove the sodium bicarbonate, add 10 cc. of 4 per cent solution of NaOH, and shake. Extract with chloroform and evaporate over a water-bath. Finally, place the dry mass in a bottle and add gradually about 150 cc. methyl alcohol. This constitutes the stock solution of crude methylene-violet and azure.

Solution B-

Saturated solution of Grübler's watery yellow eosin in methyl alcohol.

To make the dye:

Solution A	66 cc.
Methyl alcohol	33 "
Solution B	1-1.5 "
Methylene-blue	0.05-0.15 Gm.

Place the dye on the slide and allow it to stand one minute. Add, drop by drop, a quantity of water equal to the bulk of the dye, and allow this to stand five minutes. Wash one-half minute in running water.

Epstein's stain is very useful in showing the granules in diphtheria bacilli:

- (a) Prepare a film in the usual manner.
- (b) Stain with Löffler's methylene-blue for twenty seconds.
- (c) Wash in water.
- (d) Warm over a flame with Gram's iodine solution.
- (e) Wash in water.
- (f) Dry and mount.

Neisser's Granule Stain for Diphtheria Bacilli.

SOLUTION NO. 1

Methylene-blue	0.1 Gm.
Alcohol	2 cc.
Glacial acetic acid	5 "
Distilled water	

Dissolve the methylene-blue in the alcohol and add it to the acetic acid water mixture. Filter.

¹ After Harris: Bull. Johns Hopkins Hosp., 1907, 18, p. 281. For fuller details see MacNeal: Jour. Infect. Dis., 1906, 3, p. 412.

SOLUTION NO. 2

Bismarck brown		0.2 Gm.
Water (boiling)		100 cc.
Dissolve the stain in the boiling water and f	filter.	

To Stain.—Fix the preparation. Pour on the dilute acetic-acid methyelene-blue solution and allow to act from thirty to sixty seconds. Wash. Then pour on the Bismarck brown solution and after thirty seconds wash off with water. Dry and mount. The bodies of the bacilli are brown with dark blue dots at either end.

Ponder's Stain for Diphtheria Bacilli.

Toluidin blue (Grübler)	0.02	Gm.
Glacial acetic acid	. 1	cc.
Absolute alcohol	. 2	"
Distilled water to	. 100	44

This stain may be used in place of Solution No. 1 in Neisser's method.

Wright's Stain.

Methylene-blue 1	Gm.
Sodium carbonate 0.5	44
Eosin, yellow, water soluble 0.1	per cent solution

The sodium carbonate is dissolved in 100 cc. of distilled water, the methylene-blue added, and the solution placed in a steam sterilizer for one hour. When cold, 500 cc. of the eosin solution is added and stirred constantly until the solution becomes deep purple and a finely divided precipitate has formed. This is collected on a filter paper, dried, and dissolved in methyl alcohol to form a saturated solution. After filtering, 40 cc. of the solution are diluted to 50 cc. with methyl alcohol. In using, cover the prepared film with the stain for one minute, then add water slowly until a green iridescence appears. Allow the stain to remain for two minutes, then wash and examine.

Jenner's Stain, Leishman's Modification.—This stain contains the same ingredients as Wright's stain, but is prepared in a different manner. The methylene-blue is dissolved in 100 cc. of distilled water, the sodium carbonate added, the solution heated at 65 C. for twelve hours, and then allowed to stand ten days at room temperature. Equal amounts of this solution and the eosin solution are mixed and allowed to stand for six to ten hours with frequent stirring.

The precipitate is collected on a filter, dried, and the staining solution made by dissolving 0.15 gram in 100 cc. of methyl alcohol.

Giemsa Stain.

Azur II—eosin	0.3 Gm.
Azur II	0.08 "
Glycerol	
Methyl alcohol	25 "

Heat both the alcohol and glycerol at 60 C. Dissolve the dyes in the alcohol and add the glycerol slowly. Allow to stand over night and filter. In staining use 1:1000 potassium hydroxide solution in place of water, and dilute the stain as prepared, with ten times its volume of water. The best preparations are made by allowing the stain to remain on the film for one to three hours.

The above three stains are useful in connection with the examination of blood smears either for making blood counts or for detecting parasites.

Selective Bactericidal Action of Gentian-violet.—Churchman¹ has used the method of divided plates for determining the difference in the behavior of bacteria to gentian-violet. An ordinary Petri dish is divided into two compartments by a strip of metal, and, after sterilization, plain nutrient agar is poured into one, gentian-violet agar (1:100,000) into the other. On streaking the surface of the hardened agar (with a fluid culture or emulsion) striking differences in behavior are observed, which are of significance in differential diagnosis. Certain bacteria (for example, the anthrax or diphtheria bacilli) are inhibited by the dye and refuse to cross the borderline, while others (such as the typhoid and cholera organisms) grow freely in the gentian-violet medium. In general, the gram-positive organisms are inhibited by the gentian-violet and vice versa, but there are some exceptions to this rule. Behavior toward gentianviolet is much more definite and constant than the gram-staining reaction. The behavior of bacteria toward acid fuchsin is in many respects the exact opposite of their behavior toward the basic dyes. Besides its diagnostic value, the bacteriostatic method has impor-

¹ Churchman: Jour. Exper. Med., 1912, 16, p. 221.

tant practical applications in detecting mixtures of species, air contamination, and the like. The selective action of the aniline dyes has been utilized therapeutically.¹

Study of Pathologic Material.—The examination of material such as pus, blood, or discharges from diseased tissues or organs, may be carried out as follows: (1) Gelatin and agar tubes should be inoculated and plates poured at once. If there is reason to suspect that bacteria may be present that cannot develop on the ordinary media, blood-serum or blood-agar should also be inoculated. (2) Several film preparations should be made at the same time, one to be stained with methylene-blue, one with Ziehl-Neelsen carbol-fuchsin, and one by Gram's method. (3) A guinea-pig or rabbit should be inoculated with a small amount of the material.

The colonies that appear on the plates should be carefully examined, and pure cultures on agar or blood-serum made from any that present characteristic appearances, or that differ materially from one another. If the inoculated animal succumbs, cultures should be made from the site of inoculation, from the heart, spleen, liver, and peritoneal cavity. When no apparent effect follows inoculation, the animal should be killed after five or six weeks, the organs carefully scrutinized for possible tuberculous or other lesions, and cultures made as above.

Study of Pure Cultures.—In order to determine the natural relationship or systematic position of a bacterium it is necessary to observe in pure culture the morphology, staining reactions, mode of growth on various media, the biochemical reactions produced by its development, and in some cases the effect upon animals.

- 1. Morphologic Appearance.—Young twenty-four-hour-old agar cultures should be examined in a hanging drop for motility, form, and size. The hanging block may be used for further observations on size, cell division, grouping, and spore formation. Preparations of both young and old cultures should be stained first by the ordinary dyes, then by special methods, for the purpose of determining the gram stain reaction, the number and arrangement of flagella and spores, and the absence or presence of capsules.
- ¹ Churchman: Jour. Amer. Med. Assoc., 1922, 79, p. 1657; also chapter by Churchmau in Jordan and Falk: The Newer Knowledge of Bacteriology and Immunology, 1928, pp. 19–37.

2. Cultural Characteristics.—Cultures freshly isolated from water, soil, or air, or those which have been kept for long periods upon artificial media, are sometimes put through a process of "rejuvenation" before study in order that they may regain lost qualities. This process consists in successive transplantations upon a series of media, i. e., from agar to broth for three days' incubation at 20 C., then to a gelatin plate for the same interval, and finally back to agar, from which the usual media may be inoculated.1 Observations of cultural features should cover a period of at least ten days. The colonies on gelatin, and less often on agar plates, sometimes show important differences in form, rapidity of development, elevation, character of periphery, and internal structure as seen under a low-power lens. Agar and potato streak cultures should be examined with reference to form, amount and consistency of growth, elevation, character of surface, edge, and pigmentation or discoloration of the medium. In growth upon blood-serum the same features are to be noted, and also the occurrence of liquefaction or digestion. Gelatin stab-cultures often give a characteristic development along the line of puncture; observations should also be made on the character of the surface growth and the progress of liquefaction if present. The production of a surface pellicle, of turbidity and sediment in broth, and the occurrence of coagulation, digestion, and nature of reaction in milk are features of growth in liquid media that differ with different species. An important biochemical property is the ability to ferment carbohydrates such as dextrose, lactose, and saccharose, and in case of gas production, the amount of gas produced, and the ratio of H to CO2. Growth in the closed arm of the fermentation tube gives an indication of facultative or obligatory anaërobiosis. It is sometimes useful to determine also whether a micro-organism possesses the ability to reduce nitrates in nitrate broth, and to form indol in peptone solution. The virulence of the organism itself and the toxicity of its products of growth (in the form of culture-filtrates) for ordinary laboratory animals complete the usual list of data necessary for classification.

It is of the utmost importance that descriptions be comparative; therefore, in order to prevent confusion of methods and of terms, a

¹ Fuller and Johnson: Jour. Exper. Med., 1899, 4, p. 609.

DESCRIPTIVE CHART-SOCIETY OF AMERICAN BACTERIOLOGISTS.

Prepared by F. D. Chester, F. P. Gorham, Erwin F. Smith, Committee on Methods of Identification of Bacterial Species.

Endorsed by the Society for general use at the Annual Meeting, December, 1907.

GLOSSARY OF TERMS.

AGAR HANGING BLOCK, a small block of nutrient agar cut from a poured plate, and placed on a cover-glass, the surface next the glass having been first touched with a loop from a young fluid culture or with a dilution from the same. It is examined

upside down, the same as a hanging drop.

AMEBOID, assuming various shapes like an ameba.

AMORPHOUS, without visible differentiation in structure.

ARBORESCENT, a branched, tree-like growth

BEADED, in stab or stroke, disjointed or semi-confluent colonies along the line of inoculation.

BRIEF, a few days, a week.
BRITTLE, growth dry, friable under the platinum needle.

BULLATE, growth rising in convex prominences, like a blistered

BUTYROUS, growth of a butter-like consistency.

Short chains, composed of 2 to 8 elements,

Long chains, composed of more than 8 elements. CILIATE, having fine, hair-like extensions, like cilia.

CLOUDY, said of fluid cultures which do not contain pseudo-

COAGULATION, the separation of casein from whey in milk. may take place quickly or slowly, and as the result either of the formation of an acid or of a lab ferment.

of the formation of a acid or of a lab ferment.

CONTOURED, an irragular, smoothly undulating surface, like that of a relief map.

CONVEX, surface the segment of a circle, but flattened.

COPROPHYL, dung bacteria.

CORIACEOUS, growth tough, leathery, not yielding to the platinum

CRATERIFORM, round, depressed, due to the liquefaction of

the medium.

CRETACEOUS, growth opaque and white, chalky.

CURLED, composed of parallel chains in wavy strands, as in anthrax

DIASTASIC ACTION, Same as DIASTATIC, conversion of starch

into water-soluble substances by diastase.

ECHINULATE, in agar stroke a growth along line of inoculation, with toothed or pointed margins; in stab cultures growth beset with pointed outgrowths.

EFFUSE, growth thin, veily, unusually spreading.
ENTIRE, smooth, having a margin destitute of teeth or notches.

EROSE, border irregularly toothed.

FILAMENTOUS, growth composed of long, irregularly placed or interwoven filaments.

FILIFORM, in stroke or stab cultures a uniform growth along line of inoculation.

FIMBRIATE, border fringed with slender processes, larger than

FLOCCOSE, growth composed of short curved chains, variously

FLOCULENT, said of fluids which contain pseudozoogleæ, i.e., small adherent masses of bacteria of various shapes and floating in the culture fluid.

FLUORESCENT, having one color by transmitted light and another

by reflected light.

GRAM'S STAIN, a method of differential bleaching after gentianviolet, methyl-violet, etc. The + mark is to be given only
when the bacteria are deep blue or remain blue after counterstaining with Bismarck brown.

INFUNDIBULIFORM, form of a funnel or inverted cone.

IRIDESCENT, like mother-of-pearl. The effect of very thin films.

LACERATE, having the margin cut into irregular segments as if

LOBATE, border deeply undullate, producing lobes (see Undulate). LONG, many weeks, or months.

MAXIMUM TEMPERATURE, temperature above which growth

does not take place.
MEDIUM several weeks.

MEMBRANOUS. wth thin, coherent, like a membrane.

MINIMUM TEMPERATURE, temperature below which growth

does not take place.

MYCELIOID, colonies having the radiately filamentous appear-

ance of mold colonies.

NAPIFORM, liquefaction with the form of a turnip.

NITROGEN REQUIREMENTS, the necessary nitrogenous food.

This is determined by adding to nitrogen-free media the nitrogen compound to be tested.

OPALESCENT, resembling the color of an opal.

OPTIMUM TEMPERATURE, temperature at which growth is

PELLICLE, in fluid bacterial growth either forming a continuous or an interrupted sheet over the fluid.

PEPTONIZED, said of curds dissolved by trypsin.

PERSISTENT, many weeks, or months. PLUMOSE, a fleecy or feathery growth.

PSEUDOZOGICE &, clumps of bacteria, not dissolving readily in water, arising from imperfect separation, or more or less fusion of the components, but not having the degree of compactness and gelatinization seen in zoogloss.

PULVINATE, in the form of a cushion, decidedly convex.

PUNCTIFORM, very minute colonies, at the limit of natural

RAPID, developing in twenty-four to forty-eight hours.

RAISED, growth thick, with abrupt or terraced edges.

RHIZOID, growth of an irregular branched or root-like character, as in B. mycoides.

RING, Same as RIM, growth at the upper margin of a liquid cul-ture, adhering more or less closely to the glass. REPAND, wrinkled.

SACCATE, liquefaction the shape of an elongated sac, tubular,

SCUM, floating islands of bacteria, an interrupted pellicle or bacterial

SLOW, requiring five or six days or more for development.

SHORT, applied to time, a few days, a week

SPORANGIA, cells containing endospores.

SPREADING, growth extending much beyond the line of inocula-

tion, i.e., several millimeters or more.

STRATIFORM, liquefying to the walls of the tube at the top and then proceeding downward horizontally.

THERMAL DEATH-POINT, the degree of heat required to kill young fluid cultures of an organism exposed for ten minutes (in thin-walled test tubes of a diameter not exceeding 20 mm.) in the thermal water-bath. The water must be kept agitated so that the temperature shall be uniform during the ex-

TRANSIENT, a few days.
TURBID, cloudy with flocculent particles; cloudy plus floccu-

UMBONATE, having a button-like, raised center.

UNDULATE, border wavy, with shallow sinuses.

VERRUCOSE, growth wart-like, with wart-like prominences.

VERMIFORM-CONTOURED, growth like a mass of wor

intestinal coils.

VILLOUS, growth beset with hair-like extensions.
VISCID, growth follows the needle when touched and withdrawn, nent on shaking rises as a coherent swirl.

ZOOGLή, firm gelatinous masses of bacteria, one of the typical examples of which is the Streptococcus mesenter bacteria, one of the most of sugar vats (Leuconostoc mesenterioides), the bacterial chains being surrounded by an enormously thickened firm covering inside of which there may be one or many groups of the bac-

NOTES.

(1) For decimal system of group numbers see Table 1.
will be found useful as a quick method of showing close relations inside the genus, but is not a sufficient characterization of organism.

organism.

(2) The morphologic characters shall be determined and described from growths obtained upon at least one solid medium (nutrient agar) and in at least one liquid medium (nutrient broth). Growths at 37° C, shall be in general not older than twenty-four to forty-eight hours, and growths at 20° C, not older than tenty-four to seventy-two hours. To secure uniformity in cultures, in all cases preliminary cultivation shall be practised as described in the revised Report of the Committee on Standard Methods of the Laboratory Section of the American Public Health Association, 1905.

(3) The observation of cultural and bio-chemical features shall cover a period of at least fifteen days and frequently longer, and shall be made according to the revised Standard Methods above referred to. All media shall be made according to the same Standard Methods.

(4) Gelatin stab cultures shall be held for six weeks to deter-

(4) Gelatin stab cultures shall be held for six weeks to determine liquefaction.

(5). Ammonia and indol tests shall be made at end of tenth day, nitrite tests at end of fifth day.

(6) Titrate with $\frac{N}{20}$ NaOH, using phenolphthalein as an indicator: make titrations at same times from blank. The difference gives the amount of acid produced.

The titration should be done after boiling to drive off any CO₂ present in the culture.

(Cohn's first important paper).

Species nomenclature shall begin with the year 1872 (Koch's discovery of the poured plate method for the separation of organisms).

(8) Chromogenesis shall be recorded in standard color terms.

A NUMERICAL SYSTEM OF RECORDING THE SALIENT CHARACTERS OF AN ORGANISM. (GROUP NUMBER.)

F AN ORGANISM. (GROUP NUMBER,
Endospores produced
Endospores not produced
Aërobie (Strict)
Facultative annërobie
Anaërobie (Strict)
Gelatin liquefied
Gelatin not liquefied
Acid and gas from dextrose
Acid without gas from dextrose
No no acid from dextrose
No no acid from dextrose
No growth with dextrose
Acid and gas from lactose
No growth with dextrose
Acid in gas from lactose
No acid from lactose
No growth with lactose
Acid and gas from saccharose
No growth with lactose
No growth with lactose
No growth with lactose
No growth with saccharose
No growth with saccharose
No acid from saccharose
No growth with saccharose
No growth with saccharose
No growth with saccharose
No acid from saccharose
No growth with saccharose

. Nitrates not reduced
.0003 . Nitrates reduced without gas formation
.00001 . Fluorescent
.00002 . Violet chromogens
.00003 . Blue chromogens
.00004 . Green chromogens
.00005 . Yellow chromogens
.00006 . Orange chromogens
.00007 . Red chromogens
.00007 . Red chromogens
.00008 . Brown chromogens
.00009 . Fins chromogens
.00000 . Pins chromogens
.00000 . Diastasic action on potato starch, strong
.000002 . Diastasic action on potato starch, deble
.000003 . Diastasic action on potato starch, sheent
.0000001 . Acid and gas from glycerin
.0000002 . Acid without gas from glycerin
.0000003 . No acid from glycerin
.0000003 . No growth with glycerin
.0000001 . The genus according to the system of Migula is
given its proper symbol which precedes the number
tuns: (7)
.US COLI (Esch.) Mig.

BACILLUS COLI (Esch.) Mig.
BACILLUS ALCALIGENSS Petr.
PSEUDOMONAS CAMPESTRIS (Pam.) Sm.
BACTERIUM SUICIDA Mig.

-	E	п	A.	ш	D.	F	E	A	т	U	R	Е	S.	

NOTE-Underscore required terms. Observe notes and glossary of terms on opposite side of card.

I. MORPHOLOGY (*)

1. Vegetative Cells, Medium used.

temp
Form, round, short rods, long rods, short chains, long chains, filaments, commas, short spirals, long spirals, clostridium, cuneate, clavate, curved. Limits of Size.

Size of Majority
Ends, rounded, truncate, concare.

Orientation (grouping)
Chains (No. of elements)
Agar
Hanging-Block
Grientation of chains, parallel, strepular.

Germination, equatorial, oblique, polar, bipolar, by stretching.

4. Flagella, No. Attachment polar, bipolar, perstrichiale. How Stained.

5. Capsules, present on.

6. Zoogless, Pseudozoogless.

7. Involution Forms, on. in. days at. °C.

8. Staining Reactions.

1:10 watery fuchsin, gentian-violet, carbol-fuchsin,
Loeffler's alkaline methylene-blue.

8. Special Stains

Gram. Glycogep.

CULTURAL FEATURES (3)

Agar Stroke Faatures (*)
Growth, invisible, scanty, moderate, abundant.
Form of growth, filiform, echinulate, beaded, spreading, plumose, arborescent, rhisoid.
Elevation of growth, fid; effue, raised, contex.
Lustre, glistening, dull, cretaceous.
Topography, smooth, contoured, rugose, vertucose.
Optical Characters, opaque, translucent, opalescent, iridescent.

Ophical Characters, indexensely indexensely consistency, simply, bullyous, viscid, membranous, corriaceous, britte.

Medium grayed, browned, reddened, blued, greened.

Botato.

otato.
browth scanty, moderate, abundant, transient, per-

Growth scanty, moderate, abundant, transient, persistent.
Form of growth, filiform, echinulate, beaded, spreading, plumose, arborescent, rhizod.
Elevation of growth, flat, effuse, raised, convex.
Lustre, glistening, dull, cretacous.
Topography, smooth, confoured, rugose, verrucose.
Chromogenesis (*)
Chromogenesis (*)
Corporation of growth, confoured, regiment in water
insoluble, soluble, other solvents.
Odor, absent, decided, resembling.
Consistency, slimy, bulgrous, viscid, membranous,
coriaceous, brittle.
Medium grayed, browned, reddened, blued, greened.
Loeffler's Blood-serum.
Stroke insishe, scanty, moderate, abundant. Form
stroke insishe, scanty, moderate, abundant. Form
plumose, arborescent, rhizod,
Elevation of growth, flat, effuse, raised, convex.
Lustre, glistening, dull, cretacous.
Topography, smooth, confoured, rugose, verrucose.
Chromogenesis (*)
Medium grayed, browned, reddened, blued, greened.
Lousfaution begins in d. complete in de

Medium grayed, browned, reddened, blued, greened.
Liquefaction begins in.....d, complete in....d
Growth uniform.

Agar Stab.
Growth uniform, best at top, best at bottom: surface
growth scanty, abundant; restricted, wide-spread.
Line of puncture, filiform, beaded, papillate, villous,
plumose, arborescent: higu-faction.

5. Gelatin Stab.
Growth uniform, best at top, best at bottom.
Line of puncture, fitiform, beaded, papillate, villous, plumose, arborescent.
Liquefaction crateriform, napiform, infundibuliform, succede, stratiform; begins in ...d, dedium fluorescent, browned.

Medium fluorescent, browned.

Surface growth, ring, pellicle, flocculent, membranous, none. Elevation, flat, effuse, raised, convex, pulvinate, umbonate. umbonate. Bdge, entire, undulate, lobate, erose, lacerate, fimbriate, floccose, curled. Internal structure, amorphous, finely-, coarsely-granular, grumose, filamentous, floccose, curled. Internal structure, amorphous, finely-, coarselygranular, grumose, filamentous, floccose, curied.

11. Starch Jelly,
Growth, scanty, copious.
Diastasic action, absent, feeble, profound.
Medium stained

12. Silicate Jelly (Fermi's Solution).
Growth copious, scanty, absent.
Medium stained

13. Cohn's Solution.
Growth copious, scanty, absent.
Medium fluorescent, non-fluorescent.

14. Uschinsky's Solution.
Growth copious, scanty, absent.
Fluid viscid, not viscid.

15. Sodium Chloride in Bouillon.
Per cent, inhibiting growth.

16. Growth in Bouillon over Chloroform, unrestrained, feeble, absent.

17. Nitrogen. Obtained from peptone, asparagin, glycocoll, urea, ammonia salls, nitropen.

18. Best media for long-continued growth.

19. Ouick tests for differential purposes. 19. Quick tests for differential purposes. III. PHYSICAL AND BIOCHEMICAL FEATURES. 1. Fermentation-tubes containing performance of Sugar-free bouillon and Wilson Gas production, in per cent. $\left(\frac{H}{CO_2}\right)$

Growth in closed arm Amount of acid produced 1d.

> 2d. 3d.

Substance	Method used	Minutes	Temperature	Killing quantity	Amt. required to restrain growth
				-	-

IV. PATHOGENICITY.

IV. PATHOGENICITY.
I. Pathogenic to Animals.
Insects, crustaccans, fishes, reptiles, birds, mice, rats, guinea pigs, rabbits, dogs, cats, sheep, goats, cattle, horses, monkeys, man.
2. Pathogenic to Plants:

BRIEF CHARACTERIZATION. Mark + or O, and when two terms occur on a line erase the one which does not apply unless both apply.

	Diar	neter over 1 µ			
MO		ns, filaments			
ORI		ospores			
H	Caps				
OLOGY (2)		lœa. Pseudozooglœa			
	Moti				
		lution forms			
		n's Stain			
	Gran	Cloudy, turbid			
	8	Ring			
	Pellicle				
	2	Sediment			
	-	Shining			
	-	Dull			
	820	Wrinkled			
CC	7	Chromogenie			
H	-	Round			
UH	9	Proteus-like			
IV	12	Rhizoid			
H	Pla	Filamentous			
EA	6	Curled			
TU	700	Surface-growth			
CTURAL FEATURE	tab	Needle-growth			
Sc.	-	Moderate, absent			
3	P	Abundant			
	otai	Discolored			
	9	Starch destroyed			
	Grow	s at 37° C.			
		s in Cohn's Sol.			
		s in Uschinsky's Sol.			
	-	Gelatin (4)			
-	fac	Blood-serum			
3IO	die	Casein			
CH	87	Agar, mannan			
Œ	7 2	Acid curd			
110	EW	Rennet curd			
AL	R	Casein peptonized			
19	Indo				
EA		ogen sulfid			
TU		ionia (5)			
RE		ites reduced (5)			
50		rescent			
	Lumi				
		al pathogen, epizoon			
		pathogen, epiphyte			
	Soil	The second chairs of			
DI					
ST	Milk Fresh water				
RII	Fresh water Salt water				
303	Sewa				
DIG		bacterium			
ž		r bacterium			
	Built	- Out terroun			
	-				

committee¹ on Bacteriological Technic, of the Society of American Bacteriologists, has suggested certain standard methods and descriptive terms, together with a numerical system of recording salient characters of an organism. The 1929 edition of the chart devised by this committee is herewith appended.

¹ Committee Reports, Soc. Amer. Bact.: Jour. Bact., 1918, 3, p. 115; 1919, 4, p. 107; 1920, 5, p. 127.

CHAPTER 3

THE STRUCTURE AND MODE OF DEVELOPMENT OF BACTERIA —THE COMPOSITION OF BACTERIA

Bacteria are the smallest and the simplest forms of plant life known. Unlike the higher animals and plants, the entire organism consists of but a single cell. Individual cells differ in size, shape, method of cell-division, spore-formation, and the like; these features can be determined only by the use of high magnification. "Colonies" or masses of cells that develop upon certain food-substances often present definite peculiarities of form, color, consistency, and luster, which are apparent upon examination with simple lenses or with the naked eye. Similar differences may be observed among masses of large objects: a grove of oak trees viewed from a distance too great to permit identification of the individual trees will still appear unlike a grove of pine trees. It is hence desirable to consider the morphology of bacteria under two heads: (A) the morphology of individual cells; (B) the morphology of masses of cells.

(A) THE MORPHOLOGY OF INDIVIDUAL CELLS

Dimensions.—Different kinds of bacteria vary materially in size. The average bacterium of rod shape measures about 2μ in length and 0.5μ in diameter ($1\mu = 1$ micron or micromillimeter $= \frac{1}{1000}$ mm. = about $\frac{1}{25,000}$ inch). One large spherical bacterium that has been described measures about 2μ in diameter; the most common microbe found in suppurative processes is a spherical bacterium about 0.8μ in diameter. Considerable variation can occur within a single species. The bacillus of typhoid fever is found to range from 1μ to 3μ in length, even when the descendants of a single cell living under substantially identical conditions are examined. The largest bacteria belong, as a rule, to the group of spirally twisted or screw-shaped forms; one of these has been found to

 $^{^1}$ A bacillus (B. bütschlii), however, studied by Schaudinn (Arch. f. Protistenk., 1902, 1, p. 306) measures from 50 to 60μ in length and from 4 to 5μ in width.

² Spirillum colossum (Centralbl. f. Bakt., 1902, Abt. II, 9, p. 608).

measure as much as 3.5μ in diameter. Perhaps the largest pathogenic bacterium is the spirillum or spirochete of relapsing fever, which may measure up to 40μ in length.

One of the smallest of the well-known pathogenic forms is the so-called "influenza bacillus" (about $0.5\mu \times 0.2\mu$). Other microorganisms, not surely known to be bacteria, are even smaller. germs causing pleuropneumonia in cattle are so minute as to appear like mere points when viewed with a magnification of 2000 to 3000 diameters. The germ of foot-and-mouth disease will pass through the pores of the finest Berkefeld filter, and is so small as to be invisible under the highest lenses; but it can be cultivated by the usual laboratory procedures and its presence can be demonstrated by inoculation into susceptible animals. It is possible that other diseases, the causes of which are at present unknown, will be found

to be due to ultramicroscopic organisms. It has been shown, for example, by Reed and Carroll¹ that the virus of yellow fever will pass through the pores of a compact porcelain filter. Special methods, such as microphotography by the ultraviolet light-rays2 and illumination of dark field, the "ultramicroscope" (page 619) of Siedentopf $2.4\mu \times 0.5\mu$; and and Szigmondy,³ have been employed in the hope $0.5\mu \times 0.2\mu$. of rendering visible ultramicroscopic forms of life.

Fig. 13.—Comparative size of human red bloodcorpuscle, 6.9μ ; typhoid bacillus, influenza bacillus,

Up to the present, however, these methods have not been successful in revealing the existence of hitherto unknown pathogenic microorganisms.

The mitochondria of living cells have been regarded by some investigators as symbiotic bacteria, but microchemical and physical differences exist which render such a supposition unlikely.4

Bacterial Forms and Their Interpretation.—For a long time the forms of bacteria were regarded as very simple and as comprising only three principal types, the sphere, the rod and the spiral (Fig. 14). Three chief divisions of bacteria, the coccus, bacillus and spirillum, were indeed based on this simple distinction. It is now known that a much wider range of variation occurs than was recognized by the

Reed and Carroll: Amer. Med., 1902, 3, p. 301.

² Köhler: Ztschr. f. wiss. Mikrosc., 1904, 21, p. 129.

³ Siedentopf and Szigmondy: Berl. klin. Wochensch., 1904, 41, p. 862.

⁴ Cowdry and Olitsky: Jour. Exper. Med., 1922, 36, p. 521.

early bacteriologists who were so influenced by the importance justly attached to working with pure cultures that they were inclined to regard unusual forms as contaminants. Much evidence has accumulated in favor of considerable variability in form. One and

Fig. 14.—Forms of bacteria.

the same microbe may show widely varying forms under different conditions of growth, as illustrated in the case of so well-known an organism as the cholera vibrio (Fig. 15). The diphthe-

ria bacillus is another organism often developing unusual or "aberrant" forms. While a considerable degree of pleomorphism is thus well established there is difference of opinion as to its interpretation. Some of the most careful studies that have been made indicate a certain sequence in form development, the predominating forms in young cultures, twenty-four to forty-eight hours old, being different from those in older cultures. The irregular, bizarre forms found in old cultures were long characterized as involution or degeneration forms (Fig. 16) and were looked upon as abnormal. At the present day they are regarded by many bacteriologists as representing stages in an orderly progressive development toward "old age."2 Some observers would go further and consider that bacterial growth phases give evidence of complicated life cycles, into which enter budding, cell conjugation, production of minute filterable forms and other phenomena. Difficulties connected with the smallness of bacteria, and the almost impossible task of following for any considerable period the descendants of a single cell have thus far prevented the general acceptance of this view. Evidence in favor of the occurrence of life cycles, especially in certain groups, is, however, strong, and it seems probable that future investigations will emphasize the complexity of bacteria rather than their simplicity.

The Finer Structure of Bacteria.—In spite of great technical difficulties some definite structural features can be made out. Many bacteria, perhaps all, are provided with a *capsule*, which originates from the outer layer of the cell-membrane; in stained

¹ See Löhnis: Mem. Nat. Acad. Sci., 1921, 16; Mellon: Jour. Bact., 1919, 4, p. 505; Henrici: Jour. Infect. Dis., 1925, 37, p. 75.

² Clark and Ruehl: Jour. Bact., 1919, 4, p. 615.

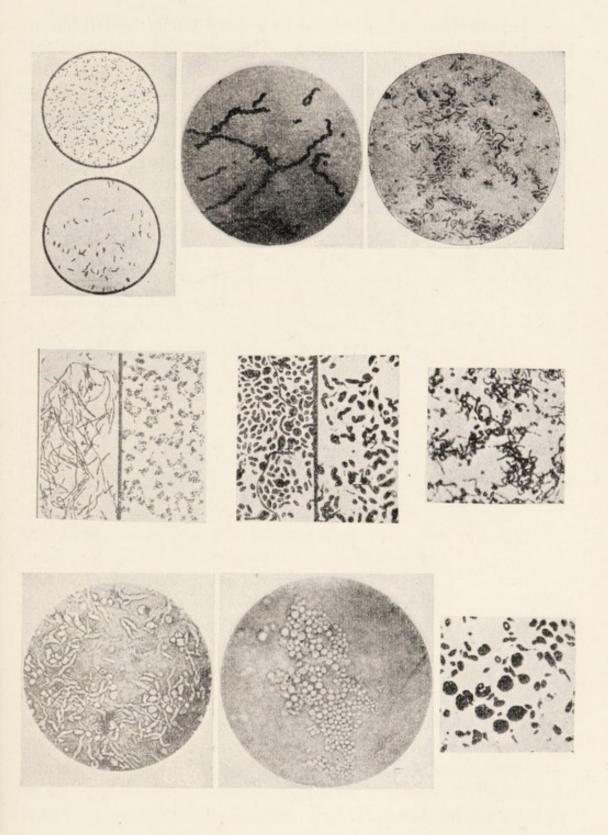


Fig. 15.—Cholera vibrio under various conditions of growth, as shown by six investigators (Henrici). 5

preparations it can sometimes be seen surrounding the cell like a halo. The possession of capsular substance is believed by many investigators to be an attribute of all kinds of bacteria, although the substance is much more highly developed in some forms than in others. Certain organisms in which it is particularly conspicuous are commonly called the capsulated bacteria. Slimy cultures, such as those of Bact. friedländeri (p. 322), characterize the capsulated

Fig. 16.—Involution forms of bacteria (enlarged about 1000):1, Proteus mirabilis (Hauser); 2, Bact. aceticus (Hauser); 3, spirilla form of Bacillus anthracis (Petruschky); 4, Bact. halophilus (Russell); 5, Spirillum cholerae (van Ermengem).

forms. The capsule is generally demonstrated most easily in preparations made directly from animal tissues, as is notably the case with the micrococcus of pneumonia, but it can also be seen in specimens from ordinary cultures, if appropriate methods are used. There is reason to believe that the capsular substance is chiefly carbohydrate in nature (polysaccharide) and that it varies significantly in its chemical composition in different kinds of bacteria. Its presence and abundance are in someway connected with the virulence or invasive power of micro-organisms (see pp. 194, 237).

The cell-membrane is chiefly remarkable for its chemical composition, since it differs from the cell-membrane of the higher plants in not containing cellulose. By many writers the membrane is regarded merely as the slightly differentiated outer portion of the cell-substance, and as deserving the name ectoplasm rather than cell-membrane.

The nature of the cell-substance or entoplasm of bacteria has been the subject of much controversy. Especially have questions as to the character, disposition, and even the existence of nuclear material

(chromatin) given occasion for many differences of opinion. The fact that the cell stains uniformly by ordinary methods has led, on the one hand, to the view that a bacterium is composed of cytoplasmic material without any nucleus, and, on the other hand, to the opposite opinion, that it is composed altogether or almost entirely of nuclear matter (chromatin), with possibly a thin outer envelop of cytoplasm. latter view is supported by the great affinity shown by the bacterial cell-substance for the ordinary nuclear stains as well as by the capacity of the cell for very rapid cell-division. Considerable biologic significance attaches to the structure of cells so simple and presumably so primitive as bacteria, and the questions concerned matin granules in have aroused widespread interest. Perhaps the most satisfactory view is that advanced by

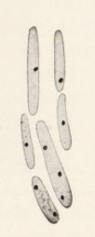


Fig. 17.—Chro-Bacillus megatherium (Zettnow).

Zettnow, which is based largely upon his own researches, especially upon some remarkable observations on large spirilla which he succeeded in staining in a living and even motile condition, thus avoiding the production of artificial changes. Zettnow regards the cell-body of bacteria as composed largely, and in the case of certain vibrios almost wholly, of chromatin mingled with varying amounts of cytoplasm, a view not unlike that first advanced by Bütschli.2 In many cases the chromatin, instead of being gathered together in a fairly compact mass or definite nucleus, is fragmented and distributed irregularly through the body of the cell (Fig. 17). In others

¹ Zettnow: Zeitschr. f. Hyg., 1899, 30, p. 11.

² Bütschli: "Ueber den Bau der Bakterien," Leipzig, 1890.

a formed nucleus has been demonstrated, particularly in stages just preceding cell division. On the whole, the researches of Zettnow, A. Meyer, and others make it fairly certain that bacteria contain both chromatin and cytoplasm, and that the chromatin is present in great abundance, but varies in amount and position in different cells.

When certain kinds of bacteria are treated with methylene-blue, various granules in the cell are observed to stain differently from the substance of the cell-body, for example, red against a blue background. These are the so-called "metachromatic granules," about the nature of which opinion is still at variance. These granules are sometimes scattered through the cell-substance, sometimes massed at either pole, where they constitute the "polar granules" observed in the plague bacillus, the glanders bacillus, and other bacteria. In certain species the metachromatic granules are particularly easy to demonstrate, and their abundance may even constitute a character of some differential value (diphtheria bacillus). It seems probable that substances of radically diverse physiologic significance have been classed as metachromatic granules. In some instances such granules are simple degeneration products; in others they doubtless bear some important relation to the physiologic activities of the cell. They have even been compared, although on insufficient grounds, to the centrosomes of more highly specialized cells. It is more likely that they are in large part reserve food-substance. A. Meyer¹ has shown microchemically that some of the granules are fat, some glycogen, others a lecithin-like substance, and still others a peculiar protein-like compound. Some observers have noted that the metachromatic granules decrease in numbers during the period of active cell division and increase in the resting stage. The view advanced by a few writers, that some relation exists between the virulence of a culture and the richness of the cell in granules, has not been established.

Motility and the Organs of Locomotion.—Many kinds of bacteria are observed to be motile under the conditions in which bacteria are usually studied. Some of those forms in which motion has never been observed may perhaps possess the power of locomotion under certain unusual conditions. Independent bacterial motion is a true movement of translation, and is to be distinguished from the oscillating or quivering movement exhibited by all very minute

¹ Meyer, A.: Centralbl. f. Bakt., Abt. II, 1900, 6, p. 339.

particles suspended in water or other suitable fluids. The latter movement is the so-called "Brownian movement." This is a purely physical phenomenon due to so-called "molecular bombardment," not to the activities of the living cell. Both dead bacilli and living nonmotile bacilli show the Brownian movement. In particular cases where motility is sluggish it is often difficult to determine whether the changes in position that are observed are independent or are simply manifestations of the Brownian movement. Many bacteria are found to be motile when they are examined after removal from certain culture media, but nonmotile if they have been grown on other substances. One of the familiar instances of this

Figs. 18 and 19.—Flagella: Proteus vulgaris and large spirillum belonging to the group of sulfur bacteria (Zettnow).

sort is the case of the colon bacillus, which is motile when picked from young colonies on gelatin or agar, but is frequently nonmotile when taken from broth. Conflicting statements concerning the motility of an organism often depend upon the fact that observations have not been made under comparable circumstances.

The rate at which a bacterium moves has been approximately measured. The typhoid bacillus may travel a distance of 4 mm., or about 2000 times its own length, in one hour; the cholera spirillum may attain for short distances a speed of 18 cm. per hour.

The power of locomotion in bacteria depends upon the possession of flagella, long, fragile, filamentous appendages which originate from the capsule, and by virtue of their power of contractility drive the bacterium through the water. Flagella have been seen in the living, unstained cell (large spirilla) by some observers, but ordinarily special methods must be applied to reveal their presence (p. 54). Abnormal bacterial flagella may be mistaken for spirochetes even by experienced observers. Differences exist in respect to the position of the flagella on the cell-body: Some forms possess only a single flagellum at one pole (monotricha, cholera spirillum); others possess a flagellum at each pole (amphitricha, many spirilla); others possess a tuft of flagella at one pole (lophotricha, certain large spirilla); and others have flagella projecting from the whole body of the cell, from the sides as well as the poles (peritricha, typhoid bacillus and many others) (Figs. 18, 19). In some nonmotile bacteria no flagella have ever been observed (atricha, anthrax bacillus). The number of flagella on the body of peritrichous bacteria varies considerably. Even closely allied bacterial species may differ in respect to the number of flagella they possess. The typhoid bacillus, for instance, possesses, as a rule, more flagella (ten to twelve) than the colon bacillus (two to six). The majority of actively motile bacteria belong either to the bacilli or the spirilla; very few micrococci are motile under ordinary conditions,2 and no motile trichomycetes have been described.

Growth and Cell-division.—A bacterium can increase in size up to a certain point; the maximum size attainable, as among the higher forms of life, is singularly constant for each species. When the maximum is reached, cell-division may occur by simple partition or fission, dividing the cell into approximately equal halves. Division of the nuclear substance precedes that of the cell-body (Nakanishi³). Among bacilli and spirilla cell-division usually takes place at right angles to the long axis of the cell. Among the cocci division may occur in three ways: in one plane only, resulting in the formation of chains (streptococci); or in two planes, giving rise to flat sheets of cells or irregular masses (staphylococci); or in three planes, producing cubical bales or packets (sarcinae). After cell-division the cells may remain connected (streptobacilli or streptococci) or they

¹ Noguchi: Jour. Am. Med. Assn., 1926, 86, p. 1327.

³ Nakanishi: Centralbl. f. Bakt., I, 1901, 30, pp. 97, 145, 193, 225.

² According to the investigations of Ellis (Centralbl. f. Bakt., Abt. II, 1902, 9, p. 546), all forms of micrococci possess flagella and are motile under favorable conditions. This assertion has not been confirmed.

⁴ It may be noted that when the cells become separated after division, and change their position, it is difficult, if not impossible, to trace the direction of the division plane. Some of the organisms classed as staphylococci are said to be able to divide in three planes. (Fischer: "Structure and Function of Bacteria," tr. Oxford, 1900, p. 19.)

may become speedily disunited. Bacilli and spirilla show some elongation before division; cocci, as a rule, do not, although some cocci exhibit an increase in the diameter of the cell without any alteration of its spherical form.

While bacterial multiplication is commonly observed to take place by simple transverse fission, other modes of cell division may occur such as budding or Y-like splitting. It is possible that this unusual form of multiplication betokens the existence of more complicated life histories among bacteria than ordinarily assumed.

Under favorable conditions cell-division may take place quite rapidly (cholera vibrio, twenty minutes; hay bacillus, thirty minutes). Such rapidity of cell-division is sometimes referred to as if it were a peculiar quality of bacteria, but as a matter of fact the embryonic cells of many higher forms of life divide quite as rapidly as bacteria.

The remarkable thing about bacterial cell-division is not so much the rapidity with which one cell-division succeeds another, as the fact that a very short time suffices for the growth of the young cell to maturity. A young bacterial cell attains full size and acquires the capacity to produce in its turn an independent organism much sooner than most other forms of life. This rapid reproduction of distinct individuals is plainly different from the multiplication of embryonic cells among higher organisms. The rate of multiplication among the more complicated protozoa, which are also one-celled organisms, is considerably less rapid. Calkins1 has shown that Paramoecium divides about once or twice in twenty-four hours. It has been estimated that if bacterial multiplication went on unchecked, and the division of each cell took place as often as once an hour, the descendants of each individual would in two days number 281,500,000,000, and that in three days the progeny of a single cell would balance 148,356 hundredweight! No living organism, however, as was pointed out long ago by Darwin, can increase in exact geometric progression, for various checks and hindrances are always placed upon its multiplication by natural causes. In the case of bacteria a potent influence that tends to prevent unlimited multiplication is found in the interference with growth caused by the substances produced by bacteria themselves. Acids and other injurious products are commonly formed by bacteria during the disintegration of their food-substances, and accumu-

¹Calkins: Archiv. f. Entwickelungsmech., 1902, 15, p. 139.

late in the immediate surroundings of the organisms, where they often inhibit all further multiplication. This is undoubtedly one of the ways in which bacterial growth is checked, although other factors, such as insufficient food, lack of moisture, unsuitable temperature, and the competition of other kinds of bacteria, also play a part.

Spore-formation.—The true spores or endospores of bacteria resist a heat of from 70 to 100 C., and are characterized by definite structural and physiologic qualities. In shape they are approximately spherical or oval. Spores are gifted, as a rule, with a very much higher resistance to all sorts of injurious influences than are the vegetative cells from which they spring. In addition to their great resistance to high temperatures, to the action of poisons and the like, they stain with great difficulty, these characteristics being probably due to their extraordinarily dense and compact structure. The highly refractive character of the unstained spore also is connected with the concentrated character of the spore substance.

An assembling or concentration of the nuclear material seems to precede spore-formation in some cases and constitutes the spore primordium. As a rule, a single cell forms only one spore; exceptions to this are very rare. Spore-formation among bacteria, therefore, is not a reproductive device for multiplying the number of individuals of the species, but more probably signifies the assumption of a resistant stage for the purpose of meeting the advent of unfavorable conditions of life.

The spore may be formed in any part of the cell, its position being generally constant in the same species. In some cases it does not exceed the diameter of the parent cell (anthrax bacillus); in others it may cause a bulging out of the wall of the cell at the point where it lies (Fig. 20). If a swollen spore is formed at one pole, a "drumstick" appearance (tetanus bacillus) may result, or if it lies centrally the cell will become "spindle-shaped," a form to which the name clostridium has been given.

The spore of the anthrax bacillus, when brought under favorable conditions, first shows a change in the refractive property of the spore-substance; this is followed by a slight elongation of the spore, with a final bursting through of the spore-membrane and the outgrowth of a short rod, which then divides in the usual manner. The new outgrowth of the anthrax bacillus takes place at the pole

of the spore; in the closely related hay bacillus it is at the equator. Other forms of bacteria exhibit intermediate methods of germination, and irregularities sometimes occur in the development of spores of the same species.

Spore-formation is not very common among bacteria. It has been definitely observed only in the rod forms; cocci are not known

to sporulate, and sporulating spirilla, if they exist, are rare. A noteworthy correlation of characters is shown in the almost unfailing occurrence of spore-formation in strict anaërobes (pp. 84, 385). Spore-forming aërobic bacteria are relatively less abundant. The spore-forming bacteria of known pathogenicity for man—certain anaërobic bacilli (bacillus of tetanus, of malignant edema, and a few others) and the anthrax bacillus—are few, a fortunate circumstance that

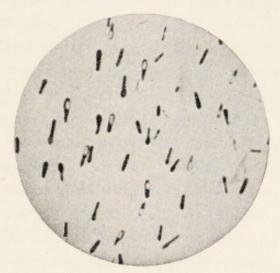


Fig. 20.—Spores, bacillus of symptomatic anthrax. Methylene-blue stain (Kolle and Wassermann).

materially facilitates and simplifies disinfection and the treatment of infectious diseases.

The conditions under which bacteria form spores vary with the nature of the organism. The bacillus of anthrax, as a rule, forms spores only when in contact with free oxygen, a fact that has a direct practical bearing upon the mode of disposal of the carcasses of cattle dying from this disease. The tetanus bacillus, on the other hand and the anaërobes in general, form spores in the entire absence of oxygen. A suitable temperature is essential to the formation of spores: The anthrax bacillus forms spores most abundantly at about 30 to 32 C., and will not produce spores below a temperature of about 12°, its optimum of vegetative multiplication being about 37°. Lack of food is apparently not an adequate stimulus to spore-formation. In all cases a period of uninterrupted vegetative multiplication precedes the appearance of spores, and the conditions necessary for the production of spores seem to arrive simultaneously for most of the cells in a culture. In some cases the cause of spore-formation is thought to be an accumulation of

metabolic products in the culture; these may perhaps be acids, perhaps other injurious compounds. According to Daranyi² diminution in the water content of the bacterial cell, leading to a shrinking of the colloids, is the main factor in bringing about spore formation. It must be kept in mind that, although some bacteria do not form spores under the conditions in which they are observed, it does not follow that they may not form spores under other and more suitable conditions. It is not possible to imitate with precision the "natural" conditions of life for all micro-organisms, and there is no complete justification for the assumption that because an organism has never been observed to form spores it never does so.

Physiologically the spore is usually considered as a resting-stage, serving to tide the species over a period of dryness, famine, or unsuitable temperature, and to preserve alive in a hostile environment a sufficient number of individuals until such time as favorable conditions recur. In this view the spore stage is physiologically analogous to the periods of hibernation or estivation among higher forms of life, and the living matter of the spore may remain dormant for years or even for decades. Some recent observations, however, on enzyme activity indicate that spores may not be so metabolically sluggish as usually supposed.

(B) THE MORPHOLOGY OF MASSES OF CELLS

A single bacterial cell or group of cells, when planted in a favorable medium and allowed to develop under suitable conditions of moisture, temperature, and air-supply, will in a few hours or days develop a "colony" so large that it can be plainly seen by the naked eye. In some instances such masses of cells, especially when the growth occurs upon certain culture media, possess salient peculiarities which are highly characteristic of the species. In others the differences between colonies of closely allied species are exceedingly subtle, and can be detected at times only by a trained eye. Growths upon nutrient gelatin are especially characteristic; on this medium the morphologic appearance of a mass of typhoid bacilli, for example, is quite distinct from that of a mass of anthrax or of diphtheria bacilli. The differences between the gelatin or agar colonies of closely related organisms are often, however, as in

¹ Migula: "System der Bakterien," Jena, 1897, I, p. 177.

² Daranyi: Centralbl. f. Bakt., II, 1927, 71, p. 353.

the case of some members of the colon-typhoid group, almost or quite inappreciable.

The character of colonies is profoundly affected by the density and viscosity of the culture medium (Whipple¹) and by the physical conditions under which the colonies develop (Dunham²). Upon nutrient agar the morphology of bacterial colonies is less distinctive than upon gelatin; the colonies upon potato and other solid food-substances are, as a rule, still less characteristic.

The movements of the cells after division affect the appearance of the resulting growth. The cells may separate completely after division so that they are seen to lie, as in the typhoid-coli-dysentery group, in parallel lines (slipping group); or the cells may adhere at one corner so that many pairs lie at angles, as do the diphtheria bacilli (snapping group); or they may remain attached in chains and either present a zigzag appearance (folding group) or appear in long even coils of filaments (loop-forming group), as in the colonies of the anthrax bacillus.

Besides the shape, size, and general structure of bacterial colonies, color is sometimes of service in differential diagnosis. Certain species produce variously colored pigments which are more or less characteristic of the organism forming them. A common microbe of suppuration owes its name of the "golden pus coccus" to its production of a golden-yellow pigment. The bacillus of blue-green pus (Ps. pyocyanea) is also conspicuous for its pigment. It must be remembered, however, that among bacterial colonies, as among living organisms generally, there is no quality so variable as color, and that, as a rule, implicit dependence cannot be placed upon the pigmentation of a bacterial colony even as a mark of varietal or racial difference.

It must be admitted that great stress cannot be laid in all cases upon the morphology of masses of bacteria as an aid in distinguishing different species. The mass-morphology, like the individual morphology, is subject to wide variation under varying conditions of life, and can be regarded as only one item in the sum-total of characters that go to make up the concept of a bacterial species. As has been pointed out by Marshall Ward,³ "the attempt to

Whipple: Technology Quarterly, 1902, 15, p. 127.

² Dunham: Science, 1903, 17, p. 372.

³ Ward: Proc. Roy. Soc., 1897, 61, p. 415.

determine species of bacteria by ordinary macroscopic methods leads to difficulties of the same kind as would be met if we tried to differentiate species from the marks presented by masses of trees in forests from a distance—say, in a balloon. A forest of a given species of tree would appear very different at different seasons and according to its age, the kind of soil, climate, and so on, and the treatment it had received previous to planting."

One difference between colony types which has recently been discovered appears to be of considerable significance. In a number of bacterial groups it has been found that rough (R) and smooth (S) colonies will develop from a single apparently pure culture (Fig. 25 on p. 133). Under ordinary conditions transfers from the S and R colonies respectively breed true. The rough and smooth strains differ significantly in the stability of suspensions in salt solution, in virulence and in the other important characteristics. This marked and fairly persistent association of colony characteristics with deep-seated physiologic and biochemical qualities shows the value of close observation of colony type. (For further discussion of rough and smooth strains, see page 132.)

THE CHEMICAL COMPOSITION OF BACTERIA

The bodies of bacteria contain from about 80 to 88 per cent of water, the amount showing considerable variation and depending partly on the nature of the organism, largely on the culture medium. The ash is largely phosphoric acid, the P₂O₅ content often reaching as high as half the total ash weight (tubercle bacillus, 55.23 per cent, de Schweinitz and Dorset). Sulfur, potassium, chlorine, and calcium are also present in notable amounts, together with usually smaller quantities of magnesium, iron, silica, etc. Some forms of filamentous bacteria, found especially in sewage-polluted water, contain in their protoplasm granules of sulfur (Beggiatoa). Others have notable deposits of iron in the sheath that surrounds the rather large filaments (Crenothrix).

Among the bacteria, as in the lower fungi generally, cellulose is conspicuous by its absence; but another and somewhat similar carbohydrate, designated as hemicellulose, is often present in abundance. Starch-like substances, staining blue with iodine, are also observed. It is a peculiarly interesting fact that a substance

¹de Schweinitz and Dorset: Centralbl. f. Bakt., 1897, 22, p. 209.

closely related to *chitin*, if not identical with it, has been found in a number of bacteria. It has been noted that in many respects the bacteria resemble the lower animals in their chemical composition.

Characteristic nitrogenous compounds—namely, nuclein, hypoxanthine, guanine, and the nuclein bases, such as adenine—occur practically constantly in bacteria. Regarding the nature of the true protein substances in bacteria little is known. Much attention has been paid to the toxic constituents of the bacterial cell, and these substances are referred to in another place. The diffusible products of bacteria are also considered elsewhere (p. 107).

CHAPTER 4

THE EFFECT OF PHYSICAL AND CHEMICAL AGENTS UPON BACTERIA

It is a well-known biological fact that various physical and chemical agencies affect profoundly the vital phenomena of all living cells; physical and chemical factors determine inexorably whether a micro-organism shall thrive and multiply, whether it shall lead a merely dormant existence or shall altogether perish. Among the most important of the natural environmental influences are temperature, light, moisture, oxygen-supply, and food-supply.

Temperature Relations.-Many bacteria show great adaptability to temperature conditions. The hay bacillus (B. subtilis) is able to multiply both at 6 C. and also at 50 C. Three temperature limits may be distinguished: a minimum, or the lowest point at which growth occurs; an optimum, or the temperature of most luxuriant growth; and a maximum, or the highest temperature at which growth can take place. The position of these three points differs greatly for different species. The minimum for some bacteria may lie above the maximum for others: B. thermophilus, a species found in soil and fermenting manure, will not grow in certain conditions below 42°; 1 Myco. tuberculosis will not grow above 42°, while B. phosphorescens will not grow above 37°. The optimum for B. phosphorescens is 20°, for the hay bacillus 30°, for Myco. tuberculosis 38°, and for B. thermophilus 63° to 70°. Some bacteria are able to multiply at or very near the freezing-point,2 while others are said to be able to multiply at 75° to 77°. Setchell³ has found bacteria living in the water of hot springs at a temper-

¹ It has been shown by Rabinowitsch (Zeit. f. Hyg., 1895, 20, p. 154) that while many of the thermophilic bacteria are able to grow only at temperatures above 50° when in contact with air, they are able under anaërobic conditions to grow at the ordinary incubator temperature (37.5°), or even as low as 34°. Such species appear adapted both to an anaërobic life in the animal body at about 37° and also to aërobic life at the high temperatures found in fermenting manure.

² Forster: Centralbl. f. Bakt., 1887, 2, p. 337; M. Müller: Arch. f. Hyg., 1903, 47, p. 127.

³ Setchell: Science, 1903, 17, p. 934.

ature of 89 C.! The range of temperature within which growth can take place also varies greatly in different species. Bacteria that have become habituated to living in the mammalian body (for example, Myco. tuberculosis) have a much narrower range than those whose habitat is the outer world (B. subtilis). The optimum temperature for most of the bacteria pathogenic for man lies, as might be expected, in the neighborhood of the normal temperature of the human body (37 C.). The following table gives the approximate temperature relations for several species:

Bacterium	Minimum	Optimum	Maximum
B. phosphorescens	0.0	20.0	37.0
B. fluorescens, var. liquefaciens	5.0	24.0	38.0
B. subtilis	6.0	30.0	50.0
S. cholerae	8.0	37.0	40.0
B. anthracis	14.0	37.0	45.0
Myco. tuberculosis	29.0	38.0	42.0
B. fitzianus		40.0	45.0
B. thermophilus	42.0	63-70	72.0

The wide range here shown in respect to the maximum and minimum temperatures that permit growth is paralleled by the diversity in bacterial resistance to extreme temperatures. Spores are always much more resistant to heat than vegetative forms, and some species when in the spore-stage can withstand the temperature of boiling water for upward of sixteen hours. The vegetative forms of most bacteria, on the other hand, are killed at 55 to 58 C. by ten minutes' exposure in the presence of moisture. As is well known, dry heat is much less effective as a germicide than steam. In a dry atmosphere temperatures ranging from 140 to 180 C. must be employed to insure sterilization. If steam under pressure be used, as in the autoclave, exposure for fifteen minutes to a temperature of 125 C. is sufficient to destroy all known microbes. The difference between moist and dry heat doubtless depends upon the fact that the chemical or physical changes that cause the coagulation of protein and consequent death of protoplasm take place, like such actions generally, more readily in the presence of water.

It must be remembered that the death of an organism from heat is determined by time of exposure as well as by temperature. The tubercle bacillus is killed by thirty minutes' exposure at 58 C. (136 F.), twenty minutes' exposure at 59 C. and two minutes' at 65 C. Employing a constant for time exposure the "thermal deathpoint" has been determined with considerable precision for the common micro-organisms. The usual method consists in exposing, for ten minutes, a suspension of the organisms in broth or salt solution to the action of a given temperature. That temperature at which all the organisms are destroyed is said to be the thermal death-point for the species. These fatal temperatures are lower than is popularly supposed. The thermal death-point (ten minutes' exposure) for the cholera spirillum is 58 to 60 °C.; for the anthrax bacillus, vegetative form, 60 C., spore, 100 C.; for the typhoid bacillus, 58 to 60 C. Under certain circumstances a bacillus may be protected by a deposit of protein so that the thermal deathpoint is apparently raised. It has been shown that while tubercle bacilli in suspension in milk are destroyed at 60° in ten minutes, the pellicle that forms on the surface of milk during exposure at 60° may contain living bacilli after sixty minutes.1 It may be noted that the thermal death-point of those bacteria that are at all likely to be present in polluted water is low (57 to 60 C.), and since these microorganisms do not form spores, the practice of simply bringing water to the boiling-point suffices to insure its safety for drinking purposes.

The effect of heat seems to be injurious even when bacteria are not killed, since the cells that have been heated require a longer period for germination. This is especially true of certain anaërobic forms which may lie dormant for over a year after they have been boiled.

Bacteria are much less sensitive to low than to high temperatures. The common microbes of water and soil, and also typical pathogenic bacteria like the typhoid and diphtheria bacilli, have been exposed for some days to the temperature of liquid air (about -190 C.) without destroying their vitality or sensibly impairing their biologic qualities. Cultures of bacteria have even been exposed to the temperature of liquid hydrogen (about -250 C.)² with the same negative result. On the other hand, when bacteria are frozen in water during the formation of natural ice, the death-rate is high.

¹ Smith, Theobald: Jour. Exper. Med., 1899, 4, p. 217.

² This temperature is far below that at which any chemical reaction is known to take place, and is only about 23 degrees above the absolute zero point, a temperature at which, it is believed, molecular movement ceases.

LIGHT . 81

The questions relating to the duration of life of bacteria in natural ice possess an important practical interest, and will be discussed elsewhere (p. 348).

Light.—That light affects the metabolism of the living cell is well known, and the various reactions to light that are exhibited by the higher organisms have been the subject of much investigation. In connection with the study of bacteria the germicidal influence of light has received most attention, though some workers have reported an apparent stimulation of the growth of micro-organisms, brought about by irradiation with the longer ultra-violet rays (above 3650 A.U.), the so-called "biologic" rays, and also by the shorter "abiotic" wave-lengths when applied with an intensity considerably below that necessary for complete killing.

Diffuse daylight has been found to exercise a hindering effect upon bacterial growth and metabolic activity. Direct sunlight is highly injurious to certain forms of bacterial life, many microorganisms being rapidly killed when exposed to the full action of the sun's rays.

The bactericidal action of light has been picturesquely shown by protecting certain portions of a plate seeded with bacteria, and exposing the rest of the plate to intense sunlight. In properly handled plates, colonies of bacteria will develop in the shaded portions, but no colonies will appear in the exposed portions (Fig. 21). That the unfavorable influence of sunlight is only in very small degree, if at all, due to the heat rays may be readily proven by interposing a water screen, which intercepts the heat rays, but allows the shorter germicidal rays to pass through.

The bactericidal action of light is confined to the ultra-violet region of the spectrum, beginning at 3650 Ångstrom units¹ ($1\mu = 10,000$ Ångstrom units) and extending with increasing intensity to the shortest wave-lengths measurable with a quartz spectograph: 1850 A.U.² These limits coincide with the absorption of ultra-violet light by a bacterial emulsion. Recently these limits have been found to apply to the destructive action of light on several species of molds.³ Electric light exerts a germicidal influence

¹ Coblentz and Fulton: U. S. Bureau of Standards, Sci. Papers, 1924, 19, p. 641.

² Bayne-Jones and Van der Lingen: Bull. Johns Hopkins Hosp., 1923, 34, p. 11

³ Fulton and Coblentz: Jour. Agric. Res., 1929, 38, p. 159.

similar to that of the sun's rays. The Schumann rays (1700 A.U.–1250 A.U.) are strongly abiotic, the destructive effect again increasing with decreasing wave-length. Röntgen rays have not yet been definitely proven germicidal. Figure 22 shows the close correlation between destruction of bacteria and absorption of the effective rays by a bacterial suspension. The abrupt termination of the abiotic region at 2960 A.U. may be attributed to very low intensity in the tungsten arc of the less active lines between 2960 A.U. and 3650 A.U.



Fig. 21.—An agar plate of anthrax spores exposed behind a stencil plate Y from 12.15 to 3.15 p. m. on March 27, and then incubated at 20–22 C., and photographed at intervals. The photograph was taken as a transparency, against a N-window. The two crescentic areas are due to the agar-film not completely covering the plate in this case. Seventy-two hours' incubation (H. Marshall Ward).

Ultra-violet rays have been utilized in water sterilization, and to some extent in the preparation and sterilization of foodstuffs and biological products.

Moisture.—Many of the higher forms of life display considerable resistance to drying. The small aquatic worms known as rotifers will revive after months or even years of prolonged desiccation. If, however, the actual body substance is not, as with the rotifer, protected by a gelatinous capsule, the complete removal of moisture

¹ Bovie: Botanical Gazette, 1916, 61, p. 1.

speedily destroys life. Even the seeds of the higher plants which are specially adapted for resistance to drying rarely outlast ten to twenty years.

Most of the vegetative forms of bacteria are rather quickly killed by ordinary air-drying, although there are great differences among the different forms. The tubercle bacillus is one of the more resistant, the cholera spirillum one of the more sensitive, to drying. Exposure to desiccation for a few hours, or at most a few days, destroys the majority of known pathogenic microbes, so that infection through the air, except where floating bacteria are protected

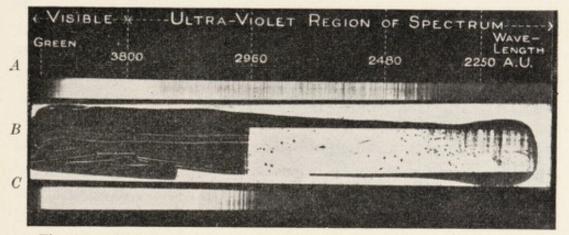


Fig. 22.—A, Spectrum of tungsten are photographed with Hilger quartz

spectrometer.

B, Impression of bacterial film (Staph. aureus) on plate covered with thin layer of nutrient agar; exposed for three one-half hours to tungsten spectrum from Hilger quartz spectrometer, then incubated at 37 C. for forty-eight hours. Black area represents region of abiotic action.

C, Absorption spectrum of bacterial suspension. Exposure: two minutes

(Browning and Russ, Proceedings of the Royal Society of London, 1919).

by their position within epithelial scales or mucoid droplets, is not so common as popularly supposed.

The spores of bacteria are much more resistant to drying than the vegetative forms. The spores of the anthrax bacillus will germinate after remaining in a dry condition for at least ten years.

Oxygen Supply.—Bacteria may be divided into three classes with reference to their behavior at different oxygen tensions: The obligate aërobes, or those that require a relatively high oxygen tension for the maintenance of their life activities; the obligate anaërobes, or those that do not grow except in the complete or almost complete absence of free oxygen; and the facultative anaërobes, or those that can thrive in either the presence or the absence of oxygen.

The obligate aërobes comprise many of the ordinary air and water bacteria, especially those of the pigment-forming varieties. Among pathogenic bacteria the diphtheria bacillus and the cholera spirillum are forms that require a supply of free oxygen. The different kinds of aërobic bacteria vary in respect to their optimal oxygen tension. This is beautifully illustrated by the "respiration figures" pictured by Beijerinck, which show that different kinds of bacteria grow best at different levels in fluid media, the thickest swarm of each species being at that level at which the oxygen tension is most suitable. Wherry and Oliver have made interesting observations tending to show that many endoparasites become adapted to a tension of oxygen below the atmospheric.

The discovery of an obligate anaërobe by Pasteur in 1861 was the cause of one of the most important changes wrought by bacteriology in the biologic conceptions then current. All of the organisms known up to that time required free oxygen to support life, and Pasteur's discovery was at first received with considerable incredulity. It has since been shown, however, by experiments of great precision, that bacteria actually exist which are able to live and multiply in the complete absence of free oxygen, provided their food contains oxygen in suitable combinations. Anaërobes will grow in media where reduced hemoglobin remains unchanged and reduced methylene-blue shows no trace of reoxidation. The practical absence of oxygen is further demonstrated by the fact that strictly aërobic bacteria are not able to grow at all under these conditions. It has been found, however, that some growth even of obligate anaërobes like the tetanus bacillus will occur in the presence of very minute quantities of oxygen. Certain anaërobes, furthermore, can become acclimated to growth in gradually rising amounts of oxygen until the original oxygen limit is greatly exceeded. The vegetative forms of most anaërobes die quickly when exposed to the air and even the spores are injuriously affected.

It is found experimentally that anaërobic bacteria as a class thrive best in the presence of substances capable of undergoing reduction or fermentation.³ The peculiar phenomenon of anaëro-

¹ Beijerinck: Centralbl. f. Bakt., Abt. I, 1893, 14, p. 837.

² Wherry and Oliver: Jour. Infect. Dis., 1916, 19, p. 288; 1917, 20, p. 28.

³ It is a common observation that many bacteria will not grow up into the closed arm of the fermentation tube except when the culture medium contains certain sugars or other fermentable substances. The presence of certain aërobic bacteria or their products, or the products of anaërobic bacteria, also permits growth in the closed arm.

biosis may perhaps be explained by supposing that anaërobes are bacteria specially qualified to obtain their needed energy from the simple splitting up of organic compounds without oxidation. Although it is true that, in its original form, Pasteur's conception of fermentation as "life without air" is no longer tenable, it cannot be questioned that in many cases anaërobic life is conditioned by the ability of an organism to ferment certain organic compounds. In a modified sense, Pasteur's explanation of fermentation as due to the adjustment of certain micro-organisms to an anaërobic mode of life affords a satisfactory view of the biologic significance of anaërobiosis. In other words, if a microbe is able to obtain the energy necessary for its life activities by reducing processes without resorting to processes of oxidation it can live an anaërobic life; if it is so addicted to an anaërobic mode of life that the presence of oxygen, except in minimal quantities, interferes with its habitual methods of attacking food-substances, it is an obligate anaërobe; if, on the other hand, it can obtain energy only through the direct oxidation of organic substances, it is an obligate aërobe.

The fundamental question of the gaseous exchange of microbes has been studied most fruitfully by Novy and his associates. Oxygen is consumed and carbon dioxide given off during growth, as with higher forms of life. For the tubercle bacillus Novy and Soule found the optional concentration of O₂ to be about 40–50 per cent; a fair growth of the tubercle bacillus was obtained in 90 per cent CO₂, but these authors do not believe that CO₂ is utilized by the tubercle bacillus or other bacteria. Rockwell and Highberger, however, consider that carbon dioxide is a vital factor in growth, and there is considerable evidence that its presence favors in some way the growth of certain organisms.

The respiratory behavior of bacteria seems to follow very closely that of other living cells,³ even when we consider the anaërobes with their peculiar sensitiveness to the presence of oxygen. The discovery⁴ that certain bacteria produce hydrogen peroxide which may inhibit growth has thrown light on the problem of anaërobiosis. One attractive hypothesis is that the degree of sensitiveness of a

¹ Novy et al.: Jour. Infect. Dis., 1925, 36, pp. 109, 168, 245, 343.

² Rockwell and Highberger: Jour. Infect. Dis., 1926, 38, p. 92.

³ McLeod, J. W.: Bacterial Respiration. Chapter VII in Vol. 1 of A System of Bacteriology (Med. Res. Council, London), 1930.

⁴ McLeod, J. W., and Govenlock, P.: Lancet, 1921, I, p. 900.

bacterium to hydrogen peroxide, its ability to produce the peroxide under varying conditions of oxygen tension and the presence or absence of the enzyme catalase which protects the cell against injury from the peroxide are the main factors that affect aërobic and anaërobic life. Thus the obligatory anaërobes such as the bacilli found in tetanus and in botulism are very sensitive to hydrogen peroxide and do not produce catalase. The pneumococcus, which can also produce peroxide and in the presence of oxygen forms no catalase is, however, only slightly susceptible to the action of the peroxide. The bacilli of the coli-typhoid group are mostly catalase producers, and a few bacteria appear to form neither catalase nor peroxide.

Food-supply.—Bacteria are able to satisfy their food requirements upon the most diverse substances. Organic compounds in great variety can serve as food. Complex nitrogenous bodies, especially, which contain a large amount of available potential energy, are attacked eagerly by many species, as witnessed in the familiar phenomena of decay and decomposition. Less complex molecules can also serve as a source of energy. Many bacteria, including pathogenic forms, such as the cholera spirillum and others, will grow upon nonprotein media which consist of a solution in distilled water of simple mineral phosphates and sulfates together with asparagin or ammonium salts of the organic acids (succinic, lactic, citric). Particular interest attaches to the ability of certain micro-organisms to construct their living substance wholly out of inorganic compounds. It has long been known that organisms containing chlorophyl or allied pigments are able, with the aid of the sunlight, to effect such a synthesis, but it was supposed that a sharp distinction must be drawn between the chlorophyl-bearing and the nonchlorophylaceous organisms. The ability of the so-called "nitrifying organisms" (Winogradsky) to develop in the presence of very simple mineral salts, and in the entire absence of organic matter of any kind, has completely overthrown this distinction (p. 688). By these organisms the energy necessary for development is obtained from the oxidation of very slightly energized compounds like the mineral ammonium salts and even nitrites. Since organic carbon compounds are also formed by the nitrifying bacteria, it follows that a complete synthesis of organic matter is effected by these organisms independently of the presence of pigment and the action of the sun's rays. The nitrifying organisms, some of which are able to oxidize ammonia to nitrites, and others to oxidize nitrites to nitrates, are so wedded to their particular modes of metabolic activity that they are quite unable to thrive in the presence of organic substances, a condition analogous to that presented by the obligate anaërobes. Beijerinck and Van Delden¹ have reported the discovery of a remarkable organism, B. oligocarbophilus, which is capable of growing in water containing merely nitrates and other fully mineralized salts, and is able to utilize in its development a volatile carbon compound of unknown nature which is present as an impurity in ordinary atmospheric air. In association with certain other bacteria it can oxidize hydrogen, perhaps according to the equation:

$$CO_2 + H_2O + H_2 = CO + 2H_2O$$
.

Pure cultures of B. oligocarbophilus are capable of oxidizing and assimilating carbon monoxide!

According to Kaserer,² B. pantotrophus, by a somewhat similar process, generates formaldehyde, which it can then use as a nutritive substance.

$$CO_2 + H_2O + 2H_2 = HCHO + 2H_2O.$$

This organism is able to endure the presence of formaldehyde in a strength of 1:15,000.

Bacteria are frequently distinguished as saprophytes and parasites, on the basis of their source of food-supply. Saprophytes are those forms able to obtain the requisite energy for growth from dead or lifeless matter; parasites are able to thrive within or upon the living substance of various animal or plant hosts. Many parasitic organisms are able to lead also a saprophytic existence, as shown by the ability of the tubercle bacillus, the plague bacillus, and many others, to grow not only in the human body, but also upon the ordinary culture media employed in bacteriologic laboratories. A few parasitic forms, however, are so highly specialized for a life in contact with living tissues, and even the tissues of a particular host, that they are unable to grow under any other circumstances. appears, for instance, to be the case with the bacillus of leprosy, which is able to grow in the body of man and in apes, but resists attempts to cultivate it on lifeless food-substances or in the bodies of On the other hand, most of the ordinary water and other animals.

¹ Beijerinck and Van Delden: Centralbl. f. Bakt., Abt. II, 1903, 10, p. 33.

² Kaserer: Centralbl. f. Bakt., 1906, 16, p. 681.

soil bacteria are powerless to grow when introduced into the animal body, and seem entirely unadapted to a parasitic mode of life.

The concentration and reaction of a nutrient substance are factors of some importance. In general, organic substances in solution are available as sources of food-supply for bacteria only when in certain degrees of dilution. A familiar instance is the speedy souring of a dilute sugar solution as contrasted with the keeping qualities of a thick syrup. The osmotic adjustment required of a bacterial cell suddenly introduced into a concentrated fluid is too great to be readily compassed.

Most pathogenic bacteria thrive best in a food-medium that reacts neutral or slightly acid to phenolphthalein. Different species, however, behave differently. The cholera spirillum is quite sensitive to the presence of a very small amount of acid, while the typhoid bacillus is not checked by a distinct acid reaction. Most bacteria found in water grow best in a medium with a hydrogen ion concentration between $P_{\rm H}$ 6.2 and $P_{\rm H}$ 7.0.

The importance of minute quantities of certain substances of unknown nature (vitamins) in the nutrition of the higher animals has led to inquiry whether similar accessory substances are of significance in bacterial growth. Many bacteria are able to multiply and give rise to their characteristic products in simple nonprotein media so that the presence of organic substances does not seem essential. On the other hand, the presence of organic extracts of various kinds favors the growth of many micro-organisms. The growth of Pfeiffer's influenza bacillus has been definitely shown to be dependent upon the presence of a heat-resistant "X" factor and a heat-sensitive "V" factor, both present in blood and also in certain plant tissues. The same organism is favorably influenced by the products of growth of other microbes.

Other Environmental Influences.—Among other factors which have been studied with reference to their effect upon bacteria are atmospheric pressure, mechanical agitation, and electricity.

Pressures of 600 to 700 atmospheres are said by some observers to have an inhibitory effect upon putrefactive processes, but, on the other hand, others state that living micro-organisms are not affected by exposure for twenty-four hours to a pressure of 600 atmospheres. According to Roger¹ a pressure of 2000 atmospheres lessens the

¹ Roger: Arch. de Physiol., 1895, 5s., 7, p. 12.

virulence of the anthrax bacillus. Higher pressures destroy bacteria. Nonspore-forming bacteria are killed in fourteen hours by a direct pressure of 6000 atmospheres, and spores by about 12,000 atmospheres. Nonspore-bearing bacteria are killed by CO₂ of 50 atmospheres' pressure in about one and one-half hours, while nitrogen of 120 atmospheres has no effect.¹

The evidence in respect to the influence of mechanical agitation upon the life of bacteria is somewhat conflicting, but, on the whole, indicates that prolonged shaking, whether moderate or violent, of a fluid containing bacteria has little, if any, influence. Shaking will, however, sometimes cause the separation of loosely cohering cells, and this may lead to a simulation of cell multiplication, if dependence be placed on a count of bacterial colonies. When glass pearls or similar objects are shaken up together with bacteria, the organisms are mechanically injured by the successive shocks and destroyed.

Experiments made to determine the effect of the electric current upon bacteria have been in too many cases conducted loosely, and inferences have been drawn that have not been warranted by the conditions of the experiment. In some instances when a small amount of fluid is used, a rise in temperature is produced which is sufficient to account for the death of bacteria; in other cases death is due to the action of strongly germicidal substances, like chlorine and ozone, which are liberated by the passage of the electric current. When the effects due to heat and to the electrolytic production of germicides are eliminated, it is very doubtful whether any direct germicidal action can be properly attributed to the electric current. Under suitable conditions it can be shown that when bacteria are subjected to an electrical potential they move toward the anode. This is interpreted to imply that the bacteria are electro-negatively charged with respect to water. The charge can be increased or decreased and even reversed. These observations are being developed to account for the stability of bacterial suspensions and to explain certain phases of agglutination phenomena.2

Adaptability of Bacteria to Varying Conditions of Life.—It has already been pointed out that different kinds of bacteria vary greatly in their response to different physical and chemical agencies.

¹ Larson, Hartzell, and Diehl: Jour. Infect. Dis., 1918, 22, p. 271.

² Winslow, Falk, and Caulfeild: Jour. Gen. Physiol., 1923, 6, p. 177.

It is also a noteworthy fact that one and the same kind of microorganism is able to adapt itself to widely different conditions of life. Thus, Dieudonné¹ has shown that by cultivating the anthrax bacillus at gradually decreasing temperatures a degree of acclimatization to cold is finally attained by this organism which enables it to grow at a temperature as low as 10 C. The adaptability to changed conditions shown by the tubercle bacillus, which when first isolated from the mammalian body grows reluctantly on artificial media, but with continued cultivation becomes more saprophytic, is another case of the same order. It is probable that these adjustments to different conditions of life are in part due to the selective influences that are always at work when cultures of organisms, containing many individual cells, are exposed to a changed environment—that is, when the temperature of a culture is raised, certain cells, the least resistant, will be destroyed first, while the more resistant will survive and their descendants will inherit the resistant qualities of the parents; eventually the whole culture by this process of continued selection will come to possess a heightened tolerance of high temperatures. In addition to this factor, however, individual adaptation on the part of the protoplasm of the individual cell may occur also, as indicated by analogous experiments with other organisms, for example, by Dallinger's results with flagellates,2 which he succeeded, in the course of several years, in rearing by slow stages up to a temperature of 70 C., when the experiment was ended by accident. At the beginning of the experiment the flagellates were killed at 23 C. Probably bacterial protoplasm likewise can become directly adjusted to changed conditions.

Effect of Chemical Substances upon Bacteria.—The phenomena of positive and negative chemotaxis are fully exemplified in bacterial life. It has been frequently demonstrated that bacteria, like other free-moving organisms, are apparently attracted by certain chemical substances in solution (positive chemotaxis) and repelled by others (negative chemotaxis). These movements are ordinarily regarded as the direct result of a chemical stimulus. According to the view held by Jennings,³ the swarming of bacteria around algae that are evolving oxygen, or around any other points where favorable nutri-

Dieudonné: Arb. a. d. kaiserl. Ges., 1894, 9, p. 492.

² Dallinger: Jour. Roy. Mic. Soc., 1887, 1, p. 185.

³ Jennings, H. S.: "Behavior of the Lower Organisms," New York, 1906, p. 39.

ent conditions exist, is not to be looked upon as due to a definite attraction exerted upon the bacterial cell, but as caused simply by the tendency to remain at those points where the conditions are favorable. In the course of their aimless wanderings bacteria eventually arrive at those spots where conditions—as the oxygen tension—are highly suitable; there they remain.

The tendency of aërobic bacteria to collect near that portion of an algal filament where oxygen is being most abundantly evolved has been utilized by Engelmann in a beautiful experiment for showing the effect exerted upon assimilation by the different parts of the solar spectrum. The greatest aggregation of bacteria occurs at the red end of the spectrum (Fig. 23), indicating that the maximum assimilative activity of the algal protoplasm is proceeding at this point.

Fig. 23.—Bacteria gathered around alga evolving oxygen (Engelmann). Piece of cladophora with swarming bacteria in the microspectrum (gaslight). The chlorophyll grains which fill the cells very uniformly are omitted, and, instead, the absorption band between B and C and the tolerably pronounced band at the violet end between E and F, are indicated by shading.

Many bacteria in the course of their growth give rise to substances, such as acids, which are more or less injurious to cell life. Hydrogen peroxide, which is formed in cultures of anaërobes to which oxygen is admitted, exerts a marked detrimental effect on these organisms. The cessation of growth which takes place after a time in cultures of bacteria upon artificial culture media is thought in general to be due not to the exhaustion of the available food-supply, but to the accumulation of metabolic products which interfere directly or indirectly with bacterial development. Such substances, however, are probably not, as they are sometimes assumed to be, complex cellular products peculiar to the cell producing them, but are simple acids or other substances due to molecular

disintegration. It is, to say the least, questionable whether specific inhibitory "autotoxins" are produced in bacterial cultures, although the matter needs further investigation.

In a state of nature single species or "pure cultures" of bacteria rarely have the field to themselves, the natural processes of decomposition and disintegration being carried on by a host of different microbes. Under open competition the growth of one species may be sometimes hindered, sometimes assisted, by products of associated or competing species. The favoring influence that aërobic bacteria and their products have upon the life of anaërobic bacteria has already been mentioned. The so-called "antagonism" between certain bacterial species is undoubtedly due to the nature of their chemical products. The presence of those microbes that produce acid by fermenting carbohydrates is, of course, peculiarly unfavorable to microbes sensitive to acid. The chemical products of bacterial activity will be considered more at length in the following chapter.

Disinfectants and Antiseptics.—Chemical substances have been extensively employed for antisepsis and disinfection. An enormous number of such substances have been advocated for various purposes, but in many cases perfectly satisfactory disinfection is obtained with familiar and relatively simple chemical compounds. Most proprietary disinfectants are disproportionally expensive, and, owing to the lack of precise information as to their composition and strength, relatively untrustworthy.

A distinction is commonly made between antiseptics and disinfectants. A disinfectant or germicide kills the microbes with which it comes in contact. An antiseptic substance is one that restrains or checks the development of bacteria, but does not destroy them. A substance may be only antiseptic in high dilution, but germicidal if more concentrated. For example, a 1:300,000 solution of corrosive sublimate will prevent the development of anthrax spores, but a 1:1000 solution is necessary to kill them. The brine that is used in pickling meat has a strongly antiseptic action, but pathogenic bacteria have been known to retain their vitality in salt meat for long periods. Different methods and substances have been found adapted for different purposes.

¹ The extensive use of heat for sterilizing or disinfecting instruments and surgical apparatus and for rendering bandages and dressings aseptic has been elsewhere considered.

For the purpose of disinfecting rooms or apartments a gaseous substance is particularly useful. The custom of burning sulfur in infected rooms has the sanction of antiquity, and under certain conditions is reasonably effective. The sulfur dioxide (SO2) that is formed when sulfur is burned is a germicide only in the presence of abundant moisture, sulfurous acid (H2SO3) being the active agent. Roughly speaking, about ½ pound of water should be volatilized for each pound of sulfur burned. "Exposure for eight hours to an atmosphere containing at least four volumes per cent of this gas in the presence of moisture" is said to destroy all nonspore-bearing pathogenic bacteria. This requires the combustion of about 4 to 5 pounds of sulfur for every 1000 cubic feet. Not only bacteria, but mosquitoes, fleas, and other possible insect carriers of pathogenic micro-organisms are destroyed, and this is one of the advantages of sulfur fumigation. The use of sulfur has the disadvantage that it lacks penetrative power and that it injures certain fabrics and materials. For the latter reason especially, sulfur as a disinfectant of dwelling-houses has been largely superseded by formaldehyde (HCHO).

Formaldehyde, which is usually sold under the trade name of formalin, a 33 to 40 per cent solution of the gas in water, is a more effective germicide than sulfur dioxide and has the great advantage that it does not damage books, paintings, and delicate fabrics, attack ordinary dyes, or act upon most metals. Like sulfur, it is efficacious only in the presence of moisture. According to McClintic¹ the humidity should not be lower than 60 per cent and the temperature not less than 16 C. in order to obtain the best results. For practical purposes the gas may be generated in a variety of ways:

1. If the vapor of methyl alcohol be passed over a highly heated surface—as, for example, over asbestos discs coated with finely divided platinum—the partial oxidation that occurs gives rise to formaldehyde:

$$CH_3OH + O = HCHO + H_3O$$
.

On this principle a number of lamps have been devised that have been used to some extent, but considerations of economy and of ease and efficiency of application have prevented a very general introduction of this type of generator.

¹ McClintic: Bull. 27, Hyg. Lab. and Mar. Hosp. Service, 1906.

- 2. If formalin is simply boiled, two molecules of formaldehyde unite, and a polymer, paraformaldehyde, is formed. The first effect of heating formalin, therefore, is to drive off water with a relatively small admixture of formaldehyde gas. If evaporation is continued, the boiling-point of the solution is raised and a temperature reached at which the polymer is broken up and formaldehyde is disengaged. The same end is reached more expeditiously if the formalin is superheated either in an autoclave under pressure, or in other special forms of apparatus. When steam under pressure is used, calcium chloride (30 per cent) or some other neutral salt is added to the formalin to prevent polymerization (Trillat system). Great penetration may be assured by the use of formaldehyde and dry heat in a partial vacuum. Many of the pieces of apparatus designed for liberating formaldehyde from formalin by heat are reasonably effective, but are heavy and expensive. Simple heating of formalin in almost any kind of vessel will give good results if a liberal amount of formalin be used—that is, 12 ounces for each 1000 cubic feet if some substance, as for example 10 per cent of glycerol, which raises the boiling-point, be added, and if evaporation be not too rapid.
- 3. If the solid polymer of formaldehyde is heated, not ignited, formaldehyde is evolved. A lamp has been especially constructed for this purpose, and with the use of tablets or pastils of paraform affords an easy and effective means of disinfecting small rooms (Schering system).
- 4. Some formaldehyde is given off from the watery solution at ordinary room temperature. Use has been made of this in the method of spraying formalin upon sheets hung in a tightly sealed room. The gas, however, is evolved slowly under these conditions and in uncertain quantity, dependent upon many variables, such as temperature, amount of exposed surface, and other factors. Diffusion is necessarily poor.
- 5. Good results have been reported from the simple method of pouring formalin over crystals of potassium permanganate in an open vessel protected by some nonconductive material in such a way as to retain the heat. Sixteen ounces of formalin and six and three-fourths ounces of permanganate are recommended as a suitable proportion at temperatures of 16 C. and over; larger quantities of formalin are necessary if the temperature is below 16 C.

The value of terminal disinfection after such diseases as diphtheria and scarlet fever is questioned by many health authorities. The terminal disinfection of rooms has been abandoned or greatly modified in several cities (Providence, New York, and Boston), and there has been no consequent increase in the prevalence of infectious disease. As a practical measure for the prevention of disease terminal disinfection is on trial.

The disinfection of dejecta, sputum, and similar substances suspected of harboring disease germs may be effectively carried out by cremation or by boiling; but in practice a great variety of chemical substances, the ordinary "disinfectants" of commerce, are employed for this purpose. It should be remembered that, in accord with the theory of electrolytic dissociation, solutions are chemically and biologically potent in proportion to the number of free ions or dissociated fragments of molecules that they contain. A comparison of the disinfecting power of the various metallic salts, for example, on the basis of percentage solutions would be misleading, since the degree of dissociation would differ in the several cases. A gram-molecule or equimolecular solution must be employed in order to obtain comparable results. Unless dissociation takes place, solutions of metallic salts are practically without germicidal effect. A solution of mercuric chloride in absolute alcohol has substantially no disinfecting power, but if water be added, the germicidal power of the solution increases proportionately to the amount of water added. Among the important points discovered by Krönig and Paul¹ in a now classic study of the action of disinfectants, it was shown that the disinfecting properties of the salt of a metal are due in large part to the specific action of the metallic ion, but also in some degree to the anion and to the undissociated part of the salt. The disinfecting power of an acid is approximately proportional to the hydrogen-ion concentration.²

Theory of Disinfection.—The destruction of bacteria by chemicals depends on many factors such as time, temperature and the concentration of the disinfecting agent. When the number of survivors after varying periods of time is determined, while other factors are held constant, a curve such as that shown in Fig. 24 has been obtained in some cases. This figure represents the survivor-

¹ Krönig and Paul: Zeitschr. f. Hyg., 1897, 25, p. 1.

² Norton and Hsu: Jour. Infect. Dis., 1916, 18, p. 180.

time curve of anthrax spores exposed to the action of a disinfectant (phenol). The straight line shown by the logarithmic plot is characteristic of the Mass Law and corresponds to what is observed in the "unimolecular reaction" of chemistry. Not all the survivor-time curves of bacteria treated with disinfectants, however, fall in with this arrangement, in some the death rate being more rapid at the beginning, in others at the end, and often quite irregular. This may be due largely to the lack of uniformity of the bacterial popu-

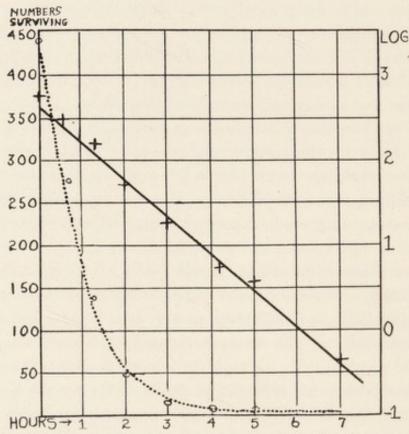


Fig. 24.—Death rate of anthrax spores treated with 5 per cent phenol. Dotted line shows number of spores surviving different periods of exposure. Full line is logarithmic expression of the same thing.

lation in the several cases. In brief, disinfection may be considered essentially a chemical process depending on the reaction of the chemical used upon the bacterial protoplasm. Whether the logarithmic survivor-curve is to be interpreted as simply the manifestation of a chemical reaction or as expressing graded biological resistance is a question. Knaysi¹ concludes that the sigmoid type of curve obtained in his careful series of experiments indicates that

¹ Knaysi, G.: Jour. Infect. Dis., 1930, 47, pp. 293-333.

the difference in individual resistance is the determining factor. In any case the point of practical importance is that in disinfection by chemicals as well as by heat there is a resistant minority of cells that survive long after the majority have perished and that must be destroyed in order to obtain complete sterilization.

Practical Disinfection.—The number of chemical compounds used or recommended for purposes of disinfection is legion. Many compounds which are used depend for their effect upon the action of freshly liberated or nascent oxygen. One of them is potassium permanganate, which forms the basis of many of the patent disinfectants, but is expensive in proportion to its efficiency. Ozone is a powerful germicide and has been used with success in sterilizing water on a large scale, but cannot be advantageously generated and applied for ordinary purposes.

Corrosive sublimate (mercuric chloride, bichloride of mercury, HgCl₂) is one of the best known and most effective germicides. In the presence of considerable quantities of organic matter, however, its use is totally inadmissible, for the reason that inert combinations between the Hg-ions and certain albuminous substances are formed, and a large part of the mercury thus rendered unavailable for action upon bacteria. In alkaline fluids such as many of the body fluids and pathologic exudates, oxides or hydroxides of mercury may be precipitated out, but the addition of a small quantity of common salt (NaCl) will prevent this. Corrosive sublimate is particularly serviceable in a standard solution, 1:1000, for the disinfection of the hands and for washing woodwork, floors, and furniture. It must be kept in mind that corrosive sublimate attacks metal, and is hence inapplicable for the disinfection of instruments and for use in plumbing fixtures.

Among the other metallic salts that have been rather extensively used for disinfection are ferrous sulfate (copperas), zinc chloride, and copper sulfate. The two former substances are of feeble germicidal power and are of little practical value except as deodorants. Copper sulfate has won a deserved reputation for destroying the microscopic algae that sometimes impart offensive odors and tastes to public water-supplies. The death of the algae in large bodies of water may be effected by as great a dilution as 1:1,000,000. Copper sulfate possesses bactericidal as well as algacidal power; according to a number of observers a dilution of 1:400,000 will kill

typhoid bacilli in twenty-four hours in water relatively free from organic matter, but most investigators doubt its practical applicability for water disinfection on a large scale.

Some of the best-known and most efficient germicides are coaltar products. Carbolic acid, or phenol (C6H5OH), is probably still the most generally used disinfectant, although of late years it has been to some extent supplanted by similar organic substances. When used in strong enough solution (5 per cent) it will destroy all vegetative bacteria and most spores, even in the presence of considerable organic matter. Another merit of carbolic acid is the comparative permanence of its solutions. Cresol [C₆H₄(CH₃)OH] is somewhat like carbolic acid in composition, and is present in large amount in "crude carbolic acid"; it is almost insoluble in water. Tricresol is a mixture of orthocresol, metacresol, and paracresol; it dissolves in water in a 2.5 per cent solution, which is about three times as powerful as carbolic acid. Many of the widely used coal-tar disinfectants are quite poisonous, and care should be taken to guard against accidental or suicidal poisoning. An effective liquid disinfectant, cheap and easily prepared, is recommended by the U. S. Public Health Service. This so-called "pine oil disinfectant" is a by-product from the manufacture of wood turpentine. Its phenol coefficient is between 4 and 6, and the cost of preparation does not exceed 50 cents per gallon. It may be used wherever the ordinary coal-tar compounds are employed and possesses decided advantages over these substances.

The sterilization of feces is advantageously carried out by the use of calcium hydroxide [Ca(OH)₂]. In laboratory experiments a 1 per cent solution of freshly slaked lime in water has been found to kill nearly all pathogenic bacteria within a few hours. A 20 per cent solution mixed with an equal part of the feces and urine of a typhoid patient will bring about complete disinfection within an hour. The cheapness and high efficiency of freshly slaked lime render it the most useful of the common disinfectants for bowel discharges, the contents of privy vaults, and manure piles. Airslaked lime, calcium carbonate, has no antiseptic value. A mixture of chloride and hypochlorite of lime, the "bleaching powder" of commerce, is when fresh also very efficacious through its oxidizing action. The use of substances, like carbolic acid and chloride

¹ Stevenson: Public Health Reports, 1915, 30², p. 3004.

of lime, that possess a pronounced and lingering odor, is open to the objection that the mere presence of the odor engenders a false sense of safety, regardless of the strength of the germicide used and the duration of its application.

Whatever be the aim or method of disinfection, it must be remembered that simple cleanliness is an indispensable adjunct, and that the use of hot water and soapsuds or soda solution is a powerful aid to the removal and destruction of disease germs. The germicidal action of sunlight in the presence of abundant oxygen supply should be utilized whenever possible.

Standardization of Disinfectants.—The relative efficiency of different chemical disinfectants is a matter of considerable practical importance. The first well-controlled attempt at a standard method of test was the Rideal-Walker method, which was soundly based on the maintenance of a rigorous uniformity of time, temperature, culture medium, nature and condition of test organisms and other factors. The typhoid bacillus was used for the test and the standard germicide used for control was phenol. Later methods of standardization have grown out of this procedure. In the method proposed by Reddish the "phenol coefficient" of a disinfectant used against the typhoid bacillus is calculated as follows:

Divide the greatest dilution of the disinfectant capable of killing B. typhosus in ten minutes but not in five minutes by the phenol dilution which should do this and divide these figures one into another. In order not to convey a false idea of the accuracy of the method the coefficient is calculated to the nearest 0.1 point if under 1.0, to the nearest 0.2 point if between 1 and 5.0, to the nearest 0.5 point if between 5 and 10, and to the nearest 1.0 point if between 10 and 20. For example, if results are read as follows:

TAI	ECUI	NT	16.3	100	CAF	F3 4	3.	CEN
DI	0	IN.	P.	157	10	L A	IN	

Dilution	Five Minutes	Ten Minutes	Fifteen Minutes
1-300	0	0	0
1-350	+	0	0
1-400	+	+	+
1-450	+	+	+

¹ Rideal, S., and Walker, J. T. A.: Jour. Roy. San. Inst., 1903, 24, p. 424.

² Reddish, G. F.: See Jordan and Falk: The Newer Knowledge of Bacteriology and Immunology, 1928, p. 301.

Th	Н	T-3	3	10	•
100	-	84.	100		
		4.7		• ,	

Dilution	Five Minutes	Ten Minutes	Fifteen Minutes
1-90	+	0	0
1-100	+	+	+

 $350 \div 90 = 3.89$ Coefficient is 3.8

If the reading is as follows:

DISINFECTANT

Dilution	Five Minutes	Ten Minutes	Fifteen Minutes
1-30	0	0	0
1-35	0	0	0
1-40	+	+	+
1-45	+	+	+

PHENOL

Dilution	Five Minutes	Ten Minutes	Fifteen Minutes
1-90	0	0	0
1-100	+	+	0

then estimate the dilution of the disinfectant killing in ten but not in five minutes as 1–37.5 and the phenol as 1–95 (37.5 \div 95 = 0.395 or 0.4) giving a coefficient of 0.4.

It is important to recognize that bacteria differ considerably in their resistance to phenol, staphylococci, for example being much more resistant than Eb. typhi, so that in strict accuracy it is necessary to specify "typhoid phenol coefficient," "pneumococcus phenol coefficient," etc. The whole question of standardizing disinfectants is beset with many difficulties, and many principles and details still need to be worked out (see also page 41).

Recommended Procedures for Disinfection.—In the case of a patient suffering from infectious disease, different methods of disinfection are necessary according to the channel by which the disease germ leaves the body. In typhoid fever the urine and feces are likely to contain the specific germ; in consumption, the sputum.

The discharges from bowel and bladder should be received into a vessel containing a 5 per cent solution of carbolic acid or fresh-

prepared milk of lime made by adding one part of dry, freshly slaked lime to four parts of water. Slaked lime is prepared from quicklime by adding approximately one part of water to two parts of quicklime. The volume of the carbolic acid or milk of lime solution should be, at best, twice as great as the volume of the discharge. Thorough mixing and stirring are advisable, and solid masses of feces should be broken up. The mixture should stand for one hour before being thrown into the water-closet. The same treatment should be used for vomited material. The sputum from consumptive and pneumonic patients should be received in cups which contain a 5 per cent carbolic acid solution or milk of lime. Paper cups may be used and burned with their contents. In the large number of other diseases in which the discharges from mouth and nose are infectious, care must be taken to prevent the dissemination of germs by sneezing or coughing, and patients should be instructed on this point. Soiled handkerchiefs and cloths may be boiled after immersion in the carbolic acid solution for one hour. In general, bed-clothing, towels, napkins, and cotton underclothing may be treated in the same fashion. Blankets, woolen clothing, mattresses, etc., may be exposed to steam, hot air, or formaldehyde gas in one of the large forms of apparatus provided by boards of health, or if of slight value, burned.

Not only clothes, but all other articles coming into more or less direct contact with a patient or convalescent, and hence liable to be contaminated with epithelial scales or discharges from the mouth, nose, bladder, or bowels, must be carefully disinfected. Dishes and table implements should be provided for the exclusive use of the patient throughout his illness. After using they should be kept in hot water at or near the boiling-point for fifteen to twenty minutes. Articles of food-milk, for example-brought into the sickroom and remaining unused should be destroyed. Toys and books used by the patient and not of great value should be burned. Valuable books may be disinfected in a special formaldehyde chamber. Books in book-cases whose surfaces only have been exposed will be satisfactorily disinfected in the course of the ordinary formaldehyde room disinfection. Woodwork and wooden furniture may be thoroughly washed with corrosive sublimate, 1:1000. Upholstered furniture, rugs, and carpets, if allowed to remain in the room at all, are difficult to disinfect, and, especially if soiled with discharges, need to be treated in a special formaldehyde chamber. The hands of the patient and of nurses and attendants need particular attention. After a thorough cleansing with 2 per cent solution of carbolic acid or a 1:1000 solution of mercuric chloride they should be washed with soap and water. This should always be done before eating. Parts of the body that become soiled with discharges should be immediately cleansed in the same way.

Room disinfection, when necessary (see page 95), may be carried out with formaldehyde gas generated in one of the ways already specified. The room must be tightly sealed, a temperature of at least 10 C. (50 F.) must be maintained, and the atmosphere must contain at least 75 per cent of moisture. Sleeping-cars, ambulances, and the like may be disinfected by the same means.

For surgical operations thoroughly cleansed instruments may be sterilized by boiling for one minute in a 1 per cent soda solution. Rubber gloves for the hands of the operator and assistants are now generally used in surgical operations and may be sterilized in the same way. The skin of the patient may be first washed scrupulously with alcohol and then with a 1:1000 solution of mercuric chloride. Painting the skin with tincture of iodine is still simpler and is highly effective. Bandages, towels, gauze, surgeons' gowns and caps are usually sterilized by heat. Syringes may be sterilized by boiling for fifteen to twenty minutes, preferably in water to which 2 per cent of soda is added.

CHAPTER 5

THE EFFECTS PRODUCED BY BACTERIAL GROWTH

In the preceding chapter it has been shown that bacteria may be greatly modified in all their functional activities by the character of their surroundings. They are not, however, mere passive victims of their environment. The influence exerted by the higher forms of life upon surrounding objects is often impressive, and bacteria also can react upon their environment in a direct and sometimes surprising fashion. Relatively slight physical and chemical changes in bacterial surroundings may give rise to a remarkable and profound disturbance of the surroundings themselves. The rapid invasion of the animal body by bacteria and the resultant putrefactive change which takes place soon after death is a familiar instance. The infection of the body of the fowl by the anthrax bacillus, which has no effect upon the normal bird, but gains a foothold and effects injury when the temperature of the fowl is lowered only a few degrees below the normal, affords another exam-The variations in the nature of the bacterial products due to slight changes in nutrient media offer innumerable illustrations of the reactions of bacteria upon their surroundings in response to relatively insignificant environmental changes.

Physical Effects.—Both heat and light may be generated by bacterial growth. As would be expected from chemical considerations, the temperature of organic substances undergoing bacterial decomposition is frequently raised high above that of the surroundings. The heating of manure piles or of damp hay is often classed as a bacterial phenomenon. It is even thought that some cases of "spontaneous combustion" should be attributed to the agency of the thermogenic bacteria, and that although the train of events leading to the actual bursting into flame is not fully understood, bacteria play a part in the initial stages of the process. Boekhout and de Vries maintain that the self-heating of the hay is of a

¹ Boekhout and de Vries: Centralbl. f. Bakt., II, 1904, 12, p. 675; 1908, 21, p. 398.

purely chemical nature. Miehe, in an exhaustive monograph on the subject, adduces strong evidence of the thermogenic power of certain micro-organisms. The latest observations support the view that the earlier part of the heating process, which raises the temperature to 70–75 C., is due to bacterial activity.

The phosphorescence sometimes observed upon decaying fish and meat is due to the growth of light-producing bacteria. Sodium chloride and magnesium chloride favor the growth of these phosphorescent bacteria, and one or the other of these salts is essential to the production of light. Aërobic conditions are absolutely necessary for photogenesis. The photogenic bacteria are found most commonly, though by no means exclusively, in sea-water and upon the bodies of marine animals. As many as 28 different species have been enumerated. The light generated by active cultures of these organisms is considerable; photographs of cultures have been taken by their own illumination.² It is supposed that a substance in the living cell—photogen—is responsible for the light phenomena. Photogen, like zymase, is closely bound to the cell protoplasm; but unlike zymase, photogen has not yet been freed by pressure and filtration from the living cell.

The dependence of bio-luminescence upon oxygen is beautifully illustrated by the experiment of Beijerinck.³ He added a ground, chlorophyl-bearing leaf to a suspension of luminous bacteria in sea-water. After the dissolved oxygen had been used up and the luminescence had disappeared, the solution again became luminous if a burning match or other source of light was brought near the tube. The chloroplasts decomposed the dissolved CO₂ and liberated the oxygen. Harvey and Morrison⁴ have measured the concentration of oxygen which is but just sufficient for the development of perceptible luminescence by bacteria isolated from fish. The value proves to be exceedingly low, being but 0.005 mm. Hg. partial pressure of oxygen, equivalent to one part of oxygen (by weight) dissolved in 3,700,000,000 cc. sea-water. The luminous efficiency of bacteria—that is, the amount of light given off in proportion to

¹ Miehe: "Die Selbsterhitzung des Heues," Jena, 1907, p. 127.

² See especially Molisch, H.: "Leuchtende Pflanzen," Jena, 1904, pp. 121–151.

<sup>Beijerinck: Kon. akad. van wetensch. te Amst., 1902, 4, p. 45.
Harvey and Morrison: Jour. Gen. Physiol., 1923, 6, p. 13.</sup>

the energy used—is very high and has been estimated at about twice that of the best electric bulb.

Chemical Products.-From a physiologic standpoint the substances produced by bacterial life and activity may be divided conveniently into four classes: (1) The secretions, or those substances which subserve some purposeful end in the cell-economy; these may be retained inside the cell or they may pass out into the surrounding medium. (2) The excretions, or those substances that are ejected because useless to the organism, the ashes of cellmetabolism. (3) The disintegration products, or those bodies that are produced by the breaking-down of food substances. Their nature is determined partly by the chemical structure of the nutrient, partly by the specific bacteria concerned in the disintegration. Some of the most conspicious, if not the most important, of bacterial products belong to this class; enzyme action is largely responsible for their existence. (4) The true cell-substance. Under this head may properly be included the protoplasm itself, substances in the early stages of assimilation that are on the way to become protoplasm, and substances that are being broken down but have not reached the stage where they are cast out of the cell.

Even on the basis of such a classification it is not always easy to assign to any given bacterial product its proper significance. Enzymes can readily be placed in the class of secretions, but the physiologic meaning of bacterial pigments, for instance, is obscure. It is variously held that the pigments are disintegration products, that they are excretions, or even that they are secretions.

The Production of Pigment.—Most bacterial cells do not contain pigment, and a mass of bacteria—an agar culture of Eb. typhi, for example—has to the naked eye a muddy gray tint. Some kinds of bacteria, however, in the course of their growth, give rise to colored substances, often of brilliant hue. Some pigments occur in solution; others in the form of granules outside of the cell in the nutrient substratum. Practically all colors of the spectrum are represented: violet, indigo, blue (B. violaceus, B. janthinus, B. cyanogenes, Ps. pyocyanea); green (B. fluorescens); yellow (Staphylococcus aureus, Sarcina lutea); orange (Sarcina aurantiaca), and red (B. prodigiosus). The last-named, the socalled "miracle" micro-organism, is sometimes the cause of the sudden appearance

of blood-red spots on polenta, rice, fish and other food substances.1 Great variation in the amount and character of the pigment produced by one and the same species may occur; cultivation on the ordinary media often occasions the temporary or permanent loss of chromogenic power (B. violaceus), and growth at an unusual temperature may have a similar effect (B. prodigiosus at 37°). Some species that are not usually regarded as chromogenic may give rise to colored sports (e. g., C. diphtheriae, Hill). As a rule, oxygen is indispensable to pigment production, and most chromogenic species yield no trace of pigment when grown under anaërobic conditions. Spirillum rubrum, however, which grows well in the presence of oxygen, is said to form its red pigment only in oxygenfree media. In the case of some chromogens the presence of certain chemical compounds or elements in the nutrient media is essential to, or greatly favors, pigment production. Thus phosphates and sulfates have been found necessary for the production of pyocyanine by Ps. pyocyanea, and sodium tartrate has been shown to favor the production of pigment by B. prodigiosus. Carbohydrate media (potato, rice, and wheat starch) often lead to a particularly brilliant chromogenesis. Antiseptics may check or altogether inhibit pigment production.

The bacterial pigments are chemically of diverse nature. Many of the red and yellow pigments are insoluble in water, but soluble in alcohol, ether, and chloroform. Others, like the fluorescent pigment, are soluble in water, but not in ether or strong alcohol. Some, and possibly the majority, are chemically related to the lipochromes, a group of fatty pigments widely distributed throughout the plant and animal kingdoms. The reactions of others suggest an affinity to certain aniline dyes, such as fuchsin.

The relation of the bacterial pigments to the physiology of the individual cell is a debated point. It is held by some that the pigments are mere by-products that have no particular meaning for the organisms forming them, and that their formation is an incidental, and not an essential, feature of the cell-metabolism. As regards the majority of bacterial pigments, there is much to support

¹ The name Serratia was given to this organism by Bizio in 1823 and has been revived in some recent systems of classification. Harrison (Trans. Roy. Soc. Canada, 1924, 18) has collected an interesting record of epidemics of "bloody bread," etc.

this position. It is maintained by others, however, that at least some pigments enter into a loose combination with oxygen, analogous to the union effected by hemoglobin, and that under certain circumstances oxygen may be liberated. It has been suggested, further, that the pigments serve to protect the bacteria producing them from the action of light, but experimental evidence is against this view.

Enzymes¹ and Fermentation Products.—It is well established that many of the chemical effects wrought by bacteria, as by other living cells, are due, not to the direct action of the protoplasm, but to the intervention of soluble ferments or enzymes. Probably the majority of the disintegrative processes in which bacteria are concerned are carried on by means of these powerful protoplasmic auxiliaries. In many cases the enzymes diffuse out from the cell and exert their effect upon the ambient substances, as do, for example, the gelatinases or gelatin-liquefying enzymes; in others the enzyme action occurs within the cell and the products pass out. The zymase or alcohol-producing enzyme of the yeast-cell apparently does not diffuse out, but acts upon sugar within the cell, the resulting alcohol and carbon dioxide being ejected. The difference between enzyme action within and without the cell would not seem to be a fundamental one.

It is in accord with the great adaptability shown by bacteria in their utilization of various food-substances that the list of enzymes known to be secreted by different species is a long one. A comprehensive review of the enzymes produced by micro-organisms, with full bibliography, has been given by Waksman.² Probably all classes of enzymes are represented among bacterial products, although in some cases where there is reason to suspect enzyme action no enzyme has yet been demonstrated. Some of the changes in nutrient media that are most relied upon as differentiation marks are effects produced by enzymes, such as the liquefaction of gelatin, the precipitation of casein, the dissolving of casein, and the inversion of sugar. A single form of micro-organism may secrete more than one kind of enzyme, and some species are known to give rise to a large number. Different kinds of enzymes are formed under the

¹ Fuhrmann: "Vorlesungen über Bakterienenzyme," Jena, 1907; Waksman and Davidson: "Enzymes," Baltimore, 1926.

² Waksman: Abstr. Bact., 1922, 6, p. 265.

influence of different conditions of life, the nature of the nutrient substratum being especially determinative. The presence of a particular carbohydrate, for example, may stimulate a bacterial species to produce a hydrolytic enzyme, which under other circumstances is not found among the products of that species.

The term fermentation has been used, and to some extent is still used, to express various conceptions. A sharp distinction between changes produced by the living cell and changes produced by enzyme action is no longer tenable, since many of the effects once ascribed to "living ferments" have been shown to be directly attributable to cell-secreted enzymes. The discovery of the alcohol-producing enzyme, zymase, has removed almost the last excuse for limiting the term fermentation to direct protoplasmic interference. More recently the nature of the substances acted upon has been made the basis of distinction. The tendency at present is to limit the term fermentation to the disintegration of carbohydrate substances, and there are some who would go so far as to consider as true fermentations only those carbohydrate decompositions in which gas is produced, a virtual reversion to the old etymologic signification (fervere, to boil). In ordinary descriptions it is customary to state that Eb. typhi, for example, does not ferment lactose, that Staphylococcus aureus ferments lactose with production of acid, and that Bact. coli ferments lactose with production of acid and gas. Proteolytic action is not usually denoted as fermentation, though logically the putrefaction of protein substances by bacterial agency falls in the same category with the decomposition of sugar by the action of the yeast-cell.

The large group of disintegrative products can only be briefly touched upon here. A considerable portion of this book is devoted to the description of the various activities and products of important microbes, and the reader will soon become aware that a notable share of the interest that attaches to certain species is due to the nature of the chemical changes wrought by them in the surrounding food-substances.

The "Iron Bacteria."—Among the actinomyces (p. 545) or filamentous bacteria are found some varieties especially characterized by deposits of iron oxide in the sheath or sometimes in the protoplasm. The best known of these organisms are the widely spread Crenothrix polyspora, Leptothrix ochracea, and Spirophyl-

lum ferrugineum, which sometimes grow in the conduits of certain public water supplies, where they form unpleasant-looking, brownish, flocculent masses, often leading to complete stoppage of the pipes. The frequent appearance of detached portions of the growth in tap-water may give rise to consternation among the water consumers, as in the famous "water calamities" in Berlin, Lille, Rotterdam, and other places. There is no evidence that such organisms are directly harmful.

Winogradsky, explaining the presence of iron in the sheath by the oxidation of iron in the cell protoplasm of Crenothrix, asserted that the presence of some iron salt was indispensable to the growth of the micro-organism, and attached great significance to the physiologic activity of the iron bacteria in causing the deposit of iron from solution, and the consequent formation of great beds of mineral iron in the earth's crust. Molisch, however, concluded from his investigations of bog-iron ore from various sources that these micro-organisms were by no means universally concerned in the deposition of iron ore on a large scale, but that under certain natural conditions well-known physicochemical agencies might play an important part in the process. The latter author has also asserted from experimental observations on Chlamydothrix ochracea that iron is simply deposited by external chemical action on the sheath, and no vital process is at all concerned therein, and further, that this organism can live in an iron-free medium, and is capable of storing up manganese as well as iron. Lieske,2 on the other hand, has found that in the case of Spirophyllum ferrugineum the iron is built up chemosynthetically by the protoplasm of the plant from ferrous carbonate, which constitutes a real and necessary source of energy. He was unable to grow the organism in an iron-free medium or induce it to utilize the salts of other metals.

A valuable critical study of iron-depositing bacteria and their geologic relations has been made by Harder,³ who concludes that there are three principal groups of iron-depositing bacteria: (1) those, of which Spirophyllum ferrugineum is a type, that precipitate ferric hydroxide from solutions of ferrous bicarbonate and use

¹ Molisch: "Die Eisenbakterien," Jena, 1910.

² Lieske: Jahrb. f. wiss. Bot., 1911, 49, p. 91.

³ Harder: U. S. Geological Survey, Professional Paper 113, Washington, 1919.

the carbon dioxide liberated and the energy produced during oxidation for their life processes; (2) those, represented by Leptothrix ochracea, that do not require ferrous bicarbonate for their life processes, but that cause the deposition of ferric hydroxide when either inorganic or organic iron salts are present; (3) those, probably including a number of the lower or ordinary water and soil bacteria, that attack organic iron salts, using the organic acid radicle as food and precipitating ferric hydroxide or basic ferric salts, which are gradually changed to ferric hydroxide. These organisms cannot utilize inorganic iron salts.

There seems little doubt that iron-depositing bacteria have played an important part in the formation of iron-ore deposits, but the relative share of chemical and biological processes in an individual case can be determined only by a thorough study of conditions at the time of deposition, especially as regards sedimentation, climate, depth of water, nature of material in solution, and other factors.

The "Sulfur Bacteria." - Sulfur, like nitrogen, is an essential constituent of living matter. When organic matter is decomposed by bacteria, sulfuretted hydrogen (H2S) is one of the usual disintegration products. If anaërobic conditions prevail or if the medium is rich in sulfur compounds, as, for instance, is the case with the yolk of eggs, the odor of H2S is usually plainly perceptible, and has come to be recognized as one of the most familiar signs of decomposition. The sulfuretted hydrogen may arise either from the splitting off of H2S groups already present in the molecule or from the reducing action of the bacteria upon the protein substance. Sulfuretted hydrogen may also be formed by the reduction of inorganic sulfur compounds, such as sulfates, sulfites, and thiosulfates. It has been shown by Myers1 that oxidized sulfur (taurine) is not readily attacked by bacteria, while partially reduced sulfur (cystine) is completely reduced to hydrogen sulfide. Many different kinds of bacteria, including most of the common laboratory organisms, are able to generate sulfuretted hydrogen from protein bodies. The power of reducing sulfates, however, seems to be a quality less widely shared and is not possessed, for example, by such bacteria as Bact. coli, which reduces nitrates vigorously. Beijerinck was the first to isolate a special micro-organism, Spirillum desulfuricans,

¹ Myers, J. T.: Jour. Bact., 1920, 5, p. 231.

which he regarded as the peculiar organism of sulfur reduction. At least two other forms have since been described. Sulfate-reducing anaërobic bacteria have been found in water from producing oil wells over 3000 feet in depth in Illinois and California. It has been recognized for some time that waters associated with petroleum in oil pools are so low in sulfates as to indicate that a natural reduction of sulfates has been in progress, but until recently this was attributed by geologists to the petroleum.

The direct physiologic opposite of these reducing bacteria are the sulfur bacteria proper, which are able to exert a strongly oxidizing action upon sulfuretted hydrogen. These organisms are found in the water of sulfur springs, in sewage-laden streams, in swamps where masses of vegetable matter are slowly decomposing, and, in fact, wherever an abundance of sulfuretted hydrogen is being liberated. Two genera are especially recognized: Beggiatoa and Thiothrix. The former is a long cylindric filament possessed of the power of active movement and showing a close morphologic resemblance to the blue-green alga Oscillaria. Thiothrix is differentiated from Beggiatoa by its lack of motility, by the possession of a sheath, and by the formation of so-called "conidia or spores." A group of nonfilamentous, colorless sulfur bacteria also exists (Thiophysa, etc.), but has thus far been little investigated. The so-called "red or purple sulfur bacteria" are peculiarly interesting. These organisms were observed in 1826 by Ehrenberg, and in recent years have been studied especially by Winogradsky, who has placed them in a family by themselves, called the Rhodobacteriaceae. They are found especially in places where a vigorous reduction of sulfates is taking place and where, consequently, sulfuretted hydrogen is present in great abundance. The pigment that imparts the characteristic color to these organisms gives some of the reactions of the lipochromes, but little is definitely known about its composition. Unlike the unpigmented sulfur bacteria, which are completely indifferent to light, the purple bacteria gather by preference on the light side of an aquarium. The view of Engelmann, however, that the pigment is similar to chlorophyl and that the purple bacteria, like the green plants, give off oxygen in the sunshine has not been confirmed.

¹ Bastin, Greer et al.: Bull. Amer. Assn. Petroleum Geologists, 1926, 10, p. 1270.

The physiology of the group of sulfur bacteria is unlike that of any other living organisms, and they deserve to be set apart, as Winogradsky has proposed, as an independent physiologic group. The true sulfur bacteria all contain in their protoplasm highly refractive inclusions which have been found to be amorphous sulfur. The presence of sulfur in the cells is undoubtedly connected with the fact that the organisms are found abundantly only in waters containing sulfuretted hydrogen. The discovery of the full physiologic significance of these findings has been largely the work of Winogradsky. By the oxidation of sulfuretted hydrogen to sulfuric acid, which is, of course, at once neutralized by the carbonates present, the sulfur bacteria obtain the energy necessary for their development. Sulfuretted hydrogen, in a word, is their principal food. According to Winogradsky, the single Beggiatoa threads use in a day two to four times their own weight of H2S. The sulfur in the cell protoplasm is to be looked upon as an intermediate stage in the oxidation process. The course of the reaction may be indicated by the following equations:

(1)
$$2H_2S + O_2 = 2H_2O + S_2$$
.
(2) $S_2 + 3O_2 + 2H_2O = 2H_2SO_4$.

That sulfuretted hydrogen is indispensable for the continued activity of these organisms and is for them the sole available source of energy is inferred from the fact that if it is not accessible the store of sulfur in the cells quickly disappears (in twenty-four to forty-eight hours) and the bacteria apparently then die from starvation. It seems probable that the sulfur bacteria require no organic substances for their development, but that, like the nitrite bacteria (p. 688), they can subsist on a purely mineral diet. For these organisms, therefore, sulfur in its combination with hydrogen seems to have the same physiologic value that carbon in its hydrogen compounds has for most other bacteria.

The Production of Acid and Alkali.—The production of acid and alkali by bacteria is one manifestation of enzyme action. The occurrence of acid production is so commonly used as a means of special differentiation that it is convenient to consider this topic separately. In general it may be said that acidity is caused by the fermentation of some sugar, alcohol, or similar body present in the nutrient medium. The muscle-sugar in nutrient broth made from fresh meat, the lactose in milk and whey, and other sugars

naturally present in, or artificially introduced into, various culture media, are usually responsible for the occurrence of an acid reaction in the medium as a sequence to bacterial growth. In a word, the production of acid by a given species is due to its ability to break up some chemical substances in such a way that hydrogen ions are liberated. Thus the colon bacillus ferments lactose and saccharose, and in consequence provokes an acid fermentation in media containing these carbohydrates, while the typhoid bacillus is unable to effect this change. The power of acid production, or, more narrowly, the ability to ferment certain sugars, is one of the more constant physiologic characteristics of bacteria, and has been used advantageously to distinguish closely allied organisms, notably in the groups of paratyphoid and dysentery bacilli.

The acid reaction produced by a given organism in a medium containing a utilizable carbohydrate eventually reaches a point where further growth of the organism is inhibited. This final reaction is termed the limiting hydrogen-ion concentration for that organism. Ayers, Avery and Cullen, and others have shown that virulent hemolytic streptococci of human origin may be differentiated from hemolytic streptococci of bovine type by differences in their final hydrogen-ion concentrations.

Carbohydrates are not the only substances the breaking down of which is accompanied by an acid reaction. The liquefaction of gelatin by bacteria gives rise to a noteworthy increase in the acidity of the medium.

Alkali production is sometimes declared to be more intimately bound up with the constructive (anabolic) side of bacterial metabolism than with its destructive aspect, but the real difference between alkali and acid production lies in the nature of the substances attacked. In sugar-free nutrient broth the majority of bacterial species produce an alkaline reaction due to the formation of ammonia. This is more marked with some kinds than with others. Ps. pyocyanea, S. cholerae-suis, and C. diphtheriae are among the especially vigorous producers of alkaline substances. The alkalinity of a culture undoubtedly depends in most cases upon the fact that the food-substances are disintegrated by the bacterial cells or their enzymes in such a way as to yield bodies that give rise to free

¹ Ayers, S. H.: Jour. Infect. Dis., 1918, 23, p. 290.

² Avery, O. T., and Cullen, G. E.: Jour. Exper. Med., 1919, 29, p. 215.

hydroxyl ions. Protein substances, as a rule, break up in this way, while carbohydrates, when they are attacked at all, give rise to acids. Under suitable conditions bacteria may produce acid and alkaline fermentations simultaneously, as by forming acids from carbohydrates and alkaline carbonates from the organic acids.

Putrefactive Products.—The decomposition of nitrogenous compounds constitutes a striking feature of bacterial activity, and one that has always claimed attention. One reason for the conspicuous character of protein decomposition, apart from the profound modifications that are observed to occur in the dead animal or plant body, is the frequent production of malodorous compounds like mercaptan and skatol, which obtrusively betray the neighborhood of decaying nitrogenous substances. The gases arising from the disintegration of proteids are numerous and varied. Ammonia, carbon dioxide, hydrogen, marsh-gas, sulfuretted hydrogen, and nitrogen are among the more common gases generated by bacterial action. A variety of volatile compounds, amides, peptones, and aromatic bodies, are also formed in the course of the complicated processes of putrefaction. The substances generated under anaërobic conditions differ materially from those formed in the presence of oxygen, it being well known, for example, that anaërobic decompositions are peculiarly apt to be accompanied by the evolution of offensive gases. Many writers believe2 that only obligate anaërobes, and not all of those, are able to bring about putrefactive changes in native proteins. In general, it may be said that the action of bacteria upon proteins is very similar to the action of tryptic digestion, and results first in the formation of albumoses and peptones, which are then broken up into amino-acids. The aminoacids themselves are excellent nutrients for bacteria, as shown by Czapek,3 and are split both by the elimination of ammonia and by the splitting off of carbon dioxide. Free fatty acids, aromatic acids, and certain ptomaines, cadaverine and putrescine, are among the further products of decomposition.

Indol is a substance which has assumed importance as an aid to the differentiation of bacterial species. It is one of the final products of the decomposition of albuminous bodies, belongs to the

Ayers and Rupp: Jour. Infect. Dis., 1918, 23, p. 188.

² Rettger: Jour. Biol. Chem., 1908, 4, p. 45.

³ Czapek: Hofmeister's Beitr., 1902, 1, p. 538.

aromatic series (C₈H₇N), and is characterized by a peculiar odor. It gives a red color reaction when strong nitric or sulfuric acid and a 0.01 per cent solution of sodium nitrite are added drop by drop to a solution containing it, as, for instance, a peptone culture of an indol-producing organism. It also produces a cherry-red color when an acid solution of dimethylamidobenzaldehyde is added to an indol solution; this is a more delicate and accurate test than the former.¹ (See p. 38.)

The Relation of Bacteria to Food Assimilation by Higher Forms of Life.—The question whether the bacteria usually so abundantly present in the alimentary tract of man and the higher animals play a useful or a harmful part has been the theme of considerable speculation and some experimentation. Nuttall and Thierfelder, who were among the first experimenters in this field, succeeded in raising aseptically guinea-pigs that had been removed by Cesarean section from the body of the mother. The young animals, which were fed on sterile milk, lived for as long as ten days after birth and their weight increased as much as 28 grams. From such facts these investigators concluded that the presence of bacteria in the digestive tract is not indispensable for the life of the guinea-pig; by analogy they infer that the same would be true for the other higher animals and for man. Schottelius2 vigorously combats this view on the basis of his own experience in raising sterile chicks. In the conduct of these experiments, the egg-shells were carefully washed with corrosive sublimate, which was then completely removed by chemical neutralization; this procedure is not injurious, since control eggs yield perfectly normal chicks. Throughout Schottelius' experiments complete bacterial tests of the food, air, water, and dejections were made at the beginning and the close of each series. The bacteria-free chicks were apparently hungrier than the others and ate more greedily, but in spite of this fact always lost weight and usually died before reaching the thirtieth day. When some of the sterile chicks were separated from the others and given food contaminated with fresh fowl droppings, they always throve better than the control chicks and usually gained weight and grew to maturity. When a pure culture of a variety of Bact. coli was used to inoculate the food equally good results were obtained. A mixture of air-cocci

¹ Böhme: Centralbl. f. Bakt., Abt. I, Orig., 1905, 40, p. 129.

² Schottelius: Arch. f. Hyg., 1902, 42, p. 48, and 1908, 67, p. 177.

with the food was not so favorable. From these results Schottelius concludes that the bacteria normally present in the digestive tract have a marked beneficial influence and are in reality necessary to the life of the higher animals. Schottelius further maintains that the increase in weight of the guinea-pigs in Nuttall and Thierfelder's experiments was due not to a genuine tissue construction, but to the presence of coagulated and undigested milk in the alimentary canal.

Cohendy,¹ on the other hand, has reached conclusions quite at variance with those of Schottelius. By the use of more elaborate and, it is thought, more suitable methods of raising young chicks in the laboratory, Cohendy succeeded in bringing about "life without microbes." This was achieved in a vertebrate animal provided ordinarily with a rich intestinal microbic flora. The chicks raised aseptically were at least as robust as those raised under ordinary conditions. The discrepancies between Cohendy's observations and the work of Schottelius still need elucidation.

Ptomaines and Toxins.—For evident reasons a high degree of interest attaches to the poisonous products of bacteria. As might be anticipated, these products differ in respect to their origin and physiologic significance.

It may happen during the course of the decomposition of organic substances that toxic bodies are produced simply as a consequence of the mode of disintegration of the protein molecule. Among such poisonous products of decomposition, for example, are a few substances belonging to the group of alkaloid-like bodies known as ptomaines, basic compounds characterized by a more or less definite chemical composition. Investigators once supposed that in the decomposition of meat, fish, cheese, and the like, poisonous ptomaines are formed in such quantities that the ingestion of partly decayed food can cause acute poisoning. It is possible that cases of "ptomaine poisoning" in man due to ingestion of ptomaines or to their formation within the intestine sometimes occur, but there is no doubt that such cases, if they occur at all, are very rare. Many of the epidemics of "meat poisoning," etc., are now known to be due to infection with specific micro-organisms, rather than to the action of a formed poison. In the case of botulism (p. 437), which is caused by a bacterial poison formed outside the body, the poison is a ¹ Cohendy: Ann. de l'Inst. Past., 1912, 26, p. 106.

true bacterial toxin very different in character from the ptomaines. It still remains to be proved that the ptomaines play any really important part either in isolated cases or in outbreaks of foodpoisoning, or in the so-called "gastro-intestinal auto-intoxications."

The nature of the poisons produced by bacteria in the living body has been much debated. There is reason to think that they are not cleavage products, but are closely related to the life of the bacterial cell. At one time the specific bacterial poisons were believed to belong to the class of ptomaines just referred to, but this view was abandoned when it was shown that the ptomaines apparently generated by certain pathogenic bacteria were not able to reproduce the appropriate symptom-complex of any disease, and did not correspond in other respects with the toxicologic requirements. There is, furthermore, some reason to look upon at least a portion of the ptomaines isolated from decomposing substances and from bacterial cultures as secondary products due to too drastic methods of chemical manipulation, and not as the primary products of bacterial activity.

The opinion that the specific bacterial toxins belong to the class of proteins or albuminous substances has found strong support. It has, at all events, not been found possible by extensive chemical study to obtain a protein-free substance which has the characteristic properties of diphtheria or tetanus toxin. Since proteins are the only chemical substances proved to be capable of giving rise to antibody production, and since the bacterial toxins produce specific antibodies, this has been regarded as important evidence in favor of their protein nature.

The true bacterial toxins, in the modern acceptation of the term, are specific poisonous metabolic products. They are of almost completely unknown chemical structure, are probably colloidal, are extraordinarily labile, and display great sensitiveness toward heat. They are soluble and pass out from the bacterial cell into the culture-medium, hence they are termed soluble toxins or exotoxins. In many respects they are closely analogous to the enzymes. One of the most characteristic qualities of the true toxin is its ability to evoke the formation of a specific antibody, an antitoxin, when injected into the body of a suitable animal species. The potency of the bacterial toxins is extraordinary, and far surpasses that of any other known poison:

Minimal	fatal	dose	of	atropine for adult man
11	11	44	"	strychnine for adult man
11	.11	66	"	cobra venom for adult man
				tetanus toxin for adult manless than 0.23 mg.

Some bacteria, as the tetanus bacillus, are able to produce their specific toxin in the animal body; others, as Cl. botulinum (p. 441), form their toxin, so far as known, only in organic substances outside of the living body. A characteristic feature of the action of toxins, although one not fully understood, is the period of incubation that elapses after the toxin is introduced into the body before the symptoms become manifest. Tetanus toxin injected into a horse may not cause symptoms for as long as four or five days.

The constitution of the toxin molecule has been the subject of much study, especially by Ehrlich and his coadjutors. Elaborate experiments have shown that the toxin is a complex substance. To take a specific illustration, it is found that broth in which the diphtheria bacillus has grown loses, on standing, a certain part of its toxicity, but retains undiminished its affinity for diphtheria antitoxin. In other words, there is no constant relation between the toxic strength of the broth and the amount of the broth that is neutralized by a given quantity of diphtheria antitoxin. This is held to indicate that the toxin is not a simple chemical unit, but is composed of two portions, distinguished by their different stability. Exposure to light and air destroys the toxic portion of the toxincomplex, but leaves the combining portion intact. Hence a toxin has been supposed to consist of two portions: A combining or haptophore atom-group, which is able to unite with the corresponding antitoxin, and a specific toxophore atom-group, to which the poisonous action is due. Those modifications of the toxin-complex from which the toxophore portion has more or less completely disappeared, while the haptophore group persists, have been designated as toxoids or anatoxins (see page 155).

The name toxon has been given to a poisonous product of bacterial growth possessing the same haptophore group as the toxin, but of far less avidity. The toxophore group of the diphtheria toxon is conceived as different from the toxophore group of the diphtheria toxin, in that it is incapable of producing acute effects, cutaneous necrosis, and death; but, on the other hand, it is responsible for the characteristic late diphtheria paralysis. Analysis of the phenomena

attending the neutralization of toxins and antitoxins of various strengths led Ehrlich to a belief in the existence in toxic broth of a variety of toxic bodies possessing varying degrees of avidity and toxicity. These are the so-called "prototoxins, deuterotoxins, prototoxoids," etc. It has been urged against this view by Arrhenius and Madsen,1 on physicochemical grounds, that the behavior of mixtures of toxin and antitoxin can be explained by reference to the law of mass-action enunciated by Guldberg and Waage. law of mass-action declares that chemical reaction goes on at a velocity proportionate to the concentration of the reacting molecules. On the latter hypothesis it would be superfluous to assume the existence of different components, and sufficient to regard the toxin as a single uniform substance possessed of a weak affinity for its antitoxin. Further researches have shown that it is not possible to bring the reaction of toxin and antitoxin within the law of massaction, and that the relations of these two bodies to one another are much more complicated than would be expected if they were simple crystalloidal substances. On the other hand, certain striking analogies have been shown to exist between the behavior of toxins and the behavior of colloidal substances, and it seems possible that the phenomena seen in mixtures of toxin and antitoxin may be due to a reaction between two colloids. Grassberger and Schattenfroh² have found that the poison of the bacillus of symptomatic anthrax is free from toxoids and toxons, but that, nevertheless, toxin and antitoxin mixtures unite in variable proportions.

All of the foregoing statements relate to the so-called "exotoxins" or "extracellular toxins," that is, to those toxins of which tetanus toxin and diphtheria toxin are the types, which diffuse through the bacterial cell wall during life and are found in the fluid culture media in which the bacteria are grown.

Relatively few pathogenic bacteria have been shown to produce exotoxins. The best known in addition to those produced by the diphtheria bacillus and the tetanus bacillus are the toxin of Clostridium botulinum and that of the bacillus of symptomatic anthrax. Under certain conditions soluble toxins have been found by some observers in cultures of the cholera vibrio, the dysentery bacillus,

¹ Arrhenius and Madsen: Zeit. f. physik. Chemie, 1903, 44, p. 7.

² Grassberger and Schattenfroh: "Ueber die Beziehungen von Toxin und Antitoxin," Leipzig u. Wien, 1904.

the typhoid and paratyphoid bacilli, Ps. pyocyanea, and a few other organisms. But in none of these latter cases have the nature and pathogenic importance of these soluble toxins been demonstrated as they have for the four exotoxins first named.

The existence of another group of bacterial toxins, the so-called "endotoxins," was indicated by the work of Pfeiffer (1892), who observed that guinea-pigs that had been immunized to the cholera vibrio nevertheless soon died if a too large dose of cholera vibrios was injected. Cultures from the organs were sterile, showing that the infection was overcome. The death of such animals, in spite of the failure of the cholera vibrios to multiply in the body, was attributed to a poison present in the bacterial cells and liberated only by disintegration after cellular death. Endotoxins may be obtained by certain methods of extraction or by autolysis, but they differ strikingly from the exotoxins in not possessing specificity, and hence in being unable to give rise to antitoxins. It seems probable that the endotoxins are not definite preformed constituents of the bacterial cell, but that they are simply the poisonous products of disintegration of bacterial protein. Vaughan1 has shown that a great variety of proteins, bacterial and otherwise, yield, upon cleavage with alkalinized alcohol, toxic split bodies which possess many of the properties of endotoxins. When these protein split products of nonbacterial origin are injected into animals they produce fever and other symptoms which usually accompany bacterial infection. The significance of endotoxins in the causation of diseases is quite obscure. It seems possible that pathogenic bacteria in which thus far only endotoxins have been demonstrated may produce true toxins under the conditions in which they grow in the animal body.

Substances possessing the closest resemblance to the true bacterial toxins occur in the seeds of some of the higher plants and in the secretions of certain animals. Among the best known of the vegetable toxins (phytotoxins) are ricin (from the castor-oil bean, Ricinus communis), abrin (from the jequirity bean, Abrus precatorius), and the similar substances, crotin and robin. These poisons, like the bacterial toxins, are exceedingly potent. It is estimated that 1 gram of ricin, properly diluted, is sufficient to cause the death of 1,500,000 guinea-pigs. Ricin not only exerts a strongly toxic effect upon the tissues at the seat of inoculation but also

¹ Vaughan, V. C.: "Protein Split Products," Philadelphia, 1913.

causes agglutination of the erythrocytes. After injection an incubation period is observed, as in case of the bacterial toxins. By use of the same methods as with the bacterial toxins, antiricin and the other corresponding antibodies may be produced, and the existence of haptophore and toxophore groups in these poisons is inferred on the same grounds. Specific toxic bodies are found in the blood and secretions of a number of animals (zoötoxins). Snake venom and the poisons of scorpions and spiders, as well as an actively poisonous substance present in eel-blood, are more or less familiar examples. The chemical behavior and physiologic action of these poisons are strikingly similar to those of the true bacterial toxins. The snake venoms owe their power to a variety of active principles: (1) hemagglutinin, (2) hemorrhagin (present especially in rattlesnake venom), (3) hemolysin, and (4) neurotoxin. Antibodies have been successfully produced against these several toxic bodies. The action of the venoms and antivenins is more complicated than that of the bacterial toxins.

CHAPTER 6

THE CLASSIFICATION OF BACTERIA

Bacteria are minute unicellular organisms generally classed as plants rather than as animals. It is well known that any strict dividing-line between animals and plants is an entirely arbitrary one, and that there is no general agreement among naturalists respecting what shall constitute a determinative plant or animal characteristic. As regards the simplest forms of life, the power of independent movement has been perhaps most widely advocated as a mark, admittedly arbitrary, of animal nature. Such a distinction would cause diatoms to be ranked as animals and some sporozoa as plants. Many bacteria, as is well known, are actively motile. It has already been pointed out that the cell-wall of bacteria, unlike that of plant cells in general, is not composed of cellulose. the other hand, transition forms connect the typical bacteria with certain lower algae and fungi universally recognized as true plants. Some of the filamentous blue-green algae, of which the genus Oscillaria is an example, are closely related to undoubted bacteria. and this fact among others has disposed naturalists to place bacteria with the plants. As a matter of fact, little importance is now attached to such questions, since there is every reason to suppose that all living organisms are fundamentally alike and originated from a common state. It is among the lowest forms of life that divergences between animals and plants melt away, and organisms possessed of characteristics of both groups are found.

The chemistry of the tubercle bacillus has been studied more elaborately than that of any other bacterium and Long¹ concludes that from a chemical point of view the animal or plant nature of this organism is an open question. It is of great interest that the tubercle bacillus contains a typical nucleic acid of the animal type found in thymus, pancreas, sperm and spleen. It does not contain nucleic acid of the so-called "plant type" found in yeast and wheat. On the other hand its ability to synthesize such complex substances

as amino acids and purine bases with no other source of nitrogen than ammonia is distinctly a plant characteristic.

Bacteria, therefore, occupy an intermediate position between the vegetable and animal kingdoms, and it is largely considerations of convention and convenience that place them among the plants. Since they possess no chlorophyl, they must be regarded as fungi. From their method of vegetable multiplication by simple fission they are known as fission-fungi or *Schizomycetes* (Ger., *Spaltpilzen*).

In general, the classification of living organisms is based on morphologic characters which are, broadly speaking, less liable to sudden change and more apt to coincide with relationship by descent than are physiologic characters. Walking mammals (horses), flying mammals (bats), and swimming mammals (whales) are more fundamentally alike than flying mammals and flying insects. Both the wing of a butterfly and the wing of a bird serve the purpose of flight, but structurally the two kinds of wings are far apart, and the animals themselves belong to widely separated branches of the animal kingdom.

Within the group of bacteria classification is, for practical purposes, especially important. Bacteria are of such minute size and the observable differences in structure are so slight that any classification grounded on morphologic characters meets with many difficulties. Micro-organisms that resemble one another very closely in appearance may differ radically in respect to the chemical changes to which they give rise, or to the pathologic processes that they evoke. Since these pathologic processes and chemical changes are of great practical importance, bacteriologists have come to lay considerable stress upon physiologic qualities. There can be no valid objection to such a practice. The modes of nutrition of bacteria and the products of their growth must give a more correct insight into fundamental internal structure than can simple external form, especially for organisms that lie on the limit of invisibility.

An interesting attempt at classifying bacteria on a physiologic basis was made by Jensen.¹ On the basis of source of nutrition the following chief groups were distinguished:

(1) Bacteria which, like the green plants, need neither organic carbon nor organic nitrogen. These so-called "autotrophic bac
1 Jensen: Centralbl. f. Bakt., II, 1909, 22, p. 305.

teria" can build up both carbohydrates and proteins out of carbon dioxide and inorganic salts.

- (2) Bacteria which need organic carbon compounds, but can dispense with organic nitrogen. These bacteria are able to synthesize protein substances out of carbohydrates (or inorganic acids), and ammonia, nitrogen, or nitrates.
- (3) Bacteria which, like the higher animals, require both organic carbon and organic nitrogen compounds. These bacteria cannot accomplish either carbohydrate or protein synthesis out of inorganic substances.

Upon such principles Jensen constructed an outline of a system of classification which has many merits, although it has not been generally adopted.

One of the earlier morphologic classifications of bacteria was drawn up by Migula.¹ Migula's classification served a useful purpose for some years, and had an important influence on bacterial nomenclature and grouping. It proved, however, open to objection in many details, and the morphologic classification of bacteria has long been in an admittedly confused and unsatisfactory condition.

Along such lines a committee of the Society of American Bacteriologists² spent several years in studying the characterization and classification of bacterial types, and has drawn up a working classification which possesses many advantages.³ On this system the Schizomycetes are divided into five orders: (1) Myxobacteriales, (2) Thiobacteriales, (3) Chlamydobacteriales, (4) Actinomycetales, (5) Eubacteriales. The first three are the so-called "higher bacteria" and include (1) the myxobacteria, organisms showing a psendoplasmodial stage which passes over into a highly developed cyst-producing resting stage;⁴ (2) the sulfur bacteria (p. 110), typically found in water containing hydrogen sulfide or other sulfur compounds and whose cells contain either granules of pure sulfur or the pigment bacterio-purpurin;⁵ (3) the iron bacteria, typically

¹ Migula: "System der Bacterien," Jena, 1897.

² C.-E. A. Winslow, Jean Broadhurst, R. E. Buchanan, Charles Krumwiede, Jr., L. A. Rogers, H. G. Smith.

³ Jour. of Bact., 1920, 5, p. 191.

⁴ Thaxter, R.: Bot. Gaz., 1892, 17, p. 394.

⁵ Winogradsky, S.: "Zur Morphologie und Physiologie der Schwefelbakterien," Leipzig, 1888.

water forms, usually with a sheath containing a deposit of iron oxide (p. 108).¹

The two remaining orders, (4) Actinomycetales and (5) Eubacteriales, are those with which the bacteriologist is primarily concerned. The committee's description and the classification proposed by them follow:

"Order Actinomycetales, Buchanan, 1917a, p. 162.2

"Cells usually elongated, frequently filamentous and with a decided tendency to the development of branches, in some genera giving rise to the formation of a definite branched mycelium. Cells frequently show swellings, clubbed or irregular shapes. No pseudoplasmodium. No deposits of free sulfur or iron. No bacteriopurpurin. Endospores not produced, but conidia developed in some genera. Usually gram-positive. Nonmotile. Some species are parasitic in animals or plants. Not water forms. Complex proteins frequently required. As a rule strongly aërobic (except for some species of Actinomyces and the genera Fusiformis and Leptotrichia) and oxidative. Growth on culture media often slow; some genera show mold-like colonies . . .

"Order Eubacteriales, Buchanan, 1917b, p. 162.2

"The order Eubacteriales includes the forms usually termed the true bacteria, that is, those forms which are considered least differentiated and least specialized. The cell metabolism is not primarily bound up with hydrogen sulfide or other sulfur compounds, the cells in consequence containing neither sulfur granules nor bacterio-purpurin. The cells apparently do not possess a well-organized or well-differentiated nucleus. These organisms are usually minute and spherical, rod-shaped or spiral, in most genera not producing true filaments; and rarely branching. The cells may occur singly, in chains or other groupings. They may be motile by means of flagella, or nonmotile, but are never notably flexuous. Cell multiplication occurs always by transverse, never by longitudinal, fission. Some genera produce endospores, particularly the rod-shaped types. Conidia not observed. Chlorophyll is absent, though the cells may be pigmented. The cells may be united into gelatinous masses, but never form motile pseudoplas-

¹ Molisch, H.: "Die Eisenbacterien," Jena, 1910.

² Jour. Bacteriol., 1917, 2, pp. 155-164.

modia or develop a highly specialized cyst-producing fruiting stage, such as is characteristic of the myxobacteriales . . . "

SUGGESTED COMMITTEE CLASSIFICATION OF THE CLASS SCHIZOMYCETES (1917)¹

- A. Order. Myxobacteriales.
- B. Order. Thiobacteriales.
- C. Order. Chlamydobacteriales.
- D. Order. Eubacteriales.
 - I. Family. Nitrobacteriaceae.
 - 1. Genus. Hydrogenomonas.
 - 1. Genus. Methanomonas.
 - 3. Genus. Carboxydomonas.
 - 4. Genus. Mycoderma.
 - 5. Genus. Nitrosomonas.
 - 6. Genus. Nitrobacter.
 - 7. Genus. Azotobacter.
 - 8. Genus. Rhizobium.
 - II. Family. Mycobacteriaceae.
 - 1. Genus. Actinomyces.
 - 2. Genus. Nocardia.
 - 3. Genus. Mycobacterium.
 - 4. Genus. Corynebacterium.
 - 5. Genus. Fusiformis.
 - 6. Genus. Leptotrichia.
 - III. Family. Pseudomonadaceae.
 - 1. Genus. Pseudomonas.
 - IV. Family. Spirillaceae.
 - Genus. Vibrio.
 - 2. Genus. Spirillum.
 - V. Family. Coccaceae.
 - (a) Tribe. Streptococceae.
 - 1. Genus. Neisseria.
 - 2. Genus. Streptococcus.
 - 3. Genus. Staphylococcus.
 - 4. Genus. Albococcus.
 - (b) Tribe. Micrococceae.
 - 1. Genus. Micrococcus.
 - 2. Genus. Sarcina.
 - 3. Genus. Rhodococcus.
 - VI. Family. Bacteriaceae.
 - 1. Genus. Bacterium.
 - Genus. Erwinia.
 - 3. Genus. Pasteurella.
 - 4. Genus. Hemophilus.

¹ Preliminary Report of the Committee of the Society of American Bacteriologists on Characterization and Classification of Bacterial Types. As given in Buchanan, R. E.: General Systematic Bacteriology, 1, pp. 88, 89 (Baltimore, Williams and Wilkins, 1925).

VII. Family. Lactobacillaceae.

1. Genus. Lactobacillus.

VIII. Family. Bacillaceae.

- 1. Genus. Bacillus.
- 2. Genus. Clostridium.
- E. Organisms intermediate between bacteria and protozoa.
 - 1. Genus. Spirochaeta.
 - 2. Genus. Cristispira.
 - 3. Genus. Saprospira.
 - 4. Genus. Treponema.

Such a classification crystallizes much of the current practice in the grouping of bacteria, and while the introduction of new generic names presents some real difficulties, it is believed that in the long run the use of terms like Neisseria for the gonococcusmeningococcus group and Hemophilus for the hemophilic bacilli will make for clearness and simplicity.

Among the spherical bacteria, differences in the mode of grouping of the cells have given origin to certain names—as streptococcus, staphylococcus or micrococcus, and sarcina—that have been used as the names of genera, but no such generally useful distinctions have been found among the rod or the spiral bacteria. Consequently a term like Bacillus long served as the generic name for an enormous number of bacteria. Some of the bacteria included under the name Bacillus are very different morphologically and physiologically.¹

Nomenclature.—The current nomenclature of bacteriology may be criticized on two grounds: first, as already pointed out, for the unwieldy size that certain "genera" have been allowed to assume; and, second, for the haphazard way in which trinomial and even quadrinomial names have been bestowed. Such names can be properly employed only with reference to subspecies or varieties; and designations like B. coli communis, Granulobacillus saccharobutyricus mobilis nonliquefaciens, and Micrococcus acidi paralactici liquefaciens Halensi, are both cumbersome and unscientific. The use of a single generic name for a multitude of organisms is, in fact, responsible for the tendency toward trinomial nomenclature, and the remedy for both conditions would seem to lie in the abandonment of such a term as Bacillus for the name of a genus and the frank establishment of new genera on the basis of physiologic

 $^{^{1}}$ $E.\,g.,$ Bacillus subtilis, Eb. typhi, Cl. tetani, B. prodigiosus, C. diphtheriae.

characters, such, for example, as distinguish the typhoid group or the diphtheria group of bacilli. Until some such reform in nomenclature is brought about the names used to designate different kinds of bacteria will fail to make clear the group relationships which undoubtedly exist, and will continue to be a stumbling-block to all students of the subject. Buchanan¹ has subjected the nomenclature of the bacteria to a thorough study and revision on the basis of the International Rules for Botanical Nomenclature. The work of the Committee of the Society of American Bacteriologists, already referred to, is a promising beginning² in the direction of nomenclatory change and is utilized as far as practicable in this book.

Variations.—Like other living organisms, bacteria of the same species are not all precisely similar. Races, strains, or individuals are found which differ more or less widely from the parent form. The term variation as used in biology signifies not the manifestation of certain apparently novel qualities that appear uniformly when organisms are placed under new conditions of life (latent characteristics or environmental modifications), but a constant difference in one or more features when the individual in question is compared under the same circumstances with one or more organisms of similar descent. Unlike the modifications due to environmental influence, variations are essentially dependent on elements intrinsic, not extrinsic, to the organism.3 To illustrate, the ability of actinomyces to produce club forms is manifested only in the presence of animal fluids, but the production of the clubs is not an instance of true variation; a culture of actinomyces that did not produce clubs under these conditions would be properly regarded as a variant.

Two kinds of variability are commonly recognized: (1) Variations of the ordinary "fluctuating" type, which are distributed more or less systematically about a modal condition and may be grouped in a frequency curve or frequency polygon. As the term indicates, fluctuating variability swings to and fro, oscillating around an average type. The familiar deviations in human height

¹ Buchanan: General Systematic Bacteriology, Baltimore, 1925, pp. 597.

² A still more elaborate and far-reaching change is introduced in Bergey's Manual of Determinative Bacteriology (3rd Edition, Baltimore, 1930, pp. 589).

³ This, however, is not to be taken to imply that the property of variation itself may not be affected by a change in environment.

exemplify this kind of variation. It is supposed by de Vries¹ that fluctuations remain fixed within certain limits, and that the accumulation of fluctuating variations can never give rise to a new quality in an organism or bring about the formation of a new species. (2) "Discontinuous variations," "sports," or "mutations," on the other hand, are supposed to be perfectly definite changes which arise suddenly without the interposition of a series of intermediate forms, and having once appeared, are permanent, and show no tendency to return to the mean of the parent form.

In general, bacteriologists will not hesitate to classify the variations with which they are most familiar as those of the fluctuating type. The number of them is practically infinite, and, especially in some groups, there is little doubt that they have been given too great classificatory value, as compared with precisely similar deviations in higher forms of life. At the same time these biologically trivial differences are often of practical importance, as in the study of pathogenicity or virulence.

A very characteristic and common form of variation among bacteria consists in the loss of some quality possessed by the organism when first taken under observation. The disappearance of the power to liquefy gelatin, as in the Proteus group, or to produce pigment, as in the case of B. violaceus, and the loss of virulence, as in many pathogenic forms, are every-day occurrences in the bacteriologic laboratory. The term "retrograde variety" would seem appropriate for these forms if it had not already been applied by de Vries to mutations of a retrogressive character. In his terminology, both elementary species (the progressive forms) and retrograde varieties are supposed to have originated as sudden mutations. Now, so far as many of the more commonly observed retrogressions in bacteria are concerned, there can be no question that they arise from the accumulation of fluctuating variations, and not in any sudden and unexpected fashion. Minute divergences from the first culture grow more and more pronounced in each succeeding cultural transfer, and finally the once conspicuous and taxonomically important character may disappear altogether. Such retrogression, or, as it is often styled, degeneration, is no rare occurrence; it takes place with great uniformity, and follows definite and similar lines in a number of widely different organisms. In cultures, many

¹ De Vries: "Mutationtheorie," 2 v., Leipzig, 1901-03.

totally unrelated organisms lose, by degrees, virulence, gelatinolytic power, or capacity for chromogenesis. Such a change goes on steadily and occurs in nearly all strains coming under observation. The varieties so formed grow luxuriantly and are perfectly stable under the conditions in which they are ordinarily kept; in fact, often they cannot be made to regain their lost property, even by successive transfers upon media considered to be especially favorable for the manifestation of the quality in question; they are spoken of as hopelessly degenerate. This is the case, for instance, with many strains of B. fluorescens as regards pigment production. Qualities once lost, however, may under certain conditions be regained, as shown not only in the reacquisition of chromogenic power, but also in the reassumption of virulence by attenuated pathogenic races.

There is now no doubt that true mutations occur among bacteria as among the higher forms of life. Barber, for example, has described an instance in a strain of the dysentery bacillus in which the variation occurred suddenly and fully formed; it appeared in a relatively small number of individuals, was not adaptive, and the new characteristics were transmissible to offspring through many generations. A similar instance has been observed in Bact. coli, in which cells with the power of fermenting saccharose and raffinose suddenly appeared in a culture (from a single cell) that had not previously possessed this power. The parent strains and the mutating strains each maintained their separate characteristics for over four years and during some hundreds of test-tube transfers.

Several writers have also reported the occurrence of secondary colonies or papillae (Ger. $Kn\"{o}pfe$) on colonies of varieties of Bact. coli grown on certain carbohydrate media. These papillae are composed of cells having the power of fermenting the carbohydrate with which they are in contact, a power which the main colony lacks. The appearance of these secondary colonies is interpreted by some writers as mutation, by others as adaptation.³

Connected with the variability of bacteria is their remarkable plasticity or adaptability to diverse conditions of life. By a series

¹ Barber, M. A.: Philippine Jour. of Science, 1913, 8, p. 539.

² Jordan: Proc. Nat. Acad. of Sci., 1915, 1, p. 160.

³ Neisser, M.: Centralbl. f. Bakt., I, Ref., 1906, 38, Beiheft, p. 98; Massini: Arch. f. Hyg., 1907, 61, p. 250; Bencke: Ztsch. f. ind. Abstammungs- u. Verebungslehre, 1909, 2, p. 215; Burri: Centralbl. f. Bakt., II, 1910, 28, p. 321; Baerthlein: Arb. a. d. k. Ges., 1912, 40, p. 433.

of inoculations or transfers it is possible so to alter bacteria that qualities originally present are sometimes accentuated, sometimes abolished. Bacteria may become adapted to very high temperature, to growth in the presence of antiseptics, and even to multiplication in strongly bactericidal sera. Such modifications, as a rule, are gradually acquired and gradually lost. Pathogenic bacteria, like other parasites, may become so strictly adapted to life in the tissues of a given animal species that they neither grow readily in artificial culture media nor in the bodies of animals closely related to the particular host. This seems, for example, to be the case with the leprosy bacillus, which, so far as known, is not able to grow anywhere except in the body of man and possibly the anthropoid apes. Theobald Smith1 has made the important suggestion that bacteria of great pathogenic power should be looked upon as incompletely adapted parasites that have not yet succeeded in establishing an equilibrium between themselves and their host. The less complete the adaptation, the more virulent the disease produced. This would explain the tendency of long-established diseases to decrease in severity at the same time that they are becoming more frequent.

According to Rosenow² an interesting example of bacterial specialization occurs in the so-called "elective localization" of streptococci and other organisms. Certain strains of bacteria have been thought to show a preference or "affinity" for certain tissues, so that, for example, certain epidemics of throat infection due to streptococci are frequently complicated by sinusitis, while others due to very similar streptococci lack this complication. Rosenow found that 14 strains of streptococci from appendicitis produced lesions in the appendix in 68 per cent of the rabbits injected, whereas an average of only 5 per cent of lesions in the appendix were produced by streptococci from other sources. Irons³ has observed a similar elective affinity of streptococci in iritis. Although seemingly supported by a large amount of experimental work the theory of elective localization has not been generally accepted.

¹ Smith, Theobald: Proceedings of Congress of Arts and Science, St. Louis, 1904, 5, pp. 219–239.

² Rosenow: Jour. Amer. Med. Assoc., 1915, 65, p. 1687.

³ Irons: Jour. Infect. Dis., 1916, 18, p. 315.

The question whether adaptation to a particular tissue or culture medium or to a high or low temperature, is due to the selection of fluctuating variations or of mutations is one to which the existing evidence does not give a conclusive answer. On the whole, the available data indicate that change takes place by gradual progression rather than by sudden leaps. How far modification of individual cells and transmission of such modifications to the daughter cells is responsible for the observed conditions has not been determined.¹

A singular development in the study of bacterial varieties has been the discovery of the existence of so-called "immunological varieties," that is to say, strains apparently possessing identical cultural characters, but differing in agglutinative or other immunity reactions. Streptococci, gonococci, tetanus bacilli, and other organisms, especially pneumococci, have been divided into various serological types, based on the reactions shown by various strains to the sera of immunized animals. Thus the serum of an animal immunized to Type I pneumococcus will agglutinate strains obtained from certain cases of pneumonia in widely separated localities, but will not agglutinate other strains derived from other cases and belonging to Types II, III and IV. The origin and the significance of these immunological varieties have not yet been determined.

Great interest has been aroused in the kind of variation characterized by the formation of rough (R) and smooth (S) colonies (Fig. 25). This has been already mentioned on page 76. Attention was especially directed to it by the work of Arkwright.² In general, the rough and smooth colony types breed true, but change from one to the other occurs spontaneously and may be induced. Starting with a single colony of the typhoid bacillus, for example, which is usually smooth, subsequent platings of subcultures from this colony may show the occasional appearance of rough colonies; these rough colonies are particularly likely to appear in platings from old cultures; as a rule the $S \to R$ variation occurs in cultures kept under unfavorable conditions (Fig. 25). The remarkable feature about

¹ A good summary of the early work on variation in bacteria has been given by Pringsheim: "Die Variabilität niederer Organismen," Berlin, 1910; for a more modern discussion see Hadley: Jour. Infect. Dis., 1927, 40, p. 1.

² Arkwright: Jour. Path. and Bact., 1921, 24, p. 36.

this type of variation is that the roughness and smoothness of the colonies is generally correlated with the presence or absence of certain deep-seated biological qualities. In the typhoid-paratyphoid group the rough variant usually agglutinates spontaneously in broth or physiological salt solution, gives rise to a serum that agglutinates R strains but not S strains, and is less virulent than the S variant. In most bacterial species the usual or "normal" form is the smooth, but in a few species, the anthrax bacillus for example, the R type is both more common and more virulent.

The rough variants are as a rule more stable than the smooth, and for a time it was thought that the $S \to R$ "dissociation" was

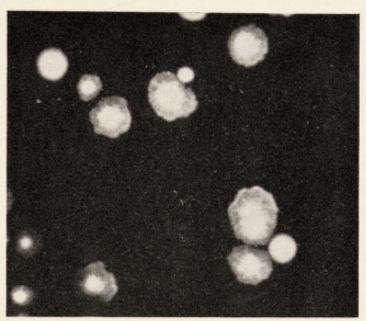


Fig. 25.—Rough and smooth colony types. Bacterium dysenteriae, Sonne type, twenty-four-hour colonies on agar plate; × 3 (S. A. Koser).

irreversible. It was shown, however, that by the repeated and frequent transfer of broth cultures a rough strain of Salmonella schottmülleri could be converted into a smooth strain. Griffith later accomplished a similar $R \to S$ reversion of pneumococci and Soule that of B. subtilis. Both the $S \to R$ transformation and the apparently more difficult and unusual $R \to S$ reversion are more or less gradual and accompanied by the appearance of intermediate colony types.

¹ Jordan, E. O.: Jour. Amer. Med. Assoc., 1926, 86, p. 177.

² Griffith: Jour. Hyg., 1928, 27, p. 113.

³ Soule: Jour. Infect. Dis., 1928, 42, p. 93.

The full significance of the type of variation characterized by rough and smooth colony formation is not known. Some bacteriologists believe that the changes, which on the whole are quite uniform in different groups of bacteria, are manifestations of phases in a complex bacterial life cycle. Hadley's important monograph on Microbic Dissociation¹ reviews fully the evidence for this point of view.

In many lines of practical bacteriological work it is necessary to know whether one is working with the R or S type. Since S and R strains of the same species do not agglutinate uniformly, and since a serum produced by R strains may not agglutinate the corresponding S strain, the observer may be misled unless he knows the nature or "phase" of his cultures. Typhoid vaccines in which rough strains of the organism are employed seem to be useless for prophylaxis.²

The existence of this type of variation offers a possible explanation of several problems. It explains, at least in part, the appearance of the troublesome "spontaneous agglutination" in laboratory cultures; it throws light on some of the problems of bacterial diagnosis and identification; finally it may afford an explanation of rise and fall of epidemics as depending on fluctuations in microbic virulence.

Another type of variation is connected with the presence or absence of flagella. The motile form of a strain of Proteus (see page 496), for example, produces on an agar plate a colony characterized by a spreading film, which is lacking in colonies of the nonmotile variant. Weil and Felix,³ to whom we owe the early observations on the subject, used the letter H (German Hauch = film) for the motile type and O (German $ohne\ Hauch = without\ film$) for the nonmotile. These letters have come into general use for the H-O type of variation. Similar motile and nonmotile strains have been observed in many bacterial species.

Particular interest attaches to the H-O varieties on account of the differences between the kinds of agglutinins produced by the motile forms (H), which possess flagellar agglutinogen, and the nonmotile forms (O), which possess only the agglutinogenic sub-

¹ Hadley: Jour. Infect. Dis., 1927, 40, pp. 1–312.

²Grinnell, F. B.: Jour. Immunol., 1930, 19, p. 457.

³ Weil and Felix: Wien. klin. Wchnschr., 1917, 30, p. 1509.

stance of the cell body (somatic agglutinogen). It is obviously of practical importance to know whether the particular culture we are using in diagnostic or experimental work contains both flagellar and cell-body agglutinogens, or only those of the somatic type. The environment and the conditions that affect bacterial motility, however, are not so well known as might be desired.

CHAPTER 7

BACTERIA AND DISEASE IN ANIMAL ORGANISMS

Theories of Disease.—In order to understand in some degree the influence of bacteriology upon medicine, it is worth while to recall the more important theories and conceptions regarding disease that have been held by the human race.

Probably one of the earliest notions of the cause of disease was a belief that an evil spirit or demon entered into or possessed the body of a man and there wrought various ills. This at least is the belief still widely prevailing at the present day among savage tribes, which represent in many particulars an early stage of culture, and one through which the ancestors of modern civilized man probably "The possessed man, tossed and shaken in fever, pained and wrenched as though some live creature were tearing or twisting him within . . . rationally finds a personal spiritual cause for his sufferings. In hideous dreams he may even see the very ghost or nightmare fiend that plagues him . . . This is the savage theory of demoniacal possession, which has been for ages, and still remains, the dominant theory of disease and inspiration among the lower races. It is obviously based on an animistic interpretation, most genuine and rational in its proper place in man's intellectual history, of the actual symptoms of the cases."1 This animistic or demonistic conception of disease still finds expression in the practices of the medicine-men or wizards of many savage peoples. Granting that a spirit is the cause of a disease, the logical proceeding is to induce the spirit to leave the body of the patient. modes of treatment are possible: The spirit may be lured out by propitiatory sacrifices, fair promises, or other conciliatory measures, or he may be forcibly evicted by powerful charms, by the beating of tom-toms, or by pummelling the body of the patient. Examples of the methods of treatment used by these two schools of medical practice may be readily found among travellers' descriptions of customs which prevail today among many primitive and halfcivilized peoples. As regards one large class of diseased persons, the insane, the theory of demoniacal possession has remained current up to comparatively recent times.

When the advance of natural knowledge brought a larger measure of understanding of the structure and functions of the human body, a new and semi-scientific theory of disease sprang into being and attained world-wide influence. The Hippocratic theory of disease, as it was called after its founder, Hippocrates, "the Father of Medicine," was, in fact, the dominant theory all through the middle ages, and still colors much medical thought and practice According to this celebrated theory, the body contains four humors: blood, phlegm, yellow bile, and black bile. Health consists in a proper mixture of these four humors; disease, in an improper mixture. The doctrine of temperaments arose as an outgrowth of the Hippocratic theory. According as one or another humor preponderated a man was said to be of a sanguine, phlegmatic, or melancholic temperament. In acute disease the humors went through a regular process, being first of all crude, then passing through coction, or digestion, and finally being expelled by resolution or crisis through one of the natural channels of the body. The efforts of physicians were to be directed toward keeping the humors in their proper relations one to another, for if the normal delicate balance became disturbed, the most serious results might follow. ingenious conception of disease held almost undisputed sway for a long period, and was hardly seriously questioned until the seventeenth century. In the seventeenth and eighteenth centuries a number of novel theories were propounded, but were of little aid to medical progress: In fact, many of the substitutes proposed for the Hippocratic theory were more complex and more mystical than the belief they were intended to supplant. Disease was "an intestine movement of particles," it was an attempt of nature to eliminate morbific matter, a want of "tone," a deficiency of stimulus, and so on. The theory of this class that lasted longest and had the greatest effect upon medical practice was the so-called "theory of homeopathy." The definition of disease given by Hahnemann, the founder of this school, is an index of the greater part of his teachings. "Disease," said this writer, "is a spiritual dynamic derangement of a spiritual vital principle." His theory of potentiality or dynamization maintained that medicines gained in strength by diluting, if the

dilution was accompanied by shaking; the potency of some drugs was also supposed to be increased by pounding. Acting on this doctrine, Hahnemann ordered his original tinctures to be reduced in strength to one-fiftieth; these first dilutions again to one-fiftieth; and so on even to the thirtieth dilution, which he himself used by preference and to which he ascribed the highest "potentiality." An interesting outcome of this procedure was the fact that while such highly "potentialized" drugs could not be rationally supposed to have any physiologic effects, their administration to a patient was sometimes followed by more favorable results than was the more "regular" administration of drugs. A mode of treatment which consisted essentially in giving no medicine was sometimes as successful or more successful than the ordinary procedure. In a word, homeopathy, although theoretically ridiculous, did much to reform the custom of indiscriminate giving of drugs in large doses.

Amid the vagueness and confusion of such half mystical hypotheses as homeopathy, emerged the more tangible and definite germ theory of disease. As already pointed out, the germ theory of disease is the legitimate offspring of the germ theory of fermentation, and owes its origin to the memorable investigations of Louis Pasteur. The belief that the so-called "infectious diseases" are caused not by any enraged and revengeful spirit, not by any improper mixture of four humors, not by any spiritual dynamic derangement, but by small living plants and animals is now securely established. As regards such diseases as diphtheria, tuberculosis, and Asiatic cholera, this belief is no longer a hypothesis, but is based on indisputable fact. In respect to some other diseases, like smallpox, hydrophobia, and influenza, while no specific micro-organism has been established as the cause, there can be little doubt that the germ theory of causation furnishes the most reasonable, consistent, and probable explanation of the nature of these infections.

PATHOGENICITY

The conception of a pathogenic micro-organism is a relative, not an absolute, one; that is to say, no microbe is known that is capable under all conditions of producing disease in all animals. As a rule, a pathogenic bacterium is limited in its activities to a small number of hosts; bacteria pathogenic for animals are not ordinarily pathogenic for plants; very few of the bacteria that can infect mam-

mals are also pathogenic for cold-blooded animals; some are even restricted to the tissues of a single species.

The power of a microbe to produce morbid effects or changes depends, therefore, as much upon the nature of the host as upon its own characteristics. A bacterium that is pathogenic for one animal species may be harmless for another: The typhoid bacillus, when swallowed by man, can produce a serious, often mortal, illness; when fed to cattle, it produces no effect. As a consequence, no sharp line can be drawn between pathogenic and nonpathogenic micro-organisms. One of the common, typically saprophytic bacteria, the ubiquitous hay bacillus (B. subtilis), which is found almost universally in air, water, and soil, is capable under certain conditions of giving rise to a serious affection of the human eye.

Factors Affecting the Host.—The ability of a micro-organism to produce disease in individuals of a particular race or species may be modified by a number of general factors that predispose individuals to infection or endow them with resistance. The conditions that determine whether or not a microbe can bring about infection are numerous and varied. A few illustrations will suffice. The age of an individual is often of great importance. Experiments have shown that, while the adults of certain animal species are resistant to inoculation with a particular germ, the young of the same species may succumb. The existence in the human race of a number of "children's diseases," which are not only more common, but more fatal, among children than among adults, is evidence to the same effect.1 Hunger and thirst predispose to infection. If pigeons are kept on a low diet before, or just after, inoculation with anthrax bacilli, they die, although under normal conditions these birds are naturally immune to anthrax. Animals deprived of water also lose their natural resistance to anthrax inoculation. An unsuitable diet, as the substitution of bread and milk for meat, has the same effect. Excessive fatigue will predispose to infection. The normal white rat is highly insusceptible to anthrax, but when exhausted by work in a treadmill, becomes very susceptible. Exposure to extremes of heat and cold is well known to depress resistance to infection. This

¹ In a series of nearly 70,000 cases of scarlet fever admitted to the Hospitals of the Metropolitan Asylum Board in London the case mortality per cent was 18.2 among those under five years of age and 2.8 among those from twenty to twenty-five years.

is shown by one of Pasteur's classic experiments, in which he rendered the naturally resistant hen susceptible to anthrax by chilling it with cold water. The prevalence of pneumonia in man in those months of the year when the influence of cold upon the human organism is most felt affords another illustration of the same fact. Frogs, which are immune to anthrax at ordinary room temperature, quickly die after anthrax inoculation if placed at a temperature of 25 to 35 C. Wasting diseases, like diabetes and typhoid fever, favor a secondary invasion of the tissues by micro-organisms, especially those belonging to the group of pyogenic bacteria. In diseases such as measles and smallpox the weakening of resistance due to the primary specific infectious agent is followed by the invasion of the tissues by streptococci, which are responsible for a large part of the injury done to the organism in these maladies.

In addition to these and other predisposing factors which affect the general resistance of the whole body, there are causes which influence the resistance of particular organs or groups of tissues. Local susceptibility may be increased by defective blood-supply, by rapid growth, by mechanical injury or trauma, and other factors. When streptococci are injected into the circulation of a perfectly healthy rabbit, they rarely settle on the valves of the heart, but if the aortic cusps of the heart have been injured prior to infection, the cocci gain a foothold there and set up an ulcerative endocarditis. The special liability of the bones and joints of young children to tuberculosis and suppurative affections is a well-known instance of local susceptibility. The organ or tissue that offers temporarily or constantly the point of least resistance is in each case the one to be attacked. The great danger of infection of the human mother at childbirth, unless every care be taken to prevent the access of bacteria to the uterine cavity, typifies the peculiar peril that arises when there is a concurrence of a severe local injury and generally weakened condition.

Factors Affecting the Microbe.—Not only do the nature and state of the host play an important part in determining the occurrence of infection, but the conditions influencing the infecting agent itself are also of great importance. The *virulence* of a micro-organism, that is, its power of growing in the body and producing injury, varies just as does the susceptibility of the host. Certain races or strains of bacteria occur that are characterized by a high or low

degree of virulence, and there is no doubt that the varying severity of cases of infectious disease is due in part to differences in the virulence of the attacking germ as well as to differences in the resistance of individual hosts. Experimentally, for example, there is a great difference in pathogenicity for guinea-pigs between various strains of pneumococci isolated from cases of lobar pneumonia. The virulence of a microbe for a particular species may usually be increased by successive inoculations into animals of that species, the microbe recovered from one animal being inoculated into another, and so on. This occurs, for example, when pneumococci that are avirulent for guinea pigs are successively passed through a series of these animals. The increased virulence acquired as a result of this method of animal passage does not necessarily obtain in the case of other host species. The virulence of certain streptococci for mice is increased by passage through the bodies of these animals, but at the same time the virulence for rabbits is diminished. Virulence may be decreased in a variety of ways, as, for example, by growth at high temperature or in the presence either of antiseptics or of the serum from an animal which is immune to the microbe. A strain that has been weakened in virulence is said to be attenuated. An attenuated culture may be vigorous in other respects. Tubercle bacilli when first isolated from the mammalian body are usually quite virulent, but grow feebly on artificial culture media; after some months' cultivation they grow more luxuriantly, but have lost in virulence.

The production of infection depends likewise upon the *number* of bacteria introduced into the body. The animal organism will often cope successfully with a small number of bacteria when the ingress of a larger number will cause a fatal disease. Ordinarily the injection into an animal like a rabbit of a few dozen or a few hundred bacteria has little effect. In every case the precise number of bacteria necessary to produce infection will depend both upon the virulence of the culture and upon the racial and individual susceptibility of the host.

Routes of Infection.—The particular tissues with which a germ first comes in contact in its path of entrance into the body, often exercise a decisive influence upon the production of infection. Injection directly into the circulation (intravenously) will many times bring about infection, when subcutaneous injection of the

same number and kind of germs fails to produce any effect. Some pathogenic bacteria may be taken into the alimentary tract with impunity, while a fatal infection will ensue if inoculation be made into the peritoneum; typhoid bacilli, for example, may be fed to an adult rabbit in large numbers without causing death or even serious illness, whereas intraperitoneal inoculation provokes a fatal infection. On the other hand, there is evidence that the spirillum of Asiatic cholera is much more pathogenic for man when swallowed than when introduced under the skin. Organs or tissues of weak vitality may constitute a break in the line of resistance through which various bacteria may find their way. Vulnerability to a particular channel of infection may be incurred by mechanical injury or deranged metabolism: Gastric disorders which alter the normal acidity of the stomach juices seem to predispose to infection with Asiatic cholera; inhalation of dust-particles in themselves not infectious is well known to increase the liability to pulmonary tuberculosis.

Bacteremia and Toxemia.—A distinction, in some respects important, is made between those infections in which bacteria become widely disseminated throughout the body and those in which they remain quite strictly localized. In the latter case general or constitutional symptoms may be caused through the action of soluble poisons which are produced by the bacteria, absorbed at the point of their production and carried to distant organs. Diphtheria and tetanus are primarily toxemic diseases. In tetanus the bacilli are not found in the blood or internal organs; the local reaction caused by their presence is itself slight and often insignificant, and lesions have not been detected at the site of inoculation; but the toxin makes its way slowly along the nerves to the central nervous system, where it produces profound disturbance.

At the opposite pole from this condition are those general invasions of the host in which bacteria multiply abundantly in the blood or tissues and are sometimes found on autopsy in large numbers in the capillaries in various organs. This condition of bacteremia is fairly common; in man bacteria are present in the blood not only in the so-called "blood-poisoning" maladies, but in diseases like pneumonia and typhoid fever. In some infections of lower animals, such as anthrax, the multiplication of bacteria in the body is the most prominent feature of the disease. It is possible, how-

ever, that micro-organisms multiplying in the body may produce poisons even though no poisons can be detected in artificial cultures outside of the body, and hence that in effect no strict dividing-line separates bacteremia from toxemia. Both multiplication and poison-production accompany infection as a rule, sometimes one factor being more prominent, sometimes the other.

The distribution of micro-organisms throughout the body varies greatly. In the toxemic diseases like diphtheria and tetanus the bacteria remain, as a rule, strictly localized. In others they are at first localized, but spread by continuous extension, as in erysipelas and many other infections. In still others they are borne in the lymph or blood-stream to a greater or less distance from the primary focus, and set up a secondary focus, or secondary foci, sometimes in remote organs. This is the so-called "spread by metastasis." Certain micro-organisms for unknown reasons settle in particular organs much more frequently than in others.

The term pyemia, or metastatic infection, is commonly applied to a condition in which secondary foci of suppuration appear, and multiple abscesses are formed in the internal organs and generally throughout the body. Septicemia, in the bacteriologic use of the term, refers to the presence or multiplication of micro-organisms within the blood; in this state the bacteria are found abundantly in the capillaries. It is here used in the same sense as bacteremia. The terms bacteremia and septicemia are applied by some writers solely to the presence of bacteria in the blood; as used by others they are limited to conditions showing multiplication of bacteria in the blood. There is no general agreement in respect to the latter restriction. The term septicemia is also used in surgery more narrowly as applying to a condition in which the bacteria of suppuration invade the blood, but no abscesses are produced in the organs. Broadly speaking, pyemia is a particular variety or manifestation of bacteremia.

Mixed and Secondary Infections.—Physicians have long been aware that an individual might be attacked at one time by two or more infections. Diphtheria and scarlet fever, syphilis and gonorrhea, pneumonia (due to the pneumococcus) and typhoid fever, are combinations by no means unknown. It is possible that in some cases the different infections may originate nearly simultaneously, but such an occurrence is probably not common. Usually one infec-

tion precedes another, and the second is very frequently a more or less direct outcome of the first. Infection with certain microorganisms predisposes to secondary infection with the pneumococcus; acute tuberculosis may develop during an attack of measles; streptococcus invasion of the lung tissues is common in pulmonary tuberculosis. The secondary invader is commonly present in the host, but seems incapable of initiating an infection until the host defenses are weakened by the primary disease. Certain micro-organisms that can cause primary infection are also frequently found as secondary invaders. Pneumococci and streptococci are preëminent in this respect, and show a remarkable capacity for invading the body in the wake of other micro-organisms.

Mixed infections of a somewhat different sort are those in which the principal pathogenic organism is accompanied by auxiliary microbes, or, as some French bacteriologists have called them, accomplices, which by their presence influence the virulence of the chief infectious agent without themselves taking any very active part in the infectious process. The aërobic bacilli which usually enter a wound along with tetanus bacilli probably facilitate the growth and activity of the latter and thus aid in producing infection and toxemia. In other cases two or more pathogenic organisms may aid one another in weakening or breaking down the natural defenses. Diphtheria bacilli in the throat are often accompanied by streptococci, and there is reason to believe that such a mixed infection is more severe than an infection with diphtheria bacilli alone.

The External Defenses of the Organism.—The Skin.—As a rule, the unbroken skin presents a more or less impassable barrier to microorganisms. Virulent bacteria, especially staphylococci and streptococci, are found normally on the skin between the superficial horny cells, but are not able ordinarily to penetrate deep into the tissues unless favored by some cutaneous injury, such as a wound or burn. The ducts of the sweat-glands and the hair-follicles are, however, vulnerable points, and experiments have shown that it is possible for germs to make their way to the underlying tissues through these channels. Such an entrance through the uninjured skin must be regarded as exceptional. Even if the outer defenses are passed, the subcutaneous connective tissues present obstacles to further invasion, partly perhaps by mechanical means through rapid

formation of new connective tissue, partly through the bactericidal properties of the lymph and the action of phagocytes.

The Mucous Membranes.—While the moist condition of mucous surfaces is favorable to bacterial multiplication, the constant removal of the layer of mucus tends to prevent bacteria from gaining permanent lodgment. The mucus itself has only a slight bactericidal power. The conjunctiva is protected both by irrigation with the mildly germicidal lacrimal secretion and by the action of the eyelashes and eyelids, although these mechanical defenses are frequently overcome by various pathogenic bacteria. The mucous membranes of the nasal cavities are protected to some extent against bacteria by the tortuous nature of the nasal passages, by the mechanical barriers interposed by the hairs, and also by the action of the ciliated epithelium, which sweeps mucus and dust particles outward. Nevertheless, streptococci and other organisms frequently use this path of entrance. The healthy human mouth presents a highly favorable environment for the development of bacteria, and it is not surprising that upwards of fifty kinds of bacteria have been described as occurring in this locality. Pneumococci and streptococci are probably constantly present, and meningococci and diphtheria bacilli are also often found in the mouth of persons apparently in perfect health, but who have been more or less intimately associated with patients or convalescents. The saliva is feebly germicidal, and when secreted in normal quantities serves as a wash.

The Lungs.—The dust particles in a current of air cling to the moist surfaces with which they come in contact; in this way air becomes largely freed from bacteria in the upper respiratory passages. Those bacteria that pass the larynx are caught in the bronchi, and few reach the ultimate ramifications of the bronchioles. Both the fixed alveolar epithelial cells and the wandering leukocytes that enter the bronchioles and sacs have been observed to take up bacteria. Under some conditions, not clearly understood, the natural defenses of the lungs are broken down and infection of these organs seems to occur rather readily.

The Stomach.—The normal gastric juice is decidedly unfavorable to the growth of bacteria, a property due to the hydrochloric acid it contains; this is doubtless the reason that the stomach is so free from infection. The action of the gastric juice does not, however,

prevent the frequent passage of swallowed pathogenic germs into the intestines, perhaps because such germs are frequently embedded in solid particles of food which protect them from the bactericidal action of the stomach fluid, perhaps because the gastric juice restrains development but does not kill. Tetanus and diphtheria toxins are rendered harmless by gastric juice, but one rare toxin sometimes found in food stuffs (produced by Cl. botulinum, p. 442) is not affected.

The Intestines.—The intestinal secretions have, on the whole, little restraining power over bacterial multiplication, although the bile has feeble germicidal properties. The peristaltic movements of the stomach and intestines may afford, it is thought, some degree of protection against invasion. The number of bacteria in the intestinal contents increases from the duodenum onward to the colon. Bacteria of more or less pathogenic power, such as streptococci and Bact. coli, occur in the healthy intestinal tract, often in large numbers. As long as the tissues are perfectly normal these organisms are quite harmless, but, like the pathogenic bacteria of the mouth and upper air-passages, their invasive power is increased by a diminution in the resistance of the tissues with which they are in contact. The intestinal disturbances in children under the influence of continued hot weather may be in large part due to the normal bacterial inhabitants of the intestines, rather than to any specific infection. On the other hand, well-known pathogenic bacteria like the typhoid bacillus and the cholera spirillum may exist in the human intestine, possibly multiply there to a limited degree, and be ejected in the feces, without having induced disease.

The Transmission of Infection.—Some infectious diseases are caused by microbes that are naturally saprophytic and that enter the animal body accidentally, as it were, rather than from choice of it as a culture medium. Such, for example, seems to be the case with tetanus, the bacillus of which is not a parasite by conviction, but lives habitually as a saprophyte in soil and in the intestinal contents of the horse and some other animals. The other pathogenic anaërobes of the soil are also essentially saprophytic. As a rule, however, those bacteria that produce disease are more or less closely adapted to a parasitic existence, and pass from one animal body to another with only a relatively brief sojourn in the external world. The large majority of the bacteria causing infection in man are able, under ordinary conditions, to survive only

for a very limited period apart from the human body. Hence the transmission of infection is in most cases dependent upon contact, either directly with an infected individual, or with material recently cast off from the body of such a person. Important differences exist in the resistance of pathogenic micro-organisms to the influences of external nature. The gonococcus, for example, dies off very quickly; the pneumococcus and the cholera spirillum are somewhat more resistant; while the tubercle bacillus and the typhoid bacillus are fairly hardy. Multiplication of pathogenic germs outside of the animal body, barring the soil anaerobes, occurs only in a few cases, and under rather exceptional circumstances, as when diphtheria or typhoid bacilli find their way into milk.

From the point of view of preventive medicine it is especially important to note that pathogenic bacteria may exist for a long time in or upon the body of well individuals. After recovery from typhoid fever, typhoid bacilli may continue to be discharged from the bowel or bladder for months or even years. Similarly, convalescents from diphtheria may harbor virulent diphtheria bacilli in their throats for long periods. It is also true that persons who have been in contact with infected individuals, although themselves remaining healthy, may be the carriers of disease germs. Certain bacteria may be thus transmitted from a patient to another individual through the medium of a person who is himself unaffected. There is reason to believe that the living carrier of disease germs as a principal or an intermediary is a highly potent factor in disseminating disease.

The path by which a disease germ leaves the body is influential in determining the route of infection. The typhoid germ frequently passes into sewers, makes its more or less devious way into a river, lake or spring, and is perhaps eventually swallowed at a distant point. Diphtheria bacilli may be left by a child's lips on the edge of the school drinking-cup and so cause the infection of a playmate. Tubercle bacilli may be inhaled in the infectious droplets discharged by a consumptive in the act of sneezing or coughing. The infections of known origin, for the most part, are caused by germs thrown off from the mouth, from the intestines, from cutaneous sores, and in the genito-urinary secretions. In certain infections, not yet elucidated, such as the "acute exanthemata" (smallpox, chickenpox, etc.), the infectious agent is possibly contained in scaled-off epithelial cells as well as in discharges from the throat and nose.

CHAPTER 8

IMMUNITY AND BODY RESISTANCE TO DISEASE

Antigens and Antibodies

Natural Immunity

Racial

Individual

Acquired Immunity

Active

Passive

The Mechanism of Immunity

(a) The Antitoxins

Standardization

Origin

Immunity and Antitoxins.

(b) The Bactericidal Substances-Lysins

Bacteriolysis

The Pfeiffer Phenomenon

Hemolysis

Differences between Antitoxic and Antibacterial Sera

- (c) The Phagocytes Opsonic Technic
- (d) Ehrlich's Receptor Theory
- (e) The Neisser-Wechsberg Phenomenon
- (f) Complement Fixation or the Bordet-Gengou Phenomenon Other Reactions Produced by Bacteria and Other Antigens
 - (a) The Agglutinins

Technic

Properties and Mode of Action

Group Agglutination

Relation between Agglutinating and Bactericidal Power

(b) The Precipitins

The Mechanism of Agglutination and Precipitation

- (c) Specific Soluble Substances—Residue Antigens
- (d) Anaphylaxis or Hypersensitiveness—Allergy—Protein Sensitization

Immunity, like pathogenicity, is a relative term; all living organisms, at least all the higher forms, are susceptible under some conditions to some kind of parasitic invasion.

On the other hand, some degree of resistance against parasitic attack seems to be manifested by all animals and plants. In certain cases the defense is so effective that bacteria and other parasitic micro-organisms rarely invade the body under natural conditions. The wild carnivora, for example, are probably practically exempt from bacterial infections. The cat and the dog, as is well known in bacteriologic laboratories, show, as a rule, a high degree of resistance to inoculation with bacteria that are highly pathogenic for other animals. In some animals, such as the guinea-pig, infection occurs more readily. Man is susceptible to infection with a great variety of micro-organisms, certain of which possess little or no pathogenic power for any other animals, and is immune to many microbes that are highly pathogenic for certain lower forms.

Resistance to bacterial infection is often an inborn quality of a race or an individual. Such resistance is termed natural immunity, and is the converse of natural susceptibility. A state of natural susceptibility may be transformed by various causes into a condition of greater or less resistance, commonly designated as acquired immunity. Most civilized men are born naturally susceptible to smallpox, but acquire immunity during their individual lifetime either by vaccination or by an attack of the disease.

There is reason to believe that the nature of the defense set up by the organism is not the same in all cases, and that natural immunity, in particular, is often due to an entirely different set of factors from acquired immunity.

ANTIGENS AND ANTIBODIES

When bacteria and other parasites invade the tissues they evoke certain remarkable reactions in the body of their host. These reactions are now known to belong to a group of fundamentally similar biological phenomena, the phenomena of antibody formation. The introduction into the animal body of foreign protoplasm, whether bacterial cells, red blood-cells, spermatozoa, or snake venom, gives rise to substances in the blood or tissue of the host, which have a specific action and may respectively neutralize the venom, cause disintegration of the spermatozoa, hemolyze the red blood-cells, and kill the specific bacterium. The blood or tissue having this antagonistic power is said to contain antibodies and, conversely, those substances capable of giving rise to antibodies in the animal body are called antigens. Only one class of chemical substancesthe proteins—have been certainly proved to be antigenic. The evidence presented to show that certain lipoids and glucosides possess antigenic properties is not conclusive.

NATURAL IMMUNITY

Natural immunity sometimes depends upon the simple fact that a micro-organism which finds favorable conditions for multiplication in one species of animal meets with unsuitable conditions in another species. Profound metabolic differences, such as those between warm-blooded and cold-blooded animals, are in themselves sufficient to account for much so-called "natural immunity." In general, invertebrates are not attacked by parasites that invade the vertebrate body, and the lower vertebrates (frogs, fish, reptiles) are not affected by inoculation with the various bacteria pathogenic for birds and mammals. This is quite in keeping with the well-known physiologic and toxicologic differences between the various animal groups. Strychnine, which is so powerful a poison for vertebrate animals, has little effect upon protozoa, and quinine may be fatal to the malarial parasite at the same time that it exerts a relatively slight and temporary effect upon the human organism. The influence of body temperature upon infection is shown in the case of tetanus. Many cold-blooded animals not normally susceptible to tetanus succumb to infection with the tetanus bacillus or to intoxication with its toxin when they are kept in a warm chamber. Flesh-eating animals, as a rule, are less prone to infection than herbivora, perhaps because of the difference in metabolism accompanying the difference in food.

Closely related races and species of animals sometimes display, one a natural immunity, another a natural susceptibility, to the same infecting agent. Field-mice are highly susceptible to glanders, house-mice almost completely immune. Jersey cows are more liable to tuberculosis than Holsteins, and Yorkshire swine are more resistant to swine erysipelas than some other porcine breeds. In man the immunity against particular diseases once thought to be possessed by certain races is not so marked as formerly supposed. No race of mankind seems to possess absolute immunity toward any human disease; in fact, such differences as are observed seem to be due very largely to differences in the opportunities for infection such as arise from diverse habits and pursuits. Yet there is some evidence that certain races are more, and others less, susceptible to tuberculosis, influenza and other infections.

Individual differences in the natural power of resistance in man come to light in the experience of every physician. Members of the same family exposed at the same time to the same possibility of infection show greatly varying susceptibilities. Variations in degree of resistance to the suppurative infection of slight wounds and scratches are especially common and well known. It is impossible to eliminate in every case of natural infection the source of error due to differences in the amount and virulence of the infecting agent, but enough is known to indicate plainly the existence of individual susceptibility. In an epidemic of typhoid fever, due to an infected public water-supply, where it is fair to suppose that the specific microbe is distributed with some degree of uniformity through considerable bodies of water, it is well established that not all water-drinkers, even in the same household or family, contract the disease. Such differences in the degree of individual susceptibility can hardly be referred to any deep-seated metabolic unlikeness. There are, in fact, noteworthy fluctuations in predisposition in one and the same individual. The influence of apparently slight factors, such as a change in the weather or some degree of fatigue, is sufficient to turn the scale and transform a condition of resistance into one of susceptibility. In laboratory animals used for experimental work individual variations in resistance also occur, but are not so well marked as in man, and apparently oscillate within narrower limits.

The causes of natural individual immunity are unquestionably various, some of the factors involved being more or less under control, and therefore influenced by the observances of personal hygiene, while others are dependent on qualities so fundamental that they are hardly likely to be altered during the lifetime of the individual.

Instances of the close adaptation of particular parasites to particular hosts are common throughout the whole animal and plant kingdoms, and should not be confounded with the phenomena of natural individual immunity. A close mutual relation, for example, seems to subsist between the leprosy bacillus and the human organism, and it is as little enlightening to refer the noninfectibility of the dog or the rabbit with the leprosy bacillus to "immunity" as it would be to declare that Indian corn and the tobacco plant are "immune" to Tilletia tritici, the parasite of wheat smut. The relatively few instances among bacteria of abject dependence of a single species of parasite upon a single species of host are doubt-

less connected with the wide range of bacterial conditions of life. It is evident that the exemption of certain races or species of animals from the attacks of certain species of parasites is not necessarily referable to the same cause or set of causes that bring about the varying degrees of resistance evinced by individuals of the same species. The problems of natural individual immunity are closely connected in some ways with those of acquired immunity.

ACQUIRED IMMUNITY

Acquired immunity may be either active or passive.

Active immunity is due to the direct participation of the host concerned, and depends upon increased antibody production. Such immunity is gained at the expense and often at the risk of the organism acquiring it. Immunity to smallpox may be obtained either by an attack of the disease due to natural exposure, or by deliberate inoculation of dried material from smallpox pustules into the nostrils, according to the common practice of variolation in England in the eighteenth century, or by the now common method of vaccination with cowpox virus. In each and every case this immunity depends upon a specific reaction on the part of the cells and tissue of the individual host.

Passive immunity, on the other hand, involves no active generation of protective substances by the immunized animal. latter is simply the recipient of antibody substances formed in the body of another animal and transferred to the individual to be protected. In the preparation of diphtheria antitoxin the horse is actively immunized by the injection of increasing doses of diphtheria toxin, and the blood of the horse comes to contain a protective substance, the so-called "diphtheria antitoxin." When a child has been exposed to diphtheria, it is sometimes the practice to inject about 1000 units of diphtheria antitoxin (p. 296) into the body of the child for protective purposes. The child is then measurably assured against an attack of diphtheria, and is said to have been immunized passively, since its own tissues have in no way shared in the manufacture of the protective substance. Passive immunity may be quickly acquired, but is also much less permanent than active immunity, and tends quickly to disappear.

Active immunity may be brought about in a number of ways:

- (a) By the incorporation into the animal body of living, fully virulent bacteria;
- (b) By the incorporation of living bacteria of diminished virulence;
 - (c) By the incorporation of dead bacteria;
- (d) By the incorporation of bacterial products secreted or excreted during the life of the microbes;
- (e) By the incorporation of bacterial products arising from the disintegration of the cells after death;
- (f) By the incorporation of certain micro-organisms or their products which are not associated in any way with the production of the specific affection.

These may be briefly illustrated.

(a) Immunity produced by the introduction of living and virulent bacteria is practically identical with the immunity that results from an attack of disease after natural exposure. In experimental work the varying facility with which this mode of immunization can be effected is in part dependent upon the susceptibility of the organism to the particular parasite. A very susceptible animal can be immunized in this way only with great difficulty or not at all. Barber¹ has shown that a single anthrax bacillus can initiate a fatal infection in a white mouse. The successful use of living cultures involves the administration first of small nonfatal doses which are increased as rapidly as possible, as indicated by the intensity of the reaction produced. The relative insusceptibility to infection by some particular channel has been also taken advantage of, as in Ferran's method, now superseded, for protective vaccination of man against Asiatic cholera. In this disease natural infection occurs by way of the alimentary tract, while the subcutaneous injection of living virulent cholera spirilla is followed by a local reaction and some fever, but by no general infection or serious consequences. Up to the present this is the only instance in which virulent cultures have been used in the immunization of man, unless, indeed, the old practice of variolation is to be reckoned here. This is thought to be the principle of the empiric immunization of animals against cattle-plague² (Rinderpest).

¹ Barber: Jour. Infect. Dis., 1909, 6, p. 634.

² Bile taken from animals dying of cattle plague is used for immunization; the parasite concerned is unknown.

(b) Bacteria may be attenuated, that is, have their virulence diminished, in a variety of ways: (1) By growth at temperatures above the optimum, this being the usual manner of preparation of anthrax vaccines (p. 281); (2) by growth in the presence of highly diluted antiseptics (as the anthrax bacillus in a medium containing carbolic acid 1:600); (3) by passage through the body of an animal of a different species, it being shown, for example, by Pasteur that the organism of swine plague, when passed through the bodies of rabbits, gained in virulence for rabbits but lost in virulence for swine. Pathogenic organisms may also be attenuated by growth on ordinary culture media (pneumococcus), by continued cultivation in the presence of oxygen (bacillus of chicken cholera), by desiccation (virus of hydrophobia), and in other ways.

The injection of attenuated cultures may be sometimes followed by injection of fully virulent cultures, as in vaccination against anthrax, a higher degree of protection being secured in this way than by the use of attenuated cultures alone. The classic example of immunization by attenuated cultures is afforded by the ordinary procedure of vaccination against smallpox. Although the specific parasite has not yet been isolated, there is no doubt that the cowpox virus, the vaccine, contains an attenuated form of the smallpox parasite, weakened in virulence by passage through the body of the heifer.

(c) Immunization with dead bacteria has the merit of avoiding all danger of infection and at the same time of introducing into the body the substances most intimately connected with the bacterial cell and its activities. In experimental work upon animals this method has found wide application. Vaccination of man against three important diseases-Asiatic cholera, typhoid fever, and plague—has likewise been carried out successfully with dead cultures. The particular methods used and results obtained are described elsewhere (pp. 356, 383, 509). The use of dead bacterial cells for immunization has been most advantageous in such infections as those named above, in which no powerful soluble toxin is secreted by the cell in cultures, since the toxic elements seem to be bound firmly to the cell-substance. When a high degree of immunity is sought after, as in some kinds of experimental work, the injection of dead bacteria may be followed by that of living attenuated cultures, and finally by that of fully virulent ones.

(d) The preparation of diphtheria antitoxin furnishes the best studied instance of immunization by bacterial products. Briefly speaking, the method consists in injecting a horse subcutaneously with small quantities of broth in which a toxin-producing strain of C. diphtheriae has been growing, gradually increasing the doses. The horse becomes immunized by this treatment, and is able, in a few weeks, to withstand many times the dose that would have been fatal if given in the first place. This immunity is due to, or at least usually accompanied by, the accumulation of the specific antibody, the diphtheria antitoxin, in the blood of the horse. It is evident that the broth in which the diphtheria bacillus has been cultivated, usually for about one week, must contain a variety of substances secreted or excreted by the living bacterial cell, but the substance to which the immunization is usually attributed is the specific diphtheria toxin. It has been found that it is not essential that the toxin used for immunization be in a toxic condition. which has been properly detoxicated by moderate heating (toxoid) or by treatment with formaldehyde (anatoxin) or other suitable reagents will incite antitoxin production.

Antibodies may be developed by feeding an animal with specific poisons as well as by injection. Ehrlich immunized mice against ricin and abrin by feeding these animals with gradually increasing quantities of the poison until they became able to resist several hundred times the lethal dose. Some degree of immunity has been achieved by feeding animals also with bacterial toxins or with dead bacteria, but the results obtained in this way are as a rule less rapid and satisfactory than those reached by injection.

(e) The use of disintegrated products of the bacterial cell in immunization cannot be readily separated in practice from the two methods just considered. The use of dead bacteria must entail always the presence of some substances derived from the breaking up of the cells, and the use of broth in which bacteria have grown also involves the introduction of substances originating from dead as well as from living bacteria. At the same time some investigators have advocated the employment of material obtained by the self-digestion of bacterial cultures (autolysis), and have considered that, owing to the speedier absorption of the physiologically active substances, more satisfactory results were secured by this method.

Successful results have also been reported by Macfadyen, who, following the work of Buchner on the extraction of enzymes from yeast-cells by pressure, triturated washed agar cultures of the typhoid bacillus at the temperature of liquid air, -180 to -190 C. At this temperature the cells are brittle and disintegrate readily without admixture with sand or other triturating substances. The resulting cell-juices were found to be highly toxic and to possess strong immunizing properties.

(f) Some degree of immunity toward specific infections may be developed by the use of certain kinds of bacteria or bacterial products entirely foreign to the infection in question. In this category, for example, is the undoubted protection conferred against anthrax by the injection of B. prodigiosus or Ps. pyocyanea or their products. Similar instances are the use of yeast in certain pyogenic affections, and, perhaps, the retarding effect of streptococcus infection upon certain kinds of tumors. The increased resistance of the organism so treated is sometimes ascribed to the "antagonism" of the bacteria or their products, but the phenomenon may be ascribed with greater plausibility to the increased leukocytosis resulting from the injection of protein substances. (See p. 176.)

It is not always possible in practice to separate sharply the modes of immunization previously outlined. The injection of an animal with a bacterial culture entails simultaneous injection with living bacterial cells, dead cells, secretion products, and products of disintegration, and it is evident that the results obtained may be due to the concurrent action of several factors. As already pointed out, however, the methods in ordinary use involve the predominance of one or another constituent.

A combination of passive and active immunization has been found advantageous in certain cases, a potent protective serum being used to pave the way for the introduction of living virulent cultures or powerful toxins. The injection of protective sera along with the more dangerous excitants of active immunity, has been used with more or less success in swine erysipelas, cattle plague, foot-and-mouth disease, and anthrax.

¹ Macfadyen: Centralbl. f. Bact., 1901, 30, p. 753; 1903, Abt. 1, Orig., 34, pp. 618, 765.

THE MECHANISM OF IMMUNITY

(a) The Antitoxins.—It was first shown by Behring and Kitasato¹ in 1890 that the immunity of rabbits and mice which had been artificially immunized against tetanus was associated with the ability of the cell-free blood to render harmless the toxic substances produced by the tetanus bacillus. The same investigators bestowed the name antitoxin upon that substance in the serum which thus nullified the toxin. The action of the antitoxin is manifested in the following direct way: If a fatal or many times fatal dose of toxin be mixed with an appropriate quantity of antitoxic serum in a flask, the injection of the mixture into a susceptible animal is wholly without injurious effect; the action of the toxin is nullified because of its mixture with the serum taken from an immunized animal. This phenomenon does not depend upon the total destruction of the toxin by the antitoxin, as is shown by heating the mixture to a point sufficient to destroy the antitoxin, when it is found that the toxin remains after the heating and is able to exert its toxic power.2 In other words, a more or less loose chemical combination of antitoxin and toxin seems to take place in the mixture, the poisonous properties of the toxin being held in abeyance as long as the union exists. The rate of reaction between toxin and antitoxin, like other chemical reactions, is dependent upon temperature, concentration, character of the medium in which the reaction occurs, and similar factors. The avidity of an antitoxin for its corresponding toxin differs in different cases; the union between tetanus toxin and antitoxin, for example, taking place less rapidly than that between diphtheria toxin and antitoxin.

The precise character of the toxin-antitoxin reaction has been the theme of much discussion. According to Ehrlich's conception the reaction is purely chemical and is essentially similar to the neutralization of a strong acid by a strong base. But precise study of the rate of toxin-antitoxin neutralization necessitated the further assumption that in a toxic filtrate there exist several substances of different toxic and combining powers—toxons, toxoids, epitoxoids, etc. This assumption of modification of the structure

¹ Behring and Kitasato: Deut. med. Wochenschr., 1890, 16, p. 1113.

² The method of destroying the antitoxin by heat is applicable only in certain cases, e. g., pyocyaneus antitoxin; in many cases the antitoxin resists heat better than the toxin.

of the toxic molecule led to further hypotheses of great complexity. Ehrlich's explanation is based on the view that toxin and antitoxin behave in mixture like a strong acid and a strong base, chemical change ceasing only when there has been a practically complete neutralization of one by the other. If now, on the contrary, it be assumed that conditions are those that arise when a weak acid is added to a weak base (Arrhenius and Madsen), chemical reaction does not continue until the reagents are completely used up, but stops when an equilibrium is reached at which there are still present definite amounts of the original substances as well as of the reaction products.

A third view (Bordet, Landsteiner) looks upon toxin-antitoxin combinations of varying degrees of toxicity as due to differences in completion of saturation of the individual toxic units. The process may be compared to certain staining reactions, such as the action of iodine upon starch, a dilute iodine solution producing a light blue tinge, a stronger solution a deep blue. The coloring matter in this and other staining reactions does not stain some of the material strongly and others not at all, but distributes itself with considerable uniformity over the whole mass of stainable substance. This adsorption theory would view the action of antitoxin upon toxin as a sort of progressive attenuation, proportional to the amount of antitoxin added. Broadly speaking, the theory of Ehrlich considers the toxin-antitoxin reaction to be similar to the reaction between a strong acid and a strong base; that of Arrhenius and Madsen to the reaction between the weak acid and a weak base; and that of Bordet as an adsorption phenomenon between two colloids of opposite electric charge.

Little is clearly known about the chemical character of the antitoxins. In general, they are, like the toxins, unstable, complex bodies, readily destroyed by relatively low temperatures (65 to 75 C.), and losing strength steadily under exposure to light and air. They are very sensitive to the action of acids. They are best preserved for standards (Ehrlich) by evaporation of the sera to dryness in a vacuum at low temperature, and subsequent storage in a vacuum in the dark at a low temperature and with protection from dampness. Attempts to obtain antitoxin in purer or more concentrated form have been numerous. Treatment of immune sera with ammonium sulfate, magnesium sulfate, and other salts

has shown that the antitoxins are precipitated with and are more closely bound to the globulins, than to the other protein bodies in sera.

Standardization of Antitoxins.—The strength of a given antitoxic serum, that is, its value as a neutralizing agent for the corresponding toxin, is a matter of considerable practical importance. It might be supposed that it would be a relatively simple procedure to determine the fatal dose of diphtheria toxin for a guinea-pig, for example, and then the amount of serum necessary to neutralize this, thus arriving at the antitoxin content of the serum. Unfortunately, the conditions are more complex. Ehrlich found when different diphtheria toxins were used, or when the same toxin was tested at different periods, that a unit quantity of a given serum did not neutralize an equivalent number of fatal doses. The number of fatal doses that could be rendered harmless by equal amounts of the same antitoxic serum might vary within such wide limits as 30 to 130. In other words, the combining power of a given toxin for a given antitoxin is not an accurate measure of its toxic qualities. Since, however, the combining power itself remains constant within narrow limits, it is possible to establish an arbitrary standard unit upon which the relative strength of all antitoxic sera can be based. Such a standard antitoxin was first prepared by Ehrlich, and was preserved by him with all precaution against possible deterioration. A standard antitoxic serum based on Ehrlich's arbitrary standard unit is also prepared in this country by the Hygienic Laboratory² of the United States Public Health Service, and is distributed every two months to the licensed producers of commercial serum. By the use of this standard antitoxin it is possible to standardize a given toxin for use in testing later the strength of antitoxic sera. Briefly, the procedure consists in determining by animal reaction two limits (Lat., limes): (1) the amount of diphtheria toxin necessary to neutralize exactly the standard unit of antitoxin —this is called the L_0 dose of toxin; (2) the amount of toxin which, when mixed with 1 unit of standard antitoxin, is just sufficient to kill in four days a guinea-pig approximately 250 grams in weightthis is designated as the L_{t} dose of toxin. When these limits are

¹ In some animals the antitoxins are found in the euglobulin fraction, in others in the pseudoglobulin.

² Now the National Institute of Health.

established, it is then necessary to determine the smallest amount of the serum under test which, when mixed with the L_{\dagger} dose of toxin, will prevent the death of a guinea-pig of 250 grams' weight for four full days. This amount of serum is considered to contain 1 unit of diphtheria antitoxin.

Origin of the Antitoxins.—The appearance of a toxin-neutralizing substance in the blood of an animal injected with toxin raises a number of questions as to its source. The explanation naturally suggested itself to some investigators that the antitoxin was a "modified toxin" produced by transformation of the substance injected. It is found, however, that the quantity of antitoxin developed in an animal is often much greater than the physiologic equivalent of the toxin injected,2 and, further, that the total antitoxin content of the body may continue to increase for some time after toxin injections have ceased. The difference between the permanence of active immunity and the evanescent character of passive immunity is also sometimes accepted as evidence against the modification theory, since, if the antitoxin arose by transformation, there would be no apparent reason why it should persist in the body longer in one case than in the other. Such facts indicate that the antitoxin is probably generated in the tissues. But it is important to remember that neither toxin nor antitoxin has been isolated in pure form and current views on the nature of antitoxin-based of necessity upon speculations—must be accepted cautiously. Thus, the difference in the persistence of actively and passively acquired antitoxic immunity may be determined by the nature of the blood protein with which the antitoxic property is associated.

Since the active share of the animal body in the production of antitoxin is unquestionable, it remains to ask whether the antitoxin is a new substance hitherto unknown to the organism producing it, or whether it is present in small quantities in the normal organism and is simply increased in amount under the stimulation of toxin injection. Observation has shown that diphtheria antitoxin is

¹ Full details for making tests of the strength of a serum are given in the Report of the Committee on Antitoxin and Immunizing Sera of the American Public Health Association, Jour. Infect. Dis., 1905, Suppl. No. 1, p. 284; and in Bull. No. 21, Hyg. Lab. U. S. Pub. Health and Mar. Hos. Serv., Wash., 1905, pp. 1–92.

² According to Knorr (Münch. med. Wchnschr., 1898, 45, p. 321), in the horse 1 diphtheria toxin unit may produce 100,000 antitoxin units.

found in about 30 per cent of normal horses (Bolton, Cobbett) and in about 50 per cent of children, and 83 per cent of adults, examined (Wassermann). There is other evidence to the same effect, that before any toxic injection has been made or any recognizable attack of the specific disease has occurred, antitoxin and other antibodies may exist preformed in certain normal individuals. So far as has been discovered, the antitoxic substances present in normal animals are identical with those found in actively immunized animals.

As already stated, antitoxins are found in the serum of immunized animals. They may also occur, though usually in much smaller amount, in the milk. There is no reason to suppose that the antitoxins are produced in the serum, although they are found there in considerable abundance. Every physiologic consideration points to the body cells as the place of origin of the antitoxins. Kraus and Lipschütz4 have, in fact, shown that the extract of normal organs is richer in antitoxin against certain bacteria than is the serum of the same animal. The precise tissues or groups of cells concerned in antitoxin production have not been certainly identified, and it is not likely that they are the same in all cases. There is some evidence, however, that in dogs the spleen is able to fix a part of the antigen, and is probably the source of a considerable portion of the antibodies. Asplenic dogs do not produce hemolysins, hemagglutinins, or hemopsonins as rapidly or in as high concentration as normal dogs.5 There is evidence that the liver is the seat of formation of certain antibodies (hemolysins, precipitins). The blood itself seems at first to take no part in the fixation of antigens, and the antibodies it contains are contributed to it by the tissues, especially the blood-forming organs such as the spleen, lymph-glands, and bone-marrow. From the foregoing statements it follows that when the antitoxins are once formed they do not reside in the body permanently, but are continually leaving it in the various excretions and secretions. This fact explains the difference in the permanence of active and passive immunity; in the latter the antitoxin is excreted from the body like other foreign substances, whereas in

¹ Bolton: Jour. Exper. Med., 1896, 1, p. 543.

² Cobbett: Lancet, 1899, 2, p. 332.

³ Wassermann: Ztschr. f. Hyg., 1895, 19, p. 408.

⁴ Kraus and Lipschütz: Ztschr. f. Hyg., 1904, 46, p. 49.

⁵ Luckhardt and Becht: Amer. Jour. Physiol., 1911, 28, p. 257.

active immunity the supply of antitoxin is maintained above the normal level, probably through its continued manufacture by the body cells. It has been shown that when a measured quantity of tetanus antitoxin was injected into an animal, only one-third remained after six days and no trace could be found after twenty-one days. While the disappearance of antitoxin from the body is to be referred in part to the loss in excretions, there is evidence also that some of the antitoxin is destroyed within the body itself. This seems to be especially the case when heterologous serum (from a different species of animal) is used. The antitoxin introduced in serum obtained from an individual of the same species (homologous serum) remains longer in evidence. Thus the ordinary diphtheria antitoxin in horse serum when injected into the body of a child is eliminated more quickly than if injected into another horse. Varying results are obtained with different antitoxins and different species of animals, and the reason for the disappearance of the antitoxin from the blood is not understood in all cases.

Immunity and Antitoxin.-It is a pertinent question at this point how far the occurrence of antitoxin in the blood is sufficient to explain the resistance either of artificially immunized animals or of those naturally immune. The neutralization of toxin by antitoxin as demonstrated in test-tube experiments would lead to the supposition that a similar reaction takes place in the living body, and that when toxin is injected into the circulation of an immunized animal, it is rendered inert by the antitoxin in the blood in the same way as if mixed with antitoxin outside the body. In the main this is doubtless true, as shown especially by the facts of passive immunity, but there are certain phenomena that emphasize the difference between a test-tube and the living body. On grounds that will be set forth presently, there is reason to believe that the toxin has a chemical affinity for certain substances in the tissues as well as for the antitoxin in the blood. Any protective action of the antitoxin in the blood must, therefore, be due to its superior avidity for the toxin. Such superior avidity usually, but not always, exists. Some instances are known where the toxic substance unites with the tissue-substance in preference to combining with the antitoxin in the blood.1 The affinity of the cell-substance for the toxin is not a constant quality, but fluctuates under different conditions, notably

¹ Kraus and Lipschütz: Ztschr. f. Hyg., 1904, 46, p. 49.

in the upper limits of active immunization. The tissues of an animal treated with increasing doses of toxin sometimes become hypersensitive to the action of the toxin and, in spite of the fact that large quantities of antitoxin are circulating in the blood, the toxin combines by preference with the tissue-substance and causes the death of the animal. Tissue immunity is hence not always parallel with antitoxin immunity, and the presence of antitoxin in the circulating blood cannot be the whole explanation of the resistance shown by animals immunized against toxin, although it is the most evident and often the determining factor. Among the most important antitoxins that have been produced may be mentioned the diphtheria, tetanus, scarlet fever, pyocyaneus, symptomatic anthrax, and botulism antitoxins; the antitoxins for various bacterial hemolysins; for snake, spider, and scorpion venoms; for the toxins in the blood or secretions of the eel, salamander, and toad; and for the vegetable toxins, ricin, abrin, robin, and crotin.

The antitoxin found in the blood of some naturally immune animals may possibly be responsible in some degree for the resistance of such animals, but such an explanation is certainly not valid for many cases of natural immunity. The normal fowl exhibits almost complete immunity to the tetanus toxin, but contains no tetanus antitoxin in its blood, the toxin circulating unchanged for days after injection. The same is true of the alligator, the frog and some other cold-blooded animals (Metchnikoff). Immunity in these cases can be in no wise referable to antitoxic influence.

(b) The Bactericidal Substances—Lysins.—Animal blood can not only neutralize bacterial toxins, but can destroy bacteria themselves. The systematic investigation of the germicidal power of normal blood began with the work of Nuttall¹ in 1886. Nuttall showed, among other things, that the blood of one kind of animal does not have the same germicidal strength for all species of bacteria, and that one and the same species of bacterium is affected differently by the blood of different animals. Two other important facts were early brought to light: (1) that the bactericidal power is lost when the blood is heated to 56° for one-half hour (Nuttall); (2) that the cell-free serum possesses the same power as the blood itself (Buchner).² The germicidal power of the blood in vitro is

¹ Nuttall: Ztschr. f. Hyg., 1888, 4, p. 353.

² Buchner: Arch. f. Hyg., 1891, 10, p. 84.

often considerable, a single drop of rabbit blood being able to destroy 53,700 anthrax bacteria (Lubarsch).

The natural immunity of the normal organism was believed by Buchner and others to be due to the bactericidal activity of the blood, and the name *alexin* (Gr., to ward off) was suggested by Buchner for the substance that presumably exercised the protective influence.

It cannot be doubted that in certain cases the alexin content of the blood of an animal corresponds to the degree of immunity toward a particular infection. Thus the serum of the white rat, an animal that possesses a high natural resistance to anthrax, is very strongly germicidal for the anthrax bacillus. Especially significant is the increase in the germicidal power of the blood which is observed in animals artificially immunized.

The serum of guinea-pigs immunized against V. metchnikovii is strongly germicidal for this organism, while that of unimmunized guinea-pigs is devoid of specific bactericidal quality. In other cases, however, there is no relation between the resistance of an animal and the bactericidal power of its serum. An animal may be vaccinated against streptococcus infection, and indeed acquire a high degree of immunity toward streptococci, without coming to possess any specific germicidal quality in its blood when tested under extravascular conditions. Normal human serum, when tested in vitro, is strongly bactericidal for the typhoid bacillus, and yet this does not prevent the multiplication of this organism in the blood during an attack of the disease.

Bacteriolysis.—The relations between induced immunity and the appearance of bactericidal substances in the blood are best shown in certain experimental infections of animals, notably those caused by the cholera spirillum and the typhoid bacillus. It is elsewhere pointed out (p. 509) that a specific choleraic poison or soluble toxin is not readily demonstrable in cultures of the cholera spirillum in ordinary culture media. In correspondence with this it is found that animals immunized against the cholera spirillum contain no antitoxin in their blood. Immunity in such cases is associated with the antagonism of the body-fluids to the living cholera spirillum rather than with any toxin-neutralizing power, as shown by a series of convincing experiments by Pfeiffer, Wassermann, and

¹ Lubarsch: Centralbl. f. Bakt., 1889, 6, p. 481.

others. A guinea-pig immunized against many times the fatal dose of living cholera vibrios is no more resistant than a normal guinea-pig to a fatal dose of dead vibrios. The resistance to infection with the living microbe is correlated with an increase in the specific bactericidal power of the serum of the protected animal. Thus, normal goat serum has only slight germicidal power for the cholera vibrio, 0.02 to 0.05 cc. being needed to protect a guinea-pig against 2 mg. of a virulent culture, while 0.0001 cc. of the serum of an immunized goat will protect against the same dose.

The Pfeiffer Phenomenon.—The fate of cholera spirilla introduced into the peritoneal cavity of an immunized animal was first followed microscopically by Pfeiffer, who gave a detailed description of the process (Pfeiffer's phenomenon). The vibrios first lose their motility, then swell up and crumble into small fragments. These fragments finally melt away and disappear, the process being likened to the dissolving of wax candles in hot water. This lytic (Gr., to loose, dissolve) action of the immune serum is manifested not only within the peritoneal cavity of an immunized animal, but also when the peritoneal fluid or blood-serum is removed from the body and brought immediately in contact with the bacteria in a test-tube.

Many experiments have since been made with bactericidal serum in vitro, and the course of events is found to be essentially identical with that in the body. As in the case of the antitoxic sera, the antibacterial sera are specific. A serum that is highly lytic for the cholera vibrio may be without lytic effect on the typhoid bacillus.

Hemolysis.—An important extension of our knowledge concerning sera has been effected by a study of the fate of red blood-corpuscles introduced into the animal body. The injection of the blood of a mammal or bird, for example, into the body of an animal of a different species is always followed by the appearance of a hemolyzing property in the blood of the latter (Bordet).² This property is specific, that is, it causes the dissolution or exosmosis of the hemoglobin out of the red corpuscles of the species from which the injected blood was derived and is without, or nearly without, action upon the corpuscles of other animals, although sometimes slightly affecting the blood of closely allied species.

² Bordet: Ann. de l'Inst. Past., 1898, 12, p. 688.

¹ Pfeiffer and Issaeff: Ztschr. f. Hyg., 1894, 17, p. 355.

Thus the serum of a guinea-pig inoculated with rabbit blood becomes hemolytic for the red corpuscles of the rabbit.

Not only red blood-corpuscles, but other cells are capable of giving rise to antagonistic substances, or antibodies, when introduced into the animal body. A great variety of cell-dissolving (cytolytic) sera have been produced in this way. Injection of spermatozoa leads to the appearance, in the serum of the inoculated animal, of a spermatoxic substance that first renders the corresponding spermatozoa motionless and then kills them. It has been shown that such a serum resembles a hemolytic serum in all essential features. The claim has been made that such sera are histogenetically specific, that the cells of the kidney, for example, produce a "nephrotoxic" serum, those of the liver "hepatotoxic" serum, and so on; but specificity of this kind has not been demonstrated. It is probable that a single type of cell can provoke the formation of several antibodies which affect cells of different morphology but of somewhat similar chemical constitution.

The bacteriolytic and the hemolytic sera, therefore, fall under the same general head, and the common cytolytic phenomena exhibited by the two kinds of sera are strikingly alike. It must be emphasized at this point that the lytic antibodies produced against bacteria, red blood corpuscles or other antigens are merely special cases of a general biological phenomenon. Whenever protein-containing substances (antigens) gain entrance to the blood stream, antibodies are engendered. If the antigen is a formed body capable of dissolution, the lytic nature of the antibody is demonstrable. If the antigen is a pure substance (like egg albumin) in true or colloidal solution, lytic properties of the antibody are not demonstrable, and only agglutinating or precipitating properties (see p. 189) may be evidenced. A large part of our knowledge of the cytolytic sera and antibodies in general is due to the genius of Paul Ehrlich¹ and of Jules Bordet.²

The bactericidal sera possess the following important characteristics. When heated to 55 C. for one-half hour, the bactericidal power is lost; such sera are said to be inactivated. The addition

¹ Ehrlich, Paul: "Gesammelte Arbeiten zur Immunitätsforschung," Berlin, 1904. [English edition: "Studies in Immunity," transl. by Charles Bolduan, New York, 2nd ed., 1910.]

² Bordet: "Studies in Immunity," collected and translated by Frederick P. Gay, New York, 1909.

of a small quantity of normal serum to heated serum, however, restores the original potency. The relation between normal sera and immune sera may be expressed in tabular form as follows:

	Germicidal Power	
Normal serum	+	
Immune serum	+++	
Heated immune serum	±	
Normal serum + heated immune serum	+++	
Heated normal serum + heated immune serum	±	

There is, therefore, no escape from the conclusion that the bactericidal property is due to the action of two substances or properties, one that is present in the normal serum and in unheated immune serum, and is identical with Buchner's alexin; and a second substance of superior heat-resistance which is present only in small quantities in normal serum and appears in much greater amount in the serum of immunized animals as a consequence of repeated inoculation with specific germs. This second substance is the so-called "sensitizing substance" of Bordet or the amboceptor of Ehrlich.

An important factor in the production of antibacterial sera is the virulence of the culture employed. The use of highly virulent cultures conduces to the development of a particularly potent serum, and in experimental work it has been found desirable to use freshly isolated cultures of high virulence or cultures whose virulence has been exalted by animal passage. As a preliminary to the use of such hypervirulent cultures attenuated cultures may be employed.

The important question whether the bactericidal factor in normal serum (alexin) is identical with that in the blood of immunized animals is answered in the affirmative by most investigators, although there are a few dissenting voices. Both normal and immune bacteriolytic sera behave alike toward temperature and other influences, can be reactivated by unheated normal serum, and possess the same complex constitution. The lytic power of normal serum, like that of immune serum, appears to be due to the combined activity of two substances.

Differences between Antitoxic and Antibacterial Sera.—The fundamental distinction between antitoxic and bacteriolytic sera has been set forth in the preceding pages. The antitoxic sera act directly upon the poison secreted by the living bacterial cell and neutralize its toxic property, while the bacteriolytic sera affect the bacteria themselves and destroy them or paralyze their action. Since the antibacterial sera are without effect upon the formed toxin, they are mainly useful in practice as a means of protecting against bacterial invasion, while the antitoxic sera may be employed, as in diphtheria, to combat an infection already in progress or to prevent an infection in a person who has been exposed by contact with an incipient or active case of disease. Broadly speaking, the antitoxic sera are curative although sometimes used prophylactically, the antibacterial sera protective, although some antibacterial sera, such as the antipneumococcus serum, are used therapeutically. It must not be inferred that a given serum cannot be both antitoxic and bactericidal. If a horse be injected with a diphtheria culture containing both diphtheria bacilli and diphtheria toxin, the resulting serum will be not only antitoxic, but to some extent bacteriolytic.

The bacteriolytic sera have not yet been applied very successfully to the treatment of disease in man. This has been a stumbling-block to the advance of serum-therapy because most of the antisera hitherto produced are of this type. One reason for the failure of the bacteriolytic sera in human therapeutics may be that a serum of this sort produced in the body of one of the lower animals does not find suitable conditions for its specific action in the body of another species, such as man. There are facts which seem to support this view. The relative degree of success attained by vaccination with protective sera in several diseases is mentioned in connection with special topics. (See especially Asiatic Cholera, p. 509, and Typhoid Fever, p. 356.)

(c) The Phagocytes.—The brilliant researches of Metchnikoff¹ definitely established the active share in combatting bacterial invasion taken by certain white blood-corpuscles, denominated phagocytes, or "devouring cells."

In the animal body a significant distinction exists between a local reaction and a general septicemic infection. The bacilli of chicken cholera injected subcutaneously into a rabbit produce no local inflammation, but multiply rapidly throughout the body, and the animal soon dies; the same bacilli injected into a guinea-pig provoke a strong local inflammation, the bacilli remain localized

¹ Metchnikoff: "Immunity," Cambridge, 1905.

at the point of introduction, and spontaneous recovery takes place. In general, the degree of resistance shown by the organism is measured by the intensity of the local inflammatory reaction.

Perhaps the most characteristic feature of the local reaction or inflammation is the gathering of the leukocytes at the affected point, and this has been shown by Metchnikoff to rest on a broad biological basis. In certain lower forms of animal life, such as the ameba, food-particles are engulfed bodily and digested within the cell. In multicellular animals, like sponges and jelly-fish, intracellular digestion by ameboid cells also plays an important rôle, and even in the higher metazoa both free-moving and sessile cells retain the power of devouring foreign particles. In the course of the metamorphosis of invertebrates, like the echinoderms and the insects, and of vertebrates, such as the frog, it has been shown that the superfluous tissues are picked apart by the leukocytes bit by bit and carried to another part of the organism. The absorption of larval organs by the activity of the phagocytes is closely connected with the behavior of the phagocytes toward foreign substances introduced into the body. Carmine granules, for example, are readily ingested by the leukocytes of warm-blooded animals as well as by the ameba. The resorption of the catgut used in surgical operations is a familiar instance of the digestion of foreign substances in the human body, and, like the disappearance of larval organs, is attributed to phagocytic activity. In specific cases of atrophy and absorption much discussion has arisen concerning the relative share of the phagocytes and the body-fluids in bringing about the changes observed, some investigators maintaining that the solvent action of the body-fluids is sufficient to account for the destruction of useless or alien material in the organism. While it may be sometimes difficult to assign to this latter factor its true value, there can be no question that Metchnikoff and others have conclusively established the fact that the phagocytes can and do act in some of the typical processes of absorption and larval metamorphosis.

According to Metchnikoff, the phagocytes, besides acting as digesting cells and as scavengers, are also the chief defenders of the vertebrate organism against invading bacteria. "The diapedesis of the white corpuscles, their migration through the vessel wall into the cavities and tissues, is one of the principal means of defense possessed by an animal. As soon as the infective agents have

penetrated into the body, a whole army of white corpuscles proceeds toward the menaced spot, there entering into a struggle with the micro-organisms" (Fig. 26).

Dog serum, for example, is without bactericidal power upon anthrax bacilli. If, however, anthrax bacilli are injected into a dog, they are quickly taken up by the leukocytes. The most plausible interpretation of these facts would seem to be that the natural immunity of the dog toward anthrax is due to the destruction of the bacilli by phagocytosis. In other instances where a normal animal is susceptible to infection with a particular microbe no

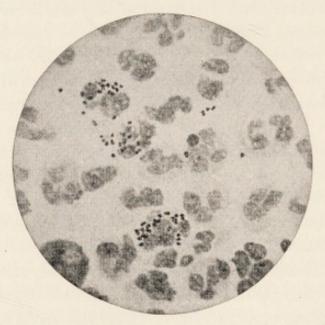


Fig. 26.—Phagocytosis of gonococci by leukocytes (Hicks).

phagocytosis is observed, but after the animal has been immunized by the injection of living or dead bacteria or their products, the phagocytes of the immune animal actively destroy the specific bacteria, no corresponding increase in the bactericidal power of the serum being observed.

It was recognized by Metchnikoff that, in addition to the free phagocytes (microphages) or polymorphonuclear leukocytes which comprise 72 to 75 per cent of the white blood-cells, there are also certain larger cells (macrophages), many of them fixed, which possess phagocytic properties. The endothelial cells of the peritoneum and the giant cells of the bone-marrow as well as the mononuclear leukocytes belong to the class of macrophages. The microphages appear

Metchnikoff: "Immunity," Cambridge, 1905, p. 548.

to be specially concerned with the acute infections, the macrophages with those of more chronic type, such as tuberculosis.

Phagocytosis may be considered as consisting of three stages: first, the bringing together of bacteria and leukocytes; second, the taking up or engulfing of the bacteria by the leukocytes; and finally, the digestion of the bacteria within the leukocytes. Apparently the main if not the only resistance offered by bacteria to this process is connected with the first stage. Certain bacteria appear to produce chemical substances which have the power of repelling phagocytic approach (negative chemotaxis). Bordet showed that virulent streptococci cause phagocytes to move away from their neighborhood, while avirulent streptococci attract phagocytes. The amount of the substances (opsonins, tropins) that are present in or produced by the host and render bacteria attractive to leukocytes may be increased in various ways. (See below.)

Natural immunity appears in a number of instances to be due to activity of the phagocytes.

Opsonins.—Phagocytosis may be intensified or diminished in various ways. Several early observers noticed that the power of leukocytes to destroy micro-organisms is greatly increased by the addition of serum from immunized animals, and through the investigations of Wright¹ in England, Hektoen² in the United States, Neufeld³ in Germany, and their associates, an explanation of this interesting phenomenon has been obtained. These investigators have demonstrated that the activity of the phagocytes is conditioned by the presence in the blood and other fluids of certain substances which act in some unknown manner upon bacteria and prepare them for digestion by the phagocytes. These bacteriotropic substances have been termed opsonins (Gr. $\delta\psi\omega\nu\dot{\epsilon}\omega$, I cater for, prepare food for). Opsonins are present to some extent in the blood of normal animals, but they can be materially increased in amount by immunization.

It is a simple matter to demonstrate the existence of opsonins in a given serum by mixing the serum with bacteria suspended in physiologic salt solution. Leukocytes washed free from serum

Wright: Proc. Roy. Soc., 1903, 72, p. 357; 1904, 73, p. 128 et seq.

² Hektoen: Jour. Amer. Med. Assoc., 1906, 46, p. 1407.

³ Neufeld: Deut. med. Wochenschr., 1904, 30, p. 1458; Ztschr. f. Hyg., 1905, 51, p. 283; Centralbl. f. Bakt., 1906, I, Ref., 37, p. 763.

will take up some, but not a great many, of the bacteria. If, however, the bacteria are first treated with opsonic serum, they will be taken up in much larger numbers by the washed leukocytes. The opsonin enters into a more or less close union with the bacteria, as shown by the fact that opsonized bacteria can be washed in salt solution and still remain sensitive to phagocytosis. By these and other experiments it has been fully demonstrated that a substance is present in immune sera, and to a less degree in normal sera, which can so change or sensitize bacteria as to render them more liable to phagocytic destruction.

Opsonic Technic.\(^1\)—In determining the amount of opsonin in a given patient's serum it is necessary to have (1) blood-serum from the patient and, for a standard, serum from a healthy person or persons; (2) leukocytes; (3) a suspension of the organism for which the opsonin is to be measured.

- (1) To obtain the blood serum the lobe of the ear is pricked with a small lancet and the blood allowed to run by capillary attraction into a little U-tube made from glass tubing about 3 mm. in diameter. The tubes are centrifuged until the serum is separated as a clear layer above the corpuscles.
- (2) To obtain the leukocytes a sterile 1 per cent sodium citrate solution in normal salt solution is placed in an ordinary centrifuge tube and a few drops of normal blood from a puncture of the finger or lobe of the ear are allowed to drop into this solution. The tube is then centrifuged until the leukocytes appear as a white cream over the sediment of red blood-corpuscles. The solution is then drawn off by means of a capillary pipet, and the tube filled with normal salt solution, the contents well mixed, and centrifuged again.
- (3) The bacterial suspensions, except that of the tubercle bacillus, which must be prepared by special methods, are made from twenty-four-hour-old cultures in broth or on solid media. If solid media are used the fluid of condensation is removed and the growth washed off by means of salt solution. Suspensions of the desired density are obtained by adding normal salt solution. Clumps should be broken up either by blowing into the suspension through a pipet or by centrifugation.

¹ The description of technic follows the method employed in the John McCormick Memorial Institute for Infectious Diseases, and has been kindly furnished me by Professor Hektoen.

The leukocytic cream from the centrifuge tube is placed in one of two watch glasses, and some of the bacterial suspension in the other. The capillary end of a right-angled capillary pipet is gently inserted into one of the U-tubes, and the serum allowed to enter to a marked point. A small amount of air is now drawn into the capillary end and the tube is dipped into the leukocytic cream previously carefully stirred-and the leukocytes drawn up to the same height as the serum; another air bubble is aspirated into the tube, and the bacterial suspension drawn up to the marked point. The elements in the pipet are carefully mixed by drawing the contents up into the elbow and gently blowing the mixture back and forth. The tubes are then placed in an incubator at 37 C, for about fifteen minutes. The mixture is then drawn gently back and forth several times in the pipet and at last blown out on a glass slide and smeared by pushing it with a little square of cigarette paper. The smears are dried in the air and may be stained with carbol thionin or other suitable stain.

The bacteria in at least 50 leukocytes should be counted, 25 from each edge of the smear. If the counts are uneven, more cells should be counted, and always the same number in the control as in the smear with the patient's serum. Clumps of leukocytes should not be counted.

The suspensions of bacteria and of leukocytes should be of such density that on the slide made from the mixture with normal serum there should not be more than 5 bacteria per leukocyte.

The opsoning may be estimated also by the dilution method; specimens are prepared in the usual way, except that the normal and patient's sera are diluted by means of normal salt solution or Ringer's solution. One mixture is made with salt solution or Ringer's solution in place of serum, in order to determine the amount of spontaneous phagocytosis. The dilution of serum which gives the same amount of phagocytosis as a mixture without serum is considered as the point of opsonic extension.

The *opsonic index* is a mode of expressing the relative amount of opsonins in a serum when compared with the normal standard. It is obtained by dividing the average number of bacteria taken up by a leukocyte under the influence of a given serum, by the average number taken up by a leukocyte under the influence of standard normal serum and under otherwise perfectly comparable conditions. Thus:

	Bacteria I (50 6	per Leukocyte Counted)
Serum of tuberculous patient + washed leukocytes	+	
suspension of tubercle bacilli		3
Serum of normal individual + washed leukocytes	+	
suspension of tubercle bacilli		4
Salt solution + washed leukocytes + suspension	of	
tubercle bacilli (control)		0.1

Average Number of

The opsonic index of the tuberculous patient in this illustration would be $3 \div 4$, or 0.75.

The technic of opsonic work seems peculiarly liable to lead to different results in the hands of different observers, and there can be little doubt that much experience and great care are needed to obtain uniform and comparable results.

Certain facts regarding opsonins have, however, been pratically established. Opsonins for many different bacteria are present in the sera of most, if not all, animals. Investigators are now agreed that after the injection of a suitable dose of dead bacteria there is usually a fall in the opsonic index of the injected animal, the so-called "negative phase," and that this is followed by a rise above normal, and then by a more or less gradual return to normal. Natural infections in many cases are accompanied by a similar change in the opsonic index. Independent observers have found, for instance, that in the early stages of pneumonia the pneumococco-opsonic index is below normal, and that at about the stage of crisis the index rises considerably above the normal, returning again to normal in the uncomplicated cases leading to recovery. A similar course has been noticed in the streptococco-opsonic index in scarlet fever, the diphthero-opsonic index in diphtheria, etc.

Opsonins apparently contain two distinct substances, one thermolabile, one heat-resistant. It is the latter which is specifically increased in immunization. The action of the heat-resistant factor seems to be favored by the presence of the thermolabile substance. The fact that opsonins are largely inactivated by heating at 54 to 60 C. for thirty minutes seems therefore to be due to the destruction of the thermolabile substance. In this respect and some others opsonins resemble other complex antibodies. They are, however,

¹ See, for example, Bull. Johns Hopkins Hospital, 1907, 18, pp. 232–255; Jour. Amer. Med. Assoc., 1907, 49, p. 1249; Walker, R. E.: Jour. Med. Res., 1908, 19, p. 237.

probably distinct from lytic amboceptors and agglutinins, as shown by the facts that a normal serum may be lytic but not opsonic, and, vice versa, that immunization may give rise to one of these antibodies and not to others, and that the opsonic, agglutinating and lytic effects of serum are not destroyed in equal degree by heat. There is a good reason to hold that opsonins are specific to the same extent as other antibodies.

The opsonic method of treatment has been used with distinctly encouraging results by Wright and others, particularly in the treatment of infection with pyogenic cocci and of nonpulmonary forms of tuberculosis. The method consists of the inoculation of dead bacteria and bacterial products in "properly adjusted and interspaced doses" in order to maintain the opsonic index, and consequently the phagocytic power of the blood, at a high level. Some practitioners make frequent determinations of the opsonic index to guard against producing the negative phase too frequently and in too pronounced a degree. Others are guided in their administration of the killed bacteria by the clinical conditions and symptoms.

It has been shown by a number of investigators, especially by Hektoen¹ and his associates, that the phagocytic power or activity of the leukocytes is subject to considerable variation independently of variation in the opsonic content of the blood. This inherent phagocytic power of the leukocytes varies with respect to certain bacteria at least, even in persons in apparently perfect health. In the child at birth the leukocytes are somewhat less active phagocytically than in the adult; they grow less active for a few months, and then more active, the adult standard for streptococci, pneumococci, and staphylococci being reached about the third year (Tunnicliff). In pneumonia, scarlet fever, and other conditions in which there is acute leukocytosis when the outlook is favorable, the phagocytic power of leukocytes has been found to be greater than normal for the specific bacteria. The increase in activity in such cases may be due to the predominance of young leukocytes.

In view of all these facts, there can be no doubt that a local inflammatory reaction or a general increase in the number of leukocytes (leukocytosis) is a process of distinct advantage to the organism. The injection of certain substances which increase the general

¹ Hektoen: Jour. Amer. Med. Assoc., 1911, 57, p. 1579.

leukocytosis (collargol, nucleic acid) has been practised by Mikulicz¹ and others with a considerable degree of success in attempts to enhance the resisting power of the body prior to abdominal operations that involve grave danger of infection. The production of leukocytosis, however, is in itself of little value unless at the same time the amount of opsonin in the blood, the specific opsonic index, is high enough to favor phagocytosis. The simultaneous stimulation of leukocytosis and the production of opsonins would, therefore, seem to be the object to be aimed at in many of the bacterial infections that have so far proved most refractory to serum therapy.²

(d) Ehrlich's Receptor Theory.—The existence of toxin-neutralizing and bactericidal substances in the body fluid of immunized animals has already been set forth. However these facts are interpreted, it must be remembered that the facts themselves are securely established. An ingenious and fruitful attempt to explain the mode of origin and manner of action of antitoxic and bactericidal sera was made by Paul Ehrlich³ in his widely known side-chain or receptor theory. It is well to bear in mind that the much-used standard diagrams are pictures of the imagination and not representations of established fact. Whatever be the ultimate fate of the speculations that have been built up around the central hypothesis, there can be no doubt that knowledge of immunity and the immunizing processes was greatly increased by the stimulus given to research through the doctrine of receptors.

The receptor theory starts with the assumption that the various cells of the animal body, having to obtain their nutriment from the blood or lymph with which they are bathed, are endowed with the power of extracting from the ambient fluid those substancs necessary to their life and well-being. This power of food appropriation is definitely localized in certain cell-substances, the so-called "cell-receptors," which have combining affinities for food-substances. These food receptors have been conceived as standing in the same relation to the main body of the cell that the side-chains of certain complex chemical molecules of known composition hold to the

¹ Mikuliez: Archiv. f. klin. Chirurg., 1904, 73, p. 347.

² An excellent résumé of the history of research on opsonins is given by Hektoen in the Middleton-Goldsmith lecture, Jour. Amer. Med. Assoc., 1906, 46, p. 1407.

³ Ehrlich: "Studies on Immunity," New York, 1906.

central molecular nucleus. The receptors may be of simple constitution, adapted to the taking up of relatively simple substances, or they may be very complex and able to anchor large and complex proteid molecules of various kinds. Each cell may contain a large number of receptors of different affinities and degrees of complexity.

It is a plausible conception that when bacteria or other alien cells or their products are introduced into the body, the combining affinities of certain receptors may be satisfied by bacterial substances just as by the similarly constituted food molecules. The anchoring of toxic substances, however, unlike that of food-substances, is followed by damage to the cell and loss of the particular side-chain or receptor that unites with the toxic element. When injury to the main body (Leistungskern) of the cell is not carried too far, repair can take place and the receptors be regenerated. Following a principle enunciated by Weigert respecting regeneration of tissue cells, there is a tendency, in such cases of regeneration of lost parts, toward overcompensation, receptors being formed in excess of the needs of the cell and the surplus being discharged into the blood-stream. These free receptors are the antibodies, the antitoxins, agglutinins, antibacterial substances, and the like. The diphtheria antitoxin in the blood, then, is the same substance which, when in the cells, may be a peril to the cell by virtue of its affinity for the diphtheria toxin. If the toxin did not find in the body any substance with which it could combine—for which, in other words, its haptophore group (p. 118) possessed an affinity—it would be wholly inert and impotent as far as that organism was concerned. When, however, the free receptors are brought in contact with the toxin either inside or outside of the animal body, they unite with the haptophore group of the toxin molecule, thereby preventing the latter from entering into combination with the cell-receptors and perhaps damaging the cell irreparably.

There is evidence that the various bacterial toxins become bound in each case to particular cells of the organism. The tetanus toxin when mixed *in vitro* with emulsions of fresh organs manifests an affinity for different organs in different animals. In man, the horse, and the guinea-pig only the central nervous system is able to bind the tetanus toxin. This is altogether in accord with the clinical and histologic characteristics of tetanus. If a mixture of tetanus toxin and guinea-pig brain emulsion in suitable proportions is injected into

a susceptible animal, the animal is entirely unaffected, just as if tetanus antitoxin (free receptors) had been used in place of fresh cell-substance (cell-receptors). The toxin is firmly bound in both cases and is quite unable to exert its toxic effect. That a real combination occurs between the toxin and the brain-substance is further shown by mixing tetanus toxin and normal guinea-pig brain emulsion and allowing them to remain in contact for a certain period; on centrifugalizing the mixture the supernatant fluid is found to be entirely toxin-free. In some other animals, for example,

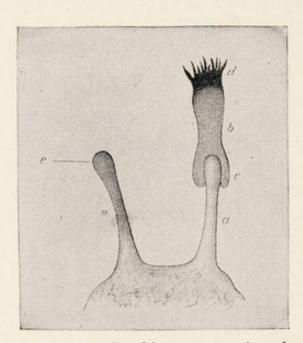


Fig. 27.—Graphic representation of receptors of the first order and of toxin uniting with the cell-receptor: a, Cell-receptor; b, toxin molecule; c, haptophore of toxin molecule; d, toxophore of toxin molecule; e, haptophore of the cell-receptor (Ehrlich).

the rabbit, other organs besides the central nervous system are capable of binding the tetanus toxin.

Metchnikoff has shown that the alligator injected with tetanus toxin does not sicken, and that this is because of the lack of sensitiveness of its central nerve-cells to the toxophore group; experiments in vitro prove that certain organs of the alligator are able to bind the tetanus toxin, and, furthermore, in accord with this, tetanus antitoxin is produced by injection of tetanus toxin into the living alligator. It follows that antitoxin production does not necessarily depend upon

the susceptibility of a given animal to a given toxin. It is sufficient that the animal possesses receptors able to bind the haptophore group of the toxin. So far as antitoxin formation is concerned, it would seem to be a matter of indifference whether or not the toxophore portion of the toxin molecule is present to injure the cell.

The constitution of bactericidal sera is more complex than that of antitoxic sera, as already pointed out, and the mode of action of the former is correspondingly less simple. Ehrlich has postulated the existence in the living cell of three kinds of receptors, designated respectively as of the first, second, and third order (Figs. 27, 28, 29).

The receptors of the first order are the simplest, being those which unite with the toxin, and, if regenerated in excess, appear in the blood-stream as antitoxin (Fig. 27, a). The receptors of the second order are supposed to be more complex and adapted to the assimilation of relatively complex protein molecules (Fig. 28, c). The agglutinins are considered to be receptors of this nature. The agglutinins are quite resistant to heat, 70 to 80 degrees, as a rule, being needed to effect their disappearance, and, once removed from

the serum, no reactivation can be effected by the addition of fresh normal serum. In this respect the purely agglutinative serum differs from the unheated sera containing receptors of the third order.

In the case of the bactericidal sera the specific antibody (receptor of the third order) possesses two affinities, one for the specific bacterial cell, one for the labile, activating substance present in normal serum (Fig. 29). The peculiar function of the antibody lies in bringing together in close relation this ingredient of

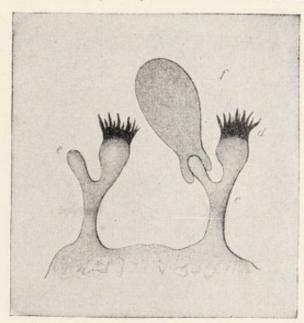


Fig. 28.—Graphic representation of receptors of the second order and of some substance uniting with one of them: c, Cell-receptor of the second order: d, toxophore or zymophorous group of the receptor; e, haptophore of the receptor; f, food-substance or product of bacterial disintegration uniting with the haptophore of the cell-receptor (Ehrlich).

normal serum and the bacterial cell; hence it has been called the intermediary body (Zwischenkörper), but in more recent nomenclature it is known, in agreement with Ehrlich's conception of its nature, as the amboceptor. The constituent of normal serum is designated by Ehrlich and his followers as the complement. Every amboceptor is consequently possessed of two different combining groups: the complementophile, having an affinity for the complement, and the cytophile, having an affinity for some specific cell. A number of different amboceptors may coexist in the body of the same animal; the blood of one animal may be bactericidal for a variety of different microbes, and the specific amboceptor for one kind may be removed

by appropriate methods without affecting those of other affinities. The complement, on the other hand, is not specific and is probably a substance common to the serum of the higher animals.

Since it is assumed to be the active agent in the various cytolytic sera, the question arises as to the nature of this substance, and here it must be admitted that little or nothing is known beyond the bare physical characteristics already stated. At one time the complements were supposed to be of an enzyme nature, but there is little to support this view.

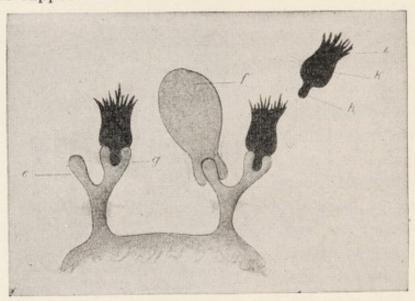


Fig. 29.—Graphic representation of receptors of the third order, and of some substance uniting with one of them: c, Cell-receptor of the third order, amboceptor; e, one of the haptophores of the amboceptor with which some food substance or product of bacterial disintegration, f, may unite; g, the other haptophore of the amboceptor with which complement may unite; k, complement; h, the haptophore, and z, the zymotoxic group of the complement (Ehrlich).

Along the line of Ehrlich's receptor theory, Welch¹ has introduced the conception of the throwing-off of antibodies by pathogenic micro-organisms within the body of their host. Just as the cells of the host generate substances antagonistic to the cells of invading parasites and their products, so it is supposed that the parasites, by a similar mechanism, may produce amboceptors with affinities for certain tissue-cells. Linked with a suitable complement such amboceptors may exert a poisonous action upon the cells of the host.

(e) The Neisser-Wechsberg Phenomenon.—A singular phenomenon, studied especially by Neisser and Wechsberg,² is the

¹ Welch: Bull. Johns Hopkins Hosp., 1902, 13, p. 285.

² Neisser and Wechsberg: Münch. med. Wchnschr., 1901, 48, p. 697.

reaction obtained when varying amounts of immune serum are added to constant volumes of normal serum and bacterial emulsion. When very small amounts of immune serum (amboceptor) are added, no bacteriolysis takes place; on increasing the amount of immune serum complete bacteriolysis finally occurs; but on adding still greater quantities of immune serum, bacteriolysis once more fails to appear. From these and similar experiments it was concluded by these investigators that a "deviation of complement" occurs under conditions where the amboceptors are in great excess, that is to say, the complement unites with the unbound amboreptors rather than with the amboceptors that have become attached to the bacterial cells. Hence with a limited amount of complement some of it is deviated away from the amboceptor-antigen complex to the free amboceptor and is consequently unable to cause bactericidal action. There is considerable doubt whether this is a correct interpretation of the Neisser-Wechsberg phenomenon. Indeed, it is generally agreed today that of all the conceivable interpretations, this is the least likely because there is no single experimental observation in harmony with the assumption that amboceptor and complement combine directly. The phenomenon is more simply explained as due to the presence in excess of one of the reagents in a colloidal mixture and to the interfering effects commonly caused by such an excess in colloid reactions.

- (f) Complement Fixation or the Bordet-Gengou Phenomenon.— This is a reaction of great practical and theoretical interest. The nature of the reaction may be illustrated as follows:
- (A) Complement (fresh guinea-pig serum) + typhoid bacilli + inactivated normal rabbit serum.
- (B) Complement (fresh guinea-pig serum) + inactivated normal rabbit serum.
 - (C) Typhoid bacilli + inactivated normal rabbit serum.
- (D) Complement (fresh guinea-pig serum) + typhoid bacilli + inactivated antityphoid rabbit serum.
- $(E)\;$ Complement (fresh guinea-pig serum) + inactivated antityphoid rabbit serum.
 - (F) Typhoid bacilli + inactivated antityphoid rabbit serum.

If these mixtures are incubated for a few hours and then rabbit corpuscles that have been "sensitized" with inactivated serum specifically hemolytic for rabbit corpuscles added to each mixture hemolysis will occur in all except (C) and (F), which contain no

complement, and (D) in which the specifically sensitized bacilli have absorbed the complement and so prevented its subsequent action on the sensitized erythrocytes added. That is, the mixture of complement, antigen (typhoid bacilli), and specific antibody (alexin in the immune typhoid serum) is no longer capable of producing hemolysis. This is interpreted as meaning that the bacilli when specifically sensitized absorb or fix the complement and thus prevent its action on the sensitized erythocytes subsequently added.

The complement fixation reaction is used extensively in the diagnosis of several infectious diseases, notably of syphilis in the "Wassermann reaction." (For details of technic, see p. 533.) It is also used to some extent for the identification of bacterial species. In such mixtures as those described, if the specific antibody is present, the complement is fixed and no hemolysis occurs when sensitized red corpuscles are added; if the specific antibody is absent, the complement is of course free to complete the hemolytic system, and hemolysis will result.

It is now generally agreed that Ehrlich's qualitative receptor analysis of immunity and immune reactions has outlived its usefulness. From the presentation which has been given in the preceding pages, it must be apparent that it is only an ingenious application to immune processes of an hypothesis on cell nutrition and injury that has long since been discarded by students of physiology and pathology. Ehrlich's hypotheses have crumbled under the weight of the special assumptions which were necessitated by each new discovery. Recent investigators have found it more profitable to discard Ehrlich's hypotheses in favor of conceptions borrowed from colloid chemistry. As rapidly as the dynamics of colloid systems are elucidated and become familiar to students of infectious disease, they are being applied profitably to the study of immunity. It is not yet timely to formulate a general theory on these grounds. Hence, Ehrlich's pictures are still retained, although their values are doubtful.1

OTHER REACTIONS PRODUCED BY BACTERIA AND OTHER ANTIGENS

When bacterial cells and their products are injected into an animal, the cells of the animal react in such a way as to give rise

¹ For a trenchant criticism of the side-chain theory see Manwaring: Jour. Immunol., 1926, 12, p. 177.

to a variety of substances besides the antitoxins and bacteriolysins (amboceptors) already considered. Among the better known and most important of these are the agglutinins.

(a) The Agglutinins.—If the blood or blood-serum of an animal previously inoculated with the typhoid bacillus is added to a suspension of typhoid bacilli, the latter soon become motionless, and after a while the individual bacilli become aggregated in irregular masses. The same process of clumping usually occurs if, instead of the blood of an injected animal, the blood of a typhoid fever patient be employed. The reaction is specific, although not absolutely so. That is, the serum of either a typhoid patient or an animal injected with typhoid bacilli will agglutinate typhoid bacilli in high dilutions, while other bacilli, as a rule, are unaffected, although it is true that those more closely related to the typhoid bacillus, such as Bact. coli and the paratyphoid bacilli, may be slightly clumped, especially by the lower dilutions. Many other bacteria are agglutinated in a similar manner by their respective antisera.

The agglutination of bacteria by blood-serum has been utilized in two ways: first, in the diagnosis of certain specific diseases like typhoid fever, where the serum from the suspected case is added in appropriate dilutions to a suspension of typhoid bacilli; and, second, in identifying bacteria, for which purpose a serum of known agglutinating properties is mixed with a suspension of the germ whose character is to be determined. The former, the Gruber-Widal test, has come to be extensively used in the diagnosis of typhoid fever, and when carefully controlled, is a valuable aid in diagnosis. The identification of bacteria by the agglutinative reaction is, on the other hand, less satisfactory, and there are many objections to its unqualified acceptance.

Technic.—The technic of the agglutination test calls for the observance of manifold precautions. An agar culture eighteen to twenty-four hours old is preferably employed. From this a faintly turbid suspension in sterile physiologic salt solution is prepared. The suspension of the bacteria must be homogeneous; for some cultures a thorough shaking will suffice, for others recourse must be had to passage through filter-paper. In any case a uniform method of preparation must be employed in every series of experiments, and care taken to obtain as nearly as possible the same number of

bacteria in a given volume of the suspension. The nature and reaction of the medium on which the bacteria are grown, the age of the strain and its origin, and other factors influence the course of

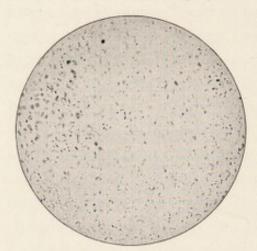


Fig. 30.—Typhoid bacilli, unagglutinated.

agglutination. Some strains are naturally more readily agglutinable than others; some may be inagglutinable even by a potent serum.

The serum for the test may be obtained from a blister made by the application of a cantharides plaster, or from blood drawn from the earlobe or finger-tip and centrifugalized or allowed to clot in a sterile tube. The substance in the serum that causes the agglutination of the bacteria is known as agglutinin. It is

fairly permanent and may persist in dried blood or serum for a long time in unchanged strength. In public health work a few drops of blood may be dried on a strip of aluminum foil, filter paper

or other substance which is then mailed to a central laboratory, where flakes or extracts of the dried blood are weighed and dissolved in appropriate amounts of salt solution so that the test is made as accurately as with fresh blood.¹

Graduated dilutions of the serum or blood with physiologic salt solution are mixed with measured quantities of the bacterial suspension, and the process of agglutination followed either with the naked eye

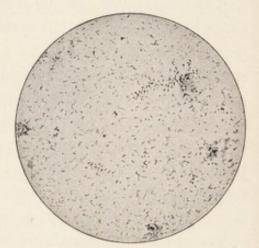


Fig. 31.—Typhoid bacilla partially agglutinated.

or with the microscope. The examination with high-power lenses shows a gradual cessation of motility in such organisms as the typhoid bacillus, accompanied by the sticking together first of a few cells, then of larger numbers, until in typical and decisive reactions large masses of agglutinated cells are plainly visible with a low-power lens. The maximum clumping is generally

Wesbrook: Jour. Infect. Dis., Suppl. No. 1, 1905, p. 315.

reached in about six to eight hours (Figs. 30, 31, 32). Sometimes "spontaneous agglutination" occurs, so that a suspension to which no serum has been added should always be observed along with the others, in order to avoid this source of error.

The naked-eye test gives, as a rule, more trustworthy results than the microscopic. Varying dilutions of serum are mixed with a definite quantity of bacterial suspension in small thin-walled glass tubes, and placed in the incubator. The tube containing only the bacterial suspension remains cloudy, while those tubes to which agglutinating serum is added show a general clearing-up of the fluid, ranging from the appearance of a flaky deposit on the walls of the tube, with high dilutions of serum, to a complete sedimentation of

the bacteria and clear supernatant fluid in the low dilutions.

A convenient procedure is as follows: Small quantities of the serum are diluted with sterile salt solution (0.8 per cent NaCl) so as to effect the desired dilutions (for example, 1:50, 1:100, 1:500, 1:1000). Filtered suspensions in salt solution of a twenty-four-hour agar culture of the organism tested should be used. To obtain the dilution desired, mixtures of the serum dilution and the suspen-

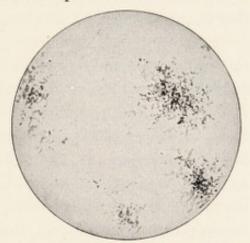


Fig. 32.—Typhoid bacilli, showing typical clumping by typhoid serum.

sion may then be made. The tubes are incubated at 37 C., usually for two hours, and then placed in the refrigerator for sedimentation. When complete agglutination takes place bacteria collect in clumps at the bottom, forming a flocculent sediment and leaving the supernatant fluid clear. Control tubes of the bacterial suspension without serum and with normal serum should be carried in each series.

Temperatures above 60 C. diminish the agglutinability of bacteria; the agglutinin also is weakened by heating to from 60° to 70°, and is destroyed at 75°. Serum dried and protected from light retains its power indefinitely.

Properties and Mode of Action of Agglutinins.—Agglutination is brought about by the chemical interaction of two substances, one a constituent of the agglutinating serum, the agglutinin, the other

a bacterial substance, the agglutinogen. The latter substance receives its name from the fact that when introduced into the animal body it stimulates the formation of agglutinin. In terms of Ehrlich's receptor theory the agglutinogen contains a haptophore or combining group, which enables it to unite with certain receptors of the tissue cells. These are said to be "receptors of the second order" (Fig. 28), and to contain a haptophore group which binds them to the agglutinogens, and a zymophore group of enzyme-like activity which brings about the change in bacterial cells that leads to their agglutination. The phenomena of agglutination, however, are so complex that no relatively simple structural hypothesis fits the facts. The most plausible explanation is a colloidal reaction, due to a process of molecular adhesion.

It is essential that some mineral salt be present in order that agglutination shall occur. Following out this clue, considerable light has been shed on the real nature of the agglutinating process. It is found that the same laws that govern the precipitation of colloids in suspension and finely divided particles, like kaolin, also hold for the agglutination of bacteria. The ability of a salt to agglutinate bacteria and to precipitate colloids depends on the degree of dissociation and the valency, speed of migration, and decomposition tension of the kation. In a word, agglutinin is supposed to reduce the amount of negative electricity with which bacteria are charged and so render the bacteria more susceptible to the precipitating action of the salts.¹

There is reason to believe that specific agglutination occurs in two phases: first, the union of antibody and antigen, that is, the sensitization of the specific bacteria by the agglutinating serum; second, the flocculation of the sensitized bacteria by the electrolytes present in the fluid. It has been suggested that the first phase consists in a specific coating of the bacteria by the globulin of the antibody. The two reactions may of course go on simultaneously. Whatever the explanation, the reason for the specific character of the union between bacterium and antibody remains quite unknown, that is, the reason why the globulin of antityphoid serum should coat the typhoid bacillus but not the dysentery bacillus. In the second phase the bacteria, by virtue of their coating, behave like

¹ An excellent summary of the physico-chemical conception of agglutination has been given by Buchanan (R. E. Buchanan: Jour. Bact., 1919, 4, p. 73).

particles of denatured protein and flocculate when their charge is reduced to a critical level.

Not bacteria only, but other free cells, are clumped both by normal and immune sera. The red blood-cells of any species of animal are agglutinated by the serum of an animal which has been previously injected with cells of similar origin. The "hemagglutinins," so far as they have been studied, resemble the bacterial agglutinins in all essential features. Some bacterial cultures have been found to contain hemagglutinins, and it is possible that the thrombi observed in the blood-vessels after death from certain infectious diseases may be due to hemagglutinins of bacterial origin.

Substances that agglutinate bacteria and erythrocytes are found in the blood of many normal animals. The serum of a young uninoculated horse, for example, has been observed to agglutinate paradysentery bacilli in a dilution of 1:1000 (Park). The relation between normal and immune agglutinins is not known.

Group Agglutination.—The serum of an animal inoculated with a given micro-organism agglutinates not only the particular species used for inoculation, but very often also other organisms biologically related to the infecting agent. As a rule, agglutination of the organism used for inoculation, the so-called "homologous" organism, is the most marked, that is, it will occur with higher dilutions of serum than is the case with other organisms of the same group. Thus the serum of a rabbit inoculated with typhoid bacilli shows a higher agglutinating power for the typhoid bacillus than for other members of the colon-typhoid group, although the agglutinating value of the serum for S. enteritidis, Bact. coli, or other members of the group may be distinctly greater than that of normal serum. Sometimes, however, the accumulation of "group agglutinins" and "specific agglutinins" seems to follow a very irregular course. This is especially true in the serum of an animal like the horse, which contains a high proportion of normal agglutinins, so that group agglutinins may be even more abundant than specific agglutinins after repeated injections. Park has observed one instance where the serum of a horse after eighteen injections with the "Manila" strain of the paradysentery bacillus agglutinated a colon bacillus more strongly than it did the homologous organism.

¹ Park: Jour. Infect. Dis., Suppl. No. 2, 1906, p. 1.

The absorption or saturation test of Castellani (1902) based on the discovery of absorption of agglutinins by Bordet (1899) has proved of practical value in eliminating the source of error due to group agglutination. It was shown by Castellani that the serum of an animal immunized against a certain micro-organism, when saturated with that micro-organism, loses both its agglutinating power for that organism and also for all the other varieties it originally acted upon. Thus immune serum A which agglutinates the homologous organism A and the related organisms B and C (group agglutination) will lose its agglutinating power for all these organisms when absorbed by a suspension of organism A. If, however, it be absorbed by organism B it will lose all its agglutinating power for B, but it will agglutinate A as strongly as before. The absorption test has been widely used in studies on the typhoid-paratyphoid group and on meningococci. Its value in differentiation within certain other groups is still in question. The technic of the absorption test is important. The size of the minimum absorbing dose necessary to remove all the agglutinins must be carefully determined. In the final test the dose of the homologous organism should be somewhat but not greatly in excess of the minimum. In all absorption tests little weight should be attached to slight differences in agglutination.

The application of this test may be shown by an example. The undifferentiated organism X is agglutinated by the serum of animals immunized to A and B.

Organism	Immune Serum A Titer ¹	Inmune Serum B Titer	Immune Serum X Titer
Α	5000	3000	5000
B	3000	5000	5000
X	3000	3000	5000

Organism	Immune Serum A Absorbed by A	Immune Serum A Absorbed by B
A	0	5000
B	0	0
X	0	0

¹ The "titer" is the highest dilution of the serum which causes complete or nearly complete agglutination of the bacteria.

Organism	Immune Serum X Absorbed by A	Immune Serum X Absorbed by B
A	0	3000
B	5000	0
X	5000	0

It is evident that so far as agglutination reactions are a criterion of relationship, organism X belongs with B rather than with A, although the ordinary agglutination tests with unabsorbed serum did not make this apparent.

The Relation between Agglutinating and Bactericidal Power.—Although some observers have maintained that there is a direct relation between the agglutinating and bactericidal properties of a serum, the following facts show that bacteriolysins and agglutinins may be entirely distinct: (a) The bactericidal power of a serum is destroyed at 56°, while the agglutinins resist a temperature of 62° or higher. (b) In the serum of an animal injected on successive dates with a bacterial culture the respective increases in the bactericidal and agglutinating power do not run a parallel course or indeed show any connection. (c) The agglutinins may be absorbed from a serum, leaving the bactericidal power of the serum unimpaired.

(b) The Precipitins.—When the germ-free filtrates from broth cultures of bacteria are mixed with the respective antisera produced by animal inoculation the formation of a powdery precipitate occurs.¹ The precipitation thus produced is approximately specific in its nature, the filtrate from a typhoid culture giving a precipitate with typhoid immune serum, but not, for example, with cholera immune serum. The substance in the immune serum that provokes precipitation has been termed *precipitin*.

Bacterial precipitins are by no means the only kind that may be produced by this method. A great variety of albuminous bodies when injected into animals give rise to corresponding antibodies which possess the power of causing precipitation of the substance used for inoculation. Injection with milk brings about the formation of a precipitin which throws down the casein of the milk used for injection, but does not act on the casein of the milk of other animals. Egg-albumin likewise gives rise to precipitins that are ¹ Kraus: Wiener klin. Wchnschr. 1897, 10, p. 736.

specific. Indeed any antigen may arouse the production of precipitating antibodies, whether or not other antibodies (lytic, agglutinative, etc.) are demonstrable.

A particularly important development in the study of the precipitins has been the utilization of the specific character of the reaction for the purpose of medicolegal investigation. The serum of an animal which has been injected with human blood produces a precipitate when mixed with human blood even in high dilutions but has no such effect upon the blood of the lower animals. A simple, delicate, and highly trustworthy method for distinguishing human blood-stains is thus afforded, and the value of the precipitation test in skilled hands has been abundantly demonstrated.

The rabbit is the most suitable animal for the preparation of precipitating antisera. The initial dose should be small, about 2 cc., for example, in the case of an animal serum, and this may be followed at intervals of five to seven days by gradually increasing doses-about 3, 5, 8 cc.-up to six or seven times the original amount. About one week after the last injection the animal is bled, the serum collected, filtered through a Berkefeld filter to insure perfect clarity, and sealed in small brown glass tubes, without addition of any preservative, until needed. For the best results a precipitating antiserum should be of high potency. According to Uhlenhuth, who has had extensive experience with the test in forensic medicine, such a serum should have the following titer: "Upon addition of 0.1 cc. of the serum to 2 cc. of the corresponding blood solutions diluted 1:1000, 1:10,000, and 1:20,000, the reaction should appear almost instantaneously in the thousandth, within three minutes in the ten-thousandth, and within five minutes in the twenty-thousandth dilution; turbidity is observed at the bottom of the small test-tube, which should not be shaken after the serum has been added." With such a high-potency serum very dilute solutions of the protein to be examined must be prepared. Solutions in normal saline solution corresponding approximately to a thousandfold dilution of the protein give satisfactory results.

By the use of this method remarkable results have been obtained by Uhlenhuth² and others.

¹ Hektoen: Jour. Amer. Med. Assoc., 1918, 70, p. 1273.

² Uhlenhuth: "Praktische Anleitung zur Ausführung des biologischen Eiweissdifferenzierungsverfahrens mit besondere Berücksichtigung der forensichen Blut- und Fleischuntersuchung," Jena, Gustav Fischer, 1909.

A butcher, accused of robbing and murdering three persons, stated that certain blood-stains found on his shirt sleeves were referable to his having slaughtered a calf. By the biological method, however, the human origin of the blood was proved. This result was an important link in the chain of circumstantial evidence which was so convincing that the accused was condemned to death. Shortly before his execution he made a full confession.

In a poaching case, one of the accused persons, who was also suspected of being a receiver of stolen goods, asserted that blood-stains found on his meat-chopping board were not due to deer's blood, but to that of wild ducks. By the biological method, however, we determined the presence of deer's blood, besides that of ducks, thus proving the guilt of the accused.

One of Uhlenhuth's interesting discoveries is the observation that antiserum obtained from closely allied species affords the best means for determining the differentiation of certain organisms. The serum of monkeys inoculated with human blood gives a marked turbidity with solutions of human blood, while not reacting at all with monkey's blood. Such a separation is difficult if not impossible when an antiserum from the rabbit is used. In the same way the antiserum from a rabbit inoculated with fowl's blood gives a precipitate with both fowl's blood and pigeon's blood, but if pigeons be inoculated with fowl's blood the resulting serum precipitates fowl's blood and does not react at all with pigeon's blood.

By this method also it has been found that Anopheles mosquitoes feed not only upon man, but also upon cattle and pigs.

The substance that reacts with the precipitin (precipitinogen) seems to persist for a long time (at least sixty-six years) in dried blood; mixture with other bloods does not invalidate the reaction. While the blood-precipitins are highly specific, they may produce a slight reaction with the sera of animals biologically related. The phenomenon of blood precipitation has been utilized by Nuttall and others for the purpose of throwing light upon the biologic affinities of forms of animal life. Nuttall has established the interesting fact that the precipitin produced by human blood will throw down a more abundant precipitate from the blood of the old-world monkeys than from that of the South American species.

The precipitation test has also been applied to the differentiation and identification of meats. By its aid horse meat, for example,

¹ The subject of precipitation is treated with great clearness and fulness in a monograph by Nuttall: "Blood Immunity and Blood Relationship," Cambridge, England 1904.

may be distinguished from beef. It may be used in the identification of any antigenic substance, especially of any complete protein.

The Mechanism of Agglutination and Precipitation.—The phenomena of precipitation and agglutination are essentially the same. Recently some significant advances have been made toward an elucidation of the mechanisms involved. It appears that the antigen in either case is, or is very similar to, a particle in the colloidal state and bears an electro-negative charge (i. e., is electro-negative in comparison with the fluid in which it is suspended). The normal stability of the antigen solution or suspension probably depends upon the balance of three types of forces: those associated with the Brownian movement, which serve to overcome gravitational sedimentation; surface tension of the fluid on the surface of the particles, which tends to bring the individual particles together; and the mutual repulsion of the particles because of their common electronegative charge, which functions to counterbalance the cohesive force of surface tension.1 Upon the introduction of any substance which increases the cohesive forces or sufficiently reduces the electrical charges there follows agglomeration, flocculation and precipitation of the antigen. Reduction of the electrical charge is probably of greater significance than increase of the cohesive forces. On proteins2 and on bacteria,3 the electrical charges are commonly greatest in distilled water near neutrality. The addition of salts, acids, or alkalis reduces the charge, and if these are present in sufficient amount precipitation and agglutination occur. The charges appear to have their origin in conditions (the Donnan equilibrium) which are dependent upon the semi-permeability of the colloidal or bacterial surface, and in the case of bacteria appear to be independent of the viability of the organisms. This is in harmony will the well-known observation that a suspension of dead bacteria will serve as well as live bacteria in an agglutination test. When an immune serum is added to a suspension of bacteria the negative charge on the cells is reduced, and if the serum is added in appropriate dilution the charge is brought within the

¹ It is not entirely certain, although recent studies have rendered it probable, that these are only surface tension forces.

² Loeb, J.: "Proteins and the Theory of Colloidal Behavior," New York, 1922.

³ Northrop and DeKruif: Jour. Gen. Physiol., 1921–22, 4, p. 639; Winslow, Falk and Caulfeild: Jour. Gen. Physiol., 1923, 6, p. 177.

agglutination zone. If too little serum is added the charge is insufficiently reduced, and if too much is added the charge is inverted (the bacteria become electro-positive) and no agglutination occurs in either case. The stabilizing effect of an excess of serum (normal or immune) which inverts the charge probably accounts for the so-called "pro-agglutinoid zone." Electrolytes (acids, alkalis, and neutral salts), like sera, modify the charges on colloids or bacteria, and their effects in a precipitation or agglutination reaction are probably directly cumulative with those of the immune body. The rôle of NaCl in agglutination tests is probably of such an order. The discovery that the precipitation reaction—like the agglutination reaction—is dependent upon the hydrogen ion concentration1 and is delimited by PH values which approximate the points at which the antigen begins to lose its charge, makes it seem highly probable that precipitin, like agglutinin, either is, or simulates, an electro-positive substance. It is significant that entirely similar substances are present in normal sera.² The more specific identity of these bodies and, indeed, the identity of agglutinin and precipitin are still entirely uncertain.

(c) Specific Soluble Substances—Residue Antigens.—It was found by Zinsser and his associates³ that certain nonprotein constituents of bacterial cells are definitely specific and have an immunological value. These remarkable substances fall in the group of incomplete antigens to which Landsteiner has given the name haptenes. They react specifically with antibodies, but when injected into an animal are not themselves capable of provoking antibody formation.

The chemistry of these specific soluble substances has been studied especially by Avery and Heidelberger.⁴ The specific soluble substances of the pneumococci, for example, have been found to be of a carbohydrate nature. Each fixed type of pneumococcus (Types I, II and III) (p. 239) contains a chemically different carbohydrate (polysaccharide) which reacts with the serum that

¹ Mason: Bull. Johns Hopkins Hosp., 1922, 33, p. 116; Hirsch: Jour. Infect. Dis., 1923, 32. p. 439; Falk and Caulfeild: Jour. Immunology, 1923, 8, p. 239.

Northrop and DeKruif: Jour. Gen. Physiol., 1921-22, 4, p. 639.

³ Zinsser: Jour. Exper. Med., 1921, 34, p. 495; Zinsser and Mueller: Jour. Exper. Med., 1925, 41, p. 159.

⁴ Avery and Heidelberger: Jour. Exper. Med., 1923, 38, p. 81; 1925, 42, p. 367.

has been produced by immunizing an animal with the homologous type of pneumococcus. The antiserum of Type I precipitates solutions of the corresponding carbohydrate. As pointed out by Avery, therefore, immunization of an animal with whole intact pneumococcus cells leads to production of a specific agglutinating substance, and of a precipitating substance specific for the type. Injection of the specific polysaccharides alone does not lead to antibody production. Injection of the isolated free cell protein gives rise to protein antibodies (not agglutinins) that are specific for the species but not for the type. The specific soluble substance in those bacteria that have been studied is closely related to, if not identical with, the capsular substance of the cell.

Different kinds of bacteria yield specific soluble substances that may differ markedly in chemical constitution. Avery and Heidelberger have summed up the significance of their studies in these words: "If final proof be brought for the conception that the capsular zone of the organism is largely composed of the carbohydrate substances, is part of the defense mechanism of the cell and is the site of its initial contact with antibody, then these soluble bacterial polysaccharides acquire new significance not only in the serological reactions of the cell, but in the actual processes of infection and immunity in the host."

Since the presence of type-specific polysaccharides in organisms such as the pneumococci and Friedländer's bacillus determines the antigenic properties of the cell and the serological relationships of different strains, it is important to note the striking influence of stereochemical specificity on serological properties. Landsteiner and van der Scheer¹ have shown that antigens composed of a protein coupled, in turn, with levo-, dextro- and meso-tartaric acids, will produce immune sera which differentiate distinctly the three antigens. Furthermore, Avery and Goebel² have demonstrated that when two chemically different carbohydrates, such as dextrose and galactose, which differ from each other only in specific rotation and molecular configuration, are bound to the same protein, the newly formed antigens exhibit distinct immunological specificity. On the other hand, "when the same carbohydrate radical is conjugated with two chemically different and serologically distinct projugated with two chemically different and serologically distinct pro-

¹ Landsteiner and van der Scheer: Jour. Exper. Med., 1929, 50, p. 407.

² Avery and Goebel: Jour. Exper. Med., 1929, 50, p. 533.

teins, both of the sugar-proteins thus formed acquire a common serological specificity."

(d) Anaphylaxis or Hypersensitiveness-Allergy-Protein Sensitization. 1—Animals injected with certain substances become sensitized or rendered hypersensitive to a subsequent injection with the same substance. The name anaphylaxis (Gr. against protection) has been used (Richet) for this phenomenon to explain its apparently opposite character to the protective effect of immunization. The nature of the reaction is illustrated by the "Theobald Smith phenomenon" (1904). Smith observed that guinea-pigs which had been injected with horse-serum in the course of work on the standardization of diphtheria antitoxin developed striking symptoms, frequently fatal, if they were given a second injection of horse-serum some days later. The hypersensitiveness of rabbits caused by repeated injection of horse-serum was also clearly shown by the work of Arthus² (1903). The study of this reaction was taken up by Otto in Germany and by Rosenau and Anderson³ in the United States. Zinsser4 has given a clear description of the anaphylactic reaction in the guinea-pig. "If a properly sensitized guinea-pig receives a second injection of an antigen after a suitable incubation time, a very characteristic train of symptoms ensues. There is usually a short preliminary period—lasting either a fraction of a minute or several minutes according to the violence of the reaction and the mode of administration—during which the pig appears normal. At the end of this time the animal will grow restless and uneasy, and will usually rub its nose with its forepaws. It may sneeze and occasionally emit short coughing sounds. At the same time an increased rapidity of respiration is noticeable and the fur will appear ruffled. In light cases the animals may remain in this condition, with further irregularity and difficulty of respiration, possible discharges of urine and feces; then gradual slow recovery may set in, with complete return to normal in from thirty

¹ See summaries by Zinsser, H.: Arch. Int. Med., 1915, 16, p. 223; Coca, A. F.: Tice's Practice of Medicine, Prior and Co., New York, 1920; Boughton, T. H.: Jour. Lab. and Clin. Med., 1920, 5, p. 597; Wells, H. G.: "Chemical Pathology," 4th ed., Philadelphia, 1920, p. 191; Physiol. Reviews, 1921, 1, p. 44.

² Arthus: Compt. rend. de la Soc. Biol., 1903, 55, p. 817.

³ Rosenau, M. J., and Anderson, J. F.: Bull. 29, Hyg. Lab. Mar. Hosp. Service, 1906.

⁴ Zinsser, H.: "Infection and Resistance," New York, 1914, p. 363.

minutes to several hours. In more severe cases these preliminary stages are rapidly followed by great apparent weakness. The animals fall to the side, the legs and trunk muscles twitch irregularly, and the respiration becomes slow and shallow; the thorax never entirely contracts, but remains in a more or less expanded condition. The very evident dyspnea is of an inspiratory character. The excursions of the lung itself seem to grow shallower and shallower in spite of apparent strong inspiratory efforts, the volume of the thorax and lung remaining in the expanded condition. At this stage evidences of motor irritation may appear, in that the animal may arise and attempt to run. More often, however, in this phase general convulsions set in, often several times repeated, and in these the animals usually die.

"On the other hand, after cessation of convulsions they may lie perfectly still on the side, as though paralyzed, the breathing becoming gradually slower and more shallow, finally ceasing entirely. The heart may continue to beat for a considerable time after the breathing has stopped."

A definite period must always elapse between the first and second injection in order that the toxic effect shall be manifested. In the sensitization of guinea-pigs against horse-serum this period, as a rule, is from ten to twelve days. The toxic action of the horse-serum upon the guinea-pig has been studied with especial fulness. Sensitization may be effected by very small quantities; Rosenau and Anderson reported that in one instance 0.000,000,1 cc. of horse-serum was sufficient to render a guinea-pig susceptible. Wells, using pure protein, has shown that the minimum sensitizing dose of crystallized egg albumen is 0.000,000,05 gram and the minimum fatal sensitizing dose 0.000,001 gram the fatal reacting dose being intravenously 0.000,05 gram and intraperitoneally 0.000,5 gram.

The liability to react hypersensitively is transmitted from mother to offspring, the young of actively sensitized female guineapigs being themselves hypersensitive. The male does not transmit this quality. Passive hypersensitiveness may be induced by transfer of serum from a sensitized animal to a normal one. Animals

¹ Rosenau and Anderson: Bulls. 29, 30, 36, Hyg. Lab. Mar. Hosp. Service; Jour. Infect. Dis., 1908, 5, p. 85.
² Wells and Osborne: Jour. Infect. Dis., 1911, 8, p. 66.

that survive the second dose of protein are desensitized, that is, rendered very insensitive to the specific protein. Isolated strips of smooth muscle are likewise capable of desensitization. Highly immunized animals will not give reactions, probably because of free antibody in the blood preventing the antigen from reaching the sensitized cells. This condition, which is plainly different from desensitization, is called anti-anaphylaxis.

The anaphylactic reaction has also been adequately studied in the dog and the rabbit, with the striking result that in each animal species the symptoms are different, but are always constant for the same species irrespective of the particular antigen used.

Among the most significant observations on anaphylactic shock is the discovery that some of the principal features of the anaphylactic condition can be demonstrated upon a strip of non-striated muscle removed from the body (Schultz, Dale). These experiments have strengthened the belief "that stimulation of nonstriated muscle is an essential, and probably the essential factor of acute anaphylactic shock" (Wells), and it is tempting to suppose that differences in the distribution of nonstriated muscle in the various organs account for the difference in the behavior of various animal species in which a condition of hypersensitiveness has been induced.

For some time anaphylaxis was regarded as an antigen-antibody reaction and the substances capable of behaving as antigens in this particular reaction (anaphylactogens) were believed to be all protein substances. Gelatin and some other incomplete proteins appear to be absolutely devoid of antigenic power. Tomcsik's¹ observations that purified bacterial polysaccharides (page 194) were able to produce fatal anaphylactic shock in guinea-pigs were subject to the criticism that a small amount of nitrogen was present in the substances used. Avery and Tillett,² however, showed that the type-specific carbohydrates of pneumococcus types I, II and III, quite nitrogen-free, produced typical anaphylactic response in guinea-pigs previously sensitized with an homologous antiserum obtained from an immunized rabbit, but not with antipneumococcus horse-serum. This is apparently an instance of true anaphylaxis with nitrogen-free material.

¹ Tomesik, C.: Proc. Soc. Exper. Biol. and Med., 1927, 24, p. 812.

² Avery, O. T., and Tillett, W. S.: Jour. Exper. Med., 1929, 49, p. 251.

The specificity features of the anaphylactic reaction are highly interesting and correspond closely to those exhibited by precipitin and complement fixation reactions. Wells and others have shown that the antigenic specificity of a protein is not determined by its biological origin, but by its chemical composition. Casein from goat milk evokes precisely the same anaphylactic response as casein from sheep milk, but chemically dissimilar proteins from the same animal body fail to show any common immunological relation.

Particular groups within the protein molecule—the aminoacids—are probably responsible for the specificity of anaphylaxis and other antigen-antibody reactions. Both chemical composition and isomeric arrangement doubtless play a part in the close correspondence that exists between antigen and antibody.

Theories of anaphylaxis are essentially of two types, the proteolytic and the physical (or colloidal) explanation. The former is based on the demonstration by Vaughan and others that the protein molecule can be split by various chemical methods into a toxic and a nontoxic portion. The toxic portion when injected produces in animals a condition very similar to that of anaphylactic shock. Such observations were thought to indicate that the second injection of antigen was sensitized by the specific antibody produced by the first injection, and that then the serum complement proteolyzed the antigen, liberating the toxic fraction (anaphylatoxin) with its typical poisonous effects. It was found, however, that isolated muscle tissue shows an immediate response to the specific antigen, and it is difficult to reconcile the absence of an incubation period with the hypothesis of liberation of a poison through proteolytic action. Serum complement has never been shown to be a proteolytic ferment, and attempts to demonstrate the presence of a poisonous substance in the blood of animals in anaphylactic shock have not been successful. Inert substances, such as kaolin, added to normal serum render the serum toxic, as also does the mere clotting of plasma. For these and other reasons the theory that anaphylaxis is due to the products of protein cleavage, supported though it is by a mass of ingenious experiments, has lost ground in the course of recent investigation. While the physical or colloidal explanations are still somewhat vague and indefinite, it is tempting to suppose that alterations in colloidal equilibrium within the living cell are in some way responsible for the anaphylactic phenomena. At all events there seem to be no facts directly contradicting this supposition.

Although there is a good deal of evidence to support the view that precipitins are the anaphylactic antibodies, this is not completely established. Most investigators are agreed that the site of the reaction leading to anaphylactic shock is in or on the tissue cells, and not in the blood. When the blood of a sensitized animal is injected into a normal animal, the latter does not become hypersensitive until six to thirty-six hours later and the development of the sensitization is parallel to the disappearance of the injected sensitizing antibody (precipitin). Hence it is supposed that the anaphylactic state is dependent upon the fixation of the antibody upon the tissue cells.

The relation of anaphylaxis to serum disease, to hay-fever, and to drug hypersensitiveness is far from clear. While acute, undoubtedly anaphylactic reactions to serum injections are sometimes observed in man, the ordinary serum sickness with its skin manifestations is not believed by some investigators to be a true anaphylactic reaction; the evidence is conflicting. Hay-fever is commonly regarded as an instance of sensitization with the pollen of various plants, and strikingly successful therapeutic results have been reported as due to apparent desensitization. Here also there is no unanimity of opinion. The numerous cases of food idiosyncrasy to egg albumin, milk, and other protein foods are well established instances of true anaphylactic reactions; a condition of desensitization may be produced by careful feeding. Coca has used the term atopy to designate the inherited hypersensitiveness of human beings.¹

The relation of anaphylactic reactions to bacterial infection is evident in many ways. Certain features of infectious diseases, such as the period of incubation and various skin reactions, resemble anaphylactic processes. Bacterial proteins, like other proteins, have been shown to give anaphylactic reactions. The relation of anaphylaxis to immunity appears in such phenomena as the immediate reaction to vaccines occurring in some protected individuals,

¹ For a full discussion of this subject see chapter on Atopy by A. F. Coca in Jordan and Falk: The Newer Knowledge of Bacteriology and Immunology, 1928, Chicago, p. 1004.

and the effects observed by Koch when tuberculous guinea-pigs were reinjected with tubercle bacilli; in the latter case the tubercle bacilli introduced were at once disintegrated. The complex changes in the animal body that follow infection with a micro-organism are undoubtedly in part allergic. In tuberculosis some tissues of the body become sensitized against the specific proteins of the growing bacillus and are consequently affected by the injection of tuberculin. The response to the "Dick test" for scarlet fever has been interpreted as an allergic reaction by some investigators. The eruption in scarlet fever and the "rose spots" in typhoid have been also supposed to be allergic in origin. One theory of rheumatic fever is that this disease is primarily an allergic phenomenon.

¹ Zinsser: "Infection and Resistance," 3rd edition, New York, 1923; Wells: "The Chemical Aspects of Immunity," New York, 1925.

CHAPTER 9

THE STAPHYLOCOCCI

Genus: Staphylococcus. Parasites. Cells in groups and short chains, very rarely in packets. Generally stain by Gram. On agar streak good growth, of white or orange color. Dextrose, maltose, sucrose, and often lactose fermented with formation of moderate amount of acid. Gelatin often liquefied very actively.

Type species is Staphylococcus aureus, Rosenbach.

The bacteria most commonly found in boils, abscesses, carbuncles, and similar suppurative processes in man belong to the group of staphylococci. The presence of staphylococci in pus was first shown by Pasteur¹ (1880) and later by Ogston² (1881). Micrococci

were obtained in pure culture by Becker³ in 1883, but their causal relation to the suppuration of wounds and to osteomyelitis was first clearly brought out by the work of Rosenbach⁴ in 1884.

Several races or varieties of staphylococci have been differentiated in the course of later investigation. One of these, Staphylococcus (pyogenes) aureus, is found frequently in connection with pathologic processes in man; the other varieties,

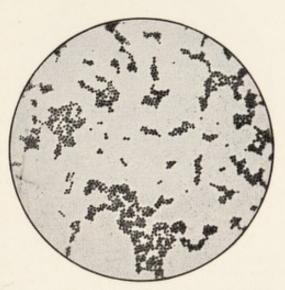


Fig. 33.—Staphylococcus aureus. Fuchsin; × 1000 (Günther).

although very similar, differ in slight particulars from this type. Staphylococcus (pyogenes) albus, for example, is distinguished from Staphylococcus (pyogenes) aureus by its failure to produce a golden-yellow pigment.

- ¹ Pasteur: Bull. de l'Acad. de Méd., 1880, 9, p. 447.
- ² Ogston: Brit. Med. Jour., 1881, 1, p. 369.
- ³ Becker: Deut. med. Wchnschr., 1883, 9, p. 665.
- ⁴ Rosenbach: "Mikroorganismen bei d. Wundinfektionskrankheiten," Wiesbaden, 1884.

Morphology and Staining.—The cells of Staphylococcus aureus are generally aggregated in loose, irregular masses which have been likened to clusters of grapes, and have given the generic name to this organism (Fig. 33). The dimensions of the individual cocci vary within rather narrow limits, the diameter of the cells ranging between 0.7 and 0.9 μ . The ordinary aniline dyes stain the cells readily; no decolorization occurs with Gram's method. In a preparation made directly from pus or from a pure culture, not only irregular clusters of cells can be observed, but also tetrads, diplococcus forms, and short chains. It is hence often difficult to determine from stained preparations whether only true staphylococci are present or whether there is an admixture of streptococci or other forms.

Fig. 34.—Staphylococcus aureus: Colony two days old, seen upon an agar plate; × 40 (Heim).

Physiologic Requirements.-

The optimum temperature is about 28 C., but growth can also take place at temperatures as high as 42 C., and as low as 8 to 9 C. The cocci thrive best in the presence of oxygen, but grow to some extent under anaërobic conditions. As regards choice of culture medium, this organism is not so fastidious as many other pathogenic bacteria. It grows upon the ordinary laboratory media (Fig. 34), and also, although less luxuriantly, upon

protein-free media containing creatine or asparagin as the source of nitrogen. The golden-yellow pigment which distinguishes the aureus variety from other staphylococci is formed in especial abundance upon blood-serum or upon a starchy medium, such as potato or rice. The thermal death-point is not constant, different strains appearing to vary greatly in their resistance, some succumbing only after thirty minutes' exposure to a temperature of 80 C., while others are destroyed within the same time at a much lower temperature. Considerable resistance is displayed toward drying, experiments showing a retention of vitality for many days and even months, in cultures dried upon silk threads and

desiccated over calcium chloride. Toward the chemical substances ordinarily used as disinfectants Staphylococcus aureus also exhibits more than the average resistance. It is, indeed, one of the hardiest of the nonspore-forming bacteria.

Staphylococcus aureus is a well-nigh constant inhabitant upon the surface of the skin and also upon the various mucous surfaces of man and other animals. Apart from its occurrence in the air of hospitals, stables, and similar situations where its presence is readily explicable, it is found relatively infrequently in nature except in association with the animal body.

Products of Growth.—The golden-yellow pigment which is produced by this organism and which is probably a lipochrome, is

formed most abundantly upon carbohydrate media and in the presence of free oxygen. A specific gelatin-liquefying enzyme or gelatinase is formed in the majority of gelatin and broth cultures and has been separated from the cultures by filtration (Fig. 35). Other enzymes, such as rennin and maltase, are produced under suitable conditions. Dextrose, maltose, sucrose, and glycerol are usually fermented under suitable conditions with acid but no gas production. Milk inoculated with staphylococci is usually coagulated by the acid resulting from the fermentation of the milk-sugar; the precipitated casein, as a rule, remains undissolved.

Fig. 35.—Staphylococcus (pyogenes) aureus, gelatin stabculture; four days.

Certain strains when grown under suitable conditions produce a substance that acts upon the stroma of red blood-corpuscles in such a way as to cause the dissolving out of the hemoglobin. This hemolytic substance is formed both upon agar plates and in broth cultures. The hemolytic qualities of filtrates of Staphylococcus aureus have been especially studied by Neisser and Wechsberg. The specific hemolysin, known as staphylolysin, is completely destroyed by heating for twenty minutes at 56 C. An antibody to staphylolysin is produced by inoculating an animal with hemolytic filtrates, and there is other evidence that staphylolysin possesses a structure analogous to that of diphtheria toxin and is endowed with a stabile haptophore and a labile toxophore group. Many observers claim

¹ Neisser and Wechsberg: Zeitschr. f. Hyg., 1901, 36, p. 229.

that a direct relation exists between virulence and hemolytic power, but others have failed to discover any such connection.

A substance that kills leukocytes is also present in staphylococcus filtrates; this has been termed leukocidin, and, like staphylolysin, is a true toxin. The presence of leukocidin may be determined by an ingenious method devised by Neisser and Wechsberg, which consists in using the reduction of methylene-blue that is effected by live leukocytes as a measure of the integrity of the latter. The extent of retardation of disappearance of the reducing action measures the degree of injury wrought upon the leukocytes by the leukocidin.

Other poisonous substances have been shown to be present in staphylococcus filtrates. Julia Parker¹ found that the broth filtrates of certain strains produced a severe spreading necrosis when injected into the skin of rabbits. The poison is thermolabile and, like a true toxin, has antigenic power. Burnet² and others have shown that the intravenous injection of certain staphylococcus filtrates into rabbits causes sudden death. Finally it has been shown³ that the filtrates of certain staphylococci contain a poison which, when swallowed by human volunteers, produces violent gastro-intestinal symptoms of the "food poisoning" type. The relation between the staphylococcus hemolysin, the skin-necrosing substance, the substance that is poisonous when swallowed and the substance that kills on intravenous injection remains to be made out. Whether they are all manifestations of a single antigen⁴ or represent several independent antigens is not yet determined.

Pathogenicity for Man.—Experiments, as well as the facts of comparative pathology, show that man is more susceptible than the ordinary laboratory animals to staphylococcus infection. Garré (1885)⁵ inoculated himself by rubbing a pure culture upon the uninjured skin of the forearm, with the result that a series of carbuncles was produced, seventeen scars remaining to testify to the success of the experiment. His experiments were repeated and

¹ Parker, Julia: Jour. Exper. Med., 1924, 40, p. 761.

² Burnet: Jour. Path. and Bact., 1929, 32, p. 717.

³ Barber, M. A.: Philippine Jour. Sci. (Trop. Med.), 1914, 9, p. 515; Dack, G. M., Cary, W. E., Woolpert, O., and Wiggers. H.: Jour. Prev. Med., 1930, 4, p. 167; Jordan, E. O.: Jour. Amer. Med. Assoc., 1930, 94, p. 1648.

⁴ Burnet: Jour. Path. and Bact., 1930, 33, p. 1.

⁵ Garré: Fortschr. d. Med., 1885, 3, p. 165.

confirmed by other observers (Bockhart, Kaufmann²). The penetration of the cocci into the deeper layers of the intact skin, probably through the sweat-ducts or at the base of the hair-follicles, is a fact of considerable significance. The positive occurrence of such penetration seems well established, and the negative observations of some authors may well be referred to differences in the virulence of the strains employed or to other experimental discrepancies.

The demonstration that staphylococci have power under certain circumstances to penetrate the skin, taken together with their

practically constant presence upon the skin itself, serves to explain the multiplicity of human affections with which these micro-organisms are found associated. A momentary weakness on the part of the tissues in almost any locality may lead to a rapid local invasion, followed by the production of a simple boil or by a more or less extensive carbuncular condition. Septicemia and pyemia sometimes

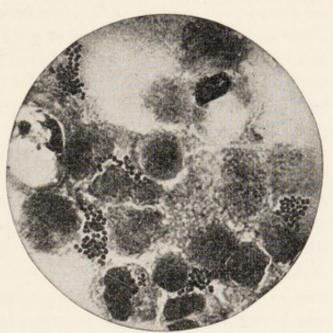


Fig. 36.—Staphylococcus aureus in pus from human abscess. Fuchsin stain; × 1000 (Fränkel and Pfeiffer).

result through the introduction of staphylococci into the lymphatics or the blood-stream from a local abscess. The localization of the secondary foci varies in different cases. In the series of cases studied by Otten³ 25 per cent developed endocarditis. Sometimes general sepsis results from the most trivial local focus, such as a small boil or slight skin wound.

Staphylococci are not only found frequently in all parts of the body in secondary and mixed infections, but they are also primarily

¹ Bockhart: Baumgarten, "Lehrbuch der path. Mykologie," Braunschweig, 1890.

² Kaufmann: Baumgarten's Jahresb., 1900, 16, p. 110.

³ Otten: Deutsch. Arch. f. klin. Med., 1907, 90, p. 461.

responsible for a variety of specific pathologic conditions and for injury to particular organs. Many lesions and diseases of the skin have been attributed to staphylococci; in the case of some of these it has been claimed that special varieties or races are concerned, but the characters said to distinguish these from the ordinary Staphylococcus aureus or albus are not, as a rule, of differential value.

A considerable majority of all attacks of acute osteomyelitis and periostitis are due to staphylococci, which appear to have a special predilection for the tissues of the osseous system.

Suppurative inflammation, in whatever part of the body it may occur, is usually attended with the presence of staphylococci either in pure or mixed cultures (Fig. 36). Sometimes when found in a mixed infection they are doubtless the original exciting cause; in other cases they may have arrived at the seat of trouble only after a primary invasion by some other microbe. In a given instance it may be impossible to determine the precise sequence of events.

Staphylococcus infection of the lung sometimes occurs, and the resulting bronchopneumonia is often fatal. Out of about 800 patients with pneumonia treated at the Hospital of the Rockefeller Institute in New York City from 1913–18, 13 were infected with staphylococci, and 10 of the 13 died. Under certain conditions, as during the 1918 influenza epidemic at Camp Jackson, Staphylococcus aureus apparently played an important part in the pneumonia complicating primary infections. Chickering and Park² found that in 49 per cent of 312 postmortem lung cultures at Camp Jackson this organism was present either alone (92 cases) or in association with other bacteria. Its presence in the lungs is usually interpreted as a secondary invasion in the train of some primary exciting agent.

Reference has already been made to the fact that some strains of staphylococci produce in broth cultures a substance which, swallowed by man, gives rise to violent nausea, diarrhea and severe prostration. Outbreaks of food poisoning have been definitely

¹ Suppurative inflammation is characterized particularly by the greatly increased immigration of the polymorphonuclear leukocytes into the affected part, by the lack of any coagulating power in the fluid portion of the pus (absence of fibrinogen), and by the necrosis and subsequent more or less complete digestion of the neighboring tissue elements.

² Chickering, H. T., and Park, J. H.: Jour. Amer. Med. Assoc., 1919, 72, p. 617.

traced to this cause. It has been shown¹ that this property is possessed by staphylococcus strains of diverse origin (septicemia, normal human throat, etc.) and is probably a widely spread characteristic of the group. Both white and yellow staphylococci have been implicated in "food poisoning."

Pathogenicity for Other Animals.—The rabbit has proved one of the more favorable animals for experimentation, intravenous injection of broth cultures being the most successful mode of infection. A moderately virulent strain kills an average-sized rabbit in four to eight days after injection of 0.1 cc. of a one-day broth culture. On autopsy minute abscesses are found in various internal organs, most commonly in the kidney (especially in the cortex of this organ) and in the walls of the heart. Under ordinary conditions of experiment with healthy adult rabbits the bone-marrow and periosteum are rarely seriously affected. In young animals, however, several experimenters claim to have evoked typical osteomyelitis by intravenous injection of staphylococcus cultures. It is perhaps questionable whether in these cases the processes in the affected tissues are strictly comparable with natural osteomyelitis in man. The injection of cultures into a rabbit suffering from a fractured bone or an injured periosteum produces a more characteristic train of events, and one that resembles closely the course of human osteomyelitis. Rabbits are relatively insusceptible to peritoneal inoculation with staphylococci. Artificial inoculation of the eye, on the other hand, succeeds readily, although natural eye infection is never observed. Feeding experiments with staphylococci do not produce infection. White mice are sometimes used for inoculation experiments, but are less uniformly responsive than rabbits; guinea-pigs are relatively resistant, rats and pigeons highly so.

Cases of spontaneous staphylococcus infection among demestic animals, while not so common as in man, are not unknown. In horses and cattle Staphylococcus aureus has been found associated with pathologic processes and conditions similar to those that it produces in human beings. Some observers believe that they have discovered special species of staphylococci in certain animal affections, such as "Staphylococcus (pyogenes) bovis" (in cattle) and "Staphylococcus haemorrhagicus" (in sheep). Typical strains of Staphylococcus aureus and albus have been isolated from spontane-

¹ Jordan, E. O.: Jour. Amer. Med. Assoc., 1930, 94, p. 1648.

ous abscesses in birds. A definite disease of the house fly has been traced to a specific staphylococcus (St. muscae).

Varieties.—Attempts have been made to distinguish varieties of staphylococci on the basis of certain cultural reactions. The differences in pigment formation on which emphasis was laid for a time by some writers are probably of little significance, and the group of staphylococci must be regarded as a relatively homogeneous one. Colonies of the white or *albus* variety are frequently observed to develop from pigmented cultures.

The strains that produce white colonies (St. albus) are, as a rule, less active in gelatin liquefaction and fermentive power, and hence have been sometimes regarded as weakened relatives of the biochemically more vigorous orange-pigmented types (St. aureus). The albus strains are also as a rule only feebly pathogenic. Dextrose, maltose and glycerol are fermented by nearly all aureus strains and by a consistently lower proportion of albus strains, lactose and mannitol by about four-fifths of the aureus and by about one-third (mannitol) to two-thirds (lactose) of the albus strains. In general, the types most commonly isolated from air, dust, and other sources outside of the human body are white staphylococci, while those found associated with pathologic conditions are orange strains.

The general opinion is that the staphylococci form a closely graded series from the pigmented, hemolytic, gelatin-liquefying, pathogenic, actively fermenting strains to those that are unpigmented, feebly pathogenic and less actively hemolytic, liquefying and fermenting. The antigens of the aureus type are also more potent than albus antigens.³ No biochemical or antigenic tests have been found that permit a definite subdivision of staphylococci into distinct groups. Definite agglutinative varieties with correlated characters have not been shown to exist.

Staphylococcus (pyogenes) citreus is a rarer form of doubtful pathogenicity, producing a lemon-yellow pigment, but in other respects standing close to Staphylococcus aureus.

Immunity.—Rabbits may be made actively immune against intravenous injection with staphylococci by inoculating them first

Glaser: Am. Jour. Hyg., 1924, 4, p. 411.

² Hudson, N. P.: Jour. Infect. Dis., 1923, 32, p. 297.

³ Dudgeon, L. S., and Simpson, J. W. H.: Jour. Hyg., 1927–28, 27, p. 160.

IMMUNITY 209

with killed, then with living but attenuated, cultures. During the course of this treatment, however, animals sometimes succumb, and it is evident that the incorporation of staphylococcus cells into the body is attended with some danger to the subject of experiment. If filtrates containing staphylococcus hemolysin and leukocidin be used, antibodies for these toxins are formed; but immunity certainly does not depend upon the presence of these antibodies, since no connection has been shown to exist between increased resistance and the presence of such antibodies in the blood. Neither does prolonged immunization with the staphylococcus cells and their products cause any appreciable increase in the amount of bacteriolytic substance.

The production of active immunity to staphylococci is, however, accompanied by a striking development of phagocytic action. Phagocytosis unquestionably plays the chief rôle in immunization to this organism. Staphylococci injected into an immunized animal are much more rapidly taken up by the phagocytes than is the case in a normal animal. Such increased phagocytosis, again, has been shown by Wright and others to be connected with the formation of bacteriotropic substances or opsonins in the blood of immunized animals. Methods of treatment based upon the increase in the amount of opsonin, and carried out by inoculation with a "vaccine" consisting of three-weeks-old broth cultures, killed by heating at 60 C. for an hour, have been very successfully applied by Wright and others to the treatment of obstinate cases of acne and furunculosis in man. Hartwell and Lee, 1 for example, conclude that treatment with vaccine is the most effectual remedy for boils and carbuncles and for cases of chronic furunculosis. These authors state that the vaccine treatment can be successfully carried on without estimation of the opsonic index, but others maintain that it should not be used without accurate opsonic control. There is good evidence that the autogenous staphylococcus vaccine (the strain cultivated from the patient) is more efficacious than the ordinary stock vaccine.

Injection of the serum from an immunized animal will protect untreated animals against infection; in this case, also, the acquired immunity (passive) seems to be associated with an increase in the amount of opsonin.

¹ Hartwell and Lee: Bost. Med. and Surg. Jour., 1907, 157, p. 523.

Micrococcus tetragenus.—This organism was discovered by Gaffky¹ in the pulmonary cavities in phthisis. It has also been found in pure culture in abscesses in animals and man.² It often occurs in the healthy mouth. Morphologically Micr. tetragenus is distinguished by its occurrence in tetrads or groups consisting of four small oval cocci (Fig. 37). It is gram-positive. In cultures the sheet-like arrangement is not always seen, but in the animal organism the flat tablets occur uniformly, and a rather heavy capsule surrounds the tetrad. On agar a confluent, rough, elevated white growth is produced. On potato a thick, white, slimy growth occurs. Gelatin is not liquefied; milk is coagulated.

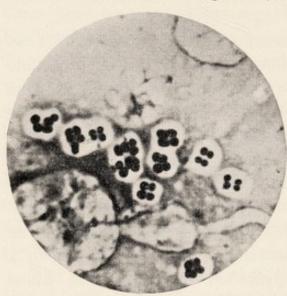


Fig. 37.—Micrococcus tetragenus in the blood of a mouse; × 2000 (Nowak: Documenta Microbiologica I, 1927).

Growth is slow and occurs both at 20 and at 37 C., though better at the higher temperature.

White mice inoculated with Micr. tetragenus succumb to a rapidly progressing septicemia. Guinea-pigs and rabbits usually show only a local affection. House-mice and rats are rather immune. Fornaca³ has reported a case of septicemia in man in which Micr. tetragenus was present in pure culture in the blood. It is not

uncommonly found in suppurations of the mouth and neck. It is also found in the empyema following pneumonia and in the pus of war wounds.

This organism is probably of low-grade virulence, and unable, as a rule, to invade the human tissues except when the resistance is lowered by some depressing influence, especially of the kind caused by the invasion of some other micro-organism.

Gaffky: Mitt. a. d. k. Gesund., Ber., 1881, 1, p. 1.

² Müller: Wien. klin. Wehnschr., 1904, 17, p. 815.

³ Fornaca: Rif. Med., 1903, 19, p. 309.

CHAPTER 10

THE STREPTOCOCCI

Genus: Streptococcus. Chiefly parasites. Cells normally in short or long chains (under unfavorable conditions, sometimes in pairs and small groups, never in large packets). Generally stain by Gram. Capsules rarely present, no zoögleal masses. On agar streak, diffused translucent growth, often with isolated colonies. In stab-culture, little surface growth. Many sugars are fermented, with formation of large amount of acid, but inulin is rarely attacked. Generally fail to liquefy gelatin or reduce nitrates.

Type species is Streptococcus pyogenes, Rosenbach.

Streptococci, as well as staphylococci, were seen long ago by several observers in the pus formed during suppurative inflammation, but their constant presence and pathologic significance were first strongly emphasized by the work of Ogston (1881),¹ Fehleisen (1883),² and Rosenbach (1884).³ Owing to the close resemblance of streptococci from various sources and despite the great variety of pathologic conditions with which they were found associated, it was not at first known whether the various conditions were due to one or to several species. The trend of recent research has been to establish the existence of distinct types. The streptococci of scarlet fever, of erysipelas and of septic sore throat are now recognized as specific microbes even though it is still difficult to effect a differential diagnosis on purely morphologic or cultural grounds.

Morphologic and Cultural Characters.—The cells of Streptococcus, like those of Staphylococcus, are spherical, but differ from those of the latter organism in being usually united in longer or shorter chains (Figs. 38 and 39). Under certain conditions, however, they are aggregated in irregular heaps or masses. The diameter of the individual cocci is about 1 μ , although some variation is noted according to the character of the culture medium, and smaller cells are not rare. The typical streptococcus always divides in one plane, so that if the cells remain united, a typical chain results.

Ogston: Brit. Med. Jour., 1881, 1, p. 369.

² Fehleisen: "Aetiol. d. Erysipels," Berlin, 1883.

³ Rosenbach: "Mikroorganismen bei d. Wundinfektionskrankheiten," Wiesbaden, 1884.

Transition forms between this and the staphylococcus have, however, been observed. Streptococci are not motile under the ordinary conditions of observation, do not possess flagella, and do not form spores. The streptococci isolated from pathologic processes in man retain the stain by Gram's method, but some streptococci found in suppurative conditions in domestic animals are said to be gramnegative.

In the opinion of some investigators an important distinction should be drawn between long-chain (Streptococcus longus) and

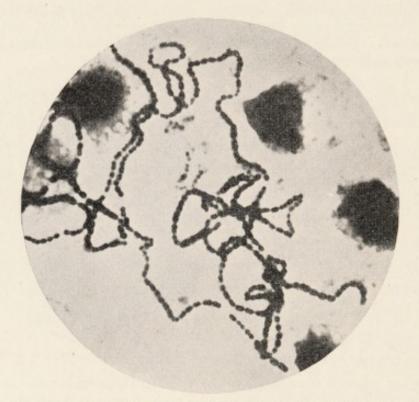


Fig. 38.—Streptococcus pyogenes in pleuritic exudate from man; × 2000 (Nowak: Documenta Microbiologica I, 1927).

short-chain (Streptococcus brevis) streptococci. The former are thought to be more virulent, and, as a matter of fact, the streptococci freshly isolated from disease processes in man usually grow out into long chains (of more than eight cells), while saprophytic streptococci, such as are commonly met with in the normal mouth and throat, develop short chains. Other morphologic and biologic qualities are believed to correspond. It has been found possible, however, to transform the long-chain into the short-chain variety by alteration of the culture medium, and, furthermore, short-chain streptococci which are virulent are sometimes isolated from pathologic cases. As an absolute distinction, therefore, any fundamental

separation into Streptococcus longus and Streptococcus brevis breaks down, but as calling attention to a generally valid correlation character, the names have some value.

Upon ordinary nutrient agar and gelatin streptococci, as a rule,

vield but a scanty growth of fine, transparent, separate colonies (Figs. 40 and 41). Development is much facilitated, however, by the addition of dextrose (0.5 to 1.0 per cent) to the medium. The common pathogenic strains do not liquefy gelatin, but some of the saprophytic streptococci, isolated from the alimentary tract and from polluted water, possess liquefying power. The

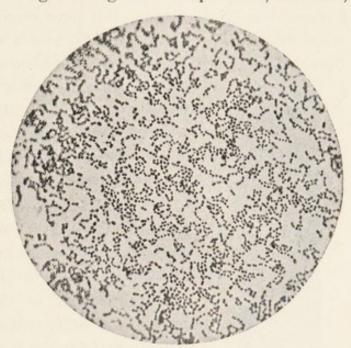


Fig. 39.—Streptococcus, pure culture (Moser and v. Pirquet).

growth in broth varies in different specimens; it is sometimes fine and powdery, sometimes coarse and flocculent. The character of the sediment that collects at the bottom of a broth culture has been supposed to give some indication of the essential nature of the

Fig. 40.—Streptococcus pyogenes. Colony on glycerolagar, one day; × 100 (Heim).

organism producing it. Differentiation on this basis is not, however, now generally accepted. It is true that the long-chain forms usually give rise to distinct granules (Streptococcus conglomeratus), but it has not yet been shown that an invariable diagnostic value can be attached to the characters of broth cultures. Blood-agar plates are useful for the differentiation of streptococci. (See Classification, p. 214.) Streptococci that produce a green coloration on blood-agar plates are very similar to pneumococci, but, as a rule, do

not ferment inulin, whereas most pneumococci attack this carbohydrate. A further distinction of great importance is that streptococci

are insoluble, pneumococci soluble, in bile and solutions of bile salts. Blood-serum (horse, man) diluted with broth, or undiluted (rabbit), is a favorable medium for the maintenance of vitality and virulence. Growth occurs in milk, and is usually followed by curdling due to fermentation of the lactose, but some strains, particularly the long-chain varieties, generate too little acid to effect any visible change. Upon potato a more or less luxuriant growth is produced by most

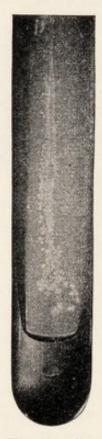


Fig. 41.—Streptococcus pyogenes. Agar culture, two days, showing colonies (Fränkel and Pfeiffer).

saprophytic forms, but the pathogenic varieties develop sparingly, and many refuse to grow at all. The optimum temperature for the growth of streptococci is 37 C., though growth may occur within the range of 20 to 42 C. The preservation of streptococcus cultures, often a matter of some difficulty, is best effected by maintaining either serum-broth mixtures or gelatin stab-cultures at a low temperature (8 to 10 C.).

Classification of Streptococci.—The early attempts to differentiate streptococci by means of cultural reactions were accompanied with much confusion. This was largely due to a lack of uniformity in the methods employed by different observers and to the use of an insufficient number of differential tests. One of the most important aids in the study of streptococci has been the blood-agar plate method introduced by Schottmüller in 1903. This method has been subjected to elaborate study by J. H. Brown² and others. The blood-agar plate has led to a division of streptococci into green-producing (Streptococcus viridans) and hemolytic (Strepto-

coccus hemolyticus) strains, a distinction which is regarded as of primary significance.

The fermentation of certain carbohydrates has also been considered to give information of differential value and has been widely

¹ Schottmüller, H.: Münch. med. Wchnschr., 1903, 50, p. 849.

² Brown, J. H.: The Use of Blood Agar for the Study of Streptococci, Monograph No. 9, The Rockefeller Institute for Medical Reseach, 1919.

³ Lyall, H. W.: Jour. Med. Res., 1914, 30, p. 487; Holman, W. L.: Jour. Med. Res., 1916, 34, p. 377; Blake, F. G.: Jour. Med. Res., 1917, 36, p. 99.

used since the method was first introduced by Gordon¹ in 1903. Unfortunately, some of the earlier work on carbohydrate fermentation was carried out with unsuitable media and without reference to the primary distinction between green-producing and hemolytic strains.

(a) Hemolytic Streptococci (Type Beta—Smith and Brown).—
On suitably prepared blood-agar plates the hemolytic strains are characterized by a sharply defined clear zone around the colonies. It seems doubtful whether this group is sufficiently homogeneous to justify the use of the specific name Streptococcus hemolyticus for all its members, and until definite data are available a more general designation seems preferable. The great majority of the streptococci found in pathologic processes are of the hemolytic type. Nearly all hemolytic strains ferment lactose and salicin; very few ferment mannitol.

There is conclusive evidence that biologically different strains of hemolytic streptococci exist. Avery and Cullen found that bovine hemolytic streptococci cease to grow at a higher hydrogen ion concentration (4.5-4.3) than do human strains (5.2-5). Dochez, Avery and Lancefield2 in a study of 125 human hemolytic strains showed that four and perhaps six biological types could be distinguished by means of the reactions of agglutination and protection. Ruth Tunnicliff3 found that the serum of a sheep immunized with a hemolytic streptococcus from the throat of a patient in the acute stage of scarlet fever contained opsonins and agglutinins for hemolytic streptococci obtained from other scarlet fever cases, but not for hemolytic streptococci from other sources, such as erysipelas, measles, influenza, and diphtheria. Similar results were obtained by Bliss.4 It has also been shown by Ruth Tunnicliff⁵ that the serum of a sheep immunized with hemolytic streptococci from scarlet fever protects mice against strains of hemolytic streptococci isolated from scarlet fever patients, but not against strains from other sources. The results of tests by the same investigator indi-

¹ Gordon, M. H.: Suppl. Annual Report Local Government Board, 1902– 03, p. 421.

² Dochez, A. R., Avery, O. T., and Lancefield, R. C.: Jour. Exper. Med., 1919, 30, p. 179.

³ Tunnicliff, Ruth: Jour. Amer. Med. Assoc., 1920, 74, p. 1386.

⁴ Bliss, W. P.: Bull. Johns Hopkins Hosp., 1920, 31, p. 173.

⁵ Tunnicliff, Ruth: Jour. Amer. Med. Assoc., 1920, 75, p. 1339.

cate that the hemolytic streptococci from erysipelas likewise form a distinct immunologic group.

(b) Green-producing Streptococci (Type Alpha—Smith and Brown).—These organisms produce a greenish zone about the colony on blood-agar plates, the green coloration being due probably to a reduction process which converts the oxyhemoglobin into methemoglobin.¹ The name Streptococcus viridans has been proposed for the green-producing streptococci, but there is perhaps even more reason than in the case of the hemolytic streptococci for regarding the green streptococci as composed of several groups. The designation enterococcus is used by most French writers for the streptococci of the human intestine (Str. fecalis). Definite fermentation reactions, as a rule, characterize strains from certain sources, and specific names have been given to such strains by a number of investigators. The following classification by Blake² is an example of such a division according to fermentive properties.

GREEN-PRODUCING STREPTOCOCCI

Name Str. buccalis	Lactose	Mannite	Habitat	
	+	_	The most common type in the human mouth and throat.	
Str. fecalis	+	+	The most common type in human feces.	
Str. equinus	-	-	The most common type in horse feces.	

The green-producing streptococci are for the most part of much lower pathogenic power than the hemolytic strains, although at times highly virulent green strains have been isolated. The 1918 influenza epidemic was marked by the appearance of such strains in certain localities.³ It may be fairly concluded that the group of green streptococci contains a number of organisms of potential pathogenic power as well as numerous saprophytic types. An

¹ The so-called "indifferent strains" ("Type Gamma") were found by Clawson (Jour. Infect. Dis., 1920, 26, p. 93) to be, in most if not all cases, methemoglobin producers when grown on suitable media.

² Blake: Jour. Med. Res., 1917, 36, p. 99.

³ Tunnicliff, Ruth: Jour. Amer. Med. Assoc., 1918, 71, p. 1753; Jordan, E. O.: Jour. Infect. Dis., 1919, 25, p. 28; Rosenow, E. C.: Jour. Amer. Med. Assoc., 1919, 72, p. 1608.

extensive study of nonhemolytic streptococci has been made by Crowe and Thompson. 1

Virulence (Toxin Production), Hemolysin.—The virulence of different strains of streptococci varies widely, but the factors upon which such virulence depends have not been discovered. Virulence for one species may be greatly exalted by animal passage; at the same time the virulence of the same strain for another species may be diminished. There is evidence that streptococci which are isolated directly from septic processes in man are more dangerous to man than similar organisms which have been living as saprophytes on the skin or mucous membrane. As a rule, growth within an animal body enhances the virulence of a microbe for that particular species, and this seems to be especially true in the case of the bacteria of blood-poisoning (streptococci and staphylococci).

The cell-substance of streptococci possesses only slight toxicity, and virulent strains do not differ from avirulent in this respect. Old filtrates are more or less toxic, but no powerful specific toxin has been demonstrated. It is possible that in the living body streptococci form certain poisons which are not produced in cultures.

A specific hemolysin, streptolysin, has been demonstrated by Besredka,² Ruediger, and others.³ According to Ruediger,⁴ streptolysin is a true toxin, containing a haptophore and a toxophore group, and giving rise, on injection, to a specific antibody. There is no good evidence that this hemolytic substance bears any constant relation to the virulence of the micro-organism producing it, or that it plays any part in producing the pathologic conditions caused by streptococcus infection.

A toxic substance that destroys leukocytes—leukocidin—is also produced by some strains of streptococci.⁵ It is thought that there is a definite relation between the amount of leukocidin produced and the virulence of the strain.

Pathogenicity for Man.—Few, if any, pathogenic organisms can lay claim to wider or more multifarious activities than the streptococci. The list of human diseases and affections with which

Nakayama, Y.: Jour. Infect. Dis., 1920, 27, p. 86.

¹ Crowe and Thompson: Annals Pickett-Thomson Res. Lab., 1927, vol. 3.

² Besredka: Ann. de l'Inst. Past., 1901, 15, p. 880.

³ de Kruif, P. H., and Ireland, P. M.: Jour. Infect. Dis., 1920, 26, p. 285.

⁴ Ruediger: Jour. Amer. Med. Assoc., 1903, 41, p. 962.

streptococci are associated as the main and primary cause is already a long one, and is perhaps not yet complete. In addition to their conspicuous rôle as initiators of very diverse pathologic conditions, streptococci are present in "mixed infections" and "secondary infections" more often than any other microbes; that is to say, they have a tendency to follow in the wake of and act as accomplices to other pathologic organisms. It has been found from an examination of the heart's blood of cadavers that in about one-third of all fatal diseases streptococci invade the blood before death, and in these cases they perhaps aid more or less in facilitating a fatal termination.¹

Many suppurative inflammatory conditions in different organs of the body are caused by streptococci (Fig. 42). Osseous tissues and tissues surrounding the bones are attacked less frequently by streptococci than by staphylococci, but the joints and serous membranes are often invaded.

Focal infection is often due to streptococci. This name is given to a systemic or local disease due to bacteria carried in the bloodor lymph-stream from a focus of infection.² The usual primary foci of infection are about the head, as in the nasal passages, the tonsils, the middle ear, and the teeth. Carried from these primary foci the streptococci or other organisms may find lodgment in a distant organ. The connection between an attack of tonsillitis and a coincident or subsequent attack of rheumatism has long been known. Appendicitis, iritis, and a variety of other diseases are probably sometimes caused by strains of streptococci carried in the blood-stream from foci of infection in the tonsils, teeth, or sinuses.³ The eradication of the primary foci of infection, such as removal of the teeth or tonsils, has often been followed by rapid disappearance of long-standing joint infections and other pathologic conditions.

Ulcerative endocarditis, an affection of the valves of the heart, which occasionally occurs simultaneously with inflammatory conditions in other parts of the body, is produced most frequently by streptococci, although it may also be caused by staphylococci, and less commonly by other micro-organisms. Experimentally the injection of broth cultures of streptococci (or staphylococci) into

¹ Simmonds: Virchow's Archiv, 1904, 175, p. 418.

² Billings, Frank: "Focal Infection," New York, 1916.

³ Rosenow, E. C.: Jour. Infect. Dis., 1915, 16, p. 240; 1915, 17, p. 403.

the circulation rarely produces ulcerative endocarditis unless the cardiac tissues have been damaged by mechanical or chemical agencies.

Süpfle¹ has found streptococci much more abundant than any other micro-organism in inflammation of the middle ear (otitis media).

The mucous membranes constitute a favorite abiding-place for streptococci; the tonsils almost always harbor them. Conse-

quently any lowering of the normal resistance of these tissues from either local or general causes gives the signal for a speedy invasion. In throat affections of all sorts streptococci are usually present, and in some cases, notably in diphtheria and in the anginas of scarlatina and measles, the part played by these organisms is highly important. Typical diphtheria is so generally accompanied by a multiplication of throat

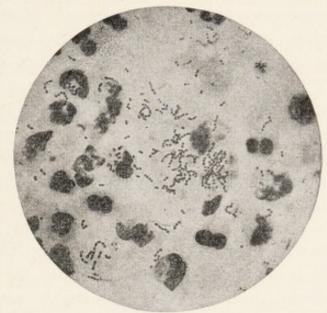


Fig. 42.—Streptococcus pyogenes in pus from a human abscess; gentian-violet (Fränkel and Pfeiffer).

streptococci that at one time these micro-organisms were regarded as the cause of diphtheria. No one now believes that streptococci cause diphtheria, but there is little doubt that, as accessories to the diphtheria bacillus, they do considerable harm. There is even some reason to believe that the virulence of the diphtheria bacillus itself is exalted in their presence.

The majority of nondiphtheritic anginas, in the opinion of many observers, are due directly to streptococcus infection. It cannot be said, however, that this position is entirely justified, since the facts are open to the interpretation that the streptococci found in simple anginas are merely secondary invaders which, as in diphtheria, have followed in the train of some primary infecting agent.

¹ Süpfle: Centralbl. f. Bakt., I, Orig., 1906, 42, p. 304.

Hemolytic streptococci from the nose or throat of a surgeon or attendant may be the cause of wound infection, and complete masking is advocated as an important feature of operating room technic.¹

The septicemic condition known as puerperal sepsis or childbed fever is usually to be attributed to streptococci. The once common hospital epidemics of puerperal septicemia, which fill so grim a page of medical history,² were probably due to the manipulative transfer of streptococci from infected cases; but it is also supposed that in some cases auto-infection occurs. Most observers agree that hemolytic streptococci occasionally are found in the vaginal secretions of pregnant women, especially when the secretions are alkaline. The prevailing opinion is that infection may take place with germs from any portion of the genital tract, including the external parts, and that special care should be given to the disinfection of the external genitalia before and during birth. The introduction of germs by operative procedure probably remains, however, today as in the past, the greatest danger.

Certain cases of *enteritis* in infants and occasionally in adults have been attributed to streptococci (Escherich et al.). There is little doubt that streptococci, if not the primary cause of intestinal disturbance, are at least actively concerned in the pathologic processes. Several varieties of intestinal streptococci have been described, separable, it is said, from one another and from the ordinary Streptococcus pyogenes by more or less definite cultural characteristics; but the evidence showing a connection of any particular variety with the causation of intestinal disease is not so clear as could be desired. Intestinal infection of infants might conceivably occur through the medium of the milk-supply, since strepto-

Meleney: Jour. Amer. Med. Assoc., 1927, 88, p. 1392.

² As long ago as 1843 Oliver Wendell Holmes published (New Eng. Quar. Jour. of Med. and Surg., April, 1843) an essay on the contagiousness of puerperal fever in which he marshals a surprising array of cases of this disease that were evidently carried to the mother by the attending physician or nurse. Some years later Semmelweis, in 1861 ("Die Actiologie, der Begriff und die Prophylaxis des Kindbettfiebers," Pest, Wien u. Leipzig, 1861), showed clearly that puerperal mortality could be greatly reduced by attention to cleanliness, especially of the instruments and hands of the operator; but his teachings were for a long time neglected and even scorned. During the period before aseptic and antiseptic methods came into use in lying-in hospitals infection was conveyed from one case to another, and in some years nearly all the patients that entered a given hospital would die soon after being delivered of child.

coccic inflammation of the mammae (mastitis) of the cow is not uncommon. Streptococci have been often found in market milk, but it has not been shown that their presence, even in considerable numbers, is any indication that the milk is unwholesome. Most of the streptococci in milk are probably descended from saprophytic, not from pathogenic, ancestors. (See p. 662.)

As secondary invaders streptococci have a baneful influence in a number of maladies, notably in the last stages of pulmonary tuberculosis, in which they produce frequent complications, involve healthy tissues adjacent to the tuberculous area, and predispose to hemorrhages. Streptococci are often present mixed with pneumococci in pneumonia and in some cases act as the primary cause. In smallpox it is believed that many of the most serious symptoms and most frequent complications are the result of streptococcus infection.

Rheumatic fever has been attributed by different observers to various kinds of bacteria. An anaërobic bacillus found by Achalme² was at one time regarded by some writers as the cause of this affection, but Achalme's bacillus is probably identical with Cl. welchii (p. 421) and has no causal relation to rheumatism. Streptococci have been found in the blood and the affected joints in a number of cases of rheumatic fever, and characteristic arthritic lesions have been produced in rabbits by inoculation with cultures derived from such cases. By a number of observers the streptococci (or diplococci) from acute rheumatism have been considered as definitely specific. Some investigators long ago reported that distinctive and constant cultural characters, such as the production of acid and precipitation of bile salts in MacConkey's bile-saltlactose-broth, and abundant production of formic acid (Walker and Ryffel), 3 characterize the micrococcus found in rheumatism. Their early observations, however, were not promptly followed up. The discovery of specific streptococci in scarlet fever and in erysipelas stimulated the study of rheumatic fever, and Birkhaug4 has described in detail a streptococcus with quite distinctive characters that he has isolated from patients with rheumatic fever. This

¹ See review by Jordan, E. P.: Arch. Path., 1930, 10, p. 79.

² Achalme: Arch. de méd. exper., 1898, 11, p. 370.

³ Walker and Ryffel: Brit. Med. Jour., 1903, 2, p. 659.

⁴ Birkhaug: Jour. Infect. Dis., 1927, 40, p. 549.

organism neither hemolyzes nor produces a green coloration (methemoglobin) in blood agar; it ferments inulin and is insoluble in bile. Birkhaug, who isolated a number of streptococci of different types from rheumatic fever patients found that a much larger number of toxin producers occurred among the nonmethemogoblin-forming streptococci than among the other strains. Persons with definite history of rheumatic fever reacted to intradermal injections of minute doses of the soluble toxic filtrate in far greater proportion than normal persons. Birkhaug, who injected himself with large doses of the soluble toxin filtrate of the suspected streptococcus, developed "a typical clinical picture of acute polyarthritis of the rheumatic type." On the other hand, Clawson1 and Cecil2 and his co-workers found that nearly all strains recovered in a series of blood cultures were of the green-producing or alpha type. The fact that no uniformity of type has been established and that isolations at different times and places differ so widely raises the suspicion that rheumatic fever is not a unit disease, but like pneumonia may be caused by organisms of various types. It remains to be determined how far the bacterial findings in rheumatism are determined by local and even by laboratory conditions.

The bacteriology of chronic arthritis and arthritis deformans is in a condition at least equally confusing.³ Cultures of streptococci from a wide variety of sources and with diverse cultural characters are able to produce arthritis on inoculation into rabbits and other animals. Streptococci isolated from the normal throat seem to produce arthritis in animals as readily as those from the throats of arthritic patients. Streptococci of various kinds have been isolated from the tissues and from blood, and bacteria of other groups have also sometimes been found. Streptococci of the hemolytic or beta type have been reported with especial frequency in the chronic type of arthritis. Attempts at the therapeutic use of vaccines and sera in rheumatic affections cannot be regarded with sanguine expectation until more is known about the causative organism.

The analogy between arthritis and the allergic reaction produced by the sensitization of rabbits with streptococci has proved of

¹ Clawson: Jour. Infect. Dis., 1925, 36, p. 444.

² Cecil, Nicholls and Stainsby: Jour. Exper. Med., 1929, 50, p. 617.

³ See review by Jordan, E. P.: Arch. Path., 1930, 10, p. 79.

great interest.¹ It is possible to produce arthritis in rabbits, as already stated, by different kinds of streptococci. In many instances, however, a single joint injection of a streptococcus fails to cause the characteristic reaction. If, after sensitization with dead bacteria, a second intravenous inoculation with the same type of streptococcus is made, arthritis results. Such observations suggest that the relapses in rheumatic fever may in some instances be due to a reinvasion of the blood stream by the virus, provoking an allergic reaction in a primarily sensitized locus. The allergic reactions produced by streptococci have also been extensively studied by skin tests. The arthritic phenomenon may therefore conceivably be due in some cases to the sensitization of particular tissues by a streptococcus of relatively low virulence and a subsequent blood invasion by the same specific organism, and in others to direct primary infection with a streptococcus of high virulence.

Streptococcic septicemia may develop in connection with a great variety of affections, both those in which streptococci themselves are the initial exciting cause and those that are set in motion by other factors. The coup de grâce in many prolonged constitutional maladies, such as diabetes, is often given through a general streptococcus invasion.

Among the American troops in the Great War hemolytic strepto-cocci were frequently found as the primary or secondary invaders in cases of bronchopneumonia. The numerous fatal cases of pneumonia following measles in the army camps seem to have been almost always due to infection with hemolytic streptococci. A considerable proportion of these cases were accompanied by empyema in which hemolytic streptococci were likewise found. In certain localities the hemolytic streptococci, at first secondary invaders in the wake of the measles virus, seemed to acquire a higher degree of virulence and become able to initiate primary respiratory infection.

Erysipelas.—The pathogenicity of streptococci for man is well exemplified in erysipelas, a peculiar inflammation of the skin shown by Fehleisen in 1883 to be due to these organisms. The cocci are not present in the central portion of the inflamed area, but are

¹ Faber, H. K.: Jour. Exper. Med., 1915, 22, p. 615; Andrewes, C. H., Derick, C. L., and Swift, H. F.: Jour. Exper. Med., 1926, 44, p. 35; Zinsser, H., and Yu, H.: Arch. Int. Med., 1928, 42, p. 301.

found on its periphery, and can be isolated most readily by excision of portions of the tissue, other methods rarely succeeding. In the skin they occur chiefly in the lymph-spaces, which are often packed with them. The organism may be recovered by skin puncture as far as 3 cm. beyond the advancing edge of the lesion, where there is no gross evidence of inflammation. Erysipelas-like lesions in rabbits were produced by a number of early observers and have been extensively studied by later experimenters. Inoculation experiments made upon carcinomatous patients have also demonstrated that pure cultures of erysipelas-streptococci can provoke the erysipelatous process.

It remained for a long time uncertain whether or not the hemolytic streptococci from erysipelas patients constitute a distinct biological type. The observations of Ruth Tunnicliff² were among the first to indicate a genuine type specificity, and later Birkhaug³ found that over 90 per cent of carefully isolated erysipelas strains fell into a single antigenic group, and differed from nonerysipelas strains. The latter observer has made important contributions to our knowledge. A skin reaction similar to that observed in the Schick and Dick tests is evoked by injection of culture filtrates into the skin of susceptible persons; the toxicity of the filtrates is neutralized both by convalescent erysipelas serum and by antiserum obtained through inoculation of animals (rabbit or donkey) with the specific streptococcus cultures; and encouraging results have been obtained in the treatment of erysipelas patients with specific immune serum.⁴ Other observers⁵ have come to the same conclusion as

¹ Clinical observers have often noted that patients suffering from malignant tumor were distinctly benefited by an attack of erysipelas, that the growth was checked, and the tumor even diminished in size. Acting on this observation, Fehleisen ventured to inoculate streptococci into persons suffering from inoperable tumors, and the experiment was apparently rewarded with some degree of therapeutic success. Coley (Amer. Jour. Med. Sci., 1896, 112, p. 251) has modified the treatment by employing a mixture of killed cultures of streptococci and B. prodigiosus, or the soluble products of these organisms. In all cases where an injection of dead or living streptococci has seemed to exercise a favorable influence, the sarcomatous tumors are most affected, the carcinomatous tumors being only slightly and temporarily inhibited. Many observers have been unable to note any favorable results following upon the use of "Coley's mixture."

² Tunnicliff, Ruth: Jour. Amer. Med. Assoc., 1920, 75, p. 1339.

³ Birkhaug: Bull. Johns Hopkins Hospital, 1925, 36, p. 248.

⁴ Birkhaug: Jour. Amer. Med. Assoc., 1926, 86, p. 1411.

⁵ Stevens and Dochez: Jour. Exper. Med., 1926, 43, p. 379; 44, p. 439.

Birkhaug regarding specificity, and there can be little doubt that a more or less specialized type of hemolytic streptococcus is the cause of human erysipelas.

The early observations on immunity were somewhat at variance. Fehleisen could not always produce a second attack of erysipelas in persons who had been once successfully infected, but Koch and Petruschky¹ were able to cause as many as ten successive attacks in one individual in the same area of skin, a fresh inoculation being made each time immediately after an attack had subsided. The majority of experimenters, however, have noted some degree of immunity. Gay and Rhodes2 state that recovery of rabbits from erysipelas confers complete protection against intradermal reinoculation, irrespective of its locality, the protection usually lasting for at least three months. Amoss and Bliss3 have found that in rabbit experimentation a local immunity develops on the inoculated side of the animal, while the noninjected side reacts normally. After many injections carried out over relatively long periods the noninjected side becomes resistant and at the same time there is evidence of general humoral immunity as shown by the presence of agglutinin and antitoxin in the blood. By repeated intracutaneous inoculation of rabbits with pure cultures, Rivers⁴ succeeded in preparing a serum "capable of warding off the injurious action of the streptococcus on the skin." Normal serum had no such protective effect. It was also found⁵ that a local passive immunity could be induced by infiltration with immune serum. The anti-erysipelas serum obtained by Birkhaug by the inoculation of larger animals with living streptococci according to the method used by Dochez in scarlet fever (p. 233) has been used in the treatment of erysipelas by Birkhaug and others and has given satisfactory results in a number of both moderate and severe cases. Symmers,6 reporting on the antitoxin treatment of 705 cases of erysipelas at the Bellevue Hospital, New York, observed distinctly favorable results, "commensurate with those obtained in the treatment of diphtheria." Other observers⁷

¹ Koch and Petruschky: Ztschr. f. Hyg., 1896, 23, p. 477.

² Gay and Rhodes: Jour. Infect. Dis., 1922, 31, p. 101.

² Amoss and Bliss: Jour. Exper. Med., 1927, 45, p. 411.

⁴ Rivers: Jour. Exper. Med., 1925, 41, p. 179.

⁵ Rivers and Tillett: Jour. Exper. Med., 1925, 41, p. 185.

⁶ Symmers, D.: Jour. Amer. Med. Assoc., 1928, 91, p. 535.

Gordon, J. E., and Young, D. C.: Michigan State Med. Jour., 1929 (May).

believe that the results are "sufficiently encouraging to warrant further observations." All observers are agreed that the serum treatment has little or no effect beyond the immediate attack and does nothing to ward off recurrences. Complications, such as abscesses, are not diminished in number, but are possibly reduced in severity.

Singer and Kaplan, using human immune serum obtained by inoculation with sterile toxic filtrates, noted evidence of protective power. Studies by Birkhaug² on the effect of repeated injection with soluble toxin are thought to open up possibilities of active immunization. "Twenty-four patients with definite histories of frequent recurrent attacks of erysipelas have been actively immunized by means of the toxic filtrates of Streptococcus erysipelatis, and persons among these who previously suffered habitual attacks of the disease from every sixth to twelfth week have been free from subsequent recurrent attacks over a period approaching two years."

Besides causing typical erysipelas, streptococci sometimes give rise to other affections of the skin and lymph-vessels, such as impetigo contagiosa.³ Different kinds of streptococci are found in impetigo, and this condition probably depends upon the balance between the skin-invasive properties of streptococci and the resistance of the individual.

Pathogenicity for the Lower Animals.—Among the lower animals streptococci are found in spontaneously produced abscesses and similar suppurative processes in about the same proportion as in man. They are less common than simple staphylococcus infections, but are said to comprise from one-third to one-fourth of all cases. Horses seem particularly subject to streptococcus infection. The streptococci found in inflammation of the cow's udder are said to differ from the streptococci of human inflammations in being gramnegative, in their ability to liquefy gelatin, and in their higher pathogenicity for guinea-pigs.

Experimentally, rabbits and mice have proved most susceptible to inoculation. There is an entire absence of correlation in the pathogenicity of streptococci for different animals. A culture isolated from a severe septic infection in man may be utterly devoid

¹ Singer and Kaplan: Jour. Amer. Med. Assoc., 1926, 87, p. 2141.

² Birkhaug: Jour. Amer. Med. Assoc., 1927, 88, p. 885.

³ Kurth: Arb. a. d. k. Ges., 1893, 8, p. 294.

of pathogenic power for the mouse, while a culture obtained from a small localized abscess may be highly mouse-virulent. Virulence for a given species of animal, such as the mouse, may be exalted by successive passages through individuals of that species, but the greatly heightened virulence thus obtained for one animal (mouse) may be accompanied by the simultaneous diminution of virulence for another (rabbit) (Knorr). On the other hand, passage through rabbits increases the virulence not only for the rabbit, but also for the mouse and for the larger domestic animals. Cultures whose virulence has been artificially exalted for the rabbit and the mouse appear to have lost much of their pathogenic power for man. Rabbits and mice usually develop a generalized infection when inoculated with virulent strains. One-millionth cubic centimeter of a twenty-four-hour-old broth culture has been found to kill a rabbit, but such a high degree of virulence is rare except in artificially exalted cultures. As a rule, a culture is regarded as of fairly high virulence if 0.01 cc. kills a rabbit within three or four days. Slightly virulent strains may produce localized abscesses; an erysipelatous process has been provoked in the ear of the rabbit by the use of a culture of the proper degree of virulence.

Streptococcus Sore Throat (Septic Sore Throat).—In the first decade of the twentieth century epidemics of sore throat of a severe and unusual type appeared in a number of localities in England and elsewhere.² In Colchester, England, 600 persons were affected; in Christiania, Norway, about 550. Still more extensive outbreaks have occurred in this country: in Boston³ (1911), 1400 cases; in Baltimore⁴ (1912), 1000 cases; in Chicago⁵ (1911–12), 10,000 cases (estimated), and in Concord, N. H. (1912), 1000 cases.

The symptoms and complications have been strikingly similar in all the epidemics studied. Intense local hyperemia, with or without a grayish exudate, and enlargement of the cervical lymphnodes are among the more characteristic manifestations. The joints are affected in many cases and the heart and kidneys seri-

¹ Knorr: Ztschr. f. Hyg., 1893, 13, p. 427.

² Savage: "Milk and the Public Health," The Macmillan Co., 1912.

³ Winslow: Jour. Infect. Dis., 1912, 10, p. 111.

⁴ Hamburger: Bull. Johns Hopkins Hosp., 1913, 24, p. 1.

⁵ Capps and Miller: Jour. Amer. Med. Assoc., 1912, 58, pp. 1111, 1848.

⁶ Mann: Jour. Infect. Dis., 1913, 12, p. 481.

ously damaged. Pneumonia ending in fatal septicemia is often observed. "The most dangerous and remarkable complication was peritonitis, which was responsible for a great number of deaths" (Capps).

The disease may be spread both by milk and by direct contact. In several epidemics occurring in the United States the infection was traced definitely to particular milk supplies. Although some secondary cases developed by contact, over 70 per cent of the victims in certain outbreaks were users of milk from a single dairy. Attempts to connect the outbreaks with a definite diseased condition of the cattle furnishing the milk have not been successful in all cases, but in the Cortland (N. Y.) epidemic² acute udder inflammation was found in cattle in the implicated herd. It is possible that milk may become infected after collection through the agency of human carriers, but the massive and continuous infection occurring in some of the outbreaks indicates that the udders of the cows were infected.

Streptococci of a peculiar type have been isolated from milk, from characteristic sore throats, and from the peritoneal exudate in fatal cases, and were first subjected to thorough study by D. J. Davis³ and Rosenow,⁴ of Chicago, and later by Brown, Frost and Shaw.⁵ The name Streptococcus epidemicus, first used by Davis, is commonly applied to these organisms. The species is thus described by Brown, Frost and Shaw:

"A streptococcus of round or slightly flattened elements, producing hemolyzed zones of the beta type in blood agar, rapidly hemolyzing blood corpuscles in fluid media, markedly pathogenic for mice, fermenting glucose, lactose, saccharose and salicin but not mannite, producing a final hydrogen ion concentration not above P_H 4.8 in glucose broth, failing to hydrolyze sodium hippurate, and probably always encapsulated when observed under suitable conditions, in the last respect differing from most strains of hemolytic streptococci isolated from sporadic human infections."

¹ An extensive contact outbreak of septic sore throat in the State of New York was reported by Winslow and Hubbard (Monthly Bull., N. Y. State Dept. of Health, Sept., 1915).

² North, White, and Avery: Jour. Infect. Dis., 1914, 14, p. 124.

³ Davis, D. J.: Jour. Amer. Med. Assoc., 1912, 58, p. 1852.

⁴ Rosenow: Jour. Amer. Med. Assoc., 1912, 58, p. 773.

⁵ Brown, Frost and Shaw: Jour. Infect. Dis., 1926, 38, p. 381.

The streptococci ordinarily present in certified milk are of harmless bovine type. In several instances, however, Streptococcus epidemicus has been found in persistent udder infection.¹ The animals so infected should be immediately removed from milk-producing herds.

It seems probable that the streptococci of this infection are primarily of a human rather than a bovine type, and that the udder of the cow is infected directly through a human source, as, for instance, from the hands of a milker. Davis has made the important observation that the udder of a healthy cow may be infected with streptococci of human origin which produce a mastitis unaccompanied by "caking" of the bag. Such a form of mastitis might well escape notice in the ordinary examination of a suspected herd.

"When we come to a consideration of prophylaxis all other measures and precautions will sink into insignificance when compared with thorough pasteurization" (Capps).

Scarlet Fever.—The frequent presence of streptococci of various kinds in normal and diseased throats and the difficulty-which still exists—of effecting a differentiation by the usual culture methods delayed for a long time the general acceptance of a streptococcus as the cause of scarlet fever. The importance of streptococci as secondary invaders, and other factors such as the low and transient immunity conferred by many streptococcus infections as contrasted with the relatively lasting immunity left by an attack of scarlet fever, were additional reasons why many bacteriologists hesitated to believe that this disease was due to a specific streptococcus. Some early observers (Moser, Ruediger) noted significant agglutination reactions (Fig. 43), and in May, 1920, Ruth Tunnicliff2 and Bliss³ published independently observations showing that a hemolytic streptococcus found in large numbers in scarlet fever patients could be differentiated clearly and sharply by immunological reactions (agglutination, opsonification, protection) from the hemolytic streptococci obtained from other diseased conditions (erysipelas, measles, mastoiditis) and from normal throats. While there are difficulties in carrying out these tests4 there is on the whole

¹ Frost, Gumm and Thomas: Jour. Infect. Dis., 1927, 40, p. 698.

² Tunnicliff, Ruth: Jour. Amer. Med. Assoc., 1920, 74, p. 1386.

⁵ Bliss. Bull. Johns Hopkins Hospital, 1920, 31, p. 173.

⁴ Stevens and Dochez: Jour. Exper. Med., 1924, 40, p. 253; Tunnicliff, Ruth: Jour. Amer. Med. Assoc., 1926, 87, p. 625.

general agreement that the scarlet fever streptococci, although not serologically identical, constitute a distinct biological group.

1

The early attempts to infect the lower animals and man with streptococci isolated from scarlet fever failed to give unambiguous results. The reason may have been partly because not all the streptococci isolated from scarlet fever throats are necessarily of the specific type, and partly because Streptococcus scarlatinae loses its specific qualities rather quickly on cultivation. Finally in 1923 G. F. and Gladys H. Dick succeeded in reproducing typical scarlet

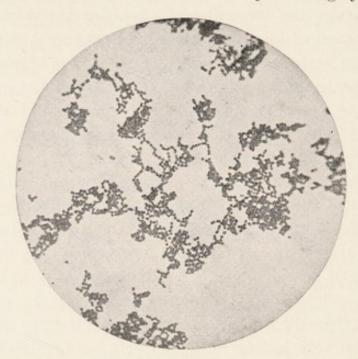


Fig. 43.—Streptococcus agglutinated by immune horse-serum (Mores and Pirquet).

fever in human volunteers;² and Dochez and Sherman³ evoked significant symptoms in guinea-pigs and shotes. These striking positive results with pure cultures were soon followed by the signal discovery by the Dicks⁴ that the filtrates of the cultures that had produced experimental scarlet fever, when injected intracutaneously in the proper dilution, gave a distinct local reaction in the skin of a large proportion (41.6 per cent) of persons who had no history of

¹ Griffith: Jour. Hyg., 1927, 26, p. 363; Smith, J.: Jour. Hyg., 1927, 26, pp. 420, 434.

² Dick, G. F. and Gladys H.: Jour. Amer. Med. Assoc., 1923, 81, p. 1166; Jour. Amer. Med. Assoc., 1924, 82, p. 301.

³ Dochez and Sherman: Jour. Amer. Med. Assoc., 1924, 82, p. 542.

⁴ Dick, G. F. and Gladys H.: Jour. Amer. Med. Assoc., 1924, 82, p. 265.

scarlet fever, while all of the convalescent scarlet fever patients tested showed negative or only slightly positive reactions. It was found further that the action of the filtrate on the skin was inhibited by small quantities of convalescent scarlet fever serum mixed with the filtrate before injection. These observations on the essential specificity of the skin test (Dick test) have been confirmed and extended by numerous observers in various parts of the world. Pseudo-reactions and reactions of various types sometimes occur but apparently as a rule can be interpreted correctly by experienced observers. In the opinion of some, a negative Dick test cannot be considered a perfectly reliable index of immunity since in certain outbreaks a considerable proportion of patients may give a negative test at the onset of the disease.²

It seems, therefore, to be true that a toxin-producing hemolytic streptococcus, Streptococcus scarlatinae, is the cause of scarlet fever and this view is widely though not universally accepted at the present time.

Recent attempts to discover some cultural or biochemical property other than immunological that separates Streptococcus scarlatinae from other hemolytic streptococci have not been successful. The Dicks produced experimental scarlet fever both with mannite-fermenting and nonmannite-fermenting strains. The same observers³ suggest that the neutralization of the toxin with specific antitoxin affords a satisfactory means of recognizing the scarlet fever streptococcus. Ruth Tunnicliff has found immune rabbit serum is equally specific and that direct opsonin tests permit ready differentiation.⁴

As indicated by the Dick skin test there is reason to believe that Streptococcus scarlatinae produces at least part of its pathogenic effect by means of a soluble toxin. The Schultz-Charlton blanching phenomenon had earlier pointed to the same conclusion although its significance was for a time not recognized.⁵ When a scarlet fever patient with a bright rash is injected with 1 cc. of

¹ The analogy of the Dick test in scarlet fever with the longer known Schick test in diphtheria (p. 309) is very close; the underlying principle of the two reactions is doubtless fundamentally the same.

² Lees: Jour. Amer. Med. Assoc., 1927, 88, p. 1133.

³ Dick, G. F. and Gladys H.: Jour. Amer. Med. Assoc., 1925, 84, p. 802.

⁴ Tunnicliff, Ruth: Jour. Amer. Med. Assoc., 1926, 87, p. 625.

Schultz and Charlton: Ztschr. f. Kinderheilh., 1918, Orig. 17, p. 328.

serum from a patient convalescent from scarlet fever, the rash after about six hours begins to fade away, and soon disappears completely. Serum obtained from a patient in the active stage of scarlet fever lacks this blanching power. On the other hand serum from apparently normal persons often possesses the power to extinguish the rash, although the proportion of the general population having serum with this power is 60 per cent as against 80-100 per cent of known scarlet fever convalescents. The serum of young children not known to have had scarlet fever manifests a positive reaction in a much smaller proportion than adult serum. The most obvious interpretation of the Schultz-Charlton blanching phenomenon is that an antitoxic substance is present in the serum of persons who have had scarlet fever-whether the attack be recognized or not-or who have inherited maternal antibodies, and that this antitoxin neutralizes the circulating scarlet fever toxin, so causing the extinction of the rash.

Definite information on the presence and persistence of true scarlet fever streptococci in nose and throat and in the environment of patients is still very meager. J. E. Gordon¹ found that hemolytic streptococci-not necessarily all of them of the Streptococcus scarlatinae type-remain on the mucous surfaces of the upper respiratory tract longer in severe than in mild cases. More than one-half of a group of scarlet fever patients studied in the Chicago Contagious Disease Hospital gave positive cultures at the time of release (four weeks); those that had received specific serum, however, harbored hemolytic streptococci in smaller proportion than the untreated. Patients with complications became carriers of hemolytic streptococci in larger numbers and for a longer time than those without complications. It is evident that an arbitrary period of isolation is no more likely to be effective in preventing the spread of scarlet fever than it was of diphtheria (p. 285). Holst² considers that there is no evidence that the isolation of scarlet fever in Norway has materially diminished the frequency of the disease. It is to be hoped that a satisfactory bacterial criterion may soon be found so that a period of isolation based on the demonstrated presence or absence of the specific scarlet fever streptococcus may be substituted for a formal time requirement.

¹ Gordon, J. E.: Jour. Preventive Med., 1926-7, 1, p. 289.

² Holst, P. M.: Jour. Preventive Med., 1926-7, 1, p. 279.

In their series of human inoculation experiments Dick and Dick reported sore throats without a rash in some volunteers and typical scarlet fever in others following inoculation with the same streptococci, and observations by Stevens and Dochez¹ have established the specific identity, long suspected by clinicians, of clinical scarlet fever and certain throat infections without exanthem. The same strain of Streptococcus scarlatinae may give rise now to one, now to the other condition.

Curative Serum.—As early as 1902 Moser² immunized horses to streptococci isolated from scarlet fever patients and reported strikingly successful therapeutic results with the immune serum from these animals. Subsequent experimenters for the most part failed to obtain similar results, and the use of a specific serum for scarlet fever consequently did not come into general use until much later. It seems possible that the inability of many of the earlier experimenters to repeat Moser's therapeutic success was due to the lack of suitable criteria for true scarlet fever streptococci, and to the fact that they did not have the means of recognizing and standardizing the antitoxic content of the serum. Some of them may have worked with hemolytic streptococci of banal types which could not have been expected to manifest any specific antigenic qualities. It is perhaps significant that Moser himself used about 20 different strains of streptococci in the preparation of his immune serum.

Early in 1924 Dochez³ reported the production of an antistreptococcic horse serum which later was found to be toxin-neutralizing, and Blake, Trask and Lynch⁴ administered Dochez's serum to scarlet fever patients and noted its definite therapeutic value. Blanching appeared in the same way as after the use of convalescent serum and Moser's serum. Intracutaneous or intramuscular injections proved effective in blanching and in treatment, while intravenous injection did not. A specific scarlet fever antitoxin was prepared by the Dicks,⁵ who immunized horses with sterile toxic

¹ Stevens, F. A., and Dochez, A. R.: Jour. Amer. Med. Assoc., 1926, 86, p. 1110.

² Moser, P.: Wien. klin. Wchnschr., 1902, 15, p. 1053.

³ Dochez, A. R.: Proc. Soc. Exper. Biol. and Med., 1924, 4, p. 184.

⁴ Blake, F. G.; Trask, J. D.; and Lynch, J. F.: Jour. Amer. Med. Assoc., 1924, 82, p. 712.

⁵ Dick, G. F. and Gladys H.: Jour. Amer. Med. Assoc., 1924, 82, p. 1244.

Moser and Dochez. Treatment with this serum likewise has proved highly successful. Concentration of the Dick serum has been carried out and permits the use of relatively small volumes. Observers in various parts of the world have reported results that are on the whole favorable to the serum treatment of scarlet fever, although the mildness of the prevalent type of the disease makes it difficult to secure any large body of statistics as cogent as those recorded in diphtheria (p. 299). Some clinicians would restrict the use of scarlet fever antiserum to cases of severe type. In the opinion of some competent observers the time has not yet arrived for the proper evaluation of scarlet fever streptococcus antitoxin in the treatment of scarlet fever.

Prophylactic Inoculation.—Preventive inoculation with killed streptococcus cultures appears to have been practiced by Russian bacteriologists as early as 1906.³ Mild symptoms were produced similar to those observed in scarlet fever. A single injection did not suffice to produce immunity, two to three inoculations being necessary. It was believed that a considerable degree of protection was obtained by this procedure. Korschun and Spirina⁴ using a formalinized vaccine have lately reported good results.

The discovery of the scarlet fever toxin offered an opportunity for protective immunization similar to that successfully utilized in diphtheria, and was early taken advantage of by the Dicks. A standard toxin is necessary for the safe and effective application of this method and a definite procedure of standardization has been worked out. Small, properly graduated injections of toxin continued until a negative skin test is obtained seem to confer a considerable degree of immunity. At the Durand Hospital in Chicago 125 nurses and others exposed to scarlet fever were treated with standardized toxin (3 doses) and no scarlet fever developed among them, while in the uninoculated control group of 34 exposed persons

¹ Gordon, J. E.: Jour. Amer. Med. Assoc., 1927, 88, p. 382. Lenthe: Deutsch. med. Wchnschr., 1927, 53, p. 313.

² For example, Veldee, M. V.: U. S. Pub. Health Rpts., 1930, 45, p. 1827.

³ Gabritschewsky: Centralbl. f. Bakt., 1906, I, Orig., 71, p. 719; Nikitin: Jour. Amer. Med. Assoc., 1926, 87, p. 2143.

⁴ Korschun and Spirina: Seuchenbekämpfung, 1927, 4, p. 40.

⁵ Dick, G. F. and Gladys H.: Jour. Amer. Med. Assoc., 1924, 82, p. 544.

7 cases of scarlet fever occurred.¹ Observers in various parts of the world have reported favorable results in combatting scarlet fever by the Dick method.²

¹ Dick, G. F. and Gladys H.: Jour. Amer. Med. Assoc., 1924, 83, p. 84.

² Bokay, V.: Abstr., Bull. Hyg., 1927, 2, p. 367; Chodzko: Bull. Off. Internat. d'Hyg. Pub., 1926, 18, p. 1295; Toyoda, et al.: Jour. Infect. Dis., 1930, 46, p. 219.

CHAPTER 11

THE PNEUMOCOCCI

Genus: Diplococcus. Parasites. Grow poorly, or not at all, on artificial media. Cells usually in pairs of somewhat elongated cells, often capsulated, sometimes in chains. Gram-positive. Fermentive powers high, most strains forming acid in dextrose, lactose, sucrose, and inulin.

Type species is Diplococcus pneumoniae, Weichselbaum.

The micro-organism most commonly met with in acute inflammations of the lungs in man is a small micrococcus upon which a great variety of names have been bestowed; those in most general use are *Diplococcus pneumoniae*, *Micrococcus lanceolatus*, or, more briefly, the *pneumococcus*. It is also known, after its discoverer, as *Fränkel's pneumococcus*.

In considering the relations of this organism to the production of pneumonia, it must be borne in mind that the name pneumonia is not restricted to absolutely uniform changes in one set of tissues, but that writers group under this name a variety of affections symptomatically and histologically distinct. Among the most generally recognized of these are: lobar (acute croupous) pneumonia, bronchopneumonia or lobular pneumonia, and capillary bronchitis (bronchiolitis). If one of the anatomic types—for example, lobar pneumonia, the common form in adults—be considered from the etiologic standpoint, it is found that at the present time in temperate climates acute lobar pneumonia in the vast majority of cases is caused by a lanceolate micrococcus, occurring in pairs or chains—the pneumococcus of Fränkel. A bacterial study of lobar pneumonia at the Hospital of the Rockefeller Institute extending over several years gave the following findings:

MICRO-ORGANISMS ASSOCIATED WITH LOBAR PNEUMONIA

	Number of Cases
Pneumococcus	754
Streptococcus pyogenes	7
Hemophilus influenzae	
Mixed infection	
Staphylococcus aureus	3
Friedländer bacillus	3
Streptococcus mucosus	1

For the most part the pneumonias produced by bacteria other than the pneumococcus are of the lobular type. Pneumonia, then, is not a disease either of constant anatomic character or of uniform etiology. One and the same organism can incite affections histologically dissimilar, such as the lobar, lobular, and bronchiolitic forms; and, on the other hand, apparently identical lesions may be produced by the action of different microbes.

Morphology.—The pneumococcus is typically a small, slightly elongated coccus, one end of which is pointed or lance shaped. It commonly occurs in pairs (diplococci). Variations both in grouping and in the size and form of the individual cells are frequently

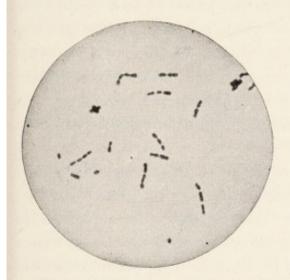


Fig. 44.—Diplococcus pneumoniae in pure culture one day old. Gram stain. Weichselbaum prep. (Kolle and Wassermann).

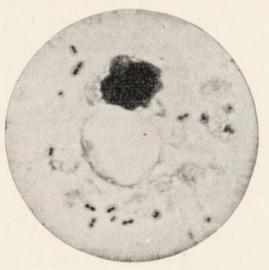


Fig. 45.—Diplococcus pneumoniae in exudate from human lung; aniline-water-fuchsin; Weichselbaum prep. (Kolle and Wassermann).

observed. Chain formation is common, especially in artificial media, although the chains are usually shorter than those of Streptococcus pyogenes (Fig. 44). Oval and elongated bacillary forms sometimes occur. A well-defined capsule envelops the pneumococci in animal exudates (Fig. 45), but except in certain strains or in certain media is less readily demonstrable in cultures grown outside of the animal body. Capsular substance may often be well demonstrated in milk cultures and in media containing blood or serum. Since the capsular substance is most abundantly developed in recently isolated virulent strains and when the organism is growing in contact with animal tissue and fluids, it has been suggested that the capsule has a protective significance and in some way screens

the pneumococcus against the injurious influences of the body fluids of its host. Infection with Pneumococcus mucosus or Type III pneumococcus (pp. 240, 248), in which capsular substance is especially richly developed, is attended by a particularly high mortality. The pneumococcus is readily stained with the aniline dyes, is grampositive, asporogenous, and nonmotile.

Cultural and Biological Characters.—Some pneumococci grow upon the ordinary culture media, such as nutrient agar, although never luxuriantly. Fresh meat infusion should be used in preference to beef extract; the hydrogen-ion concentration should be from P_H 7.6 to P_H 7.8, and the Arnold steamer used for sterilization. The addition of sterile defibrinated rabbit blood (3 to 4 drops to 5 cc. of agar or broth) provides a favorable medium for the growth of the pneumococcus. On this meat-infusion blood-agar the colony is small, moist, translucent and granular, with well-defined edges. A zone of greenish discoloration appears around the colony.

Litmus milk is promptly acidified and often, but not invariably, coagulated.

Inulin fermentation is of some value in differentiating pneumococci from streptococci. As a rule, pneumococci ferment inulin, while streptococci do not. The Hiss serum-water medium is used for this determination. Like most other fermentation reactions produced by bacteria, inulin fermentation by pneumococci is liable to irregularities and variations, and although of high differential value is not to be relied upon alone for absolute identification. An important distinctive character of the pneumococcus serving to distinguish it from Streptococcus pyogenes and other closely allied organisms is its solubility in bile, the active solvent agent in the bile being cholic acid. Fresh ox bile is added in the proportion of about 10 to 20 per cent to a young, plain-broth culture. Insolubility of certain pneumococcus strains has been reported, but is

¹ "Clear beef serum is added to 2 or 3 volumes of distilled water. Heat the mixture for fifteen minutes in an Arnold sterilizer at 100° C. to destroy ferments present in the serum. Add 5 per cent aqueous litmus solution in a concentration of 1 per cent or an amount sufficient to give a deep blue color. Add inulin to the serum water in a concentration of 1 per cent. The inulin may be best sterilized by autoclaving at 15 pounds' pressure for fifteen minutes. Sterilize the inulin serum water by the fractional method, 100 C." (Avery, Chickering, Cole, and Dochez: Monograph No. 7, Rockefeller Institute for Medical Research, October 16, 1917, p. 20).

² Neufeld: Zeit. f. Hyg., 1900, 34, p. 454.

VARIETIES 239

believed to be comparatively rare. The workers in the Hospital of the Rockefeller Institute report that "among several hundred strains of pneumococcus isolated by us from lobar pneumonia none has failed to be dissolved by bile." Pneumococci killed by heat are not bile-soluble.

Pneumococci may, therefore, be distinguished from streptococci by their bile solubility and, less definitely, their ability to ferment inulin, greater pathogenicity for mice, and the characteristics of the colonies on blood-agar.

The temperature range of the pneumococcus is narrow, growth taking place, as a rule, only between 25 and 42 °C. Cultures of pneumococci in blood broth remain viable for several weeks in the refrigerator. The virulence of the organisms may be conserved for months in the dried spleens of infected mice when these organs, after desiccation in vacuum, are kept sealed in the cold.

Varieties.—As with many other pathogenic bacteria, so with the pneumococci, we are not dealing with a single, uniform, sharply delineated kind of micro-organism, but with a fairly large biological group comprising several types and varieties more or less readily distinguishable one from another. Cultural differences have thus far not given a satisfactory basis for differentiation.

The most satisfactory means of differentiating varieties of pneumococci is by the use of immunity reactions. This method of differentiation has been applied extensively in the study of pneumonia at the Hospital of the Rockefeller Institute.

Observations by Dochez and Gillespie² showed that the pneumococci found in cases of lobar pneumonia can be divided into four distinct groups (Types I, II, III, and IV) on the basis of specific agglutination with the serum of immunized animals and protection of animals against infection. In New York City during a period of two years Dochez and Avery³ found that every strain studied fell into one or another of these four groups. In addition to the constant differences found in immunity experiments with animals, the groups appear to have significant differences in human pathogenicity. The most severe types of pneumonia in man are pro-

¹ Avery, Chickering, Cole, and Dochez: Monograph No. 7, Rockefeller Institute for Medical Research, October 16, 1917, p. 14.

² Dochez and Gillespie: Jour. Amer. Med. Assoc., 1913, 61, p. 727.

³ Dochez and Avery: Jour. Exper. Med., 1915, 21, p. 114.

duced by organisms belonging to the so-called "fixed Types I, II, and III." The organisms of these three groups differ from those of Group IV in that their immunity reactions are fairly constant. These groups are seldom found except in lobar pneumonia; together they are responsible for about 80 per cent of the cases of this disease. Group IV is composed of a number of strains differing from one another in serologic reactions and in some localities less commonly found in cases of pneumonia terminating fatally. This heterogeneous group of organisms of relatively low pathogenic power occurs commonly in the normal human mouth. Several investigators have split up Group IV into serological sub-groups to which they assign varying importance in the production of disease.

Type III produces a heavy mucoid growth due to its luxuriant capsule formation and is morphologically similar to Streptococcus mucosus, from which organism, however, it may be distinguished by its bile solubility, ability to split inulin, and greater virulence for mice. Type III seems to be relatively uncommon in England, observers in Manchester, for example, not finding this type in a single instance out of 116 cases examined.

The following table shows the proportionate occurrence of the four types in 454 cases:

OCCURRENCE OF VARIOUS TYPES OF PNEUMOCOCCUS IN LOBAR PNEUMONIA

The second	and the same of th
1451	(Comma)
16 44 7344	(Cases)

Pneumococcus Type	Incidence	Per Cent
I	151	33.3
II	133	29.3
II (atypical)	19	4.2
II	59	13.0
V	92	20.3

It is probable that the types here enumerated as occurring in the United States do not include all the differentiable organisms of this group. Lister, in fact, has reported finding at least one additional type in South Africa.

¹ Avery, Chickering, Cole, and Dochez: Monograph 7, Rockefeller Institute for Medical Research, October 16, 1917, p. 18.

Rosenow, in studying transmutations within the streptococcuspneumococcus group, has come to far-reaching conclusions regarding the possibilities of conversion of one type into another. According to his observations, hemolytic streptococci have been converted into typical pneumococci and vice versa. Morphology, capsule formation, fermentive power, specific immunity response (opsonin production, agglutination) have all been found by Rosenow to vary within wide limits. The practical significance of these observations is uncertain.

It is now generally recognized that the serological types of pneumococci are not so definitely fixed as they were at one time supposed to be. Griffith² showed that a rough variant of one serological type may give rise to a smooth strain of another serological type under certain conditions. The method used was to inoculate mice with living cells of the rough variant together with a massive dose of heat-killed cells of a second type. By this measure a rough variant of Type II could be apparently converted into Type I and vice versa. These observations have been confirmed by Reimann.³

Distribution.—The pneumococcus is a common inhabitant of the human mouth and throat. Pasteur in 1880 recovered from a rabbit inoculated with human saliva a coccus that in all probability was a true pneumococcus. At about the same time Sternberg in this country independently discovered a similar coccus in "a fatal form of septicemia in the rabbit produced by the subcutaneous injection of human saliva." More recent studies have shown that from one-third to one-half of healthy individuals not known to have been in contact with a pneumonia patient habitually carry pneumococci in their mouth secretions.

The results of the examination at the Rockefeller Hospital of the mouth secretions of 297 normal persons showed a great preponderance of pneumococci of Group IV, the most ill-defined and least pathogenic of the four main types recognized in this country. On the other hand, Types I and II, which together cause about two-thirds of all cases of lobar pneumonia, are rarely if ever found in the mouth secretions of normal individuals.

¹ Rosenow: Jour. Infect. Dis., 1914, 14, p. 1.

² Griffith, F.: Jour. Hyg., 1928, 27, p. 113.

³ Reimann, H. A.: Jour. Exper. Med., 1929, 49, p. 237.

The pneumococcus may survive in external nature for a considerable period. Netter¹ found it in the dust from the walls of a sick-room, and similar observations have been made by other workers. Stillman² has reported the interesting observation that pneumococci are more commonly present in the dust of rooms in which cases of lobar pneumonia (Type I and Type II) have occurred than in the dust of rooms in which there has been no lobar pneumonia, and also that in the latter instance pneumococci of Group IV preponderate, as they do in the secretions from the normal mouth.

Epidemiology.—It was long a belief that the occurrence of pneumonia was largely, if not altogether, dependent on predisposing influences, such as fatigue and exposure to cold, since observations showed pneumococci usually present in normal mouths. In this view the communication of pneumococcal infection by transfer of the specific germ from one person to another was thought to be of comparatively minor significance and the possibility of contact infection practically disregarded. The differentiation of pneumococcus types and the suggestive facts discovered about the distribution of these types led many workers to a different interpretation.

The types of pneumococci that appear to cause most of the cases of lobar pneumonia (Types I and II) are rarely found in normal individuals without definite history of exposure. The distribution of the various types in the dust of sick-rooms corresponds in some instances very closely with the presence of cases of lobar pneumonia. The following figures illustrate the experience of the Rockefeller Institute in this respect:

Pneumococcus	Contacts		Noncontacts	
	Number Examined	Percentage Positive	Number Examined	Percentage Positive
Type I	160	13	297	0.3
Type II	149	12	297	0.0

This observation indicates the existence of pneumococcus carriers perhaps comparable to the well-recognized carriers of diphtheria

¹ Netter: Compt. Rend. de la Soc. Biol., 1897, 49, p. 538.

² Stillman: Jour. Exper. Med., 1917, 26, p. 513.

and other respiratory tract diseases. Just how important pneumococcus carriers may be in spreading infection is not known. Contact with either cases or carriers in the general population may give rise to new carriers, but very rarely is it possible to trace a case of pneumonia to a pre-existing case. Jacobson¹ found that the incidence of fixed type pneumococci among the attendants in the pneumonia wards of a Chicago hospital was practically the same as that among university students not in contact with pneumonia.

Pneumonia sometimes occurs to a very unusual extent in particular localities and among special groups of people. At one time the pneumonia death-rate among the negro laborers brought to work on the Panama Canal was as high as 18.74 per thousand, and a similarly high incidence of the disease was observed in 1912 among the native laborers in the Rand mines in Africa. Barrack life seems especially to favor the occurrence of pneumonia, and troops in army encampments have often suffered out of all proportion to the same age groups in civil life.

These facts have been variously interpreted—by some as indicating the importance of predisposing factors, such as bad ventilation or fatigue; by others as evidencing the increased opportunities for the dissemination of mouth germs afforded by close personal contact. Since overcrowding in living and sleeping quarters entails both unhygienic conditions of life and better opportunities for the transfer of disease germs, it is not easy to secure evidence that establishes either view to the exclusion of the other. There seems no reason why both factors should not be operative to varying degrees under varying conditions. The segregation of pneumonia patients in order to prevent the spread of pneumonia has theoretically something to recommend it; its actual value is yet undetermined.

Pathogenicity for Man.—The well-nigh universal occurrence of the pneumococcus in the tissue of inflamed lungs in cases of lobar pneumonia, especially in those parts where the pathologic changes are most active, and also its regular appearance in the sputum of the majority of pneumonia patients, afford strong arguments for connecting this organism causally with lobar pneumonia. The same is true of many cases of lobular pneumonia. The pneumococcus is often present in the circulating blood. Observations differ as to the frequency of pneumococcus septicemia, the reported posi-

¹ Jacobson: Jour. Preventive Med., 1926-27, 1, p. 259.

tive cultures from blood ranging from about 20 per cent to over 90 per cent; the difference is attributed by some workers to the technic employed. Opinions also differ as to the significance to be attached to the presence of the pneumococcus in the blood-stream. The majority of investigators believe that there is a definite connection between positive blood-cultures and the severity of the disease, and that the presence of the pneumococcus in the blood increases the probability of a fatal termination.

It is sometimes held that lobar pneumonia is caused by bacteria that are inhaled and make their way directly to the alveoli of the lungs (Weichselbaum).1 Lobular pneumonia, on the other hand, is supposed to be due to the aspiration of bacteria that are present in the bronchial exudate or to a general extension of a bronchitis into the alveoli. The type of pneumonia produced by such organisms as Hemophilus influenzae and C. diphtheriae is usually of the latter variety (bronchopneumonia). Since these bacteria are probably present in the first instance in the exudate of the upper respiratory passages, the bronchopneumonia may be looked upon as more or less direct extension of the initial infection. A far greater variety of microbes is found associated with lobular pneumonia than with lobar, both as the primary exciting agents and as participants in mixed infections. Probably over 95 per cent of all cases of pronounced lobar pneumonia are due to the pneumococcus. The so-called "atypical cases" of lobar pneumonia are also due, in the great majority of cases at any rate, to the pneumococcus, and there is no reason for assuming that a case presenting anomalous symptoms is caused by an unusual bacterial species. The differences observed in pneumococcus infections are related to the susceptibility of the affected individual, and perhaps in some degree to the virulence of the infecting micro-organism. In lobular pneumonia, and more rarely in lobar pneumonia, mixed infections may occur, pyogenic micrococci being the accessory organisms most commonly found. As already pointed out, both streptococci and staphylococci are capable by themselves of provoking pneumonic processes of the lobular type, and when they are found with the pneumococcus they may be regarded as taking some part in producing the observed pathogenic effects. How great an influence is exerted by such mixed infections upon the outcome of a case is still uncertain. The

¹ Weichselbaum: Kolle and Wassermann, Handbuch, 2nd ed., 3, p. 240.

question as to how far the anatomic and clinical character of a pneumonia is affected by the nature of the microbe or microbes concerned is also not fully determined.

The pneumococcus must be held responsible not only for the causation of most cases of both lobar and lobular pneumonia, but for a number of other pathologic processes and conditions. Among the most common of these are inflammations of the pleura, pericardium, endocardium, and meninges. These may occur either as independent and primary affections or as complications and sequels of pneumonia. Inflammations of the meninges, and particularly of the middle ear, are rather frequently secondary to pneumonia; they are sometimes primary infections. The connection between inflammation of the middle ear and meningeal infection has been often noted. There can be no doubt that the pneumococcus on its road to the cerebrospinal membranes travels occasionally by way of the nasal passages, but the pneumococcus is frequently found in the blood, and other modes of access are also possible.

To these inflammatory conditions of pneumococcal origin might be added a long list of others provoked by the same organism. There appear to be few, if any, organs or tissues that are not under some circumstances subject to attack. Enteritis, conjunctivitis, and a great variety of other affections are occasionally due to the activity of the pneumococcus. In general, pneumococcus infections tend to a more favorable outcome than similar infections with streptococci or staphylococci, but the statement admits of exceptions.

In the production of pneumonia an important part is played by causes affecting individual predisposition. The well-known age-fatality of the disease which bears most heavily upon infants and upon the aged demonstrates the influence of bodily conditions in determining the course of infection. Disturbance of the circulation due to severe or sudden exposure to cold is another familiar factor of causation. The influence of alcoholism as a predisposing factor is especially marked. A variety of other causes, such as infection with a disease like measles or typhoid fever, can lead to a lessening of the normal resistance, so that pneumococci which are taken in with the inspired air, or are perhaps present in some part of the respiratory tract, can penetrate the alveoli of the lungs and excite the pneumonic process. In most, if not all, of the infectious diseases the influence of predisposing factors is important; in pneumonia it is of almost supreme significance.

At the same time the possibility of direct transmission of infection must be kept in mind. It has already been pointed out that pneumococci can retain their vitality in fine spray and in dust for a short time and in dried sputum for a considerably longer period, extending even over some weeks. As in many other bacterial diseases, so also in pneumonia, convalescents and persons coming in contact with patients or convalescents may carry virulent germs in their respiratory tract for weeks or months. Sometimes an apparently simple "cold in the head" may be due to the pneumococcus. Many cases are on record of apparently rather direct communication of pneumonia from one person to another, but few such cases have been studied with adequate bacteriologic methods. It is plain, however, that disinfection of pneumonic sputum should be rigorously practised, and that the proximity of a pneumonic patient should be avoided, especially by the aged or those in a condition inviting infection.

Pathogenicity for the Lower Animals.—Animal inoculation has thrown a flood of light upon the nature and course of pneumococcus infection in man. The injection of human saliva into rabbits by Pasteur and by Sternberg gave rise to a rapidly fatal generalized infection. The "sputum septicemia" caused by this procedure is now known to be due to the pneumococcus; precisely similar results follow the injection of pure cultures of this organism. Mice, like rabbits, exhibit a high susceptibility to pneumococcus infection; guinea-pigs are less sensitive. It is a noteworthy fact that in these animals lung lesions, when they occur at all, are slight and usually limited to the bronchopneumonic type. Animal experiments with the pneumococcus present an example of the general law that susceptibility is characterized by general septicemic infection, resistance by the occurrence of a localized process. Resistant animals, such as the dog, show an approximation toward the type of pneumococcus infection observed in man. It is possible to produce typical lobar pneumonia in the rabbit by carefully balancing the susceptibility of the animal and the virulence of the germ. This may be effected either by employing attenuated cultures of the pneumococcus (injected intratracheally, intravenously, or intraperitoneally), or by partially immunizing the animals so that they acquire sufficient resistance to prevent a general infection.

On the basis of these experiments the course of pneumococcus infection in man may be more readily comprehended. Man must be regarded as an animal of rather high normal resistance. This relative immunity may, however, be so far reduced as to permit of the production of localized manifestations, which in still more susceptible individuals may lead on to a fatal septicemia. In some cases death is due to overwhelming interference with respiration caused by the local pulmonary lesions; in others, to general systemic poisoning or toxemia.

The experimental production of lobar pneumonia in monkeys has been successfully carried out by Blake and Cecil2 at the Army Medical School, Washington. Pneumococci were introduced into the lumen of the trachea by means of a needle inserted between the cartilages below the larynx. In this way lobar pneumonia showing close parallelism to the disease in man was produced in monkeys with the three fixed types of pneumococci and also with Group IV. Intravenous and subcutaneous injection of pneumococci failed to produce pneumonia. Pneumococci were found in the blood within six hours after the introduction of the organisms into the trachea and before the signs of pneumonia appeared. These facts favor the view of the bronchogenic rather than the hematogenous origin of the disease. The lesions produced in monkeys were considered identical in character with those in human lobar pneumonia. Empyema, pericarditis, and other complications occurred in some of the monkeys just as they do in some cases of human pneumonia.

Virulence and Toxin Production; Agglutination; Precipitins.—
The occurrence of cases of pneumonia differing widely in severity has been supposed to indicate the existence of strains of pneumococci of varying degrees of virulence, although in any given instance it is plainly impossible to apportion the relative influences of individual susceptibility and of bacterial virulence. The occasional appearance of epidemics of pneumonia of a highly virulent character has also been conjectured to be due to the presence of strains of unusual pathogenic power. These inferences are supported to some extent by the experimental evidence, which shows that

Wadsworth: Amer. Jour. Med. Sci., 1904, 127, p. 851.

² Blake and Cecil: Jour. Exper. Med., 1920, 31, p. 403.

considerable fluctuations in virulence occur in cultures. The virulence of a given strain may be greatly exalted by animal passage. This fact has been adduced to explain the virulence of the epidemic type of pneumonia, it being supposed that pathogenicity is heightened by frequent transfer from person to person. Attenuation of pneumococci may be effected experimentally in various ways, such as growth at a temperature above 39 C. or in a medium in which abundant acid production occurs (milk); in the ordinary culture media a spontaneous diminution of virulence takes place.

Exact experimental determination of the virulence of a strain of pneumococcus is limited by the fact that virulence for one animal species does not necessarily correspond with virulence for another species. While it is true in general that the virulence for mice of pneumococci isolated from the blood of pneumonia patients is high and bears some relation to the severity of the symptoms, this is by no means always the case. Perhaps the most definite evidence for the existence of strains of different degrees of virulence is that afforded by the characteristics of the various types already described.

These four types, which are separable by their antibody production, are apparently associated with cases of pneumonia of varying degrees of severity. In Type I infection the mortality is approximately 25 per cent; in Type II, 32 per cent; in Type III, 45 per cent, and in Group IV, 16 per cent. It may not be desirable to stress these differences too much until a more extensive series of data is available, but it is not an extreme position to hold that such differences in mortality as that between Type III and Group IV infections marks a real and important difference in virulence between pneumococci also distinguishable in other ways.

Toxin production by the pneumococcus has been the subject of much inconclusive investigation. No soluble toxin secreted by the cell during life has yet been demonstrated. Disintegration of the cell-body, however, by freezing and grinding, by the action of bile salts, or by autolysis yields a solution possessing hemolytic and acutely toxic properties. Little is known of the nature of the toxic substances. They may have existed preformed within the body of the cell, as is known to be true of the hemolytic substances and intracellular toxins; or they may be products split off during the disintegration of the bacterial proteins. It is uncertain to what

extent the results of pneumococcus infection may be attributed to the action of such substances. Neutralization by antipneumococcus serum is not strictly specific.

Agglutination of pneumococci by the blood-serum of pneumonia patients has been demonstrated by a number of observers.¹ The clumping is accompanied by noticeable changes in the capsular and cell substance, which have impressed some observers as indications of a lytic or degenerative process. It has been shown, however, that although the cocci are profoundly affected morphologically by the agglutinating serum, they retain their vitality for a long time (twenty-five days, Rosenow) and even their virulence. The degree of agglutination produced by the serum of pneumonia patients is at best feeble. The highest dilutions at which agglutination is obtained are not, as a rule, over 1:40 or 1:50. The agglutinative property of the blood is most marked about the time of the crisis, and then gradually diminishes.

The agglutinative reaction has been of practical value primarily in identifying the type of pneumococci. The serum of animals immunized with the several types is used preferably in the following dilutions: Type I, 1:40 (0.5 cc. of 1:20 serum to 0.5 cc. bacterial suspension); Type II, 1:40 and 1:2 (0.5 cc. undiluted serum to 0.5 cc. bacterial suspension)—the latter for the purpose of identifying the atypical members of Type II; Type III, 1:10. Specific agglutination of the types occurs in about an hour's time at 37 C. and is observed macroscopically. A bile-soluble coccus not agglutinating with any of the sera enumerated is classed as a Group IV pneumococcus.

A specific substance is produced in pneumococcus broth cultures which gives the precipitin reaction (p. 189) when mixed with the homologous antipneumococcus serum. Thus Type I serum gives a specific precipitation with the dextrose-blood-broth culture—cleared by centrifugalization—of Type I pneumococcus, but not with that of other types. This fact has been taken advantage of by Avery² in devising a rapid cultural method for the determination of pneumococcus types. This method is especially applicable when white mice are not available for the inoculation test. It

¹ Besançon and Griffon: Ann. de l'Inst. Pasteur, 1900, 14, p. 449; Neufeld: Ztschr. f. Hyg., 1902, 40, p. 54; Wadsworth: Jour. Med. Res., 1903, 10, p. 228; Rosenow: Jour. Infect. Dis., 1904, 1, p. 280.

² Avery: Jour. Amer. Med. Assoc., 1918, 70, p. 17.

has given excellent results in the hands of a number of investigators.1

Immunity and Serum-Therapy.—An attack of pneumonia in man is probably followed by some increase in resisting power, but such acquired immunity is far from permanent. One attack may succeed another after a short interval; in some cases predisposition to a fresh attack seems to be increased. Susceptible animals (rabbits), however, may be rendered immune by inoculation with dead or attenuated pneumococci, followed by inoculation with virulent cultures. The degree of resistance obtained is often considerable.

It is not certainly known upon what this resistance depends. On the basis of animal experiments some observers (e. g., Wassermann)2 concluded that immunity was due to the production of a bactericidal substance. Later experiments, however, have shown that pneumococci develop in normal and in pneumococcic human serum with equal rapidity. In fact, neither a bactericidal nor an antitoxic property has been shown to exist in immune serum. Rosenow³ found that nonvirulent pneumococci are susceptible to phagocytosis, while virulent strains are not. The extent to which phagocytosis is important in bringing about the crisis and healing the pneumonia is still undetermined. Clough4 observed that in a considerable proportion of cases a definite phagocytic activity develops in the serum of the patient at the crisis (or lysis). This increased activity of the serum is such as to bring about active phagocytosis of a virulent pneumococcus not phagocytable in normal human serum. This phagocytic activity seems in practically all cases to be strictly limited to the homologous strain, derived from the patient whose serum is being tested. It is thought probable that the phagocytic factor plays an important part in bringing about recovery in man.

Important results have been reported in serum therapy in connection with the work of Dochez, Avery and others (see p. 239) at the Hospital of the Rockefeller Institute, and by Park and his collaborators⁵ in other New York hospitals.⁶ The results available

¹Vaughan, W. T.: Jour. Amer. Med. Assoc., 1918, 70, p. 431.

² Wassermann: Deut. med. Wchnschr., 1899, 25, p. 141.

³ Rosenow: Jour. Infect. Dis., 1906, 3, p. 683.

⁴ Clough: Bull. Johns Hopkins Hosp., 1913, 24, p. 295.

⁵ Park, W. H., Bullowa, J. G. M., and Rosenblüth, M. B.: Jour. Amer. Med. Assoc., 1928, 91, p. 1503.

⁶ Early attempts to use pneumococcus antibody for treating patients met

at the present time indicate that Type I cases treated with Type I serum appear to be distinctly benefited, the case fatality being reduced by nearly one-half. The evidence that specific serum is efficacious in the other three types of pneumonia is far less convincing, although in several series of hospital studies Type II cases seem to be favorably affected, but in lesser degree than those of Type I.

Prophylactic vaccination with killed cultures has been advocated for use under conditions of special exposure, as in army camps. Animal experiments have yielded results that encourage this procedure.

with the obstacle that severe chills and hyperpyrexia followed the injection of the serum. This difficulty has been in part overcome by the use of refined and concentrated serum from which deleterious substances have been largely removed. In the investigations by Park and others a serum prepared by Felton at Harvard was used (Felton, L. D.: Jour. Infect. Dis., 1928, 43, p. 543).

CHAPTER 12

THE GONOCOCCUS; THE MENINGOCOCCUS; NEISSERIA CATARRHALIS

Genus: Neisseria. Strict parasites, failing to grow or growing very poorly on artificial media. Gram-negative cocci, usually in pairs. Strongly aerobic. Growth fairly abundant on serum media. Type species is N. gonorrheae.

A Number of closely related organisms have been placed together as a single genus (Neisseria) in recent classifications. The two chief representatives, the meningococcus and the gonococcus, are, as a rule, found in such different lesions and parts of the body that they are not likely to be confounded. Rare cases of meningitis due to the gonococcus have, however, been reported. The serum reactions of immunized animals, while indicating a close relationship of the two organisms, usually permit satisfactory differentiation. The fermentation reactions of the group—acid but no gas—give further differential data:

	Dextrose	Maltose	Saccharose	Levulose
N. gonorrheae	+	_	-	_
N. meningitidis	+	+	_	_
N. catarrhalis	_	_	-	-
N. pharyngis	+	+	+	+

Certain other gram-negative cocci found frequently in the naso-pharynx (Neisseria flava I, II and III) are characterized by pigment production.

THE GONOCOCCUS

Few diseases are so widely disseminated through all classes of society as gonorrhea. The conservative statistics of Erb, based on the history of about two thousand male patients, mostly among the German middle classes, showed that about 48.5 per cent had had gonorrhea. Some German authorities would place the proportion in the whole population at a much higher figure. Cabot, cabot,

¹ Erb: Münch, med. Wchnschr., 1906, 53, p. 2329.

² Cabot, R. C.: Boston Med. and Surg. Jour., 1911, 165, p. 155.

in Boston, found that 35 per cent of a hospital population of 8000 gave a history of gonorrhea.

Neisser¹ in 1879 first called attention to the constant presence of a peculiar coccus in gonorrheal pus. In cases of gonorrhea of recent origin this was the sole organism found; it occurred not only in the urethral and vaginal discharges of ordinary gonorrhea, but was present in the exudations of conjunctivitis due to gonorrheal infection. Pure cultures of this organism were first obtained by Bumm² (1885), who also succeeded by inoculation experiments in demonstrating beyond doubt its causal relation to gonorrhea.

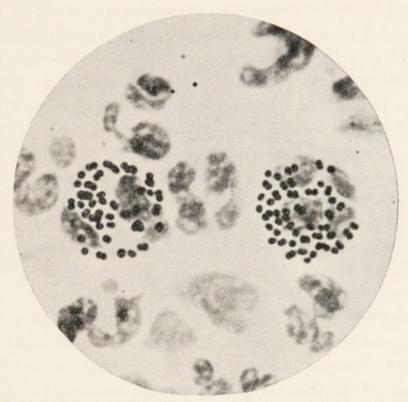


Fig. 46.—Smear from gonorrheal pus. Methylene blue; × 2000 (Nowak: Documenta Microbiologica, I, 1927).

Morphologic and Cultural Characters.—Morphologically the gonococcus (Neisseria gonorrhoeae) is very similar to the meningococcus. In preparations made from gonorrheal pus the cells occur in pairs, with the flattened sides in juxtaposition; the appearance in stained preparations is like that of a coffee-bean. Pappenheim's stain (p. 52) is well adapted for determining the presence of the gonococcus in suspected pus. In pure cultures the cocci are often

¹ Neisser: Centralbl. f. d. med. Wissensch., 1879, 17, p. 497.

² Bumm: "Der Mikroorganismus der gonorrhoischen Schleimhauterkrankungen," Wiesbaden, 1885.

aggregated in irregular masses, but, especially in young cultures, also show the characteristic diplococcus arrangement. Like the meningococcus, it is found within the pus cells, sometimes in enormous numbers (Fig. 46). In the earliest stages of infection, however, gonococci are found free in the serum, and the same is true of cases of gonorrhea of long standing.

The cocci in the pus cells do not invade the nucleus, but are confined to the cytoplasm of the cell. There is satisfactory evidence that the gonococci are picked up by the phagocytes and do not actively penetrate the latter; they are, indeed, entirely nonmotile. The gonococci found inside the leukocytes are but slightly altered in appearance, and in many cases are still alive; no multiplication, however, has been demonstrated, although it is possible that this occurs. Whether the extensive phagocytosis that takes place has any influence upon the course of gonorrhea is unknown. When treated by Gram's method, the gonococcus completely loses the stain.1 Its behavior toward the gram stain, together with its coffee-bean form and intracellular situation, usually serve to distinguish the gonococcus from related organisms, such as the common pyogenic cocci found in the urethral or vulvovaginal tracts. Organisms other than the gonococcus, staining like it and contained in the polymorphonuclear leukocytes, are occasionally, although rarely, found in the urethral and vaginal secretions.

Compared with the meningococcus, the gonococcus grows even less readily on special artificial culture media, such as blood-agar and serum-agar. Some strains, however, are said to grow on dextrose or glycerol-agar from the start, but, as a rule, less luxuriantly than the meningococcus. In practice little confusion is caused by the close resemblance of these two organisms, since they are not liable to occur in the same tissues, although, as already stated, meningitis is, in rare instances, caused by the gonococcus.

Growth seldom takes place upon the ordinary gelatin and agar culture media unless considerable quantities of pus are smeared on the surface. Bumm was the first to succeed in cultivating the gonococcus, accomplishing this by use of a mixture of ox, sheep, and human serum. Later (1891) Wertheim² devised a medium

¹ The gonococcus is decolorized rather slowly. In testing for this organism the film should be exposed for ten minutes, instead of five, to the action of alcohol.

² Wertheim: Deut. med. Wchnschr., 1891, 17, p. 1351.

which has proved highly serviceable, and is today, with certain modifications, in general use. In place of blood serum, ascitic or hydrocele fluid is commonly used, 10 per cent being added to ordinary nutrient agar. A reaction of $P_{\rm H}$ 7.3 to 7.6 is most favorable. Perhaps the most essential factor in the successful cultivation of the gonococcus is an abundant supply of moisture. There should be a plentiful supply of the water of condensation on the tubes or plates and the atmosphere of the incubator should be kept saturated with water. Some observers have thought that reduced oxygen tension was favorable for growth, but, as Torrey has pointed out, the conditions under which such observations were made permit the alternative hypothesis that abundant moisture rather than low oxygen accounted for the growth improvement.

Toward external influences the gonococcus displays a high degree of sensitiveness. According to most experimenters, cultures are injuriously affected by a temperature of 40 to 41 C. The gonococcus is sensitive to drying, and under ordinary conditions can survive exposure to the air for only a very short time, although in masses of dried pus it may live exceptionally for six or seven weeks. In favorable culture media it rarely maintains its vitality more than forty-eight to seventy-two hours at room temperature, but, like many other bacteria, will live longer if kept in a refrigerator.

Correct diagnosis of gonococcus infection, based on the discovery of gram-negative diplococci within pus-cells, is often a relatively simple matter, but it must be remembered that there are several sources of error. As already pointed out, gonococci sometimes lie free in the serum and are not contained within the leukocytes. Again, as already mentioned, the occasional presence of organisms similar to the gonococcus, especially in the vulvovaginal tract, makes it advisable in doubtful cases to fall back on cultural methods. If microscopic findings are negative, a much higher degree of certainty can be obtained by a suitable cultural method in the hands of an experienced observer. Centrifugalization of the urine is often resorted to, and increases the chances of finding gonococci in the sediment either microscopically or culturally.

Irons¹ has found that the cutaneous inoculation of glycerol extracts of autolyzed gonococci produces a well-defined reaction in patients infected by the gonococcus. This cutaneous reaction

¹ Irons: Jour. Infect. Dis., 1912, 11, p. 77.

is not usually obtained in normal persons nor in those suffering from other infectious diseases.

Varieties of Gonococci.—Here, as in many other groups of bacteria, serological variations have been reported to exist. The difficulties of agglutinative tests in this group, however, are considerable and it is not easy to reconcile the results of different workers. Most of the freshly isolated strains from acute cases appear to fall in one serological group, while old stock cultures and strains from chronic cases constitute a second subdivision. "Intermediate" and serologically "independent" strains occur, and it cannot be said that the study of gonococcal variation has contributed materially to our knowledge of the infection.

Inoculation Experiments.—The lower animals (including apes) are not susceptible to inoculation either with pure cultures of the gonococcus or with gonorrheal pus. Whether introduced into the peritoneum or the urethra or applied to the conjunctiva of these animals, the gonococci have shown themselves impotent to effect an invasion of the tissues. The poisonous products contained in cultures have, however, some effect upon animals, and will cause the death of guinea-pigs and white mice. These poisonous substances are not true toxins and are not diffused into the surrounding media during the life of the cell, but, according to the statement of most investigators, are constituents of the bacterial cell-body. On the death of the cell they may appear as disintegration products in the surrounding fluid. They are quite resistant to heat, and are able, according to some investigators, to withstand a temperature of 80 C. or even 115 C. De Christmas¹ and his co-workers reported successful immunization experiments with these toxic substances, but their results have not been corroborated by other experimenters. Inoculation of the human subject (both sexes) with pure cultures of the gonococcus gives rise to a typical infection (Bumm, 1885). The mucous surfaces seem to be especially susceptible, and inoculation of the urethra almost invariably succeeds. Repeated demonstration of the specificity of this organism for gonorrhea has thus been obtained. The poisonous bodies above mentioned will evoke suppuration when injected into the urethra, but since the products of other microbes, as, for example, staphylococci and colon bacilli, produce the same result, the effect cannot be regarded as

¹ De Christmas: Ann. de l'Inst. Past., 1900, 14, p. 331.

specific. Little if any immunity is conferred by an infection, reinoculation being successful at short intervals; clinically it is observed that an acute attack may be superimposed upon a chronic gonorrhea. An antibody (amboceptor) has, however, been found in the blood of gonorrheal patients. Torrey and others have observed that agglutinins and precipitins are produced in rabbits and other laboratory animals inoculated with cultures of gonococci. The close relationship of the gonococcus to the meningococcus is shown with especial clearness in the observation of Martha Wollstein that the agglutinins, the protective power, and the amboceptors developed in the serum of immunized animals seem to be largely common to both micro-organisms.

Results of Gonococcus Infection.-As a rule, the gonococcus attacks primarily the human urethra, and then gives rise to an inflammation which may be followed by chronic urethritis and stricture. The dangerous extragenital complications and sequelae of this affection are not so generally known as they should be. So far from being a localized inflammation confined to the immediate neighborhood of the original point of infection, the gonorrheal process may be far-reaching in its effects. In the female particularly, the entire genito-urinary tract may be involved, the Fallopian tubes, the ovaries and the peritoneum being invaded not at all uncommonly. Spread of the infection along contiguous mucous surfaces may likewise occur in the male, causing epididymitis and other inflammatory conditions. The gonorrheal ophthalmia of the new-born due to infection at birth is a well-known consequence of maternal infection. Although exact information is not obtainable, it is estimated that 10 per cent of all cases of blindness are traceable to this source, and that in the United States there are at least 12,000 children blind from this cause.

The gonococcus may also invade the blood from local lesions and be carried by the lymph and blood-streams to distant parts of the body. In this way it can incite a variety of extragenital lesions, some of which result fatally. Especial predilection is shown for the synovial membranes of the joints, where it causes the so-called "gonorrheal rheumatism," and for the heart-valves, where

Bruck: Deut. med. Wchnschr., 1906, 70, p. 1368.

² Torrey: Jour. Med. Res., 1907, 16, p. 329.

³ Wollstein, Martha: Jour. Exper. Med., 1907, 9, p. 588.

it produces endocarditis; it is possible to obtain the gonococcus in pure culture from the affected region in a considerable proportion of cases. According to the statistics of Neisser, gonorrheal metastases occur in about 0.7 per cent of all cases of gonorrhea coming to the knowledge of physicians. Local or general complications, however, occur in about 30 per cent of all cases. Metastatic conjunctivitis without direct inoculation of the conjunctiva has been reported. It is uncertain whether this is always due to the presence of gonococci carried to the conjunctival sac in the body-fluids or whether circulating toxic substances act on the cellular elements of the conjunctiva.

A peculiarly dangerous feature of gonococcus infection is the long period during which an infected man or woman may be capable of infecting others. Gonococci may persist in the genito-urinary secretions for years after apparently complete recovery has taken place. By this means serious inflammations of the genital tract are produced in thousands of innocent wives by their previously infected husbands.

Epidemics of gonorrheal vulvovaginitis in little girls due to carelessness in the use of towels, wash-cloths, thermometers and bath-tubs are not uncommon, and are a serious problem in many institutions. Such infection may be followed by the same grave consequences to the female reproductive organs as gonococcus infection produced in any other manner.

Vaccination.—Inoculation with killed cultures of gonococci has been used both for purposes of prevention and of treatment without, however, any generally concordant and convincing results. In practice no method of vaccination or serum treatment has made any notable headway. The fact that successive attacks of the disease may occur in the same individual following successive exposure indicates that systemic immunity does not develop to such an extent as to affect materially the occurrence of infection.

THE MENINGOCOCCUS

Inflammation of the meninges or investing membranes (piaarachnoid) of the brain and spinal cord may be provoked by a variety of organisms, and may occur either as a primary affection or secondarily in the train of an infection originally begun else-

¹ Neisser: Kolle and Wassermann, Handbuch, 2nd ed., 3, p. 182.

where. One form of meningitis, characterized especially by epidemic spread and usually designated as *epidemic meningitis*, spotted fever, or cerebrospinal fever, is accompanied by the presence of a specific micro-organism, commonly known as the meningococcus.

This organism (Neisseria meningitidis) appears to have been seen by Leichtenstern in the meningeal exudate as early as 1885. The first important work upon it, however, was that of Weichselbaum, who in 1887 described it in detail as the characteristic micrococcus found in 6 cases of acute cerebrospinal meningitis

("Diplococcus intracellularis meningitidis"). Weichselbaum also carried out successful animal experiments. Some years later the conclusions arrived at by Jäger2 in connection with an outbreak of epidemic meningitis in the military garrison at Stuttgart, although based to some extent on faulty observations, corroborated Weichselbaum's results in their essential features, and were the cause of renewed interest in this subject. The etiologic rôle of the meningococcus has since been securely established by a number of investigations, among which may be mentioned especially the

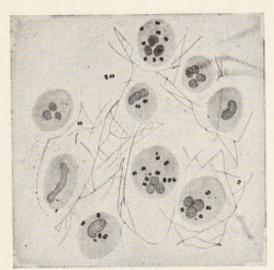


Fig. 47.—Meningococcus in pus cells (Councilman): Pus cells containing diplococci from the meninges. A few diplococci are in the exudate outside of the pus cells. Between the pus cells there are delicate fibrillae of fibrin. The illustration is an accurate representation of a group of cells in the field of the microscope.

extended researches of Councilman, Mallory, and Wright.³ An admirable study of the disease was later made by Foster and Gaskell.⁴

Morphology.—In film preparations of the meningeal exudate the meningococcus appears in diplococcus or in tetrad form (Figs. 47 and 48). The micro-organism occurs characteristically in the interior of the polymorphonuclear leukocytes, these cells being

¹ Weichselbaum: Fortschr. d. Med., 1887, 5, p. 573.

² Jäger: Ztschr. f. Hyg., 1895, 19, p. 351.

³ Special Report of the State Board of Health of Massachusetts, 1898.

⁴ Foster and Gaskell: "Cerebrospinal Fever," Cambridge, England, 1916.

sometimes so packed with diplococci that the nucleus is obscured. When tested by Gram's method of staining, decolorizing takes place. This character serves to distinguish it readily from the ordinary streptococci and from the pneumococcus. In cultures the meningococcus averages a little less than 1 μ in diameter, and appears, as a rule, in pairs; short chains are seen more rarely. No capsule is present, although irregularities in staining and the occurrence of swollen cells have led to some confusion on this point. Involution forms are common.

Cultural Characters.—The most useful medium for growing the meningococcus is blood-agar, prepared by adding 1 cc. of fresh

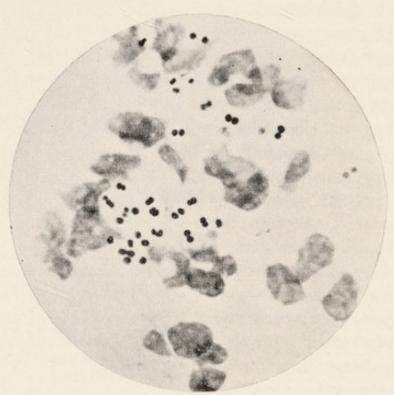


Fig. 48.—Meningococci from cerebrospinal fluid, some in pus cells, others lying free; × 2000 (Nowak: Documenta Microbiologica I, 1927).

defibrinated or laked blood to 10 cc. of ordinary nutrient agar (P_H 7.4–7.6). The blood of the sheep, goat, rabbit, horse, or man can be used. On this medium the meningococcus colonies are moist, elevated, smooth, and with a bluish-gray tinge. They do not produce green coloration or hemolysin, and can be readily differentiated by their relatively large size and appearance from the hemolytic streptococcus and the green-producing streptococcus and from the pneumococcus, but resemble closely the colonies of N. catarrhalis (p. 268). They are not so whitish or opaque as colonies of staphy-

lococci. If kept on blood-agar the meningococcus commonly dies out within a few days, but vitality may be preserved for several weeks in stab-cultures in starch-agar (1 per cent cornstarch added to ordinary nutrient agar).

The fermentation reactions of the meningococcus give valuable aid in differentiating it from closely allied organisms. Its ability to ferment maltose distinguishes it from the gonococcus, as already pointed out (p. 252).

Other related cocci, such as N. pharyngis and several varieties of N. flava, ferment various carbohydrates, such as mannose, saccharose, and levulose, not attacked by the meningococcus.

In isolating the meningococcus from the nasopharynx of a carrier it is essential that the culture medium be warm when inoculated and be kept warm until finally placed in the incubator. Swabs from the nasopharynx should be made with care to avoid undue contamination with saliva. To this end the West tube is often used. This is a bent tube through which a flexible swab holder can be passed and withdrawn after the tube has been carefully inserted behind the soft palate.

Varieties of Meningococci.—As in many bacterial diseases, so in meningitis the bacteria found as the apparent causal agents do not constitute an entirely homogeneous group. It has already been pointed out that inflammation of the meninges may be caused by such diverse organisms as the pneumococcus, hemolytic streptococcus, tubercle bacillus and Pfeiffer's bacillus. The meningococci concerned in producing the true epidemic meningitis also differ among themselves. It was early noticed that strains from different sources showed differences in agglutinability, and in 1909 Dopter¹ found cocci in the nasopharyngeal mucus which resembled the "usual" or "typical" meningococcus culturally but did not agglutinate at all with meningococcus serum. To this type he gave the name parameningococcus, a term that has since given rise to some confusion and might now well be discarded.

Definite recognition of the existence of antigenic varieties of meningococci came later with the work of M. H. Gordon² and his co-workers, who distinguished four serologic types—a grouping that

Dopter, C.: Compt. rend. Soc. biol., 1909, 66, p. 1055.

² Gordon, M. H., and Murray, E. G.: Jour. Roy. Army Med. Corps, 1915, 25, p. 411.

has proved of great service in further work with these organisms. Some later observers have been inclined to telescope Gordon's subdivisions, and recognize only two main types. The four-type classification of Gordon and Murray has, however, been found valid by many workers. Thus, Pope and White¹ in Chicago found in 9 cases of meningitis 3 due to Type I, 2 to Type III and 4 to Type IV. It is a common experience, however, that some strains of undoubted meningococci found in the spinal fluid do not fall definitely into any one of the four types. Sara Branham² has indeed reported the occurrence in the spinal fluid of meningitis patients of a micro-organism apparently belonging to the genus Neisseria, but differing from the ordinary meningococcus not only in its antigenic relations, but in its production of a yellow pigment and its total lack of fermentive power; it is perhaps more closely related to N. catarrhalis than to the true meningococcus.

In the 1928–29 outbreak of meningococcus meningitis in the United States approximately 91 per cent of 155 strains studied³ fell into Gordon's four groups, Type I greatly predominating (53 per cent) and Type III, which is regarded by many as a subgroup of I, standing next (19 per cent).

The existence and relative frequency of different antigenic strains of meningococci is a matter of practical importance. It has happened more than once that sera prepared by using certain strains has proved ineffective when administered in meningitis cases that chanced to be caused by other strains. The present custom of preparing a polyvalent serum, obtained by injecting horses with a number of different meningococcus strains, has therefore a sound experimental basis.

Epidemiology.—Our historical knowledge of epidemic meningitis dates from about the beginning of the nineteenth century. The disease seems to have been especially prevalent in North America. Children and adolescents are most commonly affected.

As in most of the respiratory tract infections, mouth spray from persons infected with meningococci is an important agent in spreading the disease. The relative infrequency of infection among doctors, nurses, and others in direct contact with meningococcus

¹ Pope, A. S., and White, J. L.: Jour. Prev. Med., 1929, 3, p. 63.

² Branham, Sara: U. S. Public Health Rpts., 1930, 45 I, p. 845.

³ Branham, Sara, et al.: U. S. Pub. Health Rpts., 1930, 45, p. 1131.

patients shows, however, that individual susceptibility of adults to this form of infection is not very great. Rare cases of direct contagion, however, have been described. The comparative infrequency of meningitis throughout the adult civilian population is another indication that human susceptibility is low. The influence of predisposing causes in increasing susceptibility is especially marked under conditions of military life where meningitis often prevails excessively among troops in barracks and tents. Insufficient clothing, inadequate ventilation, exposure to inclement weather and fatigue are believed to play a part in reducing the normal resistance of the new recruit. Along with such influences it is necessary to consider the greater opportunities for the spread of the disease by meningococcus carriers in camp life. The close contact in sleeping quarters necessarily favors the spread of all mouth spray infections. Overcrowding is particularly important in facilitating the spread of meningitis. It was observed during the Great War that an increase in the distance between beds in army barracks from 9 inches to 3 feet was followed by a reduction of the carrier rate from over 30 per cent to less than 2 per cent. Observation has shown that at times when meningitis is prevalent among troops healthy meningococcus carriers are especially numerous. The number of carriers increases prior to an outbreak of meningitis. It seems to be true, therefore, that under the conditions of military life in recruiting camps a good many individuals acquire meningococci from their associates; a certain proportion of these, owing to individual peculiarities or to the action of predisposing causes, develop clinical "cases" of meningitis, while the majority become free in a short time from the meningococci that have found temporary lodgment in their nasopharynx.

The share of the meningococcus carriers in the transmission of infection is of great importance. Meningitis patients and convalescents and also healthy persons who have simply picked up the germs from others may be the means of conveying infection. As in other infections, meningococcus carriers are often divided into permanent carriers and temporary carriers according to the length of time that they harbor the germs; the distinction is naturally more or less arbitrary.

Prophylaxis.—The attempt to control the spread of meningitis by quarantining carriers is like sweeping back the Atlantic Ocean with a mop. At times when the disease is prevalent, enormous numbers of carriers may be found throughout a civilian or military population. In February and March, 1929, when the disease was prevalent in Detroit, over 46 per cent of 709 home contacts were positive carriers. From the writer's own observations during the Great War it was apparent that if the policy of quarantining all proved carriers had been carried out in certain army camps the number of quarantined soldiers would have far exceeded those left in the ranks!

No method of vaccination for protecting those especially exposed has yet been successfully worked out.

As already indicated the most promising method of preventing the disease consists in control of the environmental conditions. The remarkably high incidence of epidemic meningitis among unseasoned recruits in military barracks is highly significant, as are the detailed observations on the predisposing effect of fatigue, over-crowding in sleeping quarters and exposure to cold and wet. If the factors that favor infection be eliminated as far as possible, the limit of application of our present prophylactic knowledge seems to be reached.

It cannot be hoped, however, that the spread of the disease can be completely checked by such measures. There is evidence that variations may occur in the virulence of meningococcus strains. In 1928–29 the United States was visited by an outbreak of the disease more severe and widespread than at any time since 1905, not excepting the exacerbation of meningitis which, as usual after military exploits, followed in the wake of the Great War. The highly virulent strain of meningococcus which caused this outbreak apparently entered the United States on the Pacific Coast and spread slowly eastward. Against this sort of invasion there seems at present little defense except avoidance of localities where the disease is prevalent, and the adoption by individuals of the hygienic precautions already indicated.

Pathogenicity for Man.—Many cases of meningitis due to the meningococcus are characterized by special features which distinguish them from cases of meningitis produced by other organisms, as, for example, from pneumococcal meningitis. The most marked lesions occur at the base of the brain, extending from the optic com-

¹ Norton, J. F.: Amer. Jour. Pub. Health, 1929, 19, p. 1098

missure backward over the crura, pons, and medulla. The meninges of the entire brain are rarely affected. The cord is always affected, and to a greater extent than in any of the other forms of meningitis. The usual history is that of sudden onset, and many so-called "fulminating cases" occur. The disease is most frequent in children and young adults, cases being rare in persons over thirty-five years of age. In the epidemic studied by Councilman, Mallory, and Wright, the mortality was 76 in 111 cases (68 per cent); in New York city in 1905, out of 2755 cases reported, there were 2026 deaths (73 per cent). While the mortality is thus usually high, epidemic meningitis stands in contrast to the practically invariably fatal meningitis caused by other bacteria.

During life the surest method of diagnosis of this form of meningeal disease is the detection of the specific micro-organism in spinal fluids obtained by means of lumbar puncture. Elser and Huntoon² were able in this way to demonstrate the meningococcus by microscopic examination in 141 out of 171 cases. When cultural methods are also used the proportion of positive findings is increased. Especially prominent among the symptoms are the involvement of the eye and ear, the infection showing a definite tendency to extend along the optic, auditory, and fifth nerves.

Portal of Entry.—The meningococcus is most commonly found in the nasopharynx and is rarely detected in the nose or in the mouth. It is now generally conceded that the nasopharynx is its site of predilection. Here it may set up a slight rhinopharyngitis that lasts but a short time. There is much to support the view that this slight, local and relatively trivial inflammation is the ordinary "disease" caused by the meningococcus, and that meningitis is merely an unusual complication. From this standpoint it is only in exceptional cases that the meningococcus makes its way to the meninges, a localization much more highly dangerous for the patient and entailing a case-mortality of about 70 per cent. The route by which the meningococcus passes from the nasopharynx to the meninges is in dispute, whether by direct lymphatic spread from the nose or by way of the blood stream. The advocates of the hematogenous route point to the fact that in a considerable proportion of

¹ Councilman, Mallory, and Wright: Special Report Mass. State Board of Health, 1898.

² Elser and Huntoon: Jour. Med. Res., 1909, 15, p. 377.

cases, perhaps as high as 25 per cent, the meningococcus may be found in blood cultures. On the other hand the infection of the blood stream may be incidental and not directly connected with the meningeal invasion. It is noteworthy, however, that localization of meningococci in other parts of the body (heart, kidney) is sometimes observed, a fact suggestive of blood infection.

Pathogenicity for Other Animals.—Rabbits and adult guineapigs display little susceptibility to inoculation. White mice are somewhat more susceptible, especially to intraperitoneal inoculation. Young guinea-pigs (175 to 200 grams) are quite highly susceptible to intraperitoneal inoculation, but in order to produce a fatal result rather large amounts of culture must be used, and, as a rule, the meningococcus fails to invade the tissues. The guineapig experiments indicate that the death of these animals is caused by a poison liberated by the disintegration of the bacterial cells. Cultures killed by heat and cultures subjected to autolysis are quite toxic. Councilman and his co-workers¹ produced typical meningitis in a goat by intraspinal injection of pure cultures. Flexner² reproduced in monkeys the lesions and to some extent the symptoms of acute meningitis as they occur in man.

Agglutination and Immunity; Curative Antiserum.—Agglutinins are produced by animal inoculation with the meningococcus, and appear also in the blood of patients suffering from epidemic meningitis; the serum of the latter may agglutinate the specific cocci in a dilution of 1:50 or higher, but the development of agglutinins seems to be irregular and cannot be depended upon for diagnosis. The existence of different agglutinative varieties complicates the picture and casts doubt on the significance of reported negative reactions.

Kolle and Wassermann³ showed that when large quantities of meningococci are injected into the body of a horse, agglutinins, opsonins, and also specific immune bodies (amboceptors) are produced, and that the horse-serum has a curative effect. The use of a therapeutic serum was, however, first placed on a sound basis by the work of Flexner⁴ and his collaborators. A curative

¹ Councilman et al.: Special Report Mass. State Board of Health, 1898, p. 77.

² Flexner: Jour. Exper. Med., 1907, 9. p. 142.

³ Kolle and Wassermann: Deut. med. Wchnschr., 1906, 32, p. 609.

⁴ Flexner: Jour. Exper. Med., 1907, 9, p. 168.

serum was prepared by Flexner and Jobling1 by injecting a horse first with gradually increasing doses of dead meningococci, then of living cocci, and finally of an autolysate. The injection of the antimeningitis serum directly into the spinal canal of meningitis patients exerts in many cases a marked influence upon the course of the disease. The effect seems to be due partly to an antitoxic action, partly to the stimulus that the serum gives to increased phagocytic digestion, and partly to its direct injurious action upon the cocci. Large doses of the serum are commonly given, 15 to 30 cc. for children, and about twice as much for adults. Repeated injections (at least three or four at twenty-four hour intervals) give the best results. Observations of the cerebrospinal fluid after injection show a remarkable destruction of the meningococci. serum is entirely without effect when introduced directly or indirectly into the blood, and must in all cases be injected into the seat of the disease by lumbar puncture. Of 1294 cases of epidemic meningitis treated with the Flexner-Jobling serum, 894 recovered and 400 died.2 The average mortality in the pandemic of this disease which began in 1904 and was not wholly at an end in 1913, was about 70 per cent. The mortality in the serum-treated cases just referred to was not quite 31 per cent; 199 cases injected with serum between the first and third day of the disease showed a mortality of 18 per cent. Complications and sequelae of the infection are reduced in number in the serum-treated cases.

The use of a polyvalent serum, produced by injection of a number of different strains of meningococci seems highly important. Much better results have been obtained with the Rockefeller Institute serum prepared with more than 50 strains than with a serum made with a single strain or with only three or four strains.

Continued experience with antimening occus serum tends to emphasize some of the difficulties of practice and interpretation. No satisfactory method for the standardization of the serum has yet been devised, and there is much doubt as to whether any of the methods in current practice bear on the clinical usefulness. In spite of the beneficial results frequently reported from the use of serum there are some cases and some epidemics where the serum treatment seems of little avail. The reason for this failure is not

¹ Flexner and Jobling: Jour. Exper. Med., 1908, 10, p. 141.

² Flexner: Jour. Exper. Med., 1913, 17, p. 553.

known, whether antibodies for the specific infecting strain are not present in the serum used, or whether infection with a highly virulent strain is more than the serum can cope with. In Detroit for the year 1929 the case mortality in 867 cases amounted to 50 per cent, a very high percentage for an outbreak in which many patients were given serum and in which other modern methods of treatment were used.

N. CATARRHALIS

This gram-negative coccus is found quite commonly in the nasopharynx of healthy individuals as well as in persons suffering from colds and other respiratory infections (Fig. 49). The

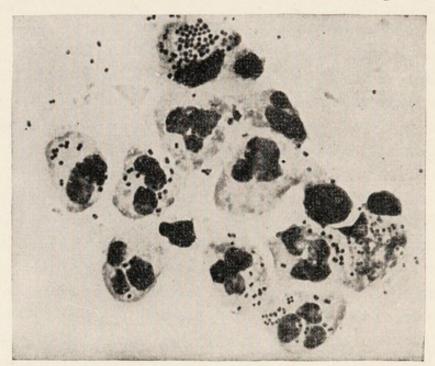


Fig. 49.—N. catarrhalis in smear from sputum (F. T. Lord).

cells as a rule are somewhat smaller than those of the meningo-coccus. Growth occurs on ordinary nutrient agar much more readily than does that of the meningococcus, and the colonies are generally thicker and more opaque. Dextrose is not fermented. Different strains vary in their degree of pathogenicity for animals, but many strains are fully as pathogenic as meningococci for white mice and guinea-pigs. In man they appear at times to excite catarrhal inflammation and sometimes pneumonia. They seem to have been conspicuous invaders in the 1918 influenza epidemic in some localities.

N. PHARYNGIS

This small gram-negative coccus found on the mucous membrane of the respiratory tract grows at room temperature as well as at 37 C., forms white, firm, dry, adherent colonies, and ferments saccharose, lactose, and maltose. Although not ordinarily regarded as pathogenic, it has been found as apparently the causal agent in a case of kidney infection.¹

Kretschmer and Hufnagel: Jour. Amer. Med. Assoc., 1924, 82, p. 1850.

CHAPTER 13

THE ANTHRAX BACILLUS

Historical.—Anthrax, or splenic fever (Fr., charbon: Ger., Milzbrand), is one of the best-known and longest studied of all bacterial diseases. As pointed out in the introductory chapter, the demonstration by Robert Koch² in 1876 of the causal relation between anthrax and a specific bacillus marks the beginning of modern bacteriology.3 Prior to Koch's investigations, and as early as 1850, microscopic examinations by Davaine and Rayer.4 Pollender,5 and others had shown that a rod-like organism was constantly present in the blood and organs of animals dving from splenic fever, and inoculation experiments with the blood of infected animals, leading to a reproduction of the typical disease with all its symptoms and lesions, had been successfully performed by Brauell.6 To the inferences drawn from these observations and experiments there was raised the objection that not the rod-like organisms, but something else in the diseased blood, might have caused the effects produced by blood inoculation. It must be conceded that this argument, although without experimental basis, was logically well founded. Before Koch's work, therefore, rod-shaped bacteria had been observed in the bodies of animals suffering from anthrax, and their etiologic connection with the disease had, in the judgment of many, been rendered highly probable; but it was not until Koch's researches appeared that medical opinion generally was impelled

¹ The disease of cattle known as "symptomatic anthrax" has nothing to do with true anthrax. (See p. 434.)

² Koch: Cohn's Beiträge, 1877, 2, p. 277.

S A fair example of the views upon the causation of anthrax prevailing at an earlier period is found in the hypothesis of Delafond, a French veterinary surgeon, who held that the anthrax of sheep was due to "an excess of blood circulating in the vessels." Concluding that this was caused by a rich nitrogenous pasturage, he advised sheep-raisers as a prophylactic measure to put the animals on short rations. (See Vallery-Radot: "Life of Pasteur," New York, 1926, p. 275.)

⁴ Davaine and Rayer: Bull. Soc. de biol., 1850, p. 141.

Pollender: Vierteljahr. f. ger. Med., 1855, 8, p. 103.
 Brauell: Archiv. f. path. Anat., 1857, 11, p. 132.

to the conviction that the anthrax bacillus was the cause of the specific disease with which it was associated. Koch reached this result by obtaining the anthrax bacillus apart from all foreign matter and freed from any of the tissue fluids or body-cells of the diseased animal from which it was derived. This achievement was due to his discovery that the anthrax bacillus would grow and multiply outside the body upon the aqueous humor of the ox's eve. By cultivating it upon this medium for a series of generations, and, after allowing sufficient intervals for multiplication, transferring it from tube to tube, a growth was finally obtained which not only was not mixed with any of the blood-corpuscles or other matter derived from the original source, but was composed simply of the descendants of the original rod-like organisms many generations removed. Experiments made with this pure culture showed that a well-characterized attack of splenic fever, with the appropriate symptoms and lesions, could be produced by the introduction of a pure culture of bacilli into the body of a susceptible animal. Koch's observations upon the life-history of the anthrax bacilli also cleared up many of the difficulties and apparent paradoxes that had previously obscured the study of the disease. His discovery of the phenomenon of spore-formation, and of the part played by spores in the spread of the disease in nature, must be reckoned as one of the more important of these advances. It is known that previous workers had been greatly perplexed by the singular observation that occasionally specimens of blood which appeared not to contain any bacteria were nevertheless capable, on inoculation, of producing anthrax. This was satisfactorily explained by the discovery that in such cases spores, which are highly refractive and consequently difficult to see, had been formed in the blood after the blood had been drawn from the body. The prolonged vitality of the spores in soil, again, explained the persistence of the disease in certain localities and its reappearance in once-infected pastures after the lapse of many years.

Characteristics of the Anthrax Bacillus; Morphology.—The anthrax bacillus is one of the largest of the pathogenic bacteria and ranges from $4.5~\mu$ to $10~\mu$ in length and from $1~\mu$ to $1.25~\mu$ in breadth. It is nonmotile. In preparations from the blood or lymph of an infected animal the rods are usually single, but rarely two or three are united in short chains. Blood films and spleen pulp preparations

when stained by special methods (Johne, Räbiger) reveal the presence of a capsule. The bacilli stain readily with the ordinary aniline dyes and retain the stain when treated by Gram's method. Churchman has observed a reversal of the Gram reaction when aqueous gentian violet, acriflavin or acriviolet is added to suspensions of young cultures of B. anthracis; a considerable proportion of the bacilli then become gram-negative. A possible explanation is that the cortex of the bacillus is gram-positive, the medulla

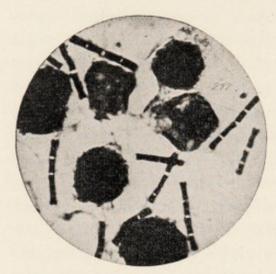


Fig. 50.—Bacillus anthracis in spleen pulp. Fuchsin stain; × 2000; C. Fränkel prep. (Kolle and Wassermann).

negative. When the former is destroyed the latter comes into view. The ends of the rods are often concave and somewhat swollen, so that the appearance of a chain of anthrax bacilli has been often compared to a jointed bamboo fishing-rod (Fig. 50). When grown on artificial culture media, threads and filaments, sometimes of extraordinary length, are produced. After a varying period of growth, depending upon the temperature, nature of the nutrient

medium, abundance of oxygen, and other factors, the highly refractive spores make their appearance in the interior of the rods.

Spores and Spore-formation.—Owing to the fact that the spores of the anthrax bacilli are among the most resistant forms of pathogenic bacteria, they have long been favorite test objects for determining the efficiency of germicides and other destructive agencies, and much attention has in consequence been directed to their morphologic and biological properties. Only a single spore is produced in each cell. It is formed in the middle of the cell, where it can be seen in unstained preparations as an oval or nearly spherical, highly refractive body of the same diameter as the rod (Fig. 51). The chemical composition of the spores is said to differ from that of the rods in containing a larger proportion of fatty substances and

¹ Johne: Deut. Ztschr. f. Thiermed., 1893, 19, p. 244.

Räbiger: Ztschr. f. Fleisch- u. Milchhyg., 1901, 11, p. 68.
 Churchman, J. W.: Jour. Exper. Med., 1927, 46, p. 1007.

protein (spores, 77.75 per cent protein; rods, 42.5 per cent). Spores are produced only in the presence of free oxygen, and hence do not occur in the circulating blood of infected animals, but develop either during the course of the infection, or after death, when blood is drawn and allowed to stand in contact with the air. Spores may be formed between 14 and 40 C., but are developed most abundantly at 32 to 35 C. Germination of the spore is usually polar, that is, parallel with the long axis, but may be rarely equatorial. Like all spores, those of the anthrax bacilli resist drying for a prolonged period (at least ten to twelve years). They are not

so resistant to heat as the spores of the closely allied B. subtilis and some other saprophytic forms, and, as a rule, are killed by dry heat in three hours at 140 C., and by steam or boiling water in five to ten minutes, although some resist for much longer periods. Anthrax spores are able to withstand the action of the ordinary germicides much better than the bacilli; thus, a 10 per cent solution of creolin kills anthrax bacilli in ten to twenty

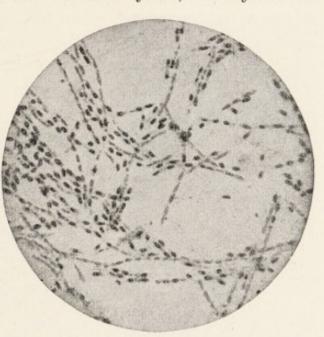


Fig. 51.—Bacillus anthracis with spores. Carbol-fuchsin and methylene-blue stain; × 1000 (Fränkel and Pfeiffer).

minutes, but is not able to effect the death of anthrax spores, the latter being able to maintain their vitality even in a 60 per cent solution.

It is claimed that permanent asporogenous varieties of the anthrax bacillus have been obtained by various methods, such as growth in the presence of antiseptics (carbol-broth 1:1000, Roux), at high temperatures (42 C., Phisalix), and under other disadvantageous conditions, and that such nonspore-forming races are in other respects entirely normal, even to exhibiting a full measure of virulence. Some of the statements in regard to this matter,

¹ Roux: Ann. de l'Inst. Past., 1890, 4, p. 25.

² Phisalix: Archiv. d. Physiol., 1893, 5, p. 217.

however, lack entire corroboration, and it must at present be regarded as doubtful whether permanently asporogenous but fully virulent and undegenerate varieties of the anthrax bacilli either can be artificially produced or can exist in nature.

Growth Characteristics.—Upon the ordinary culture media the anthrax bacillus grows freely under aërobic conditions and at ordinary temperatures. In broth, as a rule, no pellicle is produced on the surface, but a heavy flocculent sediment is formed, the intervening layer of fluid in undisturbed cultures remaining quite clear; no indol is produced. The appearance of the colonies upon the

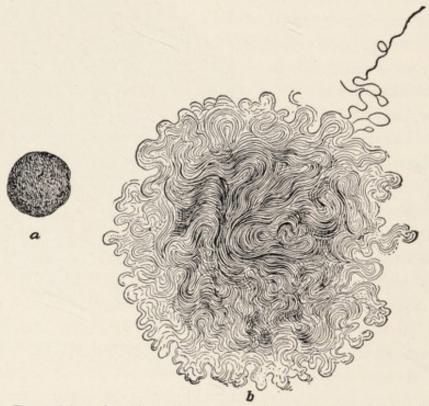


Fig. 52.—Deep (a) and surface (b) colony of anthrax on gelatin plate; \times 80 (Flügge).

surface of gelatin or agar plates is highly characteristic; long, wavy filaments project from the colony in every direction, and when viewed under the low power of the microscope, the thickly coiled masses have been likened to the snaky tresses of Medusa (Figs. 52 and 53). The same tendency to form filamentous outgrowths is seen in young gelatin stab-cultures, in which the "inverted fir-tree" appearance is of common occurrence (Fig. 54). Unlike many pathogenic bacteria (see p. 133) the normal virulent colony is of the "rough" type, while the much less usual "smooth" colony is

nonvirulent. Gelatin is slowly liquefied. Milk is feebly acidified and is curdled by a rennet-like ferment, and the casein slowly peptonized. Dextrose and trehalose are fermented rapidly but without gas production. Saccharose, maltose and some other carbohydrates are fermented less rapidly; lactose, galactose, mannitol, dulcitol, rhamnose and xylose not at all. On potato a gray, furry growth is produced; spores are often formed in particular abundance on this medium.

Pathogenicity for the Lower Animals.—In nature anthrax is primarily a disease of cattle and sheep; horses and swine are sus-

ceptible, but are less commonly affected. In the German Empire in 1899 the following cases of anthrax were reported: 3678 cattle, 307 sheep, 282 horses, 61 swine, 6 goats. Wild deer and other gregarious herbivora are liable to occasional outbreaks. The

Fig. 53.—Bacillus anthracis, impression preparation, edge of colony; Zettnow prep. (Kolle and Wassermann).

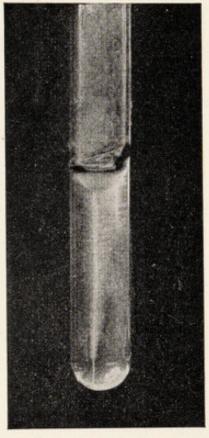


Fig. 54.—Bacillus anthracis, gelatin stab-culture (Hicks).

smaller rodents are very sensitive to inoculation. Rabbits, guineapigs, and white mice are susceptible in the order named, and are fatally affected by the subcutaneous introduction of a very small number of virulent bacilli. The white mouse may succumb to inoculation with a single germ of a virulent strain. Carnivorous animals, although possessing greater resistance than the herbivora, are nevertheless susceptible, as several epidemics in zoological

gardens have shown, leopards, lions, pumas, bears, and others perishing from the disease (Jensen, Lange).2 Certain animals possess marked natural resistance to anthrax. Rats are quite resistant, especially the white rat, only about 14 per cent of the latter dying as the result of inoculation. The dog is only slightly susceptible. Birds, especially pigeons, can be infected, but not easily. Frogs are immune, but toads very susceptible.

The route by which the germs enter the body exerts an important influence in both experimental and natural infection. Subcutaneous inoculation is the method most commonly practised in experimental work, and is almost uniformly fatal with the ordinary small

fluid of a mouse; gentian-violet; × 1000 a considerable number of (Fränkel and Pfeiffer).

laboratory animals. It has been frequently stated that intravenous and intraperitoneal inoculations are even more constantly and surely fatal than subcutaneous, but late researches cast doubt upon this and indicate that if great pains be taken to prevent subcutaneous infection during the course of the operation, animals can with-Fig. 55.—Bacillus anthracis in peritoneal stand the introduction of anthrax bacilli directly

into the circulation or into the peritoneum. Feeding experiments show that administration of spore-free cultures even to highly susceptible animals is without result, owing to the destruction of the bacilli in the stomach. The feeding of spores, on the contrary, leads to infection of the more susceptible species, although not so certainly as subcutaneous inoculation. The more resistant species, such as swine, are with difficulty infected through the alimentary tract. Infection through the respiratory tract is apparently possible, so far as the experimental results indicate,

² Lange: Hyg. Rundsch., 1901, 11, p. 529.

Jensen: Baumgarten, Jahresb., 1891, 7, p. 167 (cited).

although it is probably almost unknown in the lower animals under ordinary conditions, and the views of experimenters are not wholly in accord.

In very susceptible animals the disease runs a rapid course and presents all the characteristics of a typical septicemia (Fig. 55). Local manifestations may be almost entirely absent. Enormous multiplication of the bacteria takes place in the blood and internal organs, and sections through the liver or spleen show that the capillaries are gorged with masses of bacteria (Fig. 56). The spleen is of a deep-red color and greatly enlarged, hence the appropriateness of the name splenic fever as applied to this disease in cattle. The more resistant animal species do not develop this generalized

remain localized in an abscess or carbuncle and fail to spread extensively through the body. This is the case in the dog and, as will be seen presently, in man also with certain forms of infection. In this respect anthrax furnishes an illustration of the general rule that when a bacterial invasion meets slight resistance from the animal tissues an abundant multiplication of the bacteria occurs throughout the body, while the possession of

Fig. 56.—Bacillus anthracis. Section of spleen of mouse; × 500 (Günther).

high powers of resistance is accompanied by a pronounced local reaction. Man stands perhaps midway in susceptibility between the dog and the sheep.

Under natural conditions cattle and sheep are infected through the alimentary tract by swallowing spores while grazing in infected pastures. As has been pointed out, spores are able to retain their vitality in soil for a long period, and pastures once infected with the disease are able to infect cattle after the lapse of many years (thirty years). Hides imported from China and other countries where the disease prevails are not uncommonly contaminated with anthrax spores; in the United States several outbreaks of anthrax among cattle with some consequent cases of human infection have been traced to the overflowing of pasture land by streams receiving the drainage of tanneries.¹

Cattle may also occasionally be infected by direct contact through wounds, abrasions, and other injuries to the skin; but alimentary tract infection is by far the more usual. Anthrax has been experimentally conveyed to susceptible animals by biting flies of various species that had previously fed on animals dying from anthrax.²

Pathogenicity for Man.—Three routes of infection of human beings are known: (a) through the skin, (b) through the respiratory tract, and (c) through the alimentary tract. The bacillus is almost always transmitted to man through the agency of the lower animals rather than through other human beings. The persons most commonly affected are those having to do with cattle and their products, such as butchers, shepherds and herdsmen, handlers of hides, hair, and fleeces. Laboratory infections, sometimes fatal, have been known to occur with pure cultures of the anthrax bacillus.

In the United States 222 human deaths from anthrax were recorded in the eight years, 1910–17. The majority of these occurred in the three years, 1915–17, when the interference with the usual channels of import caused by the Great War, combined with scarcity of labor, led to a less efficient preliminary disinfection of hides and bristles, and so permitted the introduction of anthrax-contaminated articles from parts of Asia and South America. A particularly striking increase in anthrax occurred from the use of shaving brushes, and in a number of instances anthrax bacilli were found in brushes purchased on the open market. The United States Public Health Service recommends soaking new brushes for four hours in a 10 per cent solution of formalin. The solution should be kept at a temperature of 110 F. and the brush so agitated as to bring the solution into contact with all hair or bristles.

The case fatality of anthrax is not exactly known, but is probably not far from 20 per cent.

(a) Malignant Pustule.—The most common form of anthrax in the human subject is due to skin infection, and usually takes the

¹ Ravenel: Rept. Amer. Pub. Health Assoc., 1898, 24, p. 302; Russell: Seventeenth Ann. Rept. of Wisconsin Agr. Expt. Station, 1900, p. 171; Gärtner and Dammann: Arb. a. d. k. Gesund., 1907, 25, p. 416.

² Mitzmain: Bull. 94, Hyg. Lab., U. S. Pub. Health Service, June, 1914.

form of a localized boil or abscess, which often heals spontaneously, but may progress into a septicemic condition unless checked by incision or other surgical procedure. The handling of infected hides or carcasses constitutes the ordinary means of infection. Porters on the London docks, who carry on their naked backs hides imported from South American or Asiatic ports, sometimes develop malignant carbuncles as a result of anthrax infection through dorsal abrasions or scratches. Twenty-five cases of anthrax, due to handling hides imported from China, occurred in Massachusetts between March and June, 1916. Owing to the relatively high resistance of man, septicemia does not often occur, especially if the carbuncle be incised and thoroughly cleansed. Lesions of all sizes may be produced, from a minute pustule to a large and angry abscess.

- (b) Pulmonary Anthrax.—The pulmonary form of anthrax due to inhalation is the most dangerous, although not the most common, variety of the disease in man. The name currently applied to this variety of anthrax in England is "woolsorters' disease," and, as the name implies, the affection is usually caused by inhalation of the spores set floating in the air during the handling and sorting of wools and fleeces. It is characterized by many of the symptoms of pneumonia and often passes into a fatal septicemia.
- (c) Intestinal Anthrax.—The alimentary tract, although the usual path of infection in cattle, is very rarely so in man. A few instances are on record of the causation of intestinal anthrax through the medium of spore-infected food. Such cases have usually occurred among workers with animal products, and have probably been due to lack of caution in handling food with uncleansed hands. Insufficiently cooked meat from anthrax-infected animals may also be a source of intestinal anthrax.

A provisional diagnosis of anthrax may often be made by simple microscopic examination of a smear from a malignant pustule, or in the case of a sick animal from a blood film. Cultures are usually easily obtained and the diagnosis confirmed by subcutaneous inoculation of mice with very small amounts of the bacterial growth. The rapid development of septicemia in animals inoculated with true anthrax bacilli is highly characteristic.

Mode by Which the Anthrax Bacillus Causes Injury to the Animal Organism.—In the typical form of anthrax septicemia,

Brown and Simpson: Jour. Amer. Med. Assoc., 1917, 68, p. 608.

bacilli are found in immense numbers clogging the capillaries, and apparently by their accumulation hindering the circulation of the blood. This fact caused the theory to be advanced very early that death in such cases was due to a kind of internal suffocation. view, however, finds no support in the character of the symptoms of anthrax. Death, moreover, frequently occurs in some animals in the absence of any noteworthy number of bacteria within the blood-vessels. This is particularly true in fatal cases of anthrax in man. It might seem from analogy that we should find that the anthrax bacillus secretes a soluble toxin such as is formed by the diphtheria bacillus and some other pathogenic microbes, and many of the phenomena of anthrax infection seem to point to the action of such a substance. All attempts, however, to demonstrate the existence of either an extracellular or an intracellular anthrax toxin have been unsuccessful, and, although all the probabilities are in favor of the existence of some such substance, the exact manner in which the anthrax bacillus damages the animal organism remains at present a mystery.

Immunity.—Some natural susceptibility to anthrax is possessed by many animals; the degree of such susceptibility may be heightened or diminished by a great variety of factors. Normal susceptibility, for example, may be lessened by the injection of thymus extract and other organic substances, and also by certain operative procedures, such as section of the sciatic nerve. Susceptibility may be increased by a number of physiologic influences, such as alteration of the normal body-temperature, as in Pasteur's classic experiment with refrigerated fowls (fowls under normal conditions are immune to inoculation, but succumb when chilled). The frog, conversely, which is normally without susceptibility, becomes susceptible when kept at a high temperature. Lowering the temperature of mammals with drugs, such as antipyrine, has a depressing influence on the power of resistance. Administration of other drugs, such as alcohol, phloridzin, and chloroform, feeding with unsuitable or insufficient food, subjection to excessive fatigue, and other factors all increase susceptibility.

The cause of the high natural immunity to anthrax possessed by the dog, fowl, and certain other animals has deen the object of much experimentation. No antitoxin has been permonstrated in the blood of naturally immune animals. The boby-fluids of some species manifest bactericidal powers toward the anthrax bacillus, but there is no concurrence between the degree of immunity and the anthracidal power of the blood-serum. The blood-serum of the highly susceptible rabbit is strongly bactericidal outside the body, but anthrax bacilli injected into the circulation seem to multiply freely in the blood-stream. Blood taken from the very resistant dog and fowl is practically devoid of bactericidal properties. Bail and Petterson¹ attempted to explain the absence of bactericidal power in the drawn blood of the latter animals by supposing that the constituent known as the complement, which, within the dog, is supplied by the leukocytes, is lacking in the drawn blood. As evidence of this, they show that addition of a suitable complement to dog's serum, either in the guise of rabbit serum or of canine leukocytes, imparts to the dog's serum a strongly germicidal power. On the other hand, the bactericidal action manifested by rabbit serum outside the body is supposed to be restrained within the body by the presence of a substance which binds the amboceptor and so prevents the destruction of the anthrax bacilli. Future investigation must determine how far this view is correct.

The share of phagocytosis in natural immunity is likewise under discussion. As shown by Hektoen, it is highly probable that the natural immunity of the dog is due to phagocytosis. The destruction of virulent anthrax bacilli that takes place in mixtures of normal serum and washed blood-corpuscles is accompanied by marked phagocytosis. Neither normal serum alone nor suspensions of washed corpuscles can prevent the multiplication of the bacteria, and it seems reasonable to conclude that the normal serum contains an opsonin or sensitizing substance which prepares the bacilli for the onslaught of the phagocytes. Other experimental evidence for this view is contained in the article just cited.

Vaccination against Anthrax.—Animals naturally susceptible may be made immune by artificial means, and domestic animals have been largely protected against anthrax in this way. Pasteur devised a method for vaccinating cattle and sheep against anthrax which is dependent on the subcutaneous inoculation of attenuated cultures. Two vaccines were used. The "first vaccine" consisted of a broth culture whose virulence was so greatly diminished

¹ Bail and Petterson: Centralbl. f. Bakt., I, Orig., 1903, 33, p. 756.

² Hektoen: Jour. Amer. Med. Assoc., 1906, 46, p. 1407.

by heat that it would no longer surely kill guinea-pigs, although it was still fatal for white mice. After twelve days a second inoculation was made with the "second vaccine," which was of such a strength that it would kill guinea-pigs but not rabbits. Following inoculation with these two vaccines, a fully virulent culture could be injected with impunity. In spite of some accidents due to the use of imperfectly standardized vaccines, this method of protective inoculation has proved, on the whole, of great practical value. In France 30,000 to 50,000 cattle and horses and 250,000 to 350,000 sheep are vaccinated annually. It is estimated that many thousands of animals are saved by this procedure. Active immunization of rabbits and guinea-pigs can also be effected by the injection of attenuated cultures, but with much greater difficulty.

The simultaneous inoculation of anti-anthrax serum and a spore vaccine (Sobernheim's method) has been quite extensively practised in the United States in districts where anthrax is prevalent. The method is not without risk to the animals treated.

The serum of actively immunized animals contains specific protective substances. Inoculation with the blood-serum of an actively immunized animal confers some degree of protection against anthrax infection, and in the hands of Sobernheim, Sclavo, and others has been attended as well with some measure of therapeutic success; that is, injection of the serum will save the life of animals even when the anthrax bacilli have already entered the circulation. Very favorable reports of the use of Sclavo's serum in cases of anthrax in man have come from Italy and from South America. Eichhorn's serum has been used with success in a number of human cases in the United States.

The mechanism by which the protective serum exerts its action is not certainly known. With our present knowledge, perhaps the most reasonable view is to regard anthrax immunity as a phagocytic immunity and the function of the immune serum as sensitizing or opsonic.

Bacillus subtilis.—The common bacillus of hay infusion, B. subtilis, is culturally and morphologically very similar to B.

¹ Sobernheim: Ztschr. f. Hyg., 1897, 25, p. 301; Centralbl. f. Bakt., I, 1899, 25, p. 840.

Sclavo: Centralbl. f. Bakt., 1899, 26, p. 425.
 Eichhorn: Jour. Agr. Res., 1917, 8, p. 37.

anthracis. The spores, however, germinate equatorially instead of at the pole. A heavy tenacious pellicle is formed in broth cultures; gelatin and casein are liquefied more rapidly than by B. anthracis. B. subtilis is widely distributed in earth, air, and water, and was formerly regarded as one of the most typical of "nonpathogenic" organisms. The first report of any pathogenic power on the part of this germ was made by Charrin and de Nittis, who cultivated B. subtilis upon blood-media and passed it through animals until it had acquired considerable virulence. The hay bacillus is also capable of producing spontaneous infection in man, as shown by Baenziger and Silberschmidt, who found the organism in pure culture in a case of panophthalmitis following penetration of the cornea by a piece of steel. They reproduced the disease in rabbits and regained the organism. Later Silberschmidt and others described several such cases (Fig. 57). The toxic

result of infection is believed to be due to some substance in the bodies of the bacilli, since the filtrates of cultures have little or no effect.

Before methods of studying bacteria had become as elaborate and well tested as they now are, the close resemblance of B. subtilis and B. anthracis led to a belief that these organisms were simply closely related varieties and could be transformed one into the other. Buchner in 1880 maintained that he had

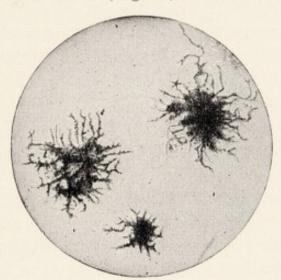


Fig. 57.—Bacillus subtilis from panophthalmitis; agar colonies; × 30 (Axenfeld).

succeeded in changing the virulent anthrax bacillus into the common hay bacillus and *vice versa*. His assertions seem to have been based largely upon the fact that the anthrax bacillus may be attenuated or made less virulent by a variety of methods, and also upon an

¹ Charrin and de Nittis: Compt. rend. Soc. de biol., 1897, 49, p. 711.

² Baenziger and Silberschmidt: Bericht der ophthal. Gesellschaft, Heidelberg, 1902.

³ Silberschmidt: Ann. de l'Inst. Past., 1903, 17, p. 268.

⁴Kayser: Centralbl. f. Bakt., I, Orig., 1903, 33, p. 241; Kneass and Sailer: Univ. Penn. Med. Bull., 1902, 16, p. 131.

insufficient knowledge of the biologic differences between the two species.

The so-called "potato bacillus" (B. mesentericus or B. vulgatus) and a number of other aërobic spore-bearing bacilli, such as B. mycoides (or B. ramosus) and B. megatherium, found in water and soil may be ranked in the B. subtilis group. Some of these bear a close resemblance to the anthrax bacillus and have been called by such names as "B. pseudoanthracis" or "B. anthracoides." The whole group is in need of more thorough study and subdivision.

CHAPTER 14

CORYNEBACTERIUM (THE DIPHTHERIA BACILLUS)1

Genus: Corynebacterium. Gram-positive rod-like forms, slender and often slightly curved. Club-shaped forms² frequently observed, and branching forms present in old cultures. Staining irregular, often in segments giving a barred appearance. Nonmotile. Aërobic. No spores. Powerful exotoxin produced by some species. Type species: Corynebacterium diphtheriae.

The discovery of the bacillus of diphtheria and the study of this organism and its products have profoundly affected both the mode of treatment of the disease and the manner of combatting its spread.

(1) Early recognition of the real nature of a throat infection is necessary for proper treatment, and we are now able to distinguish with certainty the highly dangerous class of throat affections caused by the diphtheria bacillus from clinically similar but less dangerous anginas that are due to a different cause. In a word, the finding of C. diphtheriae enables a correct diagnosis to be made. (2) Investigation of the physiologic properties of the diphtheria bacillus has led directly to the discovery of diphtheria antitoxin, a specific remedy of unquestioned value. (3) By systematic bacteriologic examination of the throats of convalescents it is possible for health officials to discover the existence of carriers and to fix the term of necessary quarantine with much more precision than formerly. The power to do this is an invaluable aid in limiting the spread of the disease. (4) Inoculation of a minute amount of toxin into the skin (Schick test, p. 309) makes it possible to distinguish susceptible children from resistant; the former can then be protected against diphtheria by a toxin-antitoxin mixture.

¹The best monograph on diphtheria is that issued by the British Medical Research Council, London, 1923, pp. 544.

² The generic name Corynebacterium (Greek κορύνη, a club) was bestowed on the diphtheria bacillus by Lehmann and Neumann in 1896, and was adopted in the classification of the Committee of the Society of American Bacteriologists. Seventeen species including the acne bacillus, the bacillus of pseudotuberculosis in guinea-pigs, the xerosis bacillus and other diphtheroids are included in this genus in the 1930 edition of Bergey's Manual.

The earliest description of the diphtheria bacillus appears to have been given by Klebs¹ in 1883, but the etiologic relations of this organism first came into notice through the investigations of Löffler, published in 1884.² Löffler succeeded in obtaining in pure culture from a number of cases of diphtheria the bacillus seen by Klebs. Although Löffler's observations favored the view that the bacillus thus cultivated was the cause of diphtheria, Löffler expressly disclaimed the assumption that this was actually the case, largely on the ground that the bacillus was not found in all cases of clinical diphtheria, while, on the other hand, it had been found

Fig. 58.—Corynebacterium diphtheriae, fifteen-hours bloodserum culture. Löffler's methylene blue; × 2000 (Denny, in Journal of Medical Research).

by him in the throat of a perfectly healthy child. The significance of such findings is now more clearly understood. A similarity of clinical symptoms does not always betoken causal identity. So far as the local manifestations are concerned, streptococci can produce a condition apparently indistinguishable from that in which the Klebs-Löffler bacillus is found. Again, it is now known that the diphtheria bacillus is occasionally present in the healthy throats of persons associated with diphtheria patients. Continued investigation

by various observers showed that the Klebs-Löffler bacillus was always present in the typical false membrane of diphtheria, and in 1888–89 Roux and Yersin³ triumphantly demonstrated the etiologic relation of the bacillus to the disease by showing that it formed a toxin which was capable of reproducing with singular fidelity the characteristic symptoms and lesions.

Morphology.—The diphtheria bacillus is a slender rod ranging from 1 μ to about 6 μ in length. When stained with Löffler's methylene-blue, it usually presents a beaded, striated, or granular appearance, which is so characteristic that by simple microscopical examination a trained observer can recognize with some degree of

¹ Klebs: Verhandlungen des Congresses f. innere Med., 1883.

² Löffler: Mitt. a. d. k. Gesund., 1884, 2, p. 421.

³ Roux and Yersin: Ann. de l'Inst. Past., 1888, 2, p. 629.

certainty the Klebs-Löffler bacillus in cultures from a suspicious throat (Fig. 58). In preparations made directly from the false membrane the uneven staining of the cell protoplasm is less noticeable than in preparations from cultures. Club-shaped forms are some-

times observed in films made from the membrane, but less frequently than in films from nutrient media; in the latter, bacilli with swollen and deeply stained ends are, as a rule, abundant (Fig. 59). Bacilli containing metachromatic granules are commonly observed in cultures derived directly from clinical cases.

Many recent observers recognize different morphologic types of C. diphtheriae. In the nose and throat of both healthy ture showing clubbed ends diphtheritic persons diphtheria lene-blue; × 1100 (Park).

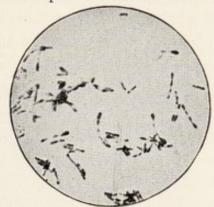


Fig. 59.—Corynebacterium diphtheriae; blood-serum culand irregular staining; methy-

bacilli, known as the "barred" and "solid" types, are found (Wesbrook)1 (Fig. 60). The distinction is based upon a difference in behavior toward stains. The protoplasm of the so-called "solid"

Fig. 60.—Wesbrook's types of Corynebacterium diphtheriae: a, c, d, granular types; a^1 , c^1 , d^1 , barred types; a^2 , c^2 , d^2 , solid types; \times 1500.

form stains uniformly and shows neither bars nor granules. protoplasm of the barred form stains in irregular blocks or segments, the intervening portion taking the stain slightly or not at all.

Wesbrook, Wilson, and McDaniel: Trans. Assoc. Amer. Physicians. 1900; see also Gorham: Jour. Med. Res., 1901, 6, p. 201.

barred or striated type is said to be frequently present on the conjunctiva, and when isolated from a form of conjunctivitis known as xerosis, is usually denoted as the xerosis bacillus. The term xerosis bacillus has, however, been loosely used, and a number of different kinds of organisms have probably been given this designation. There is no convincing evidence that the "xerosis bacillus" can cause conjunctivitis or that it is pathogenic in any way. It is stated that barred forms are sometimes the only type found in clinical diphtheria, but this condition appears to be very rare. The relation of the solid type to clinical diphtheria is still obscure. By some authorities the solid forms are classed as pseudodiphtheria bacilli and are not regarded as capable of causing diphtheria. The barred and solid types are found much more commonly than the granular type in the nose and throat of healthy individuals.

The granular type, on the other hand, predominates in clinically characteristic diphtheria. Several observers report that during convalescence the granular type is gradually replaced by the solid, a fact that has been regarded as pointing to a gradual morphologic alteration brought about by the influence of the body-fluids of an immune individual.¹

In some cultures of the diphtheria bacillus true branching has been observed. The branching apparently originates by budding, and is sometimes followed by degeneration of the parent stem at the point of origin. Sometimes very complex branching forms are produced (Hill). By the use of the hanging-block method of cultivation Hill² observed so-called "post-fission movements" in C. diphtheriae. After cell division a sudden snapping across of the rod occurs, which seems to be strictly characteristic of the organisms of this group.

The diphtheria bacillus exhibits a marked tendency to the production of involution forms. These occur with special abundance in cultures on artificial media, as on blood-serum after five to seven days. The biologic significance of the appearance of involution forms as well as of branching forms among the diphtheria bacilli and certain other groups of bacteria is not at present understood.

¹ An excellent discussion of morphologic types of C. diphtheriae and their significance in public health work is given in the Amer. Jour. Pub. Hyg., 1907, 17, p. 156.

² Hill: Jour. Med. Res., 1902, 7, p. 202.

Gins¹ has modified Neisser's granule stain for diphtheria bacilli, using Lugol's solution after Neisser's solution No. 1 (p. 56). Scheller² recommends lengthening the action of each stain by from ten to fifteen seconds. When this staining method is applied to cultures grown upon Löffler's serum the method gives fairly good results, and undoubtedly aids in diagnosis; but it does not permit the sharp distinction to be made between diphtheria and pseudo-

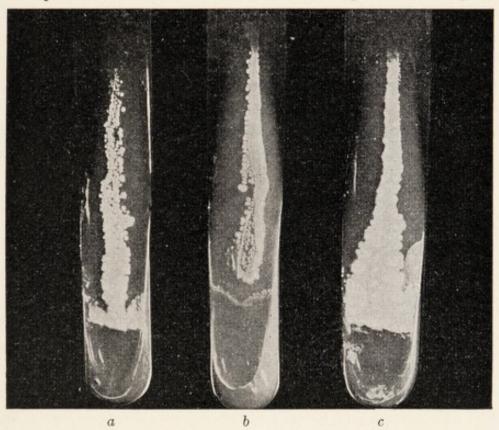


Fig. 61.—Diphtheria bacilli (from photographs taken by Prof. E. K. Dunham, Carnegie Laboratory, New York): a, diphtheroid; b, true diphtheria bacillus; c, diphtheroid.

diphtheria bacilli that was originally claimed for it. Many other special methods of staining this organism have been employed with more or less success, but few of them are so satisfactory as the long-used Löffler methylene-blue (see p. 51).

Cultural Characteristics.—The diphtheria bacillus grows fairly rapidly upon appropriate nutrient media, provided a suitable temperature—not lower than 19 C.—be maintained. The optimum

¹ Gins: Deut. med. Wchnschr., 1913, 39, p. 502.

² Scheller: Kolle and Wassermann, Handbuch, 2nd ed., Ergänzungsband 2, p. 107.

is about 37 C. The reaction of the medium is a feature to which this organism is peculiarly sensitive, a P_H of about 7.8–8.2 being most suitable both for growth and for toxin production. An abundant oxygen supply is likewise a requisite. The blood-serum medium recommended by Löffler is ordinarily employed for isolation. Löffler's serum consists of a mixture of three parts of calf or sheep serum with one part of 1 per cent dextrose broth. On this medium the diphtheria bacilli grow rapidly at 37 C., often forming minute but visible colonies inside of twelve hours; within eighteen to twenty hours small opaque gray colonies are plainly seen on the surface, and from a microscopic examination of films made from these colonies diagnosis is almost invariably possible. Other organisms that may have been present in the throat or in the false

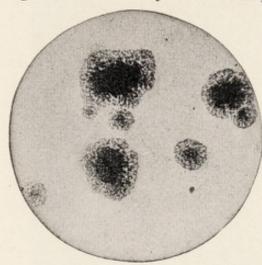


Fig. 62.—Corynebacterium diphtheriae colonies on glycerol-agar, twenty-two hours old; × 39 (Heim).

membrane are usually outstripped by the diphtheria bacillus in growth on Löffler's serum. Upon ordinary nutrient gelatin and agar the diphtheria bacillus is also able to develop, but less luxuriantly; gelatin is not liquefied by the growth. The surface colonies on agar, when viewed with a low magnification, are coarsely granular and somewhat irregular in outline, with ragged or fringed edges (Figs. 61 and 62). In milk abundant growth with feeble acid

reaction occurs, but no curdling takes place. The acid reaction of potato is not favorable to growth. In broth containing dextrose an acid reaction is produced by the majority of the granular, virulent forms, while nearly all of the solid-staining forms that are encountered are unable to ferment dextrose. The distinction, however, does not seem to be an absolute one. Nitrate is reduced to nitrite by most strains of C. diphtheriae; indol is not produced. Broth cultures possess hemolytic power for rabbit corpuscles; this property is not present in the filtrate.

Resistance.—In growths upon the ordinary culture media the bacillus may retain its vitality for a long time. On agar it may live for six to eight weeks; on ordinary blood-serum, five to six

months; and on dextrose blood-serum (Beck),¹ twelve to fifteen months. Although virulence ordinarily becomes lessened in cultures, many strains conserve their full virulence under prolonged cultivation. Löffler has recorded one instance where virulence was maintained during 77 transfers, covering a period of twenty-seven months. Some observers have isolated bacilli from fragments of dried membrane after the lapse of several months.

Heat kills the bacilli rather readily. According to Brieger and Fränkel,² exposure to moist heat for forty-five minutes at 55 C. proves fatal. In the dry membrane they are much more resistant and are said to have withstood exposure to 98 C. for an hour.

The Diphtheria Bacillus in the Human Body.-Mucous surfaces are a favorite site for the growth of the diphtheria bacillus. Swabbing the throats of adult humans volunteers with a pure culture of the diphtheria bacillus has been followed promptly by cases of clinical diphtheria.3 The pharynx is the locality most commonly affected, but diphtheria of the larynx or membranous croup, and nasal diphtheria or membranous rhinitis, are by no means infrequent. The nose probably often serves as the portal of entry. Diphtheria of the conjunctiva sometimes occurs as the result of a diphtheritic patient coughing or sneezing into the eyes of the attendant physician or nurse. Diphtheritic infection of the middle ear is not uncommon. Infection of the mucous surfaces of the genital organs is occasionally met with. Primary infection of the lungs may occasionally occur, but is very rare. Apparently simple "colds" are sometimes due to the diphtheria bacillus. Although the diphtheria bacillus sometimes finds its way into the general circulation and gives rise to septicemia, it remains, as a rule, confined to the mucous surfaces. The symptoms and lesions produced are due partly to the presence of the bacillus and partly to its toxin. The chief local consequence of infection is a degeneration of the epithelial cells, extending to the underlying tissues and accompanied by a profuse fibrinous exudation. As a result the characteristic diphtheritic membrane, containing fibrin, dead tissue-cells, leukocytes, and bacteria, is formed on the affected surface. The diph-

¹ Beck: Kolle and Wassermann, Handb. d. path. Mikroörg., 2nd ed., 1913, 2, p. 777.

² Brieger and Fränkel: Berl. klin. Wchnschr., 1890, 27, p. 241.

³ Guthrie, Marshall and Moss: Bull. Johns Hopkins Hosp., 1921, 32, p. 369.

theria toxin doubtless has a share in the formation of the membrane, but the most serious injuries that it causes are the systemic lesions due to its absorption. Diphtheria is a typical toxemia. The most severe lesions are produced in the heart, nerves, and kidneys. A variety of lesions may be found in the kidneys, acute interstitial nephritis being the most common. It is an old observation that albumin is present quite often in the urine of diphtheria patients; there is therefore no reason for attributing this symptom to the administration of diphtheria antitoxin; as a matter of fact, tests have shown that the amount of albumin in the urine is sometimes diminished after antitoxin is given. The lesions in the heart consist commonly of a fatty degeneration of the muscle-fibers, which may be very extensive. Fatty degeneration also occurs both in the myelin sheath of the peripheral nerves and in the white matter of the brain and cord. These changes in muscle and nerve seem to explain the nature of the grave cardiac weakness often observed in diphtheria, and also the frequent occurrence of the more or less extensive paralysis which so commonly follows a diphtheritic attack. Here too lies the explanation of the sudden fatal termination of many cases of diphtheria regarded as "mild" or even not recognized as true diphtheria. A small amount of toxin can probably cause extensive damage to vital tissues. "A patch of membrane the size of a thumb-nail on the tonsil may generate sufficient toxin to cause death" (McCollom).1

Animal Inoculations.—Both the general and local symptoms of diphtheria can be reproduced by animal inoculation. Guineapigs are readily killed by subcutaneous injection of a young broth culture, death usually occurring within two or three days after they are inoculated with a few drops of a twenty-four-hour broth culture of a virulent strain. Nephritic symptoms, paralytic manifestations, and other characteristic features of human diphtheria have been observed in the guinea-pig and other animals. An enlarged and hemorrhagic condition of the adrenals characterizes diphtheritic intoxication in guinea-pigs. Paralytic manifestations appear more frequently in dogs and in pigeons than in guinea-pigs or rabbits. As a rule, the bacilli remain localized and are not found in large numbers in the internal organs of the infected animals. Inoculations upon the healthy mucous membrane of most adult

¹ McCollom: Osler's "Modern Medicine," Phila., 1907, 2, p. 411.

animals lead to no changes, but if young animals be injected intratracheally or if the mucous surface be injured before inoculation a characteristic false membrane is produced. The membrane produced experimentally is histologically identical with that found in cases of human diphtheria. Animals vary considerably in their susceptibility to infection. Rats and mice are relatively refractory; rabbits are less susceptible than guinea-pigs; cats, dogs, and pigeons are highly susceptible. Bacilli introduced into the alimentary tract have no pathogenic effect, owing doubtless to their inability to effect a lodgment on uninjured epithelial surfaces. The bacilli are never found in any considerable abundance in the blood, and they appear only exceptionally to invade the tissues; injury to the organism, as a rule, results from the absorption of the toxin formed in the false membrane rather than from the presence of the bacilli in important organs.

The animal test for virulence, which must always be made for the final identification of an organism suspected of being the diphtheria bacillus, is commonly made by injecting 1 cc. of a forty-eight-hour broth culture into each of two guinea-pigs. One of the animals is injected at the same time with 50 to 100 units of diphtheria antitoxin. If the culture contains a true toxin-producing diphtheria bacillus the unprotected animal will die within two to three days, and typically congested adrenals will be found at autopsy; the protected guinea-pig will live.

The use of the original diagnostic culture (whole-culture method) injected intracutaneously saves time and appears to be fully as accurate. The growth of the diagnostic culture is suspended in 1 cc. salt solution and diluted further according to the number of diphtheria-like organisms present, the final volume of the suspension being from 1 to 4 cc. One-tenth of a cubic centimeter of the suspension is injected into the skin of the abdominal region of a guinea-pig. The animal is observed for three days or until characteristic lesions—necrosis of the superficial layer of the skin—develop. Four to six cultures may be tested on one animal.

The Diphtheria Toxin.—When C. diphtheriae is grown in ordinary nutrient broth under suitable conditions a soluble toxin is formed which diffuses out from the bodies of the living bacilli into

¹ Havens and Powell: Amer. Jour. Hyg., 1922, 2, p. 237; Bull and McKee: Amer. Jour. Hyg., 1923, 3, p. 103.

the surrounding medium. The toxin is present in hardly diminished strength in the sterile filtrate of a broth culture. A persistent acid reaction interferes with the formation of toxin, and hence, if sugar is present in the broth in considerable quantity, the acid produced by its fermentation hinders materially the accumulation of toxin. The most favorable reaction is P_H 8.0 or slightly below. In order to obtain maximum toxin production, the earlier experimental procedures involved passing a current of air over the surface of broth cultures, the purpose of this being to facilitate the oxidation of the acid products of growth. The use of broth freed from muscle-sugar (p. 32) renders this device less essential, although the free access of air to the cultures is still recognized as important. The broth for toxin production should be a thin layer in a widemouthed flask. The addition of a very small amount of dextrose, not exceeding 0.2 per cent, to broth previously freed from musclesugar favors toxin production.1 Other conditions, such as a temperature of about 36 C. and an abundance of peptone (2 per cent Witte's peptone), or other albuminous substances and a welldeveloped surface growth, favorably influence toxin production. The toxicity, as a rule, attains a maximum in about five to ten days, depending upon the race used. Different races of diphtheria bacilli vary strikingly in their toxin-forming power. Certain strains that have been found to yield constantly an especially potent toxin are in widespread use in establishments that manufacture diphtheria antitoxin. Some of these strains generate so powerful a toxin that 0.001 cc. of a filtered broth culture proves fatal to a guinea-pig, while other strains may generate so little that several cubic centimeters are necessary to produce a fatal result. In all cases toxin production depends largely on the conditions of cultivation. Even highly toxigenic strains may not produce toxin in an unsuitable environment.

Little or nothing is known regarding the chemical nature of diphtheria toxin. It is destroyed by boiling for five minutes, and is greatly weakened by lower temperatures (60 to 70 C.). Direct sunlight causes a complete loss of toxicity within a few hours. When the toxin is kept in the dark and in cold storage, it may retain its activity for a long period—according to Abba² as long as two years. Roux and Yersin³ showed that the addition of a small

¹ Smith, Theobald: Jour. Exper. Med., 1899, 4, p. 373.

² Abba: Centralbl. f. Bakt., 1898, 23, p. 934.

³ Roux and Yersin: Ann. de l'Inst. Past., 1889, 3, p. 273.

amount of acid to a toxic filtrate caused the toxic property to disappear, but that if the acid were not allowed to act too long, the toxicity was regained on restoring the original reaction. The toxic body is precipitated by alcohol and by calcium chloride, calcium phosphate, ammonium sulfate, and other protein precipitants, but it is probably not itself a protein substance. Neither is the presence of protein necessary for its formation. Guinochet¹ has shown that toxin is formed when diphtheria bacilli are grown in urine that is free from albuminous constituents. Uschinsky found that toxin is produced in a protein-free medium containing only ammonium lactate, sodium asparaginate, glycerol, and some simple mineral salts.²

The toxin in some respects resembles an enzyme, but there are objections to the view that it is itself an enzyme. Such are its relatively high resistance to heat, the direct relation between the amount of toxin and the toxic effect produced as compared with the unlimited capabilities of true enzymes (Behring),³ and other features not in harmony with the ordinary conceptions of enzymes.

The effects produced in animals by inoculation with a sterile diphtheria toxin are wonderfully similar to those produced by infection with living bacilli, save that no false membrane is formed by the toxin alone. The other symptoms that are evoked are practically identical whether bacilli or toxin be employed. The histologic lesions which occur in the heart and other organs, and are found both in cases of human diphtheria and in animals inoculated with diphtheria bacilli, are reproduced by the germ-free toxin. There is no escape, therefore, from the conclusion that in diphtheria the chief injury to the animal organism is brought about by the action of a potent poison which is secreted during the life of the bacillus and diffuses from the bacterial cell into the surrounding medium. Under certain conditions the human throat affords a lodging-place

¹ Guinochet: Archiv. de méd. exp., 1892, 4, p. 487.

² Maver (Jour. Infect. Dis., 1930, 47, p. 384) obtained the most satisfactory results with the following modification of the medium used by Braun and Hofmeier (Klin. Wchnschr., 1927, 6, p. 699): sodium sulfate, 5 grams; monopotassium phosphate, 0.5 gram; ammonium succinate, 5 grams; sodium acetate, 5 grams; magnesium sulfate, 0.05 gram; dipotassium phosphate, 1.75 grams; cystine, 0.5 gram; glycine, 0.5 gram; water, 1000 cc. The most potent toxin obtained had a minimal lethal dose of 0.1 cc. and a skin test dose of 0.0001 cc.

³ Behring: "Geschichte der Diphtherie," Leipzig, 1893.

where the diphtheria bacillus is abundantly supplied with food, where it finds a highly suitable temperature for its growth and toxin-production, and where it is perhaps also benefited by the current of warm, moist air passing over the surface. That toxin is formed in the false membrane, whence it passes into the underlying tissues and diffuses through the body, causing injury to certain tissue cells for which it possesses a special chemical affinity, is a supposition quite in accord with all the observed facts.

Diphtheria Antitoxin.—Behring and Kitasato,¹ in 1890, found that the serum of rabbits immunized against diphtheria and tetanus by inoculation first with attenuated, then with virulent, cultures, contained a substance capable of neutralizing the effects of infection or intoxication in other animals. The action was found to be specific. The practical importance of this discovery in the case of diphtheria was soon made evident by the further researches of Behring, Wernicke, Knorr, Roux and Martin, and others.² The active principle in the blood and blood-serum is still chemically unknown, but from its neutralizing power it has been designated the diphtheria antitoxin.

Small nonfatal doses of toxin injected into the susceptible body are as effective in producing antitoxin as inoculation with the bacilli themselves. The amount of antitoxin that appears in the blood increases up to a certain point in proportion to increasing doses of the toxin, but the physiologic capacities of each individual animal limit the total amount of antitoxin produced. The antitoxic substance persists in the blood or blood-serum for a considerable period after the blood is drawn. It has been shown that the serum obtained from an immunized animal may retain unimpaired for many months its power of neutralizing diphtheria toxin when properly protected against putrefaction and the action of light or of high temperature. The probable mode of action of the antitoxin, and other theoretical considerations, are treated in the chapter on Immunity (p. 157).

In the preparation of diphtheria antitoxin on a large scale certain procedures are generally followed. Horses have been found

¹ Behring and Kitasato: Deut. med. Wchnschr., 1890, 16, pp. 1113, 1145; also Behring: "Die Blutserumtherapie," Berlin, 1902.

² For references to these see Roux and Martin: Ann. de l'Inst. Past., 1894, 8, p. 609.

especially suited for antitoxin production, both on account of their size and their relative tolerance to the treatment with toxin. As a rule, gradually increasing quantities of toxin are injected into the subcutaneous tissues of the horse at intervals of five to seven days during a period of about two or three months. Not all animals prove equally tolerant of the treatment or yield a satisfactory quantity of antitoxin, and a continued selection of the particularly well adapted animals goes on in every large establishment. When the antitoxin in the blood reaches a desirable potency, for example, if the blood contains over 300 units per cubic centimeter, blood is drawn from the jugular vein into sterile glass jars and allowed to clot; from five to eight liters may be drawn at a time without injury to the animal, and bleeding may be repeated as often as once a month. The serum that separates from the clot is drawn off aseptically. It is then usually filtered through a Berkefeld filter, protected against contamination by the addition of carbolic acid, chloroform, or tricresol, tested and standardized, and bottled or placed in syringes as the diphtheria antitoxin of commerce. If diphtheria antitoxin is kept in the dark and at a low temperature, it retains its potency for a long time. Some sera show hardly any decrease in potency during periods of a year or more. Those sera containing the largest number of units per cubic centimeter are more apt to lose strength than the so-called "low-potency sera." A powdery deposit often forms in antitoxic sera after a time, but does not impair their value. Diphtheria antitoxin may be concentrated to some degree by precipitating, redissolving, and dialyzing.

Various methods of concentrating antitoxin are in use. The principle involved is the separation of the pseudoglobulins which contain the antitoxic principle from the other constitutents of the blood serum.

Concentrated sera have several advantages over crude sera. The amount to be injected is smaller, an advantage of importance when large or frequent doses have to be given. One advantage is the greater yield made possible by the concentration, since with this method it is feasible to draw the blood from the horses into a solution of sodium citrate or, better, into a solution of potassium

¹ Gibson: Jour. Biol. Chem., 1905, 1, p. 161; Banzhaf and Gibson: Jour. Biol. Chem., 1907, 3, p. 253; Banzhaf: Bull. New York City Antitoxin Lab., 1909.

oxalate; coagulation is prevented by the use of these chemicals, and a high yield of plasma can be obtained. Toomey and August¹ have pointed out certain disadvantages in the use of concentrated sera.

The Curative Value of Diphtheria Antitoxin.—In order to cure a case of diphtheria in man, either the crude or the concentrated diphtheria antitoxin is injected with a sterilized syringe into the loose subcutaneous tissue, the best locality being in the loose tissue of the loin (just below the short ribs). Injection may be made in the back near the angle of the scapula, but is more painful.

It is often recommended that the entire dose deemed necessary should be injected at the first treatment.² Park advises in mild cases 3000 to 5000 units, in moderate cases 10,000 units and in severe toxic cases 20,000 units or more in adults, and 10,000 to 20,000 units or more in children. In the very serious cases intravenous injection is to be preferred to subcutaneous. Administration of antitoxin by mouth is valueless. There is no limit to the number of units of antitoxin that may be safely injected.

Many attempts have been made to lessen the amount of fluid containing a given number of units. The use of a powerful toxin for immunization, the selection of horses that yield a particularly large number of antitoxin units per cubic centimeter, and improvements in methods of immunization and concentration have resulted in lowering considerably the dose of horse-serum. Serum containing 500 to 700 units per cubic centimeter is now commonly marketed, and a few horses have been known to yield serum of 1000 to 1500 unit strength. The so-called "low-potency sera," however, containing about 300 to 500 units per cubic centimeter, are, unit for unit, just as efficacious, and can be produced much more economically than the high-potency sera.

The administration of antitoxin is followed in some cases by temporary pain in the joints and by rashes. The rashes appear to be due to unknown substances in the horse-serum, which are present in larger amounts in some horses than in others. These substances may be present in the blood of a horse at one bleeding and absent at the next. They occur in both normal and immune

¹ Toomey, J. A., and August, M. H.: Jour. Preventive Med., 1930, 4, p. 281.

² Park: Trans. Assoc. Amer. Phys., 1912, 27, p. 434.

animals. The concentrated serum contains, as a rule, less of these rash-producing substances than the original serum.

A few cases of sudden death have been reported following the administration of antitoxin serum.¹ The cause is unknown. It is possible that sensitization of the organism to horse-serum (see p. 195) is responsible, or that some obscure individual peculiarity lies at the bottom of the trouble. In comparison with the enormous number of antitoxin injections constantly made, such cases appear to be exceedingly rare.²

The Results of Antitoxin Treatment.—It is a matter of common knowledge that in recent years diphtheria mortality has been much less than in the years before 1895. The death-rate from diphtheria in certain large American cities before and after antitoxin came into use (1894–95) is considered to illustrate the saving of life that has been effected. In 1890–94 fifty large American cities had

AVERAGE ANNUAL DEATH RATE FROM DIPHTHERIA IN 10 LARGEST CITIES IN THE UNITED STATES PER 100,000 POPULATION

	1890-94	1920-24
New York	134.4	14.0
Chicago	117.3	17.5
Philadelphia		16.7
Detroit		24.3
Cleveland	95.7	14.7
St. Louis	67.7	16.1
Boston	112.2	20.2
Baltimore	70.0	11.4
Pittsburgh	86.4	20.1
Los Angeles	46.0	14.4

diphtheria death rates above 40 per 100,000 and only two had rates under 10; in 1929 no city had a rate above 22 and 65 out of 81 had a rate under 10.

The number of deaths per 100 cases treated in large hospitals is also significant. In the hospitals of the Metropolitan Asylums

¹ See, for example, Jour. Amer. Med. Assoc., 1908, 50, pp. 137, 456, and 468.

² See Mackenzie, G. M., and Hanger, F. M.: Serum Disease and Serum Accidents. Jour. Amer. Med. Assoc., 1930, 94, p. 260.

Board, London, the annual diphtheria case-mortality averaged 30.6 per cent for the years 1890–94, 10.8 for 1900–04 and 5.5 for 1923–27.

Such figures, although often quoted as measuring directly the efficacy of antitoxin, may conceivably give an exaggerated impression. It is well known to epidemiologists that great fluctuations in diphtheria mortality occurred through the early and middle part of the nineteenth century and that the deaths from this cause had reached a particularly high point just prior to the introduction of the diphtheria treatment. It is probable therefore that not all of the improvement in diphtheria death rates immediately following the introduction of antitoxin treatment can be attributed to this procedure. Part of it would probably have occurred in any case. While the actual statistical effect of treatment with diphtheria antitoxin is thus more or less uncertain because of natural variations in the prevalence and severity of the disease, there can be no doubt that marked benefit has been brought about. The improvement in diphtheria case-mortality in all parts of the world where antitoxin was used followed so promptly, was carried to such a high point and has been so sustained that it is impossible not to assign the major credit to this specific agent. In addition the overwhelming mass of clinical testimony recounting the immediate amelioration of symptoms in treated cases, together with the indubitable results of the antitoxin treatment of experimental animals, combine to remove any vestige of doubt as to the curative value of diphtheria antitoxin.

Modes of Infection.—The source of infection is the human carrier of diphtheria bacilli. The ordinary way in which diphtheria is spread is by more or less direct transfer of bacilli from a mild or severe case of the disease, or from a convalescent patient, or from a well person who has come into contact with a case of diphtheria and harbors the specific germ in his throat or nose. It has already been pointed out that diphtheria bacilli may retain their virulence for a long time in particles of dried membrane. The germs have been found on children's toys, in the dust of sick-rooms, and clinging to the clothing of nurses. Under certain conditions the bacilli may resist drying for several weeks. The chief danger, however, apparently does not depend upon dissemination of dust particles or upon inadequate disinfection of the surroundings of a patient, but rather upon the patient or convalescent himself.

For many days, and exceptionally for months, after complete recovery the bacilli may persist in the throat and nose. Fully virulent germs have been found in a child's throat for as long as 335 days after the cessation of clinical manifestations. diphtheria is prevalent in a school or an institution, bacilli are frequently found in a large percentage of the throats of perfectly healthy children. There is abundant evidence, therefore, that healthy individuals are sometimes the carriers of virulent diphtheria germs, and may be the means of causing serious epidemics. Chronic membranous rhinitis, due to the diphtheria bacillus, is not infrequently a source of infection. Bacilli isolated from an apparently healthy carrier have been experimentally introduced into the throat of adult human volunteers, a procedure promptly followed by clinical diphtheria in several instances. Just what proportion of diphtheria cases is actually caused by contact with carriers as distinguished from contact with active cases is not known. Certain investigations in Baltimore indicated that the risk of developing clinical diphtheria through contact with "healthy carriers" may not be so great as at one time believed.1

It is well known that the disease is much more prevalent, as well as more fatal, among children than among adults. An apparent effect of school attendance upon the spread of diphtheria has been observed by English health officials. Not only has an increase in the prevalence of the disease in England been noticed coincident with the putting into operation of a compulsory education act (1870), but the number of cases of diphtheria reported has been observed to rise and fall in direct sequence to the occurrence of holidays and the resumption of school work. The relation between school closure and diphtheria prevalence in Chelsea, England, is shown in the table on page 302, which gives the average number of cases occurring at all ages and at school age in thirteen four-weekly periods, during the five nonepidemic years, 1890–94 inclusive.

The closure of the schools for the summer vacation (lasting a month), which usually commences in the thirtieth week of the year, is followed by a fall in the number of notified cases (thirty-

² Murphy: Lancet, 1894, 2, pp. 1403, 1409.

Doull and Lara: Am. Jour. Hyg., 1925, 5, p. 508.

third to thirty-sixth week). There is a corresponding fall after the Christmas holidays (first four weeks).

DIDLET	LIEDIA	IN CIT	TOT OTO A *
DILLII	HERIA	IN UH	ELSEA*

Weeks	Total Cases	Cases at Ages Three to Thirteen				
1-4	8.0	3.8				
5-8	11.4	4.8				
9-12	10.8	5.2				
13-16	11.4	5.6				
17-20	13.6	5.6				
21-24	11.8	5.4				
25-28	16.4	7.4				
29-32	14.8	8.2				
33-36	9.6	3.0				
37-40	14.2	7.0				
41-44	13.8	7.8				
45-48	21.2	11.8				
49-52	15.0	8.8				

^{*} Parkes: Trans. Epidemiol. Soc., London, 1896, N. S. 16, p. 240.

The use of the common drinking-cup and moistened lead-pencil, the friendly transfer of pocket-handkerchiefs, candy and chewing-gum, and the other familiar practices of school-children, afford opportunities for an immediate and tolerably direct passage of bacilli from an infected individual to a healthy one. It is probable, too, that in the act of coughing or talking droplets of moisture or mucus containing bacilli pass into the air and may be inhaled by bystanders. There is no evidence that diphtheria bacilli are present in ordinary sewer air or that they ever effect an entrance to a dwelling through defective plumbing. It must be pointed out, however, that any condition, such as a damp or "raw" atmosphere, which tends to produce an irritated or weakened mucous membrane, is distinctly favorable to infection.

It is well established that diphtheria is sometimes disseminated through milk. Other possible sources have been suggested. Certain domestic pets, notably cats, have been popularly regarded as being able to communicate the disease, but experiments have shown that the implantation of vast numbers of diphtheria bacilli

¹ Thorne: "Diphtheria," London, 1891.

into the nasal cavities of cats has failed to set up any general or local lesions and the bacilli have quickly disappeared. There is no ground for believing that cats can serve as carriers of diphtheritic infection. The so-called "avian diphtheria," or "roup" of fowls and pigeons, has been frequently asserted to be due to the same micro-organism as that causing human diphtheria, but there are insurmountable objections to this view. The most important of these is the fact that the antitoxin which protects against the Klebs-Löffler bacillus is without effect upon the progress of roup. Moreover, the bacillus usually present in avian diphtheria has been isolated and differs in essential particulars from the Klebs-Löffler bacillus.

Mixed Infections.—The Klebs-Löffler bacillus is found almost invariably associated in the false membrane with streptococci, staphylococci, or other micro-organisms. There is no doubt that these bacteria, especially the streptococci, often play an important part in both the local and general development of the infection. Certain common complications of diphtheria, particularly suppurative processes in the tissues of the neck, are unquestionably due to the action of the associated pyogenic organisms. Vincent's angina (p. 524) is a dangerous complication of diphtheria. Some observers have claimed that the virulence of the diphtheria bacilli is increased by symbiosis with the streptococci, but there is no convincing evidence in favor of this view. There have been a number of attempts to gage the influence of these mixed infections on the outcome of a diphtheritic attack. Simple streptococcus anginas are unquestionably of a more benign character than are those throat affections in which the Klebs-Löffler bacillus is found, either as the sole or predominant organism; but regarding the mixed infections of streptococci and diphtheria bacilli, opinions have been at variance. From analogies observed in animal experimentation, as well as on other grounds, there is reason to believe that the mixed infections, in which the streptococcus is actually sharing in the production of pathologic processes, are of a more serious character than those in which the Klebs-Löffler bacillus alone is the active factor.

Diphtheroid Bacilli.—Bacteria with the morphological characters of the diphtheria bacillus have been supposed on more or less plausible grounds to be causally related to certain infections.

¹ Savage: Jour. Hyg., 1920, 18, p. 448.

Xerosis (p. 288) and Hodgkin's Disease (p. 755) are mentioned elsewhere.

The skin eruption known as *acne* was for some time supposed to be caused by a diphtheroid bacillus (C. acne) which grows in the presence of only a small amount of oxygen. It now seems quite doubtful whether there is any causal relationship between this diphtheroid and the skin lesion from which it has been obtained.

Bacteria that closely resemble C. diphtheriae but are relatively less virulent are not uncommonly encountered in the throats and noses of healthy individuals, in the conjunctival sac, and even in the false membrane in typical clinical diphtheria side by side with the true diphtheria bacillus. Löffler, in 1887, reported finding an

Fig. 63.—Diphtheroid bacilli, methylene-blue; × 1000 (Park).

organism of this character in a diphtheritic membrane, and general attention was soon directed to the significance of the so-called "pseudo-diphtheria bacilli" by the similar observations of von Hofmann-Wellenhof.² This organism, often called by the name *Hofmann's bacillus*, grows more luxuriantly upon agar than the Klebs-Löffler bacillus, is somewhat shorter and plumper, does not show granules when treated by the Neisser stain and fails to produce acid

in dextrose broth. It is, moreover, nonvirulent for guinea-pigs. While it is relatively easy to separate typical pseudo-diphtheria bacilli possessing these qualities from C. diphtheriae, considerable difficulty has arisen in attempting to apply in all cases a strict criterion of differentiation. Neisser's stain is now generally admitted to be a far from absolute criterion. Now and again bacilli are found that resemble C. diphtheriae in all important respects except in their lack of virulence, and by some authors these are classed as pseudo-diphtheria bacilli, although this is not in accordance with general usage. Such forms on closer study are often found to produce a small amount of toxin and are more properly regarded as attenuated forms. On the other hand, virulent bacilli have sometimes been found that do not ferment dextrose, but these also, owing

¹ Löffler: Centralbl. f. Bakt., 1887, 2, p. 105.

² Von Hofmann-Wellenhof: Wien. med. Wchnschr., 1888, 38, pp. 65, 108.

to their specific toxin production, must be regarded as genuine examples of C. diphtheriae.

Several observers assert that a transformation of one form into the other has been accomplished, and there are some who believe that the pseudo-diphtheria bacillus or the avirulent variety is simply a modified form of C. diphtheriae, which has parted with its virulence and certain other properties under the stress of altered conditions. Statements by Lesieur, for example, are especially specific on the question of transformation. It is claimed that virulent cultures of C. diphtheriae have been transformed by the action of daylight into nonvirulent ones exhibiting all the characters of the Hofmann bacillus, and, reciprocally, that pseudo-diphtheritic bacilli have, by cultivation in collodion sacs within the bodies of rabbits, been transformed into organisms possessed of the qualities distinguishing C. diphtheriae.

Perhaps the most definite statements about transformation are those made by Cromwell,² who in studying single-cell strains under different conditions of cultivation found that nontoxic strains could be produced "by mutation" from toxic strains and remained permanently nontoxic. The relation of these nontoxic derivatives to the Hofmann bacillus and similar forms is still not altogether clear.

Morse³ has divided the diphtheroid bacilli into four sub-groups on the basis of fermentation reactions as follows:

Group	Dextrose	Sucrose	Maltose	Glycerol		
A (C. hoagii)	+	+	_	_		
B (C. flavidus)	+	-	±	±		
C (C. xerosis)	+	±	±	+		
D (C. hofmannii)	-	-	-	-		

Organisms of Group A type have been most commonly reported; Group C is relatively rare.

Mellon,⁴ as the result of a very comprehensive study of the characters of the diphtheroid group, regards the group as one of great diversity and lability and establishes three more sub-groups (B. diphtheroides liquefaciens, B. enzymicus, and B. ruedigeri) in

¹ Lesieur: Jour. de Physiol. et de Path. gén., 1901, 3, pp. 961, 1000.

² Cromwell: Jour. Bact., 1926, 11, p. 65.

³ Morse, Mary: Jour. Infect. Dis., 1912, 11, p. 253.

⁴ Mellon: Jour. Bact., 1917, 2, p. 269.

addition to those already recognized by Morse. One of these, B. enzymicus, is believed by Mellon to be closely related to the streptococci. B. enzymicus, B. flavidus, and B. ruedigeri are considered the most pathogenic members of the group. In Mellon's experiments the most decisive group differentiation resulted from the use of the complement-fixation reaction.

From the public health point of view the question of the interrelation of the "real" and "pseudo" forms is of practical importance. It has been found that a considerable proportion of healthy persons in every community harbor so-called "pseudo-diphtheria bacilli" (16 to 22 per cent), but whether or not these persons constitute a menace to the health of the community is a question upon which opinions differ. The same investigations show that about 1 or 2 per cent of all persons harbor typical Klebs-Löffler bacilli (of the granular type), but that in this number only about 17 per cent have virulent bacilli, "or, in other words, 17 in 5000 to 10,000 of all persons have diphtheria bacilli that are dangerous to the health." If it were true that the solid-staining, avirulent, pseudo-forms might suddenly, when transferred to a susceptible individual, acquire pathogenic power, the protection of the community by quarantine and isolation would present a difficult aspect. Further experimental study of well-defined diphtheria and pseudo-diphtheria bacilli is needed, especially in relation to virulence and variation.

In the light of our present knowledge the conclusion seems justified that there are at least two independent and distinct groups of organisms, the diphtheria (Klebs-Löffler) bacilli and the diphtherid or pseudo-diphtheria bacilli. The true diphtheria bacillus is rarely found except in diphtheria patients (including latent cases of apparently simple "sore throat"), convalescents, and persons in contact with such cases. There does not seem to be adequate evidence of the transformation of nonvirulent pseudo-diphtheria bacilli into the true toxin-producing type.

Among the true diphtheria bacilli different serological types have been distinguished. Havens² recognized two; Park, Williams, and Mann,³ five, and J. Smith,⁴ seven. Powell,⁵ working with

¹ Jour. Mass. Assn. of Boards of Health, 1902, 12, p. 75.

² Havens: Jour. Infect. Dis., 1920, 26, p. 388.

³ Park, Williams, and Mann: Jour. Immunol., 1922, 7, p. 273.

⁴ Smith, J.: Jour. Hyg., 1923, 22, p. 1.

⁵ Powell: Amer. Jour. Hyg., 1923, 3, p. 362.

single-cell cultures, found considerable stability in the agglutination reactions; his cultures, five virulent, ten avirulent, fell into eight groups.

In considering the genus Corynebacterium as a whole, the following species may be conveniently recognized: C. diphtheriae; C. hofmannii, probably including "C. xerosis"; C. pyogenes, found in suppurative processes in cattle and swine; C. ovis, the "Preisz-Nocard bacillus," apparently pathogenic for sheep and horses, in which animals it produces lesions of "pseudotuberculosis"; C. murisepticum, apparently the cause of a natural pseudotuberculous disease in mice; "C. acnes," possibly the cause of acne (but there is no convincing evidence that this is the case), closely related to "C. typhi," a diphtheroid once thought to be causally related to typhus fever. Both "C. acnes" and "C. typhi" stand rather apart from the other diphtheroids through their ability to grow anaërobically.

Method of Diagnosis.—The examination of suspected throats for the diphtheria bacillus has been for years part of the routine work of a number of large and well-managed municipal laboratories in this country, and the methods employed after careful investigation have become well crystallized.2 Outfits for this work are issued to physicians on request. These consist, as a rule, of a tube of Löffler's serum, which should be freshly prepared, a tube containing one or more sterile swabs, and printed directions and record forms. The whole outfit is inclosed in a metal or pasteboard box. swabs are usually composed of pledgets of sterile cotton wound about the end of a wire or piece of wood. Some boards of health require that separate cultures be taken from the nose and throat when the examination is being made for the purpose of determining the end of a prescribed isolation period. Sometimes a film is made at once from the swab for immediate microscopic examination, but this procedure, although it may facilitate a speedy diagnosis, will often give a negative result if bacilli are present in small The method of cultivation is much more reliable. After the swab has been rubbed carefully over the serum, the tube is incubated at 37 C. until the next morning, when films are made

¹ Jones and Little: Jour. Exper. Med., 1925, 42, p. 593.

² See Report of Committee on Throat Cultures, Amer. Med. Assoc.: Jour. Amer. Med. Assoc., 1911, 57, p. 976.

from the growth on the medium and examined microscopically in the usual way. A single negative result or even more cannot be taken as conclusive proof that diphtheria bacilli were actually absent in the throat at the time the swab was used, since if the bacilli were present in small numbers, or in relatively inaccessible locations, as in laryngeal cases, they might easily be missed. Many boards of health require two or more successive negative cultures before permitting release from quarantine.

Serum Prophylaxis.—In addition to the ordinary measures of quarantine and isolation, which, to be effective, should be based upon the systematic bacterial examination of the throat and nose of convalescents, a number of other methods have been suggested for checking the dissemination of the disease. It has been shown that diphtheria is primarily a disease of school-children and is largely affected by school attendance. An appreciation of this fact by the school authorities and the introduction of methods of examination and prompt isolation have led in some quarters to a material reduction of contagion. It should be clearly recognized that the disease is kept smouldering in the community, and fresh outbreaks lighted up, chiefly by infected individuals who mingle with their fellows. Experience has shown that the throats of persons coming in contact with a case of diphtheria are quite likely to harbor diphtheria bacilli, and that these persons, although themselves remaining well, may become centers for the further spread of this disease. The use of antitoxic serum in doses of 500 or, better, 1000 units has been widely advocated as a prophylactic measure. A considerable degree of protection can be conferred in this way upon the children in a family where a case of diphtheria has appeared, and upon nurses or other attendants. Records of the Health Department of the City of Baltimore 1 show that only one case of diphtheria developed among 382 children who, after more or less exposure, had been given 1000-unit doses. In certain European hospitals a preventive dose of antitoxin is given at regular intervals as a matter of routine to all children in the institution, and this procedure is said to be attended with great success. The passive immunity so obtained is relatively transient; it begins about twentyfour hours after the injection and is practically at an end after twenty-eight days.

¹ Baltimore Health Dept.: Annual Report, 1904, p. 86.

The Schick Reaction.—A method of determining the susceptibility of a person to diphtheria was devised by Schick in 1913.1 The reaction depends on the fact that a local irritation is caused by a minute quantity of diphtheria toxin injected into the skin of a susceptible person, while if the person is immune the skin reaction does not occur. Many individuals are naturally resistant to diphtheria, and this method affords a means of selecting for artificial immunization only those in need of protection. The amount of toxin injected for the Schick test is 0.2 cc. of normal saline containing of the minimal lethal dose (M. L. D.) for a guinea-pig weighing 250 to 300 grams. A negative reaction may be taken to indicate that one cc. of the individual's serum contains at least 10 unit of diphtheria antitoxin and that he is probably safe against infection; a positive reaction indicates the presence of less than to antitoxin unit per cubic centimeter and points to the necessity for an immunization in the event of exposure to infection.

The practical application of the Schick reaction has been especially studied in the laboratories of the New York City Health Department.² The percentage of individuals susceptible to diphtheria is greatest between the ages of one and five years.

SUSCEPTIBILITY OF VARIOUS AGES TO DIPHTHERIA

(As Indicated by Diphtheria-Toxin Skin Test)

Age	Susceptible, Per Cent
Under three months	15
Three to six months	30
Six months to one year	60
One to two years	70
Two to three years	60
Three to five years	40
Five to ten years	30
Ten to twenty years	
Over twenty years	12

The Schick test needs to be made by an experienced observer since there are certain difficulties and sources of error that complicate the practical application. In older children and adults a "pseudo-reaction" may occur due to the protein in the material

¹ Schick: Münch. med. Wchnschr., 1913, 60, p. 2608.

² Park: Monthly Bull., Dept. of Health, New York City, 1919, 9, p. 65.

injected and having nothing to do with the specific toxin. Possible confusion arising from the pseudo-reaction may be avoided by injecting the toxin in the skin of one arm and the same amount of heated or antitoxin-neutralized toxin in the other arm.

Immunity and Susceptibility. 1—The application of the Schick test has brought to light a number of significant factors that bear on the epidemiology of diphtheria. The difference in susceptibility at various ages has already been mentioned; it is also found that there is a larger proportion of susceptible children among the wellto-do classes than among the poor and a larger proportion in rural districts than in cities. The interpretation usually placed upon these remarkable facts is that for a few months after birth (see p. 309) the child contains in its blood immunizing substances derived directly from the body of the mother, but that these substances largely disappear within the first year of life so that nearly all children from one to two years of age are susceptible to diphtheria. The rapid increase in the proportion of immune children that then becomes manifest is attributed to the occurrence of a large number of subclinical infections with the diphtheria bacillus. A recognizable "case" of diphtheria is not produced by these infections, but the imprint of the infection is left upon the child in the shape of immunizing substances in the blood. Children of the well-to-do classes are less exposed to infection and so contain a smaller proportion of immunes. For the same reason country children, having fewer contacts than city children, number a larger proportion of Schickpositive (susceptible) individuals.

It is well known that clinical diphtheria is much less prevalent in the tropics than in cold climates. At the same time immunity seems to be much more common; in the Philippines the proportion of persons giving a Schick-negative reaction may reach as high as 80 to 85 per cent. Apparently in tropical climates immunizing infections occur in larger proportions than they do in most of the cooler regions. In a word, abundant opportunities for diphtheritic infection exist in the tropics, but the environment is unfavorable to the development of clinical diphtheria.

Prophylactic Inoculation.—The question of immunizing the children revealed by the Schick test as susceptible is a matter of great practical importance. Passive immunization with

¹ See Frost, W. H.: Jour. Prev. Med., 1928, 2, p. 325.

diphtheria antitoxin has the disadvantage that it is very transient, and active immunization has come into quite general use.

Three methods of active immunization have been more or less widely employed.

(a) Immunization with a Toxin-Antitoxin Mixture.—This method, based on early observations by Theobald Smith, Behring and others, has been extensively applied in New York and vicinity by Park and his associates. It has also been used successfully in many other localities. It is essential that the toxin and antitoxin be stable and the mixture accurately adjusted. Guinea-pig inoculations must always be made for control. Persons who give a Schick-positive test are rendered Schick-negative by immunization, a condition that persists for at least several years. The protective results are distinctly favorable. At the Durand Hospital, Chicago, 159 nurses who were shown by the Schick test to be susceptible were given toxin-antitoxin (TA) treatment before entering service. Only one of them subsequently contracted diphtheria, whereas in the previous period there were 9 cases among 125 susceptible nurses who had been given diphtheria antitoxin and 2 cases among 8 susceptible nurses not given antitoxin.

The possibilities of the Schick test followed by toxin-antitoxin immunization are shown by the experience of the State Industrial School for Boys at Shirley, Mass. Of the inmates, 257 in number, 148 gave positive Schick reactions. These susceptible individuals were then given three doses of the toxin-antitoxin mixture. Following this procedure every new boy entering the institution was tested for his susceptibility, and if this was positive he was immunized. By practising this method for two years diphtheria was completely eliminated from the school—a result which had not been obtained previously when other methods were employed.

In a number of localities the method of TA immunization has been applied on a large scale to school children, tens of thousands, for example, being treated in New York City. While it is difficult to evaluate fully the effects of mass treatment, there can be little doubt that the remarkable improvement in diphtheria mortality in the large cities of the United States during the past decade² is to be attributed in large part to the TA immunization of school chil-

¹ Lilly, T. E.: Public Health Bull., Dept. of Health, Mass., May, 1918.

² Jour. Amer. Med. Assoc., 1930, 94, p. 1838.

dren. Thus the average rate in New Haven, which was 14.2 for 1915–19 and 14.9 for 1910–14, dropped to 7.1 for 1920–24 and 1.6 for 1925–29. Good results have also been reported in Providence, Rhode Island, in Kansas City, Missouri, and in many other places.

- (b) Immunization with Toxoid (Anatoxin).—Although the accidents with toxin-antitoxin mixtures have been exceedingly rare³—not more than 1 per 75,000 vaccinated, according to Doull—it is plainly advantageous to use what Ehrlich termed a toxoid (p. 155), a toxin so treated that its toxic properties are removed without loss of immunizing power. Ramon⁴ has used for this purpose a toxoid prepared by adding a small quantity of formalin to a toxic filtrate and incubating at 37 C. for about one month; to this he has given the name anatoxin. Guinea-pigs immunized with anatoxin remain immune for at least a year and a half. Anatoxin has been used extensively, especially in France, apparently without accident, and, so far as the evidence is available, with satisfactory prophylactic results. It seems not unlikely that the immunizing but nontoxic anatoxin will supplant the TA mixtures for general use.
- (c) Immunization with Antimicrobic Vaccine.—The use of killed—and lysed—diphtheria bacilli has been suggested principally for the purpose of freeing carriers from diphtheria bacilli, an end not accomplished by the two methods of immunization against toxin just described. A mixture of anatoxin and lysed diphtheria bacilli has been sometimes used. Little is yet known about the efficacy of this method.

¹ Scamman and Pope: Jour. Amer. Med. Assoc., 1927, 88, p. 563.

² Lavan, J. L., and Black, E. C.: Jour. Amer. Med. Assoc., 1927, 88, p. 895.

³ In one instance, for example, a tube of toxin-antitoxin mixture that had been accidentally frozen caused severe constitutional reactions, while other tubes of the same mixture that had not been frozen were used without any ill effect.

⁴ Ramon, G.: Compt. rend. Soc. biol., 1923, 89, p. 2.

CHAPTER 15

BACTERIUM (BACT. COLI; FRIEDLÄNDER'S BACILLUS)

Genus: Bacterium.¹ Gram-negative rods not forming spores. Motility sometimes observed. Abundant capsule formation in some species. Growth occurs readily on ordinary media. Dextrose and lactose fermented with gas production. Nitrates reduced to nitrites. Commonly present in intestinal tract of man and other mammals. Some degree of pathogenicity shown by certain strains. Type: Bact. coli.

Characteristics and Subdivisions of the Group.—Under favorable conditions of growth the prevailing form is a plump, straight rod with rounded ends. Short, oval forms are not uncommon upon certain media, and long filamentous forms are occasionally developed, especially at high temperatures. The cell protoplasm often stains irregularly when carbol-fuchsin is used. The bacilli lose the stain when treated by Gram's method. No spores are known to be formed by any of this group.

One of the distinguishing cultural characteristics of these organisms is their mode of growth upon the surface of gelatin. This feature is well seen in colonies upon a gelatin plate. Upon the surface of the medium an irregular, thin, notched, leaf-like expansion is formed, which is so typically produced by members of the group that the term "colon-like" or "typhoid-like" has been applied to this kind of colony (Fig. 75 on p. 335). This constitutes one of the more constant distinguishing growth characters of the group although B. [lactis] aërogenes, an organism in most respects closely related to the colon bacillus, develops colonies that are projecting, have rounded margins, and depart materially from the type. In no case is gelatin liquefied. All the organisms of this group are able to reduce nitrate to nitrite in the presence of organic matter, and the majority of strains are able also to reduce nitrite with evolution of nitrogen.

The close relationship of Bact, coli to the typhoid and paratyphoid bacilli makes it desirable at this point to introduce some

¹ Three different generic names are used by some writers for the bacteria I have here placed in a single group: *Escherichia* for the "true" Bact. coli (Bergey, 1930, enumerated 29 species!); *Aerobacter* for the closely related Bact. aërogenes type; *Klebsiella* for the bacteria of the Friedländer group.

differential data. These organisms all have a fundamental biological resemblance and while some modern classifications split them into several genera, it is questionable whether at present more than three main types should be recognized. These are: Bacterium (Bact. coli, Bact. aërogenes, Friedländer's bacillus), Salmonella (the paratyphoid-enteritidis group), Eberthella (the typhoid and dysentery bacilli).

- 1. Bact. coli: motility is not pronounced in most cultures; often only a few individuals in the field show 2. Salmonella enteritidis: Acpronounced in most cultively motile; 10 to 14 phoid bacillus is actively motile and possesses 10 to 14 flagella. E. dysenteriae, independent movement; few flagella. Dextrose and lac-tose are fermented with gasproduction, some varieties Milk is curdled, usually within forty-eight hours, at 37°, with abundant acid production. Luxuriant growth on potato, usually with a brown ting. Indol with a brown tinge. Indol is produced by most varieties in large amount. Under most conditions not pathogenic for man or the lower animals. When injected intraperitoneally into rabbits and guinea-pigs a fatal result usually ensues, but considerable variation in virulence is shown by different strains.
 - Salmonella entertidus: Ac-tively motile; 10 to 14 flagella. Dextrose is fer-mented with gas-produc-tion, but no gas or acid is formed from lactose. Milk is never curdled; on prolonged cultivation under aërobic conditions the milk acquires a slight primary acidity, then becomes strongly alkaline, and fi-nally the casein is dis-solved. Indol is not pro-duced. Distinctly pathogenic for many of the lower animals and for man.
- phoid bacillus is actively motile and possesses 10 to 14 flagella. E. dysenteriae, otherwise closely related, is slightly motile or devoid of motility, according to some observers. Dextrose is fermented with production of acid, but gas is never produced; no acid is produced from lactose. Milk is never curdled, although a slight initial acidity develops, followed by a return to the original reaction; and alkaline reaction is produced in wilk by tion is produced in milk by some strains, but not to such an extent as in the preceding group. No indel is formed under ordinary conditions of cultivation. Pathogenic for man, less so for the lower animals.

The most useful differential tests for the individual members of the group are given in the following table:

COMPARATIVE DIFFERENTIAL REACTIONS OF IMPORTANT INTESTINAL BACTERIA¹

	96			ose	lo		0		ose.	1	sec	1	se			Gelatin		tion of Hy- n Sulphide		sell's lium	162
	Dextrose	Lactose	Sucrose	Rhamnose	Mannit	Salicin	Maltose	Xylose	Arabine	Sorbitol	Trehalose	Duleito	Raffinose	Inosito	Indol		Milk	Production of drogen Su	Butt	Slant	Tartrate?
Bacterium coli com- munior	G	G	G	G	G	-	G	G	G	G	G	±	G	-	+	-	ac	-	G	a	
Bacterium coli com- munis	G	G	_	G	G	G	G	±	G	G	G	±	±	-	+	-	ac	_	G	a	
Bacterium aërogenes	G	G	G	G	G	G	G	G	G	G	G	±	G	G	-	-	ac	-	G	a	
Baeterium friedländeri	G	±	G	G	G	G	G	G	G	G	G	G	G	-	±	-	a	-	G	a	
Bacterium cloacae	G	G	G	G	G	G	G	G	G	G	G	±	G	a	±	+	ac	-	G	ak	
Baeterium morgani	G	-	-	-	-	_	±	±	-	-	±	-		=	+	-	k	+	G	k	
Salmonella paratyphi	G	_	_	G	G	_	G	-	G	G	G	G	_	_	_	_		_	G	k	k
Salmonella schottmülleri (B)	G	_	-	G	G	-	G	G	G	G	G	G	-	a	-	-	ak	+	G	k	k
Salmonella aertrycke	G	-	-	G	G	_	G	G	G	G	G	G	-	±	-	-	ak	+	G	ak	a
Salmonella enteritidis.	G	-	-	G	G	=	G	G	G	G	G	G	-	-	-	-	ak	+	G	ak	a
Salmonella cholerae- suis	G	_	_	G	G	_	G	G	_	G	_	±	_	-	_	_	ak	±	G	ak	a
Salmonella abortivo- equinus	G	_	_	G	G	_	G	G	G	G	G	G	-	-	_	_	ak	-	G	ak	a
Salmonella hirschfeldii	G	_	_	G	G	_	G	G	G	G	G	G		-	_	_	ak	+	G	ak	a
Salmonella pullorum	G	-	-	G	G	-	-	-	G	G	-	-	-	-	-		ak	-			
Salmonella gallinarum.	+	-	-	a	a	-	a	a	a		a	a	-		-	-	ak	-			
Eberthella typhi	a	-	-	-	a	-	a	a. -	-	a	a	-	-	-	-	-	ak	+	a	k	
Eberthella dysenteriae (Flexner)		-	a _	a	a	a _	a -	a	a	a	a	a -	a _	a -	±	-	ak	-	a	k	
Eberthella dysenteriae (Shiga)	a	-	-	-	-	-	-	-	-	-	a	-		-	-	-	ak	-	a	k	
Eberthella dysenteriae (Sonne)	a	a	a	a	a	a	a	-	a	-	a	_	a		-	-	ac	-			-
Eberthella alkaligenes.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	k	+	-	k	

¹ G, acid and gas; a, acid only; ac, acid and coagulation; ^a, variable (acid or negative);

+, positive (indol production, gelatin liquefaction or H₂S formation); -, no change; ±, variable (ucid and gas or negative); k, alkaline; ak, acid to alkaline.

² The tartrate reactions (Jordan, E.O., and Harmon, P.H.: Jour. Infect. Dis., 1928, 42, p. 238) have been found useful in differentiating within the Salmonella group and have not been tested on the other types.

BACTERIUM COLI

The organism taken as the type of this class was described under the name of Bacterium coli commune by Escherich in 1886.¹ The original culture was isolated from the dejecta of a breast-fed infant, and cultures from this source were considered by Escherich to be especially typical. Other bacteria which were discovered about the same time and variously designated, such as the "Naples cholera germ," or B. neapolitanus, isolated by Emmerich from the dejecta of patients suffering from Asiatic cholera, should doubtless rank as members of this genus. The typical Bact. coli is widely dis-

Fig. 64.—Bacterium coli; twenty-four-hour agar culture; × 650 (Heim).

tributed in nature and has been isolated from air, from water, and from soil. In only a limited sense, however, is it "ubiquitous." It is found by far most abundantly and constantly in the intestinal tract of man and many of the higher animals. In the colon it occurs in especial abundance, and is so characteristic an inhabitant of this region of the intestine as fully to deserve the name that has been bestowed upon it. From fresh, healthy human feces it is

often isolated in pure culture by the ordinary aërobic methods, although microscopical examination shows that other kinds of microorganisms are also present in the feces. The varieties of Bact. coli that are isolated from the intestinal contents of different species of mammals differ slightly in their biological characters. Moore, 4 for example, has shown that cultures of Bact. coli obtained from the intestines of the dog are more virulent, when injected intraperitoneally into guinea-pigs, than those from the intestine of the rabbit or guinea-pig.

Morphology.—The morphology of the colon bacillus exhibits considerable variation. The ordinary dimensions in stained prep-

¹ Escherich: "Die Darmbacterien des Säuglings," Stuttgart, 1886.

² According to a strict application of the rules of priority, the bacillus now known as Bact. coli should be called B. neapolitanus.

³ Emmerich: Arch. f. Hyg., 1885, 3, p. 291.

⁴ Moore: Amer. Med., 1902, 3, p. 504.

arations from cultures upon nutrient agar or gelatin range from 2 μ to 4 μ in length and from 0.4 μ to 0.7 μ in breadth (Fig. 64). Very short, oval and coccus-like forms are encountered not infrequently, and usually predominate when the bacillus is observed directly in normal animal tissues.

The most typical members of this group possess motility; peritrichal flagella can be demonstrated by appropriate stains (Fig. 65).

Cultural Characteristics.—The more salient biological characters of this subdivision of the colon-typhoid group are noted in tabular form on p. 315. Gelatin is not liquefied; milk is curdled with acid reaction, usually within forty-eight hours, by the cultures that

must be regarded as the more typical or more vigorous. Indol is produced in abundance by all vigorous strains. Dextrose is fermented, with the production of gas. Lactose, like dextrose, is always fermented with gas production by true colon bacilli.

Rogers, Clark, and Davis¹ found by careful measurement of gas production in dextrose media with colon bacilli obtained from milk that

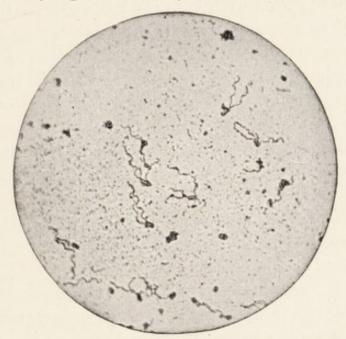


Fig. 65.—Bacterium coli with flagella stained by van Ermengem's method; \times 1000 (Williams).

the most frequent carbon dioxide to hydrogen ratio was approximately 1:1. Cultures giving this ratio, which they term the "low ratio," ferment a smaller number of test substances (adonite, starch, saccharose, raffinose) than those giving a large percentage of CO₂, the "high ratio" group. Colon bacilli from bovine feces yielded only 1 high ratio culture to 149 low ratio cultures. In milk the two groups were about equal in number.

Nearly one-half of the colon bacilli that are isolated from various sources produce gas in saccharose broth; they are not known to

¹ Rogers, Clark, and Davis: Jour. Infect. Dis., 1914, 14, p. 411.

differ in other characters from those unable to ferment saccharose.¹ Attempts have been made by some writers to distinguish varieties of colon bacilli on the basis of other differences in fermentive power, but there is no general agreement as to the permanence and significance of such variation.

Certain bacilli not infrequently isolated from water, soil, and other sources, are regarded by many investigators as weakened or aberrant members of the colon group. They depart from the so-called "type" in several more or less significant respects. A not uncommon divergence consists in the inability to generate any considerable quantity of acid in milk, so that the milk is not curdled promptly (within forty-eight hours at 37°), or in some cases not at all. Ability to produce indol in peptone solution is likewise lacking in some cultures otherwise typical. Certain of these bacilli are obviously attenuated forms of Bact. coli, and may be made to approximate closely to the type by the method of rejuvenation or broth cultivation elsewhere described (p. 60). A few observers would include in the colon group somewhat similar organisms that are unable to produce gas in dextrose broth, although in other respects possessing the biological characters of the type; but it is not generally considered that forms devoid of this fermentive power should be classed as colon bacilli. When the colon bacillus is introduced into the bodies of various animals, it is able to bring about certain morbid changes, as shown by Emmerich in his study of "B. neapolitanus," and confirmed since by many workers. Intraperitoneal injection of 2 cc. of a twenty-four to forty-eight hour old broth culture usually proves fatal to a guinea-pig within three days. Cultures isolated from various tissue lesions and suppurative processes are more virulent for animals than those isolated from the normal intestine. Subcutaneous inoculation is much less likely to result fatally than intraperitoneal. Some writers assert that cultures of Bact. coli isolated from the contents of a diseased intestine are more virulent than those from a normal individual, but investigators are not in accord on this point.

Pathogenicity.—As regards pathogenicity for man, the common occurrence of agonal or post-mortem invasion of the body by the colon bacillus tends to diminish the value of the supposed evidence derived from finding the colon bacillus in the internal organs after

¹ Jordan: Jour. Hyg., 1903, 3, p. 1.

death, and there can be no doubt that the rôle in human pathology assigned to the colon bacillus by some investigators, notably certain French bacteriologists, was for a time greatly exaggerated. Failure to distinguish between the true colon group and the group of meatpoisoning bacilli is doubtless responsible for some of the statements attributing pronounced pathogenic properties to Bact. coli. The frequent ascription of various inflammatory processes, particularly those occurring in the appendix and peritoneum, to the unaided activities of Bact. coli appears to be without sufficient justification. Many of the cases reported rest on the evidence derived from simple aërobic cultivation, where the possible concurrence of anaërobes or other organisms not growing by ordinary methods has not been excluded.

It is well established, however, that under some conditions the colon bacillus is able to pass from the digestive tract into the blood, whence it may invade the gall-bladder and bile-ducts and cause cholangitis and cholecystitis. Convincing evidence on this score has been obtained both from human pathology and from animal experiment. The bacillus is often found in the core of gall-stones. Kramer¹ has made the interesting observation that in cultures the colon bacillus (and the typhoid bacillus) can precipitate cholesterin and other biliary constituents and hence may take an important part in gall-stone formation. Bact. coli is also able to produce lesions of the urinary passages, and the majority of all cases of cystitis are to be laid at the door of this organism. According to some writers, as high as 80 per cent of all cases of urinary tract infection are caused by the colon bacillus. Animal experimentation and the agglutination test support the clinical and pathologic findings in these cases of urinary-tract infection. In many cases infection of the bladder appears to take place by way of the urethra rather than through the kidneys from the blood-stream.2 According to some observers the strains of Bact, coli occurring in infections of the urinary tract are commonly hemolytic. Strains that ferment lactose slowly have also been found in these affections.3 Autogenous vaccines are sometimes of value. In some suppurative processes, as in the infection of wounds, Bact. coli has been recog-

¹ Kramer: Jour. Exper. Med., 1907, 9, p. 319.

² Bond: Brit. Med. Jour., 1907, 2, p. 1639.

³ Dudgeon and Pulvertaft: Jour. Hyg., 1927, 26, p. 285.

nized as the active agent; and while its share in pyogenic processes is not great, its occasional participation is undoubted.

It is still uncertain to what extent the chronic passage of Bact. coli from the intestine through the blood into various organs is responsible for certain forms of chronic disease. In the opinion of some investigators this "subinfection" is very important. The conditions under which such penetration of the intestinal wall can take place are not fully known, although there is ground to believe that injuries produced by the hookworm and other parasitic organisms afford an opportunity for invasion of the blood by Bact. coli. Inflammatory conditions produced by food or wine may likewise favor subinfection. The question of the pathogenicity of Bact. coli in such circumstances needs further study.

The pathogenic properties of the colon bacillus when confined within the human intestine are not pronounced under ordinary conditions of life. Practically all healthy individuals appear to harbor this organism in their intestinal contents. Excessive sugar fermentation by Bact. coli with liberation of irritant acids and gas may possibly be responsible for some cases of diarrhea, but there is no evidence that there is any concomitant increase of ability to invade the tissues among the bacilli that take part in this process. Colon bacilli of human origin are practically devoid of power to dissolve and peptonize native proteids such as casein and egg-albumen. It is therefore only in the presence of putrefactive anaërobes or other bacteria capable of peptonizing proteids that colon bacilli aid in excessive intestinal putrefaction.¹

B. BIFIDUS AND B. ACIDOPHILUS

Morphologically similar to Bact. coli are the facultative anaërobic bacteria designated as B. bifidus (Tissier) and B. acidophilus (Moro). Unlike the colon bacillus, however, both these bacilli are gram-positive. According to a number of observers they are the predominant organisms in the digestive tract of healthy human infants. B. bifidus owes its name to a true division or bifurcation of one or both ends of the cell. It is, however, quite polymorphous, and a number of varieties are recognized by students of the intes-

¹ Herter: "The Common Bacterial Infections of the Digestive Tract," New York, 1907, p. 155.

tinal flora. Pure cultures are somewhat difficult to obtain, as Bact. coli and other associated organisms are likely to overgrow the slow-developing B. bifidus. B. acidophilus is closely related to B. bifidus, but develops readily on a strongly acid medium. The systematic position of these micro-organisms is uncertain, and they are mentioned in connection with the colon bacillus simply for convenience. The generic name Lactobacillus has been used for the group of organisms comprising B. acidophilus, the Bulgarian bacillus, and other bacilli that form lactic acid abundantly from carbohydrates.

BACT. AEROGENES

An organism often found in sour milk, and known as Bact. [lactis] aërogenes, bears many points of resemblance to Bact. coli, and is often found associated with it in the intestine and elsewhere. In general, the fermentive power of Bact. aërogenes is somewhat greater than that of Bact. coli. In dextrose broth it produces much more CO₂ than H, differing in this respect from Bact. coli. Milk is usually curdled more rapidly, and gas is formed from potato starch. Growth in gelatin is more luxuriant; in gelatin tubes a projecting "nail-head" growth is characteristically produced. Indol is not usually produced in peptone solution. Capsule formation occurs in milk cultures.

Bact. aërogenes may be distinguished from Bact. coli by the three following tests: (1) Methyl red test. Use a medium prepared by dissolving 5 grams of Witte's or proteose peptone, 5 grams of dextrose, 5 grams of dipotassium hydrogen phosphate (K₂HPO₄) in 800 cc. of distilled water; heat gently for twenty minutes, filter through paper, cool to 20 C. and dilute to 1000 cc. with distilled water; tube in 10-cc. amounts and autoclave. Grown in this medium for four days at 37 C., Bact. aërogenes gives a negative methyl red reaction (yellow color) when methyl red indicator is added, Bact. coli a positive reaction (orange red color). (2) Voges-Proskauer reaction. The same medium may be used for this test. When 5 cc. of 10 per cent potassium hydroxide solution is added, a deep pink color develops on standing in cultures of Bact. aërogenes. This is due to the formation of acetyl-methyl-carbinol, which is produced by Bact. aërogenes. Bact. coli is

¹ Herter: "The Common Bacterial Infections of the Digestive Tract," pp. 41-45.

"Voges-Proskauer negative." (3) Sodium citrate medium. 1.5 grams Na(NH₄)HPO₄ + 4 H₂O (microcosmic salt), 1 gram KH₂PO₄, 0.2 gram MgSO₄ and 2 grams sodium citrate (2.77 grams sodium citrate, 5½ H₂O), in 1000 cc. of distilled water. Growth in this medium has been found especially useful in distinguishing Bact. aërogenes from Bact. coli, which does not grow in this medium.¹

These three methods of differentiation have been widely used because of the supposed difference in sanitary significance between the Bact. aërogenes and Bact. coli types. The former is more widely distributed in soils and waters not exposed to human pollution and is found on grains and other substances of vegetable origin. On the other hand, the typical Bact. coli, which is methyl-red positive, Voges-Proskauer negative, and fails to grow in sodium citrate solution, is predominantly "of intestinal origin."

Bact. cloacae² resembles Bact. aërogenes, but, unlike all other members of the Bact. coli group, liquefies gelatin. It is usually motile and rarely shows any capsular formation. It is sometimes found abundantly in sewage, although like Bact. aërogenes it is also frequently associated with decomposing vegetable matter. Its characteristics relate it to the Proteus as well as to the Coli group. Subcutaneous, intraperitoneal and intravenous inoculations are highly pathogenic for mice, somewhat less so for rabbits.

THE CAPSULATED BACTERIA

A group of capsulated bacteria closely related to Bact. coli but differing especially in their heavy mucoid growth has been sometimes set apart as a separate genus ("Klebsiella," Bergey), but may be conveniently considered here. Bact. aerogenes, which sometimes shows marked capsule formation, is included in this group by some bacteriologists.

The type species of this group is a bacillus discovered by Friedländer in 1883 in the lungs of patients dying of pneumonia. It is variously known as Friedländer's pneumobacillus, Bact. pneumoniae or Bact. friedländeri. The bacillus known as Bact. mucosum or Bact. mucosum-capsulatum is similar to, if not identical with, Friedländer's bacillus.

¹Koser, S. A.: Jour. Bact., 1924, 9, p. 59.

² Jordan, E. O.: "Investigations on the Purification of Water and Sewage," Spec. Rpt., Mass. St. Bd. Health, 1890.

The members of the encapsulated group are gram-negative, nonmotile, and do not usually produce indol. Dextrose is usually fermented with gas. Great diversity and variation in the fermentation of other carbohydrates are shown, so that most investigators have given up all attempts to subdivide the group on this basis. Serological differentiation was for a long time equally uncertain and unsatisfactory, but the newer knowledge of immunological reactions has served to explain the difficulties met in the application of the agglutination test and has cleared the ground for the establishment of definite subdivisions (see p. 194).

The capsular substance is rich in a polysaccharide, the specific soluble substance that gives the cell its type specificity, while the

body of the cell contains a protein substance that is the antigenic carrier only of the general undifferentiated characteristics of the species. Removal or loss of the capsule leaves only the latter substance which antigenetically gives rise only to the species antibody which reacts with all the capsule-free cells. Classification within the group therefore can be effected only by the use of the specific carbohydrate substance. Julianelle, working on this basis with a series of 30 strains, recognized three sharply defined and

Fig. 66.—Friedländer's pneumobacillus showing the capsules. Blood-agar culture. Fixed with methyl alcohol and stained with carbol gentian violet (Wherry).

specific types and one heterogenous group. The same investigator found that the S strains of Friedländer's bacillus produce the specific soluble substance and are of high virulence, while the R strains have no capsule, no specific soluble substance and are not pathogenic. Anti-S serums agglutinate type specifically, but anti-R serums contain only the species antibody which reacts with any capsule-free organism of the group, irrespective of the type origin.²

Members of this group have been found in infections of the respiratory tract and in a variety of suppurative processes throughout the body. Cases of hemorrhagic septicemia in man, due to

¹ Julianelle, L. A.: Jour. Exper. Med., 1926, 44, p. 113.

² Julianelle, L. A.: Jour. Exper. Med., 1926, 44, pp. 683, 735.

capsulated bacteria, have been reported by Howard¹ and others. Originally found in pneumonia, Bact. friedländeri is now known to cause a severe but rare form of this disease.

Two other bacteria, apparently closely related to the encapsulated group have been considered by some investigators to be connected with specific affections. A bacillus found in a fetid catarrhal condition of the nose known as ozena (Bact. ozenae, Abel)² belongs to the group of capsulated bacilli (Fig. 67), and a similar capsulated organism has been found in a not very common disease of the upper respiratory tract termed rhinoscleroma.

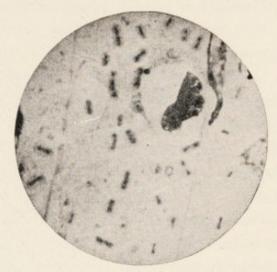


Fig. 67.—Bacterium ozenae in nasal secretion; methylene-azure; Zettnow prep. (Kolle and Wassermann).

The lesions in rhinoscleroma are of the proliferative infectious granuloma type, and a rather characteristic bacillus, Bact. rhinoscleromatis, has been described as occurring quite uniformly in a state of purity deep within the tissue lesions. The "bacillus of rhinoscleroma" is unable, as a rule, to produce gas in any carbohydrate media, and is only feebly pathogenic for the laboratory animals. Most investigators are inclined to regard the capsulated bacilli found in ozena and rhinoscleroma as secondary invaders and without true causal significance.

¹ Howard: Jour. Exper. Med., 1899, 4, p. 149.

² Abel: Ztsch. f. Hyg., 1896, 21, p. 89.

CHAPTER 16

THE SALMONELLA (PARATYPHOID) GROUP

Genus: Salmonella. Gram-negative rods, morphologically similar to Bact. coli, and morphologically and serologically related to the typhoid bacillus; usually motile. Ferment dextrose, usually with gas production, but not lactose or saccharose. Do not liquefy gelatin or clot milk or produce indol. Many species pathogenic for animals. Type species: S. cholerae-suis vel suipestifer.

The first member of this large and variable group to be described was found under the following circumstances: The flesh of a diseased cow was sold for food in a village in Saxony, Germany, in 1888, and was partaken of by a number of persons, 57 of whom became suddenly ill with symptoms of an acute gastro-enteritis. One young man consumed 800 grams of raw meat and died in

about thirty-five hours. From the organs of this fatal case Gärtner¹ isolated a micro-organism which he called B. enteritidis (Fig. 68); the same organism was obtained also from the flesh of the diseased cow. Similar bacteria have been encountered in a case of meat-poisoning in Brussels and in other outbreaks in Germany, England, and the United States. Outbreaks of disease among wild rats and mice and also among laboratory rodents have been found due to this species. The

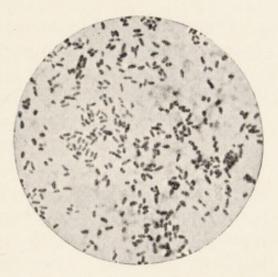


Fig. 68.—Salmonella enteritidis, Gärtner; pure culture; van Ermengem prep. (Kolle and Wassermann).

Danysz virus, sometimes used for exterminating rats and mice, is probably a strain of Gärtner's organism, now known as Salmonella enteritidis.

Some of the more important differential tests within the Salmonella group are given in Table 1.

Gärtner: Korresp. d. allg. ärztl. Vereins. von Thüringen, 1888, 17, p. 233.

TABLE 1						
DIFFERENTIAL	REACTIONS ()F	SALMONELLA	ORGANISMS*		

	Xy- lose	Arab- inose	H ₂ S pro- duction	Ino- sitol	Treha- lose	Tar- trate†	Pathogenicity	
							Man	Animals
S. paratyphi (A)	_	G	_	_	G	Alkali	+	
S. schottmülleri (B)	G	G	+	±	G	Alkali	+	?
S. aertrycke	G	G	+	±	G	Acid	FPİ	+
S. enteritidis	G	G	+	±	G	Acid	FPİ	+
S. cholerae-suis	G	-	_	-	_	Acid	FPİ	+
S. abortivo-equinus	G	G		_	G	Acid	?	+
S. hirschfeldii (C)	G	G	+	G	G		?	+
S. pullorum	-	G	_	G	_		?	+
S. gallinarum		a	_		a		?	+

^{*}G, acid and gas; a, acid only; +, positive; ±, variable (acid and gas, or negative); -, no change or negative (indol production, pathogenicity).

† Jordan, E. O., and Harmon, P. H.: Jour. Infect. Dis., 1928, 42, p. 238.

Paratyphoid bacilli concerned in human infections may be conveniently divided into two groups: (1) Those found in slow continued fevers of the typhoid type, and (2) those causing sudden, and usually transient, stormy gastro-intestinal disturbances.

1. The Paratyphoid Fevers.—Achard and Bensaude¹ were the first to isolate, from human tissues during convalescence from a typhoid-like disease, a bacillus that resembled the typhoid bacillus, but differed from it in important particulars. Later Gwyn² reported a case which apparently presented all the clinical symptoms of typhoid fever, but in which the serum reaction for the typhoid bacillus was lacking. From the blood Gwyn isolated a bacillus closely akin to S. enteritidis, which agglutinated with the patient's serum. Since that time a number of investigators³ in different parts of the world have isolated similar organisms from the blood of patients suffering from a disease that, so far as clinical symptoms are concerned, is substantially identical with typhoid fever. Many cases of "paratyphoid" infection show a tendency to run a rather

^{‡ &}quot;Food poisoning" strains; true septicemic infections also occur, although rarely.

¹ Achard and Bensaude: Soc. méd. des Hôp. de Paris, 1896, 3d S., 13, p. 679.

² Gwyn: Bull. Johns Hopkins Hosp., 1898, 9, p. 54.

³ Schottmüller: Ztschr. f. Hyg., 1901, 36, p. 368; Buxton: Jour. Med. Res., 1902, 8, p. 201.

mild course and are marked by a sudden onset with chills, but are otherwise very similar to infections with the true typhoid bacillus. A certain proportion of the negative results reported with the agglutination test in apparent typhoid fever can be plausibly accounted for on the supposition that a paratyphoid rather than a typhoid bacillus was the exciting cause of the attack. At present the only sure means of distinguishing between typhoid and paratyphoid fevers is by isolation of the specific organism from the blood.

Many scattered cases of paratyphoid fever have been observed, and a number of more or less extensive epidemics have been reported as due to milk and other foods, to contact with human carriers, to sewage-polluted water and similar factors. Indeed, the mode of spread of paratyphoid fever seems practically identical with that of typhoid.

The frequency of the paratyphoid fevers as compared with typhoid varies a good deal in different localities, but most hospital records give a ratio of less than 1:10. In some regions the proportion of paratyphoid to typhoid may be as high as 1:4 or even higher. During the Great War the proportion of paratyphoid to typhoid reached a high point. In the British armies in France during the years 1915–18, the diagnosed paratyphoid fevers outnumbered the typhoid cases in the ratio of about 2:1. In civilian populations in most countries paratyphoid fevers probably amount to from 5 to 10 per cent up to 50 per cent or more of all fully diagnosed enteric cases.

At least three different species have been recognized as the cause of paratyphoid fever: Salmonella paratyphi (formerly known as Type A), S. schottmülleri (formerly known as Type B), and S. hirschfeldii (also known as Type C).

S. paratyphi (Type A) stands apart culturally from most of the other Salmonella species in its inability to ferment xylose (Table 1). It is also serologically distinct. Some outbreaks due to this organism have been traced to sewage-contaminated water supplies, others to food contaminated through the agency of human carriers.¹ The illness due to S. paratyphi is often very mild, 300 cases occurring in a United States infantry regiment without a single death.²

¹ Jordan, E. O.: Jour. Prev. Med., 1929, 3, p. 279.

² Krumwiede, C.: Jour. Infect. Dis., 1917, 21, p. 141.

- S. schottmülleri (Type B) is readily differentiated from S. paratyphi, but has confusing cultural and serological relations with certain Salmonella strains of the food poisoning types (p. 329). As with the preceding species the sources and modes of transmission are similar to those of typhoid fever. In the northern United States and in northern Europe infection with this species seems considerably more frequent than with S. paratyphi.
- S. hirschfeldii (Type C) has been found in enteric fevers in parts of Asia, Africa and southeastern Europe. It has also been reported as an important cause of illness and death in British Guiana. Although the type of disease is similar to the other enteric or intestinal forms, little is known about its epidemiology. This species is closely related biologically to the hog cholera or cholerae-suis strains elsewhere described.
- 2. Paratyphoid Gastro-enteritis.—As already stated, the first member of the paratyphoid group to be found in association with diseases of man (Salmonella enteritidis) occurred in an outbreak of gastro-enteritis. The symptoms in this type of disease are quite different from those in paratyphoid fever and comprise a more or less violent gastro-intestinal disturbance with vomiting, diarrhea, a slight rise in temperature and usually a rapid recovery. The attack may rarely pass into a septicemic infection. The descriptions of indigenous cholera or "cholera nostras" in earlier medical writings suggest this form of illness. Outbreaks of gastro-enteritis have been usually reported in connection with the consumption of particular articles of food and are commonly referred to as "food poisoning." While there are undoubtedly outbreaks of sudden and transient gastro-enteric illness due to other factors, the relative frequency with which paratyphoid bacilli have been found in outbreaks of this sort has caused them to be often designated as "the bacteria of food poisoning." Several distinct kinds of bacteria are known to be concerned.

Salmonella aertrycke has been the organism most commonly isolated in food poisoning outbreaks in the United States² and in Great Britain.³ It closely resembles S. schottmülleri in its cultural

¹ For example, staphylococci (p. 206).

² Jordan, E. O.: Jour. Prev. Med., 1929, 3, p. 279.

³ Savage, W. G., and White, B.: Med. Res. Council, Spec. Rpt. Series, No. 92. London, 1925.

characters (see Table 1), but can be distinguished from the former by its ability to produce acid in tartrate medium. It can also be differentiated by serological tests. Before differential tests were satisfactorily worked out, S. schottmülleri and S. aertrycke were very commonly confused as a single variety, "B. paratyphosus B," and consequently the clinical and epidemiological relations of these types were greatly obscured. S. aertrycke is commonly found in a variety of infections in laboratory and domestic animals and in birds. The type of animal disease may be gastro-enteric, respiratory or suppurative. Infection of food animals with this bacillus seems to be the common source of human food poisoning since numerous outbreaks have been traced to the use of milk or meat from ailing animals. Quite often the meat implicated has been made up into sausages, meat pies, jellies, etc., which are allowed to stand before being eaten so that an opportunity for bacterial multiplication has occurred. Such food may appear perfectly wholesome to inspection. Ordinary house vermin, rats and mice, sometimes suffer from infection with these bacteria and since they can become "carriers" and discharge the bacilli in their excreta the contamination of food with the bacteria may conceivably take place. A number of food poisoning outbreaks have been plausibly attributed to this source.

S. enteritidis has been found frequently in outbreaks of human food poisoning, but less commonly than S. aertrycke. In Great Britain a study of 100 consecutive outbreaks by Savage and White showed that S. enteritidis had been isolated three times, S. aertrycke seventeen times. So far as has been observed there is no clinical difference between the outbreaks of food poisoning due to S. enteritidis and those due to S. aertrycke. S. enteritidis like S. aertrycke is a common cause of disease in domestic animals, and the epidemiological relations of the two organisms to human food poisoning seem almost identical. Calves seem particularly liable to infection with S. enteritidis. Rats and mice may be found naturally infected with either organism or both. S. enteritidis, like S. paratyphi, is monophasic and may be readily separated from other Salmonella strains by serological tests.

S. cholerae-suis (S. suipestifer), probably the first member of the genus to be clearly distinguished (Salmon and Smith, 1885), was originally discovered in swine affected with hog cholera. It

was for a long time regarded as the cause of this disease, but is now generally regarded as playing no more than a subordinate rôle, if any (see p. 643). Although not the cause of hog cholera, it is definitely pathogenic for swine and one variety, the Voldagsen type, may apparently be the cause of extensive outbreaks in young pigs (paratyphoid of shoats). Infection with S. cholerae-suis may concur with true hog cholera; secondary invasion with this organism is also very common. The European "hog cholera bacillus" seems to differ in some respects from the type commonly found in the United States. S. hirschfeldii (Paratyphoid Type C) is very closely related culturally and serologically to S. cholerae-suis, just as S. aertrycke is to S. schottmülleri. A few instances are on record in which accurately identified strains of S. cholerae-suis have been found in outbreaks of food poisoning.

The Salmonella group is a large one and many varieties have been described. The "Derby" and "Dublin" strains are closely related to S. enteritidis; the "Newport" and "Stanley" strains to S. aertrycke. Some of the variants appear to be very rare and have been met with only once or twice.

The distinction between the "food poisoning" strains of paratyphoid bacilli and the strains that cause slow typhoid-like fever does not seem to be a perfectly sharp one. In rare instances acute gastro-enteritis has been traced to S. schottmülleri, and while illness caused by the food poisoning bacilli is ordinarily followed by prompt recovery, fatal cases of generalized infection with bacteremia sometimes occur. In general, however, S. paratyphi, S. schottmülleri and S. hirschfeldii are found in the continued fevers; S. aertrycke, S. enteritidis and, more rarely, S. cholerae-suis in acute gastro-enteritis.

Salmonella Infections of Animals.—Salmonella infection of the horse is quite common. Infectious abortion of mares is caused by a specific organism, S. abortivo-equinus (or S. abortus equi), which has not been found in other animals. So far as known, man is not susceptible to infection with this bacillus. S. aertrycke has also occasionally been reported in horses.

Birds are quite commonly infected with members of the Salmonella group. Epidemics due to S. aertrycke sometimes cause great destruction among canaries and other song birds. The organism long carried in laboratory collections under the name "B. psittacosis" was isolated by Nocard in 1893, and is a typical S. aertrycke. Like the "hog-cholera bacillus" the "bacillus of psittacosis" is probably at most a secondary invader. Psittacosis, again like hog cholera, is primarily due to a filterable virus (see p. 641). Two barnyard diseases of great economic importance actually due to specific Salmonella types are: The bacillary white diarrhea of chicks caused by S. pullorum (Table 1) and fowl typhoid caused by S. gallinarum (or S. sanguinarium, Table 1). S. pullorum may survive in the ovaries of the fowls that recover from infection; diseased chicks may develop from the infected ova and communicate the disease to initially healthy members of the flock. Neither S. pullorum nor S. gallinarum is known to be pathogenic for man.

Some of the earlier investigators thought that paratyphoid bacilli were so widely distributed in nature that it was as futile to try to prevent paratyphoid infection as to fight windmills. It is now known that these bacilli are no more ubiquitous than other pathogenic organisms. Inadequate identification of the bacilli found in soil, water and other situations was at the bottom of much of the confusion. It is well established that the paratyphoid strains concerned in the causation of enteric illness are as definitely human parasites as is the typhoid bacillus and that the food poisoning strains are derived from ailing animals or house vermin or from animal "carriers."

A particularly interesting biologic character of the group is that many of the members appear to be on the verge of parasitism, and, as it were, stand ready to assume a parasitic mode of life when a favorable opportunity presents itself. Many varieties, such as the forms found in the intestines of certain of the higher animals, occupy a position intermediate between saprophytes and parasites, and from this point of view the group is at present in a state of unstable biologic equilibrium and must be looked upon as possessing marked potentialities for evolution in the direction of parasitism.

CHAPTER 17

EBERTHELLA (TYPHOID AND DYSENTERY BACILLI)

Genus: Eberthella.¹ Gram-negative rods; no spores. Dextrose fermented by most species with acid production but no gas; lactose fermented by none. Action on other carbohydrates limited and variable. Gelatin not liquefied. Do not form acetyl-methyl-carbinol. Most species do not produce indol. Type: Eberthella typhi.

THE TYPHOID BACILLUS (E. TYPHI)

The typhoid bacillus was discovered by Eberth in 1880² in the mesenteric glands and the spleen of persons dying from typhoid fever. In 1884 Gaffky³ succeeded in growing Eberth's bacillus upon culture media, and since that time evidence has slowly accumulated that this organism is the cause of typhoid fever.

At first difficulties stood in the way of the general acceptance of this view. Eberth's bacillus proved pathogenic for the lower animals when injected intraperitoneally or intravenously; but it was not possible to produce typhoid fever in animals by feeding them with small numbers of bacilli, the natural mode of infection in man, nor was it possible by any mode of infection to reproduce the gross lesions of human typhoid fever. Strong evidence of causal relationship, on the other hand, was brought out in the discovery of "Pfeiffer's phenomenon" (p. 165) and in the "Gruber-Widal test" or agglutination reaction. Thoroughly characteristic typhoidal lesions are said to have been produced in the chimpanzee by feeding with typhoid bacilli, and pure cultures of the Eberth-Gaffky bacillus swallowed with suicidal intent have given rise to typhoid fever in man (Duflocq and Voisin).

Characteristics of the Typhoid Bacillus.—The typhoid bacillus is a short, plump rod, its dimensions ranging, as a rule, from 1 μ to 3 μ in length and from 0.5 μ to 0.8 μ in breadth (Figs. 69 and 70).

¹ Bergey (1930) has split this genus into three: Eberthella (typhoid bacillus); Shigella (dysentery bacilli) and Alcaligenes ("B. fecalis alkaligenes").

² Eberth: Archiv. f. path. Anat., 1881, 83, p. 486.

Gaffky: Mitt. a. d. k. Gesund., 1884, 2, p. 372.
 Grünbaum: Brit. Med. Jour., 1904, 1, p. 817.

⁵ Duflocq and Voisin: Arch. gén. de méd., 1903, 2, p. 2197.

It is actively motile and possesses more flagella than Bact. coli (Fig. 71). The cell inclusions at one time mistaken for spores by Gaffky

and others were probably either vacuoles or metachromatic granules. As regards growth upon media, it may be said that, as a rule, the typhoid bacillus is able to grow far less luxuriantly than the colon bacillus, and the chemical changes that it is able to effect are much less numerous and profound than those that are brought about by the latter organism. Consequently the cultural characteristics of the typhoid bacillus are distinctly negative as compared with the positive char-

Fig. 69.—Eberthella typhi, twenty-four-hour agar culture; \times 650 (Heim).

acter of other members of the group; in peptone solution no indol is produced; in dextrose broth and agar, acid is produced but no

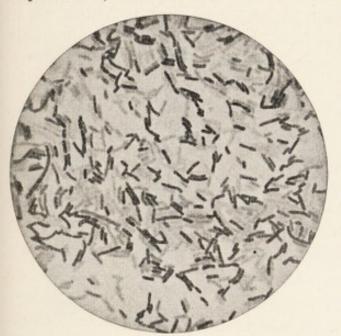


Fig. 70.—Eberthella typhi. Impression preparation from gelatin plate. Fuchsin; × 1000 (Hicks).

gas is formed (Fig. 72); no acid is produced from lactose and saccharose; milk is not curdled, and although some strains produce a small amount of alkali in milk and in litmus whey, the change in reaction is seldom, if ever, as great as that produced by most of the members of the Salmonella group. The colonies upon gelatin are thin, bluish-white expansions with irregularly notched margins, and are, as a rule, not so large or

thick as the colonies of the colon bacillus (Figs. 73 and 74). Typical cultures of the typhoid bacillus grow upon the surface of acid potato, but the growth is thin, moist and colorless, and forms the

so-called "invisible film," which is strikingly unlike the profuse

Fig. 71.—Eberthella typhi, from an agar culture six hours old, showing the flagella stained by Löffler's method; × 1000 (Fränkel and Pfeiffer).

On acid potato typical cultures of the typhoid bacillus and colon bacillus can be readily distinguished. A similar distinction appears upon Heineman's substitute for potato.1

The more salient points of difference between the typhoid bacillus and the other organisms of the group have been already presented in tabular form (p. 315). Since the various bacilli belonging to the colon-typhoid group are in many respects similar, and are frequently found side by side in infected organs, in polluted water, and elsewhere, the application of elaborate and extended comparative tests is requisite for a sure diagnosis. Much ingenuity has been expended in devising new methods for isolation and identifibrownish growth of the typical colon bacillus. On pieces of potato with an alkaline reaction, the growth is more like that of the colon bacillus. No final diagnostic value at present attaches to the growth upon potato, owing to the wide variations both in the reaction of potatoes and in the behavior of different strains of bacilli, but nevertheless the growth on potato is often of determinative importance.

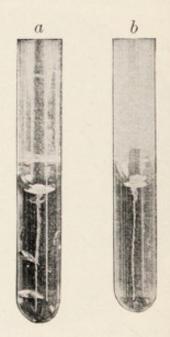


Fig. 72.— a, Bacterium coli in dextrose agar, showing gas bubbles; b, Eberthella typhi.

cation, but it is now generally admitted that any satisfactory ident fication of the typhoid bacillus through a single test is impos-¹ Heineman: Jour. Infect. Dis., 1907, 4, p. 282.

sible, and that only a comprehensive study of a considerable number of biologic attributes enables an identification to be made with a reasonable degree of certainty. The advance of bacteriologic

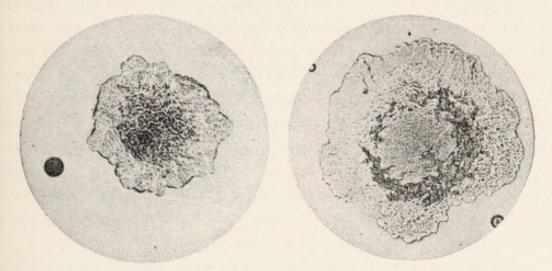


Fig. 73. Fig. 74
Figs. 73 and 74.—Gelatin colonies two days old of Eberthella typhi (Fig. 73) and Bacterium coli (Fig. 74); × 21 (Heim).

investigation in this field has been accompanied by a steady increase in the number of tests that must be applied in order to arrive at a satisfactory identification of the specific organism of typhoid fever.

Methods for Isolating the Typhoid Bacillus.—A large number of methods have been proposed to facilitate the speedy isolation of the typhoid bacillus from polluted water, fecal discharges, and other suspected sources. One of the chief difficulties that these methods seek to overcome is the separation of the typhoid bacillus from the very similar colon bacillus and allied varieties. The problem consequently resolves itself into the discovery of a medium which

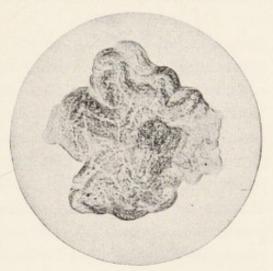


Fig. 75.—E. typhi colony on gelatin, seventy-two hours old; unstained; Neufeld prep. (Kolle and Wassermann).

shall both favor the development of the typhoid bacillus, and also assist in differentiation between E. typhi and Bact. coli. It has proved a relatively simple matter to suppress the common saprophytic bacteria of water, soil, and sewage by the use of high temperatures, antiseptics, and other inhibitive influences to which the members of the colon-typhoid group are especially resistant, but the elimination of the always abundant Bact. coli cannot be so readily accomplished. The colon bacillus is in general more resistant than the typhoid bacillus and is far more richly endowed with the ability to initiate various reduction and fermentation processes.

The active motility of the typhoid bacillus as compared with the sluggishness of nearly all strains of colon bacilli is one of the few positive characteristics of diagnostic value. Several of the methods recommended for the isolation of the typhoid bacillus are based upon this feature. These methods have frequently given excellent results in the hands of the inventor, but have not always proved equally available in the hands of other experimenters.

Several varieties of colored media, some of which contain inhibitory agents, have won favor in recent years. The medium of Drigalski and Conradi¹ has been employed by many investigators. Various modifications of the original medium have been introduced. One formula successfully used by Harris is the following:

Dextrose-free broth	. 2000 cc.
Nutrose	. 10 Gm.
Agar	40 Gm.

Boil, dissolve, neutralize to phenolphthalein, autoclave at 120° for five minutes. Clarify with whites of four eggs and filter. Then add: lactose, 30 grams; 1 per cent litmus solution, 260 cc.; crystal violet, 20 cc. of 0.1 per cent aqueous solution. The crystal violet exercises a marked restraining influence, most of the purely saprophytic bacteria never coming to development. In fourteen to twenty-four hours at 37 C. the colonies of Bact. coli appear red, opaque, and rather large, while the colonies of E. typhi are relatively small and transparent and blue. Not all of the translucent blue colonies are typhoid bacilli, however, and further tests are necessary to establish identification. Plates made with the Drigalski-Conradi medium have facilitated greatly the isolation of typhoid bacilli from excreta.

Endo² has prepared a fuchsin-lactose-agar decolorized by sodium sulfite which makes possible a somewhat similar differentia-

¹ Drigalski and Conradi: Ztschr. f. Hyg., 1902, 39, p. 283.

² Endo: Centralbl. f. Bakt., I, Orig., 1904, 35, p. 109.

tion between Bact. coli and E. typhi, and is now widely used. The formula is as follows:

Three per cent nutrient agar	1000 cc.
Lactose	10 Gm.
Filtered saturated solution of basic fuchsin in 95 per	
cent alcohol	2 cc.
Sodium sulfite solution (10 per cent of the dry powder)	25 to 30 cc.

The Arnold steam-bath is to be used for sterilization. The medium does not keep in good condition for more than about two weeks, consequently the fuchsin and sodium sulfite should not be added to the lactose agar until shortly before the medium is to be used. The reaction is important. The best results are obtained where the medium is slightly (0.1 to 0.2 per cent) acid to phenolphthalein (P_H 7.8–8.2). After eighteen to twenty-four hours' incubation the typhoid colonies appear as clear, colorless, glistening drops on the background of the uncolored medium. The colonies of Bact. coli are red. Equally good results are obtained with the eosin methylene-blue medium as modified by Levine. On this medium the colonies of Bact. coli are a deep purple, while typhoid colonies appear almost colorless.

Suspicious colonies on either medium may be advantageously transferred to tubes of Russell's medium.² This consists of 5 per cent aqueous solution of litmus (3 to 5 per cent) added to plain agar (2 or 3 per cent) with a P_H of about 7.6. One per cent of lactose and ¹/₁₀ of 1 per cent dextrose are finally added to the medium, which is then tubed and sterilized. On this double sugar medium the typhoid bacillus gives a characteristic appearance, the upper part of the tube being uniform in color, while the lower part is a brilliant red. Bact. coli shows abundant gas and acid formation throughout the medium. The paratyphoid bacilli produce a small amount of gas in the lower half of the tube, while the upper part of the medium is, as a rule, unchanged. E. alcaligenes leaves the medium unaltered or slightly bluer.

Especially favorable results have been reported by Havens and his associates³ with a medium containing brilliant green dye. The

¹Levine: Iowa State College of Agriculture and Mechanical Arts, Bull. 62, 1921, p. 117.

² Russell: Jour. Med. Res., 1911, 25, p. 217.

³ Havens and Dehler: Jour. Preventive Med., 1927, 1, p. 359.

high proportion of positive findings secured by their method warrants a full description of the technique. Since the market brands of brilliant green dye lack uniformity a stock solution is made of a 5 per cent solution in N/1 HCl, evaporated to about $\frac{1}{20}$ of its volume over a water bath and diluted with distilled water to make a 5 per cent solution. This stock solution is then added to a series of widemouthed bottles each containing 15 cc. of bile (dehydrated—Difco) in sufficient quantities to make a series of dilutions from 1:100 to 1:500, or higher, with 20 to 25 per cent intervals between the dilutions. The bottles are corked, and sterilized in the autoclave. The most suitable concentration of the dye can then be determined by adding to each bottle of the series about half a gram of feces and a moderate inoculation of typhoid bacilli. A properly prepared medium inhibits the normal fecal bacteria and allows E. typhi and allied forms to multiply. The inoculated bottles are allowed to stand at room temperature for twenty-four hours, and plates are then streaked with a loopful from the surface of each bottle without agitation of the contents. Plating should be repeated on the two succeeding days. The results, as indicated by a high proportion of typhoid colonies and a low proportion of Bact. coli, determine the most advantageous concentration of the dye. A working quantity of the brilliant green bile medium may then be prepared and stored at a low temperature. Preliminary incubation in this medium is followed by plating. Havens regards brilliant green Endo medium as satisfactory. The proper concentration of the brilliant green (usually between 1:250,000 and 1:500,000) must be determined for each lot of agar prepared. Suspected colonies may be transferred to the Russell double sugar tubes, and those cultures that react positively subjected to complete identification tests including agglutination.

Distribution of the Typhoid Bacillus in Nature.—The typhoid bacillus is by preference a parasite. Outside the human body it has been found only in those situations where it could be more or less directly traced to an origin in the discharges of a typhoid patient or convalescent. Many of the earlier reported findings of this organism in water and soil cannot now be given credence, owing to the inadequacy of the identification tests to which the cultures were subjected. Up to the present time relatively few well-authenticated instances have been recorded in which the typhoid bacillus

has been found in water, soil, and similar situations. Laboratory experiments have shown that the typhoid bacillus can survive in sterile water in glass vessels for upward of three months, and for possibly two or three weeks in unsterilized ground or surface water. Other evidence indicates that the bacillus is able to travel in water a distance of at least 140 km. (Gärtner) and to retain its vitality in natural bodies of water for at least four or five days (Jordan, Russell, and Zeit).2 It is possible that water may continue to be the vehicle of infection during a much longer period, but the available data point to a comparatively short duration of life of the specific germ in the water of flowing streams (Jordan, Russell, and Zeit). Under ordinary conditions no multiplication of the typhoid bacillus takes place in water, even when a considerable amount of organic matter is present, but, on the contrary, there is a steady decline in numbers. The history of typhoid epidemics tends to show that sewage pollution is to be feared chiefly when the sewage is fresh, and that the danger of infection diminishes progressively with the lapse of time.

In soil and in the fecal matter of privy vaults the duration of life of the typhoid bacillus is much longer than in water. In some observations on the stored feces of typhoid patients and typhoid carriers, typhoid bacilli have been found alive for as long as fifty-two days.³ The evidence that any genuine multiplication can take place in the soil is not convincing, but it has been proved that the bacillus may be carried by water-currents to a considerable distance from the point where it was first introduced. Infection of wells and small water-courses is thus brought about sometimes by the washing of bacilli out of soil in which they may have lain dormant for many weeks. The persistence of typhoid fever around certain habitations may be plausibly explained on the supposition of an extensive soil contamination. There is no doubt that the practice of using human excrement for manuring vegetable gardens entails a danger no less real because often unrecognized.

The history of typhoid epidemics indicates that air-borne infection is, to say the least, exceedingly rare. Sewer air, so far as known, is never the vehicle by which the specific germ of typhoid fever is conveyed from one place to another.

Gärtner: Klin. Jahrb., 1902, 9, p. 335.

Jordan, Russell, and Zeit: Jour. Infect. Dis., 1904, 1, p. 641.
 Jordan: Jour. Infect. Dis., 1926, 38, p. 306.

Pathogenicity for the Lower Animals.—It has long been known that house pets and domestic animals do not become affected during epidemics of typhoid fever. Attempts to reproduce typical typhoid fever in the animals ordinarily used for laboratory experiments have not met with much success. The early experiments in feeding rabbits, guinea-pigs, and mice with typhoid cultures or infected food were negative.

Later observers have obtained a more positive result. Remlinger,¹ for example, succeeded in producing a genuine infection by feeding vegetables smeared with typhoid bacilli to fasting rabbits and rats. But even in these experiments it must be admitted that there is no precise reproduction of the ordinary clinical picture of human typhoid fever. Grünbaum,² however, has reported interesting results from feeding chimpanzees with typhoid cultures in milk and broth. On killing the animals twelve days after infection characteristic typhoid lesions were found in the ileum, and the typhoid bacillus was recovered from the spleen.

As regards the ordinary domestic animals, the available data point to a rapid destruction of the specific bacilli when they are introduced into the alimentary tract. It has been shown³ that when the bacillus is fed to animals in considerable quantities it does not reappear in the feces; hence the fear that cattle drinking polluted water might become a means of spreading the disease through the multiplication of typhoid bacilli in their intestines, even though the animals themselves might not suffer from the disease, does not seem justified.

Intraperitoneal injection of typhoid bacilli has much the same effect upon animals as injection with colon bacilli (Pfeiffer and Kolle).⁴ When introduced into the peritoneum in considerable quantity ($\frac{1}{50}$ to $\frac{1}{30}$ of a loop of a young, virulent agar culture), many strains of typhoid bacilli evince pathogenic properties. General symptoms of a nonspecific character are set up and result fatally (six to eight hours) when a susceptible animal is inoculated with a considerable number of bacilli of a sufficiently virulent strain. Although a genuine but slight multiplication of bacilli takes place in the peritoneum and attests the occurrence of a true infection,

¹ Remlinger: Ann. de l'Inst. Past., 1897, 11, p. 829.

² Grünbaum: Brit. Med. Jour., 1904, 1, p. 817.

³ Stokes: Maryland Med. Jour., Nov., 1900.

⁴ Pfeiffer and Kolle: Ztschr. f. Hyg., 1896, 21, p. 203.

neither the symptoms nor lesions of this intraperitoneal typhoid bear any close resemblance to the typhoidal processes in man. The substance that is toxic for the animal organism is contained in the bodies of the bacilli, and is not a secretion product, as is shown by experiments with young sterilized cultures.

Pathogenicity for Man.—Typhoid fever (Eng., enteric fever; Ger., Abdominaltyphus or Typhus; Fr., la fièvre typhoide) was for long one of the most widespread and important of all bacterial diseases. In the United States in 1900, there were reported 35,379 deaths from this disease, and this number was doubtless considerably below the true figures. There were probably at that period at least 350,000 cases of typhoid fever in a single year in a population of about 76,000,000, and in the course of a decade perhaps one person in every 20 to 25 contracted typhoid fever. Typhoid infection is caused by taking into the mouth germs discharged in human urine or feces. The conditions that make this possible do not imply a very advanced stage of civilization. While the prevalence of typhoid has greatly diminished in recent years throughout a large part of the world there were nevertheless in 1925 in the United States 8287 deaths from typhoid in a population of approximately 103,000,000. The disease has become relatively very rare in most modern European¹ and American cities.² This improvement is largely due to the chlorination of public water supplies and the pasteurization of milk.

The physiologic accompaniments of typhoid fever are many and variable, so that a diagnosis by clinical methods is often difficult, especially in the early stages of some cases. The common symptoms comprise frontal headache, want of appetite, nose-bleed, the development of rose spots on the abdomen, muscular weakness and diarrhea. There is, as a rule, a general step-like rise of temperature during the first week or ten days. On autopsy the intestinal walls are usually found extensively ulcerated, Peyer's patches and the solitary glands of the intestine being particularly involved and containing the specific bacillus. Perforation of the intestinal wall as a consequence of ulceration is a serious and not infrequent occurrence. The spleen is enlarged and congested, and usually contains large numbers of typhoid bacilli.

¹ Jour. Amer. Med. Assoc., 1925, 85, p. 1890.

² Jour. Amer. Med. Assoc., 1930, 94, p. 1574.

With the microscope the bacilli are usually seen in stained sections of the spleen or liver, where they occur in groups or masses rather sharply focalized, scattered individuals not being often found.

In addition to the more or less constant symptom-complex, recognized as the definite disease of typhoid fever, there are certain other pathologic conditions of the human body with which the typhoid bacillus stands in causal relation. Inflammation of the urinary bladder (cystitis) sometimes occurs. The gall-bladder also is very commonly affected and severe inflammations of this organ are sometimes noted.

Suppurative and inflammatory processes (metastases) may be kindled by the typhoid bacillus in many parts of the body. The osseous system seems especially open to attack, and affections of the periosteum, the bone-marrow and the joints have been traced to infection with E. typhi. Osteomyelitis may develop as long as six or seven years after recovery from typhoid fever. Particular interest attaches to these cases, since they show that the typhoid bacillus can remain for years in contact with the human tissues and presumably be exposed to the action of the protective substances in the blood, without losing its virulence.

Other parts and organs of the body are more rarely invaded by the typhoid bacillus, but under certain conditions almost any organ may be attacked. The presence of the bacillus has been reported in a brain abscess.¹ The cerebral and meningeal symptoms occurring in many cases of typhoid fever are directly connected with the localization of the typhoid bacilli in the meninges, and the bacilli have been obtained in the fluid drawn by lumbar puncture.²

Secondary or mixed infections, especially with the pyogenic cocci and the pneumococcus, are not at all uncommon, and sometimes cause serious complications. Mixed infections with the tubercle bacillus, the diphtheria bacillus, and B. anthracis (Karlinski)³ have been known to occur.

The intestine has long been considered as the main if not the sole portal of entry of the typhoid bacillus, but other possibilities have been suggested by recent investigation. The actual evidence in

McClintock: Amer. Jour. Med. Sci., 1902, 123, p. 595.

² Cole: Johns Hopkins Hosp. Rept., 1904, 12, p. 379.

³ Karlinski: Berl. klin. Wehnschr., 1888, 25, p. 866.

favor of invasion of the body through the tonsils and gastric mucosa is considered by some investigators to be quite as strong as the evidence for intestinal penetration. In any case there is no doubt that typhoid fever is a general and not a localized infection.

Distribution of Bacilli within the Body of the Patient.-In correspondence with the frequency of intestinal symptoms and lesions typhoid bacilli might be expected to be commonly present in the feces and intestinal contents of typhoid patients. Great difficulty, however, is often experienced in isolating them from feces, owing partly, no doubt, to their association with a multitude of colon bacilli and related organisms. Many special methods, some of which have been already described, have been devised for facilitating isolation. The largest number of positive findings are reported as made between the seventh and twenty-first days of the disease, so that in the majority of cases a positive result is not obtained until such a period that the nature of the malady is evident on clinical grounds. Part of the difficulty in isolation is due to the real scarcity of typhoid bacilli in feces. The fact that typhoid bacilli usually occur in small numbers in the stools of typhoid patients and are not infrequently altogether absent has led some investigators to believe that the bacilli do not multiply in the intestinal contents except under unusual conditions. It is believed also that the typhoid bacilli in the intestine come chiefly from the bile.1

In the urine typhoid bacilli are found in about 25 per cent of all cases, sometimes in conjunction with the colon bacilli, but often in pure culture. They may occur in enormous numbers: In some cases observers have found from 100,000,000 to 500,000,000 in a cubic centimeter of urine. Cystitis is occasionally produced as a result of urine infection, but is not a necessary sequel. The urine may remain infectious far into convalescence unless some method of sterilization of the bladder be resorted to. The administration of urotropine by mouth has sometimes proved useful for this purpose, and good results have been obtained by washing out the bladder with a solution of mercuric chloride (Richardson).² Typhoid bacilli may persist in the urine for weeks and months after recovery

¹ For a review of this subject with full bibliography see an article by Pratt, Peabody, and Long: Jour. Amer. Med. Assoc., 1907, 49, p. 846.

² Richardson: Jour. Exper. Med., 1898, 3, p. 349.

(seven years, Young). The danger of dissemination of typhoid fever by means of the infected urine of convalescents is especially great, and appropriate methods for the treatment of the urine as well as the feces of typhoid patients should be uniformly employed in all cases.

The bile frequently becomes infected during an attack of typhoid fever, as shown by post-mortem examinations. In experiments upon rabbits Blachstein² found living typhoid bacilli in the gall-bladder, in one case as long as one hundred and twenty-eight days after intravenous injection and after the other organs had become entirely free. If an inflammatory process is set up in the gall-bladder or duct, typhoid bacilli may continue to be discharged into the intestine with the bile for practically indefinite periods.³ The epidemiologic significance of persistent bile infection is now well appreciated. The so-called "chronic bacillus-carriers" are, in many cases at least, persons with typhoid bacilli in their gall-bladders. In the German campaign against typhoid fever in the Rhine provinces, it was observed that a large proportion of all persons who suffer from gall-stones are discharging typhoid bacilli in their feces.

Typhoid bacilli have been found occasionally in the sputum, although the majority of cases of pneumonia that occur during the course of typhoid fever are apparently caused by the pneumococcus. There is hence a possibility that typhoid fever may be spread by sputum infection, but it seems rather remote.

The rose spots that appear on the abdomen in about 80 per cent of cases of typhoid fever are to be considered as a specific eruption due to the presence of typhoid bacilli. The earlier attempts to isolate the bacilli from the rose spots usually failed because a large amount of blood was drawn and insufficiently diluted with broth, thus allowing opportunity for the action of the germicidal substances in the blood. By proper methods the bacilli can be isolated from the rose spots at an earlier period in the disease than from the feces, and, indeed, earlier than the agglutination reaction makes its appearance.⁴

¹ Young: Johns Hopkins Hosp. Rept., 1900, 8, p. 401.

² Blachstein: Bull. Johns Hopkins Hosp., 1891, 2, p. 96.

³ Seven years, Miller: Bull. Johns Hopkins Hosp., 1898, 9, p. 95.

⁴ Neufeld: Ztschr. f. Hyg., 1899, 30, p. 498.

The examination by suitable methods¹ of the blood of typhoid patients during life has shown that in the great majority of cases bacilli are present in the blood-stream very early in the course of the disease. Diagnosis is often possible by blood examination earlier than by other methods. After death the bacteria are found in practically all the important organs and tissues.

The general distribution of the typhoid bacillus throughout the body has caused some modification in our conception of the pathology of typhoid fever. In the light of all the facts this disease must now be looked upon as a general invasion of the body, particularly of the lymphatic system, rather than as a purely localized infection with its seat in the wall of the alimentary tract. Coleman and Buxton have advanced the view that the lymphatic tissues in the intestinal wall are first invaded, and that thence the bacilli spread to the general lymphatic system and the spleen. After considerable multiplication has occurred (incubation period), the bacilli overflow into the blood and bacteriolysis takes place; the endotoxins which are liberated as the result of the destruction of the bacilli produce the symptoms of typhoid fever.

Epidemiology.—The predilection shown by typhoid fever for certain localities and for certain seasons has given rise to many speculations concerning the influence of atmospheric and telluric conditions, and at one time led to the promulgation by Pettenkofer of a theory of the "ripening" of typhoid germs in the soil. The influence of locality in itself, apart from its possible influence upon the character of the water-supply, does not now seem to be important, although a city with a badly contaminated water-supply, as was for many years Pittsburgh, Pennsylvania, may become the center of a typhoid-ravaged district. This is not because of any peculiarity of soil or climate, but because new foci of infection are continually being kindled and the disease is kept alive by the great abundance of infectious material. Sedgwick has proposed the apt

¹ A considerable quantity of blood must be mixed with a much larger quantity of broth or fluid agar immediately after it is drawn, to prevent the action of the germicidal substances in the blood.

² The finding of the bacillus in the blood has led some writers to speak of typhoid fever as a "modified septicemia." There is no good evidence, however, that the bacilli are multiplying in the blood, which is strongly bactericidal.

³ Coleman and Buxton: Jour. Med. Res., 1909, 21, p. 83.

term *prosodemic* to designate the general diffusion of a disease among the people of a community. The seasonal incidence of the disease in early autumn has not been fully explained.

In recent years many of the most obscure and perplexing facts in the distribution of typhoid fever have had light thrown on them by the discovery of the intimate relation borne by typhoid patients and convalescents to the further spread of the infection. In the epidemiology of this disease the human being that carries the bacillus is the central figure. Typhoid bacilli leave the body, as a rule, in either the feces or the urine, pass into the external world, and find their way more or less circuitously to the alimentary tract of another individual. There proliferation may again begin, and a new focus of infection comes into existence. Outside of the human body, multiplication, if it occurs at all, is insignificant, and for practical purposes may be neglected as a factor in the dissemination of the disease. So far from multiplying freely, typhoid bacilli, when discharged from the body, undergo progressive diminution in numbers; it is probable that the majority perish under ordinary conditions within a few days, although in masses of fecal material some bacilli may remain alive for relatively long periods. The principal channels by which the typhoid bacillus makes its way to fresh victims will be briefly considered.

(a) Water.—There is unfortunately too intimate a connection between sewage-disposal systems and water-supplies. The remarkably rich epidemiologic literature of typhoid fever shows a great preponderance of large epidemics of water-borne infection. Schüder, in a compilation of 638 epidemics of typhoid, found that 71 per cent were attributed to contaminated drinking-water. Manifold instances have been reported where typhoid fever has been definitely traced to the use of water from a polluted well or spring, only those individuals being affected who used the water from the contaminated source. Weichselbaum² records the curious case of a certain house in Stuttgart which was invaded by typhoid fever during an epidemic caused by a town water supply. Only those persons living on the

¹ Schüder: Ztschr. f. Hyg., 1901, 38, p. 343. Schüder's statistics on their face convey a somewhat exaggerated idea of the frequency of water infection, since the larger and more explosive outbreaks are mainly due to water and are the ones ordinarily placed on record, while small epidemics and isolated cases are less likely to be deemed worthy of report.

² Weichselbaum: Weyl's Handbuch d. Hyg., 1900, 9, p. 436.

second and fourth floors of this house were affected; the dwellers on the first and third floors were exempt and were found to use well-water.

A typical outbreak of typhoid fever, traced to a specific pollution of the water-supply, is reported by Thresh.1 A number of typhoid cases occurred in the small town of Halsted in the northwestern part of the county of Essex, England. Investigation showed that at the time of the outbreak there was on the outskirts of the town a public drinking-fountain which was fed by subsoil water, the surplus water from this fountain being piped to the cottage of a workman in the town. Above the source of the spring supplying the fountain, and near the top of a hill, an isolation hospital had been recently erected. A short time after the first patient ill with typhoid fever had been placed in the isolation hospital, the man residing at the cottage supplied with water from the fountain was attacked by typhoid fever. The only likely source of the disease was the drinking-water, since this man had not been in communication with the family in which typhoid fever had developed, and had not been away from the town for over two months. A little later four children developed typhoid fever, and all of these acknowledged that they had drunk more or less frequently at the fountain in passing. About two weeks later another child was attacked with typhoid fever, and although four other children in the house in which this child lived attended the same school, only the one affected had drunk of fountain water. On further inquiry the pipes conveying the water to the fountain were found to cross the roadway and pass underneath the sewer leading from the isolation hospital; in fact, they were almost in contact with the sewer-pipe. The water-pipes were ordinary agricultural drain-pipes, while the sewer-pipes were earthenware with plugged joints, and the latter were so damaged that during heavy rains any leakage from the sewer could enter directly into the water-pipes. Bacterial examination of the water showed not only the presence of Bact. coli, but also of an organism which, by all the tests then applied, resembled very closely the typical typhoid bacillus. There was no other likely source of infection in the neighborhood.

Besides such specific cases it has also happened repeatedly that a city on changing from a polluted to a pure water-supply has

1 Thresh: Lancet, 1897, 1, p. 687.

experienced an immediate reduction in the prevalence of typhoid fever. The city of Albany, New York, had its typhoid death-rate diminished to about one-third as a result of the introduction of a system of sand filtration. In Vienna the abandonment of the polluted Danube River water was followed by a decline in the annual typhoid death-rate from over 100 to about 6. In the city of Paris, which at times has been obliged to eke out its insufficient supply of spring-water with the highly polluted water of the River Seine, it has been observed that a miniature epidemic of typhoid springs up in the district of the city temporarily supplied with the Seine water and follows from one part of the city to another the course of the impure water as it is turned now into the pipes of one section, now into those of another.

The largest explosive outbreaks of typhoid fever in the United States due to water infection have been those at Plymouth, Pennsylvania¹ (1885, 1104 cases, 114 deaths); Ithaca, New York² (1903, 1350 cases, 82 deaths); Butler, Pennsylvania³ (1903, 1346 cases, 111 deaths); and Salem, Ohio (1920, 758 cases, 12 deaths).⁴

When water freezes the great majority of typhoid bacteria that it contains are immediately destroyed. Those that survive die off progressively. According to Park, 5 not one in a thousand lives in ice longer than one month, and at the end of six months all are dead. The use of ice is therefore not so dangerous as the use of the water from which it is formed. Relatively few epidemics of typhoid fever have been proved to be due to the use of ice. Convincing evidence, however, that ice infection does sometimes occur is given in a report of Hutchings and Wheeler, 6 who showed that the use of the ice in the St. Lawrence State Hospital near Ogdensburg, New York, was followed by an epidemic of thirty-nine cases. The ice was cut seven months before its use from the St. Lawrence River

¹ First Ann. Rep. State Bd. of Health and Vital Statistics of Pennsylvania, 1886; see also Sedgwick: "Principles of Sanitary Science and Public Health," pp. 200–206.

² Jour. Amer. Med. Assoc., 1903, 40, pp. 781, 848, 913; Jour. New Eng. Water-Works Assoc., 1904, 18, p. 431.

³ Jour. Amer. Med. Assoc., 1903, 41, p. 1476; Eng. News, 1903, 50, p. 574; Twentieth Ann. Rep. of Penna. State Bd. of Health, 1904.

⁴ Jour. Amer. Med. Assoc., 1920, 75, p. 1498.

⁵ W. H. Park: "The Importance of Ice in the Production of Typhoid Fever," Jour. Amer. Med. Assoc., 1907, 49, p. 731.

⁶ Hutchings and Wheeler: Amer. Jour. Med. Sci., 1903, 126, p. 680.

about three miles below the point where the Ogdensburg sewage entered the river. Living typhoid bacilli were isolated from samples of the melted ice examined after the breaking out of the epidemic.

- (b) Milk.—Some outbreaks of typhoid fever due to contaminated milk perhaps owe their origin to the use of polluted water for rinsing cans, bottles, and other utensils employed in the collection and transportation of the milk, a few drops of water being inadvertently left in the vessel in which the milk is placed. Other outbreaks are caused by direct contamination of the milk through the agency of persons suffering from mild or ambulant cases, or of chronic germcarriers engaged in processes that entail possible contact. The clue to the origin of milk epidemics is usually afforded by the development of cases of the disease along the route of a particular milkman, while at the same time neighboring families served with milk from other sources remain free from infection. Since typhoid bacilli, in contrast to their behavior in water, are able to multiply in milk, the establishment of creameries in which the custom prevails of mingling milks from many different farms increases the peril of diffusion, since milk from a single source may contaminate the entire output of a creamery. Milk epidemics are often mild in type and affect a disproportionally large number of women and children. Butter made from contaminated cream is a possible vehicle for typhoid infection; typhoid bacilli introduced into butter in large numbers can survive for as long as three and one-half months. There is some epidemiologic evidence of infection from butter.
- (c) Other Food Substances.—Besides dairy products, certain other foods that are usually consumed in a raw state may be the means of conveying the disease. Oysters and other shellfish have come into particularly bad repute in this respect within recent years, for the reason that a number of typhoid epidemics in Great Britain and the United States have been found to be due to the eating of oysters grown near sewer outfalls or placed to "fatten" in the polluted waters of estuaries or creeks. Water-cress, lettuce, radishes, or any vegetables or fruits which are liable to come in contact with contaminated water or are sprayed with excrementitious matter are also capable of conveying infection.

¹ For a concise summary of the data upon oyster infection, with full bibliography, see an article by G. W. Fuller: Journal of Franklin Institute, Aug., 1905, p. 81.

- (d) Flies.—Contamination of various articles of food by the wandering house-fly has long been a recognized possibility, but its importance and relative frequency have only recently become known. The severe visitation of typhoid fever in the camps of American soldiers during the Spanish-American War is in large part plausibly attributed to infection of this character.1 Lime was used for disinfecting the latrines in these camps, and flies with whitened feet were subsequently seen walking over the food on the mess-tables. Not only may bacilli stick to the legs and wings of these insects, but if swallowed by a fly they may survive the passage of its alimentary tract. Typhoid bacilli have been isolated from house-flies captured in houses in Chicago in the neighborhood of badly kept privy vaults used by typhoid patients, and it has been shown experimentally that living bacilli may remain in or upon the body of flies for as long as twenty-three days after infection.2 It is possible that other insects, such as cockroaches, may in a similar way act as mechanical carriers of typhoid bacilli to foodsubstances.
- (e) Dust.—Typhoid bacilli may conceivably sometimes be inhaled with contaminated dust, but according to our present knowledge such mode of infection must be extremely rare. Cases formerly attributed to air-carriage may perhaps be more reasonably ascribed to the agency of flies. Food, however, may be contaminated by means of sand or dust storms in typhoid-ridden localities. This seems to have been an important factor in the causation of typhoid fever among the British troops in the South African War.
- (f) Contact.—Under the head of contact may be included those cases of infection due to particularly direct and immediate transfer from the infected to the healthy. The liability of those who nurse typhoid fever patients to contract the disease is well known. Since a drop of urine or a small particle of fecal matter may contain many thousands of typhoid bacilli, it is safest to regard the immediate surroundings of typhoid patients as contaminated, and to institute appropriate precautions. In some cases infection may be communicated while the patient is still in the incubation period of the

¹ Abstract of Report on Origin and Spread of Typhoid Fever in U. S. Military Camps during the Spanish War of 1898. Reed, Vaughan, and Shakespeare, Washington, D. C., 1900. See also Report upon Typhoid Fever in Winnipeg, E. O. Jordan, 1905 (published by the City Council).

² Alice Hamilton: Jour. Amer. Med. Assoc., 1903, 40, p. 576.

disease.¹ Certain individuals have been found to discharge typhoid bacilli in the stools or urine for as long as eight, eleven, or even twenty-five days before the malady has become clinically manifest. Children seem to suffer occasionally from a mild, ambulant, unrecognized form of typhoid (Brückner). In almost countless ways typhoid bacilli may find access to the alimentary tract of attendants or associates. Cases of direct infection are unquestionably more common than is generally recognized. Many cases due to this form of infection follow in the wake of every large epidemic. The existence of "typhoid carriers" accentuates the danger of contact infection.

Typhoid Carriers.—The term "chronic typhoid-carrier" is ordinarily applied to those persons in whose bowel or bladder discharges typhoid bacilli can be detected at least six months after convalescence. The proportion of typhoid patients who become "chronic" or "permanent" carriers is not known owing to the difficulty of examining the secretions repeatedly and with proper methods over a sufficiently long period. Different investigators have reported proportions ranging from 0.5 per cent up to 11.6 per cent.

Bacilli are sometimes discharged by carriers over a period of several years, and probably in some cases throughout the whole of a long life. Typhoid germ-carriers are unquestionably responsible not only for occasional contamination of water and milk, but for direct contact infection of their immediate associates and comrades. Soper² brought to light the remarkable instance of a New York cook, "Typhoid Mary," who was unknowingly the cause of some 26 cases of typhoid fever in seven different families. In the majority of typhoid carriers, as already pointed out, the bacilli seem to have established themselves in the gall-bladder. Attempts to secure an internal disinfection and prevent the continued elimination of bacilli are not, as a rule, successful.

The importance of typhoid carriers in spreading the disease can hardly be overestimated. Intensive study of typhoid fever prevalence in certain districts in Germany has shown that an extraordinary large proportion of cases can be indubitably traced to typhoid carriers. In one typhoid-ridden village in Trier it was

Klinger: Arb. a. d. k. Gesund., 1909, 30, p. 584.
 Soper: Jour. Amer. Med. Assoc., 1907, 48, p. 2019.

found that 26.6 per cent of all cases originated from contact with carriers, while in 15.6 per cent more it was doubtful whether the infection came from carriers or from definite typhoid cases. Mayer¹ found that in a certain district in Bavaria carriers were responsible for 32.3 per cent of the typhoid cases. This author gives a remarkable "genealogical tree" of 196 cases traced to a single case. Thirteen carriers appear among the cases. In the rural districts of Alsace-Lorraine and the Palatinate measures directed against the spread of the disease by contact and carriers were successful in five years in reducing the annual number of cases from 3487 to 1648. A comprehensive summary of the typhoid-carrier question has been given by Ledingham and Arkwright.²

The proportion of typhoid carriers in the general population is not definitely known owing to the technical difficulties already mentioned. It is probably quite different in different localities and doubtless depends largely upon the prevalence of current and past typhoid infection. Havens and Dehler, using especially effective methods, found among 1076 dairy workers in Alabama 39 typhoid carriers, 13 carriers of S. paratyphi and 3 of S. schottmülleri. This makes a total of about 5 per cent of positive results, a considerably higher proportion than that obtained in other localities (for instance, Washington, D. C.) by less searching methods.

Control of carriers on the basis of bacterial tests is difficult because in some cases the excretion of typhoid bacilli is intermittent. Kayser records one case where the primary attack occurred in July, 1904. Two examinations made in August, 1904, and one in October, 1905, were negative; but in December, 1905, typhoid bacilli were found in the dejecta. Intermittent carriers have been reported by a number of other observers, and the problem of their detection and supervision is especially serious. A majority of typhoid carriers, but not all, give the Widal reaction, and in most cases the opsonic index is abnormally high.

Immunity.—An attack of typhoid fever confers a certain degree of immunity, although instances of two or even more attacks in

¹ G. Mayer: Centralbl. f. Bakt., Orig., 1910, 53, p. 234.

² Ledingham and Arkwright: "The Carrier Problem in Infectious Diseases," London, 1912; see also Nichols: "Carriers in Infectious Diseases," Baltimore, 1922, and a valuable monograph by Garbat (Monograph 16, 1922, Rockefeller Inst. for Med. Res.).

³ Havens and Dehler: Jour. Preventive Med., 1927, 1, p. 359.

the same individual are not unknown. The cutaneous reaction is probably of value in measuring immunity against typhoid fever. If a preparation of a killed culture of the typhoid bacillus is rubbed on the abraded skin, a specific reaction occurs in most persons with a definite history of typhoid fever and in those recently vaccinated against the disease. It seems likely also that certain mild forms of intestinal disturbance, which are in reality light but unrecognized cases of typhoid infection, afford a certain protection against the severer forms of the disease. The relative freedom from typhoid shown by the permanent residents of a city having an impure water-supply, as compared with the susceptibility of the stranger within the gates, may perhaps be explained in this way.

Experiments with animals have shown that it is possible to obtain a high degree of immunity in rabbits and guinea-pigs against intraperitoneal inoculation. This can be brought about by gradually increasing the amount of intraperitoneal bacterial injection, the animals after appropriate treatment being able to withstand amounts many times larger than the dose that would have been fatal at first. The immunity is associated with the acquisition by the body-fluids of a specific germicidal power. When typhoid bacilli are introduced into the peritoneum of an immunized animal, they are speedily dissolved and disintegrated by the peritoneal fluid in a manner not observed in a normal animal (Pfeiffer's phenomenon). Pfeiffer and Kolle² also showed that the simultaneous injection of immune serum and typhoid bacilli into a normal animal led to a similar destruction of the bacilli, while control animals that were inoculated with bacilli alone died. The development of this germicidal property in the body-fluids is due to antigenic substances contained in the bacterial cells. The injection of filtered broth cultures does not impart any bacteriolytic power to the serum.

The nature of the germicidal action and the mechanism concerned in it are described elsewhere (see p. 163). The bactericidal power of immune serum may be observed in test-tube experiments as well as in animal inoculation. To a mixture of normal serum and typhoid bacilli, graduated quantities of the serum of an immunized animal or typhoid convalescent are added and allowed to stand for a

¹ Gay and Force: Univ. of California Publication in Pathology, 1913, 2, p. 127.

² Pfeiffer and Kolle: Ztschr. f. Hyg., 1896, 21, p. 203.

definite period. Plates are then made to determine the dilution at which bactericidal action is manifest. There is no constant relat on between the bactericidal power of a serum in a test-tube and that of the same serum in the animal body. At the height of the disease when the serum shows its highest potency in the test-tube experiment, the same serum mixed with bacilli and introduced into the animal body often exerts little or no germicidal effect.

Agglutination.—Besides the germicidal substance an agglutinating substance makes its appearance within the body of inoculated animals. In other words, the blood-serum of animals which have been injected with typhoid bacilli possesses the property of clumping or agglutinating suspensions of typhoid bacilli (Fig. 76). This

Fig. 76.—Application of the serum-reaction to typhoid bacilli. A shows the distribution of the bacilli before the reaction. B shows clumping of the motionless bacilli after mixture with the serum of a typhoid fever patient.

reaction may be observed either with the microscope or, under suitable conditions, in a small test-tube with the naked eye, since the clumps of agglutinated bacteria form visible flocculent particles which eventually settle to the bottom of the tube as a fine sediment.

The agglutination phenomenon (Gruber-Widal reaction) has been utilized extensively for the purpose of diagnosing typhoid fever in man. The fact that the serum of typhoid patients in rather high dilutions causes agglutination in the vast majority of instances (over 90 per cent in the fourth week of the disease), while the serum from normal individuals and from those suffering from other diseases than typhoid fever does not possess the same power, has been taken advantage of, to facilitate the recognition of clinically obscure cases of the disease. In making the test the serum should

be mixed with an authentic culture of typhoid bacilli in a dilution of not less than 1:50, since serum from normal individuals may produce agglutination in lower dilutions. Although the microscopic reaction is more delicate, that is to say it can be observed in lower dilutions, the macroscopic test is less open to error even for experienced observers. Beginning agglutination may often be seen in two hours, and may be confirmed by the twenty-four hour appearance. As has been already pointed out, some cases clinically resembling typhoid fever may be caused, not by the true typhoid organism, but by some member of the paratyphoid group, and in such cases agglutinative power for the typhoid bacillus may be lacking. The ability of the blood-serum to agglutinate is usually manifested as early as the fifth day, but sometimes does not appear until much later. The agglutinative power does not vanish soon after the blood is drawn, as does the germicidal property, but may persist with slightly diminished intensity for many months. Dried blood and blood-serum retain the capacity for agglutination, and the use of dried blood-serum in municipal laboratory work is very general (Wyatt Johnston).

Many difficulties and sources of error beset the application of the agglutination test in practice. The agglutination reaction probably has neither more nor less diagnostic value than any of the cardinal clinical symptoms of typhoid fever. Its presence or absence does not by itself permit a positive or negative diagnosis. Some strains of genuine typhoid bacilli are inagglutinable, and, in general, freshly isolated cultures are less sensitive than those that have been under cultivation for some time. If broth cultures are used, an inexperienced observer might be deceived by the spontaneous clumping that sometimes occurs in this medium; a suspension in physiologic salt solution of bacilli from an eighteen-hour-old agar culture is preferable. A series of mistaken conclusions is made possible by the occurrence of group-agglutinins (p. 187). The serum of persons infected with paratyphoid bacilli may agglutinate the typhoid bacillus, and the same is true of infections with members of the genus Proteus (p. 496). It may sometimes be desirable to make parallel tests with the typhoid bacillus and paratyphoid bacilli although at present the treatment of a case could hardly be affected by the outcome. Isolation of the specific organism-whether typhoid or paratyphoid bacillus—is a much surer means of making a correct diagnosis than is dependence on any sort of agglutination test.

The agglutination test is utilized not only for the purpose of distinguishing typhoid fever from other diseases, but also for differentiating the true typhoid bacillus from closely related organisms of the same group. The blood-serum from a typhoid patient may be used for this test, and serum may also be used from an animal (rabbit, goat) which has been inoculated with a typhoid culture of undoubted genuineness. To avoid sources of error due to the generation of a certain degree of agglutinative power for other organisms of the group, dilutions as high as 1:1000 must be used. The use of the agglutination test for identification is open to the practical limitation that the test may exclude organisms of great biological similarity to the typhoid bacillus and possibly of similar pathogenic, if not agglutinin-producing, power.

Serum Therapy and Protective Vaccination.—Although Chantemesse, of Paris, and some others have reported favorable results from treating typhoid patients with a specific serum, the majority of observers have found that the use of serum from animals inoculated with typhoid bacilli or their products has little or no effect upon the course of the disease. On the other hand, protective vaccination against typhoid fever has been markedly successful. The vaccines prepared by different experimenters are not precisely alike, but all contain bacterial cells or substances derived from them.

The method of antityphoid vaccination has thus far found its widest application in the protection of soldiers in the field. The conditions of camp life favor the spread of the disease to an astonishing extent. In the Franco-Prussian War (1870–71) 60 per cent of the total German mortality was due to typhoid fever, there being 73,396 cases and 8789 deaths. In the Boer War (1899) the British Army had 31,000 cases and 5877 deaths. In the Spanish-American War (1898) the army of the United States, consisting of 107,973 men, had 20,738 cases and 1580 deaths, or nearly one case to every five men.

Radically different is the history of typhoid fever in a vaccinated army corps. In the British Army in India in 1910 the rate of typhoid attack was about one-sixth as great among the inoculated as among the uninoculated. Similar results were obtained in the

¹ Chantemesse: Gaz. des Hôpitaux, 1898, 71, p. 397.

German troops in South Africa in 1904-07, although the difference was not quite so great.

Especially brilliant results have been obtained in our own army by the method of vaccination introduced by Russell and his co-workers. During the summer maneuvers of 1911 an army division of about 12,800 men occupied a camp at San Antonio, Texas, for four months. All of the men were inoculated, and only a single case1 of typhoid fever developed in the entire command during this period. There was no doubt that typhoid fever existed in this neighborhood, since at least 19 deaths from this disease occurred in the city of San Antonio (population 96,614) during the four months covered by this report. In the first 60,000 inoculated men in the United States Government service only 12 cases of typhoid—1 fatal—occurred in the space of about three years. This was about one-fifteenth of the case incidence in a city like Boston, where water-supply and general sanitary conditions were good and typhoid fever not common, but where the population was unvaccinated.

In the United States Army, in which typhoid vaccination has been compulsory since September, 1911, the disease has practically disappeared. In 1909 there were 173 cases and 16 deaths in a force of about 69,000 men; in 1912, only 27 cases and 4 deaths in about 83,000. From August, 1912, to August, 1913, there were only 2 cases. Many of these troops were engaged in maneuvers in Texas (1911–12) and were associated more or less intimately with the civil population, among whom typhoid cases were occurring in considerable numbers. Owing to the conditions under which soldiers must live in the field or on the march, the likelihood of typhoid fever is great. In 1898 at the time of the Spanish-American War, 4422 cases of typhoid and 248 deaths occurred in a division of 10,759 men; among 12,801 vaccinated men under very similar conditions at San Antonio, Texas, in 1911, only one case developed.

Data compiled from the incidence of typhoid in the American Army during the World War show that there was one case for every 3756 troops and one death for every 25,641 troops who served between April 6, 1917, and November 11, 1918, while during the Spanish-American War there was one case among every five and one death

¹ An individual who had not completed the necessary inoculation. The attack was a mild one. Kean: Jour. Amer. Med. Assoc., 1911, 57, p. 713.

among every 71 troops. From September 1, 1917, to May 2, 1919, there were 213 deaths from typhoid in the American forces among an average strength of 2,121,369 men. Had the Civil War rate prevailed among this number, the number of deaths would have been 51,133, and had the Spanish-American War rate prevailed the number would have been 68,164.

The method used by Russell¹ consists in giving three injections of the vaccine at intervals of ten days. The first injection comprises 500,000,000 killed typhoid bacilli suspended in salt solution, the second and third, 1,000,000,000 bacilli each.

The vaccine is prepared from an old culture of little or no virulence, but which yields an abundant growth on agar. After eighteen hours' incubation on a broad agar surface the culture is washed off with sterile salt solution and is killed by heating at 55 to 56 C. for one hour. The suspension is standardized by counting the number of cells it contains and then diluting so that 1 cc. contains 1,000,000,000 bacilli. A preservative (0.25 per cent tricresol) is added, and the purity of the suspension thoroughly tested by cultivation and animal inoculation. As a rule, the reaction following inoculation is not severe, although occasionally fever, chills, nausea, and some nervous symptoms are observed. No really serious or permanent injuries have been noted.

The use of a protective inoculation is especially desirable where definite danger of typhoid infection exists, as among hospital nurses and attendants, and especially among soldiers living under the unhygienic conditions of war-time.

THE DYSENTERY BACILLI

The name dysentery is primarily a clinical term, and is applied to several diseases or pathologic conditions of the alimentary tract that exhibit similar symptoms, such as intestinal pain and blood in the stools; as a matter of fact, different kinds of dysentery exist, due to different causes. One variety of dysentery, the so-called "amebic dysentery," is caused by a protozoön, and is considered elsewhere in this book (p. 573). A dysentery-like infection may sometimes be produced by members of the paratyphoid-enteritidis group. Another bacterial form of dysentery is also known, caused by certain bacilli closely related to the typhoid bacillus.

¹ Russell: Bost. Med. and Surg. Jour., 1911, 164, p. 1; Amer. Jour. Pub. Health, 1911, 1, p. 473; Jour. Amer. Med. Assoc., 1919, 73, p. 1863.

In 1898 the Japanese bacteriologist, Shiga, while studying a severe epidemic of dysentery in Japan, could find no amebas in the stools. He did, however, succeed in isolating a bacterium much

like the typhoid bacillus. This micro-organism possessed certain definite characters, was found in the stools in all cases of epidemic dysentery, and was agglutinated by the serum of dysenteric patients in high dilutions. Shiga's bacillus is today generally regarded as the specific microbe of one of the acute epidemic forms of dysentery.

Characteristics of the Dysentery Bacilli.—Microscopically and in its staining reactions E. dysenteriae is very much like E. typhi

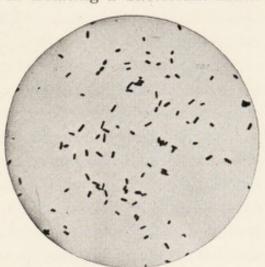


Fig. 77.—Eberthella dysenteriae from agar culture. Fuchsin stain. Zettnow prep. (Kolle and Wassermann).

(Fig. 77). Most observers are agreed that the dysentery bacilli are nonmotile and that no flagella can be found. A few investi-

Fig. 78.—Eberthella dysenteriae. Colony on gelatin, four days; × 20 (Doerr).

gators, however, have reported the presence of motility. The growth on gelatin and agar and on potato resembles that of E. typhi (Fig. 78), as does the reaction in milk.² Neutral red agar is not decolorized. Acid is produced in dextrose broth. The agglutination reaction affords a sure means of differentiation.

The methods used for the isolation of the dysentery bacilli are similar to those used for the typhoid bacillus. The sus-

pected food material should be examined in as fresh a condition as feasible, if possible within twenty-four hours. Failure to cultivate

¹ Shiga: Centralbl. f. Bakt., 1898, 23, p. 599.

² Slight initial acidity followed by return to neutral.

dysentery bacilli after forty-eight hours is without significance. A loop of bloody mucus from the stools is streaked over a plate of Endo medium or eosin methylene-blue and then immediately over a second plate. The typhoid-like colonies may then be fished to tubes of Russell's double sugar medium.

Varieties.—Two groups of dysentery bacilli (Shiga and Flexner types) have long been distinguished and a third (Sonne type) is coming into recognition.¹

The Shiga type is homogeneous serologically and in its cultural characteristics; it does not ferment mannitol and does not produce indol. The Flexner type is characteristically mannitol-fermenting and consists of four or more fairly distinct serological groups. Some bacilli of the Flexner type form indol. The fermentive power of the Flexner strain is definitely higher than that of the Shiga strain, a number of other carbohydrates besides mannitol being fermented (see page 315). These fermentations, however, are more or less irregular and cannot be used satisfactorily for subdivision within the Flexner group.

The *Sonne* type of dysentery bacilli is mannitol-fermenting and does not produce indol, but unlike the other types ferments lactose, although slowly. It is also serologically independent.²

Distribution.—Both the Shiga and the Flexner types have been found in outbreaks and in sporadic cases in all parts of the world. There appear to be no environmental conditions that favor the prevalence of a particular variety, it being purely a matter of accident as to which shall find opportunities for infection. In some localities, particularly in extensive epidemics due to a factor like polluted water, both types may be found side by side in the same individual. In the United States in sporadic cases of dysentery in children the Flexner type has been found more commonly.³

Pathogenicity.—As already stated, the serum of patients suffering from acute dysentery agglutinates one or another type of

¹ A fourth type, Schmitz's bacillus or "B. ambiguum," is considered by some writers as an occasional cause of dysentery. (Schmitz, K.: Ztschr. f. Hyg., 1917, 84, p. 449). It resembles the Shiga bacillus in not fermenting mannitol, but does produce indol and differs in agglutinative reaction from the Shiga strain.

² Koser, S. A., Reiter, D. O., Bortniker, E., and Swingle, E. A.: Jour. Prev. Med., 1930, 4, p. 490.

³ Davison, W. C.: Bull. Johns Hopkins Hosp., 1920, 31, p. 225; Medicine, 1922, 1, p. 389.

dysentery bacillus in high dilutions. This fact and the constant occurrence of the bacillus in the stools afford powerful arguments for a causal connection in spite of the fact that the dysentery bacilli cannot, like the typhoid bacillus, be cultivated from the blood of patients. Laboratory infection with a pure culture of the Flexner bacillus has occurred.1 Apart from the inflammatory, sometimes ulcerative or diphtheritic lesions in the intestine (ulcerative colitis), the anatomic picture of dysentery presents little that is characteristic. The liver abscesses that are found, as a rule, in amebic dysentery are absent in the bacterial disease, one series having been reported of 1130 cases of bacillary dysentery without a single abscess. E. dysenteriae is sometimes found in immense numbers in the dejecta, often in almost pure culture. It is found at autopsy in the mesenteric glands, but, as a rule, not in the spleen or other internal organs, nor does it commonly occur in the blood or urine. Bacterial dysentery is therefore not a septicemia but an infection localized in the alimentary tract, in this respect resembling Asiatic cholera rather than typhoid fever.

The spread of the disease is due to the more or less direct transfer of the specific bacillus from infected intestinal discharges to the alimentary tract of a fresh individual. Polluted water has been shown to be responsible for some epidemics. Dysentery, like typhoid fever, is a terrible scourge of armies. In general, the modes of dissemination in this disease are similar to those in typhoid fever, flies and finger contamination playing an especially important part. Direct contact is responsible for some cases. The danger from mild and unrecognized cases, and from convalescent germ-carriers, seems especially worthy of consideration.

At the present time in temperate climates dysentery flourishes especially in insane asylums and other large institutions, where lack of personal hygiene among the inmates favors the transfer of infection. It may also be caused by food contamination just as in the case of typhoid. In 1929 nearly one-fourth (946) of the inmates of the California State Prison suffered from an epidemic of dysentery due to the Flexner bacillus.² This outbreak was

¹ Lippincott: Jour. Am. Med. Assoc., 1925, 85, p. 901.

² Stanley, L. L., Garfinkle, F. E., and Goddard, W. P.: Jour. Amer. Med. Assoc., 1930, 94, p. 857.

apparently due to contamination of bread cut for the mess table by a carrier.

Duval and Bassett¹ isolated E. dysenteriae from the feces of 42 out of 53 cases of summer diarrhea in infants. Subsequent investigators also found the dysentery bacillus in certain cases of infantile intestinal disturbances, especially those in which there was mucus in the stools. Those cases with which E. dysenteriae is associated do not appear to differ clinically from those in which it is not found. It is uncertain just what proportion of cases of infantile diarrhea are caused by the dysentery bacillus.²

Feeding animals with E. dysenteriae is not generally successful in reproducing the symptoms or lesions of human dysentery, although rabbits and guinea-pigs are highly sensitive to intravenous and intraperitoneal inoculation with living or dead bacilli, and die with symptoms of acute poisoning. Shiga observed intestinal lesions in experimental animals similar to those of human dysentery.

Flexner and Sweet³ have shown that the dysentery toxin is excreted in rabbits, and probably in man, by the large intestine. The selective action of the toxin upon the tissues rather than any local action of the bacilli themselves thus appears to be responsible for the inflammation and other local changes. When the toxin is introduced directly into the gut, no symptoms are produced, indicating that the toxin primarily affects the deeper cells rather than the surface of the mucous membrane.

Toxins, Serum Therapy, Etc.—It is now generally recognized that a soluble exotoxin is produced by strains of the Shiga, but not by those of the Flexner, type. According to various investigators, both extracellular and intracellular poisons are obtainable. The death of a rabbit has been produced in twenty-four hours by intravenous injection of 0.02 cc. of the filtrate of a seven-day broth culture, and extracts of agar cultures also possess toxic qualities. Olitsky and Kligler⁴ have separated an exotoxin (neurotoxin) and endotoxin (enterotoxin) from cultures of the Shiga dysentery bacillus. Flexner,³ upon injecting rabbits intravenously with the products of

Duval and Bassett: Amer. Med., 1902, 4, p. 417.

² See Studies from the Rockefeller Institute for Medical Research, 1904, 2.

³ Flexner and Sweet: Jour. Exper. Med., 1906, 8, p. 514.

⁴ Olitsky and Kligler: Jour. Exper. Med., 1920, 31, p. 19; 1923, 37, p. 767.

autolytic digestion of dysentery bacilli, observed the production of intestinal lesions analogous to those of human dysentery. In such a case the lesions would seem to be due to the elimination of the poison from the blood into the intestine and to the consequent contact of the poison with the intestinal tissues. Dopter has shown that the products of the Shiga bacillus may cause paralysis in rabbits, the paralysis being referable to acute lesions in the ponto-bulbar region or gray substance of the spinal cord, and Herter has suggested that some cases of infantile spinal paralysis may be due to dysenteric infection.

Besredka has advanced the view that the immunity conferred by an attack of dysentery is due primarily to the local immunization of the intestinal mucosa rather than to the development of antibodies in the blood. There is some experimental evidence in its favor. The oral administration of bile-sensitized bacterial vaccine for protecting against dysentery is based on this hypothesis and some observers have reported considerable success. The theory of local immunization has been extended to other infections.

Shiga and some other investigators have treated dysentery patients with the serum of horses injected with dysentery bacilli and their products, and have obtained favorable results, the mortality being reduced about one-half in the cases reported. A polyvalent serum, that is, one prepared by the use of several types of dysentery bacilli, is recommended by Shiga. The results are said to be more successful in adults than in children. Theoretically and in its practical application, serum therapy in dysentery needs further study before it is likely to come into general use.

EBERTHELLA ALCALIGENES

Eberthella alcaligenes or B. fecalis alcaligenes³ closely resembles the typhoid bacillus morphologically and culturally, even to its growth on Endo, Conradi-Drigalski, and malachite-green media. It has been found in feces and in water. The points of difference between it and the typhoid bacillus are: possession of one or more polar, instead of many peritrichal, flagella; more luxuriant growth on potato with a brown coloration; and distinct alkali production in mannitol media and in milk or litmus whey. It fails to produce

Dopter: Ann. de l'Inst. Past., 1905, 19, p. 353.

² Herter: "Bacterial Infections of the Digestive Tract," New York, 1907.

³ Petruschky: Centralbl. f. Bakt., 1896, 19, p. 187.

acid from dextrose and other carbohydrates. The view has been advanced that E. alcaligenes is merely a form of E. fluorescens nonliquefaciens, which has completely lost the function of pigmentation; but Klimenko, who studied a series of cultures from different sources, found the two organisms to be distinct both culturally and in their reaction to the agglutination test. The cultures of his series were not pathogenic, or only slightly so, for guinea-pigs, rats, and mice. In rare instances this organism manifests pathogenic power for man and has been isolated from the blood in mild typhoid-like infections, and from gallstones.

This bacillus has certain affinities with the Brucella group (Chap. 18), but is even more closely related to the typhoid bacillus.

¹ Klimenko: Centralbl. f. Bakt., I, Orig., 1907, 43, p. 755.

³ Daniel, W. W., and Greene, E. H.: So. Med. Jour., 1929, 22, p. 977.

² Shearman, C. H., and Moorhead, T. G.: Brit. Med. Jour., 1916, II, p. 893; Wyatt, W. S.: Amer. Jour. Med. Sci., 1927, 174, p. 181.

CHAPTER 18

BRUCELLA (MALTA FEVER, UNDULANT FEVER)

Genus: Brucella. Small, gram-negative short bacilli or cocco-bacilli. Usually nonmotile. Growth on ordinary media occurs sparsely, if at all. Carbohydrates not fermented. An alkaline reaction is produced in milk and other culture media. Brownish growth on potato. Strict parasites producing various infections in man and the higher animals. Type: Brucella melitensis.

BRUCELLA MELITENSIS

In 1887 Bruce,² while investigating a disease known as Malta fever, Mediterranean fever, or undulant fever, discovered a microorganism in the spleen which has since been proved to stand in causal relation to the affection. Undulant fever is particularly common on the island of Malta, but occurs also on other islands and on the shores of the Mediterranean, and has been occasionally reported from India, South Africa, the Philippines, and the West Indies. Several cases have come under observation in the United States, for the most part among persons recently returned from the Philippines. The disease has occurred in several localities in Texas.

Brucella melitensis is a very small coccus-like bacillus, about $0.5~\mu$ or less in diameter, usually occurring singly or in pairs, though in cultures short chains are found (Fig. 79). A true bacillary form is present in cultures grown at 20 C. It loses the stain by Gram's method, does not ferment dextrose, and renders milk slowly alkaline. On the ordinary culture media it grows slowly without presenting especially characteristic features. Gelatin is not liquefied. In broth cultures there is no odor, and indol is not produced. Agarplate colonies are small and transparent. A moist, transparent, brownish growth is formed on potato.

Undulant fever, as it affects man, is a disease of long duration and extremely irregular and undulating course, marked by shifting

¹ Bergey (1930) uses the name Alcaligenes for this genus and includes in it Eberthella alcaligenes (p. 363) (Alcaligenes fecalis) as the type species. This organism, however, differs in many ways from the Brucella group, and seems to the writer more closely allied to the typhoid bacillus.

² Bruce: Practitioner, 1887, 39, p. 161.

articular rheumatism and frequent and profuse sweatings. The case mortality is low (2 to 3 per cent).

The simplest means of diagnosis is the agglutination test. Most recent investigators consider that complete agglutination in a dilution of at least 1:80 may be accepted as satisfactory evidence of the existence or recent occurrence of undulant fever. To insure accuracy a standard technic should be used. Some observers prefer the complement fixation test, and the intradermal reaction has also been used for diagnosis. The surest method of diagnosis is

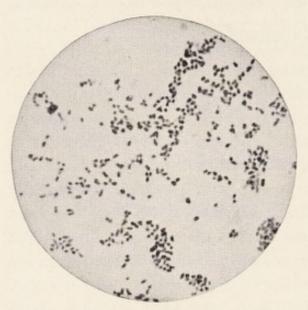


Fig. 79.—Brucella melitensis. Carbol fuchsin; × 1200 (Hicks).

the isolation of the specific organism from the blood.

In a large proportion of active cases (82 per cent) Br. melitensis has been found in the circulating blood. It can usually be obtained from the spleen at death or by spleen puncture during life. Like the typhoid bacillus, Br. melitensis is contained in the urine of many patients. It is less commonly found in the feces and in milk. There is no doubt that Br. melitensis is the cause of undulant fever.

A number of laboratory workers engaged in the study of pure cultures of this organism have become infected, some quite seriously. Monkeys, goats, and probably cows may be infected by injection and by feeding; the disease occurs spontaneously in goats and cows, and the urine and milk of these animals often contain the specific germ.

The mode of infection in undulant fever was for a long time quite obscure. The discovery that goats' milk often contains the specific micrococcus in large numbers at length gave the clue. It

¹ Evans, Alice: Amer. Jour. Pub. Health, 1927, 17, p. 399; Hardy, A. V.: U. S. Pub. Health Rpts., 1928, 43, p. 503.

² Mohler and Eichhorn: Jour. Amer. Med. Assoc., 1912, 58, p. 1107.

³ Giordano, A. S.: Jour. Amer. Med. Assoc., 1929, 93, p. 1957.

⁴ Reports of the Commission on Mediterranean Fever, London, 1906, Part 4, p. 104.

was found in 1905 that about half the goats in Malta were infected with Mediterranean fever, and that one-tenth were constantly passing the parasite of this disease in their milk. Incidents like the following emphasize especially this source of infection: Sixty-five goats, all apparently healthy, were shipped at Malta in 1905 on the steamship "Joshua Nicholson" for export to America. The goats' milk was drunk during the passage in large quantities by the captain and many of the crew, with the result that almost every one who drank the milk was struck down with Malta fever. Sixty of the goats (five having died) on arrival in America were examined and 32 found to give the agglutination reaction, while Br. melitensis itself was isolated from the milk of several of them. 1 As a result of preventive measures directed against the use of goats' milk in Malta the cases on that island in the latter half of 1906 dropped to onetenth of what, judging from past experience, would have been their normal number.

It seems possible that dust, contact and, rarely, inoculation through the agency of biting or suctorial insects, may play some part in spreading infection, but many observers believe that the cases arising from all these causes combined are relatively very few in number. Sergent,² however, while admitting the predominance of milk infection, emphasizes the possibilities of infection by contact. Water is apparently not a vehicle of transmission.³

BRUCELLA ABORTUS

Infectious abortion of cattle, a disease said to rank second only to bovine tuberculosis in economic importance, has been traced to a short, nonmotile, pleomorphic, gram-negative bacillus (Figs. 80, 81, 82). MacNeal and Kerr⁴ were the first in this country to record the isolation and cultivation of this organism, although Bang in Denmark had described it in 1897. The cultural reactions are substantially identical with those of Br. melitensis save that freshly isolated strains from bovine sources have a peculiar atmospheric requirement

² Sergent: Ann. de l'Inst. Past., 1908, 22, p. 225.

¹ Report of the Commission on Mediterranean Fever, Part 6, 1907, p. 70.

³ The bacteriology and epidemiology of this disease are very fully discussed in the Reports of the Commission Appointed by the Admiralty, the War Office, and the Civil Government of Malta for the Investigation of Mediterranean Fever, under the Supervision of an Advisory Committee of the Royal Society, Parts I–VII. London, Harrison & Son, 1905–07.

⁴ MacNeal and Kerr: Jour. Infect. Dis., 1910, 7, p. 469.

and apparently will not grow except in the presence of a certain proportion (5 to 10 per cent?) of CO₂. A difference in behavior toward dyes has also been observed.¹

In cattle the bacillus shows a predilection for the mucous membrane of the uterus, where the changes it produces give rise to abortion. One abortion may be followed by a second; rarely, by a third. Artificially the disease may be produced by way of the digestive tract and vagina as well as by subcutaneous inoculation. Both the agglutination and complement fixation tests are used in

Fig. 80.—Brucella melitensis. Strain 466 (abortus variety). Film prepared from forty-eight-hour cultures on agar slopes, and stained with carbol-fuchsin; × 2420 (Alice C. Evans: Hyg. Lab. Bull. No. 143, August, 1925). Courtesy of U. S. Public Health Service.

diagnosis. Inoculation of Br. abortus into a variety of domestic and laboratory animals may produce infection and the typical abortive disease. A disease resembling undulant fever may be produced in rhesus monkeys.² Rabbits do not ordinarily show symptoms. Guinea pigs may be infected and abortion induced. Fowls may be infected by experimental feeding, and certain barnyard flocks have been found to harbor the infection under natural conditions.³

The close relationship of the bacilli found in the Malta fever of man and goats, with those found in the contagious abortion of

Bull. No. 103, Aug., 1929.

¹ Huddleson, I. F.: Michigan Agr. Exper. Sta., Tech. Bull. No. 100, Aug., 1929.

² Huddleson, I. F., and Hallman, E. T.: Jour. Infect. Dis., 1929, 45, p. 293, ³ Huddleson, I. F., and Emrick, M. W.: Michigan Agr. Exper. Sta., Tech.

Fig. 81.—Brucella abortus; \times 2000 (Nowak: Documenta Microbiologica I, 1927).

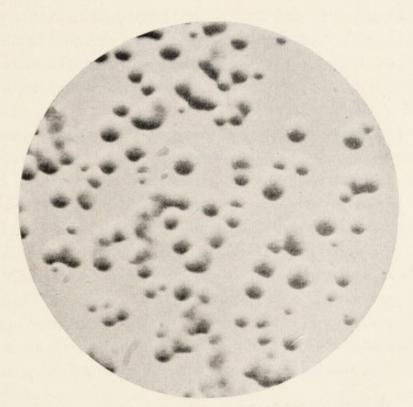


Fig. 82.—Colonies of Brucella abortus on agar plate; \times 25 (Nowak: Documenta Microbiologica I, 1927).

cattle, was first established by the work of Alice Evans in 1918.¹ Morphologically and culturally no constant difference could be noted, but Evans showed that the agglutinin absorption test served to distinguish the two varieties. Several investigators have attempted a more elaborate serological classification of the group, but no general agreement has yet been reached.

Classification of the Brucella organisms has been further complicated by the discovery that the strain isolated from swine possesses more or less distinctive characters. Some bacteriologists would make of this strain an independent species, Brucella suis, while others characterize it as the porcine variety of Br. melitensis. Serological tests fail to distinguish the bovine and porcine varieties. Huddleson² differentiates the three varieties, as it is probably best to call them, on the basis of their reaction toward certain dyes: Strains that are inhibited slightly, if at all, by 1:25,000-1:50,000 thionin or by a similar dilution of basic fuchsin belong to the Br. melitensis, or caprine, group; those that grow on the thionin medium but not on the fuchsin are of the porcine variety (Br. melitensis, var. suis); those that grow on the basic fuchsin but not on the thionin medium are of the bovine (Br. melitensis, var. abortus) variety. The production of H₂S is also said to distinguish the abortus variety. From the available evidence the pathogenicity of the porcine strain for experimental animals seems to be greater than that of the strains either from cows or goats.

Epidemiology.—The epidemiology of the Brucella infections is of the highest interest. There is no doubt that the abortus strains can cause in man a disease at present indistinguishable from the classical Malta fever. The first authentic instance of this type of infection was reported in Baltimore in 1924,³ although Bevan in Southern Rhodesia in 1921 had called attention to the fact that cases of a disease resembling Malta fever had occurred in patients who had not drunk goat's milk but who lived on farms where infectious abortion of cattle was known to exist. Since that time over a thousand cases of undulant fever have been diagnosed in the United States, mostly in regions where infection from goats could

¹ Evans, Alice: Jour. Infect. Dis., 1918, 22, p. 580.

² Huddleson, I. F.: Michigan Agr. Exper. Sta. Technical Bull. No. 100, August, 1929.

³ Keefer, C. S.: Bull. Johns Hopkins Hosp., 1924, 35, p. 6.

be excluded. In addition, agglutinins for these organisms have been found in the blood of a considerable proportion of the general population in various parts of the world. Whether this signifies a previous slight attack or a subclinical immunization is of course uncertain, but it at least raises a strong presumption as to the frequency of human infection.

The particular variety of Brucella concerned in the production of undulant fever in the United States has not been determined with precision in many instances, but there is some reason to think that in goatless localities the porcine variety is commonly involved. Hardy¹ found that 21 out of 28 strains isolated from human beings were of the porcine type.

The main source of human infection from the bovine abortus type seems to be raw cow's milk. A number of observers have recovered this strain from the blood of patients ill with undulant fever and from the milk of the cows that had supplied these patients. In the state of New York in 1928 out of 38 cases of undulant fever in which the nature of the milk supply was known, raw milk had been used in all but two.² The abortus variety has been found in certified milk in a number of localities.³ At the present time in the United States the prevalence of undulant fever is much higher on farms and in rural districts, where raw milk is extensively consumed, than in the larger cities, where a controlled pasteurized milk supply is available.

It has become plain, however, that raw milk is not the only source of infection. In a certain number of cases raw milk can be excluded as a possible cause and there is at the same time positive evidence of contact with infected cattle or hogs. A significantly large proportion of diagnosed cases of undulant fever in the United States have occurred among packing-house workers and other persons having more or less direct contact with live stock, meats or dairy products. Brucella agglutinins have been found in the blood of a relatively high proportion of practicing veterinarians⁴

¹ Hardy, A. V.: Jour. Amer. Med. Assoc., 1929, 93, p. 891.

² New York State Dept. of Health: Health News, 1929, 6, p. 137 (see also same journal, p. 62!).

³ See, for example, Hasley, D. E.: Jour. Infect. Dis., 1930, 46, p. 430.

⁴ Huddleson, I. F., and Johnson, H. W.: Jour. Amer. Med. Assoc., 1930, 94, p. 1905.

whose work brings them in contact with infective material. There is good experimental evidence that infection can take place through the uninjured skin. A number of undulant fever cases have occurred among packing-house workers who did not use raw milk or come in contact with cattle, but who did handle daily the internal organs of hogs. In certain districts in France there is epidemiological evidence that cases of undulant fever are contracted by association with sheep.

To sum up: Undulant fever may be contracted by drinking raw milk from goats or cows. It may also be contracted by contact with these animals or by any food derived from them. Similarly, contact with hogs and perhaps with sheep may bring about transfer of the infection. The rather numerous infections of laboratory workers are apparently caused by direct contact with infectious material, often doubtless by entrance of the micro-organism through the uninjured skin.

An interesting problem has been raised in connection with the porcine strain. Theobald Smith2 believes that this variety has been developed in recent times from cattle in the Middle West as the result of the close association of cattle and swine in feed lots and the adaptation of the bovine variety to the pig. It is particularly suggestive that so large a proportion of the strains isolated from human undulant fever should be of the porcine type, even when the infection is apparently derived from cattle. Experimental evidence indicates that the porcine variety is considerably more virulent for the monkey than the bovine or even than the caprine strain.3 Smith considers it likely that the reason for the apparently recent appearance of this type of undulant fever is that the bovine variety has little invasive power, but that passage through the pig has rendered it more virulent for man. In certain instances reinfection of the cow with the modified porcine type may have occurred, so that human infection with the suis variety from the cow as well as from the pig has become possible.

The possibility that undulant fever may be occasionally communicated from man to man must also be reckoned with, although

¹ Hardy, A. V.: U. S. Pub. Health Rpts., 1928, 43, p. 2459.

Smith, Theobald: Jour. Prev. Med., 1928, 2, p. 345.
 Huddleson, I. F., and Hallman, E. T.: Jour. Infect. Dis., 1929, 45, p. 293.

this mode of infection does not seem common. Amoss and Poston¹ have reported the isolation of Brucella from the stools of two patients.

BRUCELLA BRONCHISEPTICA

This organism is very similar to Br. abortus, but is motile and highly aërobic. It does not produce H₂S. Serologically it is related to Br. melitensis and Br. abortus, but can be separated from them by agglutinin absorption tests. Originally isolated from dogs ill with distemper, it is not now generally believed to stand in any causal relation to that disease.² It is, however, frequently found as the cause of bronchopneumonia in guinea-pigs and other rodents.

¹ Amoss, H. L., and Poston, Mary: Jour. Amer. Med. Assoc., 1929, 93, p. 170.

² See, for example, Hardenbergh, J. G.: Jour. Amer. Vet. Med. Assoc., 1925, 68, p. 309.

CHAPTER 19

PASTEURELLA (PLAGUE; HEMORRHAGIC SEPTICEMIA; TULAREMIA)

Genus: Pasteurella. Small gram-negative bacilli, often ovoid; bipolar staining. Gelatin not liquefied. Carbohydrates attacked slightly or not at all. Parasites of man and certain higher animals and birds. Type species: Pasteurella aviseptica.

The term hemorrhagic septicemia was applied by Hueppe in 1886¹ to a group of highly fatal infectious diseases of the lower animals in which large and small hemorrhagic areas are found in the subcutaneous tissues, serous membranes, muscles and lymph-glands, and throughout the internal organs. In this class belong

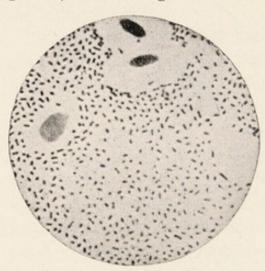


Fig. 83.—Bacillus of hemorrhagic septicemia in blood of a bird. Fuchsin stain (Kitt prep.) (Kolle and Wassermann).

especially the affections described as swine plague (Ger., Schweineseuche), fowl cholera, and rabbit septicemia; with these is also to be ranked a disease of cattle described under a great variety of names (Wildseuche, Rinderseuche, Barbone, septic pleuropneumonia, pneumo-enteritis, etc.).

The bacteria that are found in these widespread and important epizoötic diseases present many points of resemblance. They are short, nonmotile bacilli, with a marked tendency to bipolar stain-

ing (Fig. 83). They are decolorized by Gram's method and do not form spores. Growth on gelatin is at best scanty, and lique-faction never occurs. In milk the reaction is usually slightly acid without coagulation. On acid potato, as a rule, no growth results. The names Pasteurella aviseptica, Past. boviseptica, and Past. suiseptica have been bestowed upon the cultures obtained respectively from fowls, cattle, and swine. These cultures derived from

¹ Hueppe: Berl. klin. Wchnschr., 1886, 23, pp. 753, 776, 794.

different sources are very similar, and in most cases no material difference can be detected in morphologic and cultural characters. The pathogenicity of the several strains is usually high, and, although variations in pathogenic power have been observed, most of the small laboratory animals and the common domestic animals succumb to inoculation. Fowls have been immunized against fowl cholera by cultures of the "bacillus of rabbit septicemia" (Kitt),1 and Voges² produced in fowls a disease resembling fowl cholera by feeding them with cultures of the swine plague bacillus. There are many other facts that speak for the very close relationship, if not the identity, of the organisms found in the various forms of hemorrhagic septicemia. The name Pasteurella pluriseptica has been suggested as a unifying designation. So far as known, this disease or group of diseases is not ordinarily communicable to man. Rare cases of human infection with bacilli of this group have, however, been reported. Closely related to the bacteria of hemorrhagic septicemia are Past. pestis, the bacillus causing the plague or "black death," and Past. tularensis.

PASTEURELLA PESTIS

During the middle ages the plague prevailed extensively throughout Europe. The narrow, dirty streets and rat-infested dwellings of the walled towns, then becoming densely peopled, seem to have been highly favorable to the spread of the disease, and in some districts whole populations were carried off by the scourge. Hecker, a reliable authority, estimates that 25,000,000 persons, or onequarter of all the inhabitants of Europe, perished in "The Great Mortality" or "Black Death" of the fourteenth century (1348-49). Few diseases have left so deep a mark on general literature. The Decameron of Boccaccio purports to be a collection of stories told by a company of ladies and gentlemen driven by the plague to take refuge in a country house outside the walls of Florence, and one of the most vivid descriptions of the plague ever written is from Boccaccio's pen. Defoe's famous "Journal of the Plague Year," although a fictitious narrative,3 gives a realistic and essentially true picture of the devastation of London in 1665 by an outbreak of the

¹ Kitt: Kolle and Wassermann, Handbuch, 2nd ed., 2, p. 559.

² Voges: Ztschr. f. Hyg., 1896, 23, p. 149.

³ Defoe was only four years old in the year of the Great Plague.

dreaded "Black Death," in which 70,000 persons perished. Commerce and industry were then largely suspended and thousands of persons fled for safety to the open fields about London.

For reasons that may be only partly conjectured the plague has had irregular periods of quiescence and recrudescence. Western Europe has been practically free from the plague since the middle of the eighteenth century, and the disease began its first great extension in modern times with its appearance in 1893 in Hongkong

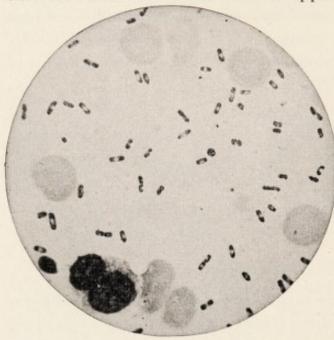


Fig. 84.—Pasteurella pestis in smear from rat's liver, showing bipolar staining; × 720 (Wherry).

and 1896 in Bombay. During recent years the plague has caused terrible loss of life in British India. Official statistics show that in the period from 1896 to 1918 more than 10,000,000 deaths were due to this disease. In October, 1899, a case was recorded at Santos, Brazil; this is thought to be the first occurrence of the plague in the western hemisphere. Other cases have since been reported in and about San Fran-

cisco, in parts of Mexico, and in Central America.

The specific bacillus of the plague (Past. pestis) was discovered almost simultaneously by Yersin¹ and by Kitasato.² The germs are present in large numbers in the pulp of the young buboes,³ which is described by one writer as a "purée" of bacilli.

Morphology.—Smears made from the organs of a plague victim show a short, plump bacillus with marked bipolar staining (Fig. 84). Wright's modification of the Romanowsky staining method⁴ is well adapted for staining the plague bacillus. In body-fluids the bacilli may occur in pairs, but long chains are rare. In broth

Yersin: Ann. de l'Inst. Past., 1894, 8, p. 662.

² Kitasato: Preliminary Notice of the Bacillus of Bubonic Plague, Hongkong, 1894; Lancet, 1894, 2, p. 428.

³ Inflamed and swollen lymphatic glands; hence the term "bubonic plague."

⁴ Wright: Jour. Med. Res., 1902, 7, p. 138.

cultures chains are the rule. Many morphologic variations, coccus shapes and large rods, are found. Pale and swollen involution forms, often reaching a gigantic size, are very common, and, like the other variations from the short, polar-stained rod, occur both in fresh preparations from plague corpses and in cultures. In films made from animal fluids or organs, a capsule is usually difficult to demonstrate, but on nutrient agar, capsular substance may be produced abundantly (Fig. 85) (Wherry). By Gram's method decolorization occurs. Past. pestis is not motile. Spores have never

Cultural and Biological Characters.-Growth occurs on all the ordinary media. Unlike culture most of the bacteria pathogenic for man, a temperature of 25 to 30 C. is more favorable than one of 37 C., and growth may even take place at a temperature as low as 4.5 C. Under all circumstances the colonies grow slowly and never attain a large size. Involution forms develop abundantly when

been observed.

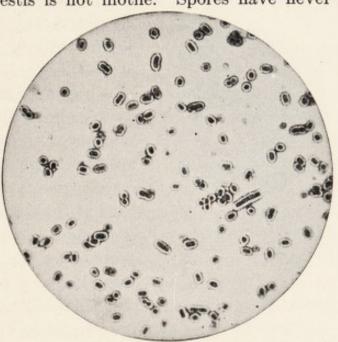


Fig. 85.—Pasteurella pestis from agar culture, twenty-four hours, showing capsule; × 700 (Wherry).

the medium is dry. The addition of 3 to 4 per cent of common salt to nutrient agar furnishes a medium that tends to produce involution forms so uniformly within the first twenty-four hours that the use of salt-agar has been recommended by Hankin and others as of diagnostic value. The colonies that develop on plates of ordinary nutrient agar and gelatin present a delicate, drop-like appearance with a round, granular center and a thin, granular, uneven margin (Fig. 86). Neither gelatin nor blood-serum is liquefied by the growth. On potato and in milk, multiplication is slow and scanty; milk is rendered slightly acid, but not curdled. No gas is produced in the presence of sugars, although a small amount of acid is formed from dextrose.

Wherry: Jour. Infect. Dis., 1905, 2, p. 577.

One of the most characteristic cultural features is observed in the growth in broth. When the surface of this medium is covered with a layer of oil and flasks are left after inoculation undisturbed for five or six days, long, delicate filaments are formed which hang down from the surface into the depths of the clear broth, like the stalactites that depend from the roof of a grotto. Not all cultures of Past. pestis show the stalactite growth in equal degree, and, on the other hand, a similar formation has been observed in cultures of other bacteria; the stalactite formation, therefore, while highly



Fig. 86.—Colony of Pasteurella pestis. Gelatin, forty-eight hours; × 150 (Wilson).

characteristic, especially when broth is seeded directly from fresh plague buboes, is not specific.

Toward various physiologic influences the plague bacillus does not exhibit marked resistance. Exposure to drying, particularly at the higher summer temperatures, speedily effects its destruction. The plague bacillus is also quite sensitive to the action of sunlight and chemical disinfectants. In general the life of Past, pestis outside the animal body is precarious, and the bacillus

seems to disappear speedily from soil, water, and buried cadavers.

Obscurity still prevails regarding the toxic products of the plague bacillus. The results of experiments with broth cultures have been taken to indicate that the toxic element is not so closely associated with the cell substance as in the cases of cholera and typhoid bacteria, but is able to diffuse to some extent into the surrounding liquid, like the diphtheria and tetanus toxins. On the other hand, no antitoxic immunity has been obtained.

Modes of Transmission.—Filth and poverty have long been recognized as factors contributing to the persistence and spread of the plague. It would appear that what are known as medieval surroundings, whether in Europe in the fourteenth century or in China and India in the twentieth, conduce to infection. Relatively close personal association is one of the conditions under which plague bacilli seem to be transmitted from the sick to the well. The sputum of plague patients suffering from the pneumonic type

^{1 &}quot;Ghee," a kind of clarified butter, is often used by bacteriologists in India for this purpose.

of the disease is highly infectious. The "infectious droplets" (p. 460) discharged in coughing also make the immediate neighborhood of the pneumonic plague patient dangerous to others.

The outbreak of the pneumonic type of plague in Manchuria in 1911–12 illustrates the rapidity with which this type of the disease may spread and the difficulty of practically combatting it. The risk to attendant physicians and nurses is very high.

There is evidence that in many epidemics of the plague, especially the bubonic type, transmission from one human being to another is not the way in which dissemination occurs. It was noted long ago by observers of epidemic plague that many outbreaks were accompanied by a remarkable mortality among rats. The discovery of the plague bacillus led to the further observation that the disease of rats was due to the same cause as that of man, and established the practically invariable association of rat plague and human plague. It is now known that rats1 are highly susceptible to infection with Past. pestis and may suffer spontaneously from epidemics under natural conditions. In San Francisco 14,184 rats were examined for plague between September 13, 1907, and January 14, 1908, and 192 were found infected. A chronic form of infection may exist among these animals, a circumstance that especially facilitates the dissemination of infection. Rats on shipboard are the means of carrying the disease from port to port, although human passengers may remain perfectly healthy. Many observers have expressed the opinion on epidemiologic grounds that plague is primarily a disease of rats and that man is only an incidental victim. In consequence of these relations the possible modes of conveyance of plague bacilli from rat to man have become a subject of peculiar interest. Both the feces and the urine of plague-infected rats sometimes contain plague bacilli, and it might be thought that contamination of the surroundings could lead either to cutaneous infection or to infection through the alimentary tract. Experiments² have shown, however, that close and continuous

² Report on Plague Investigation in India: Jour. of Hyg., 1906, 6, pp. 422–536; 1907, 7, pp. 323–476 and 694–985.

¹ At least three species, Mus norvegicus, the common brown sewer-rat; Mus rattus, the black house-rat and the ship-rat; and Mus alexandrinus, the Egyptian rat, are known to be capable of receiving infection. Mus norvegicus and Mus rattus are the most important agents in the spread of the disease. In Bombay Mus norvegicus was found to be more commonly infected with the plague than Mus rattus and to have double the flea infestation.

contact of plague-infected animals with healthy animals does not give rise to an epizoötic among the latter, provided fleas are rigorously excluded. The share of fleas in carrying infection from rat to rat and from rat to guinea-pig has been established by convincing experiments. The blood of plague-infected rats often contains enormous numbers of plague bacilli, as many as 100,000,000 per cubic centimeter having been found. Rats freed from fleas do not become infected by mere contact with plague-infected animals. Monkeys, guinea-pigs, and healthy rats, on the other hand, may contract the plague if they are brought into the neighborhood of flea-infested plague rats. In the reports of the plague investigation in India the following experiment with monkeys is recorded. Two monkeys were placed in similar cages, so designed that fleas could not get in from the top, and the cages put into a flea-infested animal house where three guinea-pigs had died from plague inoculation a few days previously. One monkey-cage was surrounded by a layer of sticky fly-paper 6 inches wide, it having been found that the leap of which a rat flea is capable is not greater than about 5 inches; the other monkey was not so protected. After two nights in the animal house the cages were removed. Two fleas were caught on the unprotected monkey and five were found stuck on the fly-paper protecting the other monkey. The unprotected monkey developed a typical case of plague, while the monkey that had been surrounded by fly-paper remained healthy. Further experience in the experimental production of plague epidemics among animals has entirely confirmed these results.

It is possible to infect rats by feeding them with the carcasses of their plague-infected comrades. In rats infected in this way mesenteric buboes are most frequent. Cervical buboes, on the other hand, preponderate in naturally infected rats, in guinea-pigs infected by being placed in a plague-infected house, and in rats and guinea-pigs artificially infected by means of fleas. The examination of one series of 5000 naturally infected rats showed not a single case of mesenteric bubo. The conclusion seems justified, therefore, that rats in nature are not infected by feeding upon plague-infected material, but are infected, as a rule, through the agency of fleas.

There is much to support the view that the plague may be communicated to man also by the bite of the rat flea. The commonest rat fleas are Xenopsylla cheopis and Ceratophyllus fasciatus;

both species will readily bite man if their natural host is not available. Rat fleas have been found in large numbers on the legs of men who entered for a short time the rooms of a plague-infected house. The particular danger that is known to attach to sleeping in a plague-infected house is explicable from this standpoint. Thompson, who made a careful study of four outbreaks of the plague at Sydney, Australia, concludes that the epidemiologic data in that locality harmonize best with the view that the rat flea transmits the disease from rats to man. Gotschlich has found that in Egypt the winter plague epidemics are of the pneumonic type and are spread through human agency, while the summer plague cases are of the bubonic type and are due exclusively to rat infection. Kitasato has observed a similar seasonal incidence in Japan.

In California the native ground squirrels have proved highly susceptible to pest infection and, probably through the agency of these animals, the disease has spread over a considerable area. Cases of plague in man due to squirrel infection have been reported.³ In other parts of the world other rodents are affected and are the means by which the disease is maintained and spread. In South Africa it is the gerbille, in Transbaikalia the tarbagan, that keeps the plague alive.

Pathogenicity for Man.—The belief that the bacillus called Past. pestis stands in direct causal relation to plague received experimental confirmation from an accidental laboratory infection that took place in Vienna in October, 1898. A commission sent by the Vienna Academy of Sciences in January, 1897, to study the plague in Bombay, returned to Vienna some three months later bringing much material for observation and experiment. After the work with pure cultures of Past. pestis had been in progress for some time, the man who cared for the animals under experimentation is supposed, when under the influence of drink, to have neglected some essential precaution. At all events he became infected; no other case of the plague existed in Vienna at the time. The physician, himself a member of the commission, and the two nurses who cared

¹ Thompson, Ashburton: Jour. of Hyg., 1906, 6, p. 537.

² Gotschlich: Festschrift f. R. Koch, Jena, 1903.

³ See Special Report on Plague on the Pacific Coast: Jour. Amer Med. Assoc., 1907, 49, p. 2000; also McCoy and Wherry: Jour. Infect. Dis., 1909, 6, p. 670.

for this patient, all contracted the infection, and the physician and one nurse died.

Plague in man appears most commonly in two forms, the bubonic or glandular plague and plague pneumonia. In the bubonic type the symptom-complex is characteristic, and diagnosis on clinical grounds is relatively simple. From the buboes, which may be either primary or secondary, bacilli may pass over into the blood; in fatal cases the bacteria often multiply in the blood extensively. The case fatality is 60 to 90 per cent. A primary plague septicemia can also probably occur. There are sometimes subcutaneous hemorrhages. During the plague epidemics in the middle ages such hemorrhages seem to have been more frequent than at present, and the dark spots to which they give rise were the origin of the popular name of "the black death."

Plague pneumonia is usually fatal. In this variety of the plague the sputum may contain enormous numbers of plague bacilli. As a direct means of spreading contagion from man to man, plague pneumonia is by far the more dangerous type.

A primary infection of the skin with the plague bacillus sometimes occurs (cutaneous plague), but does not seem to be common. Cases of mild plague, the so-called "pestis minor" (compare "walking typhoid"), are met in some epidemics. The occurrence of intestinal plague in man has never been clearly established.

The usual entrance of the plague bacillus into the body is probably by way of the skin, the buboes originating in the neighborhood of the point of entrance. Infection through the tonsils and respiratory tract, especially from cases of pneumonic plague, can also take place. Infection by swallowing, on the other hand, if it occurs at all, is extremely rare.

Pathogenicity for the Lower Animals.—Many rodents, such as rats, mice, and guinea-pigs, are very susceptible to the plague. In California, however, from 20 to 70 per cent of the full-grown rats ($Mus\ norvegicus$) are refractory when inoculated with highly virulent cultures. The California ground squirrels are much more susceptible than the rats. Certain species of monkeys are extraordinarily sensitive to subcutaneous inoculation, $\frac{1}{1000}$ to $\frac{1}{100}$ of a loopful of an agar culture being sufficient to produce a fatal septicemia. Both monkeys and rodents develop buboes and exhibit other features common to the plague in man. Rats and guinea-pigs

may be infected by feeding, especially when large numbers of bacilli are administered. Cats are susceptible to artificial infection. Dogs, swine, cattle, and horses can be infected by inoculation of large doses, but apparently do not contract the disease spontaneously under natural conditions.

Owing to the close relation existing between plague in rats and in man the phenomena of rat infection have been especially studied. The diagnosis of plague infection in rats is practically important, and special procedures are in use for this purpose.1 Most observers maintain that for purposes of diagnosis naked-eye examination is more satisfactory than microscopic examination alone.2 Ledingham,3 in observations upon spontaneous cases of rat plague, found that in some animals bacterial invasion of the spleen and liver is pronounced and is accompanied by extensive hemorrhages and congestion of the pulp sinuses and liver capillaries. In others, definite abscess formation in the spleen is far more frequent, while in the liver focal necroses may be very numerous. Externally the liver and spleen, especially the former, frequently present a granular and mottled appearance which is quite characteristic. Typical buboes are present in the great majority of cases (85 per cent). Subcutaneous and internal hemorrhages are very common. In the experience of the investigators of rat plague in India an abundant, clear, pleural effusion is an important diagnostic sign.

The procedure followed in making a diagnosis of plague infection is to rub the material from a suspected case, human or rodent, on the freshly shaved belly of a guinea-pig and of a white rat. In true plague the animals usually die within ten days. In about one-third of the rats and in practically all guinea-pigs a local reaction is present at the site of inoculation. Guinea-pigs, as a rule, show a typical bubo, rats less commonly. The spleen is enlarged (in guinea-pigs two or three times the normal size) and studded with granules. The liver is granulated. Rats show the characteristic pleural effusions observed in natural infections. Plague bacilli may be isolated from the spleen, buboes or heart's blood.

Protective Inoculation and Immunity.—A method of protective inoculation against the plague devised by Haffkine⁴ has been exten-

⁴ Haffkine: Brit. Med. Jour., 1897, 1, p. 424.

¹ McCoy, G. W.: U. S. Pub. Health Rpts., 1912, 27, II, p. 1174.

² Wherry, Walker, and Howell: Jour. Amer. Med. Assoc., 1908, 50, p. 1165.

³ Ledingham: Jour. Hyg., 1907, 7, p. 359.

sively practised in India. As usually prepared, "Haffkine's prophylactic" consists of broth cultures in which repeated crops (five to six) of the stalactite formation have been obtained by successive inoculations, shakings, and reinoculations. After about six weeks the culture is killed by warming the flask of broth in the water-bath for one hour at 65°. The usual dose of the prophylactic is about 2 cc., but larger quantities may be given, and the dose is generally proportioned to the age and size of the individual. Considerable success has attended its use: The proportion of vaccinated persons attacked is smaller than that of the unvaccinated in the same population, and those vaccinated persons who do contract the disease suffer from it in a comparatively mild form. The German Plague Commission has recommended an essentially similar procedure, namely, the injection of a two-day agar culture killed by heat. Kolle and Otto1 have shown that in animal experimentation much better results are obtained with attenuated cultures than with killed bacteria, and Strong2 has found on applying this method to man that a high degree of immunity to the plague may be produced by inoculation of an attenuated strain. Hueppe and Kikuchi³ reported favorable results in the active immunization of animals, from the use of the peritoneal exudates obtained from guinea-pigs that had been inoculated intraperitoneally with plague bacilli.

Yersin and Roux⁴ have produced a serum that possesses some curative properties by injecting horses first with killed cultures, then with living cultures. The Yersin serum has considerable bactericidal power, but experiments have shown that its curative action is not due solely to bacteriolysis. There is evidence that it facilitates phagocytosis. No antitoxic effect has been observed. Many investigators have failed to secure favorable results with this serum, but, in the epidemic of plague at Oporto, Calmette and Salimbeni⁵ employed it with success.

PASTEURELLA PSEUDOTUBERCULOSIS

A disease of rodents, particularly guinea-pigs, is caused by a bacillus that resembles Past. pestis very closely but, unlike the

² Strong: Philippine Jour. Sci., 1906, 1, p. 181.

¹ Kolle and Otto: Ztschr. f. Hyg., 1903, 45, p. 507; 1904, 48, p. 399.

³ Hueppe and Kikuchi: Centralbl. f. Bakt., I, Orig., 1905, 39, p. 610.

See Metchnikoff: Ann. de l'Inst. Past., 1897, 11, p. 737.
 Calmette and Salimbeni: Ann. de l'Inst. Past., 1899, 13, p. 865.

latter, is usually actively motile at 22 C. Other differential marks are its tendency to produce alkali in milk and its relatively low pathogenicity for white rats. Serological differentiation is desirable in doubtful cases. The natural mode of infection is probably by way of the alimentary tract. Inoculation of guinea-pigs (subcutaneously) proves fatal in about two to three weeks with caseous swellings and nodules in various organs. Past. pseudotuberculosis has been found, although rarely, in animals other than the guinea-pig, and a few cases have been reported in man. In the lack of a thorough bacterial examination confusion in diagnosis has sometimes occurred between this disease and a Salmonella disease of guinea-pigs in which yellowish nodules are observed. The "pseudotuberculosis" of mice and of sheep is not due to this organism, but apparently to certain diphtheroids (p. 303).

TULAREMIA. PASTEURELLA TULARENSIS

This organism was discovered by McCoy and Chapin in a plague-like disease of the California ground-squirrel.1 It is a minute gram-negative pleomorphic rod (Figs. 87 and 88) surrounded with considerable capsular substance when stained in smears from animal tissues. The earlier workers succeeded in cultivating this bacillus only by the use of coagulated egg-volk, but Francis2 has obtained growth on other media such as blood dextrose cystine agar (Fig. 89). Dextrose, levulose, mannose and glycerol are fermented with production of acid but no gas. The first instances of human infection with this organism were three cases of eye infection recorded by Wherry and Lamb.3 Later observations (see especially Francis)² have shown that human infections may occur through handling infected rabbits and other rodents, or by the bite of a wood tick or a blood-sucking fly that has previously fed on a jack-rabbit infected with Past. tularensis (Fig. 90). The latter form of human infection is known locally in Utah as deerfly fever. 4 Certain birds (quails) may be infected with tularemia, and human cases have been attributed to this source. In certain regions cattle also

¹ McCoy and Chapin: Jour. Infect. Dis., 1912, 10, p. 61.

² Francis: Bull. No. 130, Hyg. Lab., Wash.

³ Wherry and Lamb: Jour. Infect. Dis., 1914, 15, p. 331.

⁴ Francis and Mayne: U. S. Pub. Health Rep., 1921, 36, p. 1738. Francis has suggested the general name tularemia for all infections due to Past. tularensis.

appear to be sometimes infected. Tularemia from skinning opossums has also been reported. Infection with this organism has been contracted with amazing facility by laboratory workers,

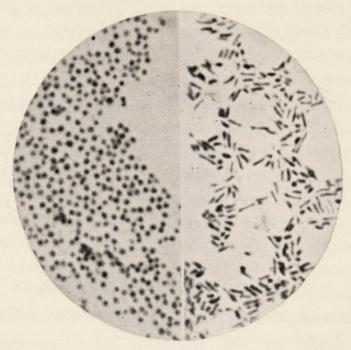


Fig. 87.—Pasteurella tularensis. Note change from coccoidal to bacillary form in twenty-four hours on fresh culture medium (Francis).

as many as 11 cases having been reported among the limited number of persons who have worked with this bacillus in the United

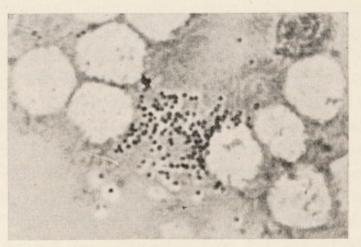


Fig. 88.—Pasteurella tularensis. Coccoidal form. Blood of rabbit (Francis);

States. It has been shown experimentally that the disease may be transmitted to laboratory rodents by the bite of infected lice or bedbugs.

Mease, J. A.: Jour. Amer. Med. Assoc., 1929, 92, p. 1042.

It seems probable that infections with this organism have occurred not infrequently without recognition. Francis, the

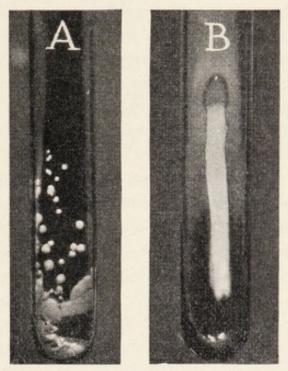


Fig. 89.—Tularemia. Dextrose cystine agar inoculated with heart blood of guinea-pig (A) and mouse (B) (Francis).

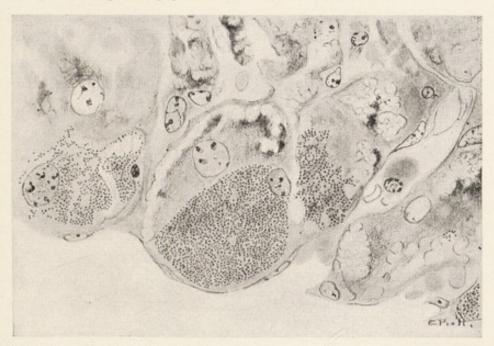


Fig. 90.—Pasteurella tularensis in hepatic cells of liver of mouse (Francis).

leading student of this disease, has records of several hundred human cases in nearly all parts of the United States. Tularemia ¹ Francis: Atlantic Med. Jour., 1927, 30, p. 337.

has also been reported in Japan, and extensive epidemics have occurred in Soviet Russia.¹

Two clinical types of the disease are recognized, one the glandular or ulceroglandular type, which is the more common, the other the so-called "typhoidal type." Tularemia is rarely fatal. During the first week of illness blood cultures have given positive results on guinea-pig inoculation. Agglutinins are present in the blood in the second week of the disease and may persist in diminishing amounts for at least as long as eighteen years after recovery. Agglutination is a reliable test for diagnosis, but reciprocal absorption tests for either Brucella abortus or Br. melitensis should be made unless the clinical history is quite definite. One attack confers immunity.

¹ Roubakine, A.: League of Nations, Monthly Epidemiol. Rpt., 1930, 9, p. 1.

CHAPTER 20

THE HEMOPHILIC BACTERIA

Genus: Hemophilus.¹ Minute rod-shaped cells, sometimes thread-forming and pleomorphic, nonmotile, without spores, strict parasites, growing best (or only) in the presence of hemoglobin, and in general requiring blood-serum or ascitic fluid. Gram-negative. Type species: Hemophilus influenzae.

The hemophilic or hemoglobinophilic bacteria comprise a fairly large group of organisms with more or less pronounced pathogenic qualities. Among these are Pfeiffer's bacillus (H. influenzae) associated with influenza, the Bordet-Gengou bacillus (H. pertussis) found in whooping-cough, the Koch-Weeks bacillus and the Morax-Axenfeld bacillus which are associated with certain forms of conjunctivitis, and the bacillus of Ducrey, found in soft chancre. The presence of hemoglobin in the culture medium is especially favorable for the growth of these organisms and is essential to the development of Pfeiffer's bacillus and the Koch-Weeks bacillus. Similar strictly hemophilic bacteria have been reported by D. J. Davis² and others in various pathological conditions.

The hemophilic bacilli are usually very minute, and are difficult to study both because of their small size and of their far from robust growth on most culture media.

The Pfeiffer bacillus may be distinguished from H. pertussis by its inability to grow on media devoid of hemoglobin even after several generations of cultivation, while H. pertussis after being grown in several transfers on a blood and serum medium will yield a slow growth of gray adherent colonies on plain agar. Many strains of Pfeiffer's bacillus (40 to 50 per cent) produce indol,³

¹As at present constituted the genus is a rather heterogeneous one. The bacillus of whooping-cough and especially the Morax-Axenfeld and Ducrey bacilli have quite different nutritional requirements from the Pfeiffer bacillus and are only tentatively to be associated with it.

² Davis, D. J.: Jour. Amer. Med. Assoc., 1915, 64, p. 1814.

³ Jordan, E. O.: Jour. Amer. Med. Assoc., 1919, 72, p. 1542; Rhein, M.: Compt. rend. Soc. biol., 1919, 82, p. 138; Malone, R. H.: Indian Jour. Med. Res., 1920, 7, p. 519; Rivers, T. M.: Bull. Johns Hopkins Hosp., 1920, 31, p. 50.

a quality apparently lacking altogether in H. pertussis. Pfeiffer's bacillus also reduces nitrate to nitrite, whereas H. pertussis is unable to effect this reaction. The relation of the Koch-Weeks bacillus to Pfeiffer's bacillus is culturally very close and some investigators believe in a substantial identity of the two forms.

HEMOPHILUS INFLUENZAE (PFEIFFER'S BACILLUS)

Morphologic and Cultural Characters.—The Pfeiffer bacillus is one of the smallest known pathogenic bacteria, rarely exceeding 1.5 μ in length and 0.3 μ in thickness. The ends of the cell are rounded, no capsule is present, and spores have never been observed;

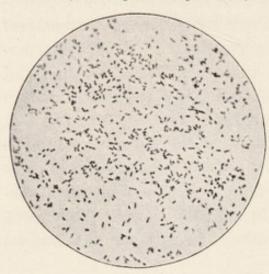


Fig. 91.—Hemophilus influenzae; \times 1000 (Král).

the bacillus is nonmotile (Fig. 91). Many strains show a marked tendency to produce threads and other anomalous forms in cultures. Staining is best effected with a dilute (1:10) solution of carbolfuchsin for five to ten minutes. Cultures of this organism were first obtained by Pfeiffer upon blood-agar, prepared either with human blood or the blood of other animals, such as guinea-pig or pigeon; and blood-agar remains to this day a practically indispen-

sable medium for growing this bacillus. The hemoglobin of the blood is the essential ingredient, since growth occurs just as abundantly on agar moistened with a solution of hemoglobin as on agar prepared with whole blood. When the surface of blood-agar is smeared with influenza sputum and incubated at 37 C., with free access of oxygen, minute, rounded, discrete, translucent colonies may become visible in about eighteen hours. Transplanted to ordinary agar, development does not result, but on blood-agar further colony formation occurs. The colonies at the largest may reach the size of a small pinhead. If the culture be contaminated with other organisms, especially Staphylococcus aureus, the Pfeiffer bacillus colonies are considerably larger, more opaque, and of a grayish-white color, and develop most luxuriantly in the

¹ Jordan, E. O.: Amer. Jour. Public Health, 1920, 10, p. 648.

neighborhood of the foreign colony. This is known as the "satellite phenomenon." Even under favorable conditions artificial cultures soon die out, and in order to preserve vitality subcultures must be made on hemoglobin agar every four or five days; in this way the stock may be maintained indefinitely.

Pfeiffer's bacillus requires for its growth the presence of two distinct substances, one a heat-labile substance, the so-called "V factor" which is present in yeast, carrot and potato juice and other vegetable extracts as well as in blood. The other substance, the "X factor" is typically represented by hemoglobin or its derivatives, is heat-stabile and is efficacious in very small amounts. Little is known about the chemical nature of the X and V factors. The satellite phenomenon mentioned above is evidently due to the diffusion into the medium of a growth-promoting substance—possibly the V factor—generated by the other bacteria.

Among the many attempts to devise a favorable medium for the cultivation of the Pfeiffer bacillus two have been especially successful.

(a) Oleate Hemoglobin Agar.—This medium¹ exercises a selective action since it allows the Pfeiffer bacillus (and some other organisms) to come to development, while many of the gram-positive cocci present in the sputum or the nasal mucus are inhibited by the sodium oleate. It is prepared as follows:

Hot nutrient agar (2 per cent meat infusion agar, P _H	04
7.2–7.4, 90 C.)	94 cc.
Sodium oleate (neutral, Kahlbaum's preferred; 2 per cent	
solution in water; autoclaved)	5 cc.
Suspension of red blood-corpuscles (sterile defibrinated	
human, sheep, or rabbit blood may be used. Remove	
the red cells from the defibrinated blood by centrifuga-	
tion, pipeting off the supernatant fluid; restore the origi-	
nal volume with nutrient broth)	1 cc.

The action of this medium is shown in Figs. 92, 93, and 94.

The use of oleate agar facilitates the isolation of the Pfeiffer bacillus and as compared with ordinary blood-agar plates gives a larger number of positive findings.

(b) "Chocolate" Agar.—A luxuriant growth of the Pfeiffer bacillus occurs on the opaque, dark brown medium obtained by adding a few cubic centimeters of blood to hot agar (at 90 to 95 F.).

¹ Avery: Jour. Amer. Med. Assoc., 1918, 71, p. 2050.

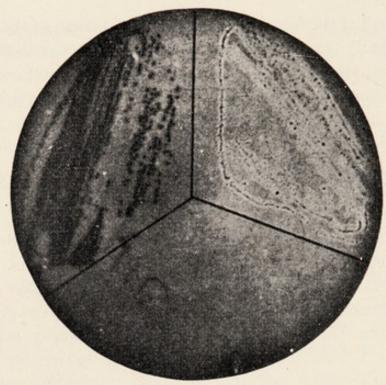


Fig. 92.—Plain blood-agar plate. The lateral sectors show growth of pneumococcus and Streptococcus haemolyticus. The lower sector shows H. influenzae; growth is present, but not visible in the photograph (Pritchett and Stillman, Jour. Exper. Med.).

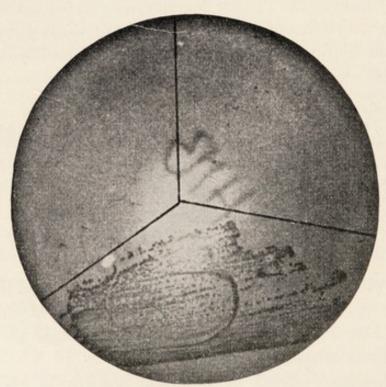


Fig. 93.—Oleate hemoglobin agar plate. Corresponding sectors are planted with the same organisms as in Fig. 92 and show enhanced growth of H. influenzae in the lower sector and complete inhibition of growth of pneumococcus and Streptococcus haemolyticus (Pritchett and Stillman, Jour. Exper. Med.).

This medium is well adapted for keeping stock cultures of the Pfeiffer bacillus and for obtaining heavy growths for agglutination and other purposes, but it does not differentiate and is not especially suitable for primary isolation.

Biochemical Reactions.—Fifty per cent or more of the strains of the Pfeiffer bacillus that have been tested produce indol. This character when present serves to distinguish H. influenzae from H. pertussis, indol formation never having been observed in the latter

organism.1 Indol production has not so far been definitely correlated with other biological characters. All strains of Pfeiffer bacilli tested by the writer reduce nitrate to nitrite, a further differential character, since H. pertussis and H. bronchisepticus do not possess this quality. Fermentation of dextrose and other carbohydrates, occasionally with gas production,2 is said to be a characteristic of certain strains. 3 Rivers⁴ has shown that some strains produce amylase. In a study of hemophilic bacilli from normal mouths Pritchett and Stillman⁵ found that some strains were able to hemolyze blood. The hemolytic strains of H. influenzae do not appear to be clearly marked off from the nonhemolytic strains by any other differential characters, since

Fig. 94.—Pure culture of H. influenzae on oleate hemoglobin agar showing large nucleated colonies after thirty-six hours' incubation (Pritchett and Stillman, Jour. Exper. Med.).

indol production and carbohydrate fermentation occur in both groups. Further study may perhaps give a basis for establishing a subgroup of the hemolytic and nonhemolytic groups of H. influenzae (Stillman and Bourn).³ At present well-marked subdivisions of H. influenzae can hardly be recognized.

Toxic substances are produced in fluid cultures, are filterable, and may appear in appreciable quantities after six to eight hours' incubation. Relatively large quantities of the filtrate (2 to 4 cc.)

¹ Jordan: Amer. Jour. Pub. Health, 1920, 10, p. 648.

² Wadsworth and Wheeler: Unpublished observations.

³ Stillman and Bourn: Jour. Exper. Med., 1920, 32, p. 665.

⁴ Rivers: Bull. Johns Hopkins Hosp., 1920, 31, p. 50.

⁵ Pritchett and Stillman: Jour. Exper. Med., 1919, 29, p. 259.

are necessary to produce death in rabbits.¹ The nature of the toxic substances is uncertain. It is possible that a true toxin is formed,² but there is evidence against this view.³

Toward external conditions the Pfeiffer bacillus shows little resistance. Desiccation is quickly fatal. A pure culture suspended in water and then dried on silk threads loses its vitality within twenty-four hours; in dried sputum life is maintained somewhat longer, but not, as a rule, beyond forty-eight hours. The bacilli are readily killed by disinfectants.

Effect on Animals.—Animal inoculation with the Pfeiffer bacillus does not succeed in reproducing the picture of influenza and

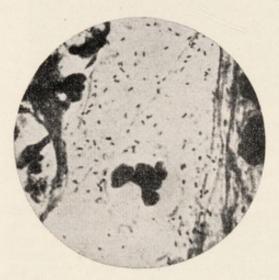


Fig. 95.—H. influenzae in sputum. Fuchsin stain. Beck prep. (Kolle and Wassermann).

often has little or no pathologic effect. The pathogenicity of some strains for the white mouse, the guinea-pig, and the rabbit is, however, undoubted. The white mouse seems to be especially susceptible.⁴

Highly interesting results have been obtained by Blake and Cecil,⁵ who by inoculation of the mucous membrane of the upper respiratory tract of normal monkeys succeeded in producing "an acute respiratory disease resembling influenza." The strain of organ-

ism used had its virulence first increased by successive animal passages through a series of 11 white mice followed by a series of 13 monkeys. The increased virulence so obtained is lost with extraordinary rapidity when subcultures are made on artificial media outside the animal body. The disease produced in monkeys

¹ Parker, J.: Jour. Amer. Med. Assoc., 1919, 72, p. 476; Huntoon and Hannum: Jour. Immunol., 1914, 4, p. 167; Ferry and Houghton: Jour. Immunol., 1919, 4, p. 233.

² Parker, J.: Jour. Immunol., 1919, 4, p. 331.

³ Wollstein, M.: Jour. Exper. Med., 1919, 30, p. 515.

⁴ Wollstein, M.: Jour. Exper. Med., 1911, 14, p. 63; 1915, 22, p. 445; Ferry and Houghton: Jour. Immunol., 1919, 4, p. 233; Albert and Kelman: Jour. Infect. Dis., 1919, 25, p. 433.

⁵ Blake, F. G., and Cecil, R. L.: Jour. Exper. Med., 1920, 32, p. 691.

by virulent cultures of H. influenzae is considered by these experimenters to be essentially identical with influenza with respect to its clinical course, symptoms, and complications. The pathologic changes are also thought to be similar in practically all respects to spontaneous, uncomplicated H. influenzae pneumonia in man.¹

Antibodies.—The production of antibodies in animals inoculated with H. influenzae has been observed by a number of investigators. Agglutinin formation has been most completely studied. The titer reached is not, as a rule, very high, but the extremely low titers reported by some observers (1:80) are probably due to the test methods employed. It is desirable to test the agglutinative power of the immune serum by a relatively long incubation at 55 C. in the water-bath.

With suitable methods it is not difficult to obtain a serum titer of 1:1600 for the homologous strain. Other (heterologous) strains are not usually agglutinated to so high a titer, and do not absorb the specific agglutinins produced by the serum strain. So far as agglutinin production is concerned, therefore, a large number of immunologically different strains of the Pfeiffer bacillus exist. Since identical strains were found but rarely during the 1918–19 influenza pandemic, several different strains being sometimes found at the same time in one individual, this fact is regarded by some as evidence that the pandemic was not due to a distinct, especially virulent strain of the Pfeiffer bacillus.

Complement-fixation by specific antibodies found in immunized rabbits may be demonstrated, but the existence of definite groups among the hemophilic bacilli has not been established by this method.

Pathogenicity for Man.—The pathogenicity of the Pfeiffer bacillus for man is shown among other things by the occurrence of cases of meningitis, mostly in infants and of a high fatality, in which the Pfeiffer bacillus is found in pure culture in the cerebrospinal fluid.² These cases of "influenzal meningitis," while not very numerous, show that certain strains of this organism possess a definite invasive power. Occasional cases of otitis media, appendicitis, sinusitis, and other localized infections may be caused by the Pfeiffer bacillus.

Blake and Cecil: Jour. Exper. Med., 1920, 32, p. 719.

² Wollstein: Amer. Jour. Dis. Children, 1911, 1, p. 42; Davis, D. J.: Amer. Jour. Dis. Children, 1911, 1, p. 249.

In infections of the respiratory tract the Pfeiffer bacillus is frequently present, and it is found on autopsy in pneumonic lesions under conditions where its destructive action upon the tissues can hardly be doubted. Whether it is present as a primary or secondary invader in these cases is more uncertain. Its common occurrence in diseases like measles, whooping-cough, and tuberculosis indicates that its growth on human tissue is favored by the presence of other infecting agents. It seems probable that in respiratory infections the Pfeiffer bacillus commonly follows in the wake of some other organism.

Inoculation experiments upon man with pure cultures of the Pfeiffer bacillus have given a surprisingly large number of negative results. Enormous numbers of Pfeiffer bacilli instilled into the nose, eyes, and throat have failed to cause any illness. On the other hand, the case reported by D. J. Davis indicates that certain definite symptoms—albeit not those of true influenza!—may follow the inoculation of the throat with pure cultures of this organism.

The Koch-Weeks Bacillus.—A small bacillus, first observed by Koch³ in 1883 in a series of eye inflammations in Egypt, was successfully cultivated by Weeks⁴ in New York in 1887, and is now recognized as the cause of a world-wide and highly contagious form of conjunctivitis (Fig. 96). Several recent investigators believe the Koch-Weeks bacillus and the Pfeiffer bacillus to be identical and there is much evidence to support this view.⁵

Growth may occur on ordinary nutrient agar at 37 C., but most success is obtained with serum-agar, or a mixture of glycerol-agar and ascitic fluid (2:1). The colonies appear as minute, projecting, transparent dots, which tend to become confluent; they never attain a large size and are easily detached from the medium. The bacilli possess slight powers of resistance, and there is little reason to suppose that dust is a common means of conveying infection. Direct contact with infective material through the medium of hands, towels, handkerchiefs, etc., must rather be considered the usual mode of conveyance. Flies may also be concerned in trans-

¹ Rosenau: Jour. Amer. Med. Assoc., 1919, 73, p. 311; McCoy and Richey: U. S. Pub. Health Repts., 1919, 34, p. 33.

² Davis, D. J.: Jour. Infect. Dis., 1906, 3, p. 1.

³ Koch: Arb. a. d. k. Gesund., 1887, 3, Anlagen, p. 62.

⁴ Weeks: Med. Rec., 1887, 31, p. 571.

⁵ Knorr: Deut. med. Wchnschr., 1925, 51, p. 65.

mission. A peculiar form of hand infection due to an organism probably identical with the Koch-Weeks bacillus has been described by McDill and Wherry.¹

Whooping-cough.—Whooping-cough is one of the serious diseases of childhood. In 1925 in the registration area of the United States, comprising about 90 per cent of the population of the country, there were reported 6,948 deaths from this cause. This amounted to a death-rate more than double that for the much more dreaded scarlet fever. Many deaths among children reported as due to bronchopneumonia are also, in reality, attributable to whooping-cough. Ninety-six per cent of the deaths from whooping

cough are in children under five years of age.

Bacilli resembling H. influenzae were reported by early observers as occurring in a large proportion of cases of whooping-cough. Although there are minor differences in the descriptions of these organisms as given by different observers, the cultural and mor-

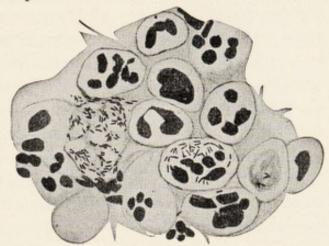


Fig. 96.—Koch-Weeks bacillus in conjunctivitis; × 900 (Axenfeld, Kolle and Wassermann).

phologic characters are essentially similar, and there seems little doubt that Spengler, Jochmann and Krause, Wollstein, and Davis² had the same bacillus in hand. Owing to this organism's close resemblance to, if not identity with, the influenza bacillus, there was considerable reluctance among bacteriologists to accept it as the cause of whooping-cough. More definite results were obtained by Bordet and Gengou.

The latter³ found a characteristic short oval bacillus, H. pertussis, in the bronchial exudate from cases of whooping-cough. It is present in great numbers in the early stages of the disease. It grows feebly on a special medium devised by Bordet and Gengou, consisting of 1 per cent glycerol-agar or glycerol-broth made with

² Davis: Jour. Infect. Dis., 1906, 3, p. 1.

¹ McDill and Wherry: Jour. Infect. Dis., 1904, 1, p. 58.

³ Bordet and Gengou: Ann. de l'Inst. Past., 1906, 20, p. 731.

macerated potato and added to an equal volume of human or rabbit blood. Later workers have been unable to obtain initial growth except upon this medium. After some generations on the potatoblood-agar mixture it will grow on the surface of ascitic-fluid agar in a whitish, elevated streak which does not spread far over the surface. It can also be grown on veal agar and in veal broth. It is nonmotile. gram-negative, and shows polymorphism in fluid media. In size it averages slightly larger than the influenza bacillus. The single colonies on solid media may reach a diameter of 2 to 4 millimeters in forty-eight hours. A little later they acquire a slight brownish color. A mucoid substance is abundantly produced by the culture and the growth is sticky and tenacious. H. pertussis is agglutinated by the serum of convalescents from whooping-cough, although with great inconstancy. The serum of convalescents also shows the presence of a specific substance by giving the complement-fixation reaction (p. 181). This property is constant. The bacillus has a distinct toxic action upon the tissues of the guinea-pig and rabbit.

Klimenko¹ found the Bordet-Gengou bacillus in 80 per cent of 76 children examined during the first week of the disease. He also succeeded in reproducing the disease with pure cultures in 48 young dogs and in monkeys.

Cultures obtained from carefully washed sputum or by the cough plate method have been advocated as a means of diagnosis of the disease in its early stages.² After the fifth week only a small percentage of positive cultures is found (4.0) as compared with the percentage during the catarrhal period (59.0) or in the first week of the whoop (53.0). It is believed that carriers, secondary cases and clinically doubtful cases may be detected by this means, and that eventually release from quarantine may be based on bacteriological examination rather than on arbitrary time limit. Whooping cough stations for diagnosis have been established, it is said with great success, in Copenhagen.

Pathogenicity.—Important work upon the relation of H. pertussis to the characteristic manifestations of whooping-cough was carried out by Mallory and his co-workers.³ The production of a

¹ Klimenko: Centralbl. f. Bakt., I, Orig., 1909, 48, p. 64.

² Madsen: Boston Med. and Surg. Jour., 1924, 192, p. 50. Lawson and Mueller: Jour. Amer. Med. Assoc., 1927, 89, p. 275.

³ Mallory et al.: Jour. Med. Res., 1912–13, 22, pp. 115, 391.

mild toxin by the bacillus and the absorption of the toxin seem to be shown by the exudation of leukocytes into the lumen of the trachea and bronchi, by slight changes in the lymph-nodules of the spleen, lymph-nodes, and gastro-intestinal tract, by the occurrence of the well-known lymphocytosis of whooping-cough, and by the production of the antibody which makes possible the specific complement-fixation reaction. Possibly the cilia are damaged by the toxin, but this is not certain. More important than toxic action seems to be the mechanical disturbance caused by the presence of the bacilli in the respiratory tract. By their presence in enormous

numbers, "dozens to a hundred or more between the cilia of a single cell," they are thought to interfere seriously with the normal ciliary action (Fig. 97). In consequence, the removal of secretions and of inhaled particles is prevented, and the lungs are probably more exposed to infection by inhalation than under ordinary circumstances. The bronchopneumonia which sometimes develops in fatal cases of whooping-cough may be due to H. pertussis or

Fig. 97.—Whooping-cough. Minute bacilli present in masses between cilia of two cells lining the trachea; × about 1500 (Mallory and Horner).

to other organisms, such as the pneumococcus.

Mallory has also observed the characteristic lesions of whooping-cough in young animals (puppies and rabbits) after inoculation with whooping-cough sputum and with pure cultures of the Bordet-Gengou bacillus. From these lesions H. pertussis has been again isolated in pure culture.

Nicolle and Conor¹ reported favorable results in the amelioration of symptoms following the injection of a vaccine made of living cultures of the Bordet-Gengou bacillus. Sill² also obtained good results both in treatment and in prophylaxis. "Thirty-three cases of whooping-cough were treated with the pertussis vaccine, and in all the effect of the vaccine was to diminish markedly the number and severity of the paroxysms and the amount of vomiting." As yet, however, the results, both curative and preventive, with per-

¹ Nicolle and Conor: Ref. Jour. Amer. Med. Assoc., 1913, 61, p. 209.

² Sill: Amer. Jour. Dis. Children, 1913, 5, p. 379.

tussis vaccine are far from being generally convincing. Controlled observations on a large series of cases are needed before judgment can be given.

THE MORAX-AXENFELD DIPLOBACILLUS

A small bacillus (B. lacunatus), about 2 by 1 μ , first described by Morax¹ (1896), and independently by Axenfeld, is responsible for infections of the conjunctiva and cornea in man. The particular

Fig. 98.—Hemophilus pertussis in sputum from whooping cough; × 2000 (Nowak: Documenta Microbiologica, I, 1927).

eye trouble with which this bacillus is associated is widely distributed, and has been reported in Europe, Africa, and North America. The organism grows readily on Löffler's blood-serum, where it produces in sixteen to twenty-four hours a rather characteristic picture (Fig. 99). The serum is liquefied in a series of pits which are at first separate, but later run into one another. On agar, gelatin, and the other ordinary laboratory media no growth takes place. Stained preparations from cultures show considerable variation in the size of the bacilli; pairs are frequently observed and occasionally short chains (Fig. 100). Involution forms are common after forty-eight hours. The bacilli lose the stain by Gram's method.

¹ Morax: Ann. de l'Inst. Past., 1896, 10, p. 337.

So far as known this organism is pathogenic only for the human eye. A blepharo-conjunctivitis, either chronic or acute, is the most common condition, but severe inflammation of the cornea is

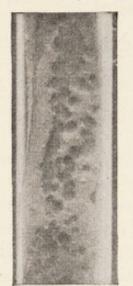


Fig. 99.—Stereoscopic photograph of a culture of the Morax-Axenfeld diplobacillus on blood-serum (Brown Pusey).

Fig. 100.—Morax-Axenfeld diplobacillus. Smear taken from conjunctiva (Brown Pusey).

also produced. Treatment with a 0.25 per cent zinc sulfate solution is specific and produces a rapid cure, while silver salts are without effect (Pusey).

¹ Pusey: Jour. Amer. Med. Assoc., 1906, 47, p. 255.

CHAPTER 21

CLOSTRIDIUM-THE SPORE-FORMING ANAËROBES1

Genus: Clostridium. Anaërobes or micro-aërophiles. Often parasitic. Rods frequently enlarged at sporulation, producing clostridium or plectridium forms. Type species: Clostridium butyricum, Prazmowski.

The important pathogenic organisms that fall in this group are all rather large-sized rods, forming resistant spores and needing a low oxygen tension (anaërobic conditions) for their successful cultivation. The differential characters of the nine anaërobes to be considered here are given in the following table. Renewed interest in the sporulating anaërobes has been excited by the

MORPHOLOGIC AND BIOCHEMICAL DIFFERENTIATION OF ANAËROBES

	Spores	Proteo- lysis*	Dex- trose†	Fermentation		
				Lac- tose	Su- crose	Exotoxin‡
Cl. tetani	Spherical, terminal	_	_	-	_	+++
Cl. septicum		+ sl	+	+	-	++
Cl. welchii		+ sl	+	+	+	++
Cl. novyi		+ sl	+	-	-	+++
Cl. sordellii	Orrel subterminel	+	+	-	-	++
Cl. histolyticum.	Oval, subterminal	+	a	_	_	+
Cl. sporogenes		+	+	-	-	_
Cl. chauvei		+ sl	+	+	+	++
Cl. botulinum		±	+	±	_	+++

^{*} Sl: Relatively slight.

$$\dagger a = acid.$$

$$\begin{array}{r}
 + + + = \text{strong} \\
 + + = \text{moderate} \\
 + = \text{weak}
 \end{array}
 \right)$$
 toxin production.

¹ The classification and nomenclature of the anaërobes is still a matter of some difficulty. The description of the butyric acid bacteria by Prazmowski is quite imperfect and was probably based on the examination of an impure culture, so that the use of Cl. butyricum as a type species is unfortunate. There are also important objections to the use of Clostridium as a generic name for these organisms, but this designation has now become quite fairly established in current use.

prominence in the Great War of anaërobic wound infections, and by the apparent increase of botulism in the United States.

TETANUS (CLOSTRIDIUM TETANI)

Tetanus is a disease of man and animals characterized by spasms of the voluntary muscles. The spasms are often most marked in the muscles of the jaw and neck, hence the name lockjaw. The tetanus bacillus was first described in 1884 by Nicolaier, who observed it in the pus taken from mice and other animals that had died after subcutaneous inoculation with small quantities of soil.

He failed to secure pure cultures, but Kitasato² succeeded in doing so by the application of special methods of culture, and by making use of the high resistance of the spore to eliminate the associated nonsporulating aërobes. With such cultures he demonstrated the causal significance of the tetanus bacilli. He further proved the inability of the tetanus bacillus to invade the blood-stream and showed the disease to be an intoxication.³ In 1890 von Behring

Fig. 101.—Clostridium tetani showing spores. Pure culture on agar. Fuchsin stain (Kolle and Wassermann).

and Kitasato⁴ laid the basis for antitoxic therapy in their discovery of diphtheria and tetanus antitoxin.

Clostridium tetani is widely distributed in nature. The literature on its presence in fertilized soil, street dust, hay dust, mud, fresh and salt water, bilge-water of ships, gun wads, wearing apparel, and the feces of men and animals, notably horses, has been reviewed by Noble.⁵ Tetanus bacilli have been recovered from court plaster by McCoy, Leake and Corbitt⁶ and from gelatin

¹ Nicolaier: Deut. med. Wehnschr., 1884, 10, p. 842.

² Kitasato: Ztschr. f. Hyg., 1889, 7, p. 225.

³ Kitasato: Ztschr. f. Hyg., 1891, 10, p. 267.

⁴ Behring and Kitasato: Deut. med. Wchnschr., 1890, 16, p. 1113.

⁵ Noble: Jour. Infect. Dis., 1915, 16, p. 132.

⁶ McCoy, Leake, and Corbitt: U. S. Public Health Reports, 1917, 32, p. 1450.

by Smith, who emphasized the danger of their presence in vaccines and serums used parenterally.

The extent to which the organism multiplies outside the animal body is an open question. Sormani (see Noble) has held that the principal natural habitat of Cl. tetani is the intestinal tract of vertebrates, and that the toxic properties of soil, water, gelatin, glue, etc., are attributable mainly to persistent and resistant spores of fecal origin. Certain horses may be "carriers" of these spores for at least several months, and Tenbroeck and Bauer² found that 34.7 per cent of a group of Chinese men in Peking had tetanus bacilli in their stools, while Bauer and Meyer³ found tetanus bacilli in 24.6 per cent of 487 fecal specimens examined in California.

Individual tetanus bacilli are slender, motile, peritrichally flagellated (20 to 30), gram-positive, sporulating rods with rounded ends (Fig. 101). Their common dimensions are 0.3 to 0.5 μ by 2 to 5 μ , but vegetative filaments of much greater length occur. The shorter forms are usually straight; filaments tend to curve in an undulating manner. Short chains of rods occur. By the agglutination test at least seven serologic types can be distinguished. Types I and III have been found most commonly in the United States, England and France, Type V in China (see also p. 416).

Cultural Characteristics.—Cl. tetani is an obligate anaërobe. It develops readily in plain broth, brain, meat, agar, and gelatin media from which the air has been expelled by heating and excluded by some form of seal. If the depth of medium is adequate, say 10 to 12 cm., no special seal is required, especially for the more viscous media. For liquid media, some form of mechanical seal is desirable, such as the marble seal in the constricted tube of Hall.⁴ This device, using meat infusion peptone broth without sugar, is recommended for initial cultures from which pure cultures can be isolated readily by deep agar or surface culture methods (Hall).⁵ Deep meat or brain media are also suitable for primary culture.

It is difficult for inexperienced workers to isolate the tetanus bacillus in pure culture. The inoculation of suspected material into mice, rats, or guinea-pigs was formerly considered a desirable

¹ Smith, Theobald: Jour. Amer. Med. Assoc., 1908, 50, p. 929.

² Tenbroeck and Bauer: Jour. Exper. Med., 1922, 36, p. 261.
³ Bauer and Meyer: Jour. Infect. Dis., 1926, 38, p. 295.

⁴ Hall, I. C.: Univ. of Calif. Pub. in Pathology, 1915, 2, p. 147.

⁵ Hall, I. C.: Jour. Infect. Dis., 1920, 27, p. 576.

preliminary step. But Bengtson and McCoy¹ were able by direct inoculation to detect tetanus bacilli in only three out of thirty-five samples of artificially seeded smallpox vaccine virus. Heating soil, pus, or mixed cultures to 80 C. for one-half hour (Kitasato) has been supposed to simplify isolation by destroying the vegetative forms of other organisms that are present; but this method may leave the spores of the tetanus bacillus still badly mixed with those of other aërobic and anaërobic bacteria. Many of these are more resistant to heat than tetanus spores. In such cases selective dyes may be used to advantage (Hall).²

The growth of Cl. tetani is influenced greatly by the presence of associated micro-organisms. In sugar-free media Cl. tetani may grow in mixed cultures upon the surface of culture media in contact with air through the absorption of oxygen by the associated aërobes. But in dextrose broth the growth of Cl. tetani in mixed culture is likely to be inhibited by acid formation due to the associated organisms. Sugar-free media are therefore preferable for initial culture from contaminated material.

In pure culture, dextrose stimulates growth as in the case of other anaërobes, although dextrose and other carbohydrates are not hydrolysed by Cl. tetani. But sporulation is not inhibited by carbohydrates as with the fermentative anaërobes; on the contrary, sporulation of Cl. tetani is accelerated in dextrose broth.

The spores of Cl. tetani are highly resistant, Henrijean³ having kept them alive, protected from light and heat, for eleven years. Theobald Smith found a number of strains that resisted steaming at 100 C. for forty to sixty minutes. They are correspondingly more resistant to disinfectants than nonsporulating bacteria. Five per cent phenol is said to destroy them in ten to twelve hours; the addition of 0.5 per cent hydrochloric acid may reduce the time to two hours. Mercuric bichloride 1:1000 kills in two to three hours, with 0.5 per cent hydrochloric acid in thirty minutes. One per cent silver nitrate kills in one minute.

The minimum temperature for growth is 14 C., the optimum 37 C., and the maximum 43 C. Spore formation begins in about two days at 37 C., and in eight to ten days at room temperature.

¹ Bengtson and McCoy: Amer. Jour. Pub. Health, 1919, 9, p. 427.

² Hall: Jour. Amer. Med. Assoc., 1919, 72, p. 275.

³ Henrijean: Ann. de la soc. méd. chir. de Liège, 1891.

Growth in either plain or dextrose broth produces moderate turbidity with evolution of a very slight amount of gas and an alkaline reaction. Isolated colonies in deep dextrose agar are usually woolly and may be either flocculent or have an opaque center. A deep agar stab-culture resembles an inverted fir tree with delicate twigs and branches (Fig. 102). Growth in gelatin is slow at room

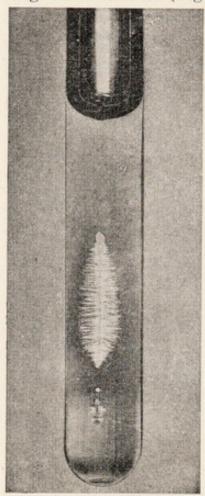


Fig. 102.—Clostridium tetani, gelatin stab-culture, six days (Fränkel and Pfeiffer).

temperature, the colonies first being visible in about three days; under a low power of the microscope filaments may be observed radiating from a central core; the gelatin is slowly liquefied. Gelatin cultures incubated at 37 C. for twenty-four to forty-eight hours usually fail to stiffen in the ice-chest. Coagulated protein, such as blood-serum and egg white, are very slowly liquefied. Deep brain and meat media may be slightly softened, but never digested fully; after several weeks a slight darkening occurs near the surface exposed to the air. There may even be a slight but distinct black discoloration which is intensified by metallic iron or certain iron salts in these media.

None of the following carbohydrates, glucosides, or alcohols is fermented by Cl. tetani: dextrose, levulose, galactose, maltose, saccharose, lactose, inulin, starch, mannitol, dulcitol, glycerol, salicin. Statements to the contrary in vari-

ous text-books are based probably upon the study of cultures containing other anaërobes.

Surface growth may be secured on slanted plain agar or bloodagar by the method of using alkaline-pyrogallol in the cotton plug.¹ Colonies appear in twenty-four to forty-eight hours; they are flat, rhizoid, or even feathery, and frequently exceed 1 mm. in diameter. Later the centers may become slightly raised. Bloodcultures show hemolysis.

¹ Kürsteiner: Centralbl. f. Bakt., II, 1907, 19, p. 99.

The products of growth include a small amount of gas which is derived from the protein metabolism, since the addition of sugars does not increase its volume. In gelatin and brain media gas is produced more abundantly than in ordinary peptone media. The composition of the gas is unknown. The gas has a characteristic odor unlike that of most other bacteria, aërobic or anaërobic. It certainly contains sulfuretted hydrogen, as can be shown by the blackening of lead acetate paper. Indol is also produced abundantly. But the most important metabolic product of growth in vitro or in vivo is the powerful toxin.

Tetanus Toxin.—Liquid cultures of Cl. tetani are usually highly toxic; 0.000,005 cc. or less may be fatal to a mouse weighing 10 grams. Hall¹ repeatedly produced toxin of which the M. L. D. for guinea-pigs was rarely more than .0001 cc. and usually less. Ruediger² was equally successful, and in one instance produced tetanus toxin of such strength that 1 cc. would have sufficed to kill 50,000 guinea-pigs.

Toxic cultures may be freed from bacteria by filtration through filters of the Berkefeld, Pukal, Nordmeyer, or Mandler type. A preservative such as tricresol or phenol, already diluted 1 to 10 in sterile distilled water, may be added before or after filtration, in a proportion of 1 part diluted antiseptic to 30 parts of toxin—thus giving a final concentration of 0.33 per cent. The filtered toxin may be preserved in tightly stoppered brown bottles in a dark, cold place, since it is highly unstable and is destroyed in aqueous solution by exposure to light, heat, and chemical action. Kitasato found that exposure of toxic broth filtrates to 55 C. for one and a half hours, 60 C. for twenty minutes, or 65 C. for five minutes reduced the potency considerably. Tetanus toxin is destroyed also by gastric and tryptic digestion. In immunizing horses for the production of antitoxin the toxic filtrate should be used in as fresh a state as possible.

Before the toxin can be so used it must be tested for potency; if 1 cc. of a 1:10,000 dilution kills a guinea-pig with tetanus symptoms, the filtrate may be accepted. The New York Board of Health generally uses two animals in a test, one inoculated with 1 cc. of 1:15,000 dilution and one with 1 cc. of 1:25,000. Tests

² Ruediger: Philippine Jour. of Sci., 1915, 10, p. 31.

¹ Hall, I. C.: Univ. of Calif. Pub. in Pathology, 1913, 2, p. 97.

of higher dilution are rarely required except for research purposes. Animal inoculation is the only means of determining the toxicity of tetanus culture filtrates; while filtrates are often gelatinolytic, the gelatinase is distinct from the toxin.¹

Brieger and Cohen² precipitated the toxin from a broth culture filtrate with ammonium sulfate and secured it as a dry powder free from phosphorus and nearly free from sulfur. It was fatally toxic for white mice in a dose of 0.000,000,05 gram. London and Aristovsky³ prepared tetanus toxin of even higher potency, 0.000,000,02 gram being fatal for white mice in two days. No one pretends to have obtained tetanus toxin in a pure state.

The amount of toxin required to kill different animals varies considerably, as the following comparative figures from Knorr⁴ show:

						Toxin
1	Gm.	of	horse is	destroyed	by	X
1	Gm.	of	goat	"	"	2x
1	Gm.	of	mouse	"	44	13x
1	Gm.	of	rabbit	"	"	2,000x
1	Gm.	of	hen	**	"	200,000x

Cold-blooded animals are not susceptible to tetanus toxin.

An incubation period is always observed, and this cannot be shortened beyond a certain minimal limit (in the mouse eight hours), even with large doses. Otherwise the incubation period and the time of death are inversely proportional to the amount of toxin injected.

While natural tetanus is usually the result of the subcutaneous introduction of tetanus spores simultaneously with foreign matter, including saprophytic and other pathogenic bacteria which may lead to suppuration or even gaseous gangrene, the local reaction is often insignificant and visible changes in the tissues are not marked. The specific bacillus multiplies locally, but does not spread throughout the body. The symptoms are attributable mainly to a disturbance of the central nervous system, as evinced in the characteristic muscular spasms, and depend upon the absorption of the toxic products of the bacilli.

¹ Fermi and Pernossi: Centralbl. f. Bakt., 1894, 15, p. 303.

² Brieger and Cohen: Ztschr. f. Hyg., 1893, 15, p. 8.

³ London and Aristovsky: Compt. rend. Soc. biol., 1917, 80, p. 756.

⁴ Knorr: Münch. med. Wchnschr., 1898, p. 321.

Meyer and Ransom¹ showed that tetanus toxin is absorbed by the end organs of the motor nerves only, and travels to the ganglion cells of the central nervous system not by way of the blood or lymphchannels, but along the axis-cylinders of the peripheral nerves. time consumed in this passage represents the larger part of the incubation period. The toxin may circulate for a time in the blood, but the only path to the central nervous system lies along the axiscylinders of the motor nerve tract. Intravenous injection of toxin into experimental animals causes only general tetanus, according to Ransom's later reiteration of this view.2 A cut nerve takes up the toxin very slowly and a degenerate nerve not at all. Section of the spinal cord prevents the toxin from reaching the brain. Meyer and Ransom believed that the spinal ganglion of the sensory nerve presents a barrier to the advance of the toxin, and that for this reason sensory nerves are unable to conduct the toxin. The remarkable excitation of the motor cells of the spinal cord that is observed in tetanus is unaccompanied by characteristic lesions.

Tetanus toxin possesses a strong affinity for the cells of the central nervous system, as evidenced by the now classic experiments of Wassermann and Takaki.3 A mixture of tetanus toxin and brain substance can be injected into an animal without producing any toxic effect, the toxin apparently entering into so firm a combination with some ingredient of the nervous matter that it is powerless to affect the living organism. As pointed out elsewhere (p. 178) this fact was regarded as strongly supporting the receptor theory of antitoxin production. Not only the central nerve-cells, but to some extent other tissue cells, are able to bind tetanus toxin. Subcutaneous inoculation is less likely to result fatally than direct inoculation into nerve tissues, for the reason that in the former case the cells of the liver, kidney, connective tissues, etc., anchor the tetanus toxin and prevent it from reaching the highly sensitive nerve-cells. The exquisite susceptibility of an animal like the guinea-pig to tetanus toxin is perhaps correlated with the inability of the nonnervous tissues to bind the poison, thus leaving the toxin free to make its way to the central nervous system.

Meyer and Ransom: Archiv. f. Exper. Path. u. Pharm., 1903, 49, p. 369.

² Ransom: Lancet, 1917, 2 [193], p. 928.

³ Wassermann and Takaki: Berl. klin. Wchnschr., 1898, 35, p. 5.

The muscular cramps which characterize tetanus are due to a particular substance, the so-called tetanospasmin. It is this poison which has such strong affinity for the nervous system of susceptible animals. The existence of a second toxin, tetanolysin, was first shown by Ehrlich. Tetanolysin, which is probably of less importance than tetanospasmin, exhibits special affinity for the red blood-corpuscles, with which it unites, producing laking. The two toxic bodies are quite distinct as regards combining relations and other properties, each giving rise to its specific antitoxin. There is no indication that tetanolysin has any significance in connection with the ordinary symptom-complex.

Pathogenicity for Man. —Tetanus is distinctly an intoxication dependent upon the development of infection in a deep, dirty wound. Such a wound may be relatively small. The wide-spread occurrence of the tetanus bacillus seems at first glance out of harmony with the relative infrequency of tetanus infection, but mere introduction of the bacillus into the body is not sufficient to produce the disease. The organisms must find favorable conditions for proliferation at the site of their penetration. Experimentally, pure cultures of tetanus rods or spores that have been freed from toxin cannot germinate in the animal body when inoculated in moderate numbers, and are hence innocuous. But simultaneous inoculation with common saprophytes, such as B. prodigiosus, or with certain chemical substances, such as lactic acid, enables the bacilli to grow and form toxin.

Common experience has taught that tetanus develops most frequently in connection with punctured or contused wounds, and especially when the tissues suffer considerable injury and much foreign matter containing tetanus bacilli is forced far into the wound. Conditions favorable to the development of tetanus occur in war wounds, in injuries to stablemen and others whose occupation brings them into frequent contact with the dung of animals, in injuries due to firecrackers and toy pistols, in septic midwifery, after hemostatic injection of gelatin, and, rarely, after the prophylactic and therapeutic use of biological products.

In the early days of the Great War tetanus took a tremendous toll. Sanford,² who reviewed the literature of tetanus in the war,

¹ An excellent presentation of this subject has been given by C. H. Browning: Brit. Jour. Surgery, 1916, 4, p. 14.

² Sanford: Internat. Assoc. of Med. Museums, Bull. No. 7, 1918, p. 365.

gives the incidence among the wounded men of the British forces as 1.6 per cent in September, 1914, and 3.2 per cent in October. The statistics for the French and German troops were unreliable, but previous to the general use of antitoxin the incidence of tetanus is known to have been high.

The high incidence in the first months of the Great War is probably connected with the highly fertilized character of the soil upon which the battles were fought, the intimate contact of the soldiers and their clothing with the soil in trench life, and the extensive use of high explosives in trench mortars and hand grenades. Wounds from bombs that exploded after striking the ground were much more prolific of tetanus and other anaërobic infections, such as gaseous gangrene, than rifle-bullet wounds. After the first two months of the war the prophylactic use of tetanus antitoxin in soldiers with lacerated wounds became wide-spread and effected a notable decrease in tetanus morbidity, as Cummings and Gibson¹ and Bruce² showed. The recognition of trench foot as a form of wound favorable to the development of tetanus also led to a reduction in mortality through the timely prophylactic use of tetanus antitoxin (from 75 per cent before 1917 to 16.6 per cent thereafter).

A high incidence of tetanus in the United States following Fourth of July celebrations in the first years of the twentieth century (see. p. 415) was assumed to be due to infection from the material entering into the composition of the explosives; but Wells³ failed to find Cl. tetani in 200 blank cartridges from five firms.

Hill⁴ has stated that in the Canal Zone about 86 per cent of the cases of tetanus occurred in children under one year of age and tetanus neonatorum was especially prevalent. In tetanus neonatorum septic midwifery is responsible for infection of the umbilicus, and this form of tetanus is especially rife among the negroes of the Southern States and in other races living under unhygienic conditions. Anders and Morgan⁵ collected statistics covering 4878 cases of tetanus neonatorum that occurred from 1870 to 1900. There is one famous case of a small island near Iceland with a total population of about 200 in which 185 newborn children perished from

¹ Cummings and Gibson: Lancet, 1919, 196, p. 325.

² Bruce: Jour. Hyg., 1920, 19, p. 1.

³ Wells: Phila. Med. Jour., 1900, 5, p. 1377.

⁴ Hill: Arch. Int. Med., 1911, 8, p. 747.

⁵ Anders and Morgan: Jour. Amer. Med. Assoc., 1906, 47, p. 2083.

tetanus during twenty-five years. Foreign investigators have recorded a few cases of tetanus following the hemostatic injection of unsterilized gelatin.

Before the necessity of rigid tests of biological products intended for parenteral prophylaxis or therapy was appreciated several outbreaks of tetanus occurred owing to contamination with tetanus spores or toxin. Thus a quantity of diphtheria antitoxin derived from a horse in the presymptomatic stage of tetanus was distributed in St. Louis before suitable tests were made, and the administration of this serum to diphtheritic patients was followed by fatal tetanus in a number of cases. Although the horse from which the serum was drawn showed no symptoms at the time of bleeding, it later developed tetanus and died. The amount of tetanus toxin in the serum was so great that 0.1 cc. killed a guinea-pig in a few days, and nearly all of the children who received as much as 10 cc. died.1 A similar outbreak occurred in 1902 at Mulkowal in British India during the course of a series of inoculations of Haffkine's plague prophylactic. In a total of 107 persons given the prophylactic, 19 developed symptoms of tetanus and died. The present requirements of the United States Public Health Service for sterility and safety (animal) tests of biological products which are intended for parenteral administration and are manufactured by concerns engaged in interstate commerce, are framed to preclude the recurrence of such deplorable accidents.

There is strong evidence that the cases of tetanus occasionally observed following vaccination against smallpox are rarely due to contamination in the vaccine virus. Francis² reported that in twelve years no commercial smallpox vaccine had been found naturally contaminated with tetanus. Moreover, it is difficult, if not impossible, to produce tetanus in laboratory animals with vaccine containing large numbers of tetanus organisms purposely placed therein. In addition, Anderson³ has pointed out that, while the average period from vaccination to onset of symptoms (83 cases) was over twenty days, the average mortality was slightly higher than the mortality of cases of tetanus due to other causes and having

¹ Bolton and Fisch: Trans. Assoc. Amer. Phys., 1902, 17, p. 462.

² Francis: U. S. Pub. Health Serv. Hyg. Lab. Bull. No. 95, 1914

³ Anderson: U. S. Pub. Health Serv. Reprint, No. 289, Pub. Health Reports, 1915.

an incubation period of ten days or less. Remembering the dictum of Hippocrates that "such persons as are seized with tetanus die within four days, or if they pass these they recover," and the comment of Hill,¹ that "a lapse of twenty-four hundred years and all our modern methods and advanced technic but little modify this statement," it seems likely that cases of tetanus occurring fifteen to twenty days subsequent to vaccination have not received their infection through the vaccine virus. As Geiger² and others have illustrated, ample opportunities for subsequent infection at the site of vaccination may occur. There is indeed convincing evidence that large insertions (more than one-eighth of an inch) and the use of shields and dressings favor the development of postvaccination tetanus.³

Pathogenicity for Other Animals.—Tetanus is not a rare affection in the horse, the symptoms and course of the disease being similar to the disease in man. Cattle, sheep, and hogs are less commonly affected. Experimentally, tetanus can be produced in mice and in guinea-pigs by inoculation of spores introduced upon splinters of wood, and also by injection of toxin. The feeding of animals with tetanus bacilli, spores, or toxin is without effect. Tetanus differs from most infectious diseases in that the diseased animal is not an appreciable factor in the spread of infection. A normal horse apparently may distribute tetanus germs quite as widely and freely as a horse sick with tetanus.

Immunity.—Man may acquire immunity to tetanus as indicated in the recent observations of Tenbroeck and Bauer,⁴ that while a large number of the inhabitants of certain regions in China discharge tetanus bacilli in their stools, tetanus seems to be no more prevalent there than in Europe, since those persons who harbor tetanus bacilli in their intestinal tracts also have appreciable amounts of tetanus antitoxin or tetanus agglutinins in their blood. Artificial immunity to tetanus depends upon the presence in the body of antitoxin which is able to neutralize the toxin. Antitoxin for therapeutic purposes is produced in healthy horses by active immunization through the repeated subcutaneous injection of increasing doses of toxic filtrates

¹ Hill: Arch. Int. Med., 1911, 8, p. 747.

² Geiger: Calif. State Jour. Med., 1917, 15, p. 152.

³ Armstrong, C.: Jour. Amer. Med. Assoc., 1928, 90, p. 738.

⁴ Tenbroeck and Bauer: Jour. Exper. Med., 1922, 36, p. 261, and 1922, 37, p. 379.

from broth cultures of Cl. tetani. The serum is standardized according to the method of Rosenau and Anderson, in which the American immunity unit was legally defined in 1907 as "ten times the least quantity of antitetanic serum necessary to save the life of a 350-gram guinea-pig for ninety-six hours against the official test dose of a standard toxin furnished by the Hygienic Laboratory of the Public Health and Marine Hospital Service." Thus the tetanus antitoxic unit has slightly more than ten times the experimental protective power possessed by the diphtheria antitoxic unit. An antitoxic unit strength of 900 per cubic centimeter may be attained exceptionally. Tetanus antitoxin is moderately stable, but should be kept cool and in the dark.

The mode of action of tetanus antitoxin, so far as it is understood, is similar to that of diphtheria antitoxin. The tetanus antitoxin circulates in the blood and is not taken up by either the central nervous system or the peripheral nerves. It can consequently bind only the toxin that is itself in the circulation. Its curative value is much less than that of diphtheria antitoxin, partly, perhaps, because the affinity of the tetanus toxin for nerve tissue is stronger than its affinity for the antitoxin, partly, perhaps, because of a relatively slight power of recuperation on the part of the central nervous system, and partly also because the toxin, when once incorporated in the axis-cylinders, is better protected from contact with the antitoxin than if it were in the circulation. According to Behring, there is no hope of success from subcutaneous injection of tetanus antitoxin after symptoms have existed for more than thirty hours. The main value of tetanus antitoxin therefore lies in its prophylactic use.

In veterinary practice, tetanus antitoxin has been used prophylactically with a high degree of success, as the references compiled by MacConkey² show. Vaillard collected the statistics from 1898 to 1906 of eight veterinary surgeons who inoculated 13,124 animals after operations or accidental wounds, without the occurrence of a single case of tetanus. During the same time two veterinary surgeons alone saw 139 cases of tetanus among animals which did not receive the treatment. The figures of Nocard and Labat added to Vaillard's data cover the cases of 16,917 animals receiving

¹ Rosenau and Anderson: Bull. No. 43, U. S. Pub. Health Serv., 1908.

² MacConkey: Brit. Med. Jour., 1914, 2, p. 609.

prophylactic injections; among them one single horse had tetanus. In this case the antitoxin was given five days after the wound and the attack was mild. The usual prophylactic dose in veterinary practice is 500 units.

It is believed that human tetanus may be prevented almost altogether by the routine administration of sufficiently large doses of antitoxin immediately in all cases of injury of a kind likely to provoke tetanus. The progressive reduction in deaths from tetanus following Fourth of July injuries—from 406 deaths out of 4449 injuries in 1903, to a negligible figure in each of the years 1911 to 1916—may be attributed in part to the increased prophylactic use of antitoxin, although the better and more general cleaning and drainage of such wounds are contributory factors, and the "sane Fourth" agitation has done much to decrease the total of such injuries.

Cases of atypical or chronic tetanus sometimes follow the prophylactic use of antitoxin. This local form of tetanus has been described by Courtois, Suffit, and Giroux.²

The curative value of tetanus antitoxin is still doubtful. Previous to the war Ashhurst and Johns,³ Irons,⁴ and Park and Nicoll⁵ all showed the possibility of reducing the mortality by rational treatment, in which intraspinal injections of antitoxin were a prominent feature. Antitoxin is never the sole reliance in treatment; thorough cleaning and disinfection of the wound are important as well as rest in bed in a dark, quiet room. The following figures on the occurrence and mortality of tetanus among the British troops indicate considerable gain in the efficacy of treatment:

Date	Cases	Deaths	Mortality Per Cent
1914	192	104	54.2
1915	134	75	55.9
1916	501	182	36.3
1917	353	68	19.2
1918	266	68	25.5

¹ Fourteenth Annual Summary of Fourth of July Injuries: Jour. Amer. Med. Assoc., 1916, 67, p. 676.

4 Irons: Jour. Amer. Med. Assoc., 1914, 62, p. 2025.

² Courtois, Suffit and Giroux: "Les formes anomales du tétanos," Paris, 1916.

³ Ashhurst and Johns: Amer. Jour. Med. Sci., 1913, 145, p. 806; 1913, 146, p. 77.

⁵ Park and Nicoll: Jour. Amer. Med. Assoc., 1914, 63, p. 235.

Yet Cummings and Gibson¹ and Bruce consider that the curative value of tetanus antitoxin has not been strikingly substantiated.

Tetanus antitoxin therapy, nevertheless, offers the only hope of specific cure and should always be used. Various routes of injection are recommended. Animal experiments support the intrathecal method which has the advantage of economizing serum, but most authorities think this should be supplemented with intramuscular and intravenous injections. An intravenous injection of 30,000 units maintains antitoxin in the tissues for thirty-nine days. In the majority of cases this single injection is absolutely sufficient.

Tulloch has shown the existence of four distinct serologic types of tetanus bacillus differentiated by the agglutination reaction. Tulloch found that Type 1 antitoxin protected against toxins of the other types. Additional agglutination types have been found by Coleman and Meyer² and by Coleman and Gunnison,³ but so far no one has discovered that the subdivision of this species into agglutination types has any practical significance. (See also p. 404.)

GASEOUS GANGRENE

Gaseous gangrene is a syndrome often following dirty, lacerated wounds, especially those involving fractures. It is a characteristic complication of war wounds and most of our present knowledge of gaseous gangrene was developed during the Great War. But this disease is by no means so rare in civil life as was formerly thought. The increased number of injuries in automobile accidents is responsible for many cases of gaseous gangrene. Men injured about railroad tracks, either as employees or as vagrants attempting to secure free transportation, seem particularly prone to develop gaseous gangrene if not properly and promptly treated, owing to the heavy fecal pollution of the tracks from passenger cars. It is coming to be recognized also that certain forms of peritonitis, appendicitis, intestinal obstruction, puerperal sepsis and post-operative infections (particularly in laparotomy) are closely related etiologically to gaseous gangrene. Cases occurring as operative infections have sometimes been traced to catgut.4 In its fulminating form the

¹ Cummings and Gibson: Lancet, 1919, 1 [196], p. 325.

² Coleman and Meyer: Jour. Infect. Dis., 1926, 39, pp. 328, 332.

³ Coleman, G. E., and Gunnison, J. B.: Jour. Infect. Dis., 1928, 43, p. 184.

⁴ See, for example, Meleney, F. L., Humphreys, F. B., and Carp, L.: Surgery, Gynecol. and Obstet., 1927, p. 775.

muscles become filled with gas and with a sero-sanguineous exudate depending for its character upon the associated micro-organisms, for gaseous gangrene is nearly always a mixed infection of aërobes and anaërobes of several species. Hall¹ has given the following useful table showing the chief pathological changes in guinea-pigs inoculated with various anaërobes or their toxins.

OUTSTANDING PATHOLOGICAL CHANGES IN GUINEA-PIGS INOCULATED WITH ANAËROBES OR THEIR TOXINS (Hall)

	Edema	Emphysema	Congestion	Histolysis
Cl. tetani	_	_	+	_
Cl. septicum	+	++	+++	+
Cl. welchii	++	+++	+	+
Cl. novyi	+++	_	-	-
Cl. sordellii	+++	-	+	_
Cl. histolyticum	_	-	++	+++
Cl. chauvei	+	++	+++	+
Cl. botulinum	_	_ /	+	-

Weinberg and Séguin² studied carefully 126 cases of gaseous wound infection other than tetanus. Of these, 21 were gangrenous, 35 phlegmonous. Six cases of the phlegmonous type yielded only aërobic bacteria. No case of gaseous gangrene was observed to be due to aërobes alone. On the other hand, among 30 cases showing only anaërobes, 24 were of the gaseous type. Thus aërobes are apparently able to produce gaseous phlegmons, but the number of such cases is small; gaseous infections are predominantly anaërobic and the rôle of aërobes is only accessory. Ninety cases contained both aërobes and anaërobes. The flora of anaërobic wound infection is usually polymicrobic, for of the 120 cases yielding anaërobes, 50 contained a single anaërobe, 70 more than one.

From these 120 cases Weinberg and Séguin isolated the following obligate anaërobes:

¹ Hall, I. C.: Jour. Bact., 1928, 15, p. 17.

² Weinberg and Séguin: "La Gangrène Gazeuse," Paris, 1918.

	Cases	Per Cent
Cl. perfringens (welchii)	91	72
Cl. sporogenes	34	27
Cl. oedematiens (novyi)	33	26
Cl. fallax	26	21
Cl. septicum	12	9.5
Cl. tetani	11	8.7
Cl. histolyticum	8	6.3
Cl. aërofoetidum	5	3.9
Cl. putrificum	2	1.6
Cl. bifermentans	2	1.6
Cl. tertium	1	0.8
Bacillus II of Ghon and Sachs	1	0.8

It is evident that the bacteriology of gaseous gangrene is complicated, and furthermore, that no etiologic claims can be based upon the mere occurrence of any organism in war wounds. While, as stated by Weinberg and Séguin, there is in effect a typical form of gaseous gangrene, (1) it is not always produced by the same microbe; (2) it is frequently caused by several associated agents; (3) it is often the complex result of the combined action of these principal agents with numerous other germs which play an indeterminate accessory rôle.

In Weinberg and Séguin's 50 mono-anaërobic cases six species were encountered, as follows:

Cl. perfringens (welchii)	7
Cl. oedematiens (novyi)	3
Cl. septicum	1
Cl. fallax	3
Cl. sporogenes	2
Cl. aërofoetidum	1

One or more of these six species occurred also in every one of the 70 cases having a poly-anaërobic flora; moreover, among the 12 anaërobes recovered, only the six just mentioned produced any of the symptoms of the gaseous infection when injected alone into laboratory animals. These organisms are the "anaërobic agents of the gaseous infections." In exceptional cases other organisms may be responsible for anaërobic wound infection; for example, Cl. sordellii (p. 429) has been found in wound infections in South America, in post-operative infections in a New York Hospital, in peritonitis in Colorado, and in ictero-hemoglobinuria of cattle in Nevada. Descriptions of six gaseous-gangrene anaërobes follow:

(I) THE VIBRION SEPTIQUE, CLOSTRIDIUM SEPTICUM

In 1877 and 1881 Pasteur, while studying anthrax, produced a septicemia in rabbits and guinea-pigs by the inoculation of putrid blood from a cow. The affection could be communicated from individual to individual, and a sporulating, motile, rod-shaped anaërobe, considered by him "one of the vibrions of putrefaction," was regarded as the cause of the septicemia and named "vibrion septique."

In 1881 Koch² described the pathologic effects of an organism which he declared identical with the vibrion septique of Pasteur. But this organism refused to produce a septicemia in experimental animals (guinea-pigs); and since its pathogenic effects were limited largely to the site of inoculation, Koch designated it "the bacillus of malignant edema."

Neither Pasteur's nor Koch's description would suffice now to identify with certainty the organism in question. Fortunately, the original strain of Pasteur's "vibrion septique" has been maintained in France, so that its outstanding characters are well known. But the lack of any such legacy from Koch in Germany, due to his failure to recover cultures, has led to an all but interminable discussion as to the properties of the "true bacillus of malignant edema." Weinberg and Séguin maintain that the term "bacillus of malignant edema" is untenable and should be dropped from bacteriologic nomenclature. The name "Bacillus septicus" was used for this species in 1892 by Arloing and appears to have been the first valid binomial applied to it.

The vibrion septique is a gram-positive, sporulating, spindle-shaped rod, or filament, motile in young cultures, with many peritrichal flagella. The ends are slightly rounded and the spores, which are oval, are usually median and swell the organism into a clostridium previous to their release (Fig. 103). Spores are formed only in media not containing fermentable carbohydrates in excess. The long chains and filaments of this organism which occur on the visceral surfaces of infected guinea-pigs are of high differential value. Capsules have never been observed.

¹ Pasteur: Bull. Acad. de méd., 1877, p. 781; 1881, 2s., 10, p. 176.

² Koch: Mitteil. aus dem kais. Gesundheitsamte, 1881, 1, pp. 1-49.

The vibrion septique is a strict anaërobe. It develops readily in deep brain or tissue media, producing gas rather abundantly; these media are not discolored, even in the presence of metallic iron. Broth cultures become quite turbid with gas and acid production in the presence of certain fermentable carbohydrates. Deep colonies in 1 per cent agar are transparent or semitransparent. Hemolysis occurs on blood-agar.

Gelatin is liquefied, but coagulated serum and other proteins are not digested and never blackened. Milk is acidified and the casein slowly clotted; the casein clot is not subsequently digested.

Fig. 103.—Clostridium septicum. Broth culture; × 1000 (McIntosh). (From Reprint No. 39, Medical Research Committee, Special Report, 1919.)

Indol is not produced. Dextrose, levulose, galactose, maltose, lactose, and salicin are fermented; media not containing one of these sugars support only slight growth. Saccharose, inulin, mannitol, and dulcitol are not fermented. Fermentation of salicin and non-fermentation of saccharose offer an opportunity for differentiation from Cl. chauvei, which it most closely resembles, since the action of Cl. chauvei upon these two substances is exactly opposite to that of the vibrion septique.

The pathogenicity of the vibrion septique is incontestable; this

bacillus has been incriminated in gaseous gangrene of man by Ghon and Sachs¹ and many others. It has been recovered from gaseous infections in cattle and, indeed, may be one of several organisms responsible for blackleg, which has been considered generally a specific disease due to Cl. chauvei. Meyer² recovered the same organism in certain gaseous infections of hogs; the disease has been reproduced in swine by inoculation. Many other gaseous infections in domestic animals are also due to the vibrion septique.

¹ Ghon and Sachs: Centralbl. f. Bakt., Abt. 1, Orig., 1903, 34, pp. 289, 398, 481, 609.

² Meyer, K. F.: Jour. Infect. Dis., 1915, 17, p. 458.

In experimental inoculation the vibrion septique cultures are strikingly pathogenic for chickens, pigeons, rabbits, guinea-pigs, rats, and mice. In such animals the organisms develop rapidly, producing gas and a reddish, serous edema. The bacteria invade the tissues and the circulation, producing a septicemia which is usually fatal within twenty-four to forty-eight hours, if at all; sublethal doses do not produce any reaction. Impression smears from the tissues, and especially from the liver, usually show elongated filaments or chains, whereas in animals killed by Cl. chauvei the organisms are usually single. The so-called "toxin" obtained by some workers is at best a weak lethal agent, requiring relatively large doses to kill, and not at all comparable with the toxin of Cl. tetani.

Robertson, by absorption tests, has demonstrated three subgroups of the vibrion septique among eleven cultures.

Weinberg and Séguin produced an antiserum in horses which was prophylactic, and in some degree curative. It was prophylactic for guinea-pigs in a dose of $\frac{1}{300}$ cc. against $\frac{1}{4}$ cc. (five fatal doses) of living culture, and for mice in a dose of $\frac{1}{400}$ against $\frac{1}{20}$ cc. (one fatal dose) of living culture. Its curative action was shown in a dose of $\frac{1}{4}$ cc. of serum injected as late as five hours after the inoculation of mice with $\frac{1}{10}$ cc. (five fatal doses) of living culture. Several American manufacturers of biological products are including antibodies for Cl. septicum in polyvalent anaërobic serums for prophylactic and therapeutic use in wound infections.

(2) CLOSTRIDIUM WELCHII²

Clostridium welchii was first cultivated by Achalme³ and supposed by him to be the cause of articular rheumatism. In 1892 Welch and Nuttall⁴ isolated a thick-set, nonmotile anaërobe, "B. aërogenes capsulatus," from the foamy organs of a cadaver. In 1893 Fränkel recovered an identical organism, which he called "B. phlegmonis emphysematosae," from several cases of gaseous phlegmon. In 1897 Veillon and Zuber found the same bacterium in

¹ Robertson: Jour. Path. and Bact., 1920, 23, p. 153.

² Three comprehensive reviews of the literature and bacteriology of Cl. welchii have appeared: Jablons: Jour. Lab. and Clin. Med., 1920, 5, p. 374; Esty: Jour. Bact., 1920, 5, p. 375; Simonds: Monograph No. 5, Rockefeller Inst. for Med. Res., 1915.

³ Achalme: Comptes rend. Soc. de biol., 1891, 13, p. 651.

⁴ Welch and Nuttall: Bull. Johns Hopkins Hosp., 1892, 3, p. 81.

various pathologic secretions and gave it the name "Bacillus perfringens." This last name is used generally in France and has the advantage of a binomial, but Migula in 1900 suggested "B. welchii," which is now most common in English-speaking countries.

Cl. welchii has a wide distribution in nature. It is prevalent in the intestinal tracts of man and animals, as well as in sewage and soil, and has been found on clothing and in fish, mollusks, milk, cheese, dust, water and a great variety of other substances. Some writers have proposed that the presence of Cl. welchii in water should be taken as evidence of sewage pollution, but the fact that the organism occurs abundantly in soil does not countenance the adoption of such a criterion.

Cl. welchii is a plump, nonmotile, gram-positive rod of variable length, occurring in chains and singly. Capsules are usually present in preparations made from the organs or body fluids. Spores are formed sparingly and only in the absence of fermentable carbohydrates; they are centrally located, rarely subterminal, and do not swell the rod in which they are formed. No flagella have been demonstrated and cultures are invariably nonmotile. Motility tests should be made with young cultures (six to twenty-four hours' incubation). Film preparations using a plain slide are adequate, but negative results are more dependable if observed with a warm stage.

Cl. welchii is a strict anaërobe. It grows readily in deep brain, meat infusion broth, agar, and gelatin media. Its growth in sugar-free media is greatly restricted. Optimum conditions of growth are provided by media containing fermentable carbohydrates, but such cultures are often short-lived owing to (a) the lack of spores, and (b) the action of acids upon the vegetative forms. Brain and meat media are not blackened normally, but the presence of metallic iron produces a distinct discoloration. Sulfuretted hydrogen is produced in small amount, but indol production is still a matter of dispute. Isolated colonies in deep, 1 per cent agar are compact, opaque, white or grayish-white biconvex discs.

Broth containing fermentable sugars becomes markedly turbid with abundant gas formation, and many cultures, possibly all at certain stages, become stringy and viscid. Gelatin is liquefied, but coagulated serum is not liquefied. Milk is fermented with a characteristic "stormy" evolution of gas, followed by coagulation of the casein due to acid formation, and the curd is shortly torn to shreds by the continued evolution of gas within (Fig. 104). The curd is not digested. This "typical" reaction is considerably modified by incomplete anaërobiosis, so that one may sometimes observe slow gas production, followed by the formation of a solid curd slightly, if at all, torn by gas.

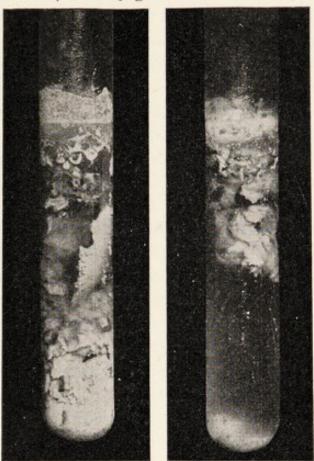


Fig. 104.—Typical reactions of Clostridium welchii in milk, forty-eight hours old (N. MacL. Harris prep.).

Simonds, Henry, and others have differentiated four subgroups of Cl. welchii according to their action on glycerol and inulin:

Туре	Glycerol	Inulin	Number of Cultures in Simonds' Series	Number of Cultures in Henry's Series
I	+	+	4	9
II	+	-	7	4
III	-	+	5	5
IV	_	-	4	2
Total			20	20

In milk, 3.8 times the volume of the milk may be evolved as gas. During the early stages of fermentation hydrogen predominates; during the later stages carbon dioxide is more abundant than hydrogen. Owing to its strong saccharolytic properties Cl. welchii is perhaps the best species to use in the preparation of sugar-free broth intended for fermentation test media. Koser² found it to be the active agent in a commercial leaven advocated for the preparation of salt-rising bread.

Pathogenicity for Man.—The causal relationship of Cl. welchii to gaseous gangrene has been abundantly established. Simonds, before the war, collected from the literature 175 cases (mortality of 45 per cent), and Weinberg and Séguin found the organism in 91 (72 per cent) of their 126 cases (p. 418). Apparently, Cl. welchii is the most important of the various causes of gaseous gangrene. While "it is as a cause of that most dreaded of wound complications, emphysematous gangrene, that B. aërogenes capsulatus especially claims the interest of surgeons" (Welch), the bacillus has also been observed in closed abscesses in uterine infections, and in infections of the gastro-intestinal, genito-urinary, and biliary tracts. Several observers have isolated it from the blood during life, but septicemia in man is much less common than in experimental guinea-pigs, although blood invasion occurs frequently in man during the agonal period or immediately following death. Study of the "foamy organs" sometimes observed at autopsy has shown that the presence of gas in the internal organs shortly after death is often attributable to an invasion by this organism. The development of gas in the liver is a striking phenomenon in many of these cases.

Herter³ has shown that in certain forms of disease the human intestinal tract contains an excessive number of bacilli belonging to this group. The characteristic type of "saccharobutyric putrefaction" induced by Cl. welchii may perhaps give rise to products that bring about an anemic condition. Many instances of anemia in children and adults seem to be accompanied by a chronic infection of the intestinal tract by Cl. welchii, and as the general condition of the patient improves there is a distinct reduction in the numbers of this organism found in the feces.

¹ Randall and Hall: Jour. Infect. Dis., 1921, 29, p. 344; 1922, 31, p. 326.

² Koser: Jour. Infect. Dis., 1923, 32, p. 208.

³ Herter: Jour. Biol. Chem., 1906, 2, p. 1.

Williams¹ has demonstrated the presence of Cl. welchii toxin in cases of intestinal obstruction and reports favorable results, with lowering of the mortality rates, from antitoxin therapy.

Feeding experiments in man and animals have usually proved harmless.

Pathogenicity for Animals.—Natural infection in the lower animals seems rare; local abscesses have been observed, however, in dogs and rabbits following injury. Certain strains of Cl. welchii are pathogenic under proper conditions for guinea-pigs, pigeons, and mice, less so for rabbits. Dead rabbits were used as a culture medium by Welch and Nuttall.² If a rabbit is killed a few minutes after intravenous injection of Cl. welchii and the body incubated at 37 C., gas is produced in a few hours throughout the body, and the phenomenon of "foamy liver" reproduced. This phenomenon is not strictly specific for Cl. welchii; it may be produced by similar inoculations with several other anaërobes, although the results are less striking.

The toxigenicity of Cl. welchii was long in dispute. Several observers demonstrated that a true antigenic, thermolabile, albeit a relatively weak, exotoxin is formed. For the production of this toxin Bull and Pritchett³ recommend the use of twenty-four-hour cultures grown at 37 C. in broth containing raw muscle tissue, and only minute quantities of dextrose. Filtrates of such cultures are hemolytic and toxic for pigeons in a dosage of 0.2 cc. or more. The toxin is thermolabile (70 C., thirty minutes), nondialyzable, and not dependent upon acidity, since neutralization fails to destroy it. It produces hemolysis in vivo by intravenous injection, and inflammation, edema, and necrosis by subcutaneous or intramuscular injection. It does not produce gas in the tissues; gas must be regarded therefore as a product of metabolic activity in the growth of the organism itself in a wound. Bull and Pritchett found quantitative but not qualitative differences in the toxins formed by a total of 27 strains of Cl. welchii. The toxin is antigenic and antitoxin produced from any single strain protects against toxin produced by any other strain.

Williams: Brit. Jour. Surgery, 1926, 14, p. 295.

² Welch and Nuttall: Bull. Johns Hopkins Hosp., 1892, 3, p. 81.

³ Bull and Pritchett: Jour. Exp. Med., 1917, 26, pp. 119, 367, 603; Williams: Brit. Jour. Surgery, 1926, 14, p. 295.

Agglutinins have been observed by several workers, but several careful investigators have failed completely to produce agglutinins even by prolonged immunization. Howard¹ succeeded, however, in distinguishing four groups among 60 strains by the agglutination reaction, but there was no apparent relation between these and the fermentive groups.

There are but few important references in the literature to active protective immunization against whole cultures of Cl. welchii. Robertson² concluded that "vaccination with killed or attenuated cultures of B. perfringens does not cause any appreciable increase in the resistance of guinea-pigs against a subsequent lethal dose of living bacilli" and that "recovery from a previous infection with the organism does not prevent a repetition of the illness upon re-inoculation with living bacilli; nor does it apparently in any way alter the symptoms or influence the course of the disease." Esty, however, produced protective immunity by the injection of sublethal doses of virulent cultures.

Bull and Pritchett actively immunized pigeons and rabbits by successive injections of carefully graded doses of toxic filtrates, and the blood-serum was found to neutralize the toxin *in vivo* and *in vitro* in multiple proportions and had both prophylactic and curative properties. Pigeons also could be immunized. Passive immunity in guinea-pigs lasts for about two weeks. Fortunately, antitoxic specificity for Cl. welchii relates to the species rather than to the fermentive type,³ thus reducing to a single strain the necessary representation of this organism in the polyvalent sera for gaseous gangrene.

(3) CLOSTRIDIUM NOVYI

The third important anaërobe in gaseous gangrene was probably first discovered by Novy⁴ in 1894 through a study of "malignant edema" that occurred in three guinea-pigs injected with non-sterile nuclein prepared from casein, and was designated by him "Bacillus oedematis maligni Nr. II." It was designated "Bacillus novyi" in 1900 by Migula. In 1915 Weinberg and Séguin isolated several strains of an organism which they first regarded as a new

¹ Howard. Ann. de l'Inst. Pasteur, 1928, 42, p. 1403.

² Robertson: Journal-Lancet, 1916, 36, p. 388.

³ Hall, I. C.: Jour. Infect. Dis., 1922, 30, p. 445.

⁴ Novy: Ztschr. f. Hyg., 1894, 17, p. 209.

species, "B. oedematiens," but which they later admitted was identical with Novy's bacillus. The French name has been widely used, but priority belongs to "Bacillus novyi."

Clostridium novyi is noteworthy not only as the third important pathogenic anaërobe in gaseous gangrene, but also because of its strong, soluble exotoxin, which compares in potency with the toxin of C. diphtheriae and for which an equally powerful antitoxin has been produced.

Morphology.—Cl. novyi is a rather thick $(0.8-1 \mu)$, flagellated, gram-positive rod of variable length $(2.5-10 \mu)$, occurring singly and in short chains. In cultures, navicular and curved forms are to be found; in animal transudates the shorter form predominates. Its numerous spiral flagella, which often become tangled in "bouquets," have received emphasis in nearly all the published descriptions. Yet the rods are quite nonmotile under ordinary conditions of examination, their movements being markedly inhibited by air. Subterminal spores are produced, but sparsely as a rule and best in nonfermentable media.

Physiology.—Cl. novyi is a strict anaërobe, said to require an unusual depression of oxygen tension for its cultivation. For this reason it has possibly been overlooked not infrequently in analyses of mixed cultures.

Young colonies in deep dextrose-agar have a yellowish, opaque, irregular center surrounded by a delicate corona of short filaments. Later the colony clears, the center becomes cloudy, and is surrounded in forty-six hours with a corona of tangled filaments. Surface colonies are extremely delicate, flattened, transparent, bluish gray, with irregular contours. Cl. novyi is slightly hemolytic.

In dextrose broth the usual initial turbidity of anaërobic cultures gives way after a few hours to a striking sedimentation. Gas and acid are formed and old cultures have a characteristic fetid odor.

Abundant growth requires the presence of a fermentable sugar. Henry¹ found dextrose, levulose, maltose, xylose, and starch fermented. There is not complete agreement as to the fermentation reactions. Bullock² states that glycerol, galactose, saccharose, lactose, mannitol, dulcitol, inulin, and salicin are not fermented.

¹ Henry: Jour. Path. and Bact., 1917, 21, p. 344.

² Bullock: British Medical Research Committee, Special Report Series, No. 39, 1919.

Cl. novyi can be easily distinguished from the vibrion septique and Cl. chauvei, which it most closely resembles, by its nonfermentation of lactose, and, in pathogenic cultures, by the character of its lesions in animals.

Pathogenicity for Man.—Weinberg and Séguin first showed the great importance of Cl. novyi as an active agent in human gaseous gangrene. It was present in 13 per cent of the first 100 cases reported by them. A later report gives an incidence of 26 per cent (33 out of 126) and, in 12 per cent of these, death was attributed directly to this organism owing to its purity in the infections (3 cases) or association with less pathogenic anaërobes. The disease is characteristically a toxemia, although septicemia is not rare. Like Cl. welchii, Cl. novyi is often a terminal invader. In pure infections there is less tissue destruction than with Cl. welchii or the vibrion septique; the postmortem findings consist mainly in a massive localized edema, with neither the extensive gas production of the former nor the sanguineous necrosis of the latter. These facts are in accord with its nature as a producer of strong exotoxin.

Pathogenicity for Animals.—Natural infections due to Cl. novyi have been recorded for guinea-pigs, cattle, horses and hogs. Guinea-pigs, rabbits, rats, mice, cats, sheep, horses, and pigeons are susceptible to small doses of culture. Subcutaneous, intramuscular, and intravenous inoculations reproduce the disease experimentally. Toxicity and pathogenicity are easily lost in this species. Novy's original strain, which still survives in several laboratories, has long since failed to kill experimental animals. This is also true of strains isolated within five or ten years.

The action of the toxin freed from bacteria is very similar to that of whole cultures. Sublethal, subcutaneous doses of toxin or culture produce a peculiar nonhemorrhagic local edema which reaches its maximum in two to three days. It may be followed by small, superficial hemorrhages, after which it is slowly absorbed, leaving a slightly sclerotic scar. Such lesions appear not to form open phlegmons, as in the case of Cl. welchii cultures, and may also be contrasted with those of the vibrion septique and Cl. chauvei, which, if they appear at all, are always fatal. Washed cultures are harmless.

Agglutinating antisera have been produced in rabbits, but are active for homologous strains alone.

Antitoxin has been produced in rabbits, sheep, and horses by successively increased doses of toxic filtrates. Tested in guineapigs, 0.0001 cc. was found to neutralize 2 fatal doses (0.02 cc.) of toxin; 100 fatal doses (2 cc.) were neutralized by 0.004 cc. of serum. The antitoxin possesses prophylactic and to some extent therapeutic properties under experimental conditions, and is now represented in several polyvalent American serums for anaërobic infections.

(4) CL. SORDELLII

Among pathogenic anaërobes of relatively rare occurrence may be mentioned the organism isolated by Sordelli in 1922 and later studied in detail and given the name B. sordellii by Hall and Scott. It is similar in its fermentation reactions to Cl. sporogenes and Cl. novyi, but is distinguished from the former by its relatively slight proteolytic power and its production of tyrosine-like crystals in deep brain medium, and from the latter by the digestion of proteins. It has occasionally been found, apparently as the causal agent, in wound infections, appendicitis and peritonitis. In one instance it appeared as a contaminant of catgut, giving rise to fatal postoperative infection. A soluble exotoxin is produced and from this an antitoxic serum can be prepared. The specific antitoxin for Cl. sordellii is now being incorporated in polyvalent anaërobic serum by several American manufacturers.

(5) CLOSTRIDIUM HISTOLYTICUM

Among the new species of bacteria discovered by Weinberg and Séguin² in war wounds, none is of more interest than Cl. histolyticum, so named because of its remarkable liquefying action upon living tissues. It occurred in eight instances of wound infection out of the 30 last cases studied by them. It has also been recovered from soil and human feces in California,³ and from five out of six African poisoned arrows studied by Hall and Whitehead.⁴

Morphology.—Cl. histolyticum is a gram-positive motile rod that forms subterminal clostridial spores. In smears from lesions it appears generally in the form of single or paired short rods with

¹ Hall, I. C., and Scott, J. P.: Jour. Infect. Dis., 1927, 41, p. 329.

² Weinberg and Séguin: "La Gangrène Gazeuse," Paris, 1917.

³ Peterson and Hall, I. C.: Proc. Soc. Exper. Biol. and Med., 1923, 20, p. 502; Hall: Proc. Soc. Exper. Biol. and Med., 1923, 21, p. 198.

⁴ Hall, I. C., and Whitehead: Jour. Infect. Dis., 1927, 41, p. 51.

rounded ends. The flagella, often more than 20 in number, are peritrichal.

Physiology.—Described originally as obligately anaërobic, Cl. histolyticum was later found capable of a delicate transparent aërobic growth upon the surface of meat infusion agar slants. It is therefore properly designated as a micro-aërophile or facultative anaërobe. Deep agar colonies vary, according to the consistency of the medium, from compact lobulate globules in 2 per cent agar to fluffy semitransparent or even cottony balls in lower concentrations. Under anaërobic conditions surface colonies on blood-agar slants are hemolytic dewdrops; aërobic colonies are also slightly hemolytic.

Coagulated proteins, such as egg, muscle and brain tissue, are slowly digested, and gelatin is liquefied. But the proteolytic activity is mild *in vitro* as compared with its tremendous digestive action *in vivo*. The action on milk is slow, but after several days a soft clot is usually formed and then slowly digested. Blanc and Pozerski² have shown that a proteolytic ferment is formed. White crystals, thought to be tyrosine, are produced in old protein cultures. No carbohydrates are known to be fermented and all cultures remain neutral or become alkaline. There is also only a slight amount of gas produced in cultures, or none at all.

Pathogenicity.—No instance of pure infection by Cl. histolyticum occurring naturally has been recorded. As generally happens in war wounds, Weinberg's and Séguin's cases were polymicrobic. The associated bacteria were both aërobic and anaërobic pathogens and saprophytes. Similar infections were observed in equines, and such mixtures show enhanced virulence in experimental animals.

Most pure cultures of Cl. histolyticum are pathogenic under experimental conditions for rabbits, guinea-pigs, mice, and rats, but there is considerable difference between strains. Subcutaneous inoculation of 1 or 2 cc. of a twenty-four-hour broth culture generally produces a local tumefaction followed in twenty-four to forty-eight hours by complete sloughing of the overlying skin; healing then slowly occurs, as a rule. Intramuscular inoculation causes swelling, followed by progressive myolysis. If the gluteus

¹ Hall, I. C.: Proc. Soc. Exper. Biol. and Med., 1923, 20, p. 501.

² Blanc and Pozerski: Compt. rend. Soc. Biol., 1920, 83, p. 1369.

muscle of a guinea-pig is selected for the inoculation, it may be entirely denuded from the bone within twenty-four to forty-eight hours. The tissues literally drip away. In some cases the limb may be disarticulated. Curiously there is often little or no intoxication of the animal, but death usually follows through peritonitis due to perforation of the peritoneum. There is occasionally invasion of the blood-stream, but generally septicemia does not occur. There is never any gas formation in such pure infections.

Germ-free culture filtrates have a lytic action which can be demonstrated if sufficiently large quantities (5 cc.) are injected. The most characteristic effect is the formation of a sterile hematoma filled with uncoagulated blood in which the red corpuscles are still intact.¹

Weinberg and Séguin have produced agglutinating and antitoxic serum.

(6) CLOSTRIDIUM SPOROGENES

Clostridium sporogenes, which in pure culture must be regarded as a relatively harmless organism, is included in the present discussion for three reasons: first, its historic interest in connection with the confusion long existing between the vibrion septique and the "true bacillus of malignant edema"; second, the important symbiotic rôle played by this and other proteolytic anaërobes in association with nonproteolytic organisms, and third, the great frequency of these organisms in nature.

It is useless to speculate upon the nature of the organisms concerned in Koch's "malignant edema," since specific bacteria were not isolated by him, and our present knowledge indicates that several species were probably concerned in the pathological conditions with which he dealt. Adamson² and Heller³ give a clear exposition of the historic confusion connected with Cl. sporogenes.

There is no question that Cl. sporogenes is one of the most widely distributed obligate anaërobes in nature. Adamson found it present in the feces of 7 out of 15 men, in the feces of the horse, and in garden soil. Many writers have recovered this or similar organisms from soil and water. It is apparently the most frequent anaërobic contaminant of laboratory cultures of anaërobes. Hall

¹ Peterson and Hall, I. C.: Proc. Soc. Exper. Biol. and Med., 1923, 20, p. 504.

² Adamson: Jour. Path. and Bact., 1919, 22, p. 345.

³ Heller: Jour. Infect. Dis., 1920, 27, p. 385.

found Cl. sporogenes in cultures masquerading under such names as Cl. welchii (5 strains), Cl. chauvei (1 strain), Cl. botulinum (4 strains), Cl. feseri (1 strain), Cl. tetani (2 strains), and in many of these there was no evidence of the presence of organism indicated by the label. These findings indicate one reason for the misconceptions and confusion in much of the older literature on anaërobes.

Morphology.—Cl. sporogenes is a highly motile, gram-positive, somewhat slender rod occurring individually, in pairs, in short chains, and sometimes in filaments.

Spores are formed with especial facility in sugar-free media, but occur also in media containing fermentable carbohydrates. They are subterminal and oval, and give the cell a spindle shape. Chains of rods occur in which some of the individuals bear spores and others do not, or they may all bear spores. In such chains the spores of any two adjacent rods may be proximal, alternate, or distal.

The resistance of the spores is very high, a fact that partly accounts for the great frequency with which Cl. sporogenes is isolated by methods involving selective heating, as well as the survival of this organism in many stock cultures of anaërobes bearing other names.

Physiology.—Cl. sporogenes requires strict anaërobiosis for growth, but its nutritional requirements are somewhat less exacting than those of the nonputrefactive anaërobes. All of the methods of cultivation described in this chapter are readily applicable to this species.

Isolated colonies in soft (1 per cent) deep agar are translucent and woolly in appearance with a compact center; in harder agar the whole colony tends to be compact. Surface colonies on bloodagar are hemolytic, transparent and usually rhizoid, or ameboid with a slightly raised center; they appear moist and at first may resemble minute dewdrops.

Deep brain or meat media give rise to gas formation (hydrogen and carbon dioxide) and a characteristic proteolytic digestion associated with a darkening or even blackening of the medium near the surface. An excess of fermentable sugar inhibits or delays this phenomenon; the presence of metallic iron or certain iron salts accelerates it. Gelatin and coagulated proteins are liquefied. Among the products of digestion, sulfuretted hydrogen, ammonia, amino-acids, and volatile acids are prominent. Indol production is in doubt.

Reports on the fermentation of various carbohydrates are conflicting. The gross action of Cl. sporogenes on milk is characteristic of several other putrefactive anaërobes as well. Growth at first is slow. Within forty-eight to seventy-two hours a soft clot is formed with little or no gas production. From that time on, a progressive liquefaction occurs with abundant gas and acid formation. After several weeks a milk culture appears to consist of a clear, straw-yellow fluid with a sediment in the bottom, the clotted casein having been completely digested. The cultural features of Cl. sporogenes closely resemble those of Cl. botulinum.

Pathogenicity.—There is no authentic record of a natural infection attributable to Cl. sporogenes alone. Weinberg and Séguin seem inclined to accept Metchnikoff's claim that Cl. sporogenes is a factor in certain intestinal disorders, but the frequent occurrence of this organism in the intestinal tract of healthy men and animals points against such a belief.

In experiments on animals rather large doses are required to produce lesions; less than 5 cc. of a young dextrose broth culture injected subcutaneously in guinea-pigs, which are most susceptible, usually causes only a local manifestation. In a few hours the hair immediately overlying loosens, the skin becomes gangrenous and raised slightly over an area of subcutaneous tissue digestion in which a small amount of gas appears. Such animals usually show no systemic involvement and the lesion heals in a few days, leaving a necrotic scar which heals slowly. Intramuscular injections are only slightly more severe.

The most obviously important of the pathogenic manifestations of Cl. sporogenes (and probably of other putrefactive anaërobes) is that of a mutual acceleration in metabolism which occurs during growth with the more definitely pathogenic anaërobes, especially Cl. welchii, the vibrion septique, and Cl. novyi. While the presence of various aërobes is in some degree stimulating to the growth of obligate anaërobes, due partly, as Pasteur suggested, to the absorption of oxygen, but also to other unknown factors, the presence of putrefactive anaërobes greatly enhances the pathogenicity of the nonputrefactive pathogens. Drawing an analogy between the action of high explosives and the violent exhibitions of

gaseous gangrene, certain bacterial forms might be said to act as "detonators." The putrefactive anaërobes supply in great abundance split protein products which the more highly saccharolytic organisms are unable to elaborate so rapidly. But while an admixture of a putrefactive culture reduces the minimum fatal dose of a nonputrefactive anaërobe experimentally, the admixture of sporogenes filtrate with toxic filtrates of Cl. welchii or Cl. novyi has no such action; in fact, there may be a destructive action.

BLACKLEG (CLOSTRIDIUM CHAUVEI) .

Blackleg, also known as quarter evil and symptomatic anthrax, is an important, wide-spread, acute disease affecting cattle. It occurs at practically every altitude of the world where cattle are kept and is prevalent throughout the United States with the possible exception of the Southern Atlantic and Eastern Gulf States. The name blackleg, like gaseous gangrene, has been applied to affections due to different microbes. In some cases the vibrion septique or rarely Cl. novyi are found, but the principal cause is Cl. chauvei. Just as Cl. welchii has never been incriminated in infections of quadrupeds, so Cl. chauvei has never been shown to be responsible for any human infection.

Bollinger, in 1875, and Feser, in 1876, observed the characteristic organisms in the crepitant swellings, and transmitted the disease by injecting the serous fluid from these swellings into healthy animals. The most important of the early contributions were those of Arloing, Cornevin, and Thomas, who firmly established the etiology in the cultivation of the organism now regarded as the principal cause, which they named Cl. chauvei, and with which they produced the characteristic disease by inoculation.

Cl. chauvei is a gram-positive, motile, sporulating rod of variable size. Individuals usually occur singly; in contrast with the vibrion septique there is little tendency to form chains or filaments. The spores are usually subterminal and oval, swelling the rod in which they occur. Sporulation is often preceded by a marked swelling of the vegetative rod (Fig. 105).²

Cl. chauvei is strictly anaërobic. Deep colonies in agar are minute, compact, and downy. On the surface of blood-agar slants,

¹ Arloing, Cornevin, and Thomas: "Le Charbon symptomatique du boeuf," Paris, 1887.

² Heller: Jour. Infect. Dis., 1920, 27, p. 385.

under alkaline pyrogallol, well separated colonies are flat, round or leaf-like, and hemolytic. By far the best medium is a ground meat or brain medium, in which rather abundant gas gives evidence of rapid multiplication. These media are never discolored or digested by pure cultures, but they may be slightly softened. Gelatin is liquefied, but coagulated proteins are not.

Dextrose, levulose, galactose, maltose, saccharose, and lactose are fermented, while inulin, salicin, mannitol, dulcitol, and glycerol

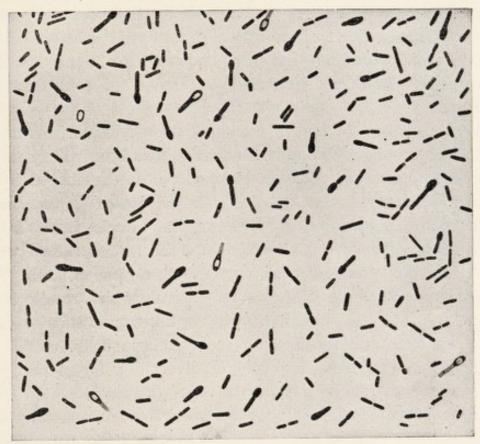


Fig. 105.—Clostridium chauvei from twenty-four-hour culture in dextrose agar, gram stain. (Ford, "A Text-book of Bacteriology.")

are not fermented. The exactly opposite reactions of the vibrion septique on saccharose and salicin serve to differentiate this closely related form.

Pathogenicity.—Natural infections due to Cl. chauvei occur principally in cattle. There are still several obscure features in the epidemiology. The disease occurs at special seasons of the year, is connected with certain localities, and is said to show a distinct predilection for the best young stock. The portal of entry is uncertain; whether it is minute wounds of the skin or through the gastro-intestinal mucosa is quite unknown. The work

of Meyer¹ and Heller also reopens the question whether Cl. chauvei causes spontaneous disease in domestic animals other than the cow.

Experimentally, Cl. chauvei is pathogenic for cattle, sheep, goats, guinea-pigs, and mice; horses, asses, hogs, rabbits, rats, and pigeons are somewhat refractory.

The symptoms in animals consist in crepitant localized swellings, which in natural infections occur on the thighs, neck, or shoulders. The animals become stupid, feverish, and anorectic. Treatment is rarely successful and sick animals usually die in from one to two days. The mechanism of the disease is that of progressive bacteremia. Toxin production has been reported by some European workers, but American bacteriologists have not confirmed their statements.²

Arloing, Cornevin and Thomas, of Lyons, France, invented a method of prophylactic inoculation which has been widely used in active immunization. The Lyons vaccine, as distributed by the Bureau of Animal Industry of the United States Department of Agriculture,3 is prepared as follows: The muscle tissue from a fresh blackleg tumor is pulverized in a mortar, extracted with a little water, and the fluid squeezed through a piece of cloth. This is then dried at 35 C. The dry brown scale which results is suspended in water and injected in appropriate quantities as determined by tests and specified on each package distributed. The dried material retains a high degree of activity for several years and can at any time be mixed with water (2 parts), heated for six hours at 95 to 99 C., and inoculated. Some commercial firms distribute this vaccine in the form of strings to be sewn into the flesh; others dispense the powdered vaccine in the form of pellets which are inoculated by means of a "pill gun." In 1901-02 (July 1st to July 1st) 565,628 cattle were vaccinated in the United States. During the previous season 14,817 deaths had occurred; in a similar period after vaccination the number of deaths was only 2902. Franklin and Haslam4 have shown that some of the commercial

¹ Meyer: Amer. Vet. Rev., 1915, 47, p. 684; Jour. Infect. Dis., 1915, 17, p. 458.

² Scott: Jour. Infect. Dis., 1926, 38, p. 262.

³ Norgaard: U. S. Dept. of Agric., Bur. of Animal Indus., Circ. No. 31, 1907.

⁴ Franklin and Haslam: Jour. Infect. Dis., 1916, 19, p. 408; 1920, 26, p. 424.

preparations are seriously contaminated and lack protective power.

Roux was able to immunize guinea-pigs by injecting the edema fluid, expressed from the flesh of guinea-pigs dead of blackleg and rendered bacteria-free by filtration through a Pasteur-Chamberland filter. Roux suggested that such a product might have value in the control of blackleg, and this was shown to be possible experimentally by Schöbl. In tests involving over 5000 guinea-pigs single prophylactic doses of 10 cc. were found to protect over 83 per cent against 5 lethal doses of a virulent culture. The field results with cattle are said to be highly promising.

The use of "culture filtrate" in immunization also originated with Roux (1888). Kelser gives the details of manufacture, which involve securing a bacteria-free filtrate from Cl. chauvei cultures in a ground meat peptone bouillon.

Goss² states that during twelve consecutive months in 1918–19 39,880 doses of blackleg filtrate (including "culture filtrate" and "tissue filtrate") were sent out by the Kansas Agricultural Experiment Station without a single loss from blackleg among inoculated stock being reported. The impression is prevalent, however, that, of the two preparations, the tissue filtrate is more efficacious.

Certain strains produce specific agglutinins which are active at least toward the homologous cultures.

BOTULISM (CLOSTRIDIUM BOTULINUM)

Botulism is a form of food poisoning characterized by great muscular weakness due to paralysis of the motor nerve centers. Failure of ocular accommodation, drooping of the eyelids (ptosis), difficulty in swallowing (dysphagia), loss of voice (aphonia), excessive salivation, or in some cases dryness of the mouth and throat (owing to salivary inhibition), obstinate constipation, and retention of urine are among the symptoms. In contrast with the common types of food-borne infection, gastro-intestinal symptoms are usually not prominent. There is rarely fever; unimpaired consciousness without ability of expression is the rule. The case mortality is high, death being ascribed to asphyxia of bulbar origin. Recovery, if it occurs, is complete but tedious; visional disturbances and muscular weakness persist for a long time.

¹ Kelser: Jour. Agric. Research, 1918, 14, p. 253.

² Goss: Kans. Exp. Sta. Circ., 1919, 75, p. 4.

Botulism was long regarded as a rarity in America, but numerous cases have been recognized since 1912, and a retrospective review of the literature indicates that some instances of so-called "ptomaine poisoning" were, in reality, botulism.

Botulism was apparently first definitely observed in Germany in 1735, but the disease did not attract much attention until the latter part of the 18th century, when a number of outbreaks following the eating of pig stomach and other large sausages earned for it the name (Lat., botulus, a sausage) now recognized as not alto-

gether appropriate.

The German poet and medical writer, Justinus Kerner, in 1820 and 1822 enumerated 174 cases with 71 deaths which had occurred in various epidemics in Württemberg since 1793. Three reasons were assigned for the apparently universal prevalence at that time: first, the great consumption of large sausages; second, the use of inferior materials in their manufacture; and third, primitive methods which failed to provide sufficient smoking. Mayer's report in 19132 showed that botulism has continued to be prevalent in Germany, as follows:

> 1822-1886: 238 cases, 94 fatal (about 39 per cent). 1886-1913: About 800 cases, about 200 fatal (25 per cent).

Most of the German cases were associated with the eating of sausages, especially the larger sizes; meat sausages were less frequently implicated than blood and liver sausages. Other hog products, pickled and smoked hams and salted pork, have been implicated and there are records of cases in Russia and Denmark, due to the eating of smoked and salted fish, which indicate botulism.3

The true etiology of botulism was established by van Ermengem following an epidemic at Ellezelles, Belgium, in 1894, where 23 persons became ill after eating pickled ham, and 3 died. From the residue of the ham and from the spleen and intestinal contents of one of the victims van Ermengem isolated the causative organism, which he named Bacillus botulinus.

The wide-spread occurrence of outbreaks in man and animals implies a wide distribution of this organism in nature. Previous to

¹ Jordan, E. O.: "Food Poisoning and Food-Borne Infection," Univ. of Chicago Science Series, 1931, p. 211.

² Mayer: Deut. Viertelj. f. öffentl. Ges., 1913, 45, p. 8. ³ Dickson: Rockefeller Inst. for Med. Res., Monograph No. 8, 1918.

1919 Cl. botulinum had been recovered from natural sources other than foods and cadavers only once, when Kempner and Pollack¹ in 1897 recovered it from the feces of a hog. Before this van Ermengem had failed repeatedly in making cultures from garden soil, street dust, pond mud, stable manure, cow, horse, and duck feces, and intestinal contents of fish. Dickson too was unsuccessful subsequently in his attempts to confirm Kempner and Pollack through the examination of a large number of hog feces. But Burke² isolated Cl. botulinum from fruits, hay, and vegetables, from the bodies of insects and spiders, and from the droppings of a hog that had recovered from botulism. Meyer and Dubovsky³ have found Cl. botulinum in soil samples from all parts of the United States and from many European countries. It seems to be more abundant along the Pacific Coast than in the Mississippi Valley and Great Lakes region.

CLOSTRIDIUM BOTULINUM

Morphology.—Cl. botulinum is a large, pleomorphic, grampositive, motile, sporulating rod, occurring singly, in pairs, and in chains (Fig. 106). Its size is usually 4 to 6 μ by 0.9 to 1.2 μ , but the dimensions are quite variable. There are 4 to 8 peritrichal flagella. The spores are subterminal and oval. Some strains produce them abundantly, others sparsely.

Physiology.—Since Cl. botulinum is an anaërobe, only preserved foods—not fresh foods—are concerned in the production of botulism, and only such methods of preservation as exclude oxygen. Large sausages, canned goods and silage fulfill these conditions.

Van Ermengem considered growth to occur only at room temperature, and on that account spoke of Cl. botulinum as a pathogenic saprophyte. It is now established that both growth and toxin production occur at 37 C. Indeed, growth is more rapid at the latter temperature.

Growth is readily obtained in the usual media for anaërobes. Dextrose broth is clouded and acidified, and gives rise to gas. Deep colonies in agar are translucent and globular and diffuse, or flat and heart-shaped or disk-shaped, according to the consistency

² Burke: Jour. Bact., 1919, 4, p. 541.

¹ Kempner and Pollack: Deut. med. Wchnschr., 1897, 23, p. 505.

³ Meyer and Dubovsky: Jour. Infect. Dis., 1922, 31, pp. 557, 600.

of the medium. Burke¹ distinguishes a type of colony peculiar to Cl. botulinum, with an inclusion of minute gas bubbles.

Brain, meat, and other coagulated protein media are blackened and digested. Gelatin is liquefied. The reaction upon milk exactly resembles that of Cl. sporogenes; there is slow coagulation of the casein, followed by rapid digestion accompanied by gas production. The various botulinum strains differ in their ability to attack egg white, and this was made the basis of a division (Bengtson) into an ovolytic (Cl. parabotulinum) and a nonovolytic (Cl. botulinum) group. In a general way the proteolytic power

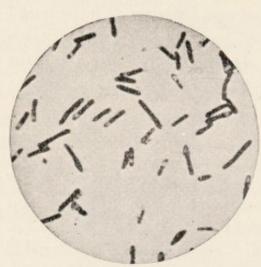


Fig. 106.—Clostridium botulinum, with spores. Pure culture. Van Ermengem prep. (Kolle and Wassermann).

corresponds with the type of toxin production (see p. 442), but the correspondence is not exact. Sulfuretted hydrogen is produced abundantly; indol production is distinct in certain cultures. Nitrates are rapidly reduced by certain strains. Monosaccharides are fermented, but not higher carbohydrates directly. Growth ceases in a 6 per cent salt solution, but not in a 25 to 50 per cent syrup. The critical $P_{\rm H}$ is about $P_{\rm H}$ 4.9.

Resistance of the Spores .-

It is obvious from its wide distribution in soils and elsewhere that Cl. botulinum may with considerable facility find entrance to food during or previous to preservation, and that the preservative processes should be such as to inhibit development and destroy the most resistant spores.

Since the majority of botulism cases in this country have been due to the use of underheated ("underprocessed") foods the chief practical problem is the determination of the maximum heat resistance of botulinum spores and the application of sufficient heat to insure their destruction. It is essential to obtain proper heat penetration and to allow for altitude.² Esty and Meyer³ have

¹ Burke: Jour. Bact., 1919, 4, p. 555.

² The temperature of boiling water at Denver is only about 95 C.

³ Esty and Meyer: Jour. Infect. Dis., 1922, 31, p. 650.

shown that the heat resistance of 109 tested strains varied greatly. Young, moist spores, probably those of the first generation, appear to be the most heat resistant. The hydrogen-ion concentration affects thermal resistance. Spores suspended in a phosphate solution of $P_{\rm H}$ 7.0 die when exposed as follows:

Minutes of Exposure	Temperature
4	120 C.
10	115 C.
33	110 C.
100	105 C.
330	100 C.

The long-continued dormancy of certain spores has an important bearing on conclusions drawn from experiments on heat resistance.¹

Toxin.—The powerful botulism toxin appears to be produced whenever abundant growth occurs, irrespective of the presence of fermentable carbohydrates. Formerly supposed to be formed only in media containing animal protein, Dickson² first showed that these may be replaced by proteins wholly of vegetable origin.

Botulism toxin differs from any other known bacterial toxin in that it is not destroyed by the gastro-intestinal secretions. Extremely potent when tested either orally or parenterally, a culture filtrate subcutaneously injected frequently kills guinea-pigs in a dose of 0.0001 cc.; when the filtrate is fed to guinea-pigs 0.001 cc. often proves fatal. Brieger and Kempner obtained a toxin of which 0.000,001 cc. would kill a 250-gram guinea-pig. Cl. botulinum may be likened to certain of the higher plants, such as poisonous mushrooms, the deadly night-shade, and the fungus of ergot, which are dangerous by virtue of the poisonous compounds that are generated in their cells or in the substances in which they proliferate.

The toxin is thermolabile and actinolabile. Van Ermengem found the toxicity of filtrates much diminished by heating at 50 C. for three hours, and destroyed by 80 C. for thirty minutes, and by boiling for at least ten minutes. The toxin is insoluble in alcohol, ether, and chloroform. It is destroyed by strong alkalis, but is resistant to moderately strong acids. Indeed Bronfenbrenner and

¹ Burke, G. S.: Jour. Infect. Dis., 1923, 33, p. 274.

² Dickson: Jour. Amer. Med. Assoc., 1915, 65, p. 492.

Schlesinger¹ found its potency enhanced by acidification, but Geiger and Gouwens² were unable to confirm this.

Antigenically there are two distinct types of botulism toxin produced by separate races of Cl. botulinum, which are otherwise so far as known indistinguishable. One of these races of Cl. botulinum (Type A) was found most commonly by Meyer and Dubovsky3 in the soil of the Rocky Mountain and Pacific Coast states, while Type B was found more often in the Mississippi Valley, Great Lakes region, and Atlantic Coast states. A toxin-producing anaërobe isolated principally from fly larvae possesses group characters similar to those of the other two types, but the toxin that it produces is neutralized only by the antitoxin derived from homologous strains. The fly-larva type has a lower thermal death point than Types A and B and in this respect resembles the original van Ermengem strain. It has been called Type C by Miss Bengtson.⁴ A South African strain first described by Theiler and Robinson⁵ has been further studied by Meyer and Gunnison⁶ and given the designation Type D. A comparative study of the four toxigenic types by Gunnison and Meyer7 shows that at least 15 subgroups can be distinguished by agglutination tests and 8 by fermentation reactions. All the Type A cultures studied by Gunnison and Meyer were actively proteolytic, as were the American Type B strains and one European Type B culture. All Type C strains, two European Type B strains and the African Type D strain were nonproteolytic.

Pathogenicity for Man.—Natural cases of botulism always follow the eating of preserved foods in which the germ has grown and produced its specific toxin. Many vegetable foods have been implicated, and fish and various pork products, in addition to sausages. The first record in the European literature in which a food not of animal origin (string beans) was thought to be responsible occurred in Darmstadt, Germany, in 1904,8 and it was suggested

¹ Bronfenbrenner and Schlesinger: Jour. Amer. Med. Assoc., 1922, 78, p. 1519.

² Geiger and Gouwens: U. S. Pub. Health Reports, 1923, 38, p. 2249.

³ Meyer and Dubovsky: Jour. Infect. Dis., 1922, 31, p. 559.

⁴ Bengtson, I. A.: U. S. Pub. Health Repts., 1923, 38, p. 340.

⁵ Theiler and Robinson: Rev. gén. de méd. vét., 1927, 36, p. 193.

⁶ Meyer and Gunnison: Jour. Infect. Dis., 1929, 45, p. 106.

⁷ Gunnison and Meyer: Jour. Infect. Dis., 1929, 45, p. 119.

⁸ Cited by Dickson: Jour. Amer. Med. Assoc., 1915, 65, p. 492.

in this case that some pork must have been cooked with the beans, as otherwise it was thought that the toxin of botulism could not have been formed. In the United States in 1914 Wilbur and Ophüls reported an outbreak due to home-canned beans which was but the first of many since recorded for such products, including corn, spinach, asparagus, pears, apricots, and beets.

In France, botulism is said to be very rare, and in Great Britain, the only known outbreak to date occurred in 1922.

Prior to 1919 there was no well authenticated record of botulism attributable to commercially canned goods. Spoilage in tin cans due to anaërobes is usually detected with ease in the "swells" which are eliminated before such products are sold. Weinzirl and Cheyney found living organisms, mostly sporulating aërobes, in merchantable canned goods, but although only a few obligate anaërobes and no pathogenic organisms were detected in their selected material, Burke² suggested that the possibility of botulism being conveyed by commercially canned foods was by no means ruled out.³

The first authentic instances of botulism due to commercial products in the United States were caused by California ripe olives in 1919–20. Up to January 1, 1924, there have been 129 outbreaks affecting human beings in the United States, nearly all having occurred since 1914; 435 persons were affected in these outbreaks and there have been 290 deaths, a case-mortality of 67 per cent. The majority of the outbreaks in which the faulty food was identified, were due to preserved vegetables. Precautions taken in the food-preserving industries seem to have been generally efficacious. Between March 30, 1926, and May 1, 1929, one outbreak of botulism has been traced to a commercially canned food (onions canned in Italy), while in this period there have been 14 outbreaks due to home-canned foods.⁴

Although Cl. botulinum is a putrefactive micro-organism, it is not always easy by the senses to detect spoilage in foods in which it has grown. This is especially true of those fruits and vegetables containing an excess of fermen able carbohydrates, where fermenta-

¹ Leighton, Gerald: "Botulism," London, 1923, pp. 237.

² Burke: Jour. Amer. Med. Assoc., 1919, 73, p. 1078.

³ Editorial, Jour. Amer. Med. Assoc., 1919, 73, pp. 1844, 1887.

⁴ These figures are from the records of Drs. Geiger and Meyer of the Hooper Foundation, San Francisco, California.

tion might tend to precede or indeed inhibit putrefactive processes. In many outbreaks unusual flavors have been noticed and commented upon; in others no indication of spoilage has been noted. Fatal cases of botulism have developed from simply tasting foods in order to test their quality.

Pathogenicity for Animals.—Associated with human cases of botulism there have been numerous outbreaks of limberneck among fowls fed spoiled home-canned foods. Hart reported a single outbreak among 800 fowls of which 643 died after feeding upon garbage to which spoiled home-canned beans had been consigned. Dickson records a total of 22 such outbreaks involving either chickens, turkeys, or hogs. Reports also indicate that horses, cattle, and goats can contract botulism. In Australia certain forms of forage poisoning in horses and cattle are regarded as a type of this disease (Seddon).

Rabbits, guinea-pigs, mice, apes, cats, and dogs are susceptible to experimental injection or feeding of toxin. The symptoms are similar to those of naturally infected animals. At autopsy an intense congestion of the internal organs, especially of the lungs, is observed, and microscopical examination reveals degenerative changes in the nerve-cells of the bulb and cord and in the salivary glands. Very small doses of the poison provoke local paralysis and lead to a cachectic condition which in some animals ends fatally after weeks or months.

Wilbur and Ophüls¹ and Dickson have emphasized the predominance of circulatory disturbances as evidenced in extensive thrombosis and hemorrhagic lesions. Dickson and Shevky² have proved that there is no effect either upon the sensory fibers of the peripheral nerves, or upon the smooth or the striated muscle cells, but that there is a block in certain parasympathetic motor fibers as well as upon the nerve endings of the voluntary system.

Edmunds and Long³ consider that the essential action of the botulinum toxin is a more or less complete paralysis of the motor nerve-end plates in the striated muscles and in the diaphragm.

Immunity.—Kempner in 1897 first produced botulinum antitoxin in goats, 1 cc. of serum protecting guinea-pigs against 100,000

Wilbur and Ophüls: Arch. Int. Med., 1914, 14, p. 589.

² Dickson and Shevky: Jour. Exper. Med., 1923, 37, p. 711; 1923, 38, p. 327.

³ Edmunds and Long: Jour. Amer. Med. Assoc., 1923, 81, p. 572.

minimum lethal doses. Kempner failed to immunize rabbits actively, but Forssman and Lundstrom¹ succeeded with both guinea-pigs and rabbits by starting with heat-attenuated toxin.

The net result of these attempts has been to confirm the conclusion of Leuchs² that there are two distinct antigenic types of botulinum toxin. It is remarkable that while there is no known constant morphologic or cultural distinction in the organisms producing these separate types of toxin, and no apparent difference in their action upon the animal body, they appear to be as distinct antigenically as diphtheria toxin and tetanus toxin.

More than four times as much antitoxin is required to neutralize a given test dose of toxin *in vivo* as *in vitro*. The antitoxin is to some degree effective when swallowed.

All investigators of botulinum antitoxin have been able to protect experimental animals against fatal doses of toxin providing sufficient antitoxin was administered previous to the onset of symptoms, but not afterward. The situation is similar to that in tetanus, except that there is relatively little opportunity to foresee the occurrence of botulism in a given individual. Dickson has suggested that in some cases the death of chickens from limberneck might serve as a warning signal.

There are no well controlled data showing any curative value of antitoxin in natural cases of botulism, although antitoxin has been used a few times, and should be administered always in the hope of turning the balance in favor of recovery.

Forssman and Lundstrom: Ann. de l'Inst. Past., 1902, 16, p. 294.
 Leuchs: Ztschr. f. Hyg., 1910, 65, p. 55.

CHAPTER 22

MYCOBACTERIUM-(1) THE TUBERCLE BACILLUS

Genus: Mycobacterium. Slender rods that stain with difficulty, but once stained resist decolorization with mineral acids—that is, are acid fast. Cells frequently show irregularity of form and occasional branching. Nonmotile, gram-positive; no spores; aërobic. Growth on media slow. Several species are pathogenic for animals. Type species: Mycobacterium tuberculosis.

ALTHOUGH it is still true that few diseases are so wide-spread or occasion so much distress and economic loss as tuberculosis, recent progress in combatting this disease has been highly encouraging. In the United States tuberculosis mortality has shown an

Fig. 107.—Mycobacterium tuberculosis, human, in pus from lung. Zettnow prep. (Kolle and Wassermann).

almost continuous decline since 1911, the death-rate for the registration area falling from 159.2 per 100,000 population in 1911 to 80.8 in 1927. It can hardly be doubted that much of the decline in this disease occurring in the past few decades should be credited to improvement in living conditions and to the extension of sanatorium treatment.

The fact that tuberculosis is a specific inoculable disease was shown by Villemin¹ as early as 1865, but Robert Koch in 1882

first established the etiology of tuberculosis on a solid basis.² Koch succeeded (1) in demonstrating by special staining methods that the tubercle bacillus was present in a great variety of affected organs and tissues; (2) in securing pure cultures of the bacillus in the face of great technical difficulties; (3) in performing successful inoculation experiments with the isolated cultures.

Morphology.—In film preparations, made either from sputum or from cultures, the human tubercle bacillus (Fig. 107) ordinarily

¹ Villemin: Gaz. hebdom., 1865, 2 S., 5.

² Koch: Berl. klin. Wchnschr., Apr. 10, 1882, 19, p. 221.

appears as a slender rod, often slightly curved, about 2 to 4 μ long and 0.3 to 0.5μ broad. The individual rods may occur singly, but often lie in small heaps. A capsular substance is produced by tubercle bacilli in artificial cultures; it is more abundant in human than in bovine strains, and the amount becomes greater with the length of artificial cultivation on serum. In cultures also a remarkable filamentous growth has been observed, and in sputum long branching, hypha-like filaments, sometimes with swollen ends, have been found. By some observers these clubbed and branching forms are regarded as abnormal or involution forms, possessing no significance in the normal life of the tubercle bacillus. Others, and perhaps the majority, consider that the branching filaments seen in cultures represent normal morphologic characters of the tubercle micro-organism. In the animal body likewise a stellate actinomyces-like (p. 545) growth is sometimes produced by the tubercle bacillus. Some bacteriologists, on the basis of these findings, class the tubercle bacillus either with the Actinomyces (page 545) or with the true molds, while others place the tubercle bacillus and certain closely allied micro-organisms in a special group holding an intermediate position between the ordinary bacilli and the Actinomyces. Whatever be the final outcome of taxonomic discussion, the tubercle bacillus with its near allies must be regarded as standing rather apart from most other pathogenic bacilli, and possibly may eventually turn out to be "the parasitic growth-form of a higher mold." It must be added that certain observers claim that a filterable stage of the tubercle bacillus occurs.1

The minute structure of the tubercle bacillus has been the object of much discussion. Vacuoles often occur so abundantly as to give to the rod the appearance of a chain of cocci, and these unstained spaces were sometimes mistaken for spores by the earlier students of the organism. More recently several observers have described small, deeply staining bodies within the cell, which in some of their morphologic and tinctorial characters resemble the spores formed by other bacteria. These spore-like bodies, however, display little or none of the heightened resistance to the action of heat and

¹ Cooper, F. B., and Petroff, S. A.: Jour. Infect. Dis., 1928, 43, p. 200; Jour. Amer. Med. Assoc., 1929, 93, p. 320; Calmette, A., Valtis, J., and Saenz, A.: Jour. Amer. Med. Assoc., 1929, 92, p. 2086. See, however, Larson, A.: Jour. Preventive Med., March, 1931, 5, p. 161.

chemicals which is so characteristic a feature of other bacterial spores. The true nature of these structures is, therefore, still problematic.

Staining.—The tubercle bacillus stains very imperfectly or not at all with the ordinary aqueous aniline dyes, a fact that doubtless delayed the discovery of its presence in the tissues. If, however, the action of the dye is intensified by the aid of a mordant or by heat, the bacilli take on a deep coloration. Once stained, they retain the color tenaciously, even when treated with alcohol or strong mineral acids. This behavior is so characteristic that the tubercle bacilli, together with certain other related organisms, are

Fig. 108.—Tubercle bacilli in phthisical sputum (Beck).

usually designated as "acid-fast bacilli." Some investigators, however, have described forms or phases of the tubercle bacillus which are not acid-fast.

The examination of sputum for the tubercle bacillus is sometimes carried out with the use of antiformin. This liquid, which is composed of a mixture of 7.5 per cent sodium hydroxide with sodium hypochlorite in such an amount that 100 grams of antiformin can liberate 5.3

grams of chlorine, was first utilized by Uhlenhuth² in bacteriological studies. The intense oxidizing power of antiformin enables
it to dissolve many kinds of organic matter and to destroy most
forms of micro-organisms. The organisms of the acid-fast
group, however, resist the dissolving action, probably because they
are enveloped in a waxy capsule. Hence mixing antiformin with
sputum leads to a complete dissolution of the mucus at the same
time that it leaves unaltered the staining qualities of the tubercle
bacillus. The method of procedure is as follows: The sputum is
best placed in a conical glass and, if very tenacious, diluted with
distilled water known to be free from acid-fast organisms. Add
one-fourth its volume of antiformin and stir thoroughly, if necessary

¹ Von Behring, "Tuberculosis," 6, No. 9.

² Uhlenhuth: Ber. klin. Wchnschr., 1908, 45, p. 1346.

STAINING 449

increasing the amount of distilled water and antiformin until complete solution is effected. When complete digestion is brought about, add an equal volume of 95 per cent alcohol, stir, and allow the mixture to stand for eighteen to twenty-four hours. Films may be made from the sediment in the usual way. By use of antiformin the tubercle bacillus has been frequently demonstrated in sputum that has given negative results when examined by other methods.

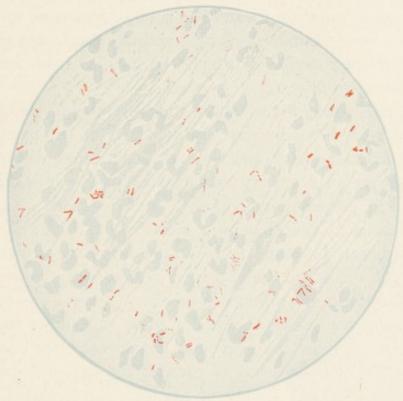


Fig. 109.—Mycobacterium tuberculosis in sputum, Ziehl-Gabbett; \times 650 (Cornet and Meyer).

Staining may be accomplished by the use of Ziehl's carbol-fuchsin solution (p. 53), the slide being flooded with stain, which is then boiled for one-half minute. Follow this treatment by decolorization with acid alcohol (2 per cent HCl in 80 per cent alcohol), and contrast staining with methylene-blue (Fig. 109). The peculiar resistance of the tubercle bacillus to decolorization seems to depend upon a relative impermeability of the cell-body to acids. The constituent of the cell especially responsible for this behavior is an alcohol, mykol ($C_{29}H_{56}O$?), which is perhaps in part present in the bacterial body as an ester of some higher fatty acid.¹ It has been

¹ Tamura: Ztschr. f. physiol. Chem., 1913, 87, p. 85.

claimed that other kinds of bacteria can be made to acquire "acidfast" qualities by being grown upon media containing fatty ingredients. When tubercle bacilli are mechanically disintegrated the specific staining reaction is lost.

Cultivation.—It is not easy to cultivate the tubercle bacillus directly from tuberculous lesions. Growth fails to take place on ordinary nutrient agar or gelatin, and at first is slow and scanty even on the most favorable media. After cultivation has once succeeded, transplantation to another tube of the same medium will result in a more abundant growth, and in subcultures growth will take place upon media on which the bacillus fresh from animal tissues fails to proliferate.

Koch first succeeded in cultivating the tubercle bacillus by the use of inspissated blood-serum, and this medium still remains one of the most satisfactory for isolation. Once cultures are obtained they can be grown on a variety of substrata. Glycerol-agar (Nocard and Roux),¹ prepared by adding 2 to 5 per cent of glycerol to ordinary nutrient agar, has been widely used. Upon this medium subcultures can be made and a more luxuriant growth secured than by the continued use of serum; glycerol-agar, however, is not suitable for effecting a primary isolation. Glycerol-broth is a favorable medium for well-established cultures and allows the development of a heavy growth. Care must be taken that the layer of broth is shallow and fosters a surface growth, since the tubercle bacillus requires an abundant supply of oxygen. Glycerolated potato is used by many French bacteriologists.

Dorset's simple egg medium² is a satisfactory medium for maintaining continuous growth. Fresh, thoroughly cleansed eggs are broken into a sterile flask and the yolks and whites thoroughly mixed without frothing. The medium is placed in sterile tubes, about 10 cc. in each, and hardened in the inspissator in a slanted position by heating on two successive days from four to five hours at 70 C.

The modified egg medium devised by Petroff is today commonly used for isolation. Petroff's medium is prepared with meat extract (500 grams veal or beef to 500 cc. of 15 per cent glycerol in water,

¹ Nocard and Roux: Ann. de l'Inst. Past., 1888, 1, p. 19.

² Dorset: Amer. Med., 1902, 3, p. 555.

extracted for twenty-four hours, pressed out and sterilized) and whole egg with the addition of gentian violet.

C	abie (Centimeters
Meat extract (as above)		100
Whole egg		200
1 per cent alcohol solution gentian violet		1

Tube and heat for three-fourths hour at 80 to 85 C. on three successive days.

Various synthetically prepared media have been used by Kühne¹ and others. Proskauer and Beck² found growth to occur in a solution of the following simple constitution:

	Per Cent
Ammonium carbonate	. 0.35
Mono-potassium phosphate	. 0.15
Magnesium sulfate	. 0.25
Glycerol	. 1.5
Water	. 97.8

Recent observers have found that after the original isolation the tubercle bacillus grows well in a variety of simple synthetic media.

Glycerol, however, seems to be essential for good growth (Long). Ammonium oxalate, succinate and tartrate and other ammonium salts promote growth. There is nothing distinctive in the mineral requirements of the tubercle bacillus.

Biological and Chemical Characteristics.—Upon the surface of blood-serum and glycerol-agar colonies of the tubercle bacillus appear in about ten days as minute, barely visible grains. They are dull and dry in appearance and irregular in outline. In cultures fresh from the tissues the colonies usually remain small

Fig. 110.—Mycobacterium tuberculosis, human source. Mature colony on glycerol-agar. Actual size (Swithinbank and Newman).

and separate without confluence, but in subcultures, especially upon glycerol-agar, the growth is more luxuriant and the surface of the medium becomes covered with a wrinkled film (Fig. 110). The color of the growth is a lusterless white, often becoming faintly tinged with brown or yellow in old cultures. On egg medium the colonies ultimately become confluent and the growth is rather profuse. In

¹ Kühne: Ztschr. f. Biol., 1894, 30, p. 221.

² Proskauer and Beck: Ztschr. f. Hyg., 1894, 18, p. 128.

glycerol-broth growth may occur in separate patches on the surface, or may form a continuous, heavily wrinkled pellicle. Sometimes masses of bacilli sink to the bottom of the fluid as a lumpy sediment. A peculiar almond-like odor is often noticeable.

Whatever the medium employed, the temperature range within which growth occurs is a narrow one. The best development occurs between 37 and 38 C.; growth usually ceases above 42° and below 28°, although in glycerol-potato broth Sander¹ found growth taking place at a temperature as low as 22 or 23 C. Unlike most bacteria, the tubercle bacillus grows better on media of a slightly acid reaction; this is another feature in which it shows affinity with the molds.

The chemistry of the tubercle bacillus has received particular attention at the hands of investigators. An extensive and valuable critical review of the chemistry of tuberculosis has been given by Wells, DeWitt, and Long.² The waxy substance in the cell, to which the tubercle bacillus owes its characteristic staining qualities, is believed to be, in large part, either an alcohol or a combination of certain fatty acids (chiefly palmitic acid) with the higher alcohols. The tubercle bacillus differs from the majority of bacteria in having a relatively high lipin content, perhaps 40 per cent of the dry weight of the bacillus consisting of fat-like substances. The bulk of the lipin is the wax to which reference has been made.

About half the dry weight of the tubercle bacillus is protein, and a considerable portion of the protein is combined in the form of nucleo-proteins. The nucleic acid of the tubercle bacillus is of the animal and not the plant type. The ash varies with the composition of the culture medium.

Powers of Resistance.—Although multiplication of the tubercle bacillus can take place, as a rule, only within a narrow range of conditions, the vitality of the bacillus under adverse circumstances is considerably greater than that of most pathogenic bacteria. In putrefying sputum it may occasionally remain viable for weeks or even months. Musehold³ found it in the soil of sewage fields and in sewers connected with sanitaria for consumptives. Living

¹ Sander: Arch. f. Hyg., 1893, 16, p. 238.

² Wells, H. G., DeWitt, L. M., Long, E. R.: "The Chemistry of Tuber-culosis," 1923, pp. 447.

³ Musehold: Arb. a. d. k. Gesund., 1900, 17, p. 56.

tubercle bacilli have also been found in river-water contaminated by sewage from a health resort.¹

Considerable resistance to desiccation is shown. The bacilli in masses of dried sputum kept in a cool dark place may retain their virulence for as long as six to eight months, but not for much longer. Sputum that is completely dried, so that particles are capable of floating as dust in the air, may be infective for eight to ten days, rarely longer.

Toward dry heat the bacilli are highly resistant, being able, in dried sputum, to withstand a temperature of 100 C. for an hour. When they are heated while suspended in a fluid, such as water, broth, or milk, Theobald Smith has shown that death occurs in fifteen to twenty minutes at 60 C. If, however, milk is heated at this temperature in an open vessel, the pellicle that forms in contact with the air may protect the bacilli against a temperature of 60° for as long as an hour. Pasteurization, to be effective, therefore, must be carried out in a closed vessel at 60 C. for twenty minutes. Boiling for five minutes completely destroys the vitality of the bacilli. As is the case with most bacteria, extreme cold is not germicidal.

Carbolic acid (5 per cent solution) added to sputum requires a long time (twenty-four hours) to kill the bacilli because of its slow penetration. Gastric juice, because of its acidity, impedes development, but does not kill all bacilli introduced into the stomach; an experiment has been recorded in which the gastric juice of a dog did not destroy the vitality of tubercle bacilli in eight hours.

Exposure to direct sunlight readily effects the destruction of tubercle bacilli, especially in the presence of abundant oxygen supply. The conditions of exposure determine the time necessary to produce death, but, broadly speaking, bacilli from cultures are killed in a few minutes to two hours, while bacilli in sputum require twenty to thirty hours, or even longer.

Tuberculous Infection in Man.—Practically every organ and tissue of the human body may be invaded by the tubercle bacillus. As is well known, the lungs constitute the seat of the most common lesions, but the intestines and mesenteric glands, the serous membranes, the larynx, the skin, the lymph-glands of the head and neck, the portal glands and liver, the bones and joints, and the urogenital

Brown, Petroff, and Heise: Amer. Jour. Pub. Health, 1916, 6, p. 1148.

system are frequently attacked. In ordinary cases of tuberculosis there is no conclusive proof of the frequent and continued presence of tubercle bacilli in the blood. Statements of positive findings seem to be due to the presence of acid-fast bacilli in the distilled water used for making the microscopical examination.1 Tubercle bacilli are sometimes present in the gall-bladder and make their way into the intestine with the bile; they may occur in feces in considerable numbers. Lesions caused by the tubercle bacillus, in whatever part of the body they occur, usually possess a definite although not absolutely characteristic appearance and histologic structure. Small nodules or tubercles, plainly visible to the naked eye, are so uniformly observed in all advanced infections with the tubercle bacillus that their presence has given the name to the disease. The young tubercle, according to the opinion of most investigators, originates from the fixed cells surrounding the invading bacilli. By the proliferation of the fixed cells, elongated or "epithelioid" cells are developed in more or less definite concentric layers and come to form the substance of the tubercle. So-called "giant-cells" soon appear in the developing tubercle in the majority of cases. The giant-cells are huge multinuclear masses of protoplasm, of oval or irregular shape, and have been held to be especially distinctive of true tubercle formation, although it is doubtful if this criterion can be maintained. As a rule, a giant-cell is produced by the fusion of a number of epithelioid cells, although some observers maintain that it is of single cell origin. While the formation of epithelioid and giant-cells is going on, leukocytes (at first polymorphonuclear leukocytes and later lymphocytes) which have wandered out of the blood vessels cluster around the periphery of the tubercle. Degeneration of the tubercle eventually sets in, the central portion becomes necrotic, and this is followed by caseation and then by softening of the caseous mass. Finally, in many cases a deposit of calcium salts takes place in the tubercle, converting it into a hard, dry, friable body which may become encapsulated and completely walled off from the surrounding tissue.

The early stages of tubercle formation, which are characterized by cell proliferation and leukocytic infiltration, are probably to be referred to a chemical or mechanical stimulus caused by the presence of the bacilli; the later changes, leading to cell necrosis and caseation,

¹ Brem: Jour. Amer. Med. Assoc., 1909, 53, p. 909.

are reasonably attributed to the action of the bacterial products. The tuberculin reaction, that is, the interaction between antigen and highly sensitized tissues, certainly plays a great part in causing necrosis. The hardening, drying and shrinking of a tubercle probably betoken a healing process. Coalescence or conglomeration of tubercles commonly takes place, the confluent masses sometimes reaching a diameter of 4 or 5 centimeters. In severe cases there occurs a general diffusion of small tubercles of the size of millet-seeds (acute miliary tuberculosis). This form of the disease seems to depend upon the simultaneous or nearly simultaneous discharge of large numbers of bacilli into the blood-stream, an event that may be brought about through erosion of the vessel wall by a tuberculous process approaching from without, or in other ways.

The work of Prudden and Hodenpyl, Straus and Gamaléia, and others, has established the important fact that the injection into the circulation of dead tubercle bacilli in considerable numbers can lead to typical tubercle formation. The substance present in the dead bacteria that produces this reaction is not destroyed by high temperatures, as shown by the positive results obtained after exposure of the bacilli to 115 C. for ten minutes. In these experiments giant-cell formation takes place in apparently the same way as under the stimulus of living bacilli, but caseation develops, when at all, only to a slight degree.

Long³ has given the following excellent description of the chain of chemical factors involved: "In the progression of tuberculosis we have the tubercle bacillus as the first link, a wax-armored microorganism, maintaining itself in necrotic tissue, picking and choosing its nutriment from the heterogeneous mass set before it, utilizing the glycerol of hydrolyzed fats, and probably building its wax therefrom, taking ammonia from certain of the amino acids produced in the digestion of dead protein, utilizing others directly to speed up the process of synthesis of its own protein, autolyzing to a slight extent, sufficiently to sensitize the surrounding host to its diffusible protein products, being carried by the lymph, by phagocytes or otherwise, to new soil, there to be met by a nonspecific foreign body response, which in the end operates to produce anemia and death of

¹ Prudden and Hodenpyl: N. Y. Med. Jour., 1891, 53, pp. 637, 697.

² Straus and Gamaléia: Arch. méd. expér., 1891, 3, p. 705.

³ Long, E. R.: The Biochemistry of Tuberculosis, Bull. Johns Hopkins Hosp., 1922, 33, p. 246.

the isolated cells. Then we have the failure of that dead tissue to autolyze, perhaps because of the presence of ferment-inhibiting substances within the bacillus, the phenomenon of caseation. Finally, there is more or less absorption of foreign protein from that focus, that of the bacillus itself and that of the disintegrating tissue, both toxic to the body protoplasm, both capable of causing fever and stimulating the metabolism of the host, so that in severe cases the typical picture of consumption ensues."

Tuberculous Infection in the Lower Animals.—(a) Mammalian Tuberculosis.—Among the larger domestic animals, cattle and swine are most commonly affected. The horse is very rarely attacked, and sheep also appear to be relatively exempt. Slaughterhouse statistics in Europe show that about 15 to 30 per cent of cattle and about 2 to 3 per cent of swine are tuberculous. In the United States, as far as the figures are available, the proportion of tuberculous animals slaughtered in abattoirs is not nearly so great as in Europe. According to the reports of the United States Bureau of Animal Industry, 28,000,000 cattle were subjected to postmortem examination during the years 1900-05, and 0.134 per cent were found to be affected. The large proportion of cattle on the range that have led an open-air life is probably responsible for this favorable showing. In countries where the delicate tuberculin test has been systematically applied a larger number of animals is found to react than is indicated by the results of slaughterhouse inspection.

Animals in menageries and zoölogical gardens frequently die of tuberculosis. The smaller laboratory animals, as a rule, are susceptible to artificial inoculation, although not contracting the disease under natural conditions. In experimental work the guineapig is chiefly used.

The anatomic and clinical features of bovine tuberculosis are in the main similar to those of human tuberculosis, but show also some differences, such as the earlier calcification of the tubercles and the extraordinarily slow progress of the disease. When the pleurae are affected, nodules appear in greater or less abundance on the visceral or parietal surfaces, a condition that constitutes the so-called "pearl-disease" (Ger., *Perlsucht*) of cattle.

The important question whether the tubercle bacilli found in bovine, human, and other varieties of mammalian tuberculosis

are identical—whether, in other words, a single type of micro-organism is responsible for all the various forms of mammalian tuberculosis—is in a certain sense not ripe for solution. The features that should characterize a "bacterial race or species" have not yet been established, and until some consensus on this point has been reached, discussion of specific identity is futile. As often presented, the issue is simply one of potential transformation. The subject of types of tubercle bacilli has received particular attention in connection with the relation between bovine and human tuberculosis. There are certain slight but constant differences between the bacilli isolated from human sputum and tissue lesions and those of bovine origin. The bovine bacilli are on the average somewhat shorter, thicker and straighter than the human variety, but this characteristic cannot be depended upon for an absolute distinction. The human bacillus grows more freely than the bovine on artificial media, especially on those containing glycerol. A golden-yellow or orange-yellow pigment is often produced by human strains and not by bovine. The virulence of the bovine type for rabbits is much higher than that of the human. In broth containing at least 3 per cent of glycerol, the reaction produced by human cultures is at first alkaline and then quite strongly acid, while with bovine cultures a slight initial alkalinity is produced and the cultures then remain at or near the neutral point (Theobald Smith).1 When a large series of cultures is studied, irregular and atypical reactions are met with, so that the reaction curve in glycerol-broth, although broadly agreeing with the degree of virulence for rabbits, is not a final and absolute criterion for separating the bovine and human varieties.2

There is no doubt, from the experiments of Smith, Koch, and others, that cattle can be less readily infected with human tubercle bacilli than with cultures from bovine sources. In itself this does not prove a specific distinction any more than the limited number of successful inoculation experiments that have been reported by other investigators prove a specific identity. The possibility must be kept in mind that bovine tubercle bacilli, after a sojourn in the body of man, may become altered not only in minor morphologic

¹ Smith, Theobald: Trans. Assoc. Amer. Physicians, 1903, 18, p. 108; Jour. Med. Res., 1905, 13, pp. 253, 405.

² Grund: Jour. Med. Res., 1911, 25, p. 335.

and cultural characters, but in virulence for cattle. On the whole the evidence at hand indicates that the tubercle organisms found in the bodies of different species of mammals are so closely related that it is permissible to speak of them together as "the bacilli of mammalian tuberculosis," but it is also true that the question whether the different morphologic and physiologic varieties are biologically permanent "races" or are mutually convertible is an open one. It is still uncertain how far tubercle bacilli of bovine type may be modified by residence in the human body. There are many observations which show a pronounced stability of type. Hess¹ recorded two cases in which bovine tubercle bacilli lived in human cutaneous tissues for six to seven years without acquiring characteristics of the human type.

(b) Avian Tuberculosis.—Tuberculosis is one of the commonest diseases of the barnyard. Chickens particularly, and also pheasants, turkeys, and pigeons, suffer from this disease; ducks and geese are exempt.

The bacillus of chicken tuberculosis is similar morphologically to the bacillus of bovine tuberculosis, and also resembles the latter organism in its behavior to stains. Culturally certain differences are usually manifest, such as a more luxuriant development, together with a softer, less crumbly consistency, and an ability to grow at higher temperatures (43 to 54 C.). The growth sometimes has a pink coloration, a characteristic never observed in either the human or bovine types. The avian bacillus also grows more rapidly. The pathogenicity of the organism is quite different from that of bovine tuberculosis, the guinea-pig showing much greater, and the rabbit less, resistance than to the mammalian type. Hens and pigeons, which succumb readily upon inoculation with the bacillus of avian origin, are infected with difficulty, if at all, with the bovine bacillus. On the other hand, the avian tubercle bacillus has been shown to cause tuberculosis in calves. There is evidence that the avian bacillus is of great importance in the causation of swine tuberculosis, a large proportion of the natural infections in these animals being due to bacilli of the avian type.

(c) Tuberculosis of Cold-blooded Animals.—A disease affecting carp seems to be caused by a micro-organism somewhat resembling the tubercle bacillus in its reaction to stains and in other qualities.

⁴ Hess: Jour. Amer. Med. Assoc., 1909, 53, p. 916.

This microbe is pathogenic for frogs. The "cold-blooded" type of tubercle bacillus grows freely at 25 C., a temperature at which neither the mammalian nor avian strains can multiply. The assertion has been made by some investigators that when the mammalian tubercle bacillus is introduced into the body of frogs it gradually acquires the characteristics of the piscine bacillus. Most investigators have failed to confirm the occurrence of such a transformation. Bacteria similar to the tubercle bacillus have also been found in snakes, lizards, turtles, and other cold-blooded animals; they seem to resemble more nearly the acid-fast saprophytic bacilli than the bacilli of the mammalian type. A serologically distinguishable group of acid-fast bacilli characteristic of cold-blooded animals does not exist.

(d) Saprophytic Strains.²—Acid-fast bacteria have been found in butter, on grass, in the feces of herbivorous animals and in a variety of other situations. They grow more readily on culture media than most of the pathogenic strains and most of them produce a yellow or reddish pigment. They are not able to initiate a progressive infection in mammals or birds.

Channels of Infection.—(a) Respiratory Tract.—It is known that tubercle bacilli are discharged commonly from the bodies of consumptives (1) in the sputum and (2) in minute droplets of moisture or mucus which are projected into the air by the act of sneezing, coughing, or talking. There is no reason to believe that the human tubercle bacillus flourishes saprophytically outside of the human body, and this fact, together with the existence of a large number of consumptive persons in every community, points to a more or less frequent and direct communication of the disease through inhalation. Many facts, epidemiologic and other, support this view.

The sputum of consumptives often contains an enormous number of germs. It has been estimated, from carefully obtained data,³ that a patient suffering from phthisis may expectorate from 500,-000,000 to 3,000,000,000 tubercle bacilli in twenty-four hours. Although not all of these germs possess vitality at the start, and under ordinary conditions in the open many of the discharged bacilli quickly perish from the influence of desiccation and sunlight,

¹ Furth: Jour. Immunol., 1926, 12, p. 273.

² See page 475.

³ Nuttall: Bull. Johns Hopkins Hosp., 1891, 2, p. 67.

some may retain their vitality for several months. Bacilli are not detached from moist surfaces even by a strong current of air, so that only those bacilli that survive long enough to appear in the dust resulting from the dried sputum have much significance in infection. From the foregoing facts it is evident that the danger from inhalation of sputum bacilli is much greater in rooms, offices, public conveyances, and workshops frequented by consumptives than in the open country or even in dust-laden city streets. Careless expectoration upon the floor or into a handkerchief is the main cause of peril from this source. It can be readily seen how a handkerchief upon which sputum has been allowed to dry in the pocket, away from the influences of light and air, may be the means of spreading infection when again flourished in the air in a room, shop, street-car, or anywhere in the neighborhood of other persons. The existence of "infected houses"—a term used by several observers to characterize dwellings in which a succession of cases have appeared in the families of different tenants—witnesses to the evils of careless expectoration in closed apartments.

It is a common observation that in the act of speaking, coughing, or sneezing minute drops of fluid are violently projected from the mouth. The researches of Flügge and his pupils indicate that a certain proportion of the droplets expelled by consumptives contain living and virulent tubercle bacilli. These infectious droplets may float in the air for some time (thirty minutes?), and render the immediate neighborhood of the coughing patient more or less of a menace. The droplets are found rather rarely at a greater distance than 3 to 4 feet from the patient, and the danger of infection from this source is, therefore, circumscribed both in space and time. The relative importance of droplets and dust in producing infection is a matter of dispute. Practically, both possibilities must be taken into consideration.

Postmortem studies by Opie¹ and others have shown that in the United States nearly all persons acquire in childhood tuberculous pulmonary infections which occur as foci scattered throughout the lung without special predilection for the apices. These pulmonary lesions are almost constantly accompanied by tuberculous lesions in the adjacent lymph-nodes, often more extensive than the primary lesions. In one series of 86 cases reported by

Opie, E. L., and Anderson, H.: Am. Rev. Tuberc., 1920, 4, p. 629.

Opie only 7 showed no calcified lesions on Röntgen-ray examination, and it was thought that uncalcified cicatrices probably could have been found in these. Lesions—usually multiple—were found in the remaining 79 cases, and in 10 of them the involvement of the lungs and lymph-glands was very extensive.

(b) Infection through the Alimentary Tract.—This pathway of infection has come into greater prominence through the investigations of recent years. Tubercle bacilli may conceivably find their way into the mouth in many ways. There is evidently some danger when children soil their fingers by creeping or playing on the floor, or when the common drinking-cup or the imperfectly cleansed spoon and fork are used. In fact, transference to the hands and food may take place from a variety of contaminated objects. Food may sometimes be contaminated through the agency of insects. It has been shown that flies can ingest tuberculous sputum and subsequently excrete virulent bacilli during a number of days. It is possible for a consumptive to re-infect himself repeatedly by swallowing his own sputum.

The milk and butter of tuberculous cattle are the articles of diet chiefly suspected of causing tuberculous infection by way of the alimentary tract. It has long been known, from the results of feeding and inoculation experiments, that the milk of tuberculous cattle is sometimes infectious. Tuberculosis of the mammary gland occurs in the cow much more frequently than in the human mother: from 2 to 8 per cent of tuberculous cows manifest udder infection. It has been shown that not only milk drawn from a diseased udder is liable to contain tubercle bacilli, but also milk from an udder showing no macroscopical or microscopical lesion. Several observers have found that the milk of cattle which react to the tuberculin test, but present no other sign of the disease even on autopsy, is infective. In many, perhaps all, of these cases the soiling of the udder with feces is responsible for the presence of the tubercle bacillus in the milk (Ostertag). Schroeder and Cotton,2 in fact, concluded that feces are the most dangerous factor in the dissemination of tubercle bacilli by cattle affected with tuberculosis. The available evidence seems to indicate that tubercle bacilli are not eliminated in the

¹ Lord: Boston Med. and Surg. Jour., 1904, 151, p. 651.

² Schroeder and Cotton: Bull. 99, Bureau of Animal Industry, U. S. Dept. Agri., 1907.

milk from tuberculous cows unless the udder or surrounding parts are themselves diseased; but, in practice, there is the possibility of contamination of the milk after it has been shed, especially contamination with feces containing tubercle bacilli.

Butter made with cream from tuberculous animals may likewise contain living bacilli for as long as one hundred and fifty-three days.¹ Gasperini² added tubercle bacilli to butter and found them virulent after one hundred and twenty days.

Meat from tuberculous cattle, although muscle tissue itself does not ordinarily contain tuberculous lesions, may become contaminated during removal from the carcass by being smeared with material from an infected gland coming in contact with the knife or cloth used by the butcher. Feeding experiments upon animals show that raw meat is a much less infective material than raw milk. So far as human infection is concerned, the general use of thoroughly cooked meat minimizes the danger from this source. Although various food-substances derived from tuberculous animals prove infectious in animal experiments, it does not necessarily follow that they are a frequent or ordinary source of infection in man. Considerable difference of opinion exists concerning the relation between bovine and human tuberculosis, and the importance of this question renders desirable its discussion in a separate section (p. 463).

Much interest in recent years has centered about the manner, frequency, and results of gastro-intestinal tract infection. Many experiments have demonstrated that bacilli can pass through or between intact epithelium cells and thence into the mesenteric nodes and thoracic duct. According to most observers, passage can take place without leaving any trace in the intestinal wall; but a few hold that some tissue change, however slight, is always produced. It appears to be true that in experimental work enormous numbers of bacilli are necessary to produce infection. The final localization or site of predilection of the bacilli entering the lymphatic system from the intestines is a matter of great importance. Von Behring maintains that the vast majority of all cases of lung tuberculosis are of intestinal origin, and there is no doubt that pulmonary tuberculosis can originate from swallowing tubercle bacilli.

¹ Mohler, Washburn, and Rogers: Bull. 41, Hyg. Lab., Washington, 1908.

² Gasperini: Baumg. Jahresb., 1890, 6, p. 271.

The work of Opie, however, indicates that infection with tuberculosis occurs much less frequently by way of the gastro-intestinal tract than by way of the lungs, to judge from the relative infrequency of calcified mesenteric nodules. This form of tuberculous infection appears more common among the British than in this country (as in St. Louis: Opie), a fact that perhaps points to a more common consumption in the British Isles of milk containing living bovine tubercle bacilli. It is interesting to note that pulmonary tuberculosis lesions are infrequent or absent among those in whom mesenteric lesions occur.

(c) Inoculation.—Infection may take place by direct cutaneous or subcutaneous inoculation of tubercle bacilli, either by accidental infection at postmortem examinations, giving rise to the so-called "pathologists' warts," or in other ways. Considerable resistance is shown by man to infection by this route, and the results of skin infection are rarely serious. Ravenel,2 however, recorded cases in which accidental inoculation of man with bacilli of bovine origin has resulted in serious lesions.

The Relation between Bovine and Human Tuberculosis .-Widely divergent views are held respecting the danger to man of infection from bovine sources. On the one side there are those who, like von Behring,3 maintain that the common forms of tuberculosis usually originate in infancy through intestinal infection with milk, and that the bacilli remain latent in the tissues for long periods. On the other, eminent authorities (Koch) have declared that the susceptibility of man to bovine tuberculosis is slight, and that infection with the milk, butter, or flesh of tuberculous animals is a very rare occurrence. The question is complicated and its experimental solution presents many technical difficulties.

The difference between tubercle bacilli from bovine and human sources has already been mentioned. It was first clearly established by the work of Theobald Smith that the bovine tubercle bacillus was a distinct variety or race of the mammalian tubercle bacillus, and as such possessed certain definite and rather constant characters. Some modifications may occur in passing from host to host, but Smith believes that "the modification of bovine bacilli

Opie, E. L.: Am. Rev. Tuberc., 1920, 4, p. 641.

² Ravenel: Proc. Path. Soc., Philadelphia, 1900, 3, p. 259; 1902, 5, p. 87.

³ Von Behring: Deut. med. Wchnschr., 1903, 29, p. 689.

in the same human body beyond recognition as such by the bacteriologist, if it ever occurs, necessarily presupposes a prolonged sojourn, probably of years at the shortest." Granting a fair degree of constancy, it follows that tubercle bacilli recovered from the human body may be identified with more or less certainty as of bovine or human origin. A number of observers have encountered bacilli of the bovine type in the human subject, and it is therefore plain that, so far as this line of evidence goes, infection with bovine bacilli can and does take place. At the same time, it must be noted that the fully studied and established cases of this sort are few in number, and that there is still inadequate information respecting the relative frequency with which bacilli of the bovine type are found in human tuberculosis.

Inoculation experiments have shown that cattle may be infected with human tubercle bacilli and sputum, contrary to the view at one time enunciated by Koch.² Evidence that the converse also may occur is not lacking. Accidental wound inoculation of veterinarians with bovine bacilli has resulted in typical localized subcutaneous tuberculosis, which in some cases has become generalized and led to a fatal termination (Ravenel, et al.). These facts, however, important though they are, do not prove that the food-products from tuberculous cattle constitute a common and ordinary means of infection.

For various reasons it is peculiarly difficult to secure data as to the frequency of intestinal infection. Ingested bacilli can sometimes pass through the intestinal wall without leaving visible trace of their passage, and may finally lodge and proliferate at some point far removed from their portal of entry. Tubercle bacilli have been found in the thoracic duct shortly after they have been fed to an animal in large numbers.³ Pulmonary tuberculosis can therefore undoubtedly sometimes arise secondarily after invasion of the body by way of the intestine. Harbitz⁴ demonstrated the frequent occurrence of tubercle bacilli in the lymph-nodes of children, and his observations have added emphasis to the frequency of primary infection through the digestive tract. In such cases, how-

¹ Smith, Theobald: Med. News, 1902, 80, p. 343.

² Koch: Address at British Congress on Tuberculosis, 1901.

³ Ravenel: "Medicine," Detroit, 1902, 8, pp. 529, 617.

⁴ Harbitz: Jour. Infect. Dis., 1905, 2, p. 143.

ever, it is impossible to determine from anatomic data whether the bacilli have been taken in the food and are of bovine origin, or whether they are bacilli of human origin that have entered the mouth and lymph-nodes. Hence the peculiar importance of the differential characters of bovine and human bacilli already referred to. A number of instances are on record where all the available evidence, bacteriologic and epidemiologic, indicated that the milk of tuberculous cows was responsible for the causation of tuberculosis in children. Infection from this source seems especially liable to occur when the intestine is flooded with enormous numbers of tubercle bacilli, as may happen in the use of milk from cows suffering from bad cases of udder tuberculosis.

Now that it is recognized that the milk from tuberculous cattle can serve as a vehicle for infection, it has become possible to estimate the precise share such infection has in producing the total amount of tuberculosis in any community. The only way in which this question can be settled is by the collection of data showing the number of cases of tuberculous infection in which the bovine tubercle bacillus is present. Especially important studies in this direction were made by Park and Krumwiede.1 As the result of the examination of 478 cases of all forms of tuberculosis in New York City, these investigators conclude that a noteworthy percentage of cases of tuberculosis in children under five years of age are due to infection with the bovine bacillus.

Summing up all the evidence, it appears that bovine tuberculosis is a slight, possibly a negligible, factor in adults. Pulmonary tuberculosis, which causes nearly 90 per cent of the deaths from all varieties of tuberculous infection, is practically never due to infection with the bovine bacillus. In children under five years of age, however, bovine infection is a serious matter and is responsible for a large proportion of the rare type of alimentary tract tuberculosis. More than one-half of the cases of cervical adenitis and abdominal tuberculosis are due to bovine infection. Taking the statistics as presented by Park and Krumwiede, it is a legitimate conclusion that in young children the bovine tubercle bacillus causes from 6 to 10 per cent of the deaths from tuberculosis. The Final Report of the British Royal Commission on Tuberculosis (1911) sums up the

¹ Park and Krumwiede: Jour. Med. Res., 1910, 23, p. 205; 1911, 24, p. 313.

results of two years' investigation in the following words: "The evidence which we have accumulated goes to demonstrate that a considerable amount of tuberculosis of childhood is to be ascribed to infection with bacilli of the bovine type transmitted to children in meals consisting largely of the milk of the cow."

Predisposing Factors.—Few diseases are so completely under the sway of predisposing influences as tuberculosis. Modern city life, especially, affords many opportunities for infection, and a large majority of human beings undoubtedly swallow or inhale tubercle bacilli at some time during their existence. It is probable that nearly all adults living in cities become infected to a greater or less degree. Nägeli,1 in a comprehensive study of 500 autopsies upon the bodies of adults dying from all causes, in which the tissues were examined with particular care, found tuberculous lesions in 97 per cent. Infection in early life is probably more common than has been supposed; Harbitz² demonstrated latent tubercle bacilli in the lymph-nodes of 18 children under eleven years old, none of whom showed any evidence of tuberculous lesions. Practically, few persons escape infection. It is evident, therefore, that only when there is a concurrence of favoring factors are tubercle bacilli able to gain a foothold and proliferate to such an extent as to overpower the natural resistance of the organism. Among these predisposing conditions may be mentioned especially the influences of dampness, sedentary life, insufficient or unsuitable food, and the general features of an "indoor" environment. Alcoholism is another very important predisposing factor, although it is often difficult to separate its effects from those of its bed-fellow, poverty. The baneful results of wasting diseases like diabetes, typhoid fever, and whooping-cough are well known to all physicians. The influence of occupation is often marked, certain trades which involve the breathing of dust claiming a disproportionate number of victims from consumption. Thus English statistics show that, taking the death-rate from tuberculosis and other affections of the respiratory system among agriculturists as 100, the rate among potters and workers with earthenware is 453, that of cutlers 407, of plumbers 373, of glassmakers 335, etc.3 Excessive temperature

¹ Nägeli: Virchow's Arch., 1900, 160, p. 426.

² Harbitz: Jour. Infect. Dis., 1905, 2, p. 143.

³ Newsholme: Vital Statistics, London, 1898, p. 183.

and moisture have a similar influence, as shown in the disproportionate number of deaths among laundry workers and the operatives in wet spinning-rooms. The effect of mode of life not only upon the inception, but upon the progress, of the disease is well known. It is a commonplace that pulmonary tuberculosis may often be definitely arrested by a change in the manner of living. Wild animals in a state of nature are not naturally liable to the disease, but when kept in confinement in zoölogical gardens often quickly succumb. From a biological viewpoint tuberculosis is primarily and chiefly a disease of men living in houses and of cattle kept in stables.

It is reasonable to attribute part of the marked decline in the death-rate from consumption which has occurred in nearly all civilized countries during the last few decades1 to a widely diffused amelioration in the conditions of life. Better food, better ventilation, shorter hours of work, and a more general education respecting the possibilities of infection are all potent agencies in restricting infection. Newsholme² believes that the establishment of special hospitals and retreats for advanced cases has been the main factor in producing the decline in tuberculosis which has taken place in recent years. There is little doubt that from the standpoint of prevention the segregation of the advanced cases of tuberculosis is one of the most valuable means of diminishing tuberculosis dissemination. The care of incipient cases of the disease should not be allowed to overshadow the importance to the community of preventing the broadcast distribution of tubercle bacilli by the advanced cases.

From the foregoing considerations the advantages of compulsory notification of all cases of tuberculosis seem to be manifest. The proper disinfection of the dwelling-places, the protection of the patient and his friends, and the education of the community at large can be accomplished only by this means. The most important sources of infection and the most mischievous predisposing influences can thus be brought under administrative control.

¹ In London the tuberculosis death-rate fell from 3.12 per 1000 in 1884 to 2.34 in 1901, to 1.32 in 1910, and to 1.07 in 1920; in Berlin from 3.6 in 1884 to 2.39 in 1902, and 1.48 in 1920; in Vienna from 7.2 in 1884 to 4.76 in 1900 and to 2.74 in 1910; in New York from 4.45 in 1884 to 2.70 in 1903 and to 0.83 in 1923.

² Newsholme: Jour. Hyg., 1906, 6, p. 304.

Heredity.—That heredity exercises a marked influence upon tuberculosis has been long an article of popular belief. When examined, however, this belief is seen to rest upon a hardly adequate foundation. Association of parents and children in the ordinary intimate home life presents opportunities so numerous and so favorable for communication of the disease that it is natural enough that the disease should haunt certain families. Family infection may thus simulate inheritance. The problem in each case is to distinguish between environmental and true congenital influences. In connection with hereditary tuberculosis three possibilities present themselves: (1) inheritance of a special susceptibility, metabolic or structural, to tuberculosis; (2) germinal transmission; (3) placental infection.

(1) Doubt has sometimes been expressed regarding inheritance of a "tendency." Apart from the legacy of a generally feeble constitution which predisposes to tuberculosis as to other diseases, it is thought by some that there is no inherited inborn liability to tuberculous infection. It is difficult, however, to reconcile this view with what is known of racial resistance and susceptibility to specific infection. The familiar biological facts concerning heredity and variation attest the existence of individual characteristics of all sorts. It is no more improbable that susceptibility to tuberculosis should exist in certain families than that ordinary sheep should be much more susceptible to anthrax than Algerian sheep. Liability to infection with a particular parasite may as conceivably be a congenital character as the color of the hair or eyes or an aptitude for music or mathematics. In the case of tuberculosis this may depend upon the transmission of some structural character, such as a peculiarity of the circulation of the lung apices, or upon more obscure metabolic peculiarities. The eminent biological statistician, Karl Pearson, as the result of a careful statistical inquiry, has concluded that a consumptive predisposition or diathesis is inherited in the same way and with the same intensity that familiar physical characters are inherited.1 At the same time it is clear that in any particular case such liability may be difficult to demonstrate, owing—(a) to the influence of predisposing

¹ Pearson, Karl: "A First Study of the Statistics of Pulmonary Tuberculosis," London, 1907.

- causes, (b) to the possibility of intra-uterine infection, or (c) to greater facility of infection from tuberculous relatives.
- (2) The likelihood of germinal transmission is exceedingly remote. The ovum is practically never infected. In human semen tubercle bacilli have been found in only a very small proportion of cases, and it does not seem likely that an egg invaded by tubercle bacilli just after fertilization would undergo normal development. In no case has parentally transmitted tuberculosis been traced clearly to the male parent; a tuberculous mother is back of the cases that have been observed (intra-uterine infection).
- (3) Intra-uterine or placental infection, although rare, undoubtedly occurs. As many as 70 well-established cases in man have been put on record; the number of observed cases in cattle is several times as great. In identifying cases of true congenital tuberculosis great care has to be taken to eliminate possibilities of extra-uterine infection, such as often occur when young are born from a tuberculous mother. Numerous animal experiments have shown that the young of infected mothers manifest infection, as a rule, only when they are suckled by the tuberculous parent; if transferred to a healthy foster-mother, they remain healthy. On the whole, placental infection is probably an insignificant item in the totality of tuberculosis.

Tuberculin.—The substance originally known as tuberculin² is prepared by filtering a glycerol-broth culture of the tubercle bacillus and then concentrating upon the water-bath to about one-tenth its original volume; when stored in a cool dark place, it may retain its properties for months. Many modifications of the original method have been employed. The Bureau of Animal Industry in the United States dilutes with weak carbolic acid the thick syrupy liquid of the concentrate, which in its original condition is difficult to handle in the field. The amount of fluid to be injected for cattle of medium weight is thus increased from 0.25 cc. to about 2 cc. Practically all the extracts of the tubercle bacillus contain the poisonous nucleoprotein or its chemical derivatives.

When a small amount of tuberculin is injected into a healthy animal, there is no apparent constitutional disturbance; but when

One positive observation by Baumgarten is on record: Arb. a. d. path.anat. Inst., Tübingen, 1891–92, 1, p. 322.

² Koch: Deut. med. Wchnschr., 1890, 16, p. 1029; 1891, 17, pp. 101, 1189.

the same quantity is inoculated into an animal with tuberculous lesions, a remarkable selective action appears. There is marked congestion around the tuberculous area, accompanied by necrosis and sloughing off of the tuberculous tissue; fever and other constitutional symptoms also appear.

Tuberculin Reaction.—The tuberculin reaction has been made a cardinal feature in the diagnosis of tuberculosis in cattle, and to some extent in man. Its chief practical application is in detecting the disease in dairy cows. The test on cows is made by injecting subcutaneously from 20 to 40 centigrams of tuberculin and noting any change in the temperature of the suspected animal. The temperature should be taken every two hours on the day prior to the injection, and at least every two hours on the day of the injection and on the following day. The normal temperature of the cow may vary considerably,1 and should always first be determined; a rise of from 1.5 to 3 C. warrants the inference that the animal is tuberculous. The tuberculin reaction has been often controlled by autopsy, and for all practical purposes is specific and unequivocal. The information afforded by a positive outcome, as a rule, can be relied on implicitly, but a negative reaction is not always proof of the absence of infection. Failure of the test is most likely to occur in advanced and clinically recognizable cases.

The mechanism of the tuberculin reaction, so far as understood,² is as follows: The tuberculin acts as a local specific irritant upon the tuberculous foci, producing intense hyperemia and disintegration of the tuberculous mass. This phenomenon has been interpreted as an acceleration of a process going on more slowly under ordinary conditions. The disintegration is accompanied by the generation or liberation of toxic substances which enter into the general circulation and produce fever and other constitutional disturbances. Insusceptibility to the tuberculin reaction can be produced by repeated doses, a fact that has been taken advantage of by unscrupulous cattle dealers.

In addition to the constitutional changes produced by tuberculin inoculation into a tuberculosis subject, a local reaction also occurs.

¹ Bull. 7, Bureau of Animal Industry.

² Long, E. R.: In Jordan and Falk, "The Newer Knowledge of Bacteriology and Immunology," Chicago, 1928, p. 1016.

Von Pirquet¹ found that the application of tuberculin to the abraded skin caused a characteristic local reaction in tuberculous infants, and no reaction or a very slight one in healthy infants. Corresponding with the fact brought out by autopsies, of the all but invariable infection, past or present, of older children and adults, the reaction is usually positive for those over the age of eighteen years. Calmette² has made use of this principle in a method sometimes applied for purposes of diagnosis. A solution of tuberculin freed from glycerol by precipitating with alcohol and redissolving in sterile water is instilled into the conjunctival sac. In subjects with active tuberculosis a general congestion of the conjunctiva occurs, and is at its maximum in from six to ten hours, while with the normal individual no reaction takes place. Neither method is used so generally at the present time as the sensitive intracutaneous test of Mantoux.3 This consists in injecting 0.05 cc. of a 1:10,000 dilution of "old tuberculin" (p. 473) into the superficial layer of the skin. Infiltration and hyperemia about the site of injection denote a positive reaction.

Long⁴ has devised the following test of tuberculous infection which is of great value in the experimental study of the disease. If a small dose of tuberculin is introduced into the testicle of a tuberculous guinea-pig, a prompt reaction occurs with marked hyperemia and swelling and a progressive degeneration of the germ cells. The same amount of tuberculin has no effect, either early or later, upon the testicle of a nontuberculous guinea-pig. Tuberculin prepared from a nonprotein medium elicits a reaction nearly as intense as that caused by protein-rich "old tuberculin." The acid-fast turtle, frog, grass and smegma bacilli appear to contain tuberculin, since their injection causes a definite testicular reaction.

Immunity; Protective and Curative Inoculations.—An animal already carrying tuberculous infection is strongly resistant to a fresh inoculation (Koch). This significant fact has led to much study, and to numerous attempts to produce heightened resistance as a mode of protection against progressive disease.

¹ Von Pirquet: Berl. klin. Wchnschr., 1907, 44, p. 644.

² Calmette: Presse médicale, 1907, 15, Orig., pp. 388, 443.

³ Mantoux: Münch. med. Wehnschr., 1908, 55 II, pp. 2117, 2516.

⁴ Long: Amer. Rev. Tuberc., 1927, 9, p. 215.

Animal experiments of Pearson and Gilliland,¹ von Behring, and others have shown that cattle are protected in a marked degree against inoculation with bovine bacilli if they are first injected with the less virulent bacilli of human origin. Vallée² found in an extensive series of experiments upon full-grown cattle and calves that if the animals were fed with a highly attenuated strain of the tubercle bacillus (derived from a horse) they acquired temporary immunity, the more complete the younger the animal.

In recent years protective inoculation against tuberculosis has been advocated and to some extent practiced, in three different ways:

- (a) Inoculation with minute doses of living, virulent bacilli. This method, which is similar to the early method of inoculation with human virus in smallpox, means the production of real if mild infection. However effective as a means of protection, the risk incurred by such a method must always be considerable.
- (b) Inoculation with attenuated or avirulent bacilli. Modification of tubercle bacilli by contact with chemicals or by long-continued cultivation on special media has been known for years as a means of obtaining a living, relatively harmless vaccine. Calmette and his associates3 have carried on with great enthusiasm extensive experiments in this field. By successive cultivations on a special potato-bile-glycerol medium living cultures of little or no virulence are obtained. These are designated as BCG vaccine (Bacillus of Calmette and Guérin). On being assured by animal experiments of the harmlessness of the BCG cultures, Calmette and his fellow-workers applied this method to the vaccination of children. Up to the present some thousands of French children have been vaccinated, with results that are distinctly encouraging to those carrying on the work. It is yet too early to pronounce a final judgment as to the success of this method of immunization, since it is difficult to maintain close supervision for a sufficiently long period over statistically adequate groups of vaccinated and unvaccinated persons. The steadily widening use of preventive measures is also a complicating factor in any long-time study of this disease. It is

¹ Pearson and Gilliland: Proc. Path. Soc., Philadelphia, 1904, 6, p. 105.

² Vallée: Ann. de l'Inst. Past., 1909, 23, p. 585.

³ Calmette: "Tubercle Bacillus Infection and Tuberculosis in Man and Animals" (transl.), Baltimore, 1923, pp. 689; Ann. de l'Inst. Past., 1927, 41, pp. 201–368.

not yet certain whether tubercle bacilli once attenuated may not again increase in virulence on prolonged contact with animal tissues.

(c) Inoculation with dead bacilli. Tubercle bacilli killed by heat are still capable of conferring some immunity. The degree of immunity obtained by this method does not seem high, but some observers have reported favorable results in children who have been inoculated with dead bacilli and kept under observation for as long as four years. The limited statistical evidence for inoculation with killed cultures seems practically on a par with that for BCG vaccine.

A variety of antibodies can be produced by inoculation with tubercle bacilli and their products. Agglutinins and precipitins are quite uniformly generated. Bacteriolytic substances are possibly formed, but experimental difficulties stand in the way of their ready demonstration. Several observers, notably Maragliano, have reported that the serum of immunized animals possesses neutralizing power for the products of the tubercle bacillus. It is still uncertain how far this power is due to the presence in the immune serum of any substance similar to the true bacterial antitoxins. Practically, the use of antisera in the treatment of tuberculosis has proved of no value.

The presence of specific opsonins in tuberculosis has been utilized in gaging the amount and frequency of the doses of tuberculin. It is thought that by keeping watch of the opsonic index (p. 173) the injection of bacillary extracts and emulsions can be advantageously timed. Trudeau, however, did not consider determination of the opsonic index as necessary to control, and in fact preferred to base the treatment on clinical signs, giving a dose at first far below that expected to excite reaction, and gradually increasing the dose as the condition of the individual patient indicated. Jeans and Sellards also do not consider the opsonic index as sufficiently accurate for the control of tuberculin therapy.

When the "original" or "old" tuberculin (T. O.) was first introduced by Koch, it was thought to have value as a curative agent, but the sanguine expectations at first aroused were not realized. Tuberculin is probably of value solely because it stimulates focal proliferation. In lupus, a form of skin tuberculosis,

¹ Maragliano: Berl. klin. Wchnschr., 1904, 41, pp. 603, 643

² Trudeau: Amer. Jour. Med. Sci., 1907, 133, p. 813.

³ Jeans and Sellards: Bull. Johns Hopkins Hosp., 1907, 18, p. 232.

good results have frequently been obtained from the sloughing off of the diseased and necrotic tissue, but in other kinds of tuberculosis the results have not been remarkably successful. A "new" tuberculin (T. R. = tuberculin residuum) was prepared by Koch in 18971 by macerating living virulent bacilli and extracting the mass with water, and then making an emulsion of the residuum. Later Koch² advocated the use of an emulsion (B. E. = bacillary emulsion) of the entire substance of pulverized young virulent bacilli in 20 per cent glycerol. Denys3 introduced the use of the unaltered filtrate from broth cultures (B. F. = broth filtrate). Whatever the form of tuberculin employed, the governing principle of the tuberculin treatment would seem to be to avoid from the outset the production of a clinical reaction, and to impart, not too rapidly, a tuberculin immunity which will enable the patient to tolerate quantities much larger than the initial dose. During recent years the use of tuberculin for curative purposes has diminished.

Mycobacterium paratuberculosis (Johne's Disease). 4—A chronic enteritis of cattle usually terminating fatally is attributed to a bacillus closely resembling the avian variety of the tubercle bacillus. This mycobacterium, which does not grow readily, may be distinguished from the human, bovine and avian types by its failure to evince pathogenicity when injected into guinea pigs and rabbits. The typical disease has been reproduced by the inoculation of cattle with pure cultures. The disease seems to be widely spread in the United States. Its presence may be recognized by the "johnin" test which is similar to the tuberculin test. Like tuberculosis Johne's disease may probably be best combatted by the removal from the herd of all infected animals.

Other Acid-fast Bacteria.—The once current view that the tubercle bacillus was unique in its resistance to decolorization by acid has been modified by the discovery of a considerable number of micro-organisms possessed of the same characteristic. Some of these, such as the bacillus of leprosy, are closely related biologically to the tubercle bacillus. Myco. leprae (p. 477), however,

¹ Koch: Deut. med. Wchnschr., 1897, 23, p. 209.

² Koch: Deut. med. Wchnschr., 1901, 27, p. 829.

³ Denys: Bull. méd. Paris, 1906, 20, p. 772.

⁴ Johne and Frothingham: Deutsch. Ztschr. f. Thiermed., 1895, 21, p. 438.

⁵ Hastings, Beach and Mansfield: Wisconsin Agr. Exper. Sta., Res. Bull. 81, 1927.

differs somewhat in form from the tubercle bacillus, is stained with less difficulty, and, owing to the relative infrequency of leprosy and its occurrence in characteristic lepra cells, its resemblance is not likely to engender confusion in matters of practical diagnosis. The smegma bacillus, Myco. smegmatis, on the other hand, which is found in the preputial secretion and between the labial folds of the vulva, is often difficult to distinguish from the tubercle bacillus. Its occurrence in the feces and urine, where it has been mistaken for the tubercle bacillus, is said to have sometimes led to serious diagnostic error—even to unnecessary kidney extirpation. In collecting samples of urine, contamination with smegma bacilli may be avoided to some extent by catheterization. The smegma bacillus differs very little, if at all, in morphology from the tubercle bacillus, but is said by some observers to be decolorized, as a rule, by treatment with simple alcohol; it is also said to be shorter and to show minor differences that are likely to be noted by the experienced observer. Its growth on culture media is relatively rapid. Such distinctions cannot be safely depended upon, and in doubtful cases guinea-pig inoculations should be made.

A number of other acid-fast bacteria have been isolated from such substances as butter, hay, and dung. These organisms, of which about 40 varieties have been described, grow readily at a low temperature upon the ordinary culture media, often with production of a brownish pigment. They seem to be widely distributed as saprophytes in nature. They have also been observed in sputum in some cases in which the diagnosis of tuberculosis could be excluded on clinical and anatomical grounds. Several observers have found these or similar organisms in man in connection with pathologic conditions, such as bronchitis (Marzinowsky)1 and pulmonary gangrene (Fränkel,² Rabinowitsch³). Animal inoculation does not always surely differentiate these organisms from the tubercle bacillus, since some varieties produce histologic changes closely simulating those of true tubercle formation. Inoculation from these lesions into guinea-pigs, however, fails to cause infection. The rapid growth of the "grass" and "butter" bacilli in artificial media, in most cases at about 20 C., is the principal differential

¹ Marzinowsky: Centralbl. f. Bakt., 1900, 28, p. 39.

² Fränkel: Berl. klin. Wchnschr., 1898, 35, pp. 246, 880.

³ Rabinowitsch: Deut. med. Wchnschr., 1900, 26, p. 257.

feature. It is evident that observers may readily fall into error by endeavoring to discover by microscopical examination alone the presence of the tubercle bacillus in such substances as butter or milk. Even the peritoneal inoculation of butter containing the ordinary "butter bacilli" is likely to result in lesions that closely resemble those of tuberculosis. Many of the reported findings of tubercle bacilli in dairy products are therefore of doubtful value.

Acid-fast saprophytes appear to differ serologically from all other acid-fast bacilli.¹

¹ Furth: Jour. Immunol., 1926, 12, p. 273.

CHAPTER 23

MYCOBACTERIUM (2) THE BACILLUS OF LEPROSY (MYCOBACTERIUM LEPRAE)

Rogers estimated that in 1924 the world contained about 3,000,000 lepers. At the present day this disease is most common in India (100,000 cases), Japan (100,000), and other Asiatic countries. Approximately 1200 cases were thought to exist in the United States in 1926.

In 1848 Danielssen¹ recognized that certain peculiar cells which were found in leprous tissue were characteristic of leprosy, and as

early as 1872 Armauer Hansen² announced his discovery of small rods lying within the "lepra cells." The application of staining methods by Neisser and Hansen³ showed these rods to be bacilli. Hansen's discovery of the bacteria in leprosy, therefore, ranks as one of the earliest observations of pathogenic bacteria.

Characteristics of the Leprosy Bacillus (Myco. leprae).—Morphologically the leprosy bacilli resemble

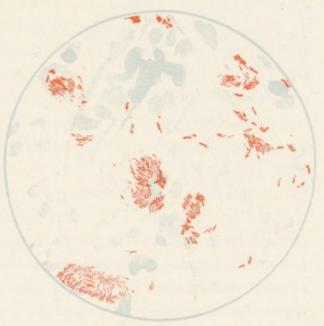


Fig. 111.—Mycobacterium leprae. Smear preparation from nasal mucosa (Hansen: Kolle and Wassermann).

closely the tubercle bacilli. They are long (6μ) , slender rods, usually straight, but sometimes slightly curved. They have no power of independent movement, and are not known to produce spores. The bacilli are sometimes seen lying free in the lymphatic

¹ Danielssen and Boeck: "Traité de la spédalskhed," Tr., Paris, 1848.

² Hansen, Armauer: Norsk Mag. f. Laegevidensk., 1872, 2, p. 1.

³ Neisser and Hansen: Breslauer ärzt. Ztschr., 1879, No. 20; Archiv f. path. Anat., 1880, 79, p. 32.

spaces, but the great majority are ensconced in the cells. Their arrangement in the cells is characteristic, several bacilli being usually grouped together in bundles like packets of cigarettes (Fig. 111).

The staining reaction of these organisms is much like that of the tubercle bacilli. They stain somewhat more readily than the latter, and also decolorize more quickly with acids, but the difference is not sufficient to serve for differential diagnosis. The presence of large numbers of bacilli within the cells, together with the clinical features, make it possible ordinarily to distinguish leprosy from tuberculosis without difficulty. Sections of tissue may be left twenty-four hours in carbol-fuchsin, then decolorized with hydrochloric acid and alcohol, and finally counterstained with aqueous methylene-blue.

Cultivation.—Numerous unsuccessful attempts to cultivate the leprosy bacillus on artificial media were made for years by bacteriologists in all lands. A few investigators have reported positive results. Kedrowski's work may be particularly mentioned.1 This investigator cultivated an organism from leprous tissues by use of an agar medium prepared with expressed juice from the human placenta. As described by him the organism so cultivated was highly pleomorphic, with branched, acid-proof, and nonacid-proof stages. His description suggests an original mixed culture from which one or more forms were later eliminated by animal passage. Clegg² also obtained apparent growth and continued multiplication in subculture upon an artificial medium. The method employed consisted in inoculating emulsions of leprous tissue upon a medium where amebas and bacteria were growing symbiotically. By subsequent heating at 60 C. for thirty minutes the amebas and symbiotic bacteria were destroyed, while the more resistant Myco. leprae survived in pure culture.

Clegg's results were confirmed by others, including Duval,³ who reported growing an organism regarded as Myco. leprae directly from human tissue upon a medium without living organisms.

Duval gives the following description of the method of cultivation used by him: "The most efficient method for obtaining the

¹ Kedrowski: Ztschr. f. Hyg., 1901, 37, p. 52.

² Clegg: Philippine Jour. of Science, 1909, 4, p. 403.

³ Duval: Jour. Exper. Med., 1910, 12, p. 649.

initial growth of B. leprae is to transfer bits of the leprous nodule to slanted 1 per cent alkaline nutrient agar and seed with some one of the proteolytic nonspore-bearing bacteria, which in the course of ten days to two weeks at 37 C. digest the protein sufficiently to cause the contained Hansen rods to multiply. It is essential to have the medium alkaline in order to inhibit too profuse a growth of the hydrolizing organism. In the softened tissue the Hansen bacilli increase steadily and continue to do so in transplants to other media as long as the dissociate products of the host tissue last. The organism used to hydrolize the tissue is subsequently

eliminated by heating the cultures at 60 C. for thirty minutes (Clegg's method), which does not affect the viability of the Hansen rods. While multiplication takes place readily in the digested host tissue, growth ceases upon other nutrients unless there are added the intermediate products of protein digestion, such as the filtered autolized liver, blood-serum, placenta, etc."

Fig. 112.—Pure culture of Mycobacterium leprae, showing the characteristic morphology and arrangement of the bacilli (Duval).

At the present time it seems reasonably certain that some at

least of the chromogenic acid-fast cultures isolated from leprous nodules are not to be regarded as the real micro-organisms of leprosy, but are rather to be classed with such organisms as the smegma bacillus and grass bacillus. This is particularly true of certain freely growing strains. It is not established that any of the genuine leprosy bacillus strains are chromogenic. Diphtheroid forms sometimes observed are considered by some authors to be involution forms. Filamentous, nonacid-fast organisms isolated from leprous nodules are probably to be looked upon as associated organisms not directly concerned with the leprous process. The microorganism of leprosy seems to be acid-fast, slow-growing even under the most favorable conditions, and probably in most instances, if not all, nonchromogenic.

Many bacteriologists believe that no one of the organisms cultivated from leprous lesions by the methods described is the true

¹ Duval: Jour. Med. Res., 1913, 28, p. 165.

Hansen bacillus. On the other hand, Walker¹ has found that the various types of coccoid, diphtheroid and branching bacilli can be transformed into one another by appropriate methods, and considers them stages in the life cycle of one organism, Hansen's bacillus being the tissue stage. Walker would place the leprosy bacillus in the genus Actinomyces. Shiga has reported the cultivation on glycerol media on a slow-growing acid-fast organism which seems to be different from the rapidly growing organism isolated by others. Proof of the causal relationship of any of the organisms cultivated waits on the performance of successful inoculation experiments.

Animal Experiments.—Great difficulty has been experienced by investigators in producing any multiplication of Myco. leprae in the tissues of the lower animals. Nicolle² was one of the first to report the development of typical leprous nodules in the monkey following subcutaneous inoculation of bits of leprous tissue. Clegg,³ Sugai,⁴ and Duval⁵ have observed the development of leprous lesions in such animals as guinea-pigs and Japanese dancing mice. Duval has infected Japanese dancing mice, guinea-pigs, and monkeys (Macacus rhesus) by the use of pure cultures isolated by him. In the monkey, according to Duval,⁶ disseminated leprosy has followed the repeated injections of large quantities of pure cultures. The infected animals are said to present the typical clinical picture of human leprosy.

According to Duval and Gurd⁷: "Two factors are of great importance in effecting infection. In the first place, a sufficiently large number of organisms must be employed, and, what is still more important, second and subsequent inoculations are more liable to produce leprous lesions than are primary injections." The interpretation of this apparently increased susceptibility following a preliminary dose is still uncertain.

Duval's work indicates that the leprosy micro-organism gives specific immunity reactions (agglutination and bacteriolysis).

¹ Walker, E. L.: Jour. Prev. Med., 1929, 3, p. 167.

² Nicolle: Sem. méd., 1905, 25, p. 116.

 $^{^{\}scriptscriptstyle 3}$ Clegg: Philippine Jour. Sci., 1909, 4, p. 403.

⁴ Sugai: "Lepra," 1909, 8, p. 203.

⁵ Duval: Jour. Exper. Med., 1910, 12, p. 649.

⁶ Duval: Jour. Exper. Med., 1911, 13, p. 374; 1912, 15, p. 292.

⁷ Duval and Gurd: Jour. Exper. Med., 1911, 13, p. 181.

Inoculation experiments are of little value since identical lesions seem to be produced in experimental animals by the leprosy bacilli and the familiar acid-fast bacilli from hay, butter, and smegma.

Bayon's comparative experimental study of the leprosy cultures of Clegg, Duval, Kedrowski, and others showed that only certain strains (Kedrowski's) produced leprous lesions on injection into animals.¹ No final conclusion on the matter seems possible at present.²

Rat Leprosy.—Stefansky3 was the first to describe a leprosylike disease in rats. His observations have been confirmed by a number of workers in regions where human leprosy is prevalent. Wherry⁴ and others have observed this disease in rats caught in the neighborhood of San Francisco. A rat in the advanced stage of this disease presents a clinical picture closely resembling that of human leprosy. Currie and Hollmann⁵ were able to produce the disease by inoculation in white rats. They also found that certain mites abundant on the rats during the illness of these animals contained the bacilli of rat leprosy in considerable numbers in their digestive tracts, and they infer that these parasites might conceivably be a means of transmitting the disease. Wherry6 had previously found the bacilli in the bodies of rat lice. Schmitt,7 in examining the relation between rat and human leprosy, found that the complement fixation reaction (p. 181) showed complete fixation in mixtures of sera from cases of human leprosy of the various types with antigen prepared from the lesions of leprosy in rats. Walker and Sweeney8 believe, on the basis of cultivation experiments, that human leprosy and rat leprosy are identical.

Pathogenicity for Man.—Although any organ or tissue may be attacked with varying results, two distinct types of leprosy are usually recognized—the nodular and the anesthetic. The former, which is the more acute, is characterized by the development of

Bayon: Brit. Med. Jour., 1912, II, p. 1191.

² Walker, E. L.: Jour. Prev. Med., 1929, 3, p. 167; Walker, E. L., and Sweeney, M. A.: Jour. Prev. Med., 1929, 3, p. 325; Muir, E.: Jour. Prev. Med., 1930, 4, p. 331.

³ Stefansky: Centralbl. f. Bakt., I, Orig., 1903, 33, p. 481.

⁴ Wherry: Jour. Amer. Med. Assoc., 1908, 50, p. 1903.

⁵ Currie and Hollmann: Public Health Bulletin, No. 41, 1910.

⁶ Wherry: Jour. Infect. Dis., 1909, 6, p. 630.

⁷ Schmitt: Univ. of Calif. Pub. Pathol., 1911, 2, p. 29.

⁸ Walker, E. L., and Sweeney, M. A.: Jour. Prev. Med., 1929, 3, p. 325.

masses of granulation tissue, the so-called "leproma," which may appear superficially in different parts of the body, and by their growth and coalescence cause terrible distortion and mutilation. The anesthetic type, or nerve leprosy, progresses more slowly than the other form, the average duration of the cases being nearly twice as long (eighteen years), some being known to extend over thirty-five or forty years; atrophy of the muscles and other trophic disturbances accompany the nerve lesions.

In both forms of leprosy the Hansen bacillus is found in all cases, in enormous numbers, as a rule, in the lesions of nodular leprosy and less abundantly in the anesthetic type. As already stated, it is the prevailing opinion among students of this disease that while a few bacilli occur free in the lymphatic spaces, the great majority are contained within the cells. The nucleus itself is not invaded. Unna² maintains that they lie exclusively in the lymphspaces; other observers (Leloir)³ believe that they occur partly in one, partly in the other, situation. Almost any organ or tissue may be the site of a leprous growth. Bacilli have been found in practically all parts of the body. The kidneys are usually invaded, the liver and spleen always. The bacilli have been seen by several observers in the cells of the central nervous system; they are sometimes encountered in the blood, generally in the leukocytes, but occasionally free (Hansen).

Mode of Transmission.—The numerous cases in which healthy persons, such as asylum attendants, have been more or less in contact with lepers for long periods without contracting the disease have induced some observers to deny the possibility of contagion. Another explanation of this freedom from contact infection, and one more in accordance with other observations, can, however, be advanced. This is that the conditions necessary for successful infection are rarely met with, and that consequently infection does not take place simply by association of a leprous with a sound individual. The conditions that render transmission of the disease possible are entirely unknown; they may concern the virulence of the infecting bacillus, the availability of a suitable portal of entry,

¹ Hansen is of opinion that all the bacilli are in the cells originally and only appear in the lymph-spaces when the normal relations are disturbed.

² Unna: Deut. med. Wchnschr., 1886, 12, p. 123.

³ Leloir: Comp. rend. Acad. Sci., 1885, 101, p. 97.

or some peculiar and rarely occurring state of receptivity on the part of the individual attacked. The cardinal point in the epidemiology of leprosy appears to be that intimate contact with a leprous individual or residence in a locality where leprosy is endemic is a necessary condition of infection. Walker¹ on the basis of his identification of the leprosy bacillus as an Actinomyces, has brought forward the view that the soil is the main source of infection.

One way in which the bacillus may leave the body is in the nasal mucus. Sticker² and other observers have found bacilli in the secretions of the nose in a large proportion of cases. Bacilli may sometimes be discharged from the mouth or nose in small particles of mucus driven out by violent coughing or sneezing. In the opinion of many writers, the mucous membrane of the nasopharynx is the point at which the bacteria are introduced into the body, as well as the chief source from which infection is spread.

Currie's observations³ indicate the possible transmission of the disease by means of flies, since these insects when fed upon leprous fluids contain the bacilli in their intestinal tracts for several days.

Evidence of the direct inoculability of leprosy from man to man is quite inadequate. Many attempts to infect healthy persons have been made and have failed, and one often-cited instance of successful inoculation is by no means unimpeachable. In the case of the criminal Keanu in the Hawaiian Islands, reported by Arning, implantation of material from a leprosy nodule was followed by the development of true leprosy, which terminated fatally six years after inoculation. The experiment, however, did not exclude the important source of error involved in the facts that Keanu was a native of a country in which leprosy was common, that he had lived among lepers, and that members of his family were lepers.

The indirect evidence of transmission is more significant. Manson⁵ cites the case of an Irishman who acquired leprosy in the West Indies. On his return to Ireland his bed was shared by his brother, who, moreover, sometimes wore the leper's clothes. The brother, who had never been in any foreign country, became,

¹ Walker, E. L.: Jour. Prev. Med., 1929, 3, p. 167.

² Sticker: Deut. med. Wchnschr., 4897, 23, p. 219.

³ Currie: Public Health Bull. No. 39, Washington, Sept., 1910.

⁴ Arning: Archiv. f. path. Anat., 1893, 134, p. 319.

⁵ Manson: "Tropical Diseases," London, 1900, p. 448.

in time, an undoubted leper. In this case communication from one person to another was practically demonstrated.

Currie¹ found that a large percentage of cases studied in Hawaii gave a history of exposure, and that usually such exposure was of an intimate character. The importance of environment as contrasted with heredity is also emphasized by Hollman.²

Much light is thrown on the contagious character of leprosy by the success that has attended the isolation and segregation of leprous patients. The experience of Norway showed that a careful but not unduly rigorous system of separation was accompanied by a diminution of the number of cases from 2870 in 1856 to 577 in 1900. The circumstance that infection does not invariably follow chance contact or association should not, therefore, lead to neglect of the facts that leprosy is a bacterial disease; that up to the present under natural conditions the specific germ has not been found except in the human body; and that, so far as is definitely known, the leper himself is the only means by which leprosy spreads.

Since it is true that a number of cases of leprosy often occur in the same family the disease has been regarded by some as "hereditary." The question of the "inheritance" of a bacterial disease has already been discussed in connection with tuberculosis (p. 468), and the argument as regards leprosy is similar. Germinal infection (of the ovum or sperm), if it occurs at all, is probably very rare, most lepers becoming sterile early in the disease. Intra-uterine infection, although it has been reported, is not common. Hansen has called attention to the remarkable fact that none of the children of 170 Norwegian lepers who have from time to time migrated to North America have become diseased. It seems reasonable to suppose, however, that a special tendency to contract leprosy may be inherited, just as any other bodily peculiarity.

At the present time leprosy is most common in countries with moist tropical climates and is very rare in the drier parts of the tropics and in temperate climates.

¹ Currie: Public Health Bull. No. 41, Washington, Nov., 1910.

² Hollman: Public Health Bull. No. 39, Washington, Sept., 1910.

CHAPTER 24

PFEIFFERELLA—THE GLANDERS BACILLUS (PFEIFFERELLA MALLEI)

Genus: Pfeifferella. Small, slender, gram-negative rods, sometimes developing into branched filaments. Growth on culture media slow. Carbohydrates attacked feebly if at all. Characteristic brown honey-like growth on potato. Type species: Pfeifferella mallei.

Glanders is a disease seen, as a rule, only in the solipeds (horse, mule, ass), but occasionally transmitted to other domestic animals, to wild animals, and to man. As in so many other diseases, the early history of this malady is marked by lively oscillations of opinion as to its infectious nature. The doctrine of the spontaneity and noninfectivity of glanders received strong support as late as 1830–40, especially from the famous Alport school of veterinarians in France. In practice the prevalence of this view was attended with disastrous consequences. In 1837 Rayer² demonstrated that the horse could be infected by inoculating it with material derived from a case of glanders in a human subject. Owing to the high reputation of the author this experiment made a deep impression, and although a similar experiment had been successfully performed by others prior to this time, Rayer's work may be said to mark the downfall of the dogma of spontaneity.

The specific germ of glanders was discovered in 1882 by Löffler and Schütz,³ whose results were soon confirmed and extended by Kitt,⁴ Weichselbaum,⁵ and others.

Morphologic and Cultural Characters.—The glanders bacillus, or Pf. mallei, is a small rod, straight or slightly curved, usually with rounded ends, and often of irregular contour. It is about the same length as the tubercle bacillus, but is thicker than the latter

¹ There is considerable doubt as to whether this should stand as a separate genus. The glanders bacillus shows many resemblances to the Brucella group as well as to the tubercle bacillus (Mycobacterium).

² Rayer: Mém. Acad. de méd., Paris, 1837, 6, p. 625.

³ Löffler and Schütz: Deutsch. med. Wchnschr., 1883, 9, p. 197.

⁴ Kitt: Jahresber. d. k. Centralbl. Tierärzt-Sch., München, 1883–84.

⁵ Weichselbaum: Wien. med. Wchnschr., 1885, 35, p. 665.

(Fig. 113). Rather wide variations in size are observed, but the following dimensions may be taken as the average range: length, 2 to 5 μ ; breadth, 0.5 to 1 μ . Power of independent movement is absent. The organism is not known to form spores, although there has been much discussion concerning the nature of certain granules and irregularly staining portions of the cell protoplasm. It is now generally admitted that, whatever may be the physiologic significance of these unevenly stained elements, they are not to be regarded as true spores. No increased power of resistance is shown by cultures containing the granules or coccus-like bodies. In cultures the bacilli frequently occur in pairs, sometimes in short chains.

Fig. 113.—Pfeifferella mallei. Pure culture from dextrose-agar. Carbol-fuchsin; × 1200 (Hicks).

Long filaments with swollen ends and true branching have been seen by several observers and have induced some writers to rank the glanders bacillus with the actinomyces. (Compare the tubercle bacilli, p. 447.)

Pf. mallei stains with the ordinary aqueous aniline dyes, although not very readily. The best results are obtained with stains containing alkali, or a mordant such as carbolic acid (for example,

Löffler's alkaline methylene-blue, Ziehl's carbol-fuchsin, etc.). Decolorization takes place easily on the application of alcohol or dilute acid; the color is lost also by Gram's method.

Growth occurs on the ordinary media, but is materially aided by the presence of glycerol. Temperatures below 22 C. are unfavorable, the optimum being about 37 C. A slightly acid reaction of the medium is rather favorable than otherwise. Save on potato, the growth presents little that is characteristic. On this medium at 37 C. a tenacious, transparent, honey-like layer is formed, which in time takes on a deeper brownish hue. Often, but not invariably, the potato around the growth becomes tinged a greenish yellow, not unlike the discoloration produced by some cultures of Ps. pyocyanea.

In nutrient broth a uniform turbidity is produced, and a white, heavy, viscous sediment collects at the bottom of the tube. On agar and glycerol-agar a whitish, translucent streak is formed, with crenated edges, and possessed of a tenacious consistency. Gelatin may be slowly liquefied. Milk is slowly curdled with acid production by some cultures, but the statements of different observers are not in accord respecting the action on this medium; different cultures doubtless behave differently (Wherry).

As in the case of many other parasitic bacteria, growth does not always take place readily when the glanders bacillus is first transplanted from the animal body to artificial culture media. After a few transfers, however, the saprophytic habit is firmly established, and by reinoculating at suitable intervals upon glycerolagar of a uniform reaction (Wherry) and keeping at a low temperature little difficulty is experienced in maintaining living cultures.

Toward physical and chemical agents Pf. mallei manifests slight resistance, being readily destroyed by heat and antiseptics. Desiccation experiments have not given uniform results, the reported longevity under drying ranging from a few days to several months. In this particular, pure cultures are said to be more resistant than the bacilli in the nasal secretions from diseased animals (Löffler, Nowikoff).

Pathogenicity for the Lower Animals.—Under natural conditions the horse chiefly is affected, but cases are occasionally observed in the carnivora (cats, dogs, menagerie animals) and in goats and sheep. Swine and pigeons are slightly susceptible. Cattle and the house-rat are immune. Rabbits and guinea-pigs are susceptible to inoculation.

Glanders manifests itself in an acute and a chronic form, which run into one another, the latter frequently terminating in an acute attack. The acute form is ushered in usually by a chill and the appearance of a high temperature in advance of any local manifestation. In a few days the mucous membrane of the nose is inflamed

¹ Wherry: No. 24, Publications of Government Laboratories, Manila, November, 1904, p. 24.

² Löffler: Arb. a. d. k. Gesund., 1886, 1, p. 141.

³ Nowikoff: Arch. d. Sci. vét., 1895.

and becomes studded with nodules, the lymphatic system becomes largely implicated, and edematous swellings appear in various parts of the body. General symptoms become more grave, and death follows in from eight to thirty days (Nocard).1 The mule, and especially the ass, suffer commonly from the acute disease. The chronic form is the more usual type in the horse (90 per cent of cases). A great variety of symptoms and lesions have been noted in the latter animal, and the disease pursues most diverse courses in different individuals. The nasal membrane is often affected, and there is a profuse and infectious catarrhal discharge. Cutaneous glanders is known by veterinarians as farcy, the thickenings of the superficial lymphatics being termed "farcy buds" or "farcy pipes." In all forms of glanders there is a tendency to the production of nodules, which soften and pass over into ulcers. The glanders nodule has been considered by some writers to be structurally similar to the nodule formed by the tubercle bacillus (p. 454), but most observers are agreed that the former is a degenerative rather than a proliferative formation, and that it is radically different from the tubercle.

Experimental inoculation with pure cultures has given positive results, not only in the horse, in which the characteristic features of the disease are reproduced, but in guinea-pigs, field mice, and other small rodents. House-mice and white mice show a high but not absolute resistance, in contrast to the great susceptibility of field-mice. The guinea-pig responds to inoculation in a typical fashion, and has been utilized for differential diagnosis (see p. 490). Both in the natural and in the experimental infection the bacteria are found chiefly in the nasal secretions and in the contents of the young nodules; in the older ulcers they are relatively few in number. The blood, as a rule, contains glanders bacilli only in acute general infection.

Pathogenicity for Man.—Veterinarians and others having to do with the care of horses are the most liable to contract glanders. Freshly isolated cultures are highly virulent, and a number of fatal infections have occurred among laboratory workers. The acute form of the malady is the more common in man, most cases terminating fatally within two to three weeks, sometimes within a few days of their inception. As in the horse, the mucous membrane of the nostrils, although not invariably affected, is a place of

¹ Nocard: "Les maladies microbiennes des animaux," 2d ed., Paris, 1898.

predilection for the glanders nodules and ulcers. Occasionally the chronic form may appear and linger for months or even years, with spreading ulceration and other features closely resembling those observed in the horse (Fig. 114). Recovery from chronic glanders may take place, or the disease may pass into the acute stage.

Path of Entrance.—The avenue by which the glanders bacillus usually enters the body of the horse has not been clearly determined. The intact skin probably rarely, if ever, permits entrance, but a slight wound or injury offers a ready portal, as attested by experi-

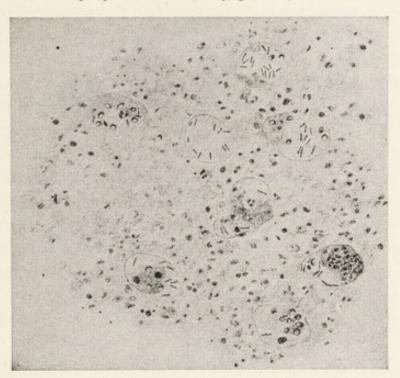


Fig. 114.—Pfeifferella mallei in giant-cells and exudate of human lungs (Coleman and Ewing).

mentation. The mucous membrane of the nose, especially if slightly abraded, may become the portal of entry, as may the intact conjunctiva, which, as shown by Conte,¹ can be infected by contact with infectious material in two to four hours, sometimes in thirty minutes. Infection by inhalation must be rare, to judge from animal experiments, if, indeed, it ever occurs. According to Nocard, who made a special study of the mode of infection, penetration takes place by way of the alimentary tract in the great majority of cases. There is weighty experimental and other evidence in support of this view.

¹ Conte: Revue Vétérin., 1893, p. 568.

In man the alimentary tract is certainly not the ordinary channel of entrance; meat from glandered animals has been ingested without resulting infection. Inhalation likewise hardly enters into consideration. Probably infection through a scratch or other break in the skin is the usual origin of human cases.

Diagnosis.—In prebacteriological days chronic glanders in the horse was frequently separated from other diseases only with difficulty and a considerable measure of uncertainty. At present the diagnosis of glanders is greatly facilitated by: (1) guinea-pig inoculation; (2) the mallein test—a, subcutaneous; b, ophthalmic; (3) the agglutination method; (4) the complement-fixation test.

- 1. Guinea-pig Inoculation.—A male guinea-pig is injected intraperitoneally with fragments of diseased tissue, scrapings from ulcers, or some of the nasal discharge from a suspected animal. A positive reaction is shown by the testicles becoming red and swollen, usually on the second or third day (Straus). Together with the orchitis (inflammation of the parenchyma of the testicle) there are severe general symptoms which usually culminate in twelve to fifteen days. Grayish nodules are often found in the spleen and other internal organs. The test is not absolutely specific, for Kutscher² and Nocard have shown that an analogous orchitis may be produced by other organisms besides the glanders bacillus. It is often, however, of value, especially when, for one reason or another, other tests are inapplicable.
- 2. The Mallein Test.—Mallein is the concentrated glycerol broth in which the glanders bacillus has grown; it is prepared in the same manner as tuberculin. The mallein reaction consists in a rise of temperature, accompanied by a pronounced local reaction, and in many cases, although not invariably, by more or less profound constitutional disturbances.
- (a) Subcutaneous injection of mallein (the size of the dose varying according to the concentration) into a glandered horse is followed by the signs above noted, while in an animal not infected with glanders the temperature is slightly or not at all affected and the general symptoms are absent. The temperature of the suspected

¹ Straus: Archives de méd. expér., 1889, 1, p. 489; Comp. rend. Acad. Sci., 1889, 108, p. 530.

² Kutscher: Ztschr. f. Hyg., 1896, 21, p. 153.

animal should be taken at two-hour intervals before the injection is made, and, after the injection, at the ninth, twelfth, fifteenth, and eighteenth hours, at least. The increase of temperature in glandered horses varies from 1.5 to 2.5 C. above the normal, and is distinctly high on the second day after injection. Healthy horses often show a distinct temperature increase on the first day after inoculation, but, as a rule, this disappears quickly. In the use of mallein, as in the tuberculin test, care must be taken to exclude other influences that disturb the normal temperature relations. Experienced observers lay much stress upon the appearance of swelling at the seat of inoculation. In a glandered animal the tumefaction is large, hot, and painful; it increases in size up to twenty-nine to thirty-six hours, persists for about a week, and gradually disappears. In a healthy animal a swelling may occur, but it is never large and vanishes within twenty-four hours.

There is complete agreement among veterinarians regarding the high diagnostic value of mallein. The reaction is specific, is usually sharp and decisive in character, and almost never fails to reveal the presence of infection. Nocard expressed himself very emphatically: "A complete mallein reaction is unequivocal; the animal that reacts is glandered. An animal which does not react to an injection of mallein is not glandered, whatever the character of the symptoms." Recent workers prefer the ophthalmic test to the subcutaneous mallein test.

- (b) The ophthalmic test consists in the introduction of the mallein, preferably in tablet form, into the conjunctival sac. The reaction is very reliable and the test can be readily made by every practising veterinarian.
- 3. The agglutination method (Macfadyen)¹ has had extensive official use in Prussia and Austria. The serum of normal horses agglutinates in dilutions of from 1:200 to 1:300, and the reaction is specific only when rather high dilutions (1:500 to 1:3200) are used. The serum from sound animals, however, sometimes agglutinates the glanders bacillus in a dilution as high as 1:500. Occasionally the reaction fails to appear in the serum of glandered animals. The test is liable to the usual difficulties and sources of error in the hands of an unskilled observer (p. 183). Moore² uses a

¹ Macfadyen: Jour. Comp. Path. and Therap., 1896, 9, p. 322.

² Moore: Jour. Infect. Dis., 1907, Suppl. No. 3, p. 85.

suspension of Pf. mallei in carbolized salt solution prepared from a glycerol-agar culture, killed by heating to 60 C. for two hours.

4. The *complement-fixation test* (p. 181) is very accurate, but demands special laboratory facilities and is less easy to apply in a practical way than the ophthalmic test.

Immunity and Prophylaxis.—Permanent immunity to glanders can neither be conferred by an attack of the disease nor produced by any artificial means. Nocard fed with infectious matter three horses which had previously recovered from the disease, and found that these animals showed no resistance superior to that of a healthy control animal. Chronic glanders may exist for years, and is in no wise a warranty against the sudden development of an acute attack.

No very potent or characteristic toxic substance has been obtained from cultures of the glanders bacillus, and attempts at immunization with the products of this organism have been eminently unsuccessful. It is stated by a number of observers that repeated injections of mallein will exercise a curative action upon certain forms of recent infection, but experimentally mallein is without immunizing power. The serum of animals treated with mallein injections and the serum of naturally immune animals, such as cattle, are, according to most observers, totally devoid of any preventive or curative value.

The most that has been accomplished in the direction of immunization is a very moderate augmentation of resistance in dogs injected with small nonfatal amounts of living cultures (Straus).

The experience of Great Britain shows that the disease may be practically eradicated by slaughtering every animal showing clinical signs of glanders or giving a positive mallein test, and properly disposing of the carcase. By this means the number of horses affected was cut down from 2012 in 1906 to 2 in 1925.

MELIOIDOSIS

Melioidosis, a disease somewhat similar to glanders, is caused by an organism (Pf. whitmori) closely resembling Pf. mallei. Pf. whitmori is, however, actively motile and attacks carbohydrates more energetically. The malady has been observed in Rangoon where it is thought to be primarily a disease of the wild rat, communicable to laboratory animals and occasionally to man.¹

¹ Stanton and Fletcher: Bull. 5, Inst. Med. Res., Federated Malay States, 1924.

CHAPTER 25

OTHER PATHOGENIC BACILLI

PSEUDOMONAS PYOCYANEA

Genus: Pseudomonas.¹ Mostly small, motile, strongly aërobic, gramnegative rods; flagella polar. Commonly produces a water-soluble blue, green or yellow pigment. Powers of carbohydrate fermentation feeble. Widely spread in water and soil. Some members have pathogenic power. Type species: Ps. pyocyanea (or aeruginosa).

The blue or blue-green stains that sometimes appear upon surgical dressings long ago attracted the attention of observers, and even before the cause of the phenomenon had been discovered, Fordos² carried out some important investigations upon the nature

of the coloring substance. In 1882 Gessard³ proved that the pigment was the product of a specific micro-organism, Ps. pyocyanea, which he was able to isolate in pure culture.

Morphology and Cultural Characters.—The cells of Ps. pyocyanea vary considerably in size and proportion, but appear usually as small, slender rods, frequently united in pairs and short chains (Fig. 115). A single flagellum is attached to one end, and the organism is actively

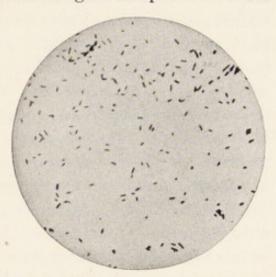


Fig. 115.—Pseudomonas pyocyanea. Pure culture on agar. Fuchsin stain. Zettnow prep. (Kolle and Wassermann.)

motile. Spores have never been observed. Gram's stain is negative.

Ps. pyocyanea grows readily on all the ordinary culture media. Gelatin is quickly liquefied, and freshly isolated cultures impart to this medium the characteristic blue-green coloration. Upon agar a

- ¹ Some members of this group are closely related to the typhoid bacillus. Ps. fluorescens is very similar to E. alcaligenes (p. 363).
 - ² Fordos: Comp. rend. Acad. Sci., 1860, 51, p. 215.
 - ³ Gessard: "La pyocyanine," Thèse, Paris, 1882.

yellowish-white surface growth usually develops, the agar itself being richly colored. Broth is rendered turbid, a heavy flocculent sediment is formed, and a tenacious surface pellicle. Indol is produced. Growth on potato is generally luxuriant and of a brownish color; the potato itself is tinged green by freshly isolated strains. Milk is quickly curdled and shows an alkaline reaction; in old cultures the casein is digested.

Products of Growth.—Those cultures of Ps. pyocyanea that have been recently isolated from the animal body generate two pigments: a fluorescent green pigment, apparently identical with that produced by a number of common water bacteria (Ps. fluorescens liquefaciens et al.), and a more characteristic deep blue pigment, known as pyocyanine, which can be extracted from solution by chloroform. Ledderhose¹ ascribes to pyocyanine the formula C₁₄-H₄N₂O. The pigment has no poisonous qualities, as shown by animal experiments. Pyocyanine oxidizes to a dark brown or even black pigment in old cultures, and in strains that have long been under cultivation the brownish color appears without previous development of the blue color. The conditions that determine both the formation of the fluorescent pigment and of the pyocyanine have been exhaustively studied.2 Oxygen is essential. Sulfate and phosphate are necessary to the formation of the fluorescent pigment, but small quantities of pyocyanine may be formed in the absence of these salts. The enzymes secreted by Ps. pyocyanea have also often been the object of special investigation. The sterile filtrates of this organism dissolve gelatin and fibrin. Breymann3 found an enzyme that coagulated and peptonized milk and was closely bound to the bodies of the bacilli. Emmerich and Löw4 carried out a long series of observations on a thermostabile substance called by them pyocyanase, to which they attributed great importance in immunizing against and in curing certain infections. The results of these latter writers have not been confirmed. The filtrates of Ps. pyocyanea likewise possess hemolytic power, but this property seems to be due simply to the alkalinity of the filtrate and not to the presence of any specific "pyocyanolysin" (Jordan).5

¹ Ledderhose: Deut. Ztschr. Chirurg., 1888, 28, p. 201.

² Jordan: Jour. Exper. Med., 1899, 4, p. 627.

³ Breymann: Centralbl. f. Bakt., I, Orig., 1902, 31, p. 481.

⁴ Emmerich and Löw: Ztschr. f. Hyg., 1899, 31, p. 1; 1901, 36, p. 9.

⁵ Jordan: Jour. Med. Res., 1903, 10, p. 31.

Broth cultures of Ps. pyocyanea are toxic especially for guineapigs. According to Wassermann, this toxicity is due, not to an endotoxin, but to the presence of a true soluble toxin, which, however, is very resistant to heat.

Broth cultures grown at 37 C. assume after a few days a slimy, viscid character, due to the production of "pseudo-mucin." Later the cultures become less slimy and develop true mucin.

Pathogenicity.—For some time after its discovery Ps. pyocyanea was generally regarded as a harmless saprophyte, or at most an organism of slight pathogenic power. It has since been learned that Ps. pyocyanea is causally associated with a great variety of suppurative and other affections in man. Apart from the many doubtful cases in which Ps. pyocyanea is found mixed with streptococci, staphylococci, and other organisms, where its share in inciting pathologic processes is problematic, numerous instances are on record in which little or no question exists as to its etiologic rôle. It has been found by a number of observers in pure culture in abscesses in different parts of the body, especially in the middle ear. Cases of endocarditis and pneumonia have also been met in which Ps. pyocyanea seemed to be the sole responsible organism. A generalized and fatal form of pyocyanic infection has been observed by a number of investigators,2 and the bacillus has been found in the blood during life.3 Lartigau4 found Ps. pyocyanea constantly present in the intestinal discharges of patients during a dysenterylike epidemic, and the same organism was also present in abundance in drinking-water which seemed, on epidemiologic grounds, to be implicated in the outbreak. There is no doubt that under certain conditions Ps. pyocyanea is pathogenic, even gravely so, for man.

Intraperitoneal injection of one-tenth of a loop of fresh agar culture will kill a guinea-pig with acute symptoms in twenty-four hours. Smaller amounts are also fatal, but less rapidly. Subcutaneous inoculation produces a marked local reaction and is less deadly than intraperitoneal. The symptom-complex presents nothing especially characteristic. Rabbits are not so susceptible as guinea-pigs; mice and pigeons are less susceptible than rabbits. Immunity may be produced by small, nonfatal doses.

Rettger: Jour. Med. Res., 1903, 5, p. 101.

² See, for example, Rolly: Münch. med. Wchnschr., 1906, 53, p. 1399.

³ Brill and Libman: Amer. Jour. Med. Sci., 1899, 118, p. 153.

⁴ Lartigau: Jour. Exper. Med., 1898, 3, p. 595.

PROTEUS

Genus: Proteus. Highly pleomorphic gram-negative rods. Actively motile with peritrichical flagella. Luxuriant growth on ordinary media with characteristic spreading colonies. Gelatin liquefied. Dextrose and sucrose are fermented with gas production, but lactose is not attacked. Type species: Proteus vulgaris.

These organisms were originally described by Hauser¹ as an independent genus containing three species—Pr. vulgaris, Pr. mirabilis, and Pr. zenkeri. It is now generally agreed that the last named is not closely related to the typical members of the group and the classification of the Society of American Bacteriologists puts it

Fig. 116.—Proteus vulgaris, showing flagella (Migula).

in a separate genus (Zopfius). At the present time the species of Hauser (distinguished by him chiefly for differences in the rapidity of gelatin liquefaction) are not separated.²

Proteus (vulgaris) is one of the most common bacteria in soil and water containing decomposing organic matter of animal origin. It seems to be involved in various commercial processes (see pp. 705, 707). It is often found abundantly in sewage, but does not occur

in normal feces so frequently as sometimes stated. It is perhaps to be identified with "the bacterium of putrefaction," the so-called "B. termo" of early writers.

Members of the genus Proteus are gram-negative, usually rodshaped, varying from coccoid to filamentous forms, without endospores, actively motile, with peritrichical flagella (Fig. 116). Gelatin is liquefied more or less rapidly, often with a characteristic colony formation with radiating filaments which wander far off

¹ Hauser: "Ueber Fäulnissbakterien," Leipzig, 1885.

² Comprehensive studies of the Proteus group have been made by Miss Bengtson: Jour. Infect. Dis., 1919, 24, p. 428; by Wenner and Rettger: Jour. Bacteriol., 1919, 4, p. 331; and by Moltke: Contribution to the Characterization and Systematic Classification of Bac. proteus vulgaris (Hauser), Copenhagen, 1927, pp. 196.

PROTEUS 497

into the surrounding medium (Fig. 117). The typical Proteus colonies are best formed when the gelatin is soft, as happens when it is kept at a temperature not far below the melting-point or is made up with 5 instead of 10 per cent gelatin. Dextrose is fermented with acid and gas production; saccharose and maltose are fermented by some, but not by all, strains; lactose, raffinose, and mannitol are never fermented by the typical Pr. vulgaris. The Voges-Proskauer reaction is negative. Nitrates are reduced. Milk is at first rendered slightly acid, then curdled with alkaline reaction (in about three days), and more or less slowly peptonized.

Moltke found that production of H₂S and the decomposition of urea distinguish Proteus from all other gram-negative gelatin-liquefying bacilli.

In a study of 194 Proteus strains Moltke observed a definite division on the basis of maltose fermentation; 37 fermented maltose and 157 did not. Nearly all the maltose-positive strains produced indol and none of the maltose-negative did. There were other correlated qualities.

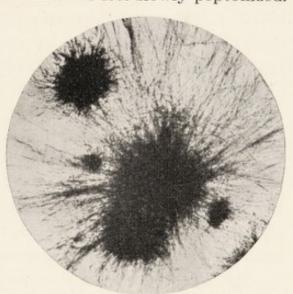


Fig. 117.—Colony of Proteus zopffii on agar plate; \times 40 (Nowak: Documenta Microbiologica I, 1927).

Proteus was long regarded as especially concerned in the putrefaction of protein substances, but Rettger and Newell¹ have shown that no decomposition of protein is effected by Proteus under anaërobic conditions. With aërobic growth the ordinary nonputrefactive products of protein decomposition are formed.

Proteus, both in mixed and pure cultures, has been found connected with a variety of pathologic conditions. Infections of the eye and ear, pleuritis and peritonitis, suppurative abscesses in many parts of the body are among the many instances in which the pathogenic power of this organism in pure culture can hardly be doubted. As a producer of cystitis it probably ranks next to Bact. coli. Besides its independent pathogenicity it is found so commonly associated with other organisms in purulent war wounds and similar

¹ Rettger and Newell: Jour. Biol. Chem., 1912, 13, p. 341.

processes that its activity as an accomplice is probably second only to that of the cocci.

In certain affections of the digestive tract Proteus has been frequently held to be the responsible agent. In diarrheic stools, especially those of infants, it has often been found in large numbers. Metchnikoff regarded it as the usual cause of infant diarrhea. The real relation of Proteus to intestinal infections is, however, still quite obscure.

Certain food poisoning epidemics have been ascribed to Proteus. These cases have been collected and subjected to a critical analysis by Miss Bengtson, who concludes that a definite proof of the causal relationship between the organism isolated and the illness is lacking in all instances. Further evidence is needed to establish the rôle of Proteus in food poisoning.

Animal inoculation shows that a great range of virulence exists among the Proteus cultures that have been tested. Freshly isolated strains from pathologic sources may produce definite lesions, including abscesses, enlargement of spleen, and a diarrheic condition. One strain from a case of peritonitis has been reported which killed mice in amounts of 0.005 cc. of broth culture. A very weak, soluble toxin is produced by some cultures.

The use of a strain of Proteus in the diagnosis of typhus (Weil-Felix reaction) is described elsewhere (p. 657)

BARTONELLA

OROYA FEVER: VERRUGA PERUVIANA

In 1870 a severe outbreak of disease with over 7000 deaths occurred among Peruvian workmen building a railway between Lima and Oroya. The disease, which was named Oroya fever, was suspected of some connection with an affliction long known as verruga peruviana and characterized by fever, anemia and a nodular skin eruption. Some years later (in 1885) Carrion, a medical student at Lima, inoculated himself with blood from a verruga nodule and died some weeks later from what observers took to be Oroya fever. Early in the twentieth century small bacillary bodies were discovered by Barton in the red blood-cells of Oroya fever patients and his observation was confirmed and extended by Strong and his

¹ Bengtson: Jour. Infect. Dis., 1919, 24, p. 428.

associates.¹ Noguchi and Battistini² succeeded in cultivating the bacillus (Bartonella bacilliformis), and Noguchi carried on inoculation experiments with rhesus monkeys which reproduced both the nodular disease of the skin (intradermal injection) and the severe type of anemia seen in Oroya fever (intravenous injection).³

Bartonella bacilliformis is a small, motile, aërobic, gram-negative bacillus varying considerably in size and shape. It apparently needs blood for its development and grows better on solid or semi-solid medium than on fluid. The colonies are very small, discrete and greyish-white.

Various insects have been suspected of being the agents of transmission of verruga and Oroya fever under natural conditions. Townsend's epidemiological studies in 1913 led him to the conclusion that a species of blood-sucking fly, Phlebotomus verrucarum, was the insect vector of verruga and the later experimental work of Noguchi and others⁴ established the fact that two and perhaps three species of Phlebotomus might carry the parasite.

Bartonella muria.—The removal of the spleen from rats is often followed by a severe and frequently fatal anemia. The red blood cells of the affected animals contain a Bartonella-like organism to which the symptoms are attributed. Uninfected rats (Wistar Institute stock) do not develop significant anemia after splenectomy. Cannon and McClelland consider the louse the important means of spreading the Bartonella infection in rat colonies.

¹ Strong, R. P., et al.: Report of First Expedition to South America, Harvard School of Trop. Med., Cambridge, Mass., 1915.

² Noguchi, H., and Battistini, T. S.: Jour. Exper. Med., 1926, 43, p. 851.

³ Noguchi, H.: Jour. Exper. Med., 1926, 44, pp. 533, 697, 715, 729.

⁴ Noguchi et al.: Jour. Exper. Med., 1929, 49, p. 993.

⁵ Cannon, P. R., and McClelland, P. H.: Proc. Soc. Exper. Biol. and Med., 1928, 26, p. 157.

CHAPTER 26

THE PATHOGENIC SPIRILLA

SPIRILLUM CHOLERAE (VIBRIO CHOLERAE)

Although Asiatic cholera has doubtless smoldered endemically in parts of India for many centuries, the year 1817 marks its first considerable extension beyond the borders of that country. Europe was first invaded in 1831, since which date several great epidemics

Fig. 118.—Spirilla of Asiatic cholera. Broth culture two days old. Fuchsin stain, × 1000 (Fränkel and Pfeiffer).

have carried the disease over a large part of the civilized world. The specific germ was discovered in 1883 by Koch¹ in the intestinal contents of cholera patients.

Morphology.—In stained preparations the cholera spirillum appears as a short, slightly curved and twisted rod, the so-called "comma bacillus" (Fig. 118). In most cultures short spirals or S-shaped

forms may also be observed (Fig. 15, p. 65). The long, straight, and spiral threads formed in the pellicle of liquid gelatin cultures are usually regarded as involution forms. Cultures that are transferred during a long period on agar often lose the curved form and appear as straight rods, but resume the more characteristic shape when passed through animals. Only a single flagellum is present at one end of the true S. cholerae. Some writers have described cholera germs as possessed of a tuft of several flagella, but the organisms observed to be

¹ Koch: Berl. klin. Wchnschr., 1884, 21, p. 477; Brit. Med. Jour., 1884, 2, pp. 403, 453.

so endowed were not the true cholera spirilla, but some of the numerous related varieties (Kolle). Active motility is manifested. True spores are not found. The cholera spirillum stains readily with the ordinary aniline dyes. It is decolorized by Gram's method.

Cultural Characters.—Growth occurs abundantly on the ordinary culture media, a distinctly alkaline reaction, however, being essential. Upon gelatin plates at 20 to 22 C. the growth is quite characteristic. The colonies are plainly visible to the naked eye after twenty-four hours, and are at first round, with an even con-

tour, later becoming irregular; under a low power of the microscope the colony presents a rough, granular appearance, as if the surface were covered with fine particles of glass (Fig. 119). A little later—within forty-eight hours—liquefaction of the gelatin sets in, and the colony sinks into a funnel-shaped depression whose area rapidly extends. This typical colony formation occurs in most of the freshly isolated cultures, but considerable variation sometimes takes place. In old labora-

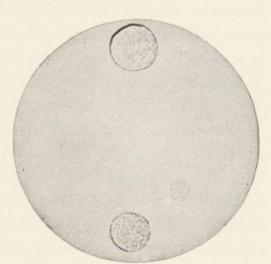


Fig. 119.—Colonies of the cholera spirillum. Gelatin, twenty-two hours old; × 100. Zettnow prep. (Kolle and Wassermann).

tory cultures liquefaction is tardy and the colonies have a brownish tinge.

Stab-cultures in gelatin often develop a small, turnip-shaped area of liquefaction at the surface, which by evaporation of the fluid leaves a bubble-like depression, while in some growths but little or no liquefaction occurs along the needle puncture. Other vibrios besides the cholera germ, however, produce this same type of liquefaction; and the cholera spirillum itself sometimes liquefies tube cultures in a different manner.

On agar plates the colonies may be readily distinguished from those of Bact. coli by their thin, opalescent appearance. This feature is of importance in effecting a speedy diagnosis by means of plates made directly from feces.

Blood-serum is rapidly liquefied. On potato at 37 C. a viscid brownish growth is produced. In broth growth is luxuriant; the

medium becomes rapidly clouded, and a wrinkled pellicle is formed at the top. In milk growth takes place without producing any visible change. When the cholera spirillum is grown in peptone broth containing a small amount of nitrate, the nitrate is reduced to nitrite, and at the same time indol is produced. The addition of a few drops of concentrated sulfuric acid to the culture then gives rise to a red color—the cholera-red reaction. This was at one time supposed to be distinctive of the cholera spirillum, but is now known to be given by a number of other vibrios, so that as a positive test it is not diagnostic. Its absence, however, is possibly of some importance in the identification of the cholera germ, provided nitrite is known to be present at the time the test is made. The reaction itself is none other than the familiar nitroso-indol reaction, and is given by any organism (for instance, the colon bacillus) that forms indol and reduces nitrate.

The cholera spirillum is a strongly aërobic organism and refuses to grow under a strip of mica laid over a gelatin plate; in fluid cultures the vibrios collect at the surface. An alkaline reaction of the culture medium is also essential to its development, a small quantity of acid being sufficient to prevent growth altogether.

The resistance of the cholera vibrio to various injurious influences is not great. It is killed by moderately high temperatures very readily (ten minutes at 60 C.), is destroyed quickly by chemical disinfectants, and does not retain its vitality long in association with the ordinary saprophytic bacteria of the soil or water. Toward desiccation it is especially sensitive; if a drop of broth culture be dried on a slide, the vibrios are all dead in about two hours. The slight resistance of the cholera spirillum, especially its sensitiveness to drying, explains the rapid and complete disappearance of cholera in once infected localities, and also the circumstance that the disease is rarely, if ever, transmitted by aërial infection. Whether or not the cholera vibrio is able to multiply outside the body in impure water is in doubt. In some peaty river-waters at least, as shown by Hankin for the Ganges and Jumna rivers, the conditions for multiplication, and even for the continued vitality of the organism, are highly unfavorable. Upon the surface of vegetables and fruits kept in a cool moist place

¹ This may be present as an impurity in the table-salt or some other ingredient used in making the nutrient broth, or may be specially added.

experiments have shown that the spirillum may retain its vitality for from four to seven days.

The Examination of Feces for the Cholera Vibrio.—Rapid practical methods for the detection of cholera vibrios in stools have been developed in this country by McLaughlin, Stimson, and others, in connection with the examination of large numbers of steerage passengers at quarantine. The specimen may be secured by the use of an aperient (magnesium sulfate on an empty stomach at 6 A. M.), or by use of a long rectal tube with several eyes cut at the upper end. Some workers consider that the dose of salts may be dangerous if given to a carrier with vibrios in the intestine by reason of the possible lowering of resistance it may bring about, but McLaughlin states that he administered salts in about 2000 cases at Boston and Providence without observing any ill effects.

A quantity of feces estimated to weigh about 1 gram (1 cc.) is then added to 100 cc. of sterile peptone solution¹ and incubated six hours at 35 to 37 C. Smears from the surface film should then be made (not later than eight hours), stained with carbol-fuchsin, and examined. In the hands of a skilled observer the method leads to the elimination of 80 to 90 per cent of the specimens without plating.² "The observer must search, using a mechanical stage, from 25 to 50 fields, and if he finds no suspicious curved organisms, the specimen is marked negative. If he finds curved organisms, a subculture in peptone and plates are made" (Mc-Laughlin,² p. 563). It is well to make platings from the surface of the peptone solution six, twelve, and eighteen hours after inoculation. Colon bacilli grow feebly, if at all, on this medium. Cholera vibrios grow luxuriantly, but so do other related vibrios.

Goldberger³ found in a series of comparative tests that the cholera organism could be recovered from feces in the presence of very large numbers of the ordinary fecal bacteria by use of an alkaline-egg-peptone solution. This is made up as follows:

"(a) Prepare an alkaline-egg solution by first shaking up or beating up an egg with an equal volume of water and then adding

¹ McLaughlin gives the following formula: peptone (Chapoteau or Witte), 10.0; sodium chloride, 10.0; potassium nitrate, 0.1; sodium carbonate, 0.2; distilled water, 1000. Reprint Public Health Rep., No. 53, Washington, 1910.

² McLaughlin: Bost. Med. and Surg. Jour., 1911, 165, p. 561.

³ Goldberger: Bull. No. 91, Hyg. Lab., Washington, 1913, p. 19.

to this egg-water an equal volume of a 5 per cent solution of anhydrous sodium carbonate. Steam for three-quarters to one hour.

(b) Prepare Dunham's solution: peptone 10, salt 5, water 1000.

"For use mix (a) and (b) in proportion of 1:9. Run through paper filter; distribute in 10 cc. quantities in tubes and sterilize by steaming for one and one-half hours, after which they are ready for use. This solution is of a pale straw color. It is opaque, and a slight precipitate settles to the bottom of the tube on standing, but this interferes in no way with its serviceability. It will keep at least a week."

For plating, the elective medium of Dieudonné¹ is sometimes used, but ordinary nutrient agar is practically as satisfactory. The plates of agar should be poured and then dried for an hour in the incubator before inoculation. The peptone culture is best smeared over the surface with a bent glass rod and the plates incubated at 36 to 37 C. for sixteen hours. Control platings with a known cholera vibrio should always be made until the worker is assured of his ability to recognize the colonies.

Final identification depends on the agglutination test, which should preferably be carried out with a serum of rather high titer (at least 1:4000). The usual precautions necessary for this test should always be observed (p. 183), and control tests with a known vibrio and with normal serum should be made.

By such a method it is possible to make an examination of every passenger in a short time. In August, 1911, the steamer Canopic arrived at Boston from Naples and a bacterial examination of 1193 second-class and steerage passengers was concluded in fifty-four hours.

Cholera Carriers.—In regions where cholera exists healthy persons sometimes have cholera vibrios in the intestines. As a rule, the vibrios are not found in the stools longer than ten days, and very rarely over twenty days, after convalescence; but one case is on record² where vibrios were found for sixty-nine days, and several other observers have reported a duration of about fifty days. Such facts prove the possibility of the conveyance of cholera infection over long ocean voyages, even though no definite case of cholera develops on shipboard. In point of fact, as many as four

¹ Dieudonné: Centralbl. f. Bakt., I, Orig., 1909, 50, p. 107.

² Bürgers: Hyg. Rundsch., 1910, 20, p. 169.

cases developed in the United States in the summer of 1911 among persons who had passed quarantine inspection. Two of these cases had been detained in quarantine at the port of New York for as long as seven days. One case developed on Staten Island, N. Y., in an employee who had previously been guarding apparently well persons at quarantine.

Cholera carriers are naturally more abundant in times and places where cholera is prevalent than when only scattered cases exist. McLaughlin¹ found that 17 out of 264 healthy persons at Bilibid Prison, Manila, were carrying cholera vibrios at a time when the disease was epidemic in the prison. The outbreak was quickly suppressed by enforcing the thorough disinfection of the hands upon leaving the latrines and before eating.

Intermittent discharge of cholera vibrios is sometimes observed. In a case reported by Creel² the cholera vibrio was present in four and absent in six examinations made during a period of four weeks following the first negative examination after recovery. Greig³ has found the cholera vibrio in the bile in no less than 80 out of 271 fatal cases, and believes that chronic cholera carriers, like typhoid carriers, owe their prolonged infectivity to the persistence of the bacteria in the gall-bladder.

Pathogenicity for Man.—The causal connection between Asiatic cholera and the micro-organism discovered by Koch has been demonstrated by a number of laboratory accidents. One of these cases occurred in Hamburg in September, 1894, at a time when there were no other cases of the disease in that city.⁴ Dr. Emil Oergel, assistant in the Hamburg Hygienic Institute, became accidentally infected in the course of his laboratory work, probably by drawing into his mouth through a pipet some of the peritoneal fluid from an inoculated guinea-pig with which he was experimenting. Clinically, the patient presented a typical picture of severe cholera. A nearly pure culture of the cholera vibrio was found in the stools, and about nine days after the probable infection the case terminated fatally. In another German laboratory two experimenters, Pettenkofer and Emmerich, voluntarily swallowed

¹ McLaughlin: N. Y. Med. Jour., 1911, 93, p. 115.

² Creel: Jour. Amer. Med. Assoc., 1912, 58, p. 187.

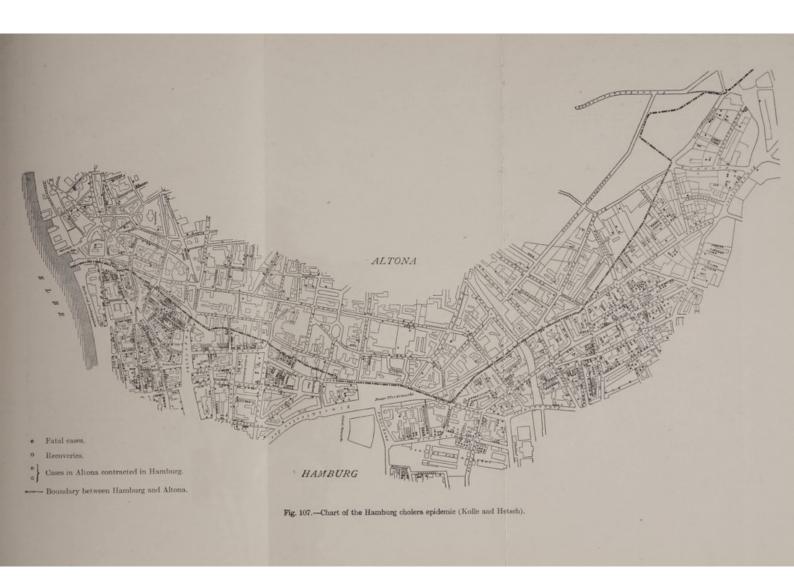
³ Greig: Indian Jour. Med. Res., 1913, 1, p. 44.

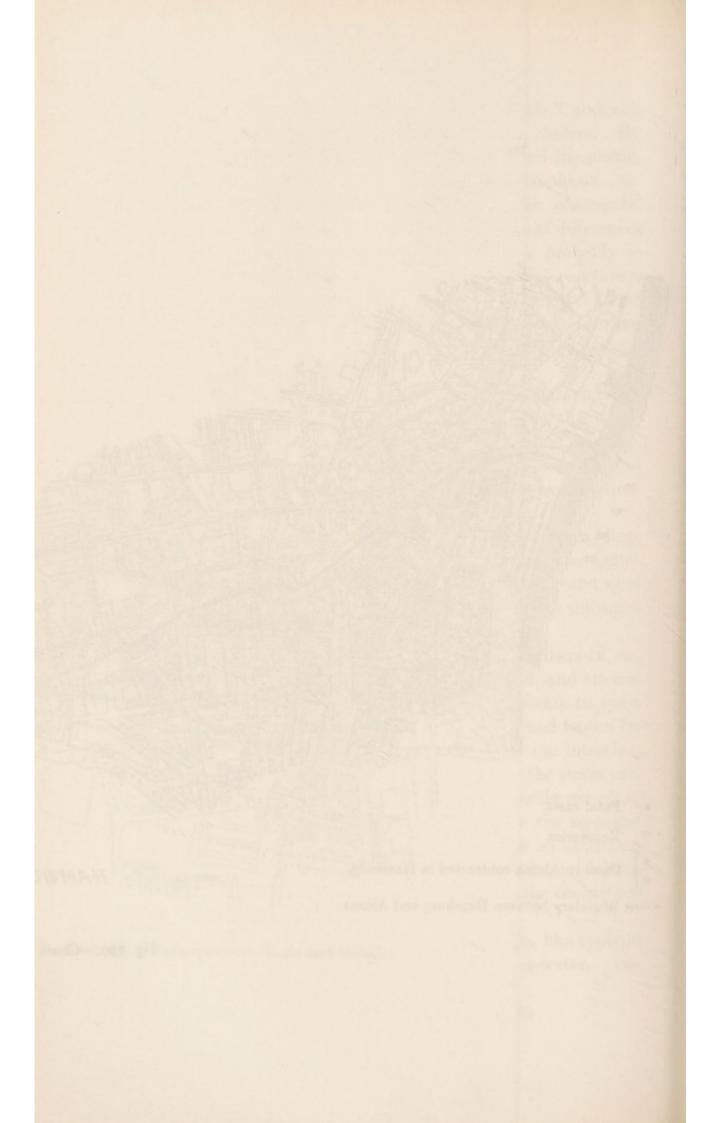
⁴ Reincke: Deut. med. Wchnschr., 1894, 20, p. 795.

a small quantity of a broth culture of "Koch's vibrio," and as a result developed mild but genuine cases of Asiatic cholera. By such instances the relation between Asiatic cholera and the particular spirillum has been demonstrated with sufficient emphasis.

Both laboratory cases of cholera and those cases contracted naturally in the course of epidemics are marked by great differences in the susceptibility of different individuals. This probably is due partly to innate individual differences in natural resistance, partly to fluctuations in resistance. Fatigue, the excessive use of alcohol, and various factors leading to mild, nonspecific gastro-intestinal derangements, predispose in a marked degree to attacks of cholera.

The tissue changes observed at autopsy are not characteristic. Kidneys and liver frequently show cloudy swelling, but this is not invariable. The intestinal tract, especially the lower half, is sometimes congested, sometimes affected with extensive necrosis and formation of a false membrane; the latter condition is seen particularly in the more chronic cases.


The patient's serum cannot be satisfactorily used for a diagnostic agglutination test as in typhoid fever, because the agglutinative property of the serum is irregular in appearing and may not develop at all. A fall of the opsonic index occurs with the onset of cholera, as of other diseases.


The cholera spirilla usually occur in immense numbers in the contents of the intestines, but do not invade the blood, and are not found, as a rule, in the internal organs. They penetrate to some extent, however, into the wall of the intestine itself, and loosen by their action the epithelial cells, which are shed into the intestine, giving the characteristic "rice-water" appearance to the stools and intestinal contents. In the rice-water stools the spirilla are often found in pure culture, but in later stages, and in the so-called "cholera-typhoid condition," other bacteria become so abundant that the isolation of the cholera spirillum from choleraic dejecta becomes much more difficult. Greig² has reported the occurrence of the cholera vibrio in the urine of cholera patients.

Modes of Dissemination; Epidemiology.—Cholera, like typhoid fever, is spread largely by means of infected drinking-water. The

¹ Svenson: Ztschr. f. Hyg., 1909, 64, p. 342.

² Greig: Indian Jour. Med. Res., 1913, 1, p. 90.

short period of incubation and the rather unmistakable clinical picture often render the water-borne epidemics of cholera more easily traceable to their source than those of typhoid fever. explosive character of such outbreaks is usually striking. In the famous "Broad Street pump" epidemic of cholera in London in 1854, there were in the district affected 12 deaths from cholera during a period of thirteen days preceding the outbreak; then in four successive days the number of deaths leaped to 344. A similar explosive outbreak occurred on August 20, 1892, in Hamburg, when the water-supply of that city became infected (Fig. 120). The epidemic at Hamburg affords particularly strong evidence of the relation between drinking-water and cholera, as shown by the following facts. The neighboring city of Altona, which is separated from Hamburg only by a political—not by a social or topographic boundary-line, derives its water-supply from the river Elbe, purifying it by sand-filters. The Hamburg supply in 1892 came from the same stream, but at that time was not filtered. Throughout the period when Hamburg suffered severely from cholera Altona remained practically exempt. Houses on one side of a street which were supplied with water from the Hamburg mains developed many cases of cholera, while those on the other side, although under identical social and climatic conditions, built on the same soil, and provided with the same sewerage system, but supplied with Altona water, remained free.2

Milk and other articles of food ordinarily consumed in an uncooked state may likewise be the vehicle by which the cholera germ is conveyed into the alimentary tract. Cases of cholera due to contact infection sometimes occur, those persons in the immediate household of cholera patients, and especially those concerned in the care of the latter, being always more or less liable to become infected.

The epidemiologic relations of cholera are explained by its bacteriology: (1) cholera spirilla leave the body of the patient in the feces (rarely in the urine); (2) not only patients and convalescents from cholera, but also healthy individuals from cholera-infected regions, may pass cholera spirilla in their bowel discharges. (See

¹ Report on Cholera Outbreak in the Parish of St. James, Westminster, during the autumn of 1854. London, J. Churchill, 1855.

² Koch: Ztschr. f. Hyg., 1893, 14, p. 393.

p. 504.) These facts make it clear why sewage-polluted water is often the cause of outbreaks of cholera, why the soiling of hands, garments, bed-clothing, etc., can lead to contact infection, and why cholera can suddenly arise at a point remote from other centers of infection as a consequence of the arrival of travelers from a cholera-ridden district. There is no mysterious influence of "locality" in cholera epidemics except that the germ is introduced into certain places and not into others, and that, when once introduced, its wide dissemination is favored by certain factors, such as a polluted public water-supply, defective disposal of excremental refuse, or the unsanitary conditions that are fostered by overcrowded dwellings and extreme poverty.

So far as known, infection occurs only through the alimentary tract; the germ must be swallowed. The danger of dissemination by dust is slight, owing to the feeble resistance shown by the germ to 'drying. On the other hand, contamination of exposed food through the agency of flies is a well-grounded probability.

Animal Inoculation.—Under natural conditions domestic animals and the animals used in laboratory experimentation never contract cholera. Somewhat drastic methods, such as alkalinization of the stomach contents with soda and slackening of the peristaltic movement of the intestine with opium, were employed by the earlier experimenters in their attempts to produce infection, and in some cases (guinea-pigs, Nicati and Rietsch)¹ these apparently succeeded. It was subsequently shown, however, that the choleraic symptoms and fatal termination produced in this way could also be brought about by other vibrios, and were not a peculiar manifestation of the true cholera spirillum.

Experiments with rabbits have given the most important results. Injection of a very small quantity of a culture of cholera vibrios into the ear-vein results in the death of these animals with intestinal lesions not unlike those observed in man. Young rabbits may be infected through the mouth in a large proportion of cases by the simple expedient of placing cholera spirilla on the teats of the mother (Metchnikoff). Animals so infected present the characteristic features of typical cholera.

Intraperitoneal injection of guinea-pigs, while it does not reproduce typical Asiatic cholera, gives rise to a fatal infection which

¹ Nicati and Rietsch: Deut. med. Wchnschr., 1884, 10, p. 634.

has been exhaustively studied by Pfeiffer¹ and other workers. The virulence of cholera cultures is frequently tested in this way, and a number of important discoveries relating to the mechanism of immunization and the presence of bactericidal substances in the serum have been made in connection with the study of "intraperitoneal cholera."

Toxin.—For a long time no poisonous substance akin to those contained in the broth cultures of the diphtheria and tetanus bacilli was detected in cultures of the cholera spirillum. Pfeiffer, who was one of the first workers in this field, found that young cultures in fluid media were practically devoid of toxicity. On the other hand, young agar cultures freshly killed with chloroform vapor or by heating to 56 C. were found to contain labile toxic substances. On such grounds it was inferred that the cholera spirillum produces no true toxin, but contains an endotoxin or poisonous body closely bound to the cell substance.

Metchnikoff, Roux, and Taurelli-Salimbeni,² however, found that if cholera spirilla were placed in collodion sacs in the peritoneal cavity of guinea-pigs, multiplication of the bacteria occurred within the sac and the animals died without the advent of any spirilla into the organs, blood, or peritoneal exudate. This they attribute to the production by the living cholera spirilla of a soluble toxin which diffuses through the wall of the collodion sac. Brau and Denier³ and Kraus and Russ⁴ obtained yet more decisive results, and demonstrated the presence of a true toxin in broth cultures. The serum of actively immunized animals neutralizes the cholera toxin, and hence presumably contains a true antitoxin. In animal experiments the cholera antitoxin exerts a curative effect.

Vaccination against Cholera.—It is possible to immunize guinea-pigs and other animals by incorporating in their bodies, subcutaneously or intraperitoneally, living cholera bacteria, either of full virulence or attenuated. Bacteria killed by a moderately high temperature or by chloroform may also be used. Filtered germfree cultures of S. cholerae, unlike those of C. diphtheriae, possess no immunizing power. From this it is inferred that the immunity-

¹ Pfeiffer: Ztschr. f. Hyg., 1894, 18, p. 1; 1895, 20, p. 198.

² Metchnikoff, Roux, and Taurelli-Salimbeni: Ann. de l'Inst. Past., 1893, 7, pp. 403, 562; 1894, 8, pp. 257, 529.

³ Brau and Denier: Ann. de l'Inst. Past., 1906, 20, p. 578.

⁴ Kraus and Russ: Centralbl. f. Bakt., Abt. I, Orig., 1907, 45, p. 258.

stimulating substance, which is usually identified with the specific toxin, is closely bound to the cell body. Whatever method is employed, whether injection of living spirilla or injection of those killed by chloroform or heat (fifteen minutes at 65 C.), it is important to graduate the dose, increasing by small amounts the quantity injected. A method commonly employed in animal experimentation is to make first several injections of killed spirilla, and then, when a certain degree of immunity has been obtained, to inject living virulent spirilla at suitable intervals (about seven days) in gradually increasing doses.

The immunity so conferred is not accompanied by the development of any antitoxic quality in the blood of the immunized animal. An animal immunized to a high degree against living cultures succumbs just about as readily as a normal animal to inoculation with dead cultures. The active power of the immune serum depends upon its ability, when injected along with cholera spirilla into the peritoneal cavity of a guinea-pig, to cause the death and disintegration of the spirilla. Cholera immune serum is bacteriolytic, not antitoxic. The serum of an immunized goat may be so potent that 0.0001 cc. is sufficient to protect a guinea-pig against intraperitoneal injection with 10 times the minimum fatal dose of cholera spirilla. The bactericidal property of the immune serum is specific: anticholera serum will not destroy S. metchnikovii or other vibrios related to, but not identical with, the true cholera spirillum.

While the serum produced in this way possesses considerable preventive, it has little or no curative, power. If within one-half hour after intraperitoneal injection with a loop of a virulent cholera culture a guinea-pig is injected with anti-cholera serum of high potency, the life of the animal is saved; if, however, a period of one and one-half hours be allowed to elapse, large doses of serum are of no avail. In the latter case, indeed, the spirilla are destroyed, but the time interval has given such an opportunity for multiplication that the amount of poisonous substance liberated from the bodies of the dissolved bacteria is enough to cause death. After a still further interval the bacteriolytical action is much lessened, and finally is no longer manifest.

The results obtained in man with the serum of immunized animals are in general accord with the outcome of animal experimentation as above related. The principle of passive immunization, which is so effective in the case of diphtheria, has not as yet come into general use in cholera, although the work of Kraus and Russ indicates the applicability of the method, and the possibility of its future extension.

Active immunization of human beings, has, on the contrary, been advocated and rather extensively practised. Passing over the work of Ferran (1884) as of little practical importance on account of his use of impure cultures and other loose methods of experimentation, the first really noteworthy venture in this direction is the work of Haffkine. This experimenter used first a weak virus, that is to say, a culture attenuated by long cultivation or by growth at a high temperature (39 C.), and then followed this five days later with a virulent culture, both inoculations being made subcutaneously. Haffkine's main field of application of this method has been that home of cholera, British India, where many thousands of Europeans and natives have been vaccinated. The success of this treatment as a prophylactic method is attested by a large body of statistics which, while leaving something to be desired on the score of comparability and accuracy, nevertheless carry conviction on the main point. The following illustration of the incidence of cholera upon the two groups of vaccinated and unvaccinated in a certain part of India will show the nature of the evidence (Powell).2

	Number	Cases	Deaths
Unvaccinated	6549	198	124
Vaccinated	5778	27	14

A similar method of vaccination, devised by Kolle,³ consists in inoculation with cultures killed by heating to 58 C. for an hour. The efficacy of this method has been tested to some extent by examination of the bacteriolytic power of the serum of vaccinated persons. Kolle's method was extensively used in an epidemic of cholera in Japan, where the results were, if anything, somewhat more favorable than the results obtained in India.⁴

¹ Haffkine: Brit. Med. Jour., 1895, 2, p. 1541.

² Powell: Jour. Trop. Med., 1899, 2, p. 115.

 $^{^{\}scriptscriptstyle 3}$ Kolle: Deut. med. Wchnschr., 1897, 23, p. 4.

⁴ Murata: Centralbl. f. Bakt., I, Orig., 1903-04, 35, p. 605.

The mode of action of cholera-immune serum upon the cholera vibrios has been thoroughly studied by Pfeiffer, Ehrlich, and others. When brought in contact with the serum, the bacteria successively lose their motility, become swollen and paler, and break up into rounded, coccus-like granules which finally dissolve and disappear altogether. These changes are observed not only in spirilla introduced into the peritoneum of an immunized guinea-pig, but also in spirilla mixed with fresh immune serum outside of the body. The test-tube experiments have afforded a means of studying the mechanism of bacteriolysis. Two substances were shown by Ehrlich to be concerned in the lytic process. One of these, the complement, is a labile substance contained in abundance in the serum of normal animals; the other, the amboceptor, a more stable body, is developed in the organism during the process of immunization, although there is evidence that small amounts of amboceptor occur in the normal animal. Neither substance alone can destroy the cholera vibrio. The relation of these two substances is shown by the following table, further details concerning the action of the cholera and other bactericidal sera being given in the chapter on Immunity (pp. 163-168):

Allied Varieties.—A number of vibrios more or less closely resembling the cholera spirillum have been found in the stools of persons suffering from cholera, in sewage, and in polluted water. Some of these exhibit slight differences in size, number of flagella, ability to reduce nitrate, to produce phosphorescence, etc., and have been given names such as S. Ghinda, S. Massauah, S. Danubicus, S. phosphorescens, etc., which refer to some biological peculiarity, or to the locality where the vibrios were found. The agglutinative and bacteriolytic tests have afforded a means for distinguishing between these allied varieties and the true cholera spirillum, and less

¹ Pfeiffer: Ztschr. f. Hyg., 1894, 18, p. 1; 1895, 20, p. 198; Sobernheim: Ztschr. f. Hyg., 1895, 20, p. 438.

emphasis is now laid upon other points of divergence and resemblance than was the case at an earlier period. The organism known as S. Massauah, cultivated by Pasquale from human dejecta (noncholeraic), and S. Ghinda, found in well-water, were for a long time considered as true cholera germs, but have been shown to respond negatively to the serum test. It must still be regarded as an open question how far these cholera-like vibrios found in persons suffering from cholera or a cholera-like disease are responsible for the symptoms with which they are associated. From analogy with the typhoid group of diseases, as well as for other reasons, it seems probable that very similar, if not practically identical, symptoms and lesions may be produced by micro-organisms differing in agglutinative and bacteriolytic affinities. The majority of the cholera-like vibrios, so far as studied, however, are probably essentially saprophytic forms, or, at most, possessed of slight pathogenic power.

An apparent exception to the last statement was for a time thought to exist in the case of the famous El Tor vibrios¹ isolated from the bodies of some pilgrims who died with dysenteric symptoms at a time when no cases of cholera were known in the vicinity. These vibrios resemble true cholera vibrios in many respects, but differ in having a marked hemolytic action and in producing a powerful extracellular toxin. They respond positively to the agglutinative and bacteriolytic tests, and to the complement fixation reaction. There is now general agreement that the El Tor vibrios are true cholera vibrios, differing only quantitatively from the types earlier studied.

SPIRILLUM METCHNIKOVII

The organism known by this name was first discovered by Gamaléia² in the intestinal tract and blood of fowls suffering from an epidemic disease resembling fowl cholera. It is extraordinarily like the cholera spirillum in all its morphologic and cultural characters, practically the only difference observed being in the colonies on gelatin plates, which, in the case of S. metchnikovii, sometimes have a brownish tinge, show turbidity of the liquefied gelatin, or diverge in other slight particulars.

¹ F. Gotschlich: Ztschr. f. Hyg., 1906, 53, p. 281.

² Gamaléia: Ann. de l'Inst. Past., 1888, 2, p. 482.

Inoculation of pigeons affords a ready means of distinguishing this organism from S. cholerae. Pigeons are unaffected by injection of relatively large numbers of the latter bacterium, but usually succumb within twenty-four hours to septicemia when pricked with a needle dipped in a culture of S. metchnikovii (Fig. 121). For guinea-pigs also the pathogenicity of S. metchnikovii is higher than that of the cholera vibrio. These animals, on subcutaneous inoculation, fall victims to a rapidly fatal septicemia; if the stomach contents are rendered alkaline, infection can also be produced by feeding.

Further evidence of the difference between these forms is given by the agglutinative reaction and Pfeiffer's serum test. The serum of an animal immunized against intraperitoneal cholera will not protect against S. metchnikovii, and will not agglutinate it. The

Fig. 121.—Spirillum metchnikovii in exudate from pigeon, × 1000 (Günther).

reciprocal statement is also true. Vibrios similar to, and perhaps fully identical with, S. metchnikovii have been isolated by several observers from polluted water. S. Massauah (p. 513), long maintained in laboratory collections under the impression that it was a strain of the true cholera spirillum, is now regarded as more closely related to S. metchnikovii.

The "spirillum of Finkler and Prior" was originally dis-

covered in old stools obtained from a case of cholera nostras.¹ It does not give the typical cholera-red reaction, and may be differentiated in other ways from the cholera spirillum. At present the microbe has only a rather remote historical interest, and would hardly need to be mentioned save for the fact that it has long been cultivated in bacteriologic laboratories, and consequently used to some extent in comparative and experimental work. The same may be said of "Deneke's spirillum," the so-called "S. tyrogenum." The latter organism has very feeble pathogenic power for laboratory animals;

¹ Deut. med. Wchnschr., 1884, 10, p. 632.

the spirillum of Finkler and Prior usually displays more, but never a high, virulence.

A phosphorescent vibrio (S. phosphorescens) isolated from river-water in parts of Germany possesses a decided resemblance to the cholera spirillum, but besides giving luminous cultures, is not influenced by specific cholera serum.

CHAPTER 27

THE SPIROCHETES

Spirally shaped micro-organisms were for a long time grouped together indifferently under the common name spirillum, spirochete, or vibrio. Further knowledge, however, has shown that certain of these forms possess characteristics that distinguish them, on the one hand, from undoubted bacteria, such as the cholera vibrio, and on the other from actively motile protozoa, like the trypanosomes. While there are still some observers who regard the "spirochetes" of syphilis and relapsing fever as plant organisms, and others who regard them as animals, opinion has been shifting to the belief that these organisms stand somewhat apart from both Bacteria and Protozoa, and should perhaps be regarded as constituting an independent group between the two. Classification and nomenclature within the group are still in an uncertain condition, but the table of classification (pages 520, 521) based on Noguchi's studies may be regarded as giving a good working basis.

Study of the spirochetes has been much stimulated by the discovery of the germ of syphilis, which belongs to this group, and by the use of the dark-field microscope (p. 619), which has overcome many of the difficulties in the study of the spirochetal organisms, difficulties caused by the extreme tenuity and unsatisfactory staining qualities of these forms.

Micro-organisms apparently belonging with the spirochetes are the large saprophytic commercial forms (Cristispira), occurring in the alimentary canal of certain mollusks, such as the oyster and the fresh-water mussel. Among the known spirochetes pathogenic for man are the spirochetes of the various relapsing fevers and rat-bite disease (Borrelia), the spirochetes of syphilis and yaws (Treponema), and the spirochete of infectious jaundice (Leptospira).¹

¹ A full discussion of classification and nomenclature has been given by Noguchi in Jordan and Falk: "The Newer Knowledge of Bacteriology and Immunology," Chicago, 1928, pp. 452–497.

THE SPIROCHETES OF THE RELAPSING FEVERS (BORRELIA)

In 1873 Obermeier¹ announced the discovery of a large spirillum in the blood of patients suffering from a peculiar disease known as relapsing fever, which has been known since the early part of the eighteenth century, and has at times prevailed extensively in parts of Europe. The characteristic feature of this affection is that after apparent recovery and the cessation of all active symp-

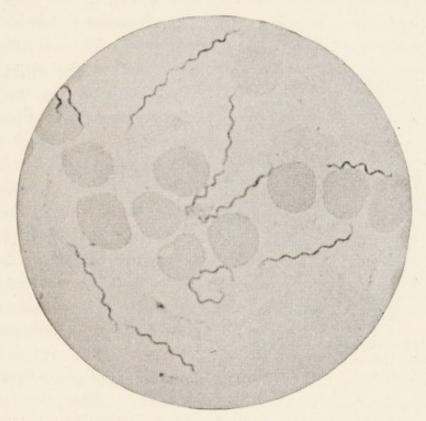


Fig. 122.—Borrelia obermeieri in blood of rat, showing divisional forms. A group showing spirals of different lengths. The two long ones above show transverse division; × 1500 (Novy and Knapp).

toms one or more relapses invariably follow. Similar maladies are common in India, Africa, and other parts of the world at the present time. In recent years a few cases have been observed in the United States.² The European variety of the disease is not a very fatal one, the case-mortality being stated by Murchison³ to be about 4 per cent.

¹ Obermeier: Centralbl. f. d. med. Wissensch., 1873, 11, p. 145.

² For a careful report of two cases see Carlisle: Jour. Infect. Dis., 1906, 3, p. 233.

³ Murchison: "A Treatise on the Continued Fevers of Great Britain," London, 1873.

Bor. obermeieri: Chief Characteristics.—Borrelia obermeieri (S. recurrentis) is a tapering, spiral filament, varying in length from one and one-half times (probably the young single cell) to ten times the diameter of a rod blood-corpuscle (agglutinated cells). The breadth of the cell is about 0.39μ . The number of turns in the short spirals or individual cells is usually only two or three, but may increase to eight or ten prior to division. The individual spirals have a single flagellum at one end, and display a very active screw motion, with some lateral oscillation and, under favorable conditions, rapid forward-backward excursions (Figs. 122 and 123). The

Fig. 123.—Borrelia obermeieri in blood of rat. Shows a long free flagellum at one end and a rudimentary one at the other. Löffler's stain. Note that the flagellum seems to be given off from the side of the tip; × 3000 (Novy and Knapp).

contents of the cells usually stain uniformly by the Romanowsky method, with the exception of the ends, which are pale and fade away to a point (Novy). These spirochetes have been cultivated outside the body by Noguchi. His procedure consists in adding a few drops of citrated rat or mouse blood containing the spirochetes to sterile ascitic or hydrocele fluid (10 to 15 cc.) containing pieces of fresh rabbit kidney. Best results were obtained when the infected blood was drawn between the

forty-eighth and seventy-second hour of the attack, and the tube incubated at 36 C. The avoidance of bacterial contamination is essential to success. Plotz¹ succeeded in cultivating S. obermeieri directly from human blood.

Relationship and Nomenclature.—Schaudinn² believed that the special organism seen in relapsing fever belonged not to the bacteria, but to the protozoa, basing this opinion on its alleged possession, like trypanosomes, of a definite nucleus, blepharoplast, and undulating membrane, and flagellum. Novy and Knapp³ and others, however, have shown that this view is incor-

¹ Plotz: Jour. Exper. Med., 1917, 26, p. 37.

² Schaudinn: Arb. a. d. k. Gesund., 1904, 20, p. 387.

³ Novy and Knapp: Jour. Infect. Dis., 1906, 3, p. 291.

rect; no nucleus, blepharoplast, or undulating membrane could be demonstrated by these later observers. The flagellum is like that of bacteria in general and is not of the protozoan type; multiplication takes place by transverse, not longitudinal, division, and is very rapid. Toward plasmolytic agents and toward heat Bor. obermeieri behaves like a bacterium, not like one of the protozoa; active immunity of a high degree is readily established. On the other hand, the immunity reactions, the behavior of the parasites toward certain chemicals, and the course of the infectious process seem to indicate an affinity with the protozoa.

Pathogenicity.—The spirochetes of relapsing fever can be transmitted by inoculation to man, monkeys, mice, and rats. Carlisle¹ describes a case in man occurring as the result of accidental inoculation, probably from the bite of a monkey in the course of experimental work with the spirochete. A typical paroxysm, with severe frontal headache, sharp pains in the back, and fever, was followed by a critical defervesence, ending apparently in complete recovery. In about a week a second paroxysm occurred, and then, after a remission, a third. This is fairly typical of the course of cases of relapsing fever observed in an epidemic. Sometimes four or even more relapses occur. The spirochetes are found in the blood during the febrile paroxysm, but tend to diminish in number during succeeding relapses.

Certain monkeys may be infected by subcutaneous inoculation with human or animal blood containing spirochetes. The infection in these animals, like the naturally contracted relapsing fever in man, is characterized by successive attacks of illness, usually three or four in number, accompanied by the appearance of spirochetes in the peripheral blood. The rise in temperature at the time of the paroxysm is less marked and less constant in monkeys than in cases of human relapsing fever. The course of the disease is usually benign, the inoculated animals speedily regaining their health after the last paroxysm.

White mice are very susceptible to inoculation, and typical relapses occur in these animals. White rats also are readily infected, and spirochetes are found in large numbers in the blood, but relapses have never been observed.

The pathologic anatomy of the disease presents nothing very characteristic. The spleen is generally enlarged.

¹ Carlisle: Jour. Infect. Dis., 1906, 3, p. 233.

CLASSIFICATION OF SPIRAL ORGANISMS

		Spirochaeta ("Coil-hair")	Saprospira ("Putrid-coil")	Cristispira ("Crested coil")	Borrelia (Borrel: Compt. rend. Soc. biol., 1906, 60, p. 138)	Treponema ("To Turn, Thread")	Leptospira ("'Fine-coil")
	Length	100 to 150	100 to 120	45 to 90	8 to 16	6 to 14	7 to 9 or 14
	Diameter	0.5 to 0.7		1.0 to 1.5	0.35 to 0.5	0.25 to 0.3 Cylindrical	0.25 to 0.3
asure micim	Width of spiral .	2				1.0 Regular, rigid	0.45 to 0.5
oM ti	Length of spiral.	1.5 Regular				0.8 to 1.0 Very constant	0.3 Regular
Shape	Shape of ends	Blunt		Blunt	Pointed	Pointed	Pointed
Waves	Waves (in addition to finer spirals).	Several large, inconstant, ir-	Large, incon- stant, shallow,	Two to five or more. Large,	Large, wavy spirals, usually	One or more slight undulat-	One or more gentle wavy curves
		regular.	irregular, 3 to 5 in number.	irregular, shal- low.	five.	ing waves.	throughout entire length. One or
							both ends semi-
							circularly hooked when in liquid
							media. Serpen-
							tine in semi-solid media. Extreme- ly flexible.
Axial	Axial filaments	Present (flexible elastic)	Absent	Absent	Present (?)	Doubtful	Absent
Cham	Chambered structure	Absent	Present	Present	Absent	Absent	Absent
Memb	Membrane	Absent	Present (flexible elastic)	Present (flexible elastic)	Delicate flex- ible double contoured	Doubtful	Absent

Terminal (finely spiral	Absont	Absent	Absont	Proceent	Procont	Not recognized
memoral of the contro	ADSCILL	ADSCILL	AUSCILL	TICSCIII	TICSCIII	nagriigoad 10M
Flagella	Absent	Absent	Absent	Absent	Absent	Absent
End (highly motile end portion).	Absent	Absent	Absent	Absent	Absent	Well developed in last 6–8 spirals.
Crista (undulating membrane).	Absent	Absent	Present; ridge- like membrane spirally about body.	Absent	Absent	Absent
Division (character)	Transverse	Transverse	Transverse	Transverse, possibly also longitudinal.	Transverse, possibly also longitudinal.	Transverse
Habitat	Fresh or marine water.	Forammif- erous sand.	Parasitic in. alimentary canals of shell fish	Numerous pathogenic and nonpathogenic varieties.	Two pathogenic and several harmless parasites.	Two pathogenic and one possibly nonpathogenic varieties.
Action of chemicals: Trypsin digestion	Axial filament resistant.		Membrane resistant. Crista and chambers disappear.		Resists for many days.	
Bile salts (10 per cent)	Becomes shadowy, pale, but is not dis- solved.		Crista de- stroyed. Body not attacked.	Complete dis- integration.	Complete disintegration.	Easily dissolved.
Saponin (10 per cent)	Lives thirty minutes; later becomes shad- owy, pale, but not dissolved.		Crista be- comes fibrillar and then indis- tinct. Body not affected.	Immobilized in thirty minutes. Broken up in a few hours.	Eventually broken up.	Completely resistant.

Immunity.-Novy and Knapp carried out some important studies on immunity, which not only explain the crisis and the relapse, but establish a basis for the cure and prevention of relapsing fever and related affections. In blood drawn before the onset of an attack, spirochetes will remain in a living motile condition as long as forty days, whereas in blood drawn during the decline of the attack, or after recovery, they have been observed to die out within an hour. In the latter case a powerful specific germicidal body is present. When the parasites are killed or weakened by the germicidal agent, they are taken up by the phagocytes. It usually happens that some of the spirochetes escape this fate, and after an interval become able to multiply, perhaps because of the partial disappearance of the antibodies, perhaps because the spirochetes themselves become immune to the antibodies.1 Novy and Knapp believe that besides the germicidal agent, an immunizing agent is present, and that the relative amount of these two substances at the close of an attack determines whether or not a relapse will occur. Active immunity follows recovery from infection, and a condition of hyperimmunity can readily be established in rats by repeated injections of blood containing the parasites. blood of recovered or immunized animals can be used to produce passive immunity, and preventive inoculation can be successfully practised in rats, mice, and monkeys. Animals already infected can be cured, and subsequent relapse prevented by curative doses of blood (about five immunity units per gross body-weight, Novy).

Allied Varieties.—There are probably six or seven distinct diseases caused by organisms similar to the spirochete of European relapsing fever. A disease of man, proved to be transmitted by the bite of a tick, and known as tick fever, is widely prevalent in equatorial Africa, and has been shown to be due to a spirochete. The

[&]quot;Hitherto it was believed that the relapse was due to the survival, in extravascular spaces, of spirochetes which, after the partial destruction or elimination of the specific antibodies, were able again to invade the circulation. In the light of the facts now known it is clear that the relapse is due to the survival of a few individuals which have acquired more or less immunity to the specific germicidal bodies elaborated in the infected animal. As a result, a new 'serum-fast' strain develops, which, in turn, calls for a new antibody. The latter is apparently not as active as the first, or is more unstable, or is more readily eliminated, and hence the continuance of the relapses with this organism." (Novy: Science, 1908, 27, p. 650.)

² Dutton and Todd: Brit. Med. Jour., 1905, 2, p. 1259.

parasite of West African tick fever (Bor. duttoni) differs from Bor. obermeieri in being about twice as long as the latter, in having wider or looser turns to the spiral, and in possessing diffuse flagella. Fewer organisms are found in the blood of man in tick fever than in relapsing fever, and the effects produced in monkeys and rats by inoculation with Bor. duttoni are quite different from those caused by Bor. obermeieri. Another form of African tick fever (East African) is due to a third variety of spirochete, Bor. kochi.

The parasite (Bor. carteri) found in a kind of relapsing fever observed in Bombay, India, is apparently different from any of the foregoing (Novy). A number of investigators regard the American case of relapsing fever studied by Novy and Knapp as due to still a fifth spirochete (Bor. novyi), and Schellack¹ has given exact details of the morphology of the African, American, and European (Russian) forms. Egyptian and Algerian parasites have also been described. Among other organisms of this clan may be mentioned Bor. anserinum, causing a disease of geese,² and possibly identical with Bor. gallinarum, connected with a highly fatal disease of chickens conveyed by tick-bite,³ and Bor. theileri, found in small numbers in a benign affection of cattle in South Africa.⁴ Spirochetes have also been found in the blood of sheep, horses, and bats, and in the alimentary tract of fish and insects.

Several of the relapsing fever parasites are cultivable by Noguchi's method for Bor. obermeieri (p. 518). The parasite of African relapsing fever (Bor. duttoni) was still virulent after the ninth transfer.

Mode of Transmission of Spirochetosis.—In a number of instances spirochetosis is known to be communicated by blood-sucking arthropoda. The African form of relapsing fever was shown in 1905 by Dutton and Todd to be communicated by a species of tick (Ornithodoros moubata). A tick may continue to harbor the parasite for as long as eighteen months after a single meal of infected blood. Especially important is the fact that the spirochete is transmitted to the offspring of the tick, and may even appear in the third generation. The coxal secretion of the ticks is

Schellack: Arb. a. d. k. Gesund., 1907, 27, p. 364.

² Sakharoff: Ann. de l'Inst. Past., 1891, 5, p. 569.

<sup>Marchoux and Salimbeni: Ann. de l'Inst. Past., 1903, 17, p. 569.
Jour. Compt. Path. and Therap., 1903, 47, p. 55.</sup>

not infective, and it seems to be true that infection is brought about by contamination of the bite with the infectious excreta of the tick and not by parasites introduced directly by the proboscis. Experimentally the excreta are infective. A rather high temperature (30 to 35 C.) seems to be necessary for the development of the spirochetes within the body of the tick. When the ticks are kept at 15 to 18 C. the spirochetes disappear from the alimentary tract, and the ticks are then unable to transmit infection. On placing them again at 35 C., the ticks become infective. There seems to be no close specific relationship between any particular species of tick and any particular strain of parasite. Indeed, Bor. duttoni has been transmitted to the rat by the common rat-louse.

The epidemiology of the disease suggests that human body-lice are the ordinary agents of transmission of relapsing fever in Europe. Close contact with infected persons and association of the disease with uncleanliness and crowding have long been known to be characteristic features. Inoculation of crushed infected lice will produce the disease in monkeys. Eggs laid twelve to twenty days after infection of the parent lice may contain the spirochete. It is possible that fingers may become contaminated by crushing infected lice and may transmit the infection by scratching. The bedbug may be a mechanical carrier of infection, but does not transmit the disease by its bite, although it may cause infection when crushed and rubbed on the skin. Spirochetosis of fowls is communicated by a tick (Argas persicus) which infests fowls in the warmer parts of the world. The parasite (Bor. gallinarum), as in human relapsing fever, is transmitted through the egg of the tick to the offspring.

VINCENT'S ANGINA (TREPONEMA VINCENTI)

In an affection of the mucous membrane of the mouth and throat known variously as "ulceromembranous angina and stomatitis," "Vincent's angina," "pseudomembranous angina," etc., an anaërobic organism, B. fusiformis, has been described by a number of observers as being constantly present. The symptoms and lesions are quite characteristic, and the affection seems rather prevalent, although, from its mild character, it generally passes unnoticed. The anaërobic, bacillus-like form is a long, slender organism with pointed ends, and is slightly swollen in the middle (fusiform). It

¹ Weaver and Tunnicliff: Jour. Amer. Med. Assoc., 1906, 46, p. 481.

in nonmotile according to most observers, and does not stain by Gram's method. In fluid media under anaërobic conditions growth is flocculent and whitish. Neither in fluid nor solid media, however are the cultural features especially characteristic. A foul odor is usually present, but according to most observers there is no formation of gas-bubbles in dextrose-agar.

In smear preparations made from the seat of the disease long spirilla are usually associated with the fusiform bacilli; in cultures all attempts to obtain the spirilla or spirochetes without admixture with bacilli have signally failed, hence the relation of these two forms has been the theme of much speculation. Some investigators have supposed that the bacilli and spirilla were distinct organisms, closely associated in some sort of symbiotic relation. Others favor the view that these two forms are simply different phases in the life of one organism.1

A similar if not identical organism has been found in noma or gangrenous stomatitis2 and in some other conditions.3 Other anaërobic nonspore-forming bacteria associated with spirochetal forms have been occasionally observed in connection with the production of gangrenous and fetid abscesses in various parts of the human body. As an example of this class may be cited B. mortiferus, described by Harris in connection with a fatal case of hepatic abscess in man.4

INFECTIOUS JAUNDICE (LEPTOSPIRA ICTEROHEMORRHAGIAE)

Epidemics of jaundice have been described now and again during the last hundred and fifty years, one of the earliest being in Minorca in 1745 (Cleghorn). It is not likely that all these epidemics were due to the same cause. One variety of jaundice with fairly definite clinical features has attracted particular attention in recent years. Four cases of this type of jaundice were carefully described by Weil in 1886, and the disease has been frequently known since as Weil's disease, although different affections have been, very likely, included under this name. A type of jaundice apparently

¹ Tunnicliff, Ruth: Jour. Infect. Dis., 1906, 3, p. 481.

² For an excellent historical review of this rare condition see Weaver and Tunnicliff: Jour. Infect. Dis., 1907, 4, p. 8.

³ See article by Babes on "Spindelförmiger Bazillen" in Kolle and Wassermann's Handbuch, 2nd ed., Ergänzungsband 1, p. 271.

⁴ Harris: Jour. Exper. Med., 1901, 6, p. 519.

identical with Weil's disease prevailed extensively in the armies during the Great War. Outbreaks of jaundice have occurred in the United States for more than one hundred years and have recently become more widely distributed.¹

In 1914 Inada and Ido, in Japan, showed the presence of a spirochete in the liver of a guinea-pig inoculated with the blood of a patient suffering from a form of infectious jaundice.2 The same spirochete was found in the blood and organs of human patients dying from the disease.3 This organism, now generally known as Leptospira icterohemorrhagiae, is regarded as the cause of a common Japanese form of infectious jaundice. It is commonly excreted in the urine from the ninth day of the disease or earlier up to the fortieth day. It is somewhat irregular in number of undulations and in size, but averages 8 to 9 μ in length; it can be easily demonstrated by the dark-field method of illumination. "The number of coils is greater in a given length than that of any spirochete hitherto known" (Noguchi). The ends are sharp and are usually hooked in a characteristic fashion. Ito and Matsuzaki4 succeeded in cultivating the organism by the use of blood-gelatin and bloodagar in various concentrations. Noguchi⁵ has also found that the use of a piece of fresh tissue, so advantageous in growing the spirochete of relapsing fever, is not required for the cultivation of this organism, and may be seriously detrimental in a fluid medium. Noguchi recommends two media as equally good for blood-cultures in human cases. One of these is as follows: Rabbit serum 1 part + Ringer or 0.9 per cent sodium chloride solution 3 parts + citrated rabbit plasma 0.5 part, covered with a thin layer of sterile paraffin oil.

Ido and his associates⁶ have shown that the Japanese wild rat frequently harbors the Leptospira icterohemorrhagiae, and similar findings have been reported in the rats in the United States (New York—Noguchi; Nashville—Jobling and Eggstein). The spi-

Blumer, George: Jour. Amer. Med. Assoc., 1923, 81, p. 353.

² Substantially similar results were obtained a little later by Hübener and Reiter (Deutsche med. Wchnschr., 1915, 41, p. 1275) and by Uhlenhuth and Fromme (Med. Klin., 1915, 11, p. 1202).

³ Inada, Ido et al.: Jour. Exper. Med., 1916, 23, p. 377.

⁴ Ito and Matsuzaki: Jour. Exper. Med., 1916, 23, p. 557.

⁵ Noguchi: Jour. Exper. Med., 1917, 25, p. 755.

⁶ Ido, Hoki, Ito, and Wani: Jour. Exper. Med., 1917, 26, p. 341.

rochetes have been obtained also in the kidneys of rats caught in certain sectors of the Western battle front where infectious jaundice prevailed. Several proved cases of spirochetal jaundice in North America are on record.¹

No difference in the character of the spirochetes from these different localities has been demonstrated, but the mortality in the Japanese cases (37 per cent) is much higher than among the European soldiers (2 to 3 per cent). The apparently higher virulence in Japan may be connected with the endemic character of the disease in that country and the more frequent transfer of the spirochete from man to man.

The rat is thought by some to be the reservoir of the infective agent, distributing the spirochetes directly or indirectly by means of its urine. The urine or feces of the human patient may also probably serve as the vehicle of infection. This view is borne out by the localization of cases in the trench outbreaks. It is stated that in one sector the cases of jaundice that occurred were almost exclusively in one or two portions of the front line trench, and that as soon as the units were moved out of these particular trenches they ceased to have cases of jaundice, while fresh units previously unaffected commenced almost immediately to develop cases of jaundice when they moved into the trenches. Polluted water is believed by many investigators to play an important part in the spread of the disease.

Guinea pigs are highly susceptible to inoculation by any route. Rabbits, rats and mice are but little affected.

Inada and his associates have demonstrated the existence of immune bodies in convalescents and in inoculated animals, and have reported encouraging therapeutic results with immune serum. The immune substance persists in the blood of the convalescents for a long time (five and one-half years).

RAT-BITE FEVER

The bite of a rat is occasionally followed by a series of symptoms indicating a specific infection. The original wound heals, but after a variable incubation period of ten to twenty-two days becomes inflamed and painful. Fever, swelling of the lymph-glands, skin eruptions, and other symptoms occur. The fever is of the relapsing

¹ Towler and Walker: Jour. Amer. Med. Assoc., 1927, 89, p. 86.

type, with paroxysms at fairly regular intervals, usually about once a week, for one to three months. It has been reported from Asia, Europe, and America, and has long been recognized in Japan as a definite febrile disease. Between 50 and 100 cases of this rare human infection have been put on record.

Japanese investigators¹ have found a characteristic spirochete (Borrelia muris) in the swollen local lesions of the skin and the enlarged lymph-glands of patients and also in two instances in the circulating blood. The same spirochete is found in about 3 per cent of the house rats in Japan. It is not present in healthy mice or guinea-pigs, but if guinea-pigs are bitten by infected rats they develop the disease, and spirochetes are found in their blood. The relapsing character of the fever and the striking clinical effect of the arsenic preparation known as salvarsan upon the disease strengthen the view that the spirochete is the cause of at least a certain number of cases of rat-bite fever. It does not, however, follow that all cases of infection developing after rat-bite are due to this organism. Blake² and others have reported instances of apparent streptothrix sepsis following rat bite.

THE MICRO-ORGANISM OF SYPHILIS (TREPONEMA PALLIDUM)

Syphilis is essentially an infectious disease acquired by sexual congress or transmitted by a diseased parent. There are, however, other occasional modes of infection. Physicians are not infrequently infected in the course of surgical and obstetric practice; wetnurses of syphilitic children sometimes become infected; and there have been rare cases in which syphilis was communicated by vaccine lymph of human origin. The disease is often congenital, and either parent may be responsible for hereditary transmission. The prevalence of syphilis is much greater than is shown by ordinary hospital and medical records. Routine application of the Wassermann test leads to the recognition of a large number of cases that otherwise could not be diagnosed.³ It is estimated that at least 423,000 cases are contracted annually in the United States.

¹ Eutaki, Takaki, Taniguchi, and Osumi: Jour. Exper. Med., 1916, 23, p. 249.

² Blake: Jour. Exper. Med., 1916, 23, p. 39.

³ See Public Health Reports, U. S. Public Health Service, 1916, 31, p. 3230.

Attention was first directed to the spirochete of syphilis, Treponema pallidum, by Schaudinn and Hoffmann, and their results were speedily confirmed and extended by Metchnikoff and others. The chief reason why this organism had not been previously discovered by the numerous students of syphilitic lesions seems to be that the spirillum is very difficult to see unstained in the fresh state, and is also exceedingly refractory to stains. The method of staining smears found most successful by Schaudinn and Hoffmann consists in the use of Giemsa's eosin solution and azur:

- 12 parts Giemsa's eosin solution (2.5 cc. of 1 per cent eosin; 500 cc. water).
- 3 parts azur No. I. (1:1000 solution in water).
- 3 parts azur No. II (0.8:1000 solution in water).

The staining mixture should be freshly prepared. Thin films are dried in the air, hardened in absolute alcohol, and immersed in the stain for sixteen to twenty-four hours. They are then washed in water, dried in the air, and examined in cedar oil. By this method the spirilla are stained a pale rose color.

A very simple, rapid, and, withal, effective method of demonstrating the spirochete in smears is based upon the use of India ink. A drop of fluid from the syphilitic lesion is smeared together with a drop of India ink ("Chin-Chin liquid pearl ink") upon a clean slide and allowed to dry. When examined with an immersion lens the organisms are clearly seen against a dark background of carbon particles.

The silver precipitation method, familiar in neurologic work, has been found particularly serviceable for staining the spirochete in tissues, and by its aid the presence of spirochetes in great abundance in congenital syphilis has been demonstrated. Levaditi and Manouélian recommended the following procedure:²

- 1. Fixation of fragments of organs (1 to 2 mm. thick) for twenty-four to forty hours in 10 per cent formalin.
 - 2. Washing with 96 per cent alcohol twelve to sixteen hours.
 - 3. Washing with distilled water until fragments no longer float.
- 4. Impregnation two to three hours at room temperature and four to six hours at about 50 C. in the following bath: Silver nitrate

¹ Schaudinn and Hoffmann: Arb. a. d. k. Gesund., 1905, 22, p. 527; Deut. med. Wchnschr., 1905, 31, p. 711.

² Levaditi and Manouélian: Comp. rend. Soc. de Biol., 1906, 60, p. 134.

solution, 1 per cent; pyridine solution (added 10 parts per 100 at moment of use).

- 5. Very rapid washing in a 10 per cent pyridine solution.
- 6. Reduction by the following bath: pyrogallic acid, 4 per cent; 10 parts per 100 purified acetone, $\frac{56}{58}$, and 15 parts (per total vol.) of pyridine (added at moment of use). The reduction occurs in a few hours.
 - 7. The usual alcohol series; xylol; paraffin; section. The sections may be stained with Unna's blue.

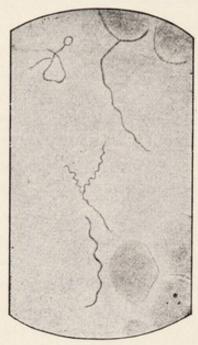


Fig. 124.—The two spirochetes in the center are Treponema pallidum, the three others, Spironema refringens (Schaudinn and Hoffmann).

In size the spirilla usually range from 4 μ to 20 μ in length and are very slender, probably rarely reaching 0.5μ in thickness. The turns in the spiral are close and regular; the number of curves ranges from three to twelve and may reach as high as forty (Goldhorn).1 There is a fine flagellum at one end (Fig. 124). Movement forward and backward may occur, and also rotation on the axis. The cell is not a perfectly rigid spiral, but is quite flexible. The organism is killed at a temperature between 50 and 55 C. maintained for thirty minutes. Drying is promptly fatal. In undisturbed cultures kept uninterruptedly at 37 C. it may remain alive for as long as one year.

Schereschewsky² was the first to bring about growth of Treponema pallidum on artificial media. In his experiments, however, growth seems always to have occurred in the presence of other organisms and never in pure culture. Noguchi³ later succeeded in cultivating several strains of Treponema pallidum through many generations in undoubted pure culture. Great difficulty is experienced in obtaining the first generation from the animal body, and, according to Noguchi, the following conditions are essential: (1)

¹ Goldhorn: Jour. Exper. Med., 1906, 8, p. 451.

² Schereschewsky: Deut. med. Wchnschr., 1909, 35, p. 835.

³ Noguchi: Jour. Exper. Med., 1911, 14, p. 99.

a culture medium consisting of serum water (1 part serum—sheep, horse, rabbit—and 3 parts distilled water) to which a piece of sterile rabbit tissue—kidney or testicle—is added; (2) strict anaërobic conditions; (3) a temperature of 35 to 37 C. At first the organism will not grow on solid media, but after some transfers growth can be brought about upon serum-water agar, the presence of a bit of rabbit tissue, however, being always necessary. The zone of growth is mostly confined to the neighborhood of the tissue, isolated colonies being seldom formed. In culture the typical morphology is preserved and the power of motility maintained.

Noguchi at first cultivated the spirochete from the testicular lesions of rabbits inoculated with human syphilitic material, but later was able to cultivate the organism directly from syphilitic lesions in man. Pure cultures so obtained will produce typical lesions in the testicle of the rabbit, and when inoculated into the skin of certain species of monkey lead to lesions resembling the primary syphilitic lesion occurring in man. The blood of monkeys inoculated with pure cultures develops the property of giving a positive Wassermann reaction.

These inoculation experiments with pure cultures forge the last link in the chain of evidence connecting Treponema pallidum with the causation of human syphilis. In the first place, this microorganism, which is well defined and distinguishable from all other known nonpathogenic spirochetes, can be found almost uniformly in the primary lesion or hard chancre. The germ is sometimes localized in the sore in such a way that its presence is not discovered by simple cursory examination, but a thorough search usually reveals it. In the skin eruptions of the so-called "secondary stage," Treponema is also present, being often demonstrable in great abundance in the papules. The mucous lesions of this stage likewise contain the spirillum, a fact that explains the virulence of the saliva of paralytics. The spirochetes have been found also in the internal organs, such as the liver, kidney, and spleen. Several observers have reported finding Treponema in the circulating blood. although its presence in this situation is naturally difficult to demonstrate. In the tertiary stage the organisms were found at first infrequently, but later observers have been more successful, and there is no doubt that the spirochetes are present in the tertiary

¹ Noguchi: Jour. Exper. Med., 1912, 15, p. 90.

lesions also, although in greatly reduced numbers. A number of observers (Finger and Landsteiner, Neisser²) have proved that material from tertiary lesions can produce infection, although many of the attempts result in failure.

Convincing testimony in favor of causal relationship is afforded by the presence of Treponema pallidum in the lesions of congenital syphilis (Fig. 125). The microbe is found in large numbers and in pure culture in the internal organs of syphilitic infants and under

Fig. 125.—Treponema pallidum in congenital syphilis; × 1000. Levaditi (Sobernheim, in Kolle and Wassermann).

conditions where secondary infection would seem to be excluded. In the liver especially the spirilla are very abundant. The organism seems to be primarily an intracellular parasite, which is especially apt to attack glandular epithelium.

Still further indication of the pathogenicity of this micro-organism is given by its frequent occurrence in the syphilitic lesions of monkeys that have been successfully inoculated with syphilitic material from man or from another monkey. Metchnikoff and Roux³ determined the presence of Treponema in 70 per cent of

¹ Finger and Landsteiner: Sitz-Ber. Akad. Wiss., 1905, 1906.

² Neisser: Deut. med. Wchnschr., 1904, 30, pp. 1369, 1431; 1906, 32, pp. 1, 49, 97.

³ Metchnikoff and Roux: Ann. de l'Inst. Past., 1903, 17, p. 809; 1904, 18, pp. 1, 657; 1905, 19, p. 673.

such cases that they examined. As in the lesions of congenital syphilis, the micro-organism is found in the infected monkeys in pure culture.

The earlier attempts to inoculate the lower animals with syphilitic virus gave variable and conflicting results. Metchnikoff and Roux were the first to show that syphilis could be successfully and uniformly communicated to monkeys, and that the material from the lesions so produced could be used for successive reinoculations. The technic of inoculation is important. Subcutaneous, intraperitoneal, and intravenous inoculations, even of the most virulent material, are without effect, but cutaneous inoculation, particularly upon the eyebrows and genitals, is usually followed by typical primary lesions. Positive results are almost invariably obtained in these situations when the virus is freshly procured and when deep scarification is practised. The period of incubation varies from fifteen to fifty days. Practically all species of monkeys are susceptible. Material from the primary and secondary lesions and from congenital syphilis has been found capable of producing infection. In the higher monkeys (chimpanzees and gibbons) the primary effects have been followed by typical secondary syphilitic manifestations after a few weeks. In simian syphilis spirochetes have been found distributed in the same manner as in man, although in less abundance, as corresponds with the lower susceptibility of the monkey tribe.

Bertarelli, Schucht, and others were able to produce inoculation syphilis of the iris and cornea in rabbits. The average period of incubation in these animals is about twenty-nine days. The process remained localized, and none of the rabbits showed lesions in the internal organs. Treponema pallidum was found in large numbers in the affected parts. Uhlenhuth and Mulzer produced typical syphilitic orchitis in rabbits, a lesion that has proved a convenient source of spirochetes in practically pure culture.

The Wassermann Reaction.—Wassermann and his collaborators⁴ have demonstrated by the method of complement fixation

² Schucht: Münch. med. Wchnschr., 1907, 54, p. 110.

¹ Bertarelli: Centralbl. f. Bakt., I, Orig., 1906, 41, p. 320.

³ Uhlenhuth and Mulzer: Arb. a. d. k. Gesund., 1909–10, 33, p. 183.

⁴ Wassermann *et al.*: Deut. med. Wchnsch., 1906, 32, pp. 745, 1769; Ztschr. f. Hyg., 1907, 55, p. 451.

(p. 181) the presence of specific antibodies in the bodies of syphilitic individuals and in the serum of monkeys treated with syphilitic virus.

The Wassermann reaction has been extensively used for the diagnosis of syphilis. The method is based on the fact that complement fixation occurs when an antigen and its specific antibody are mixed in the presence of free complement. Under suitable conditions all the complement in a serum may be used up or fixed, and the further addition of another antigen and antibody will not be followed by a lytic action. If, for example, a mixture of red blood-corpuscles and the corresponding inactivated hemolytic serum be added to a fluid containing free complement, hemolysis will occur; but if the complement is already fixed, the "hemolytic system" is not complete and no hemolysis takes place. An extract from a syphilitic organ, such as the spleen of a syphilitic fetus, contains the antigen, and when this is mixed with the inactivated serum of a syphilitic patient (antibody) in the presence of complement the complement is fixed. Now when such a mixture is added to an emulsion of red blood-cells, together with the appropriate inactivated hemolytic serum, no hemolysis will result, because the complement was fixed by the first combination of antigen and amboceptor. If, on the other hand, the serum is taken from a patient not suffering from syphilis the complement will not be anchored (since neither antigen alone nor amboceptor alone can fix complement), and when hemocytes and hemolytic serum are added hemolysis will occur.

The substances usually employed in the test are as follows:

- (a) Hemolytic serum, prepared by injecting a rabbit with the red blood corpuscles of the sheep. The corpuscles are first washed in physiologic salt solution and then a 5 per cent emulsion made in salt solution. An increasing amount of this emulsion—5, 10, 15 cc., etc.—is injected intraperitoneally or intravenously into the rabbit at intervals of five or six days. Three or four injections are usually sufficient. The rabbit may be bled nine or ten days after the last injection and the serum drawn off from the clot with the usual aseptic precautions. The serum should be inactivated by heating for half an hour at 55 to 56 C.
- (b) Sheep corpuscles may be obtained by receiving the blood into a sodium citrate solution which prevents clotting, or by

defibrinating the blood by whipping or shaking with glass beads. Before use the corpuscles must be thoroughly washed in salt solution, and then mixed with sterile salt solution to form a 5 per cent emulsion. A mixture of (b) with the inactivated hemolytic serum (a) contains of course amboceptor and antigen, but no complement, and hence, hemolysis does not occur. Addition of complement will complete the "system" and evoke hemolysis.

- (c) The complement for the Wassermann reaction is usually obtained from the guinea-pig, since the guinea-pig complement is active, readily fixed, and does not deteriorate readily. Blood is drawn from a normal animal and the serum separated by centrifugalizing after the clot is formed. When kept on ice the serum remains active and may be used for as long as three days.
- (d) The antigen was first prepared by Wassermann and others from syphilitic organs, either directly by salt solution or by evaporating an alcoholic extract. The theoretically disturbing discovery was later made that the extract of normal organs of man and other animals contains an antigen which gives practically as reliable results as the antigen of specific syphilitic tissues. This is not the place to discuss the theoretical significance of this fact; in practice the circumstance has been found convenient.

Liver or heart tissue (normal or syphilitic) will furnish a satisfactory antigen. The tissue is cut into small pieces and macerated in a sealed jar with four volumes of 95 per cent alcohol at room temperature for six to seven weeks. The alcohol is then filtered through paper and a second extract made with four volumes of absolute alcohol at 37 C. for four days with daily shaking. The second extract is added to the first and the mixture evaporated to dryness. The ether-soluble portions are then removed by treatment with a small amount of ether. The ether is then added to ten times its volume of C. P. acetone. The precipitate that forms contains the antigen. It may be dissolved in ether or alcohol and preserved for a long time, at least a year (Noguchi).

"A standard antigen for Noguchi's method for the diagnosis of syphilis may be prepared as follows: As a stock solution make an ethereal or alcoholic 3 per cent solution of an acetone-insoluble fraction of the liver or heart. From this an emulsion is made by shaking one volume of the stock solution with nine volumes of a 0.9 per cent sodium chloride solution. This emulsion is tested

for its properties. If it is hemolytic or anticomplementary, in the dose of 0.4 cc., it is unsuitable. When the emulsion is found to be nonhemolytic and nonanticomplementary, it is tested for its antigenic strength. If it produces complete inhibition of hemolysis with one unit¹ of syphilitic antibody, in doses of 0.02 cc. or less, it is suitable. In the fixation test 0.1 cc. of such an emulsion is to be used, thus employing more than five times the minimal antigen dose. So far as our experience goes, the use of several antigen doses does not cause a nonspecific fixation and is not unduly sensitive."²

(e) The serum to be tested is best obtained from the arm vein of the patient in the way that blood is drawn for blood-cultures. An amount of blood sufficient to furnish 1 cc. of serum should be removed. Before use the serum should be inactivated, preferably at 54 to 55 C. for thirty minutes.

The test must be carefully controlled at every point. In the first place it is necessary to know whether the hemolytic system works properly. This may be determined with the following mixture: (a) 1 cc. of 5 per cent emulsion of sheep corpuscles, (b) 0.1 cc. complement, (c) 2 units hemolytic serum. This mixture should be made up to 5 cc. with sterile salt solution. When incubated at 37 C. for one hour it should show complete hemolysis both in the presence and absence of antigen.³

In each test of a suspected serum a control should be carried out with normal serum and with known syphilitic serum (0.2 cc.), preferably in two sets of tubes, one with and one without antigen. A positive result is indicated by suspension of hemolysis in the tube with control syphilis serum and antigen, and in the tube with sus-

One unit is that amount of amboceptor (inactivated hemolytic serum)

(a) which is just sufficient to bring about hemolysis of 1 cc. of 5 per cent emulsion. Hence, the hemolytic serum must first be titrated by using graded amounts of serum. The presence of too large an amount of amboceptor interferes with the reaction.

² Noguchi and Bronfenbrenner: Jour. Exper. Med., 1911, 13, p. 66.

³ The amount of antigen necessary in the tests must be determined by mixing graded quantities of the antigen with one set of tubes, containing 0.1 cc. complement and 0.2 cc. inactivated normal serum, and another set with complement and known syphilitic serum. Allow these mixtures to stand for an hour and then add red corpuscles (b) and hemolytic serum (a). That amount of antigen which will permit complete hemolysis to occur with the normal serum, but will cause complete inhibition with the syphilitic serum, is the suitable amount to use in the tests.

pected serum and antigen. All the others give hemolysis in one hour at 37 C.

The Kahn Precipitation Test.—The fact that the serum of syphilitic patients shows an increased power to flocculate or precipitate colloidal matter has been made the basis of several specific flocculation tests. The Kahn precipitation test has come into wide use in the United States. It possesses the advantages of simplicity, cheapness of the necessary ingredients and, perhaps, somewhat greater sensitiveness than the Wassermann reaction.

The technic as described by Kahn¹ is as follows:

I. GLASSWARE AND APPARATUS REQUIRED FOR THE TEST

All glassware employed in the test must be chemically clean and neutral.

Test-tubes: Standard antigen dilution tubes are 5.5 cm. in length and
 5 cm. in diameter.

Standard tubes for performing the test are 7.5 cm. in length and 1 cm. in diameter.

- 2. Test-tube racks: Racks should be of such construction as to permit vigorous shaking of the tubes.
- Pipets: 10-cc. pipets marked in 0.1 cc. quantities. 1-cc. pipets marked in 0.01 cc. quantities. 0.2-cc. pipets marked in 0.001 cc. quantities.
- Shaking machine: May be of any construction which will hold the testtube racks employed.
- 5. Inactivating bath (56 C.) as well as centrifuge and centrifuge tubes may be of any make which will be found convenient in the particular laboratory

II. REAGENTS EMPLOYED IN THE TEST

The three ingredients entering into the test are (1) Antigen, (2) Serum, and (3) Physiologic Salt Solution.

1. ANTIGEN

Method of Preparation.—The method of antigen preparation has been standardized with a view to eliminating several of the variable elements inherent in the method previously used.

The unit amount of powdered beef heart used for preparing antigen is 25 grams and it is always extracted in a 250-cc. Erlenmeyer flask. The ether extraction consists of four ether "washings" of the powdered muscle at tenminute intervals with 100, 75, 75 and 75 cc. ether, respectively. The subsequent alcohol extraction is carried out for three days at room temperature (21 C.). Twenty-five grams of powdered beef heart will yield about 75 cc. antigen. If the preparation of larger amounts is desired, as many 25-gram quantities are employed as needed.

Powdered Heart Muscle.—About 400 grams of heart muscle are cut out from at least three fresh beef hearts and passed four times through a meat grinder. The ground material is spread into a thin layer on a porcelain platter or glass

¹ Kahn: Am. Jour. Pub. Health, 1924, 14, p. 498; see also Kahn: "Serum Diagnosis of Syphilis by Precipitation," Baltimore, 1925, p. 237.

plate and dried by means of one or two revolving fans. After six or eight hours, when the exposed surface is relatively dry, the material is turned over and drying continued over night. When the layer of beef heart is in the form of a dry plate, it is broken up into small pieces and drying continued until the material is brittle and easily breakable. The material is now ground into powder form by means of a mortar or coffee grinder which is used for no other purpose.

Powdered beef heart is now obtainable on the market from the Digestive Ferments Company, Detroit. It is prepared essentially as outlined above, except on a large scale—as many as seventy-five beef hearts entering into the preparation of a given lot. This assures a higher degree of uniformity than can be obtained with three beef hearts. Because of this uniformity element,

the market product is used in this laboratory almost exclusively.

Extraction of Powdered Muscle with Ether.—Twenty-five grams of powdered beef heart are placed in a 250-cc. Erlenmeyer flask and 100 cc. ether (anesthesia) added. The flask is shaken from time to time for an interval of ten minutes after which the ether is filtered off. The filtration process may be hastened somewhat by applying gentle pressure to the beef heart by means of a spatula. Filtration is completed when pressure with the spatula does not cause drops of ether to pass through the funnel.

The moist beef heart is now returned to the original 250-cc. extraction flask. This may be done by first transferring the beef heart from the funnel to a sheet of white paper and breaking the material up with a spatula into pieces small enough for the mouth of the flask. Seventy-five cubic centimeters ether are now added and the mixture again shaken for a ten-minute interval and

filtered as above.

After the second filtration of ether, the beef heart is transferred to the flask for a third time and 75 cc. ether again added. The mixture is shaken for a ten-minute interval and again filtered as described above.

The moist beef heart is now transferred for the fourth and last time to the flask and 75 cc. ether added, the mixture shaken for ten minutes and filtered. After gentle pressure with a spatula does not cause drops of ether to pass through the funnel—the end-point employed in each of the four ether filtrations—the beef heart is transferred to a sheet of white paper and dried either at room temperature or at 37 C. The drying usually requires from ten to fifteen minutes. When no ether odor is detectable, the beef heart is ready for extraction with alcohol. This extraction may be carried out in the same flask used for the ether extractions, provided the flask is entirely freed from ether odor.

Extraction of Powdered Muscle with Alcohol —The ether extraction being completed, the dry powdered muscle is weighed and placed in a 250-cc. flask. Usually there will be 23 grams or less of the powder due to the loss during the ether extraction. Five cubic centimeters of 95 per cent alcohol are added per gram of powder. The flask is shaken for ten minutes and extraction allowed to continue at room temperature (21 C.) for three days without shaking. At the end of this period, the mixture is shaken for five minutes and filtered. The filtrate is kept in the dark at room temperature as stock antigen solution.

Cholesterinization of Alcoholic Extract.—A given amount of alcoholic extract—likely to be used in a month or two—is cholesterinized by adding 6 mg. of chemically pure cholesterin per cubic centimeter of extract. The cholesterin is dissolved by rotating the flask in a water bath at 37 C. When all the cholesterin

has been dissolved, the antigen is filtered to remove impurities and allowed to stand one day. It is then ready to be titrated or standardized for the test.

It is well to emphasize in connection with antigen preparation that the ether and alcohol employed should be of high purity and that the latter should be 95 per cent. At one time we unknowingly used 80 instead of 95 per cent alcohol with misleading results.

Tinfoil-covered corks have been found most satisfactory as stoppers for flasks used in antigen preparation and storing. Rubber as well as cork stoppers give off soluble elements into the alcohol which modify the final product.

Method of Antigen Titration.—The aim of the titration of antigen for this test is to find the minimum amount of physiologic salt solution to use with antigen which will result in an antigen-salt solution precipitate that is soluble on further addition of salt solution. The titration is carried out in the presence of salt solution and not in the presence of serum, although the latter may be used as a check on the titration, if desired.

One cubic centimeter amounts of cholesterinized antigen are added to each of five standard antigen dilution tubes (5.5 cm. length and 1.5 cm. diameter). To five similar tubes are added the following amounts of physiologic salt solution, respectively: 0.8, 0.9, 1.0, 1.1 and 1.2 cc. Each salt solution tube is emptied into a given antigen tube and, without waiting to drain the salt solution, the mixture is immediately poured back and forth five or six times to permit thorough mixing. Each of the five antigen dilutions will show the presence of a definite precipitate. The character of these precipitates, however, will vary according to the quantity of salt solution used. Some of the precipitates will be found to be stable and will not dissolve when mixed with salt solution; other precipitates again will readily dissolve in salt solution.

The solubility in salt solution of each of the five antigen dilution precipitates is tested as follows: 0.05, 0.025 and 0.0125 cc. amounts, respectively, of each antigen dilution are pipetted with a 0.2 cc. pipette graduated in 0.001 cc. into three tubes (7.5 cm. in length and 1 cm. diameter). These small quantities are pipetted in each case to the bottom of the tubes. Add 0.15 cc. quantities of physiologic salt solution to each tube. The rack is shaken vigorously for two minutes after which 0.5 cc. salt solution is added to each tube and observation made as to whether or not the original antigen dilution precipitate has gone back into solution. The antigen dilution tube containing the smallest amount of salt solution in proportion to antigen, having a precipitate which goes back into solution in salt solution, as shown by this three-tube test, represents the endpoint of this titration and determines the proportion in which antigen is to be mixed with salt solution in the performance of the tests.

The accompanying table gives an outline of a typical antigen titration.

TABLE 1
TYPICAL ANTIGEN TITRATION FOR TEST WITH SERUM

Antigen Dilution Series	1		2	3	4		5
Antigen + Salt Solution, Cubic Centimeters	1 .	8 1	. 9	1 1.0	1	1.1	1 1.1
Result of Dilution	. Heavy precipitate in each antigen dilution						
Scheme used in testing solubility of precipitate in each antigen dilution	Antiger Salt sol Tubes	dilution ution, cul are shak	o, * cub bic cent cen two	ic centimete timeter o minutes s are observe	r ind 0.5	.15 .1 cc. sal	
Solubility of Precipitate as Determined by Three-tube Test	tate Not	Precipi- tate Not Soluble		Precipi- ate Soluble		Precipi- tate Soluble	Precipi- tate Soluble
Standard antigen dilution			tion tate	en + mining unt of salt s giving pre which disso lt solution	solu- cipi-		

^{*} Each antigen dilution is allowed to stand thirty minutes after mixing antigen and salt solution before solubility test is made.

2. SERUMS

The serums are separated from the clots by centrifugation in the usual manner, pipetted off and inactivated for thirty minutes at 56 C. The main point regarding serums is that they be free from red cells, fibrin and particles of any kind. No difficulty is encountered in this test with milky or chylous serums or with moderately hemolyzed specimens. Only such hemolyzed specimens which are not fit for a Wassermann test are not fit for a precipitation test.

3. PHYSIOLOGIC SALT SOLUTION

Salt solution is prepared by dissolving 8.5 grams of chemically pure sodium chloride per liter of distilled water and filtering. Although sterility of this solution is not essential, the same type of chemical cleanliness usually employed in quantitative chemical work is required.

III. THE ROUTINE TEST WITH SERUM

The routine test consists of three tubes containing three different proportions of serum and antigen dilution in accordance with the following outline:

Tube No	1	2	3
Serum: Antigen dilution		6:1	12:1
Antigen Dilution, cubic centimeter		.025	.0125
Serum, cubic centimeter		.15	.15

Preparation of Standard Antigen Dilution.—It is well when carrying out a number of tests to inactivate the serums and set up and number the tubes before diluting antigen with salt solution for the tests. The antigen dilution is so standardized as to necessitate its use within a half hour after mixing antigen with salt solution. In this laboratory, with over 200 routine tests per day, enough antigen dilution for 60 or 80 tests is usually prepared at one time—two experienced workers pipetting antigen dilution and serum for about 80 tests in less than twenty minutes.

One cubic centimeter antigen diluted with 1 cc. salt solution gives sufficient antigen dilution for about 18 tests. Two or three cubic centimeters antigen may be diluted with corresponding amounts of salt solution by utilizing the same standard antigen dilution tubes.

Procedure.—One cubic centimeter antigen is measured into an antigen dilution tube. An amount of salt solution usually approximating that of the antigen, according to the titer of the antigen, is measured into a similar tube. The salt solution is poured into the antigen and, without waiting to drain the tube, the mixture is immediately poured back and forth five or six times to insure thorough mixing. For uniformity, this antigen dilution is permitted to stand ten minutes at room temperature before pipetting.

As a preliminary control of the antigen dilution, 0.05 cc. is measured into a test-tube, 1 cc. salt solution added and the tube shaken vigorously for ten

or fifteen seconds. The mixture should appear opalescent.

Pipetting of Antigen Dilution.—The antigen dilution is always pipetted to the bottom of the tubes. The 0.05-cc. amounts may be pipetted with a 1-cc. pipet in which 0.05 cc. graduations are indicated with a wax pencil. For the 0.025 and 0.0125 cc. amounts of antigen dilution, 0.2-cc. pipets are employed and the proper markings may also be indicated with a wax pencil. The antigen dilution should be mixed frequently during the pipetting period to assure a uniform mixture. Due to the possibility of evaporation of the small amounts of antigen dilution used in the test, it is necessary to pipet the serum within several minutes after the antigen dilution has been pipetted. If a worker desires to run 40 precipitation tests, for example, it is better to pipet antigen dilution and serums for 10 tests at a time, than to pipet the antigen dilution for all the tests first and then follow with the serums.

Pipetting of Serum.—The 0.15-cc. amounts of each serum are added to the antigen dilution by means of a 1-cc. pipet graduated in 0.01 cc. In pipetting these amounts of serum it is not necessary to lower the pipet to the bottom of the tube. As soon as the serums have been added for 10 tests, or less, the rack is shaken sufficiently to insure thorough mixing of the serum with antigen dilution.

Shaking of Tests.—After the serums have been mixed with the antigen dilution, the tests are shaken for a two-minute interval. A shaking machine is of the utmost importance for this purpose, particularly in the examination of comparatively large numbers of specimens at a given time.

Effect of Incubation.—Although the final results may be read immediately after the shaking period, different workers have observed that a fifteen-minute incubation period in the water bath is 37 C. produces sufficient clumping of the precipitates to make the reading of the results easier, particularly in the case of weak reactions. In studying the effect of fifteen-minute incubation on this test, no tendency for false positive reactions has been observed, and on the basis of easier reading we consider the employment of this incubation period of some advantage.

Addition of Salt Solution and Reading of Results.—After the shaking of the tests as well as after the fifteen-minute incubation period, if employed, the serum-antigen mixtures appear uniformly cloudy. In order to render the negative reactions clear and thus simplify the reading of results, 0.5 cc. salt solution is added to each tube. The tests should be read immediately after the addition of salt solution as an occasional weak precipitate may go back into solution on standing.

Readings are best made in front of a window with a darkened background.

The negative serums appear opalescent and readily distinguishable without lifting the tubes from the racks. The strongly positive serums show heavy

precipitates which are also easily read directly.

Only the tubes showing weak reactions need to be removed from the rack and examined individually. Each tube is lifted from the rack above the eye level, slanted to spread the fluid into a thin layer and examined for a precipitate.

In this laboratory, precipitation tests are read at night with the same ease as during the day. Light is furnished by a 300-watt daylight bulb in an overhead indirect fixture.

Note: If it is desired to make a check reading of the results at some later period, it is well to keep the tests at icebox temperature. Practically all positive reactions will be slightly stronger at the second reading. Occasionally, however, even at icebox temperature, a serum which gave a -, +, ++, at the first reading may be found to be negative during the second reading. We have observed these reversible precipitation reactions especially in early primary and in highly treated cases. The reading made immediately after the addition of 0.5 cc. salt solution to each tube is the standard reading and is always the one reported.

The Control System.—1. Antigen Control. When pipetting antigen dilution for a series of tests, the last set-up of three regular antigen amounts receives 0.15 cc. salt solution instead of serum and is read with the regular tests. All

three tubes should show freedom from a precipitate.

Serum Controls. In the case of each positive reaction, the serum used in the test is examined for particles that might give the appearance of a specific precipitate.

3. Positive and Negative Controls. One or more such controls are included

with each series of tests.

Interpretation of Results.—A definite precipitate suspended in a clear medium is considered a complete reaction and is read four plus. Proportionally weaker reactions are read three, two and one plus, respectively. The final result in each test is the average finding of the three tubes. Thus, if the precipitation reaction is four plus in each of the three tubes, the final result is four plus. If the reaction is -, +++, ++++, the final result is two plus. A number of typical reactions with this method and the final result in each case, are illustrated in Table 2 [p. 543].

Comparative records of Kahn and Wassermann tests in the laboratories of the Michigan State Board of Health on over 174,000 specimens showed a close agreement in the results; when applied to the serum of syphilitic patients under treatment the Kahn test appeared somewhat more sensitive.¹

¹ Kahn, Kendrick and Landau: Jour. Amer. Med. Assoc., 1927, 89, p. 84.

TABLE 2 INTERPRETATION OF RESULTS OF ROUTINE TEST WITH SERUM

Serum: Antigen Dil Antigen Dilution, C	ution ubic Centimeter ubic Centimeter	3:1 .05 .15	2 6:1 .025 .15	3 12:1 .0125 .15	Average of Reaction in the Three Tubes = Final Result
	Reaction No.	++++	++++	++++	++++
Some	3 4 5	++	++++	++++	+++
Typical	6 7 8	_	+++ ++	++++	++
Reactions	9 10 11	=	- - +	++++	+
	12 13 14		± - +	++++++	±

As pointed out by Kolmer¹ and others the Wassermann, Kahn and all other serum tests are subject to numerous technical errors, and sometimes give false, especially falsely positive, reactions.

YAWS

Castellani² reported the presence of spirochetes in a disease occurring in several tropical countries, and known in the West Indies as yaws. The disease resembles syphilis, and by some writers has been regarded as identical with it. The mode of transmission of yaws has yet to be established; it is uncertain whether biting insects have any part in it. The spirochete Treponema pertenue found in yaws is long and very slender; there may be as many as 12 spirals. The Romanowsky staining method or some modification of it is said to give the best results. Vom dem Borne³ found Tre. pertenue in 73 out of 76 cases in which the young intact papules of the disease were examined. Material obtained from persons suffering from yaws and apparently containing Tre. pertenue

¹ Kolmer, J. A.. Jour. Amer. Med. Assoc., 1929, 93, p. 1429.

² Castellani: Brit. Med. Jour., 1905, 2, p. 1280.

³ Vom dem Borne: Jour. Trop. Med., 1907, 10, p. 345.

as the sole micro-organism is infectious for monkeys, and the spirochete is practically always present in the unbroken eruptive lesions and is often found in the spleen and lymph-nodes. Castellani¹ obtained evidence of the existence of specific yaws antibodies and antigens which are different from syphilis antibodies and antigens. Ashburn and Craig² emphasize the morphologic resemblance of Tre. pertenue to Tre. pallidum, but nevertheless conclude that Tre. pertenue can be differentiated by inoculation experiments and that it is the cause of yaws.

Nichols³ has produced lesions in the testicles of rabbits which are analogous with those of syphilis, and contain Treponema pertenue in large numbers in practically pure culture.

¹ Castellani: Jour. Hyg., 1907, 7, p. 558.

³ Nichols: Jour. Exper. Med., 1910, 12, p. 616.

² Ashburn and Craig: Philippine Jour. of Sci., B., 1907, 2, p. 441.

CHAPTER 28

ACTINOMYCES AND RELATED ORGANISMS

Genus: Actinomyces. Organisms growing as a much-branched mycelium which may break up into segments. Some species are parasitic. In the animal body radiating threads with clubbed ends appear in the lesions. Mostly aërobic, but some species are microaërophilic or anaërobic. Nonmotile. Type species: Actinomyces bovis, Harz.

FILAMENTOUS organisms with characteristics that relate them both to the ordinary bacteria and to the molds have been found in a variety of pathologic processes in man and the domestic animals. Their classification, interrelationships and nomenclature have given rise to considerable confusion and on many points opinion is still at variance. There is no doubt that some members of the group are closely related to the tubercle bacillus (Mycobacterium, p. 446); some species indeed are acid fast.

The natural habitat of the actinomyces group appears to be that of saprophytes on grains and grasses. Some writers, however, regard the organism found in actinomycosis in man and cattle as a strict parasite.

In lesions in the animal body the typical picture of a "granule" is that of a filamentous mycelial core surrounded by radiating clubs, whence the name ray-fungus (actinomyces) (Fig. 126). Club formation has also been observed in growth outside the body in ordinary culture media such as dextrose agar (Bayne-Jones).

Many of the generic names, such as Streptothrix and Nocardia, earlier used for members of this group have been discarded. Bergey's classification (1930) contains 70 species under the genus Actinomyces.

ACTINOMYCOSIS

The most clearly defined and best studied affection ascribable to these filamentous micro-organisms is a disease occurring chiefly in cattle, and in the horse, pig, sheep, dog, cat, elephant, and a few other animals; it is also seen occasionally in man. Although the disease was undoubtedly observed early in the nineteenth century, actinomycotic tumors being described by Leblanc¹ in 1826 under the name of osteosarcoma, it was first recognized as a specific parasitic disease by Bollinger in 1877.² At Bollinger's instigation the fungus was studied by the botanist Harz,³ who gave it the name of Actinomyces on account of the ray-like structure of its growth in the tissues. Later workers have added materially to the knowledge

Fig. 126.—Colony of Actinomyces with well-developed "clubs" at the periphery in a nodule in the peritoneal cavity of a guineapig inoculated with a culture from another guinea-pig. Paraffin section. Low magnification (Wright). (Photograph by Mr. L. S. Brown.)

of actinomycosis and its parasite; among these may be mentioned especially Wolff and Israel4 and J. H. Wright.⁵ Actinomycosis is essentially a suppurative process, characterized by the formation of granulation tissue and by the presence in the pus of peculiar granules, the Drusen of German writers. The granular masses when examined microscopically are seen to be dense rosettes of club-shaped filaments with the definite radial arrangement which has suggested the name of ray-fungus.

Characteristics of Actinomyces bovis.—The features of this interesting

parasite may be considered as they appear (1) in tissues and (2) in cultures.

(1) As found in the animal tissues, the largest of the colonies of the ray-fungus are visible to the naked eye as minute yellowish granules, the individual rosettes of which the granules are composed

¹ Leblanc: Jour. de méd. vétérin., 1826, p. 333.

² Bollinger: Deut. Ztschr. f. Tiermed., 1877, 3, p. 334.

³ Harz: Deut. Ztschr. f. Tiermed., Suppl., 1878, 4, p. 125.

⁴ Wolff and Israel: Virchow's Arch. f. path. Anat., 1891, 126, p. 11.

⁵ Wright, J. H.: Pub. Mass. Gen. Hosp., Boston, 1905; Jour. Med. Res., 1904–5, 8, p. 349.

averaging perhaps 30 to 40 μ in diameter, though they may sometimes reach a much larger size $(200~\mu)$. A granule may consist of a single rosette, or, as in the case of the largest granules, may be compacted of several. Three kinds of structures make up a typical Actinomyces rosette: (a) a central core of branching filaments irregularly disposed, but with a general radial arrangement; (b) at the periphery refringent, club-shaped bodies; (c) spherical, coccuslike bodies. The colonies may be examined in fresh unstained preparations in which the clubs may be plainly seen, or some stain like eosin may be used, which colors the sheath of the clubs. The

filaments stain by Gram's method, which is consequently well adapted for treating sections of the affected tissues.

(a) The filaments exhibit true branching, are often curved, sometimes spirally, and are thickly interlaced in a network like the mycelium of the higher fungi. The individual threads are, for the most part slender (about 0.5 μ in diameter), and are composed of granular protoplasm surrounded by a delicate sheath. In the older colonies fragmentation

Fig. 127.—Colonies of Actinomyces on agar and blood-serum (Wright).

or segmentation of the cell-substance may be observed, giving the appearance of chains of cocci.

(b) The club-shaped bodies at the margin of the Actinomyces granule are conspicuous for their high refringency and general structureless, homogeneous appearance. They are pear-shaped swellings of the terminal ends of the filaments, and arise as distinct transformations of the latter. In young colonies the hyaline substance of which the clubs are composed is soft and may be dissolved in water, but as the age of the colony increases, the clubs become of firmer consistency. The clubs are found especially in colonies from lesions where there is evidence that the tissue is displaying resistance to the inroads of the micro-organism; when resistance to invasion is slight, they are absent, filaments alone being found. Clubs are, as a rule, more common in bovine than in human lesions.

(c) Coccus-like bodies have been reported by a number of observers as being present in the Actinomyces granules. This designation has doubtless been applied to bodies of diverse nature. The segmentation of a filament into a chain of spherical structures has been already mentioned; these bodies are then usually described as "cocci." Some of the "coccoid" bodies are perhaps real micrococci, secondary invaders of the suppurating actinomycotic lesion, and some are perhaps simply the ends of clubs that first appear in focusing a lens down upon a rosette.

(2) In cultures the essential features of the Actinomyces rosette have been reproduced. The smaller colonies are rounded masses

Fig. 128.—Smear preparations of Actinomyces from broth culture. \times 1500 (Wright).

of branching and interlacing filaments. As the filaments become older they tend to break up into segments, and the largest colonies are dense, opaque masses of short filaments and rod forms. Clubs are not formed in ordinary broth (Fig. 128), but only in the presence of blood, blood-serum, or serous pleuritic fluids (Wright), where, however, their development is inconstant and dependent to some extent on un-

known factors. Sections of the colonies stain well by Gram's method; according to Wright, the clubs are best shown in paraffin sections stained according to Mallory's method (Fig. 126).

Much discussion has centered around the biological significance of the different elements of the Actinomyces colony. The clubs were at one time supposed to be reproductive organs of some sort, but little or no evidence has been adduced in support of this view, which is now practically abandoned. As already pointed out, the clubs are formed only when the colony is in contact with animal fluids that oppose a certain degree of resistance to the growth of the organism. They are consequently thought by many to be degen-

eration products due to the unfavorable conditions encountered by the tips of the filaments, that is to say, to lack of space or to the restraining influence of the body-cells or body-fluids. They have also been looked upon as protective devices for resisting the destructive action of the body-fluids.

The bodies described as "coccus forms" are in some cases foreign micro-organisms present in the tissues together with the Actinomyces and constituting a mixed infection; in others, and perhaps the majority of cases, they are the products of the degeneration of a filament. The view that any of the coccus-like bodies are spores or are in any wise related to the normal reproduction of the species has little in its favor and is not countenanced by any feature in the life-history of the organism in culture.

The Cultivation of Actinomyces.-Much perplexity has been caused in the study of this organism by the failure to recognize the occurrence of mixed infections. A large part of the difficulty of separation has arisen from the fact that Actinomyces is at first essentially an anaërobe of slow growth, and is, therefore, not easily freed from the contaminating microbes that are often present in the pus of actinomycotic lesions. Wright recommends the following procedure for the isolation of Actinomyces: The granules, preferably from a closed lesion, are first thoroughly washed in sterile water or broth and then crushed and disintegrated between two sterile glass slides. Bovine material may well be examined microscopically to see if a goodly number of filamentous masses are present, for in some of the granules degeneration has gone so far that no growth can be expected. When filaments are present, the crushed fragments of the granule are transferred by means of a loop to fluid 1 per cent dextrose agar (at 40 C.) contained in test-tubes filled to a depth of 7 or 8 cc. The material is thoroughly distributed throughout the melted agar and the tube placed in the incubator. Several tubes should be prepared. If the number of filaments introduced is considerable, characteristic colonies of Actinomyces develop in the depth of the agar, especially in a shallow zone about 5 to 12 mm. below the surface. If many colonies of contaminating organisms appear in the tube, it is probably not worth while to continue the attempt at isolation. To guard against possible loss of material from an important case, it is desirable at the outset to place a number of washed granules on the sides of the

sterile tubes plugged with cotton and left at room temperature in the dark. Preserved thus for two or three weeks, the contaminating bacteria perish by drying, and in case the original agar tube cultures have proved unsuccessful, the dried granules may be treated in the same manner as were the fresh ones.

When the presence of the characteristic colonies and the absence of a large number of contaminating colonies have been determined, pieces of agar containing colonies should be cut out by a stiff wire with a flattened oval bent end. With a low power of the microscope select an isolated colony for transplanting, carefully cut out the small piece of agar containing it, the diameter of the piece not to exceed 2 mm., and transfer the piece with a platinum loop to a tube of sterile broth, where it should be thoroughly shaken up to free it from any adherent bacteria. If there is reason to believe that the small piece of agar has been very much contaminated with bacteria, wash it in a second tube of broth, then make a transfer with a loop to a tube of melted dextrose agar (at 40 C.). Immerse the transplanted piece deep in the agar and place the tube in the incubator. If the colony is capable of growth, and contamination has been avoided, a good-sized colony in pure culture will result, and from this transfers to various culture media may be made.

The most consistent descriptions of the cultural characters of Actinomyces are found in the work of Wolff and Israel, and in the later monograph of Wright. Discrepancies with the statements of other writers, notably with those of Bostroem, are, according to Wright, most reasonably explained by assuming that the latter worked with impure cultures and that Bostroem's "Actinomyces hominis" (p. 551) was a saprophytic contaminating form. Actinomyces bovis grows well in 1 per cent dextrose agar. In this medium at 37 C. the colonies in the depth—that is, some 10 mm. below the surface—appear as irregularly shaped, opaque, whitish nodules which may reach a diameter of 2 to 3 mm. in a week (Fig. 129). Surface growth upon ordinary nutrient agar, upon dextrose or glycerol-agar, or upon blood-serum, is never luxuriant, and sometimes fails to appear altogether. Stab cultures in dextrose agar give a dense grayish streak of small colonies along the lower part of the line of inoculation, no growth occurring immediately below the surface. In broth a good growth usually occurs in the form of solid, whitish, mulberry-like granules at the bottom of the tube; there is never growth at the surface. After being under cultivation for some time most strains form flaky, friable, amorphous masses. The broth does not, as a rule, become cloudy. The predilection of this organism for anaërobic growth is shown by these peculiarities.

Upon potato, growth is scanty and not distinctive. Milk is not a favorable medium (Wright). A temperature of about 37 C. seems necessary for successful cultivation of the true Actinomyces

bovis. At the ordinary room temperature, when any growth at all takes place, it is very slight. Considerable resistance is shown to drying, most strains being alive after having been dried for fifty days on the walls of the test-tube; some observers have reported continued vitality in cultures dried for upward of a year.

Numerous species of Actinomyces have been described, most of them from soil, grain, manure and similar situations. The Actinomyces hominis of

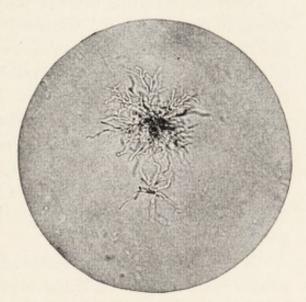


Fig. 129.—Small colonies of Actinomyces bovis in the depths of an agar culture (Wright).

Bostroem is apparently one of these saprophytic types. It may be readily distinguished from the pathogenic A. bovis by its aërobic growth, greater pleomorphism and failure to form granules or attack carbohydrates. One species, A. scabies, is considered to be the cause of potato scab.

Pathogenicity for Cattle and Other Animals.—The majority of actinomycotic lesions in cattle are found in or about the head; the lower jaw and the tongue in particular are affected with great frequency; hence the common names of "lumpy jaw" and "wooden tongue" for this disease. In addition to the growth in the tongue and maxillary bones, actinomycotic lesions occur in the pharynx, lungs, skin, lymph-glands, and subcutaneous tissue, especially of the head and neck, and occasionally in other organs, notably the udder and liver. The growth of the parasite leads in most situations to the formation of a hard tumor which gradually increases in size and burrows into the adjacent tissues, softening and disintegrating the

bony structure of the head, and at the same time forming new tissue, so that great distortion often ensues. The extension of the disease takes place by gradual invasion of the contiguous tissues, metastases being uncommon. When death occurs it is not, as a rule, due to any toxic effect, but wholly to the mechanical action of the tumor in pressing upon or occluding the respiratory passages or in interfering with the taking or mastication of food.

In the suppurating mass of the tumor are found the characteristic granules or "glands" (Drusen), composed of rosettes, as already described. These structures are so typical that their discovery by microscopic examination in a case of obscure suppuration is sufficient to establish a diagnosis. The new growth—granulation tissue—consists chiefly of epithelioid and spindle-shaped connective-tissue cells; small giant-cells are also sometimes present. To the naked eye, actinomycotic lesions in the lung and udder often resemble tuberculosis nodules, and have undoubtedly at times been mistaken for the latter; but microscopic examination leaves little ground for confusion.

Generalized actinomycosis is rare. When it occurs, the bloodstream rather than the lymph seems to be the channel by which the disease is spread. Secondary abscesses are found mainly in the liver. The horse and the pig are not often affected, the sheep still more seldom. The lesions in these animals are substantially of the same character as those in cattle.

Experimental inoculations of cattle, swine, dogs, rabbits, guineapigs, and other animals have given a large proportion of absolutely negative results. In some cases investigators (as Wolff and Israel) have obtained the formation of tumors containing Actinomyces colonies with typical "clubs," but in general definite positive results from inoculation are few in number. Wright inoculated 86 animals with pure cultures and obtained lesions referable to the microorganism in but 30; the lesions were, moreover, insignificant in most cases. A rapid diminution in the virulence of the culture appears to take place under cultivation. Individual susceptibility doubtless plays a large part in determining the course of infection.

Occurrence of Actinomycosis in Man.—This disease is observed in man from time to time, although it is not common. Sanford¹ has obtained data concerning about 700 cases in the United States

¹ Sanford: Jour. Amer. Med. Assoc., 1923, 81, p. 655.

up to 1923. The disease seems especially prevalent in the upper Mississippi valley. Actinomycotic affections of the bone are relatively infrequent, the disease being confined to the softer parts in most cases.

The tissue changes produced by the presence of the parasite in man are also somewhat different from those in cattle. There are generally a slighter production of new tissue and a more extensive softening and suppuration, which gradually spread to adjacent parts. Generalization of the infection is more common in man than in cattle. The disease may terminate fatally in a few weeks through secondary infection or formation of emboli, or may drag along in a chronic form for many years. Spontaneous healing has been observed. Compounds of iodine (potassium iodide) have, for unknown reasons, high therapeutic value in actinomycotic affections both in man and in cattle.

Method of Infection.—The parasite of actinomycosis usually enters the body of cattle from the mouth, pharynx, or other point in the upper alimentary tract—at least, this is inferred from the peculiar and frequent localization of the disease in the jaw and head, especially since in cattle metastases are rare. There is reason for incriminating the tonsils and carious teeth as starting-points for actinomycotic lesions in man. Many patients give a history of chewing straws or grain. Although the usual point of invasion thus seems to be quite definitely determined, much uncertainty prevails concerning the immediate source of the invading parasite.

Transmission by direct contagion from one animal to another or from cattle to man has never been satisfactorily established. Many of the cases of actinomycosis reported in man are among persons who have not been engaged in agricultural pursuits and, so far as discovered, have not come in contact with any preëxisting case in animals or man.

A number of observers have encountered fragments of grain (barley or corn) embedded in the soft tissues of the mouth and forming the apparent core of actinomycotic growth. On the basis of such findings the view has been advanced that the natural habitat of the Actinomyces fungus is on grain, especially barley, and that the fungus is introduced into the tissues either through slight scratches or wounds of the mucous membranes of the mouth or throat, or through direct penetration into the tissues of an infected

awn or other sharp particle. In support of this conception it is pointed out that the parasite has been reported as commonly found on grain (Johne, Bostroem). Indirectly confirmatory, too, is supposed to be the fact that in a number of cases of actinomycosis in man there is a suggestive history, such as the habit of chewing grain, nibbling at grain stalks, and the like. It must be said, however, that the evidence that the thread-like fungus found on barley grains is identical with the true Actinomyces is quite inadequate, and the wide distribution in nature of the latter parasite remains to be demonstrated. As regards the presence of foreign bodies in actinomycotic lesions, it is not necessary to assume that such a body is the special vehicle of the germ. It may reasonably be maintained that Actinomyces is normally present in the mouth, and that its invasion of the tissues is simply facilitated by the irritation caused by the foreign particle. The latter opinion is held by at least one high authority upon actinomycosis (Wright).

MYCETOMA OR MADURA FOOT

This disease, as the name implies, usually affects the foot; occasionally the hand is attacked, rarely other parts of the body. It

Fig. 130.—Madura foot—mycetoma (Musgrave and Clegg).

is primarily a disease of warm climates. The part involved shows at first a small swelling, which slowly enlarges and softens, discharging a viscid, slightly purulent fluid in which are minute granular particles. The foot, when affected, becomes greatly enlarged and misshapen (Fig. 130). As in actinomycosis, the bones are often involved. Extension of the infection by the formation of secondary abscesses is said not to occur, and the internal organs are never affected. Three varieties of the malady have been distinguished according to the color of the granules in the diseased tissue: (1) white or yellowish granules, the most common type; (2) a less common black;

and (3) a rare red variety. The color of the granules is the only distinguishing mark; the other features are said to be practically identical.

White Variety.—It seems probable that some cases with pale yellowish or ochroid granules reported as mycetoma were really infections with Actinomyces. Some observers believe that all cases of the white type are in reality actinomycotic. The granules are composed of an agglomeration of colonies which, like Actinomyces, are made up of a network of filaments. These filaments, moreover, terminate at the margin of the colony in the club-shaped swellings so characteristic of the Actinomyces fungus (Fig. 131). The cultural features of the organism isolated from the yellow

granules in mycetoma have led to its recognition as a distinct species, A. madurae. It is aërobic and does not ferment carbohydrates, in these respects resembling A. hominis, but, unlike the latter, forms clubs, rays and granules.

Black Variety.—The black granule (melanoid) variety of mycetoma, although resembling clinically and anatomically the more common form in which whitish or yellowish granules are found, has associated with it a

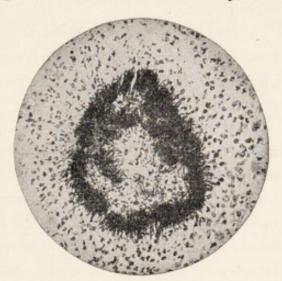


Fig. 131.—Mycetoma. Section of tumor of inoculated dog. × 390 (Musgrave and Clegg).

fungus very different from Actinomyces. The parasite of the dark granules has been studied especially by Wright.¹ It is a large fungus with thick branching filaments and transverse septa like the hyphae of the higher molds. The protoplasm of the hyphae is impregnated with black pigment. Wright obtained ready growth on the ordinary culture media under aërobic conditions. Spore formation was not observed. This organism must apparently be ranked with the true molds rather than with the Actinomyces, although little is yet known of its life-history

In one case of the black-grain variety occurring in the United States the causative organism has been placed in the genus of molds known as Madurella.²

Wright: Jour. Exper. Med., 1898, 3, p. 421.

² Gammel, J. A., Miskdjian, H., and Thatcher, H. S.: Arch. Dermat. and Syphilol., 1926, 13, p. 66.

RELATED INFECTIONS

Scattered cases of other infections with organisms of the Actinomyces type have occasionally been reported. Actinomyces (Cladothrix) asteroides was originally found in a brain abscess by Eppinger.¹ It has also been found in peritoneal exudate (MacCallum), and in various pulmonary affections sometimes called "pseudotuberculosis." A. asteroides is aërobic, acid fast and forms no clubs or granules. The colonies on agar and in broth are star-shaped.

A farcy-like disease of cattle in Guadaloupe (Nocard, farcin du boeuf), characterized by suppurative inflammation of the lymphatic glands, is apparently caused by a feebly acid-fast, aërobic organism now known as A. farcinicus.

The name Actinobacillus has been given to a group of gramnegative, nonacid-fast bacilli sometimes occurring in long chains
or unjointed filaments. No mycelium is found in the animal body,
but clubs appear at the periphery of the growth. One of these
micro-organisms, Actinobacillus lignieresi, was originally isolated
from an actinomyces-like disease in cattle; it is pathogenic for
laboratory animals. A similar organism, Actinobacillus actinoides,
was isolated by Theobald Smith² from the lungs of calves suffering
from pneumonia.

ERYSIPELOID

An erysipelas-like eruption, described under the name erysipeloid, has been noted by clinical writers in various parts of the world.³ In some instances there seems to be a direct epidemiological and bacteriological relationship to swine erysipelas, an infection of swine caused by an organism (Erysipelothrix) placed by taxonomists close to the Actinomyces; in other instances a specifically different but related microbe is thought to be concerned. The bacillus of mouse septicemia belongs in this group.

¹ Eppinger: Ziegler's Beitr. z. path. Anat., 1890, 9, p. 287.

² Smith, Theobald: Jour. Exper. Med., 1921, 33, p. 441; 34, p. 593.

³ See Klauder: Jour. Amer. Med. Assoc., 1926, 86, p. 536.

CHAPTER 29

THE YEASTS

The organisms known as yeasts are fungi characterized especially by the mode of multiplication or cell-division called *budding* (Fig. 132). The cells are spheroid or egg-shaped in form, and possess a well-defined cell-wall of cellulose. As a rule, they are much larger than the bacteria. They are persistently unicellular and do not

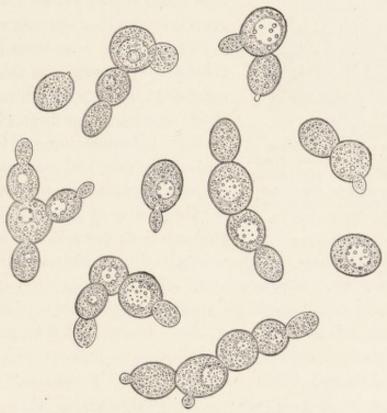


Fig. 132.—Yeast cells. Brewer's (top) yeast actively vegetating. The large internal vacuoles and the small fat-drops are shown, as are also buds in various stages of development, and the cell-wall. Nuclei not visible. (Highly magnified) (Sedgwick and Wilson).

develop a filamentous growth or mycelium as do the molds (Chap. 30). Some yeasts form spores under suitable conditions by endogenous cell-division; the usual number of spores (ascospores) is four (Fig. 133), but some yeast-like organisms have been found that form eight spores (Schizosaccharomyces octosporus, Beijerinck). The spore-forming yeasts are known as the genus Saccharomyces; those that do not form spores are Torula.

Under certain conditions some of the higher molds develop yeast-like cells which multiply by budding and show many of the characteristics of the common yeasts. The relationship of the yeasts to other fungi has not been clearly made out, and some botanists would deny these organisms any standing as an independent group, regarding them simply as a stage or phase in the life-history of higher organisms. Different names are given to various yeast-like organisms, but without any absolute precision or uniformity. Oidium and Monilia are names given to some forms that seem

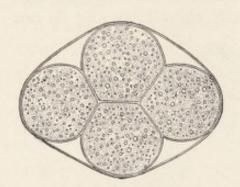


Fig. 133.—Spores of yeast (ascospores). Four spores in a cell of brewer's yeast (Saccharomyces cerevisiae) (Sedgwick and Wilson).

to be transitional between yeasts and molds and show a marked tendency to grow out into long threads or hyphae.

Yeasts have long been known for their ability to produce alcoholic fermentation, and the technical study of these organisms has been chiefly carried on in connection with brewing and other practical occupations. A variety of familiar processes, such as the rising of dough, are effected through their agency. It is not pos-

sible, in the compass of this work, to do justice to the relation of yeasts to the various fermentation industries.²

The enzymes produced by yeasts give the key to the activities of these organisms. Biologists have known for a long time that the cultivated species of yeasts elaborate at least two enzymes, namely, invertase, which has the power of changing or inverting saccharose into dextrose and levulose ($C_{12}H_{22}O_{11} + H_2O = C_6H_{12}O_6 + C_6H_{12}O_6$), and maltase, which splits a molecule of maltose into two of dextrose; but for many years it was disputed whether the further conversion of dextrose into alcohol and carbon

¹ For a discussion of the morphology, physiology and classification of yeasts, see Guillermond and Tanner: "The Yeasts," New York, 1920, pp. 424; Henrici, A. T.: "Molds, Yeasts and Actinomycetes," New York, 1930, pp. 296.

² The reader is referred to the following books dealing with alcoholic fermentation: Lafar: "Handbuch der technischen Mykologie," vols. 4 and 5, Jena, 1905–06–07; Jörgensen: "Micro-organisms and Fermentation," trans., London, 1900; Hansen: "Practical Studies in Fermentation," London, 1896; Oppenheimer: "Die Fermente und ihre Wirkungen," Leipzig, 1900.

dioxide was due to a specific enzyme. Buchner¹ in 1897 first showed that this action also was caused by an enzyme, which, however, unlike invertase and maltase, was closely bound to the cell protoplasm and did not diffuse out into the surrounding medium during the life of the cell. A solution of the alcoholic enzyme or zymase is obtained by rupturing the living yeast-cell, by the method of grinding pressed yeast with sand, and then subjecting the moistened mass to high pressure. The filtered liquid that is expressed from the yeast cells is able to induce the alcoholic fermentation of a sugar solution. The objection that the fermentation was due to particles of living yeast plasma contained in the yeast juice was met by centrifugalizing the latter, when it was found that the liquid portion possessed the same power of fermentation as that containing the plasma.

The use of pure cultures of yeasts placed the brewing industry for the first time on a scientific basis. In earlier days the beer wort was commonly invaded by bacteria and "wild" yeasts from countless sources, and the quality of the product was hence uncertain and frequently unsatisfactory. Although Pasteur recognized the share of bacteria in causing "diseases" of beer and wine, he did not fully appreciate the part played by wild yeasts, and it was the service of Hansen, the Danish bacteriologist, to trace much of the common deterioration of beer to the latter source. Hansen showed, further, that it was possible to avoid the interference of wild yeasts by inoculating the wort with cultures of suitable yeasts produced from a single cell under conditions that precluded outside contamination. The method of pure yeast cultures devised by him has been universally adopted, and special forms of apparatus for the development of pure yeast are in general use in all large breweries.

Pathogenic Yeasts.—The study of the pathogenic activities of yeasts in human beings dates, practically, from the discovery by Busse in 1894 of a generalized fatal infection apparently caused by a yeast.³ In this case, besides the chief lesion in the tibia, all accessible lymphatic glands were found to be enlarged; the patient died thirteen months after the appearance of the tibial

Buchner: Chem. Ber., 1897, 30, pp. 117, 1110, 2668.

² See, for an excellent description of modern brewing, the "American Handy Book of Brewing, Malting, and Auxiliary Trades," Wahl and Henius, Chicago, 1902.

³ Busse: Centralbl. f. Bakt., 1894, 16, p. 175.

abscess, and the yeast was found in similar abscesses in the ulna and one rib, and also in the lung, left kidney, and spleen. A somewhat similar organism was described by Curtis¹ as the apparent cause of myxomatous tumors. Gilchrist² was the first to observe and describe a well-defined skin disease, sometimes termed blastomycosis or blastomycetic dermatitis, which is caused by a yeast-like organism. Since that time a number of cases of this characteristic skin disease have been reported, especially from the vicinity of Chicago, and the infection was made the subject of a compre-

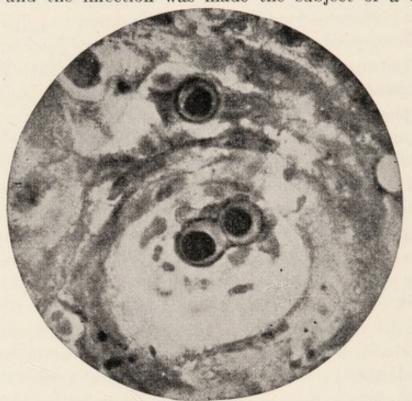


Fig. 134.—A pair of yeast organisms in an incipient intraepithelial abscess, also a single mature form between epithelial cells; × about 1200 (Ricketts).

hensive monograph by Ricketts.³ The organisms occur in the tissues only in the budding, yeast-like stage. The larger cells (Fig. 134), which are from 10 to 17 μ in diameter, are spherical and possess a homogeneous, double-contoured capsule, the cytoplasm being sometimes finely, sometimes coarsely, granular and often vacuolated. The name Oïdium dermatitidis given by Ricketts is widely used. Brumpt, however, places this species in the genus Mycoderma.

¹ Curtis: Ann. de l'Inst. Pasteur, 1896, 10, p. 449.

² Gilchrist: Johns Hopkins Hosp. Rept., 1896, 1, p. 269.

³ Ricketts: Jour. Med. Res., 1902, 6, p. 377.

Considerable difficulty is experienced in obtaining cultures directly from fresh tissue, but after growth once appears cultures can be readily maintained on all the usual laboratory media. Freshly isolated cultures grow slightly better on Löffler's blood-serum. On agar after three to seven days small white colonies develop which show under a low power numerous aërial hyphae. The growth is often distinctly mold-like, especially in dry cultures. The substratum becomes penetrated with a mass of mycelial threads and

Fig. 135.—Blastomycosis. Old partially healed ulcer of the leg (Irons and Graham).

gradually turns to a brown color. Upon dextrose-agar there is a somewhat more profuse growth. In broth a fluffy, coherent, globular growth occurs at a fixed point in the fluid, the supernatant fluid remaining clear. Gelatin is not liquefied. Milk turns slightly alkaline and shows some digestion of casein without coagulation. On potato the growth is rather rapid, and in some cultures a large number of budding forms are found with few hyphae. No gas is produced in dextrose solutions. Guinea-pigs and rabbits inoculated subcutaneously develop abscesses containing yellowish, cheesy material in which the yeasts are present in the budding form. Generalized infection sometimes results.

In man, blastomycetic dermatitis follows a quite uniform course. First a small papule appears, most commonly on the hand, forearm, or face, which yields a viscid pus and gradually enlarges its area (Fig. 135). In a great majority of cases there is absence of lymphatic glandular involvement. The disease may extend over ten or twelve years and cause great cicatricial deformity. Potassium iodide has been used in some cases with distinctly beneficial results.

A number of cases of generalized oïdiomycosis terminating fatally have been reported. In the majority of these the lung seems to have been the seat of primary infection. Multiple superficial and deep abscesses occur, and both clinical and pathologic findings are rather characteristic.¹

A singular and more often fatal disease of like character has been observed on the Pacific slope of the United States and in a few other localities.² Nearly 290 cases are on record.³ Although the organism found was at first thought to be a protozoön, and the disease is still termed "coccidioidal granuloma," there is now no doubt that the parasite is a fungus; its affinities and true systematic position are not yet determined. Generalized infections are the rule and are almost invariably fatal. Cutaneous lesions are often entirely secondary and may even be wholly absent.⁴

The specific micro-organisms from the Pacific coast, when compared with the oïdia from the Chicago cases, show some differences in behavior on culture media, but the distinction upon which most stress falls is that the Pacific coast fungus occurs in the tissues only in the mycelial form, never in the budding form. In pus and in culture media budding forms very similar to those of blasto-mycetic dermatitis have been observed. The organism of coccidioidal granuloma is also characterized by endogenous spore formation, and proliferation in the tissues appears to be entirely by sporulation.

The diseases known respectively as *thrush* and *sprue* (pp. 569 and 758) have been attributed to yeast-like organisms of the transitional Oïdium or Monilia type.

¹ Irons and Graham: Jour. Infect. Dis., 1906, 3, p. 666.

² Ophüls: Jour. Exper. Med., 1901, 6, p. 443.

³ Cummins, W. T., Smith, J. K., and Halliday, C. H.: Jour. Amer. Med. Assoc., 1929, 93, p. 1046.

⁴ Brown: Jour. Amer. Med. Assoc., 1907, 48, p. 743.

A number of writers, chiefly Italian observers (as Sanfelice),¹ have sought to establish some relation between yeasts and malignant tumors, but the evidence advanced in favor of such a causal connection is totally inadequate. The resemblance between yeasts and the cell inclusions in cancerous tissue seems to be purely superficial.

¹ Sanfelice: Centralbl. f. Bakt., I, Orig., 1902, 31, p. 254.

CHAPTER 30

THE MOLDS

The organisms known as molds or *Eumycetes* are sometimes grouped with bacteria under the general head of fungi. They are, however, quite distinct from the bacteria, and are more closely related to the higher algae; perhaps they should be regarded phylogenetically as forms that have lost the chlorophyl they once possessed as the result of taking up a saprophytic or parasitic mode of life. Two of the more common genera, Penicillium and Aspergillus, have been made the subject of valuable monographs by Thom.¹

Filamentous growth is one of the features of this group of organisms. An individual filament is termed a hypha, and the whole matted, felt-like mass of interlacing filaments is called the mycelium. In the lower Eumycetes—those showing the closest resemblance to the algae—each filament is a single, simple, or greatly branched multinuclear cell. In the higher forms each filament consists of a row of cells set end to end. The lower Eumycetes, or Phycomycetes, are further distinguished by their mode of reproduction, which is both asexual and sexual, while the higher fungi probably lack either wholly or in part the sexual mode of development. The common white cottony mold (Mucor mucedo), which grows on damp bread, horse-dung, etc., is a familiar example of the Phycomycetes. In this species the asexual form of reproduction is the more common. From the single-celled, finely branched mycelium rise erect, unbranched hyphae, near the apex of each of which a septum forms. The tip of the hypha then swells into a globular sporangium, within which numerous oval spores develop; the wall of the ripe sporangium ruptures easily and the spores are discharged by the swelling of the gelatinous mass in which they are embedded (Figs. 136, and 137). Under certain conditions conjugation of two cells precedes spore-formation (sexual reproduction). Lateral, club-shaped outgrowths occur in neighbor-

¹ Thom, C.: "The Penicillia," Baltimore, 1930, pp. 644; Thom, C., and Church, Margaret: "The Aspergilli," Baltimore, 1926, pp. 272.

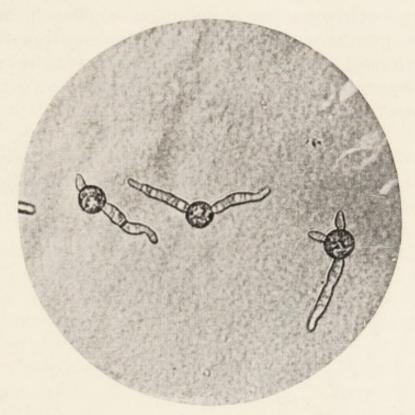


Fig. 136.—Germinating spores of a mold; \times 400 (Nowak: Documenta Mikrobiologica II, 1930).

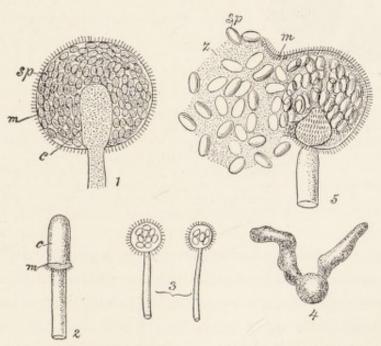


Fig. 137.—Mucor mucedo: 1, A sporangium in optical longitudinal section; c, columella; m, wall of sporangium; sp, spores; 2, a ruptured sporangium with only the columella (c) and a small portion of the wall (m) remaining; 3, two smaller sporangia with only a few spores and no columella; 4, germinating spores; 5, ruptured sporangium of Mucor mucilaginus with deliquescing wall (m) and swollen interstitial substance (z); sp, spores (after Brefeld).

ing hyphae and constitute the so-called "gametophores." When the tips of two gametophores come in contact, they fuse; then transverse septa are formed, and a *zygospore* is the result. From the matured zygospore a germ-tube arises and may at once develop a sporangium at the apex (Fig. 138).

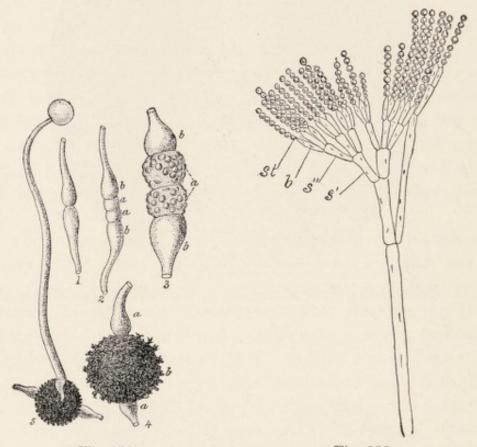


Fig. 138.

Fig. 139.

Fig. 138.—Mucor mucedo. Different stages in the formation and germination of the zygospore: 1, Two conjugating branches in contact; 2, septation of the conjugating cells (a) from the suspensors (b); 3, more advanced stage in the development of the conjugating cells (a); 4, ripe zygospore (b) between the suspensors (a); 5, germinating zygospore with a germ-tube bearing a sporangium (after Brefeld).

Fig. 139.—Penicillium crustaceum. Conidiophore with verticillate branches, s', s'', b, st, sterigmata abstricting chains of conidia; × 540 (Strasburger).

Reproduction among the higher molds is usually, perhaps exclusively, by asexual spore-formation. In one of the principal groups—Ascomycetes—spores are formed within the hyphae in asci, or tubular spore-cases. In some cases the fertile hyphae are inclosed within an envelop called the perithecium, which is composed of closely interwoven sterile hyphae. The very common blue-green mold, Penicillium, frequently found as an air-contamination on gelatin or agar plates, multiplies by the direct formation of gonidia

or spores from the segmentation of portions of the hyphae; the terminal portion of certain filaments breaks up into finger-like branches, and these branches become constricted into rows of oval spores (Fig. 139). It is still uncertain how far the reproduction of certain of the molds is dependent upon external conditions and how far upon internal relations. Possibly in some cases cell-conjugation precedes the formation of reproductive bodies. There is no consensus concerning the classification and inter-relationship of these organisms, and in many cases the life-history is incompletely known.

The molds prefer an acid to an alkaline reaction, and are frequently a source of trouble to the housekeeper from their tendency to attack fruit preserves and similar substances. The ability of the hyphae to force their way through narrow spaces enables these organisms to invade the contents of any receptacle not tightly sealed. Culture media in bacteriological laboratories are often contaminated by molds if the cotton plugs are allowed to become moistened, the mold hyphae readily making their way between the cotton filaments. The spores of molds are well-nigh ubiquitous, and are usually more abundant than bacteria in ordinary air.

Certain species of Aspergillus are commonly used in Asiatic countries for making fermented drinks. The conversion of the starch of the rice grains into sugar by one of these molds is the first step in the production of sake and other alcoholic liquors. The molds of this genus seem particularly rich in enzymes, and their products have been utilized to some extent in commercial preparations such as "taka diastase."

Many of the molds are able to attack the tissues of the higher plants and to cause widespread and serious plant diseases. The potato-rot, caused by the fungus Phytophthora infestans, is a familiar example. The infection of rye and other grains with the fungus Claviceps purpurea may entail disastrous consequences for man, since the use of infected grain has been found to cause the condition of poisoning known as ergotism. Other grains and vegetable foods are not infrequently attacked by fungi which generate toxic compounds, so that the use of moldy foods by man or by the domestic animals is attended with some danger. In certain cases the

¹ For a comprehensive monograph see Thom and Church: "The Aspergilli," Baltimore, 1926, pp. 272.

fungi producing the poisonous substances have been carefully studied, as in the case of ergot; in others, little is known about them.

While a great many fungi are parasitic upon the higher plants, a relatively much smaller number are known to possess pathogenic properties for the higher animals, including man. Plaut¹ has divided the fungi pathogenic for man into three groups, according to their pathogenic effects: (1) the molds in the narrower sense (Mucor and Aspergillus); (2) the fungus of thrush; (3) the fungi infecting the skin.

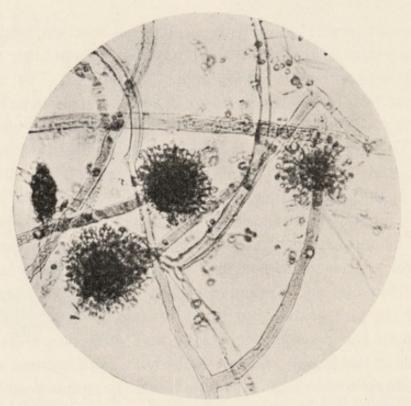


Fig. 140.—Aspergillus showing characteristic stalks and spore-containing heads; × 250 (Nowak: Documenta Microbiologica II, 1930).

1. Certain widespread and common molds are sometimes found associated with pathologic conditions. In a fatal infection in man² a species of Mucor was found in abscesses in the lungs, peritoneal cavity, and brain. Instances of infection with various species of Aspergillus are fairly numerous. Lung infections and ulcerations of the ear are fairly common. Most of the reported cases of lung infection are among bird-fanciers, especially those having to do with the care of pigeons. These birds are liable to a pulmonary

¹ Plaut: Kolle and Wassermann's Handbuch, 2nd ed., 1, p. 549.

² Paltauf: Archiv. f. Path. Anat., 1885, 102, p. 543.

form of aspergillosis, and the evidence is fairly convincing that transmission of the disease from pigeons to man can take place. Experimental infection has been produced in birds by inhalation of spores. Birds and mammals can also be fatally infected by intravenous inoculation with Aspergillus spores (Fig. 140).

2. An infection of the mucous membrane, usually of the mouth of infants, rarely seen in adults, is known as thrush (Ger., Soor.) The fungous growth is usually localized in the form of white patches on the mucous surface attacked, but generalized infection also may occur, though it is not common. Birds and the lower animals are occasionally attacked spontaneously and may also be artificially infected. A slight degree of immunity may be obtained by repeated inoculation of nonfatal doses of the living parasite, but not with

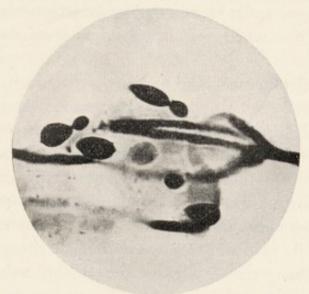


Fig. 141.—Thrush fungus from child's throat; × 130 (Nowak: Documenta Microbiologica I, 1927).

its soluble products. Two morphologically distinct varieties of fungi have been found in thrush. One of these, the large-spored, gelatin-liquefying variety, is much more common than the other, and most of the recorded observations and experiments relate to this form (Fig. 141). The spores or yeast-like bodies found in the common variety are about 5.6 μ long and 4 μ in diameter, while in the other variety they are usually spherical and are from 1.9 to 3.8 μ in diameter. The nomenclature of the thrush fungus is in almost hopeless confusion. Plaut¹ prefers Monilia candida, though probably the name in most common use is Oïdium albicans. The thrush

¹ Plaut: Kolle and Wassermann's Handbuch, 2nd ed., 1, p. 585.

parasite should probably be classed with the yeasts rather than the higher fungi.

3. The dermatomycoses or skin diseases caused by fungi form a group of respectable dimensions. There is much uncertainty and difference of opinion concerning the nature and systematic position of the various parasites, and a full consideration of the points in dispute is here impossible. In favus, a not uncommon disease of the scalp and other parts of the body, characterized by a dry, yellowish, honeycomb-like incrustation, some investigators would recognize as many as nine different varieties of fungi at times responsible for the condition, while others regard the infection as due to a single highly pleomorphic fungus. The trend of opinion seems toward the latter view. Wälsch¹ has shown that the parasite of favus in mice can be adapted to growth in the human skin, where it becomes converted into the characteristic fungus of human favus.

The skin affection usually known as ringworm (Herpes ton-surans) is caused by two, possibly more, varieties of the genus Trichophyton. A large-spore and a small-spore variety of the fungus are generally recognized, the latter being the more common. The infection is communicated from man to man, and may also be contracted from the horse, cat, dog, and other domestic animals. The fungi of ringworm and favus are able to penetrate the underlying layers of the skin and to cause pathologic changes in the tissue elements. In this respect they are more highly or more definitely parasitic than certain other fungi which vegetate on the superficial layers of the skin and do not produce marked pathologic lesions. Pityriasis, or tinea versicolor, a dry, scaly skin eruption, is caused by one of these semi-saprophytic fungi, Microsporon furfur.

Sporothrix.—A peculiar ulcerative infection observed in the hand and arm of a patient presenting himself at the surgical clinic of the Johns Hopkins Hospital in 1896 was shown by Schenck² to be due to a fungus usually classed in the genus Sporothrix. Many other cases of sporotrichosis have since been observed in man and in such domestic animals as the dog and horse.³ There is often a

¹ Wälsch: Prag. med. Wchnschr., 1898, 23, pp. 206, 219.

² Schenck: Bull. Johns Hopkins Hosp., 1898, 9, p. 286.

³ Hektoen and Perkins: Jour. Exper. Med., 1900–01, 5, p. 77; Page, Frothingham and Paige: Jour. Med. Res., 1910, 23, p. 137; Walker and Ritchie: Brit. Med. Jour., 1911, 2, p. 1.

history of some minor injury to the hand or foot followed by the development of a chain of nodules along the line of the lymphatics. In some cases, however, especially those reported in France, the infection is accompanied by multiple wide-spreading abscesses in various parts of the body.

The fungus shows mycelial threads and conidia when cultivated in broth and agar. Some strains, like Schenck's original culture, liquefy gelatin; others lack the power of liquefaction. An abundant growth occurs on potato, and is often, but not invariably, accompanied with considerable pigmentation. Inoculation of the dog and mouse proves the pathogenic power of the organism; the guinea-pig is relatively insusceptible. In the tissues the conidia seem to multiply by budding, and true mycelial formation is lacking, probably because of the high temperature of the body. In artificial cultures a much better growth is observed as 22 C. than at 37 C.

The differentiation of pathogenic sporotricha into distinct species by means of fermentive reactions is stated by Meyer to be impossible. This investigator believes that the American strains of pathogenic sporotricha are best classified as one species, Sporothrix schenckii-beurmanni.¹

Cases of human sporotrichosis are reported in this country and in Europe in increasing numbers, but it is not certain whether the infection is becoming more common or whether it is more frequently recognized.

Sporotrichosis in domesticated animals, particularly horses, is often noted in certain parts of the United States; but transference of the disease from animals to man is observed only in rare instances.²

¹ Meyer, K. F.: Jour. Infect. Dis., 1915, 16, p. 399.

² Meyer, K. F.: Jour. Amer. Med. Assoc., 1915, 65, p. 579.

CHAPTER 31

THE PARASITIC PROTOZOA

Introductory.—The Protozoa, the lowest group of the animal kingdom, are especially distinguished from the higher animals, or Metazoa, by the fact that, as a rule, each organism consists of but a single cell. They range in size from organisms scarcely larger than bacteria to organisms several centimeters in length. It is hardly possible at present to define accurately the class of Protozoa. The group is very extensive and heterogeneous, and includes some organisms of great simplicity and some of extraordinary elaboration of structure. The life-cycle of many protozoa is complex and involves the alternation of hosts and, in some cases, of sexual and asexual phases.

At the present time most protozoölogists recognize about 24 well-defined species of protozoa parasitic in man; some of these organisms produce fatal or very serious diseases. The interest in parasitic protozoa is shown by the appearance in the last few years of six general texts, and a large number of monographs dealing with single groups.

Many species are parasitic upon various animals and plants. Several widespread and serious plagues of domestic animals are due to invasion of the body by various protozoan parasites, and the part played by protozoa in causing diseases of mankind, especially in the tropics, is far more important than was at one time suspected. The following table, taken largely from Wenyon,² gives a classification of the protozoa with examples selected from among the parasites of man:

¹ Hegner and Taliaferro: "Human Protozoölogy," New York, 1924, pp. 597; Craig: "A Manual of the Parasitic Protozoa of Man," Phila., 1926, pp. 569; Wenyon: "Protozoölogy," London, 1926, pp. 1563; Knowles: "An Introduction to Medical Protozoölogy," Calcutta, 1928, pp. 887; Thomson and Robertson: "Protozoölogy," London and New York, 1929, pp. 376; Dobell: "The Amoebae Living in Man," London, 1919, pp. 155.

Sub-phylum Plasmodroma. Movement by changeable protoplasmic processes called pseudopodia or by permanent whip-like organs, flagella.

Class Rhizopoda. Predominating phase is ameboid, locomotion by pseudopodia. Ex: Endameba.

Class Mastigophora. Predominating phase is flagellated. Locomotion by flagella. Ex: Trypanosoma.

Class Cnidosporidia. Exclusively parasitic forms which are frequently ameboid. Dissemination by characteristic spores provided with "polar capsules" from which long filaments can be extruded. Many fatal epidemic diseases of cold-blooded vertebrates and insects are caused by members of this group. No parasites of man are known to belong to it, but Sarcocystis, whose affinities are very little understood, is sometimes placed in it.

Class Sporozoa. Exclusively parasitic forms which typically reproduce by schizogony and after syngamy has occurred produce sporozoites enclosed

in resistant oöcytes. Ex: Plasmodium.

Sub-Phylum Ciliophora. Movement by means of cilia. Typically with nuclear dimorphism—macronucleus and micronucleus. Ex: Balantidium.

INTESTINAL AMEBAS

The Ameba of Dysentery: Endameba histolytica.—Ameboid organisms have been found abundantly in the intestinal discharges of persons suffering from a peculiar form of chronic dysentery especially common in the tropics, but by no means rare in temperate countries. In the majority of autopsies on these cases the ulcerations of the intestinal wall contain amebas in large numbers, and the histologic appearances at these points indicate an active invasion of the tissues (Fig. 142). Amebas are also found in the internal organs, notably in the liver, where large abscesses highly characteristic of this form of dysentery occur in from 20 to 25 per cent of all cases. These abscesses harbor amebas in great abundance, and no other micro-organism has been constantly demonstrated in these situations culturally or microscopically.1 The serum of patients suffering from this form of dysentery does not agglutinate the bacillus of epidemic dysentery (p. 358). The peculiarity of the symptoms and lesions, the localization of the amebas in the intestinal ulcers and in the characteristic liver abscesses, the absence of specific bacteria or other parasitic organisms, and experimental infection of man and animals with E. histolytica have caused this form of dysentery to be generally ascribed to the pathogenic activity of the ameba. The presence of amebas in the stools

¹ The abscesses are not, however, so commonly sterile bacterially as was at one time asserted. Staphylococcus aureus, Bact. coli, and some other bacteria are found with considerable frequency accompanying the amebas.

seems to have been first noted by Lewis, whose description does not permit identification of the species. His co-worker Cunningham, in 1871, gave a much better description, from which the forms can be identified as being chiefly $E.\ coli\ (p.\ 578)$. The first observations on $E.\ histolytica$ were probably made by Lösch in 1875. The animal experiments of Lösch, the discovery of amebas in sections of

Fig. 142.—An early stage in amebic ulceration of the mucosa of the colon. The amebas (a) can be seen in the crypts of the mucosa, the stroma of the mucosa, the submucosa and in one case under the endothelium of a vein (Mac-Callum: "Text-book of Pathology").

the intestine by Koch,⁴ the extensive investigation of dysentery in Egypt by Kartulis,⁵ and the comprehensive study of the clinical and pathologic characteristics of the disease by Councilman and Lafleur⁶ went far to establish the independent nature of the malady and its connection with the presence of amebas.

Characteristics and Life-cycle.—The large ameboid and tissue-invading form of E. histolytica usually measures 20–30 μ in diameter

¹ Lewis: Appendix to Ann. Rept. of Sanitary Commissioner with Govt. of India. Calcutta, 1870.

² Cunningham: Ann. Rept. of Sanitary Commissioner with Govt. of India. Calcutta, 1871, pp. 141–243.

³ Lösch: Arch. path. Anat., 1875, 65, p. 196.

⁴ Koch and Gaffky: Arb. a. d. kaiserl. Gesundh., 1887, 3, p. 1.

5 Kartulis: Virchow's Archiv. f. path. Anat., 1886, 105, p. 521.

⁶ Councilman and Lafleur: Johns Hopkins Hospital Rept., 1891, 2, p. 395.

and moves by the extrusion of clear hyaline pseudopodia (Figs. 143 and 144). The nucleus is characteristic of the genus and exhibits a thin peripheral layer of chromatin granules and a small central mass of chromatin known as the karyosome. The active forms reproduce by binary fission. So far as known they obtain their food partly by absorption and partly by the ingestion of red blood cells and tissue elements. No proof has been given that they ever eat bacteria in the body, although they do feed on them in culture. The primary site of the infection is the large intestine where the ameba produces typical undermined ulcers extending into the mucosa, submucosa or even muscular layers of the intestinal

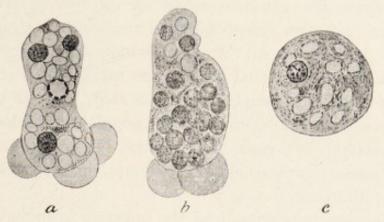


Fig. 143.— $Endameba\ histolytica\ (Kruse\ and\ Pasquale)$: a and b, Amebas as seen in the fresh stools, showing blunt ameboid processes of ectoplasm. The endoplasm of a shows a nucleus, three red corpuscles, and numerous vacuoles; that of b, numerous red corpuscles and a few vacuoles; c, an ameba as seen in a fixed film preparation, showing a small rounded nucleus; \times 600.

wall. These ulcers always open into the lumen of the intestine and are constantly discharging amebas. In symptomless carriers of the parasite the amebas so discharged become rounded and sluggish, and stop ingesting food. Such amebas are much smaller than the tissue-invading forms and, as they are preparing for encystment, are known as precystic forms. Eventually as the precystic forms move down the intestine they secrete a clear thin cyst wall about themselves and are known as uninucleate cysts. These cysts are spherical and usually measure from 5 to 20 μ in diameter. They do not change in size, but as they pass down the intestine the nucleus divides into two and then four nuclei. The quadrinucleate cyst is the mature form and passes out of the body with the feces. The younger stages of the cysts usually contain masses of glycogen and often also blunt rounded masses of chromatic material known as

chromatoids. Both of these are gradually reabsorbed, but mature quadrinucleated cysts may retain one or more chromatoids for several days.

The mature quadrinucleate cyst is the only infective form and when swallowed probably hatches in the small intestine. Eventually the progeny set up ulceration in the large intestine.

The outline just given portrays the probable course of events in the symptomless carrier. If the intestinal ulcers are very extensive the patient suffers from acute dysentery. In this condition the tissue-invading forms are flushed out of the intestine before they have time to encyst. The carrier who is passing cysts is therefore the only person who can disseminate the infection. Every gradation is found between symptomless carriers and patients suffering from acute dysentery. All the evidence indicates, however, that by far the majority of infected persons are carriers that never suffer from symptoms. This explains the fact that, while in the United States approximately 10 per cent of the population is infected, there are comparatively few cases of dysentery. In the tropics the proportion of infected persons exhibiting symptoms is probably greater than in the United States.

Although the primary site of the infection is probably always the large intestine, the amebas sometimes set up secondary sites of infection. The commonest of these is the liver, as has been noted. In addition a number of cases have been described in the spleen and even in the brain. Apparently authentic instances of the occurrence of amebas in the urine have been noted. Kofoid and Swezy¹ and Kofoid, Boyers, and Swezy² believe that they have demonstrated E. histolytica in the bone lesions of Ely's nonbacterial or second type of arthritis and in the lymphatic glands of Hodgkin's disease, respectively. In all of these secondary sites the amebas live essentially as they do in the deeper portions of the intestinal ulcers. Since the amebas in such sites cannot complete their life-cycle, such invasions probably represent cul de sacs from which they cannot escape. Both carriers and patients with symptoms are liable to such secondary invasions.

The life-history of the dysentery amebas outside the human body is essentially unknown, but there is good epidemiological evidence

¹ Kofoid and Swezy: Jour. Amer. Med. Assoc., 1922, 78, p. 1602.

² Kofoid, Boyers and Swezy: Jour. Amer. Med. Assoc., 1922, 78, p. 1604.

that the disease is spread chiefly by raw foods and water. The contamination of food may occur either indirectly by means of sewage

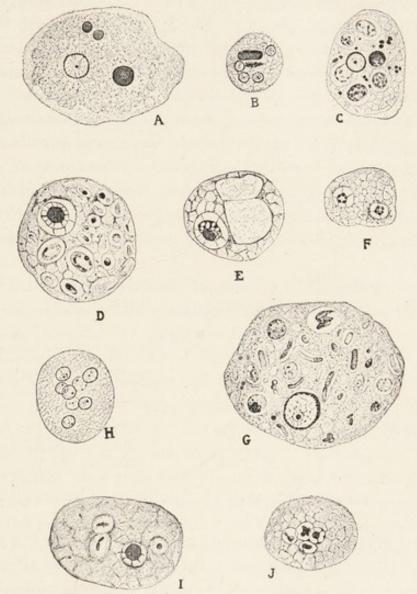


Fig. 144.—The amebas living in man. A, large tissue-invading form of Endameba histolytica containing three red blood cells. B, mature quadrinucleate cyst of the same containing two chromatoids. C, active ameboid form of Endameba gingivalis. D, active ameboid form of Iodameba williamsi containing many intestinal bacteria. E, cyst of same showing large double vacuole which in life was filled with glycogen. F, ameboid form of Dientameba fragilis containing two nuclei. G, large active ameboid form of Endameba coli containing intestinal bacteria and debris. H, mature eight-nucleate cyst of same. I, ameboid form of Endolimax nana. J, mature quadrinucleate cyst of same. A, B, C, G, and H; × about 1300 (Dobell). D, E, F, and J; × 3000 (Taliaferro and Becker). I × 3000 (Taliaferro in Hegner and Taliaferro's "Human Protozoloögy," courtesy of The Macmillan Company).

or polluted water or directly through a carrier or convalescent. Flies may conceivably be agents in the transmission of infection; amebic cysts have been found in the feces of these insects.

Nonpathogenic Amebas of the Intestine.—Besides E. histolytica there are at least four other species of ameba living in the human intestine: Endameba coli, Endolimax nana, Iodameba williamsi and Dientameba fragilis. These forms have much the same life-cycle as E. histolytica, except that they are restricted to the lumen of the alimentary canal, never invade the tissues, and, as far as is known, do not give rise to any untoward symptoms. E. histolytica feeds on red blood-cells and tissues, but these other amebas never eat tissue elements, but ingest bacteria, yeasts and intestinal débris. Dientameba fragilis is a rare species. The other three are differentiated from E. histolytica by many features, chief of which are the nature of the food inclusions in the ameboid stages, the structure of the nucleus, and the size, shape and nuclear number of their cysts (Fig. 144.)

Boeck¹ studied the incidence of the different intestinal amebas in 8029 inhabitants of the United States with the following results:

	Number Infected	Percentage Infected	Estimated Percentage Infected
E. histolytica	333	4.1	8-10
E. coli	1596	19.6	36-46
E. nana	1060	13.2	25-31
I. williamsi	404	5.0	10-15

The figure given under "estimated percentage infected" is probably the true index of infection as it is the figure arrived at after making allowance for the number of infections probably missed by his routine methods. Similar conclusions have been obtained by Dobell² after compiling the data for the British Isles.

Cultivation of Intestinal Amebas.—The cultures obtained by the earlier investigators who attempted to cultivate parasitic amebas were all probably free-living species which represented the progeny of cysts of those species that had passed unchanged through the intestinal canal or were air contaminations. Cutler 3 (1918) was undoubtedly dealing with $E.\ histolytica$, but most investigators feel

Boeck and Stiles: Bull. 133, Hyg. Lab., Washington, 1923.

² Dobell: Med. Res. Council, Special Report Series, No. 59, London, 1921;

³ Cutler: Jour. Path. and Bact., 1918, 22, p. 22.

that his work is open to a different interpretation from the one he placed on it. The first undoubted cultivation of a parasitic species was that of Barret and Smith¹ (1923, 1924) who grew *E. barreti* from the turtle in a 1:10 dilution of inactivated human serum in 0.5 per cent saline. This work was fully confirmed by Taliaferro and Holmes in 1924.² The first undoubted cultivation of *E. histolytica* is the work of Boeck and Drbohlav, 1925.³ These investigators used solid egg and blood agar slants covered with Locke's solution containing serum or egg albumin. Cultures were kept at 30–37 C. and subcultures were made every two or three days. There are many modifications of the original Boeck-Drbohlav medium for which the student is referred to such books as Wenyon's, 4 which describe in detail standard methods of cultivation for the protozoa.

At the present time it seems that Barret and Smith's method is suitable for many amebas of cold-blooded vertebrates and that Boeck and Drbohlav's technic can be applied to most amebas of warm-blooded animals. All of the amebas of man have been cultivated on the original Boeck and Drbohlav's medium or modifications of it. Recently Craig⁵ has succeeded in growing *E. histolytica* in a 1:8 dilution of inactivated human serum in 0.85 per cent saline, a method similar to that of Barret and Smith. All cultures of parasitic amebas contain numerous bacteria upon which the protozoa feed.

Diagnosis of amebiasis rests largely upon the finding of some stage of the parasite in the stools or in other materials such as pus from liver abscesses. Craig⁶ has shown that cultural methods will greatly increase the number of positive findings and the same author believes that complement fixation⁷ can be used as a practical method in routine diagnosis.

² Taliaferro and Holmes: Amer. Jour. Hyg., 1924, 4, p. 160.

4 Wenyon: "Protozoölogy," p. 1296.

⁵ Craig: Amer. Jour. Trop. Med., 1926, 6, p. 461.

Barret and Smith: Amer. Jour. Hyg., 1923, 3, p. 205; 1924, 4, p. 155.

³ Boeck and Drbohlav: Proc. Nat. Acad. Sci., 1925, 2, p. 235; Amer. Jour. Hyg., 1925, 5, p. 371.

⁶ Craig. In Hegner and Andrews: "Problems and Methods of Research in Protozoölogy," Chap. XX, p. 171.

⁷ For technical methods see Craig: Chap. XXI, p. 182, of Hegner and Andrews.

MOUTH AMEBAS

Endameba gingivalis.—The discovery of an ameba in the tartar of the teeth by Gros¹ in 1849 probably is the first description of any parasitic ameba. Some years ago much interest was aroused by the finding of the same ameba in the disease of the gums known as pyorrhea alveolaris, and several investigators considered that the endamebas were the cause of this affection. The ameba of the gums (Endameba gingivalis) resembles E. histolytica (Fig. 144). It is probably transferred from mouth to mouth in the ameboid form, as no cysts are known. It is extremely common in the mouth and most authors now believe it to be a harmless commensal. Its abundance in diseases such as pyorrhea is probably due simply to the especially favorable conditions for its growth.

INTESTINAL FLAGELLATES OF MAN

The finer structure of the intestinal flagellates is so difficult to study that authorities disagree as to the exact number of species, their classification and the structure and arrangement of certain organelles. There are probably at least five species—Giardia lamblia, Chitomastix mesnili, Trichomonas hominis, Embadomonas intestinalis and Tricercomonas intestinalis, of which the first three are the best known and are undoubtedly world-wide in distribution.

Giardia (Fig. 145), which is a peculiar bilaterally symmetrical flagellate, possesses two nuclei. The active forms of Giardia live in the upper portion of the small intestine, whereas the corresponding forms of the other species all live in the large intestine.

With the exception of *Trichomonas* the intestinal flagellates all form cysts, which are the infective forms. The cysts are the forms ordinarily encountered in the stools, as the free flagellates are not washed out except during diarrheic conditions. Cysts of *Trichomonas* have never been described, and it seems probable from the work of Hegner,² that, unlike what is known of all other intestinal protozoa, infection with *Trichomonas* can result from the ingestion of the active free forms.

The question of the pathogenicity of the intestinal flagellates of man is a matter of considerable controversy. Most suspicion is

² Hegner: Amer. Jour. Hyg., 1926, 6, p. 593.

Gros: Bull. Soc. Imp. Nat., Moscow, 1849, 22 (1 part), p. 549.

directed toward Giardia and Trichomonas. Wenyon, in sections from an autopsy, found Trichomonas not only in the lumen of the glands but breaking through the glandular cells and distributed in the interglandular tissue. He was unable to decide whether this invasion is an indication of pathogenicity.

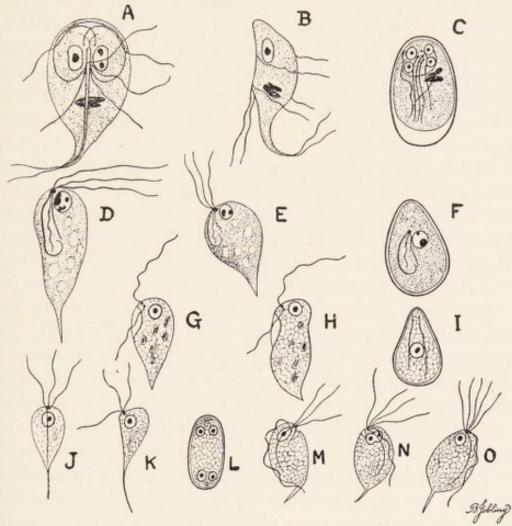


Fig. 145.—The flagellates of the human intestine; × 2000. A-C, Giardia lamblia, free and encysted forms. D-F, Chilomastix mesnili, free and encysted forms. G-I, Embadomonas intestinalis, free and encysted forms. J-L, Tricercomonas intestinalis, free and encysted forms. M-O, Trichomonas hominis, forms with three, four, and five flagella (Wenyon, Proceedings of Royal Institution of Great Britain, March 3, 1922).

THE TRYPANOSOMES

The Trypanosomes (Gr. $\tau \rho \nu \pi \hat{a} \nu$, to bore) are a group of free-swimming protozoa occurring in the blood-plasma and other body-fluids of mammals, birds, reptiles and other animals. Although trypanosomes were observed in the blood of trout as long ago as

¹ Wenyon: Jour. Trop. Med. and Hyg., 1920, 23, p. 125.

1841, it was not until the investigations by Bruce in 1894 upon the dreaded tsetse-fly disease of Zululand that the pathogenic qualities of these organisms came to light. At the present time at least ten well-defined diseases of domestic animals and three diseases of man are known to be due to various species of trypanosomes. In addition, other trypanosomes have been found in the blood of a very large number of different animal species, in which they seem to occasion little or no harm to the host organism. The trypanosomes of fish, reptiles, and amphibia seem to be transferred from one animal to another by the bite of the leech, in which they are known to be present in the proboscis-sheath. Mammalian trypanosomes are transmitted commonly by fleas and various species of biting flies. An enormous number of trypanosomes have been described. Laveran and Mesnil¹ have given a classical description of the group.

The trypanosome found in the common rat is an example of the nonpathogenic group. It may also serve as a morphologic type:

Trypanosoma lewisi.—This parasite infests the blood of wild rats, and in many localities is found in from 25 per cent to 100 per cent of all rats captured. In examining a fresh blood-film the rapidly moving trypanosome readily attracts attention by the disturbance of the blood-corpuscles in its immediate neighborhood. At one end is a single, long, free whip or flagellum. The trypanosome usually moves with the flagellum foremost, and in consequence the flagellate end is designated as the anterior end. The posterior extremity of Tr. lewisi is rather sharply pointed, this being one of the characteristics that distinguishes it from other trypanosomes. The body of the trypanosome itself is spindle-shaped, and a fin-like structure extends from a point near the posterior end of the body to the base of the whip. This fin is the so-called "undulating membrane"; it plays, perhaps, a more important part in locomotion than the flagellum itself.

When the trypanosome is stained by the Romanowsky method, a small roundish body is seen near the sharp posterior end. This is the so-called "parabasal body." Associated with it is the blepharoplast, which is connected with the base of the flagellum. The blepharoplast is rarely seen in Romanowsky preparations. The flagellum is connected with the blepharoplast and extends along one

¹ Laveran and Mesnil: "Trypanosomes and Trypanosomiases," 1912, Paris, pp. 1000.

side of the protozoön to the anterior end, and it is supposed that the blepharoplast functions as a motor center. In the rat trypanosome the nucleus is situated near the center of the body. The length of $Tr.\ lewisi$ is about 30 μ or approximately three and one-half times the diameter of a red corpuscle.

When the cell is about to divide, it lengthens, becomes somewhat stouter, and at the same time the nucleus draws near to the blepharoplast. Usually the blepharoplast divides first, then the parabasal body and still later the nucleus. The body of the cell then undergoes fission and gives birth to a young trypanosome, which may at once become detached from the mother cell. In all cases division is longitudinal.

In some cases division takes place after a fashion analogous to the segmentation of the malarial parasite, resulting in the formation of a rosette, composed of from four to eight small trypanosomes with their flagella pointing outward (Fig. 146). Such rosette formation is apparently due to a retardation of the division of the protoplasm, the nuclei and the blepharoplasts dividing first without corresponding separation of new individuals. Reproduction by cell division is limited to the first ten days of the infection, after which the trypanosomes live in the blood as nonreproducing "adults." Taliaferro1 has shown that this cessation of reproduction is due to the formation of a reaction-product in the rat which inhibits the cell division of the parasites, but does not kill them. The typical pathogenic trypanosomes do not develop rosettes in the blood, but reproduce by binary fission throughout the course of the infection. No evidence of true conjugation in trypanosomes has yet been discovered.

Injection of a small quantity of rat blood containing trypanosomes into a healthy rat produces an infection in about three to four days. As a rule, the trypanosomes disappear from the blood of inoculated animals within two or three months after infection, but in exceptional cases they may persist much longer. Unlike the pathogenic trypanosomes, $Tr.\ lewisi$ is peculiar to one kind of animal—the rat—and cannot be transferred to any other species. White rats, as well as the common wild rats, are susceptible. It has never been definitely shown that $Tr.\ lewisi$ is fatal to rats.

¹ Taliaferro: Jour. Exper. Med., 1924, 39, p. 171.

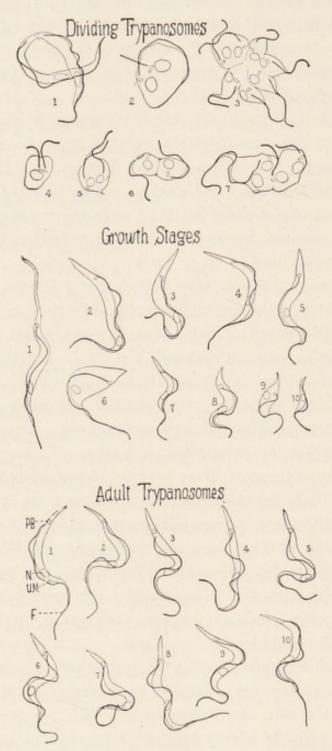


Fig. 146.—Trypanosoma lewisi. Dividing trypanosomes and "rosettes" such as are found at the beginning of an infection during the height of reproductive activity. Growth stages taken from the fourth day of an infection before reproduction and growth have been inhibited. "Adult" forms such as are found after the tenth day when all reproduction and growth is inhibited. F, flagellum, N, nucleus, P. B., parabasal body, U. M., undulating membrane; × 1000 (top, after Coventry; other two after Taliaferro from Hegner and Taliaferro's "Human Protozoölogy," courtesy of The Macmillan Company).

When a rat has once become free from the parasite, it is found to have acquired an active immunity and cannot be reinfected. The blood of rats that have received a number of injections of trypanosomes possesses protective properties, and the injection of immune serum from such animals will prevent infection in normal rats. Transmission of the rat trypanosome from infected animals to healthy ones can take place through the agency of insects, such as rat fleas, lice, etc. In the flea the trypanosomes multiply chiefly in the lower portions of the alimentary tract. Infection of the rat through the agency of the flea does not occur by means of the proboscis, and the trypanosomes are absent from the flea's salivary glands. The infective dejecta of the flea may be swallowed by the rat in the act of licking the fur, or the puncture made by the insect may be contaminated with flea dejecta.

In 1903 Novy and MacNeal¹ succeeded in cultivating the rat trypanosome in pure culture outside of the body. The culture medium employed is a blood-agar composed of equal parts of defibrinated rabbit blood and nutrient agar. The agar is melted and cooled to about 50 C., after which the rabbit blood is added and thoroughly mixed.

"The tubes thus prepared are allowed to set in an inclined position, after which they are at once inoculated. It is essential that the surface of the medium be moist and soft, and if this is not the case, the tubes should be placed in an upright position until some water of condensation accumulates at the bottom. The initial culture usually requires a week or more, although not infrequently fairly rich growths may be obtained in three or four days" (Novy).

By the use of this medium Novy and his associates have kept trypanosomes under cultivation for several years, carrying them in this time through nearly one hundred generations. The trypanosome of nagana (see below, *Tr. brucei*) has also been cultivated artificially in a similar manner.² Trypanosomes found in birds can be grown with especial ease by this method

The more definitely pathogenic species of trypanosomes may now be briefly considered.

² Novy and MacNeal: Jour. Infect. Dis., 1904, 1, p. 1.

¹ Novy and MacNeal: "Contributions to Medical Research," dedicated to V. C. Vaughan, Ann Arbor, 1903, p. 549.

Trypanosoma evansi.—A disease of horses and camels characterized by remitting fever, anemia, and edema is common in India, where it is known as *surra*. This affection has been shown to be due to the presence of a species of trypanosome. The same or a very similar form of trypanosomiasis also occurs in other parts of Asia and in Africa. In the Philippines it has caused much loss among horses and cattle. Experiments have shown conclusively that flies (*Stomoxys*, *Tabanus*) are able to transmit the disease, provided they bite within a few hours after feeding on the infected host. These insects are probably mere mechanical carriers.

Trypanosoma equinum.—A disease known as mal de Caderas, which is prevalent in parts of South America and attacks especially horses, is due to a trypanosome which resembles T. evansi and which may be a variant of this species. Structurally it can often be differentiated from T. evansi by the apparent absence of a parabasal body. Mal de Caderas is characterized especially by paralysis of the hindquarters and by the almost complete absence of the edemas which are usually present in nagana and surra.

Trypanosoma brucei.—The early explorers of the continent of Africa found their movements greatly interfered with by a disease that affected their beasts of burden, and that destroyed horses, mules, and oxen in large numbers. This disease was attributed by the natives to the bite of an insect called the tsetse-fly, and European observations served to confirm the existence of such a connection. The tsetse-fly disease is commonly called by the native name nagana. It has been observed especially in Zululand, but occurs likewise in other parts of Africa. Nearly all of the large mammals seem susceptible to natural or experimental infection.

In the blood of animals suffering from nagana Bruce¹ discovered the trypansome which is called by his name. This trypansome has been obtained in cultures by Novy and MacNeal,² and extended experiments have been carried out with the isolated organisms.

Certain tsetse-flies, namely *Glossina morsitans* and others of the same genus, seem to be the only insects whose bite is able to convey the nagana infection, since ordinary biting insects that have fed on infected animals are not able to communicate the disease to

¹ Bruce: Preliminary Report on the Tsetse-fly Disease or Nagana in Zululand, Durban, 1896.

² Novy and MacNeal: Jour. Infect. Dis., 1904, 1, p. 1.

healthy subjects. It is possible that the infection is sometimes transferred mechanically by the biting tsetse-fly, but there is also evidence that a cyclical development of the parasite occurs in the insect's body. Except for the first few hours after biting, when mechanical transference is possible, the fly is not infective until about the eighteenth day. It may remain infective for at least twelve weeks and probably much longer. In animal experiments about one wild fly out of 500 is able to produce infection when caught. There is reason to believe that the parasite exists in the blood of big game in parts of Africa, and that the fly becomes infected from these animals and transmits the disease to horses and cattle. The reservoir of the disease, as Bruce expressed it, is found in the wild animals. It is said that the extermination of the larger wild herbivora in parts of southern Africa has rendered the tsetse-fly disease relatively uncommon.

A form of "sleeping sickness" in man, formerly supposed to be due to a specific trypanosome different from *T. gambiense* (below) and for a time designated as *T. rhodesiense*, is now believed by some investigators to be due to *T. brucei*. Like nagana, the human infection is transmitted by the bite of *Glossina morsitans*. This disease is especially prevalent in Nyasaland and Rhodesia. It is more rapidly fatal than the sleeping sickness of the Congo, but does not occur in epidemics.

Trypanosoma equiperdum.—A disease of horses met with in parts of Europe, and also reported from the western parts of the United States and Canada, is caused by a trypanosome very similar to the other pathogenic forms. This disease has long been known by the name of dourine, or mal du coit; it is usually of a chronic character, the animal becoming gradually paralyzed and dying, as a rule, within from two to ten months. A noteworthy feature of the disease is that it is spread, so far as known, exclusively by sexual congress, and not by biting insects. Experimentally the disease can be readily communicated to the horse, ass, dog and rabbit.

Trypanosoma gambiense.—In addition to these definite infections of the lower animals, a form of human trypanosomiasis is known which prevails extensively among the natives of tropical Africa and also affects Europeans. This is the terrible disease known as sleeping sickness. It has been estimated that between 1896 and 1906 from 400,000 to 500,000 natives in the Congo region perished from this pestilence.

The parasite, Trypanosoma gambiense (Fig. 147), resembles closely the trypanosomes of surra and nagana. The disease is conveyed by the bite of a fly, Glossina palpalis (Fig. 148), belonging to the same genus as the tsetse-fly that carries the nagana of Zululand. The early experiments seemed to indicate that transmission was merely mechanical and was due to the direct injection of contaminated blood by a fly that had recently (within three days) fed on an infected animal. The experiments of Kleine and others, however,

Fig. 147.—Trypanosoma gambiense. The parasite of sleeping sickness; × about 1400 (Bulletin No. 1, Office of the Surgeon General, Washington, January, 1913).

show that after a period of about twenty-five days the fly again becomes capable of communicating the infection, and is hence probably a true host for the trypanosome. The salivary gland emulsions are infective.

Sleeping sickness is characterized by two stages, in the first of which the trypanosomes are found in the blood, although always in small numbers; the pulse and respiration are accelerated, but in general the symptoms are mild. Glandular enlargements are an early and

constant feature, and the trypanosomes are practically always found in the enlarged glands. After a variable length of time the second stage of the disease is entered upon; this is characterized by the symptoms which have given rise to the name of sleeping sickness. The patient becomes dull and apathetic, great weakness of the limbs develops, and emaciation is usually extreme. Finally, a condition of coma ensues and is followed by death.

Some kinds of monkeys (macaques) may be successfully inoculated, and develop symptoms very similar to those seen in man. The larger domestic animals are rather refractory to inoculation, but dogs and cats are quite susceptible. White rats are also readily infected. Monkeys and dogs have been found infected under natural conditions. Certain wild animals (such as antelopes) appear

to serve as reservoirs whence the parasites may be derived in the absence of man. The destruction of game animals has, consequently, been advocated for preventing the spread of the disease. A relatively small proportion of *Glossinae* captured in a wild state are infective.

In parts of Africa the disease is terribly prevalent. Dutton and Todd¹ found that in some villages from 30 to 50 per cent of the population were infected. So far as known, untreated sleeping sickness is invariably fatal. The treatment of the human disease is

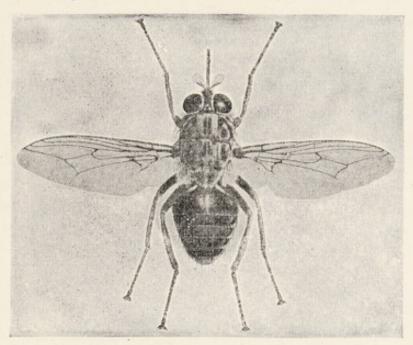


Fig. 148.—Tsetse-fly, Glossina palpalis (× 3½), the carrier of the trypanosome of sleeping sickness (Adami).

fairly successful if begun in the early stages. Among the most used drugs is the organic arsenical, atoxyl, which was introduced by Thomas in 1905. This has been supplemented to a great extent with tartar emetic (sodium or potassium antimonyl tartrate) and antimony trioxide. Therapy of the disease bids fair to be revolutionized by the introduction of tryparsamide (the sodium salt of N-phenyl-glycineamide-p-arsonic acid), which was first synthesized and studied at the Rockefeller Institute for Medical Research,² and

¹ Dutton and Todd: "First Report of the Expedition to Senegambia," 1902. "Trypanosomiasis," Liverpool School of Tropical Medicine, Memoir II, Liverpool, 1903.

² See series of papers by Jacobs and Heidelberger and Brown and Pearce: Jour. Exper. Med., 1919, 30, pp. 411, 417, 437, 455, 483. Also Pearce: Jour. Exper. Med., 1921, 34, Suppl. No. 1.

Bayer 205, which was first introduced in Germany by Haendel and Joetten¹ and Mayer and Zeiss.² Tryparsamide is even effective in some of the advanced stages of the Gambian disease. Bayer 205 seems to be more efficacious in the Rhodesian infection³ (p. 587).

Various attempts have been made to immunize animals against trypanosomiasis. Success so far has been obtained almost solely with killed trypanosomes, and the results have been so variable that no attempt has been made to apply the method to human beings.⁴

Trypanosoma cruzi.—Another disease of man attributable to trypanosomes is "Chagas' disease," a Brazilian form of trypanosomiasis, transmitted by a bug belonging to the family of Reduviidae (Triatoma megista). The excreta of this bug are infective. One interesting feature of this parasite is that much of its life-cycle in man is in the form of an intracellular Leishmania-like stage (Fig. 149). In this stage the trypanosome is morphologically indistinguishable from a true Leishmania. The incidence is almost entirely among children; the thyroid gland is hypertrophied, the liver enlarged. No drug seems to be efficacious in Chagas' disease.

LEISHMANIOSIS

Leishmania donovani.—A disease known as kala-azar, dum-dum fever, or tropical splenomegaly, occurring in parts of India as a household or family malady, and at one time regarded as a malarial cachexia, has been ascribed by several observers to a trypanosome-like parasite.⁵ This disease is of very long duration and is highly fatal. In 1903 Leishman⁶ described certain peculiar bodies found in the spleen of a patient suffering from this form of protracted fever, and a similar observation was made independently by Donovan⁷ shortly after. Subsequent investigations by Rogers⁸ and others have shown that the "Leishman-Donovan bodies" pass

¹ Haendel and Joetten: Berlin. klin. Woch., 1920, 57, p. 821.

² Mayer and Zeiss: Arch. Schiffs- u. Trop.-Hyg., 1920, 24, p. 257.

³ Abbatucci: Ann. Méd. et Pharm. Colon., 1926, 24, p. 83.

⁴ For a review of this work see Taliaferro: "Immunology of the Parasitic Infections," New York, 1929.

⁵ Rogers: Milroy Lectures, Brit. Med. Jour., 1907, 1, pp. 427, 490, 557.

⁶ Leishman: Brit. Med. Jour., 1903, 1, p. 1252.

⁷ Donovan: Brit. Med. Jour., 1903, 2, p. 79.

⁸ Rogers: Lancet, 1905, 1, p. 1484.

through certain developmental phases in infected blood drawn from the body and mixed with sodium citrate. These cultural forms (Fig. 150) are very similar in structure to the flagellates of the genus Herpetomonas, which occur in the gut of various insects, and imme-

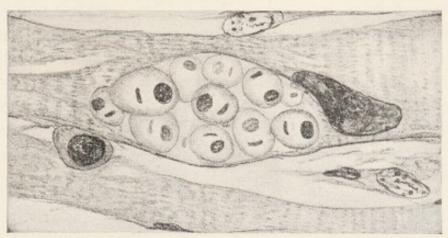


Fig. 149.—Leishmania-form of *Trypanosoma cruzi* in human heart muscle; × 3700 (Taliaferro in Hegner and Taliaferro's "Human Protozoölogy," courtesy of The Macmillan Company).

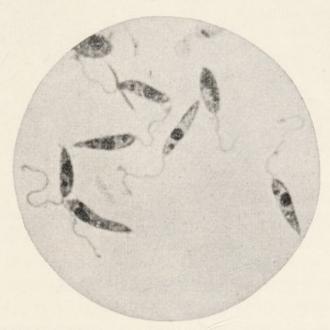


Fig. 150.—Leishmania donovani. Flagellated forms, from a culture. Wright's stain; × 1800 (Bulletin No. 1, Office of the Surgeon General, Washington, January, 1913).

diately betray their flagellate affinities. The name *Leishmania* donovani has been given to this micro-organism (Fig. 151). An excellent description and bibliography of the leishmanioses of man may be found in the monograph of Laveran.¹

¹ Laveran: "Leishmanioses." Paris, 1917.

Various investigators have attempted to incriminate different biting insects as the vector of the disease. At the present time a large mass of evidence has accumulated, indicating that the sand fly *Phlebotomus* is the transmitter of both *Leishmania donovani* and *Leishmania tropica*.

The infection is connected with particular locations—house or soil—and can be successfully combatted by destruction of infected dwellings, removal from contaminated soil, and segregation. In

Fig. 151.—Leishmania donovani in the human spleen. A, section of spleen showng five endothelial cells infected with the parasites. B, one cell enlarged to show structure of the parasites. $A \times \text{about } 550; B \times 2500$ (Taliaferro in Hegner and Taliaferro's "Human Protozoölogy," courtesy of The Macmillan Company).

certain tea-gardens in India the application of these measures has caused the disease practically to disappear.

By the use of appropriate technic, positive cultures may be obtained from the peripheral blood as frequently as from spleen punctures.¹

The intravenous injection of sodium antimonyl tartrate is considered a specific curative treatment (Rogers) and is used in this and other leishmanioses. The Indian workers have studied a number of synthetic antimonials. Of these, urea stibamine is of particular value in kala-azar.

¹ Young, C. W., and Van Sant, Helen: Jour. Exper. Med., 1923, 38, p. 233.

It was formerly supposed that in the Mediterranean area the disease attacked only young children and was due to a specific parasite (*L. infantum*). It is now generally conceded that the Indian and Mediterranean diseases are identical and attack both adults and children.

Leishmania tropica.—Micro-organisms very similar to those found in kala-azar have been found in the affection known as Oriental sore, Delhi boil, or tropical ulcer. Although apparently seen by Cunningham in 1885, they were first accurately described and pictured by J. H. Wright. The name Leishmania tropica (Fig. 152) is commonly used for these organisms. The disease is inoculable from

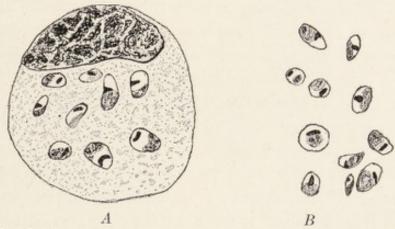


Fig. 152.—Leishmania tropica from a case of oriental sore. A, macrophage containing nine parasites. B, a clump of eleven extracellular parasites taken from the same smear. Note the presence of a nucleus and parabasal body in each parasite; × 2000 (Taliaferro in Hegner and Taliaferro's "Human Protozoölogy," courtesy of The Macmillan Company).

one individual to another. The sand fly *Phlebotomus papatasii* is the probable transmitter of the disease. Although there is a close morphologic resemblance between the Wright bodies and Leishman bodies, the very different nature of the pathologic conditions with which they are associated would seem to indicate that the two organisms are not identical. A few cases of Oriental sore and of kala-azar (contracted in the old world) have been observed in the United States.²

A similar disease occurs in South and Central America and is known by various names in different localities. The parasite L. braziliensis is probably distinct from L. tropica as shown by the

Wright, J. H.: Jour. Med. Res., 1903, 10, p. 472.

² Faber, H. K., and Schussler, J.: Jour. Amer. Med. Assoc., 1923, 80, p. 93.

serological studies of Noguchi¹ and by its tendency to involve the mucosa. The flagellate stage of the organism has been observed, and animals have been successfully inoculated from human cases.

THE MALARIAL PARASITE

Introductory.—The writings of antiquity contain frequent mention of the clinical manifestations of malaria, but although the disease was known for centuries, surprisingly little real information was acquired concerning its significant etiologic features until the last quarter of the nineteenth century. Perhaps the most important early observation upon the natural history of malaria was that the disease prevailed especially in some localities and not in others. In fact, the geographic and topographic distribution of the malarial fevers is so peculiar that it excited the languid curiosity of many ancient peoples and caused them to set afloat various surmises to account for such distribution, which, however, were in the main unprofitable and fruitless.

The advent of bacteriology caused the study of malaria to be taken up from the new point of view, and at first several enthusiastic workers reported the discovery of certain bacteria which they deemed to bear a causal relation to the disease. These reputed findings failed to be confirmed. It was not until November 6, 1880, that the true malarial parasite, a protozoön of the class Sporozoa, was discovered by Laveran, a French military surgeon stationed in Algiers. In 1885 Golgi described in detail the life-history of the parasite of quartan fever, and later brought forward strong evidence that the parasites of tertian and estivo-autumnal fever could be morphologically differentiated from the quartan form. Golgi also showed that the malarial chill or paroxysm always coincides with the sporulation in the blood of a brood of parasites.

Following this work a number of investigators suggested the transfer of the disease by mosquitoes. Among these Manson,⁴ because of his previous studies on the worm *Filaria* in the mosquito, suggested to Ross the experimental problem of testing the mosquito

¹ Noguchi: International Conference on Health Problems in Tropical America. United Fruit Co., 1924, p. 455.

² Laveran: Bull. Acad. de méd., 1880, ser. 2, 9, p. 1346.

³ Golgi: Arch. per le Sci. med., 1886, 10, p. 109; Ztschr. f. Hyg., 1891, 10, p. 136.

⁴ Manson: Brit. Med. Jour., 1898, 2, p. 849.

theory. Ross first demonstrated the mosquito cycles in bird malaria, and later Grassi¹ and his co-workers gave clear-cut proof of the cycle in the human disease.

The Asexual Development of the Malarial Parasite.—In the human body the malarial micro-organism passes through certain regular phases of development within the red blood-corpuscles. The parasite in its youngest recognizable stage appears to lie within the corpuscle as a small, glassy, oval, rounded or ring-like body with ameboid movements, which proceeds to burrow slowly into the substance of the corpuscle, increasing in size at the latter's

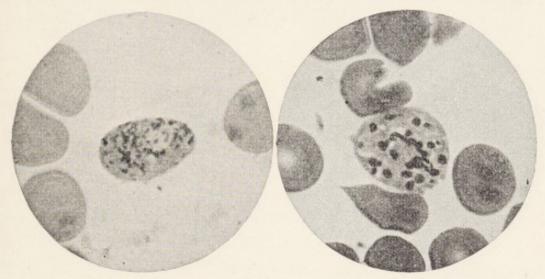


Fig. 153.—Plasmodium vivax.
Three-quarters-grown parasite; ×
1800 (Bulletin No. 1, Office of the
Surgeon General, Washington, January, 1913).

Fig. 154.—Plasmodium vivax. Sporulating parasite; × 1800 (Bulletin No. 1, Office of the Surgeon General, Washington, January, 1913).

expense. After attaining its maximum development the mature and full-grown parasite, which varies in size according to the species, undergoes a segmentation of its cell-substance, giving rise first to the appearance of a rosette or mulberry-like body within the corpuscle, and leading eventually to the formation of small rounded bodies known as merozoites. The young merozoites are liberated by the ultimate disintegration of the corpuscle, and on being set free fasten themselves to new red corpuscles and begin once more their cycle of development. The setting free of the merozoites is practically coincident with the appearance of the chill or malarial paroxysm, and the remarkable periodicity of the malarial attack is

¹ Grassi, Bignami and Bastianelli Atti R. Accad. Lincei, Rendie, 1898, 5 ser. 8, 21.

thus conditioned by the time necessary for the development of the protozoön. Only the asexual mode of development here outlined has been observed to occur in the human body.

Bass and Johns¹ have succeeded in cultivating the malarial parasite (tertian and estivo-autumnal types) outside of the body. The asexual cycle so cultivated *in vitro* does not differ from the same cycle growing *in vivo*. The most rapid growth is obtained at a temperature of 40 to 41 C. Human red blood-cells are necessary and there is no evidence that the parasites can be grown outside these cells.

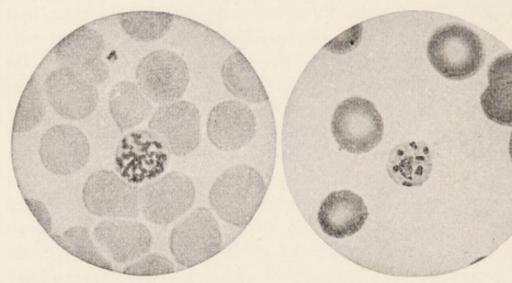


Fig. 155.—Plasmodium malariae. Three-quarters-grown parasite; × 1500 (Bulletin No. 1, Office of the Surgeon General, Washington, January, 1913).

Fig. 156.—Plasmodium malariae. Sporulating parasite; × 1200 (Bulletin No. 1, Office of the Surgeon General, Washington, January, 1913).

Morphology of the Different Varieties of the Malarial Parasite.—

Three varieties of the malarial parasite can be distinguished, and most observers are agreed that the three forms are biologically distinct. Each is found associated with a type of fever possessed of a clinical individuality: (1) tertian malarial fever, (2) quartan malarial fever, (3) estivo-autumnal fever. The tertian fever is the more common malarial fever of temperate countries, is rarely fatal, and is readily amenable to quinine. The estivo-autumnal fever is more prevalent in the tropics, is more deadly, more irregular in course, and relatively refractory to treatment. Quartan is comparatively rare in most localities.

¹ Bass and Johns: Jour. Exper. Med., 1912, 16, p. 567.

 The Tertian Parasite (Plasmodium vivax).—The time required for the asexual development of the tertian parasite is forty-eight

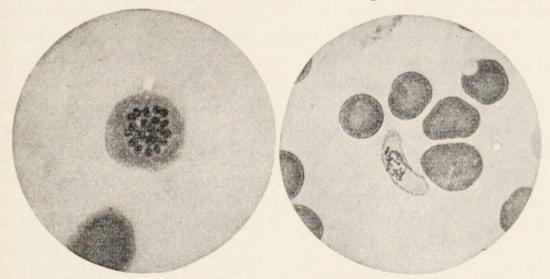


Fig. 157.—Plasmodium falciparum. Sporulating parasite; × 1800 (Bulletin No. 1, Office of the Surgeon General, Washington, January, 1913).

Fig. 158.—Plasmodium falciparum. A macrogametocyte. The female crescent form or gamete; × 1200 (Bulletin No. 1, Office of the Surgeon General, Washington, January, 1913).

hours. The paroxysms accordingly appear on alternate days, or, according to the Roman method of reckoning time, the first attack

is followed by the recurrent attack on the third day, whence the name of tertian fever. The full-grown tertian parasite is quite large, and may even reach a diameter nearly double that of the corpuscle. The young parasites show active ameboid movement. Twelve to twenty-four merozoites—about sixteen on an average—are produced (Figs. 153, 154).

2. The Quartan Parasite (Plasmodium malariae).—The quartan parasite completes its asexual development in seventy-two hours,

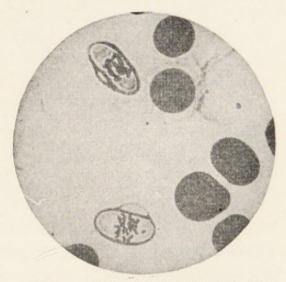


Fig. 159.—Plasmodium falciparum. A microgametocyte. The male gamete or crescent form; × 1200 (Bulletin No. 1, Office of the Surgeon General, Washington, January, 1913).

the malarial attacks taking place therefore at intervals of three days. The young parasite manifests a less active ameboid movement than the tertian form, and the pigment is of a more coarsely granular character (Fig. 155). The size of the adult quartan parasite does not exceed that of the red corpuscle. The number of the merozoites produced is usually eight, but may range between six and fourteen (Fig. 156).

3. The Estivo-Autumnal Parasite (Plasmodium falciparum).—
Most students of malaria believe that there is a single type of estivoautumnal parasite, but some, notably Craig, believe that two varieties exist, one the quotidian form and the other the tertian form.

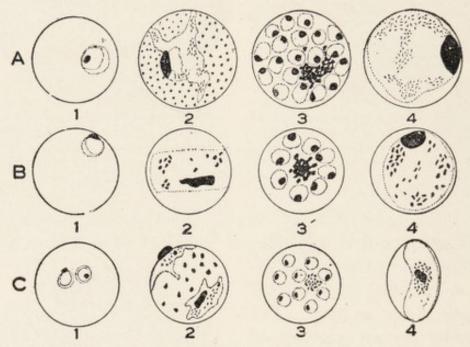


Fig. 160.— Diagrammatic representation of the differences between the three species of malarial parasites of man. Row A, Plasmodium vivax of tertian fever. Row B, P. malariae of quartan fever. Row C, P. falciparum of estivo-autumnal fever. No. 1 in each row represents a red cell containing trophozoites in the ring stage; No. 2, schizonts; No. 3, merozoite formation; and No. 4, macrogametocytes (Hegner in Hegner, Cort and Root's, "Outlines of Medical Zoölogy," courtesy of The Macmillan Company).

Undoubtedly the fever, which occurs at the time of schizogony and which is determined by the length of the asexual cycle, is variable and may occur every forty-eight hours or every twenty-four hours. Some of this, however, may be due to double infections, the broods coming to maturity on alternate days. P. falciparum differs from the other two species in that besides the small ring stages

¹ Some cases of malarial fever in which the attacks recur at twenty-four hour intervals may be due not to a specifically distinct parasite, but to infection with more than one brood of parasites. Thus a double tertian infection in which brood A matures on the first and third day, brood B on the second and fourth day, and so on, or a triple quartan infection, or a double quartan together with a single tertian, may give rise to the quotidian type of fever (Golgi).

the asexual development takes place in the vessels of the deeper organs and not in the peripheral blood. These asexual forms are irregularly distributed over the body and tend to select definite organs. Thus with a cerebral localization there are predominantly cerebral symptoms, etc. The schizont gives rise to from eight to twenty-four merozoites (Fig. 158). The gametocytes occur in the peripheral blood and are differentiated from the gametocytes of the other species by their crescent shape (Figs. 159 and 160).

The great majority of the "pernicious" and fatal cases of malaria are due to the estivo-autumnal parasite. Tertian infections are said to be much more common than estivo-autumnal. The estivo-autumnal fevers are more irregular in character than the ordinary tertian or quartan types.

The table on page 600 shows the main differences between the three forms of parasite.

The Sexual Phase of the Parasite.—The malarial parasite, as has been stated, passes only its asexual phase of development within the human body. A complicated sexual phase is consummated within the body of the mosquito. After the sexual development is completed, the parasite may again enter the body of its mammalian host, borne along with the fluid injected by the mosquito in the act of biting, and forthwith embark upon a new asexual cycle. Zoölogically considered, man is the intermediate host of the malarial parasite, and the mosquito (Anopheles) its true host. The elucidation of the remarkable relations subsisting between man, the mosquito, and the malarial parasite is due largely to Ronald Ross, an English army officer, stationed in India at the time of his investigations.

The steps that led up to this discovery are of peculiar interest. The occasional occurrence in the blood taken from malarial patients of cresent-shaped bodies, "flagellated forms," and other deviations from the strict asexual type received the easy interpretation by some writers of a mere degeneration phenomenon. The observation, however, that the flagellated bodies were not seen in freshly drawn blood, but only appeared after the blood had been exposed for a short time to air, caused some investigators (Manson)² to adopt the hypothesis that the advent of these bodies marked an

¹ Ross, Ronald: Indian Med. Gaz., 1898, 33, pp. 14, 133, 401, 448.

² Manson: Brit. Med. Jour., 1894, 2, pp. 1252, 1306; "Tropical Diseases," London, 1900.

abortive attempt on the part of the parasite to enter upon the sexual stage. As a corollary to this hypothesis, the assumption appeared warranted that the sexual phase of the parasite was passed in the body of some suctorial insect, and suspicion eventually fastened on

DIFFERENCES BETWEEN THE THREE FORMS OF MALARIAL PARASITE

Parasite of:	Asexual Cycle Com- pleted in:	Effect on Red Blood-corpuscle	Size and Shape of Mature Asexual Parasite or Schizont. Number of Mero- zoites Formed	Sexual Form or Gametocyte
Tertian fever	Forty-eight hours	Corpuscle swollen, nearly normal in color, and after Romanowsky's stain granules in infected cells (Schüffner's dots) outside of para- site.	One and one-half timesthe diameter of the corpuscle, mulberry-shaped. Twelve to twenty-four young parasites formed by segmentation.	Both gametocytes spherical or ovoid in shape. Male gametocyte (sphere) about two-thirds as large as female gametocyte, which is about one and one half times as large as a normal red corpuscle. Male with a single centrally placed nucleus and female with a single excentrically placed nucleus.
Quartan fever	Seventy-two hours	Corpuscle normal in size; darker in color than normal; no pigment in cell outside of para- site.	Approximately the size of the corpuscle, daisy-shaped. Six to fourteen merozoites formed.	Both gametocytes spherical or ovoid in shape. Female gametocyte somewhat smaller than normal red cell and male about three-quarters size of red cell. Positions of nuclei the same as in tertian.
Estivo-autumnal fever	Twenty-four hours to forty-eight hours	ish, about normal	Always much smaller than the corpusele, usually about one-fourth the diameter. Six to twenty-four merozoites.	cent-shaped, with

the mosquito.¹ As a result of this reasoning, Ross undertook his researches in India. Other investigations pointed in the same direction. In 1897 MacCallum² found that the so-called "flagella" sometimes seen attached to the parasites of bird malaria were in reality male sex cells, which entered the larger spherical female cells of the avian malarial parasite, a process presumably one of fertilization.

Ross, who also studied bird malaria, obtained convincing evidence in the first place that the malarial parasite of birds underwent an intricate sexual development within the body of a certain kind of mosquito (Culex), and found that the infection could be com-

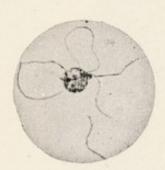


Fig. 161.— Microgametocyte, showing "flagella" which are the microgametes (Koch).



Fig. 162.—Fertilization, tertian parasite: 1, Extrusion of nuclear substance by macrogamete; 2, macrogamete with divided nucleus; 3, entrance of microgamete into the macrogamete; 4, zygote (Schaudinn).

municated to normal birds by means of the bite of infected mosquitoes. He further observed that the human malarial parasite could not develop in the body of Culex, but did develop in the stomach of another variety of mosquito (Anopheles). Finally (August, 1897) he recognized that certain pigmented cells found in the stomach of mosquitoes (Anopheles) that had been fed with the blood of human malarial patients were developmental phases of the parasite.³

Conclusive demonstration that malaria could be transmitted by the bite of infected mosquitoes was afforded by Bignami⁴ at Rome, and also in an especially striking manner by Manson in

¹ King had previously advanced arguments in support of the mosquitomalaria hypothesis in a paper that seems at the time to have attracted little attention (Popular Science Monthly, Sept., 1883).

² MacCallum: Lancet, 1897, 2, p. 1240.

³ Ross: Brit. Med. Jour., 1898, 1, pp. 550, 1575, 1607.

⁴ Bignami: Lancet, 1898, 2, pp. 1461, 1541.

London. The latter investigator, who had never previously suffered from malaria and who lived in England, a country then free from indigenous malaria, allowed himself to be bitten by some 40 mosquitoes that had been shipped from Rome after sucking blood from a case of tertian malaria. An attack of the disease followed, and typical tertian parasites were found in the blood.

The sexual development of the parasite within the body of the mosquito may be briefly outlined. In the body of man some of the

Fig. 163.— Malarial zygotes in stomach wall of the mosquito. High power (Manson).

merozoites, instead of developing into schizonts, become sexual parasites or gametocytes. The precise period in the asexual cycle at which the gametocytes first appear in the blood of an infected person is not known. After being taken into the stomach of the mosquito the nuclei of the gametocytes undergo a reduction division and give rise to gametes. The male cell (microgametocyte) develops four to eight delicate, hyaline filaments (microgametes) (Fig. 161); one of these enters one of the large spherical and granular macrogametes (female cell), and effects a true fertilization (Fig. 162). The copula (zygote, oökinete) resulting from their union penetrates the stomach wall of the mosquito, where it becomes encysted (oöcyst), and increases greatly in size, so that the stomach wall of

an infected mosquito becomes studded with numerous¹ wart-like protuberances (Fig. 163). Small spherical bodies (sporoblasts) are formed in the interior of the oöcyst. Finally these sporoblasts by internal divisions give rise to myriads of delicate filamentous bodies (sporozoites) which eventually are liberated by the rupture of the oöcyst and are carried by the lymph to all parts of the mosquito's body except possibly the ovary (there is no "hereditary" transmission).

Fig. 164.—Section of salivary gland of a mosquito, Anopheles. Sporozoites (Grassi).

As has so often happened in the course of parasitic evolution, the malarial parasite is restricted, so far as known, to certain definite hosts. There is no evidence that the parasites of human malaria can invade the red corpuscles of any other mammalian species, with the possible exception of some of the higher apes. It is also true that the genus of mosquito known as Anopheles is the only kind of mosquito that has been shown capable of harboring this specific protozoön.²

¹ Grassi estimates that five hundred may develop in the stomach walls of a single insect.

² Not all species of Anopheles furnish an equally good soil for the propagation of the malarial parasite. This is notably the case with one species common in India and the Philippines (A. rossi), which, although experimen-

The main differences between the genus Anopheles1 and the closely related and very common genus Culex are shown in the accompanying figure (Fig. 165). The chief generic distinction is based upon the length of the palpi, which in the female Anopheles are as long as the proboscis and in the female Culex are always much shorter. Many species of Anopheles are easily distinguished from Culex by the possession of spots on the wings,2 but this is not a universal distinction. A further difference between the two genera consists in the position assumed while at rest, the body of Culex, as a rule, being parallel to the surface on which the mosquito is resting, while that of Anopheles forms a more or less acute angle with the surface. In Anopheles, furthermore, the head, thorax, and abdomen form one straight line, whereas in the resting Culex the thorax and abdomen form an angle with the head and proboscis (Fig. 165). Some Anopheles assume the resting position of Culex. One of the worst malaria carriers of India rests in the Culex attitude. The eggs and the larvae of the two genera can be readily distinguished.

The habits and distribution of Anopheles explain many of the most characteristic features in the epidemiology of malaria. Many species of Anopheles are almost wholly nocturnal in their habits, rarely biting by day, hence the greater liability of contracting malaria during the night hours. The great abundance of Anopheles in certain localities and at certain seasons accounts for the

tally capable of conveying infection, is very rarely, if at all, infected under natural conditions. James found that, among 736 individuals of A. rossi caught in native huts, not one was infected, although about one-half of the native children in the neighborhood harbored the malarial parasite, and another less common species of Anopheles (A. culicifacies) was infected in proportions varying from 4.6 to 8.7 per cent (Ztschr. f. Hyg., 1903, 43, p. 218). A. febrifer is the chief carrier of malaria in the Philippines.

The three common North American anophelines are all known to be susceptible to infection with malarial parasites: A. punctipennis and A. crucians with Plasmodium vivax and Plasmodium falciparum; A. quadrimaculatus with these and also with Plasmodium malariae. The last named mosquito is probably the most important factor in malarial dissemination in the United States. In many parts of the West Indies and Central America A. albimanus is the main malaria vector.

¹ Some authorities have split up the original genus of Anopheles mosquitoes into ten or more new genera, but general agreement concerning the classification has not yet been reached.

² This is true of all but one of the seven species reported from the United States, and this exception, A. barberi, is very rare.

Fig. 165.—Comparison of Culex and Anopheles. Eggs, larvae (note position), position of insects at rest, wings, heads showing antennae and palpi (Kolle and Hetsch).

long-observed peculiarities in the geographic and seasonal distribution of the disease. The connection of malarial fevers with marshy localities, the prevalence of the disease in country districts rather than in cities, the often striking exemption of persons on board vessels lying off a malarious coast, the frequent breaking out of the disease in consequence of extensive soil excavations and disturbance of natural water-courses—such as occurs, for example, in railroad construction—all these idiosyncrasies of malarial fever can be explained through the creation or maintenance of breeding-grounds for Anopheles, or through the opportunities afforded Anopheles for access to malarial patients and subsequently to uninfected persons. Many other factors influence the causation of malaria because they affect the insect host of the malarial parasite rather than the parasite itself. Summing up the matter of malarial infection, it can be said that the proximity of a malarial patient is never a source of danger unless Anopheles mosquitoes occur in the immediate environment, and, conversely, the Anopheles mosquito is not to be feared unless there are present in the neighborhood persons bearing the malarial parasites in their blood.

Prophylaxis.—Accepting the theory that malaria is conveyed only through the bite of an infected mosquito, there are at least three ways in which the spread of the disease may be combatted:

1. The parasite when within the human body may be injured or destroyed by means of the systematic and continued administration of quinine. This was for a long time regarded as an expensive but highly effective method for stamping out malaria in infested regions. It was advocated especially by Koch, and was used with reports of great success in several small islands near the coast of New Guinea. The free distribution of quinine to the poor in Italy has been followed by a marked reduction in the mortality from malaria (from 15,865 in 1900 to 3619 in 1910), but other factors, such as drainage, have doubtless contributed to the reduction. Recent work indicates that quinine alleviates the clinical manifestations of malaria and will therefore decrease the rate of clinical attacks, but it does not effectively lower in a permanent way the incidence of the infection.

The Subcommittee on Medical Research of the National Malaria Committee recommends, for an acute attack, 10 grains quinine sul¹ Koch: Deut. med. Wchnschr., 1899, 25, p. 69. fate, administered through the mouth, three times a day for a period of at least three or four days. This dosage should be followed by a treatment consisting of 10 grains taken every night before retiring, for a period of eight weeks. For infected persons who have

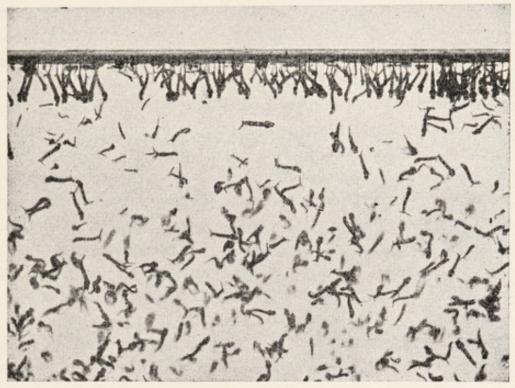


Fig. 166.—Mosquito "wigglers"—larvae and pupae—in the water. Life size (Underwood).

not shown acute symptoms, only the eight weeks' treatment, without the preliminary dosage, is necessary.

For children the doses vary according to the age of the patient, as follows:

Age of Child														D	08	e of Quinine, Grains
Less than 1 year			 					 				 				0.5
1 year			 					 								1
2 years			 													2
3 and 4 years			 													3
5, 6, and 7 years																4
8, 9, and 10 years			 					 		 						6
11, 12, 13, and 14 y	ear	s.														8
15 years or over								 		 						10

Although this treatment has been found effective in parts of the United States, there is some doubt whether it is sufficiently energetic for tropical malaria.

One of the most interesting recent developments in the therapy of malaria is the introduction of Plasmochin by the German workers. Plasmochin is a synthetic quinoline derivative¹ and although present data are not sufficient to draw definite conclusions, the preliminary work on the treatment of bird malaria,2 induced malaria in general paresis3 and natural cases4 indicates that it will be a very valuable adjunct in the treatment of the disease. It is supplied as Plasmochin tablets containing 0.02 of a gram and as Plasmochin compound tablets containing 0.01 of a gram of Plasmochin and 0.125 of a gram quinine sulphate. The preliminary experience of the United Fruit Company indicates that, of the two, Plasmochin compound gives fewer toxic symptoms and is the more effective therapeutically. In this form they consider it "an exceedingly valuable therapeutic agent."5 Plasmochin may also be of especial value in the control of malaria in view of the fact that several observers have found that small doses, insufficient to kill the parasite in the blood, will nevertheless render the gametocytes of P. falciparum noninfective to mosquitoes.6

2. A second method that has been ardently advocated as suitable for the reduction of malaria is directed against the mosquito host. This mode of conducting the campaign against malaria has been especially urged by Ross and other English authorities. This can best be done by attacking the larval stages in the breeding pools. Where the cost is not prohibitive the best method, because of its permanency, is to eliminate the breeding site. This is an engineering problem and consists of draining, filling and altering streams so that they become unsuitable as breeding places. Where these permanent measures are too expensive or impractical, the larvae may be killed by poisons. The older poisons are the so-called "contact" variety and consist of oils or various prepared larvicides. Recently much attention has been given to "stomach" poisons. These are substances which will float on the surface film

¹ Horlein: Beihefte, Arch. f. Schiffs- u. Trop.-Hyg., 1926, 30, p. 305

Roehl: Arch. f. Schiffs- u. Trop.-Hyg., 1926, 30, p. 311.
 Sioli: Arch. f. Schiffs- u. Trop.-Hyg., 1926, 30, p. 319.

⁴ Mühlens: Arch. f. Schiffs- u. Trop.-Hyg., 1926, 30, p. 325.

⁵ XV Ann. Rept., Med. Dept., United Fruit Co., Boston, 1926, p. 66.

⁶ Barber, Komp and Newman: XVII Ann. Rept., Med. Dept., United Fruit Co., Boston, 1928, p. 34; and Whitmore, Roberts and Jantzen: XVIII Ann. Rept., Med. Dept., United Fruit Co., Boston, 1930, p. 37.

and be eaten by the larvae. They are efficient only for anopheline mosquitoes which are surface feeders and are not effective for Culex which feeds below the surface. One of the first poisons to be used was paraform. In the United States the use of Paris green has been particularly developed. This substance is mixed with road dust and strewn over the body of water to be treated in concentrations so low that it does not make the water unsuitable for the consumption of people and large animals. This method promises to be the cheapest and most satisfactory for general malaria control. In special localities use can sometimes be made of the natural enemies of mosquito larvae such as "top minnows." The method of larval destruction by minnows is peculiarly adapted to the control of the mosquito carrying yellow fever.

At first the control of malaria by mosquito reduction was efficient in the temperate regions of the earth, but it was generally believed that in the tropics, with the great profusion of species, the problem was absolutely hopeless. Recent investigations have shown, however, that in any given locality there are only a few—often only one—species of Anopheles actually carrying malaria to any great extent. By ascertaining which species are the dangerous carriers and finding out their peculiar habits it is possible to concentrate control measures on these forms. By these methods malaria in the tropics is being effectively controlled in many localities.

3. Spread of the disease can be checked in some measure by the consistent use of mosquito netting, mosquito-proof houses, and other mechanical devices for shielding malaria patients against the bite of mosquitoes, thereby preventing the infection of Anopheles. In the same way healthy individuals may be safeguarded from the bite of infected mosquitoes. That a high degree of protection can be afforded by suitable precautions against mosquito attack is proved by the experience of Sambon and Low, who spent several months during the malarial season in a carefully constructed hut in the Roman Campagna. These investigators breathed the same air and drank the same water as the other inhabitants of this malaria-stricken region, but, owing to the precautions taken in the matter of retreating at nightfall to their mosquito-proof sleeping apartments, they remained entirely exempt from the disease. This form of mechanical prophylaxis has been applied on a large scale in Italy to the homes of railway employees, customs officials, and

others compelled by their vocation to dwell in malarial regions, and is said to have given "résultats vraiment magnifiques" (Celli). In Formosa not a single case of malaria developed among 115 soldiers in screened barracks (September to December), while during the same period 251 malarial infections occurred among 717 soldiers not so protected. It is not, however, always possible for tropical residents so to order their lives as to protect themselves constantly from the bites of mosquitoes, and although the liability to malarial infection may be somewhat lessened by the conscientious employment of mosquito netting and other protective devices, the danger cannot be altogether avoided. In regions where malaria is not very common, and particularly in temperate climates, much can doubtless be done to prevent the extension of the disease by educating the community to the desirability of thoroughly screening malaria patients and shielding them so far as possible against mosquito bites.

The inference is clearly justified that no one of the three methods advocated for prophylactic purposes can be reasonably neglected. Protection against mosquito bites, abatement of the number of mosquitoes in a given locality, and diminution in the number of persons harboring the malarial parasite will all surely lead to a reduction in the prevalence of malaria, and any improvement will be cumulative.

Other Malarial Organisms.—Various malarial parasites infecting birds of several genera have been described and are quite common and of cosmopolitan distribution. The life-history of the Plasmodium of birds has been worked out with some degree of completeness and is very similar to that of the human form. The sexual phase of the avian Plasmodium is accomplished in the body of the mosquito, but in a different genus (Culex, not Anopheles). Among the malarial parasites of birds not belonging to the genus Plasmodium, the genus Hemoproteus is of particular interest. In this form the asexual cycle occurs within various endothelial cells and only the sexual forms (gametocytes) are found in the erythrocytes of the vertebrate host. As a consequence the infection cannot be transmitted by blood inoculation, but must take place by means of either the insect host or tissue transplants.

Various malarial parasites are also found in monkeys, bats, frogs, turtles and other cold-blooded animals.

THE PIROPLASMS

The parasitic protozoa now commonly known under the generic name of Babesia were first discovered in 1889 by Theobald Smith¹ in the blood of cattle suffering from a disease known as Texas fever, tick fever, or bovine malaria. The disease known in South America as La Tristeza is identical with this affection. Other piroplasms have since been found in the blood of various animal species.

There is no general agreement on the exact classification of the piroplasms. It is believed that there are at least two genera, Babesia and Theileria, which are related in much the same way as Plasmodium and Hemoproteus among the malarial parasites; the red blood-cells contain both sexual and asexual stages of Babesia as of Plasmodium, but only the sexual phases of *Theileria*.

Among the more important piroplasms are the three causing diseases in cattle: Babesia bigemina, which produces the hemoglobinuric fever known as Texas fever; B. bovis causing a similar disease; and B. mutans, giving rise to a benign fever. B. motasi, B. ovis and B. sergenti cause diseases of sheep corresponding in order to the three Babesia infections of cattle. B. caballi and B. equi produce hemoglobinuric fevers in horses, and B. canis and B. vitalii produce malignant jaundices in dogs.

Among the species of Theileria, are *T. parva* and *T. hirci*, causing serious diseases in cattle and sheep, respectively, in which the hemoglobinuria, jaundice and progressive anemia characterizing Babesia infections are absent. A more detailed description of some of these species is given below.

The prevention of piroplasm infection, and especially of Texas fever, has been successfully accomplished by freeing the animals from ticks by dips containing arsenic, and by removing them to tick-free pastures. Where ticks cannot be eradicated, preventive inoculation has greatly reduced clinical attacks of Texas fever.² Intravenous infection of trypan-blue has a curative effect upon certain piroplasm infections in cattle and dogs, but not upon others, for instance, the parasite of East Coast fever in cattle.

¹ Smith, Theobald: Bull. 1, Bureau of Animal Industry, Washington, D. C., 1893.

²See review in Taliaferro: "The Immunology of Parasitic Infections," New York, 1929.

Babesia bigemina.—Texas fever is characterized especially by destruction of the red blood-corpuscles, accompanied by hemoglo-binuria; the spleen is greatly enlarged and the liver extensively affected. The disease, which is peculiar to cattle, is common in the southern United States, and occurs also in South America, parts of Europe and Africa. In addition, a similar parasite, B. bovis, occurs in cattle in all parts of Europe and B. mutans occurs in Europe, Asia, Africa and Australia, but not in America. A remarkable feature in the natural history of Texas fever is that cattle raised in a disease-ridden district may to all appearances be entirely healthy,

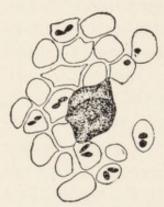


Fig. 167.—Babesia bigemina in blood from kidney (Theobald Smith).

and yet when imported into uninfected territory transmit the disease to susceptible animals.

The piroplasm is found in the blood of infected animals, where it occurs within the red corpuscles. In the acute form of the disease the parasites appear as pear-shaped bodies, usually two in number in each corpuscle, with their pointed ends in juxtaposition (Fig. 167). Ameboid movements are observed in certain stages. The parasites are seen with difficulty in fresh preparations, but they stain distinctly with alkaline methylene-blue and other dyes.

That some connection existed between the cattle tick (Boöphilus annulatus) and Texas fever was long suspected by practical stockmen, but such a connection was first demonstrated by the work of Smith and Kilborne. So far as known, infected ticks are the only means by which the disease is spread. Ticks that mature upon the bodies of animals containing piroplasmas in their blood never attack another animal, but drop to the ground after the usual fashion of these insects, and lay their eggs. The eggs hatch in about three weeks, and the young ticks in the larval and nymphal stages crawl upon the bodies of cattle that may be grazing in the tick-infected pasture (Figs. 168 and 169). It has been experimentally proved that the bite of these young ticks, descended from piroplasminfected mothers, is able to communicate the infection. The adult insects themselves do not pass from infected cattle to healthy ones, but transmit the disease only indirectly by way of their progeny. Smith and Kilborne have shown that cattle from permanently infected territory, though otherwise healthy, carry the piroplasms

of Texas fever in their blood. These facts explain many singular features in the epidemiology of the disease, such as the breaking out of Texas fever in the northern herds upon the introduction of apparently healthy cattle from the South; the sickening of northern cattle imported into the South and not brought into contact with southern cattle, but pastured in tick-infested fields; and the inability of cattle sick with Texas fever to communicate the disease unless they are at the same time infested with ticks.

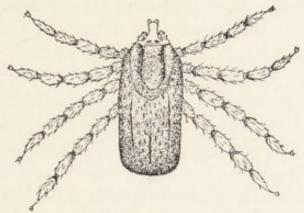


Fig. 168.—Cattle tick, Boöphilus annulatus. Sexually mature female after last moult (Smith).



Fig. 169.—Boöphilus annulatus; eggs and young tick, just hatched (Smith).

Theileria parva.—A disease of cattle in Africa known as Rhodesia fever, or East Coast fever, which is in some respects similar to Texas fever and is spread by tick bites, has been attributed by Koch and others to a parasite of the piroplasm group. The organism in question is smaller than *Babesia bigemina* and presents other distinct points of difference, so that it is placed in a separate genus. Mixed infections with the East Coast fever and Texas fever parasites seem to be not uncommon and have caused much confusion. Hemoglobinuria is absent in East Coast fever, and the number of red corpuscles in the peripheral circulation is not appreciably diminished. The mortality is high (80 to 90 per cent). Unlike Texas fever, East Coast fever appears to leave animals recovering from it inca-

pable of infecting ticks. At least five species of the tick *Rhipicephalus* are capable of transmitting the infection. The parasite is not passed on from the parent tick to the egg, but may be transmitted from one developmental stage to another, from larva to nymph, or from nymph to adult. Developmental phases of the parasite in the spleen and other internal organs have been observed by Koch and others.

Babesia canis.—A piroplasmosis of the dog has been observed in France, Italy, South Africa and some other places. Possibly the European and African parasites are different. A canine piroplasmosis in India is certainly due to a distinct species. The infection, which is termed "malignant jaundice" or "bilious fever," is accompanied in its acute form by anemia, hemoglobinuria, and usually some jaundice. The parasite is intracorpuscular and is very similar to the parasite of Texas fever. Only dogs are susceptible to this disease, all other animals proving refractory. As is the case with other piroplasmoses, the disease in the dog is conveyed by tick bite. The African variety of the disease cannot be conveyed by the larva, but only by adult ticks raised from infected eggs. In the European form the larvae or nymphs as well as the eggs may become infected directly from the dog. "The variations in regard to the mechanism of transmission, especially the time factor, indicate that obligatory changes in the life-history take place in the insect body" (Calkins). The nature of these changes has not yet been made out. Probably a sexual cycle occurs in the tick. The serum of recovered animals renders virulent blood innocuous, and the same is true, although in lesser degree, of the serum of naturally immune animals like the sheep.

Nuttall and Graham Smith¹ have made an exhaustive laboratory study of this disease and have described with great wealth of detail that part of the life cycle of *Babesia canis* which is passed in the blood of the dog. According to these investigators, the development takes place in the following manner (Figs. 170 and 171):

A free pyriform parasite enters a normal red blood-corpuscle and rapidly assumes a rounded form. It then enlarges and passes

¹ Nuttall and Smith: Jour. of Hygiene, 1904, 4, p. 219; 1905, 5, pp. 237, 250; 1906, 6, p. 586; 1907, 7, p. 232. See also Kinoshita: Arch. Protistk., 1907, 8, p. 294; Christophers: Sci. Memoirs, Med. and Sanit. Dept., Gov't of India, No. 29, 1907; Breinl and Hindl: Ann. Trop. Med., 1908, 2, p. 233.

through an actively ameboid stage, at the end of which it again becomes rounded. After a short period of quiescence in this condition it protrudes two symmetrical processes, which rapidly grow

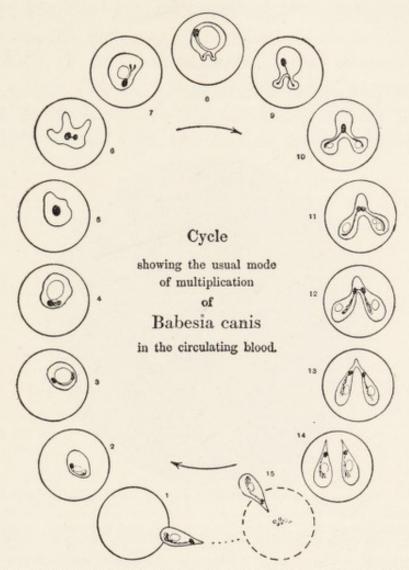


Fig. 170.— Babesia canis: (1) A free pyriform parasite which has just left a blood-corpuscle enters a normal corpuscle and (2–4) assumes a rounded form, remaining quiescent for a time, after which it grows in size. It then becomes actively ameboid (5, 6), and again becomes rounded (7). Two symmetrical processes (8–10) are then protruded, which rapidly enlarge at the expense of the body of the parasite. Each of these processes (11–13) gives rise to a mature pyriform parasite, which remains attached to its fellow by a thin strand of protoplasm. The parasites next become separated (14) and, by active swimming movements, burst out of the corpuscle (15) whose hemoglobin escapes into the plasma. The free parasite immediately re-enters a fresh corpuscle (George H. F. Nuttall, in Johns Hopkins Hospital Bulletin).

and become pear-shaped. The protoplasm of the parasite flows into these processes, and its body consequently gradually diminishes until it is represented by a minute rounded mass to which the pyriform processes are attached. Eventually this also disappears,

and finally two mature pyriform parasites are left, which are joined together for a time by a thin strand of protoplasm. After a variable time these parasites are liberated by the rupture of the corpuscles, and swim away to enter fresh corpuscles and repeat the process.

COCCIDIA

One of the coccidia, *Eimeria stiedae*, is a very common parasite in rabbits, where it is found especially in the liver. In these animals it evokes cirrhotic changes and other chronic inflammatory

Fig. 171.—Babesia canis in blood of a dog (Nuttall and Graham Smith).

processes. Young animals are very susceptible and often die in large numbers. There is at least one species of coccidium infecting man, *Isospora hominis*, and Wenyon¹ believes that there are two. Three species of Eimeria that have been found in human feces are now known to be the oöcysts of fish coccidia which have passed unchanged through the digestive tract.² Although various digestive disturbances have been ascribed to Isospora in man, they may be due to other causes.

CNIDOSPORIDIA

Several of the myxosporidia, a subdivision of the Cnidosporidia, are definitely associated with diseases of fish, one of the best known

- Wenyon: Ann. Trop. Med. and Parasit., 1923, 17, 231-288.
- ² Thomson and Robertson: Brit. Med. Jour., 1926, 1, pp. 282, 420.

CILIATES 617

being the pox disease of carp caused by Myxobolus cyprini. The parasite causing the disease of silkworms known as pébrine, celebrated by Pasteur's classic researches, also belongs to this group (Nosema bombycis). Another group which is generally placed in the Cnidosporidia, the sarcosporidia, contains a number of parasites, most of which are characterized by their ability to invade muscle-fibers. A large variety of animals are subject to invasions by parasites of this class, and there are several instances of sarcosporidiosis reported in man.¹

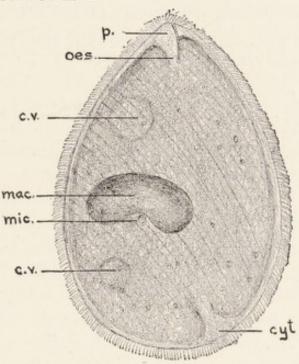


Fig. 172.—Balantidium coli from man. c.v., contractile vacuole; cyst., cytopyge; mac., macronucleus; mic., micronucleus; oes., oesophagus; p., peristome (Hegner in Hegner and Taliaferro's "Human Protozoölogy," courtesy of The Macmillan Company).

CILIATES

Some investigators consider that three species of the Ciliophora are parasitic in man: Balantidium coli, Bal. minutum and Nyctotherus faba. The parasitism of the last two is very doubtful. Balantidium coli (Fig. 172) is a typical ciliate and occurs in the pig and monkey as well as in man. It is an inhabitant of the large intestine and sets up the same type of lesion as E. histolytica (p. 574). In fact, the pathology of the diseases and the life cycle of the two parasites are very similar. Some persons with Bal. coli infection suffer from

¹ Hegner and Taliaferro: "Human Protozoölogy," New York, 1924, p. 373.

acute dysentery, but probably the majority are carriers without symptoms. Just as with *E. histolytica*, it is these carriers who disseminate the infection. *Bal. coli* is widely distributed over the earth, although the exact incidence has been very little studied.

Barret and Yarborough¹ successfully cultivated *Bal. coli* for over thirty-two days, involving eleven subcultures, in a 1:17 dilution of inactivated human serum in 0.5 per cent saline. The cultures were kept at 37 C. Rees² used a modification of the same medium, substituting Ringer's solution without dextrose for the sodium chloride solution, and adding a minute amount of rice starch.

¹ Barret and Yarborough: Amer. Jour. Trop. Med., 1921, 1, p. 161.

² Rees: Science, 1927, 66, p. 89.

CHAPTER 32

THE FILTERABLE VIRUSES1

It was first shown by Löffler and Frosch² that there are microorganisms pathogenic for man so small or so plastic as to be able to pass through the pores of porcelain or infusorial earth filters. These observers while studying a highly contagious disease of cattle, transmissible also to man (foot-and-mouth disease), attempted to obtain germ-free lymph from infected animals by the usual method of filtration, but found to their surprise that 0.02 cc. of the filtered lymph was still able to produce infection. From an animal infected with the filtered lymph they transferred the infection through a series of six animals. It was calculated that the last one in the series received less than one two-billionth part of the original lymph. Since one fifty-thousandth part of the original lymph was not infectious, there was no escape from the conclusion that the virus passing the filter must be a living organism capable of multiplication.

As shown by Helmholtz, the nature of light rays restricts the limits of clear vision to objects of a size not less than 0.1 to 0.2 μ , and it was at first supposed that the filter-passers were beyond these limits of vision, were, in short, "ultramicroscopic," but it has been found that at least some of the filterable viruses—for example the micro-organism that causes the pleuropneumonia of cattle—are visible with high powers of the microscope. In many cases, however, examination of the infectious filtrate by the ordinary methods of illumination shows the presence of nothing recognizable as a micro-organism. It was at one time hoped that the method of dark field illumination might be profitably employed in the study of such filtrates. This method consists in intense illumination of the object, so that the object becomes visible by diffracted light. The phenomenon is the same as that which is observed when a ray

¹ An excellent review has been given by Rivers: Jour. Bact., 1927, 13, p. 16; Rivers: "Filterable Viruses," Baltimore, 1927, pp. 428; McKinley, E. B.: "Filterable Viruses and Rickettsia Diseases," Bureau of Science, Manila, 1929, pp. 442.

² Löffler and Frosch: Centralbl. f. Bakt., Orig., 1898, 23, p. 371.

of sunlight passes into a darkened room. The exceedingly small particles or motes of dust are made perceptible by the diffracted light, while with ordinary illumination (transmitted light) they are quite invisible. The use of sunlight in the ultramicroscope permits objects as small as $0.004~\mu$ to become visible. While the ultramicroscope has been of value in the investigation of colloidal solutions and in the study of such tenuous organisms as the spirochete of syphilis, it has added little or nothing to our knowledge of most of the filterable viruses. One reason for this is that such a method of illumination makes all the small particles in suspension appear as luminous points without differentiation as to size, shape, or structure. It is hence impossible to distinguish any minute living organism that may be present from the multitude of other particles in organic fluids, which likewise become visible by this method.

Since the number of demonstrated filter-passers is now very large, numbering probably about 50, it is always advisable in investigating an infectious disease of unknown etiology to determine whether or not the filtrate from infectious blood or lymph or organ emulsion is itself infectious.

Many precautions are necessary in carrying out the filtration process in order to demonstrate surely the existence of a filterable virus. Some of these are as follows: The filtration must be completed within as short a time as possible—always within two hours -in order to avoid the possibility that the micro-organisms may grow through the pores of the filter rather than pass through. Many of the familiar pathogenic bacteria will grow through a filter if the process of filtration is long-continued. For the same reason it is not advisable to filter at incubator temperature. The pressure—positive or negative—used in filtration should not exceed 500 mm. of mercury. Pressures amounting to several atmospheres are inadmissible. In order to lessen the protein content of the fluid to be filtered, dilution with sterile water or salt solution, 1:40 to 1:100, is sometimes desirable. The integrity of the filter and the freedom of the filtrate from ordinary bacteria should always be determined. Organisms like Ps. pyocyanea are sometimes added as test-objects to the fluid to be filtered.

It has been shown by Kramer¹ that the nature of the filtering material is important and that filters that have a positive electrical

¹ Kramer: Jour. Infect. Dis., 1927, 40, p. 343.

charge (calcium carbonate, magnesium oxide) remove viruses that are able to pass through the usual filters that have a negative electrical charge (siliceous material).

From the work already done on "the filterable viruses" it is clear that they do not constitute a homogeneous group. Organisms of very diverse biological characters appear to possess the ability in common of passing through certain kinds of filters under certain conditions. Size is not the only determining factor. Some of the filterable viruses appear to be very small bacteria, others small protozoa, while still others of quite unknown nature may lie beyond the limits of vision. The existence of a minute filterable stage in the life-history of a relatively large and structurally complex microorganism is a possibility that must be reckoned with. Some of the diseases caused by filter-passing viruses are conveyed by insects, others are transmitted by contact, by respiratory infection or by direct inoculation (rabies). Some of the viruses can be cultivated from generation to generation in artificial culture media, others seem to multiply only in the presence of living tissue cells. No "wild" filterable viruses free in nature have been found.

One of the most remarkable and characteristic features of a number of the diseases with which typical filterable viruses are associated is the presence of cell-inclusions. These singular bodies may be located either in the cytoplasm or the nucleus or in both. In some diseases the cell-inclusions have a diagnostic value, as is the case with the Negri bodies in rabies. It is not known whether the cell inclusions are products of degeneration or whether they represent some phase of the virus itself; they may not have a uniform significance. Attempts to produce them artificially have not been successful.

Some investigators have been led to believe that certain of the so-called "filterable viruses" are not living organisms at all but active enzyme-like chemical substances. Studies on the bacteriophage (p. 645) have been thought to support this view. It is not certain, however, that the bacteriophage itself is inanimate. The virus of the mosaic disease of tobacco has many remarkable qualities and has been supposed by Beijerinck to be a "contagium vivum fluidum," that is, unformed living material capable of propagating itself; there is evidence, however, that this virus is a living microbic body.

¹ Olitsky: Jour. Exper. Med., 1925, 41, p. 129.

VARIOLA OR SMALL POX

The distribution of smallpox through practically the whole world and the great disfigurement caused by an attack have made this disease one of the most conspicuous of human maladies. Of great antiquity and perhaps of Asian origin it became almost universally prevalent in the Middle Ages and everyone was expected sooner or later to have the disease. At the present day the disease is especially prevalent in India, Russia and the United States.¹

Two types of the disease are known, the severe clinical fever and a mild form often known as alastrim and believed by some to be a

Fig. 173.—Cell from animal inoculated with vaccine lymph, showing three nuclei and numerous Guarnieri bodies of various sizes; × 1000 (Nowak: Documenta Microbiologica II, 1930).

Fig. 174.—Cell from animal inoculated with vaccine lymph, showing a Guarnieri body close to the cell nucleus; × 200 (Nowak: Documenta Microbiologica II, 1930).

slightly different disease. The severe type is sometimes known as the Asian type, alastrim as the African type, of smallpox. Protection against both types is conferred by the usual smallpox vaccination.

Although vaccination against smallpox has long been successfully practised, no specific micro-organism has been isolated in pure culture and shown experimentally to form the basis for this procedure. Bacteria of various kinds, especially streptococci, are often found in the pustules, but it is generally believed that they are

Approximately 40,000 cases were reported in the United States in 1928, as contrasted with 2 in Germany, 52 in Italy and 153 in France, countries in which vaccination is compulsory.

accidentally present or are secondary invaders; there is no evidence that any particular bacterial species is the primary exciting cause.

One of the most important observations upon smallpox yet made is the discovery of peculiar bodies within the cells of the affected tissues. These inclusion bodies were taken by the discoverer, Guarnieri (1892), for parasites and named Cytoryctes vacciniae, but they are now commonly called Guarnieri bodies and regarded as caused by the reaction of the cell to the virus rather than as true parasites. They may be observed after a few hours in the corneal cells of a rabbit experimentally inoculated with either variolous material or vaccine lymph (Figs. 173 and 174). Very minute intracellular granules, "Paschen's granules," have also been observed. These granules are infective, but whether they represent the true infective agent or are mechanical carriers of an invisible virus is not known.

A form of smallpox (variola inoculata) which is less serious in character than true smallpox has been produced in man by direct inoculation with the contents of smallpox vesicles. At one time this method of inoculation was practised to some extent in England and some other countries as a valuable means of prophylaxis, the mild attacks of the disease so engendered imparting a high degree of protection against the naturally contracted virulent type. Smallpox has been experimentally produced in monkeys by cutaneous inoculation, and manifests the same characters as inoculation-smallpox in man.

The relation between human smallpox and cowpox or vaccinia—a name given to a certain vesicular eruption on the udder of cows—was clearly established by the celebrated observations of Jenner in 1798. Noting that dairy workers who had had cowpox were less liable than others to contract smallpox, Jenner advocated on this and other substantial grounds the systematic inoculation of cowpox virus as a protection against smallpox. The practical success achieved by the method of vaccination is matter of common knowledge. No one with any understanding of the nature and force of scientific evidence questions that by this means smallpox is today held in check.

It is now generally believed that the cowpox of cattle is a modified form of smallpox; indeed, typical cowpox has been produced in heifers and in rabbits by inoculation with human smallpox virus. The method of vaccination is therefore a process of active immunization with the living micro-organism of smallpox attenuated by passage through the body of the cow. Vaccine is neutralized by the serum of immunized animals, which evidently contains some substance capable of exerting a germicidal or inhibitory action upon the specific agent. Injection of immune serum seems to be without effect upon the course of a case of smallpox.

Many observers believe that the secondary infection of smallpox lesions with streptococci, which almost always, if not invariably, occurs, is more directly responsible for bringing about a fatal termination than the effects wrought by the specific parasite.

Sheep, goats, swine and other animals suffer from "poxes" similar to cowpox. There is some evidence that these animal poxes with their varied clinical aspects are caused by the same filterable virus or by closely related varieties, but identity is not clearly established. The virus of fowl pox, one manifestation of which is a form of roup or avian diphtheria, although filterable and producing cell inclusions, is perhaps considerably removed from the mammalian vaccinia virus.

RABIES OR HYDROPHOBIA

All mammalia are susceptible to infection with the virus of rabies. Man is infected most frequently by the bite of the dog, but may also contract the disease through the bites of cats, wolves, cattle, and other animals. The bite of wolves is much more virulent than that of dogs. Bites upon the hands and face and other parts having a rich nerve-supply are most apt to result fatally. If the part bitten is covered by clothing or hair, less virus will enter the wound than if the bite is made on an exposed surface, and such bites are correspondingly less dangerous. The most reliable statistics indicate that about 16 per cent of persons bitten by rabid dogs become infected. The virus is contained in the saliva of infected subjects, including man, and, according to Nocard and Roux, is always present in the saliva of the dog twenty-four to forty-eight hours before the animal shows any sign of illness. The virus is also always present in every part of the central nervous system, especially in the medulla. Experimentally it has been found that the virus makes its way from the point of inoculation to the central

nervous system chiefly by way of the nerve-trunks. In this respect and some others, rabies presents a close analogy to tetanus. The virus is readily destroyed by heat and drying and is rendered inert by direct sunlight in about forty hours.

No particularly characteristic and constant changes were found in the tissues of animals infected with rabies until Negri, in 1903, described certain peculiar bodies as occurring in the large nervecells of the central nervous system. Subsequent investigators have confirmed Negri's observations, and the "Negri bodies" are now

regarded as specific to hydrophobia (Fig. 175). The occurrence of these bodies, moreover, has been shown to be very important in making possible a rapid histologic diagnosis. The examination for Negri bodies may be made directly from the fresh tissues by means of the smear method. The method is as follows: After removing the top and occipital portions of the skull, leaving the brain in position, cut out

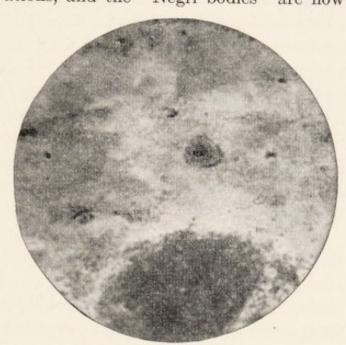


Fig. 175.—A rounded "Negri body" showing well the complete circle of chromatoid granules about the central body. From street rabies; × 2000 (Williams and Lowden).

small pieces (3 to 4 mm.) of the gray substance from—(a) the cerebral cortex in the region of the crucial sulcus, (b) the cortex of the cerebellum, and (c) the hippocampus major (Ammon's horn). Place a piece of the tissue on a well-cleaned slide, crush it with a coverslip, and draw it slowly and evenly toward the end of the slide, leaving a thin smear of well-spread nerve-cells. The smears are then dried in the air and may be stained by various methods. Williams and Lowden² have suggested the following modification of the Giemsa stain (p. 58) made by van Gieson for quick differ-

¹ Negri: Boll. d. Soc. med.-chir. di Pavia, 1903, p. 88; Ztschr. f. Hyg., 1903, 43, p. 507.

² Williams and Lowden: Jour. Infect. Dis., 1906, 3, p. 452.

entiation: "To 10 drops of distilled water three drops of a saturated alcoholic solution of rose aniline violet and six drops of Löffler's solution of methylene-blue are added. The smears are fixed while moist in methyl-alcohol for one minute. The stain is then poured on, warmed till it steams, poured off, and the smear is rinsed in water and allowed to dry."

Negri himself from the first maintained that these bodies are protozoan parasites, and his opinion has been shared by a number of other workers. Williams and Lowden¹ advance these arguments for concluding that the Negri bodies are organisms belonging to the class Protozoa: "(a) They have a definite, characteristic morphology; (b) this morphology is constantly cyclic, i. e., certain forms always predominate in certain stages of the disease, and a definite series of forms indicating growth and multiplication can be demonstrated; (c) the structure and staining qualities, as shown especially by the smear method of examination, resemble that of certain known protozoa, notably of those belonging to the suborder Microsporidia."

The Pasteur method of treatment for hydrophobia is based upon the fact that the rabic virus in the spinal cord of rabbits loses strength at a fairly regular and even rate when the cord is removed from the body after death and carefully dried. Rabbits are inoculated with "fixed virus"—a term applied by Pasteur to virus that is so exalted in virulence by successive passages through rabbits that it will produce the death of these animals in six or seven days. Beyond this point no increase of virulence can be obtained; hence the name, fixed virus. The spinal cord is removed aseptically from rabbits killed by the inoculation of fixed virus, cut into three pieces, and suspended over a solution of caustic potash in a drying chamber. Here the cords are kept in the dark and at a constant temperature of 23 C. for fourteen days. Emulsions of the dried cord are prepared in sterile salt solution or broth for injection into persons who have been bitten. Injections are made every day, or sometimes more frequently, during a period of fifteen to twenty-one days, the interspacing of doses and duration of treatment being determined by the nature of the case. As a rule, the most attenuated material (fourteen-day cord) is injected first, and this is followed by virus of gradually increasing strength. Other methods

¹ Williams and Lowden: Jour. Infect. Dis., 1906, 3, p. 452.

of protective inoculation are in use based on attenuation of the spinal cord by heating (Babes' method), by carbolic acid (Semple's method), or by ether (Remlinger's method), but Pasteur's original method is still most widely used. Over 30,000 individuals bitten by rabid animals have been treated at the Pasteur Institute in Paris, with a mortality of less than 1 per cent, figures that probably mean the saving of the lives of between 2000 and 3000 persons. The method is essentially one of active immunization, and involves a race between the action of the attenuated virus and that of the virulent virus introduced by the bite of a rabid animal. It follows that treatment should always be begun at the earliest possible moment after the bite. In a certain proportion of cases (about 1 in 3538) a spinal cord lesion, "treatment paralysis," seems to follow the treatment. The pathogenesis of this condition is unknown. A fatal result is rare.²

The serum of animals immunized against hydrophobia possesses considerable protective power, and, according to some investigators, has also a marked curative effect. Favorable results have been reported from the use of immune serum, especially in cases of severe bites about the head, or in persons who have delayed beginning the Pasteur treatment.³

Since nearly all cases of hydrophobia are due to the bite of rabid dogs, it is of the utmost importance to check the spread of the disease in these animals. This can be most effectively and humanely accomplished by the strict enforcement of proper muzzling regulations. The experience of Great Britain is worth citing.

Year	Cases of Rabies
1887	217
1888	160
1889	312
Muzzling enforced:	
1890	129
1891	79
1892	38
Opposition to muzzling; ordinance relaxed:	
1893	93
1894	248
1895	672

¹ Remlinger: Ann. de l'Inst. Pasteur, Suppl., April, 1927.

² Jones, W. A.: Jour. Amer. Med. Assoc., 1909, 53, p. 1626.

³ Tizzoni and Centanni: (Abs.) Centralbl. f. Bakt., 1895, 18, p. 246.

Year	Cases of Rabies
Muzzling again enforced:	
1896	438
1897	151
1898	17
1899	9
1900	6
1901	1
1902	13
1903-07.	0

EPIDEMIC LETHARGIC ENCEPHALITIS¹

It has been often remarked that in a number of virus diseases the nervous system is noticeably affected. Rabies and poliomyelitis are outstanding examples and there are a number of others.

An affection of the central nervous system which came first into special prominence after the influenza epidemic of 1918–19, although an outbreak had been observed in Vienna in the winter of 1916, is now generally recognized as an independent disease. The common occurrence of marked somnolence has given it the popular and confusing name of "sleeping sickness." Evidence can sometimes, although rarely, be obtained of contact with a previous case.

Attempts to induce the disease in animals have met with difficulty and the results are conflicting. Monkeys are apparently refractory. Rabbits are infected readily according to some observers, very uncertainly according to others. Flexner,³ in the course of a four years' investigation, during which the total number of cerebrospinal fluids from all sources injected exceeded 100, obtained but a single instance interpretable as a successful infection. Reported experiments offer some perplexing features. The virus found in the common herpetic vesicles on the lips (cold sores) may easily be inoculated upon the cornea of rabbits, and it has been found that the virus of herpes and the supposed virus of encephalitis obtained by some investigators bear so close a relationship one to another that they cannot be distinguished.⁴ A special difficulty in this field is the common occurrence of brain

¹ For a complete survey with extensive bibliography, see "Epidemic Encephalitis, "published by the Matheson Commission, Josephine B. Neal, director, New York, 1929.

² This disease has, of course, no relation to the African sleeping sickness caused by a trypanosome (p. 587).

³ Flexner: Jour. Amer. Med. Assoc., 1923, 81, p. 1785.

⁴Levaditi, C.: Arch. of Neurol. and Psychiatry, 1929, 22, p. 767.

lesions in uninoculated laboratory rabbits, so that great caution is necessary in interpreting the consequences of specific injections. The relation of herpes virus to human encephalitis is indeed one of the burning questions of the day.¹

Loewe and Strauss² have reported cultivating from affected tissues minute globoid bodies which they regard as the specific organisms of the disease. Levaditi and other experimenters obtained negative results in their attempts to grow a micro-organism from the virus. Several investigators³ have cultivated a pleomorphic green-producing streptococcus which seems to have specific characters and has been regarded by a few as the causal organism of this disease. The organism is highly virulent for rabbits and when inoculated intravenously is said to show a tendency to elective localization in the brain. The symptoms in rabbits and monkeys are said in some instances to simulate those of human epidemic encephalitis.

Searching investigations, however, have failed to confirm the belief that a green-producing streptococcus is the true infective agent.⁴ When washings from swabs made from the tonsils or nasopharynx of healthy individuals are injected intracerebrally into rabbits, the results, clinical and bacteriological, are similar to those obtained when material from encephalitis patients is employed. The fact that a green-producing streptococcus is usually the only cultivable organism found may simply mean either that it predominates in the mouth flora or that it has greater virulence when introduced into the central nervous system.

Encephalitis has been regarded by some as a direct sequel of influenzal infection, or as due to a highly neurotrophic influenzal virus, but there are grave objections to these views. It has also been suggested that the encephalitis virus is widespread in normal persons, but needs "activation" by the influenza virus. The existence of any relation whatever between influenza and encephalitis may, however, be questioned.

¹ Flexner, S.: Jour. Amer. Med. Assoc., 1930, 94, p. 305.

² Loewe and Strauss: Jour. Amer. Med. Assoc., 1919, 73, p. 1056; Jour. Infect. Dis., 1920, 27, p. 250.

³ Von Wiesner: Wien. klin. Wchnschr., 1917, 30, p. 933; Rosenow: Jour. Infect. Dis., 1924, 34, p. 329; Evans and Freeman: Public Health Reports, 1926, 41¹, p. 1095; Evans: Public Health Reports, 1927, 42¹, p. 171.

⁴ McKinley, E. B.: Proc. Soc. Exper. Biol. and Med., 1930, 27, p. 436.

POSTVACCINAL ENCEPHALITIS

Routine vaccination against smallpox is in rare instances followed by the appearance of a "postvaccinal encephalitis," which has aroused great interest. This form of encephalitis has been observed in widely separated parts of the world and with vaccine prepared in different ways. Whether a hypothetic latent virus is activated by the vaccine virus, whether the vaccine virus itself is the provocative agent or whether other factors are concerned is not known. No definite agreement has yet been reached with respect to the etiology of this form of encephalitis.¹

Certain other virus diseases, such as measles and chickenpox, may be accompanied or followed by encephalitic manifestations similar to those following smallpox vaccination.

FOOT-AND-MOUTH DISEASE

A highly infectious disease of domestic animals, with fever, digestive disturbances and especially a vesicular eruption on the mucous membrane of the mouth and on the skin of the hoof or between the toes, has long been known in parts of Europe. On several occasions it has been imported into the United States, a very extensive outbreak occurring in 1914, when over 2000 herds and 100,000 cattle were affected. The stamping out of the disease was brought about by the slaughter of infected and exposed animals and by the application of rigorous methods of quarantine and disinfection. The disease may be communicated to man by milk or milk-products or by contact with infected animals. Among cattle the mortality is apt to be high, especially in young animals. In man the disease is usually of mild type, but is sometimes fatal in children.

The virus is present in the contents of the vesicles and ulcers and also in the milk, saliva, urine, and feces. Animals that have had the disease may carry the virus for several months. The period of incubation is usually short, two to seven days, but may be much longer. The infection may be carried by fodder, milk, or by the hands or clothing of drovers. It may also be conveyed in cattle cars, stalls, and feeding and drinking troughs.

Löffler and Frosch² first showed that the disease is caused by a filterable virus. The disease can be reproduced in cattle by inocu-

¹ Flexner: Jour. Amer. Med. Assoc., 1923, 81, p. 1785.

² Löffler and Frosch: Centralbl. f. Bakt., I, 1898, 23, p. 371.

lation of infective material into the mucus of the mouth and can also be reproduced in the guinea pig by subcutaneous or cutaneous inoculation of the balls of the feet. The virus retains its virulence for months if kept cool and moist, but is destroyed by a temperature of 60 C. and by rapid drying. A protective substance exists in the serum of animals convalescent from the disease, and in experimental work the principle of passive immunization can be successfully practiced.

EPIDEMIC INFANTILE PARALYSIS (ACUTE POLIOMYELITIS, HEINE-MEDIN DISEASE)

Epidemic infantile paralysis was recognized as a specific malady by Jacob von Heine more than fifty years ago. In more recent times attention became especially directed to it through the Swedish outbreaks of 1899 and 1905 (1000 cases), which were carefully investigated by Medin. The malady has since appeared in Germany and in many parts of the United States. In 1916 the most extensive epidemic yet reported prevailed in New York City and vicinity. In New York City alone approximately 9000 cases and 2400 deaths occurred in the period June 1-November 1. Young children from one to two years old seem most liable to attack, adults being seldom affected. The mortality ranged from 6 to 15 per cent, and 75 per cent or more of the survivors were permanently crippled. Flexner and Lewis¹ first succeeded by the method of intracranial inoculation in carrying the virus through a series of monkeys. In all the successive transfers lesions similar to those of human poliomyelitis were observed.

Flexner and Noguchi² reported cultivation of a micro-organism in epidemic poliomyelitis. The medium employed was human ascitic fluid to which was added a fragment of sterile fresh tissue (normal rabbit kidney). Growth was at first obtained only under anaërobic conditions. The surface of the medium may be covered with a deep layer of sterile paraffin oil, or anaërobic jars may be used. Fragments of infected central nervous system, preferably the brain, are best introduced directly into the culture medium, but emulsions or filtrates of the nervous system may also be employed.

² Flexner and Noguchi: Jour. Exper. Med., 1913, 18, p. 460.

¹ Flexner and Lewis: Jour. Amer. Med. Assoc., 1909, 53, p. 1629.

After five days' incubation at 37 C. a faint opalescence appears about the fragments of tissue at the bottom of the tube.

The supposed micro-organisms are globoid bodies, measuring from 0.15 to 0.3 μ in diameter, devoid of independent motility, and grouped in pairs, chains, and masses according to the conditions of growth and multiplication. Gram's stain is retained with more or less intensity, depending on the age of the culture and the constitution of the culture medium (Fig. 176).

Whether the globoid bodies so described represent the specific causal agent of poliomyelitis is still uncertain.

Streptococci in Poliomyelitis.—Several investigators1 have reported the cultivation of streptococci from the throat, blood, and cerebrospinal fluid of patients with clinical poliomyelitis. Two views are held as to the significance of these cocci, one group of workers maintaining that the streptococci are causally related to poliomyelitis and that they are a phase in the life-history of the globoid bodies, the other that they are secondary invaders only. The latter view is maintained on the ground of the bacteriological findings,2 the pathologic effects of the streptococci isolated3 and therapeutic experiments with serum prepared from the streptococci. 4 On the other hand, the streptococcus appears to be present with a high degree of frequency in poliomyelitic monkey virus, to be strongly resistant to glycerol, to pass the filters commonly used in the study of poliomyelitic virus, and to produce in monkeys after three to four culture generations "conditions absolutely indistinguishable, clinically and anatomically, from the classical induced poliomyelitis in this animal." The streptococcus, however, grows aërobically on blood-agar in much the same way as a streptococcus of the Streptococcus viridans type, while the globoid organism of Flexner and Noguchi is not known to grow under aërobic conditions at all. It does not seem possible at present to state definitely the exact relationship of the streptococcus to the globoid bodies or its significance in poliomyelitis.

¹ G. Mathers: Jour. Amer. Med. Assoc., 1916, 67, p. 1019; Rosenow, Towne, and Wheeler: Jour. Amer. Med. Assoc., 1916, 67, p. 1202; Nuzum and Herzog: Jour. Amer. Med. Assoc., 1916, 67, p. 1205.

² Kolmer, Brown, and Freese: Jour. Exper. Med., 1917, 25, p. 789.

³ Bull: Jour. Exper. Med., 1917, 25, p. 557.

⁴ Amoss and Eberson: Jour. Exper. Med., 1918, 27, p. 309; Stewart and Haselbauer: Jour. Exper. Med., 1928, 48, p. 449.

Epidemiology and Mode of Transmission.—The usual manner of transmission of epidemic poliomyelitis cannot be regarded as definitely determined. The virus is present in the secretions from the mouth and nose of children suffering from poliomyelitis, and this has induced some investigators to believe that the infection is transmitted directly from person to person by means of contact. Many cases of the disease, however, have been observed under conditions where no connection whatever with a previous case could be traced. The existence of healthy carriers of polio-

myelitic virus may perhaps explain the occurrence of such cases. The virus has been demonstrated in the mucous membrane of a monkey five and one-half months after recovery from the experimental disease; and Lucas and Osgood1 have found the virus in the nasal secretion of a human carrier four months after the acute stage of a second attack of poliomyelitis.

Certain facts in the epidemiology of infantile paralysis have been thought to indicate the probability of insect transmission.2 The disease prevails under rural rather than organism of epidemic poliourban conditions, and apparently shows no myelitis. Chains and pairs tendency to spread in congested city dis- (Flexner and Noguchi). tricts where many diseases due to contact

Fig. 176.—The microof globoid bodies; × 1000

are excessively prevalent. The seasonal incidence of infantile paralysis, which in most localities is most marked during the summer months, is likewise considered to favor the hypothesis of insect transmission, since the season of greatest prevalence corresponds with the maximum abundance of insect life. Some experimental evidence has been gathered bearing directly on this point. It has been shown that house-flies contaminated with the virus may harbor it in living and infective condition for at least forty-eight hours. Rosenau³ reported that through the agency of the biting stable-fly (Stomoxys calcitrans) he had been able to transmit to healthy monkeys a disease in all essential respects like poliomyelitis. These

¹ Lucas and Osgood: Jour. Amer. Med. Assoc., 1913, 60, p. 1611.

² Brues, C. T.: The Scientific Monthly, 1923, p. 471. ³ Rosenau: Jour. Amer. Med. Assoc., 1912, 59, p. 1314.

flies, which had first bitten monkeys experimentally infected with poliomyelitis, were thought to be able to transmit the infection to healthy animals. Later experiments by Anderson and Frost, by Sawyer and Herms, and by Francis have given negative results and make it appear unlikely that the fly is the usual agent in spreading the disease in nature.

The view that dust is the medium by which the virus is conveyed has been advanced by some writers, but there is no convincing experimental evidence in support of this view, and the epidemiology of the disease is not in accord with it.

The occurrence in certain of the lower animals, as horses and dogs, of paralytic affections with symptoms like those of poliomyelitis has led a number of observers to suspect that infantile paralysis might be communicated to man from these animals. The striking resemblances between poliomyelitis and rabies have been pointed out in this connection. The consistently negative results of experimental inoculation, however, make it appear exceedingly unlikely that any of the lower animals suffer naturally from a disease which is identical with human poliomyelitis.⁴

Several outbreaks of poliomyelitis have been traced to the use of raw milk.⁵ In the epidemic at Cortland, N. Y., 1925, the dairy cows were milked by an individual in the acute stage of the disease and the milk was not pasteurized. Eight widely separated cases occurred among the users of the supply.

There are still many perplexing problems which arise in connection with possible modes of transmission of this disease, but the weight of evidence at present favors the likelihood of spread through direct or indirect contact with the virus discharged in the secretions from mouth and nose. Healthy carriers very likely play an important part in dissemination. Measures of quarantine directed toward preventing the spread from active cases should certainly not be relaxed. The seasonal incidence of the disease remains to be explained. Possibly it may rest upon increased infant susceptibility in hot weather.

Anderson and Frost: Pub. Health Rep., Washington, 1913, 28, p. 633.

² Sawyer and Herms: Jour. Amer. Med. Assoc., 1913, 61, p. 461.

³ Francis: Jour. Infect. Dis., 1914, 15, p. 1.

⁴ Harmon, P. H., et al.: Jour. Prev. Med., 1930, 4, pp. 59, 89.

⁵ Dingman: N. Y. State Jour. Med., 1916; Knapp, Godfrey and Aycock: Jour. Amer. Med. Assoc., 1926, 87, p. 635.

There is evidence that immunity to poliomyelitis is widespread. This is especially indicated by the large proportion of persons whose serum, in spite of the fact that they have never suffered from a recognized attack of poliomyelitis, is able to neutralize the virus. The interpretation placed on this fact is that, as in diphtheria, the occurrence of a subclinical, yet immunizing, infection is quite common. This explanation is strengthened by the close correspondence between the age distribution of poliomyelitis in urban and rural districts and that of diphtheria.

Pathogenicity.—The virus is contained in the brain and spinal cord, and also in the mucous membrane of the nasopharynx and in the salivary glands. It is not found in the cerebrospinal fluid or the blood. Virulent material is not weakened by drying, freezing, or five months' suspension in glycerol. On the other hand, the virus is killed by relatively low temperatures (42.5 to 55 C. for thirty minutes) and by weak disinfectants (1:500 solution of permanganate of potash).

Although intracranial inoculation in monkeys gives the best results, infection may be produced in other ways. Some investigators have succeeded in producing the disease by rubbing the virus on the sound nasal membrane, others by causing inhalation of an emulsion of the virus. The incubation period in monkeys averages about eight or nine days, but may range from five to forty-six. The disease is more fatal in monkeys than in children.

Monkeys that recover from the disease are refractory to a second inoculation. The serum of such animals will neutralize the virus.

The intraspinal and intravenous injection of human convalescent serum early in the disease has had a beneficial effect on human patients. The mortality rate is lowered, the average total paralysis is lowered and the amount of severe paralysis is diminished.² It is possible that serum from normal persons (that is, those who have never suffered an attack of poliomyelitis) may have a therapeutic effect.³

YELLOW FEVER

Yellow fever, while primarily a disease of the tropics, has been from time to time introduced into the temperate zone, where it

¹ Shaughnessy, H. J., et al.: Jour. Prev. Med., 1930, 4, p. 149.

² Aycock, W. L., and Luther, E. H.: Jour. Amer. Med. Assoc., 1928, 91, p. 387; Aycock et al.: Jour. Infect. Dis., 1929, 45, p. 175.

³ See Shaughnessy, H. J., et al.: Jour. Prev. Med., 1930, 4, p. 463.

has flourished prodigiously for a time until checked by the occurrence of frost. There is reason to believe that in the Western Hemisphere it is a legacy of the slave trade with Africa. The infectious character of yellow fever has long been manifest, and

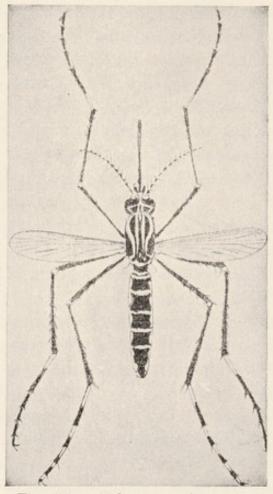


Fig. 177.—Aëdes aegypti, female (Boyce, after Newstead).

for many years the belief prevailed among physicians that the disease could be disseminated through the atmosphere. Others, however, maintained that it was directly contagious or, at any rate, could be communicated through clothing, bedding and the like.

Late in the nineteenth century, certain bacteria isolated from yellow fever patients were put forward as the inciting agent. Nott² in 1848 advanced the hypothesis that insects, and Finlay³ in 1881 that a particular species of mosquito Aëdes aegypti (Fig. 177), (at first called Culex fasciatus), carried the infection from person to person. The first definite progress in our knowledge of the disease may be said to date from the work

of Reed, Carroll, Agramonte and Lazear⁴ in Havana, Cuba, at about the beginning of the present century. These members of the American Army Commission with the aid of courageous human volunteers established the following important points:

¹ Sternberg: Centralbl. f. Bakt., I, 1897, 22, p. 145; Jour. Amer. Med. Assoc., 1898, 30, p. 233; Sanarelli: Ann. de l'Inst. Pasteur, 1897, 11, pp. 433, 673.

² Nott: New Orleans Med. and Surg. Jour., 1847-48, 4, p. 563.

³ Finlay: Jour. Amer. Med. Assoc., 1901, 37, p. 1387.

⁴ Reed, Carroll, Agramonte and Lazear: Proc. 28th Ann. Meeting, Amer. Pub. Health Assoc., Oct. 22, 1900; Reed: Med. Record, 1901, 60, p. 201; Reed and Carroll: Med. Record, 1901, 60, p. 641; Amer. Med., 1902, 3, p. 301; Carroll: Jour. Amer. Med. Assoc., 1903, 41, p. 1341.

- 1. The bacteria previously suspected were not etiologically related to yellow fever.
- The living causal agent of this disease was not cultivable or visible and was filterable through a Berkefeld candle.
- 3. The malady was transmissible in nature only by the bites of female mosquitoes (called for a time *Stegomyia calopus*, now known as *Aëdes aegypti*), and was not communicated to nonimmunes through intimate exposure to clothing or bedding contaminated with discharges of patients.
- 4. A period of about twelve days was necessary after a mosquito had fed on a patient in the early stage of the disease before it could infect a second individual.
- The subcutaneous injection of small amounts of blood drawn from a yellow fever patient on the first to third day of the disease was capable of inducing an attack of yellow fever.

These findings, confirmed by Guiteras¹ in Cuba and by the French Commission (Marchoux, Salimbeni and Simond)² in Brazil, suggested measures for combatting yellow fever in the countries then concerned. The most effective method has been to attack the mosquito host. Aēdes aegypti (Fig. 177) is seldom found far from human habitation, and breeds by preference in artificial collections of water, such as rain-water cisterns, barrels, cans and pieces of broken pottery. Destruction of larvae by oiling water surfaces, and of adult mosquitoes by sulfur fumigation, combined with the elimination or screening of possible breeding places, are measures that have been highly successful. The fight against the mosquito has been greatly aided in large communities by the installation of adequate water supplies. Under all conditions mosquitoes should be barred from every possible avenue of approach to yellow fever patients.

In 1900 this disease was known to exist in various parts of the West Indies, the southern coast of the United States, Mexico, Central America, and in the northern, eastern and western parts of South America. By employing suitable measures of mosquito control, the area involved was reduced by 1930 to certain districts in

¹ Guiteras: Amer. Med., 1901, 2, p. 809.

² Marchoux, Salimbeni and Simond: Ann. de l'Inst. Pasteur, 1903, 17, p. 665; Marchoux and Simond: Ann. de l'Inst. Pasteur, 1906, 20, pp. 104, 161.

Brazil and scattered localities in northern South America. Whether this reduction is permanent is yet to be determined. It is worthy of note that yellow fever was eliminated from several small countries by a campaign against the disease in the largest community harboring infection. This is well illustrated in Ecuador, which was apparently freed of yellow fever by eradicating the disease in Guayaquil.

Noguchi,¹ working in the latter place in 1918, isolated a leptospira from cases clinically diagnosed as yellow fever. He named this spiral organism "Leptospira icteroides" and for a time it was hoped that the true inciting agent had been found. But later (1926–27) Theiler and Sellards² and Schüffner and Mochtar³ proved that "L. icteroides" and the leptospira of Weil's disease (L. icterohaemorrhagiae) were identical. Belief in "L. icteroides" as the causal agent of yellow fever was consequently abandoned.

The existence of yellow fever in West Africa has long been regarded as a possible menace to the rest of the world. Investigators of the International Health Division of the Rockefeller Foundation began a study of the disease in this locality in 1925 and, in a series of clinical and epidemiological studies, were unable to demonstrate the presence of leptospiras. In the course of further laboratory investigations by this commission, Stokes, Bauer and Hudson⁴ succeeded in transmitting yellow fever to Asiatic monkeys (Macacus rhesus), an achievement which made possible an intensive examination into the nature, transmission and pathology of the disease. They concluded that a filterable virus is the cause of the malady and in general confirmed by means of animal experimentation the work of the commissions of 1900 to 1906. Their experiments were repeated and extended by Sellards, Hindle, Aragão, Pettit and other investigators⁵ in several countries. Although

¹ Noguchi: Jour. Exper. Med., 1919, 29, pp. 547, 565, 585; 30, pp. 1, 9, 13, 87, 95, 401; 1920, 31, pp. 135, 159; 32, p. 381; Noguchi and Kligler: Jour. Exper. Med., 1920, 32, pp. 601, 627.

² Theiler and Sellards: Amer. Jour. Trop. Med., 1926, 6, p. 383; Sellards: Amer. Jour. Trop. Med., 1927, 7, p. 71.

³ Schüffner and Mochtar: Arch. f. Schiffs- und Tropenhyg., 1927, 31, p. 149.

⁴ Stokes, Bauer and Hudson: Jour. Amer. Med. Assoc., 1928, 90, p. 253; Amer. Jour. Trop. Med., 1928, 8, p. 103.

⁵ Mathis, Sellards and Laigret: Comp. rend. Acad. sci., 1928, 186, p. 604; Sellards and Hindle: Brit. Med. Jour., 1928, I, p. 713 (April 28); Theiler and Sellards: Ann. Trop. Med. and Parasit., 1928, 22, p. 449; Bauer: Amer.

researches are still in progress, the present status of our knowledge of yellow fever may be briefly summarized:

Virus.—Invisible; filterable; not cultivable by ordinary bacteriological methods; killed by heating at about 55 C. for ten minutes; more resistant to certain germicides than bacteria; preserved by glycerol and over longer periods by drying while frozen; immunologically identical the world over.

Vectors (Natural and Experimental).—Aëdes aegypti of the West Indies, Brazil, West Africa, North Africa, India and Java; A. scapularis of Brazil; A. albopictus of Java; A. vittatus, A. stokesi, A. luteocephalus, A. africanus, A. simpsoni, Eretmopodites chrysogaster, and Taeniorhynchus africanus of West Africa. Virus transmissible (1) by mosquito bite nine to twelve days after the infecting meal and until death of mosquito; (2) by injection of mosquito throughout period of "extrinsic incubation." Virus filterable in body of mosquito, and not passed to progeny through the egg.

Virus in Mammalian Host.—Recoverable in man from first to third day of disease; recoverable from blood and tissues of monkey throughout course when disease is rapidly fatal, and before, during and after fever in longer courses. Virus experimentally inoculable subcutaneously, intraperitoneally and intravenously and by application to whole, shaved and scarified skin.

Immunity.—Develops in recovered cases in man and monkey as demonstrated by protective immune bodies. Protective antibodies in man experimentally demonstrable for at least twenty-five to thirty years after illness. Complement fixation with specific antigen positive in large proportion of recovered humans and in most monkeys recovered from acute attacks.

Jour. Trop. Med., 1928, 8, p. 261; Hudson: Amer. Jour. Pathol., 1928, 4, pp. 395, 407, 419; Aragão: Inst. Oswaldo Cruz, Suppl. das Mem., 1928, Oct. 15, No. 2, p. 23; Pettit and Stefanopoulo: Bull. Acad. med.; 1928, 100, No. 32; Torres: Inst. Oswaldo Cruz, Suppl. das Mem., 1929, March, No. 6, p. 69; Hindle: Trans. Roy. Soc. Trop. Med. and Hyg., 1929, 22, p. 405; Davis: Jour. Exper. Med., 1930, 51, p. 703; Philip: Amer. Jour. Trop. Med., 1930, 10, p. 1; Sawyer, Kitchen, Frobisher and Lloyd: Jour. Exper. Med., 1930, 51, p. 493; Cowdry and Kitchen: Amer. Jour. Hyg., 1930, 11, p. 300; Frobisher: Amer. Jour. Hyg., 1930, 11, p. 300; Klotz and Belt: Amer. Jour. Trop. Med., 1930, 10, p. 299.

¹ Bacillus hepatodystrophicans has been put forward by Kuczynski (Klin. Wchnschr., 1929, Jan. 1 and 8, pp. 9 and 58) as the specific causal agent of yellow fever. Sellards (Proc. Nat. Acad. Sci., 1930, 16, p. 222) reports finding Treponema xanthogenes in yellow fever monkeys.

Susceptibility of Animals.—Relative; beginning with the most susceptible monkeys to more resistant, as follows: Macacus rhesus, M. cynomolgus, M. sinicus, M. speciosus, M. innuus, Saimiri sciureus, Ateleus ater, Cebus macrocephalus, Cebus albifrons, Cebus frontatus, Callithrix jacchus, Cercopithicus tantalus, Cercopithicus torquatus, Erythrocebus patas; white mouse, guinea pig.

Pathology.—In gross: hemorrhage of skin (man), serous surfaces (man), lungs and gastro-intestinal tract; icterus of skin, serous surfaces and body fluids; pallor of liver and kidneys (monkey); "boxwood" liver. Microscopically: necrosis of liver, kidneys, lymph follicles (monkey), adrenals; fatty degeneration of liver, kidney, heart, capillary walls; congestion of lungs and spleen; hemorrhage of lungs, serous surfaces (man), mucosa; inflammatory cells in liver (especially monkey), spleen, adrenals (monkey); hyaline and lime casts in kidney; acidophilic degeneration of nuclei of liver cells ("intranuclear inclusions").

This information has been gained only at the sacrifice of the lives of several eminent investigators (Noguchi, Stokes, Lewis, Young and Hayne) from laboratory infections.

It is hoped that human immunization by vaccination, as proposed by Hindle¹ and carried out by Aragão,² may be made effective as a method of protection, but at present the chief means of yellow fever control are the eradication of the mosquito vectors, the installation of water supplies, the screening of houses, the segregation of patients, close medical supervision of suspected areas, and the control of transportation.

PAPPATACI FEVER

This disease is prevalent in warm countries, especially in the Mediterranean region. It is a fever of short duration and has been called "three-day fever." Leukopenia is always present, a circumstance that favors differential diagnosis from incipient typhus. One attack confers immunity. The virus is filterable, is present in the blood, and can be transmitted by sand-flies (pappataci flies) that have fed on the blood of patients with the fever (Doerr). The flies do not become infective until seven or more days after feed-

¹ Hindle: Brit. Med. Jour., 1928, I, p. 976 (June 9).

Aragão: Arch. de Hyg., 1929, 3, p. 5 (No. 2).
 Doerr: Berl. klin. Wchnschr., 1908, 45, p. 1847.

ing on a fever patient. Prophylaxis is difficult, since the flies pass readily through an ordinary mosquito net.

DENGUE

Dengue, or "breakbone fever," is an infectious disease restricted to warm climates. About 30,000 cases occurred in Galveston during the summer and fall of 1922. In the summer of 1928 a very extensive epidemic broke out at Athens, more than 600,000 persons being attacked. Dengue presents certain resemblances to yellow fever and is transmitted by the same species of mosquito, Aëdes aegypti.

Mosquitoes may be infected from dengue patients during the first three days of illness. The dengue virus must remain in the female Aëdes for a period of more than ten days before the insect becomes capable of transmitting it to human beings. Infected mosquitoes remain infectious throughout life. The virus does not pass through the eggs to the next generation of mosquitoes.

The epidemiology of dengue presents a striking resemblance to that of yellow fever. Epidemics "occur only when there are simultaneously present cases of dengue fever, large numbers of Aëdes aegypti and large numbers of nonimmune individuals." The best method of prevention seems to be that based on mosquito-control measures.

The virus of dengue is filterable, but little more is known about it. Animals generally used for experiment, including rhesus monkeys, seem quite insusceptible.

While one attack of dengue confers a certain degree of immunity, the resistance so acquired is relatively slight. Second, third and even fourth attacks are known to occur. It was shown in the Philippines by experimental inoculation that a severe attack might be produced after an interval as short as fifty-three days.

PSITTACOSIS

A disease that sometimes occurs in persons who have been in contact with sick parrots has cropped up occasionally in the past fifty years and has been brought into special prominence by the

¹ A valuable monograph on dengue, containing the results of original investigation in the Philippines and a full bibliography, has been written by Siler, Hall, and Hitchens, Manila, 1926.

² Siler, Hall and Hitchens: Jour. Amer. Med. Assoc., 1925, 84, p. 1163.

large number of cases appearing in Europe, Argentina and North America in 1929–30. Approximately 170 cases with 33 deaths were recorded in the United States. The disease has everywhere manifested itself in the form of small outbreaks confined to members of families or to people living in the same house. The connection with parrots is always striking and the infection seems almost invariably transmitted from parrot to man. Occasional instances of apparent transmission from one human being to another have, however, been observed.

The 1929–30 outbreak appears to have had its origin in an extensive epidemic among the parrots of Brazil. Throughout a considerable period the arrival of newly acquired parrots in various parts of the world was followed by the development of psittacosis among the dealers and individual purchasers of these birds. Approximately 500 cases with a mortality of 35 to 40 per cent were recognized and recorded throughout the world between July 1, 1929, and July 1, 1930. The disease has proved highly infectious for laboratory workers; eleven cases developed among the personnel of the Hygienic Laboratory of the United States Public Health Service within a few weeks.

Psittacosis is characterized by a clinical picture which has been likened in various aspects to influenza, to typhoid or even to a mild attack of yellow fever. Pulmonary symptoms are, however, constant. The epidemiological history is of especial value in the diagnosis of this infection.

Bacteriological study of a psittacosis outbreak in Paris in 1892 led to the isolation by Nocard of an organism of the paratyphoid group. This microbe, named B. psittacosis, was for a long time regarded as the cause of the disease, although not without question. The bacillus isolated by Nocard and in a few instances by others in different localities is definitely identical with Salmonella aertrycke (p. 328). There is no reason to believe that this organism is the cause of psittacosis. The numerous human infections with S. aertrycke from other sources than parrots that have been observed are almost invariably of the gastro-intestinal type, mild in character and without pulmonary complications. In most cases of psittacosis subjected to careful study by competent bacteriologists no

¹ For a good summary see Roubakine, A.: Monthly Epidemiol. Rept. League of Nations, 1930, 9, p. 141.

organism of the paratyphoid group has been found; this is especially true of the studies made during the recent extensive outbreak.

Nearly all recent investigators have found that the infective agent is filterable. Krumwiede and his co-workers have shown that mice are susceptible to inoculation. Rabbits, guinea pigs and monkeys can also be infected, the latter by the intranasal as well as other routes. Parrots and rabbits that have recovered from a primary infection are refractory to reinoculation.

OTHER DISEASES

Among other affections of man that are regarded with more or less certainty as due to filterable viruses are: cold sores (herpes simplex), shingles (herpes zoster), chickenpox (varicella), encephalitis lethargica, molluscum contagiosum, warts and trachoma.

A number of important diseases of domestic animals are also believed to be due to filter-passing microbes. Besides the pleuro-pneumonia of cattle (p. 374), may be named distemper of dogs, African horse sickness, probably transmitted by mosquitoes, sheep pox, hog cholera, Rinderpest or cattle plague, and swamp fever of horses. Certain diseases of guinea-pigs and fowls (fowl pest and fowl diphtheria or epithelioma contagiosum) have also been found due to filterable viruses. Especially interesting is the chicken sarcoma studied by Rous and his associates. For the experimental production of this disease the virus must be brought into close contact with injured tissue cells. The sarcomata produced by direct inoculation of the filterable agent do not differ from those resulting from the growth of a bit of transplanted sarcomatous tissue. When the virus is attenuated by heat it gives rise to tumors that grow slowly and retrogress frequently.

Silkworms and other insects are subject to attacks by specific filterable viruses.⁴ One group of plant diseases, the mosaic disease

- ¹ Bedson, S. P., Western, G. T., and Levy, S. S.: Lancet, 1930, I, pp. 235 (Feb. 1) and 238 (Feb. 15); Armstrong, C., McCoy, G. W., and Branham, Sara E.: U. S. Pub. Health Repts., 1930, 45, p. 725.
 - ² Rivers, T. M., et al.: Jour. Amer. Med. Assoc., 1930, 95, p. 579.
- ³ Rous: Jour. Exper. Med., 1911, 13, p. 397; Jour. Amer. Med. Assoc., 1912, 58, p. 1938; Rous and Murphy: Jour. Exper. Med., 1913, 17, p. 219.
- ⁴ Historical summaries of work on the filterable viruses with references may be found as follows: Löffler: Centralbl. f. Bakt., I, Ref., Beihefte, 1911, 50, p. 1; Wolbach: Jour. Med. Res., 1912, 22, p. 1; Lipschütz: Kolle and Wassermann, Handbuch, 1913, 8, p. 345; MacCallum: Medicine, 1926, 5, p. 59; Simon: Physiol. Rev., 1923, 3, p. 483; McKinley, E. B.: "Filterable Viruses and Rickettsia Diseases," Bureau of Science, Manila, 1929.

of tobacco, sugar cane and other plants, has been shown to be caused by a filterable virus.¹ The mottled leaves frequently seen on tomatoes, beets, potatoes, peach trees (peach yellow) and many other plants are the result of mosaic infection. Cucumber mosaic, which damages the fruit, has ruined the cucumber industry in some parts of the United States.

¹ Glaser, R. W.: In Rivers' "Filterable Viruses," Baltimore, 1928, pp. 279-334.

CHAPTER 33

THE BACTERIOPHAGE (TWORT-D'HERELLE PHENOMENON)

Twort¹ in 1915, while studying certain staphylococcus cultures observed curious transparent areas or breaks in the growth. On touching one of the transparent areas with a platinum needle and drawing the needle across the surface of a young staphylococcus culture, the culture seemed to dissolve, and the needle track became clear and transparent within a few hours. This remarkable phenomenon attracted little general interest at the time.

d'Herelle² in 1917 obtained a similar effect with filtered cultures of the dysentery bacillus and with filtered stools from dysentery patients. He regarded the lytic agent as a living microbe that developed at the expense of living bacteria, gave it the name of bactériophage and has made the subject peculiarly his own through active experimentation and discussion.³ During the past ten years numerous investigators have studied the bacteriophages of various microbes and their manifestations.⁴ There can be no doubt that the nature and significance of the bacteriophage offer a biological problem of the first importance.

Characteristics of Bacteriophage Action.—Twort, d'Herelle and their successors have shown that the bacteriophage or dissolving agent possesses certain remarkable properties:

- It can be transferred from one culture to another and so propagated indefinitely like a living virus.
- Its propagation succeeds only in cultures of living bacteria, never in lifeless media or when only dead bacteria are present.

² d'Herelle: Compt. rend. Acad. sci., 1917, 165, p. 373.

¹ Twort: Lancet, 1915, II, p. 1241.

³ d'Herelle, F.: "The Bacteriophage and Its Behavior." Baltimore (Williams and Wilkins), 1926. Pp. 629.

⁴ For good reviews and discussion see Bordet: Ann. de l'Inst. Pasteur, 1925, 39, p. 717; Hadley: Jour. Infect. Dis., 1927, 40, p. 1; Bronfenbrenner: Chap. 10 in Filterable Viruses (edited by T. M. Rivers, Baltimore, 1928); Bronfenbrenner: Chap. 40 in "The Newer Knowledge of Bacteriology and Immunology" (edited by Jordan and Falk, Chicago, 1928).

- 3. It is active in high dilution (1:100,000,000 or even higher).
- 4. It passes through the compact clay and infusorial earth filters which strain out ordinary bacteria.
- 5. It is inactivated as a rule, by temperatures of from 72 to 75 C. for 30 minutes (d'Herelle).
- 6. It is inactivated by certain chemicals, but seems considerably more resistant than most bacteria.

Nature of the Bacteriophage. The characters of the bacteriophage have been considered by d'Herelle from the beginning to indicate that the lytic agent is a living ultramicroscopic organism, "Protobios bacteriophagus," parasitic on bacteria. Much discussion has centered upon the question whether the bacteriophage is animate or inanimate—a matter not yet regarded as completely settled. On one hand, d'Herelle and his supporters base their opinion not only on the capacity of indefinite propagation, but on observations thought to show that the bacteriophage is an organized corpuscular agent. With respect to the particulate or corpuscular nature of the bacteriophage, the behavior of the bacteriophage in the manner of corpuscular matter may mean simply that a lytic colloidal solution is adsorbed by organic particles (for example, fragments of bacterial substance) and so acts as if it were corpuscular itself. That is to say, the association of the lytic agent with formed particles does not necessarily mean that the lytic agent itself is organized.

d'Herelle also urges that the varying behavior of bacteriophage toward different bacterial species and its apparent adaptation to chemical influences are grounds for believing it a living thing. Differences of technic and of interpretation, however, becloud the acceptance of these arguments, and the capacity of the bacteriophage for unlimited self-multiplication remains the most cogent piece of evidence for the view that the bacteriophage is a living bacterial parasite.

Bronfenbrenner¹ has found that the active principle is capable of spreading radially from the focus, independently of the multiplication of bacteria and independently of gravity, and that the ratio of spread is conditioned by the density of the medium. Again, Bronfenbrenner and Korb² have shown that an excess of 95 per

¹ Bronfenbrenner: Jour. Exper. Med., 1927, 45, p. 887.

² Bronfenbrenner and Korb: Jour. Exper. Med., 1926, 43, p. 71.

cent alcohol added to a filtrate containing bacteriophage causes in a few minutes a marked reduction in activity of the latter, but that the residual lytic activity is affected at a much slower rate; this appears more like a precipitation-adsorption phenomenon than a toxic action upon a living agent.

Bordet1 has advanced a theory which would account for the singular phenomenon of self-multiplication without postulating a truly "living" nature for the bacteriophage. According to his theory of transmissible autolysis the lytic agent originates from the bacteria themselves and is generated by some disturbance of the normal metabolism of the cell. The autolytic substance, once set free, acts upon other susceptible cells of the culture, causing further liberation of the substance and so lending to the process the appearance of self-propagation. In this way the autolytic action is made to reappear in one bacterial culture after another through an indefinite series. There are a number of experimental facts that support the theory of the origin of bacteriophage from bacteria themselves, but since there is the possibility that bacteriophage may be present as a "contaminant" or may remain latent in a culture for a long time, attempts to demonstrate its spontaneous development are beset with difficulties. At the present time the theory of transmissible autolysis has many adherents.

Hadley² like Bordet considers the bacteriophage to be of bacterial origin, but looks upon it as connected with a definite stage in the life history of the bacterial species. This "homogamic" theory needs for its evaluation a fuller knowlege of bacterial development and variation than bacteriologists now possess.

Some illuminating sidelights have been thrown on the nature of the bacteriophage by recent investigators. It was observed by Bordet and Ciuca in 1921 that injection of bacteriophage into suitable animals led to the production of a specific antibody which inhibited the lytic action. Later observations by others have completely established the antigenic property of the bacteriophage. The limited evidence available on the mechanism of the inactivation of the bacteriophage by antiserum indicates that the process more closely resembles the neutralization of toxin by antitoxin than the action of a bactericidal serum.

Bordet: Brit. Med. Jour., 1923, I, p. 175.
 Hadley: Jour. Infect. Dis., 1928, 42, p. 265.

Certain cultures of bacteria manifest complete or nearly complete resistance to the action of the bacteriophage—are, in fact, "immune." Whether this variation in resistance is due to the survival of specially resistant individual bacteria and their progeny "as in epidemics among the higher animals," or whether it is to be attributed to a gradual adaptation or to other factors, is still unknown.

The distribution of the bacteriophage in nature is peculiar. It is commonly present in the contents of the small and large intestines of man and other higher animals and consequently, as might be expected, in sewage effluents. Its frequent association with young freshly isolated cultures of bacteria, particularly from the intestinal tract, is in contrast to its absence or apparent absence in most old stock cultures.

Mode of Action of Bacteriophage.—Practically all observers agree that the first noticeable change in bacteria exposed to the action of bacteriophage is a marked swelling of the individual cells. Bronfenbrenner and others who have studied the viscosity changes in the cultures estimate that the whole bacterial mass at the time of maximum swelling is at least from 6 to 12 times the volume of a similar number of normal bacteria. The swollen bacteria finally melt away with great rapidity, as shown by Bronfenbrenner's cinematographic records. It is uncertain whether the final dissolution of the bacteria is due directly to the bacteriophage or, as many observers believe, to the hydrolytic action of intracellular enzymes produced in excess or "activated" by the "toxic" action of the bacteriophage.

One or Several Bacteriophages?—While d'Herelle believes that "there is but a single bacteriophage, common to both man and animals, capable by adaptation of acquiring an incidence toward all bacterial species," the majority of investigators are convinced of the diversity of the lytic principle. A considerable degree of specificity characterizes the action of bacteriophages of various origin, the bacteriophage recovered from the intestinal contents of a dysentery patient, for example, being much more potent against the dysentery bacillus than against other bacteria. The antisera prepared by bacteriophages of various origin possess a considerable degree of specificity.

Therapeutic Use of Bacteriophage. Observations of the destruction of bacteria by bacteriophage in test-tube experiments naturally led to attempts to determine whether a similar destruction of pathogenic bacteria could be brought about in the infected animal body. d'Herelle and his supporters believe that their experiments warrant the therapeutic administration of phage and consider that the general course of an infection is determined by the presence and "adaptability" of the phage. Patients suffering from bacillary dysentery and staphylococcus infections have been thought to manifest clinical improvement when treated with bacteriophage, and d'Herelle has stated that in his opinion phagotherapy represents a specific therapy for these infections. The same investigator also considers the results of similar treatment in bubonic plague distinctly promising. It must be said, however, that many, perhaps most, clinical observers of bacteriophage therapy have not been able to support d'Herelle's contention. Davison1 and others have failed to find the slightest benefit from the administration of antidysentery bacteriophage.

Davison: Abstr. Bact., 1922, 6, p. 159.

CHAPTER 34

THE RICKETTSIAE

The name Rickettsiae (da-Rocha-Lima, 1916) was given in honor of Howard Taylor Ricketts who first described organisms of a peculiar kind in Rocky Mountain spotted fever and typhus fever. These organisms are extremely minute, pleomorphic, gram-negative and seem to have their natural habitat in certain arthropods, such as ticks, lice and bedbugs. Two and perhaps three diseases of man are thus far known to be caused by members of this group.

Rocky Mountain Spotted Fever.—This remarkable disease is restricted, so far as known, to the northwestern part of the the United States. It is best known and apparently most fatal in the Bitter Root Valley of Montana, but occurs also in the mountainous parts of the neighboring states (Fig. 178). No satisfactory explanation has been found for the localization of this disease or its singular variation in virulence in different areas. There is reason to believe that the disease prevails in a mild form in certain wild rodents which serve as healthy carriers, and that the parasite is acquired by ticks from this source. Cases of laboratory infection have occurred in which tick bites could apparently be excluded.

Wolbach has given the following clinical definition of the disease: "An acute, specific endangeitis chiefly of the peripheral bloodvessels, transmitted by a tick, Dermacentor venustus, and characterized by onset with chill, continued fever, severe pains in bones and muscles, headache, and a macular eruption, becoming petechial, which appears first on wrists, ankles, and back, then over the whole surface of the body."

The first important study of the disease was made by Wilson and Chowning. These authors attributed the disease to a protozoön (Piroplasma), but the microscopic findings on which they based this opinion have not been confirmed by subsequent observers. Wilson and Chowning also suggested that the bite of the woodtick might be the means of conveying the disease. Communication by

Wilson and Chowning: Jour. Amer. Med. Assoc., 1902, 39, p. 131; Jour. Infect. Dis., 1904, 1, p. 31.

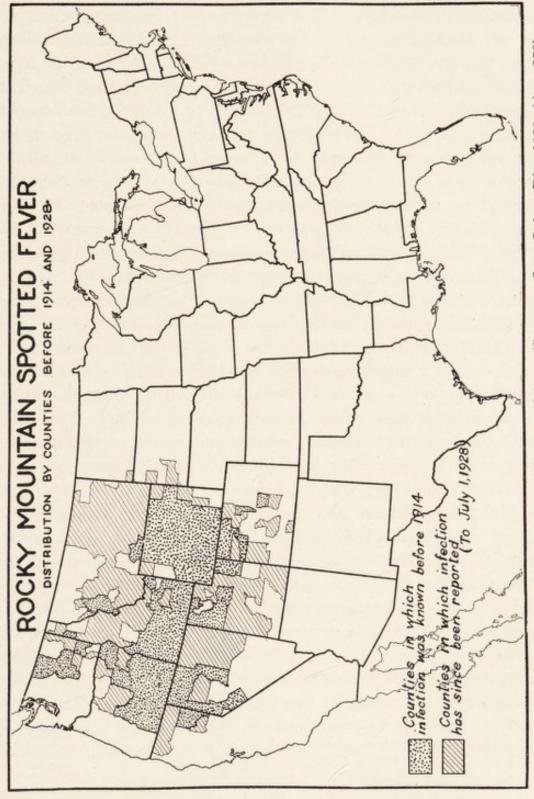


Fig. 178.—Distribution of Rocky Mountain spotted fever (Spencer: Jour. Infect. Dis., 1929, 44, p. 259).

tick-bite was later experimentally demonstrated by King¹ and by Ricketts.2 Extended and fruitful investigations were carried out by Ricketts,3 who showed that the disease can be communicated to monkeys and guinea-pigs by the intraperitoneal injection of defibrinated blood of typical cases, and also by the bite of ticks that have fed on spotted fever patients. Both male and female ticks can transmit the disease. The virus can be kept alive in the laboratory either by alternate inoculation of monkey and guinea-pig or by continuous passage through the guinea-pig. In the latter animal the maximum infectivity of the blood seems to be between the third and fifth day after the beginning of fever. The virus is not filterable. Ricketts and Gomez4 have shown that an attack of spotted fever in the guinea-pig and monkey produces a high and lasting active immunity which is characterized by the presence of protective antibodies in the serum. Passive immunity may be conferred by the injection of blood or serum from immunized animals, or by a mixture of immune serum with virus. The curative power of the serum is low. Noguchi prepared an immune rabbit serum which, mixed with the spotted fever virus, conferred complete immunity on guinea-pigs;5 it does not protect monkeys or man. Promising results in protecting laboratory workers and persons in infected areas have been obtained with a prophylactic vaccine prepared from the ground viscera of highly infected ticks.6

Wolbach⁷ describes an organism found in the lesions of the disease in man, monkey, rabbit and guinea-pig, and in infective ticks. Three definite morphologic types are recognized: (1) an intracellular bacillary form, without chromatoid granules, relatively large and present in ticks only during the stage of initial multiplication; found only in the cytoplasm of the alimentary tract cells; (2) a relatively small bacillary form with chromatoid granules, probably the same form seen within nuclei in sections of ticks, and rarely in smooth muscle cells in the blood-vessels of mammals; (3) a

- ¹ King: Public Health Reports, July 27, 1906, 21², p. 863.
- ² Ricketts: Jour. Amer. Med. Assoc., 1906, 47, p. 358.
- ³ Ricketts: Jour. Infect. Dis., 1907, 4, p. 141.
- ⁴ Ricketts and Gomez: Jour. Infect. Dis., 1908, 5, p. 221.
- ⁵ Noguchi: Jour. Exper. Med., 1923, 38, p. 605.
- ⁶ Spencer, R. R.: Jour. Infect. Dis., 1929, 44, p. 257.
- ⁷ Wolbach: Jour. Med. Res., 1919, 41, p. 1. This is a comprehensive monograph, 197 pages, 21 plates, and full bibliography. See also Jour. Amer. Med. Assoc., 1925, 84, p. 723.

relatively large lanceolate paired form present in ticks and in the blood and lesions in mammals. This lanceolate form is characterized by its chromatoid staining reaction and is believed by Wolbach to be the form in which the virus is passed between the tick and mammalian hosts. The other two forms described are thought to be multiplication stages, and can be demonstrated only occasionally and with difficulty in mammalian hosts. Attempts to cultivate these organisms on all ordinary culture media have not succeeded.

Wolbach and Schlesinger, however, were able to keep the organism alive, probably with some multiplication, in tissue plasma cultures made with infected guinea-pig tissues and normal guinea-pig plasma. The name Dermacentroxenus rickettsi has been proposed by Wolbach for this organism. The facts on which belief in a causal relation is based are: "(1) The constant occurrence of a micro-organism of distinctive size and morphology in the lesions characteristic of the disease in man, monkey, rabbit, and guinea-pig. (2) The constant presence of an identical micro-organism exhibiting undoubted evidences of developmental phases in ticks of proved infectivity, and the absence of similar forms in proved noninfective ticks. (3) The ability to recognize this specific micro-organism in the tissues and eggs of infective ticks in the presence of bacteria occasionally present in abundance in ticks of the species concerned."²

Tsutsugamushi disease is a Japanese disease very similar to Rocky Mountain spotted fever both clinically and in its singular restriction to certain localities.³ Studies by Kitashima and Miyajima⁴ emphasize the resemblance. The virus, like that of spotted fever, is not filterable and is extremely susceptible to chemical and physical agents. Tsutsugamushi disease is transmitted by the bite of the larva of a mite, Leptus akamushi, one of the order Acarida (which includes the ticks) of the class Arachnida. The monkey gives a characteristic reaction on experimental inoculation; the guinea-pig does not. The field mouse is believed to be the natural mammalian host of the virus. No causal organism

¹ Wolbach and Schlesinger: Jour. Med. Res., 1923, 44, p. 231.

² Wolbach: Jour. Med. Res., 1919, 41, p. 185.

³ Ashburn, P. M., and Craig, C. F.: Philippine Jour. of Sci., Sec. B., Med. Sci., 1908, 2, p. 1.

⁴ Kitashima, T., and Miyajima, M.: Kitasato Arch. of Expt. Med., 1918, 2, p. 91.

has been surely identified, but Sellards¹ has obtained in pure culture an organism closely resembling the known rickettsiae. A valuable summary of the Japanese investigations has been given by Kawamura and is available in an English translation (Studies on Tsutsugamushi Disease, Cincinnati, 1926, pp. 229).

TYPHUS FEVER

Typhus fever, a highly contagious disease with an incubation period of five to eighteen days, a high fever, and a characteristic rash, has long been known to occur under conditions of overcrowding and filth. The malady was clearly described by physicians of the sixteenth century and undoubtedly existed much earlier. Some writers believe that the great pestilence of Athens (430 B. c.), so graphically reported by Thucydides, was typhus. The disease has derived many of its popular names, such as "camp fever," "jail fever," "hospital fever," from the conditions under which it is spread. In England prisoners brought into court were sometimes the means of communicating the disease to judges, lawyers, and spectators, a circumstance that gave to certain court sessions the name of the "black assizes." Up to about 1850 typhus seems frequently to have assumed the proportions of an epidemic; probably the poorer quarters of many European cities were never free from it. In recent times the disease has greatly diminished and in some localities has disappeared altogether under modern modes of life. The abnormal conditions of war times, however, which facilitate overcrowding and uncleanliness, have given opportunities for such great extensions of typhus as occurred in 1915 in Serbia, where it is estimated that 135,000 persons perished of the infection. At the present time Mexico is its main seat in North America.

In New York City a mild form of typhus was differentiated from clinically similar affections by Brill.² Although it was regarded for some time as a distinct clinical entity (Brill's disease), its identity with typhus was demonstrated by Anderson and Goldberger.³ What appears to be the same mild form of typhus occurs endemically in the southeastern United States.⁴

¹ Sellards: Am. Jour. Pub. Health, 1923, 13, p. 989.

² Brill: Am. Jour. Med. Sci., 1910, 139, p. 484.

³ Anderson and Goldberger: Public Health Reports, 1912, 27, p. 149.

⁴ Maxey: Public Health Reports, 1926, 41, p. 1213.

Mode of Transmission.—Nicolle¹ succeeded in transferring the disease from one monkey to another by the bite of the infected body-louse (Pediculus vestimenti). This has been confirmed by the experiments of Ricketts and Wilder² and Anderson and Goldberger.³ It is possible that the head-louse (P. capitis) also conveys typhus, but this is not established. Shipley has given the following summary of our knowledge of these insect parasites:⁴

"Lice form a small group of insects known as the Anoplura, interesting to the entomologist because they are now entirely wingless, though it is believed that their ancestry were winged. They are all parasites on vertebrates . . . Like almost all animals lower than the mammals, the male of the body-louse is smaller and feebler than the female. The former attains a length of about 3 mm. and is about 1 mm. broad. The female is about 3.3 mm. long and about 1.4 mm. broad. It is rather bigger than the hair-louse, and its antennae are slightly longer. It so far flatters its host as to imitate the color of the skin upon which it lives . . . The habitat of the bodylouse is that side of the underclothing which is in contact with the body. The louse, which sucks the blood of its host at least twice a day, is, when feeding, always anchored to the inside of the underclothing of its host by the claws of one or more of its six legs. Free lice are rarely found on the skin in western Europeans . . . But the under side of a stripped shirt is often alive with them . . . Mr. Warburton summarizes the life-cycle of the insects, as indicated by his experiments, as follows:

- "Incubation period: Eight days to five weeks.
- "From larva to imago: Eleven days.
- "Nonfunctional mature condition: Four days.
- "Adult life: Male, three weeks; female, four weeks.

"But we must not forget that these figures are based upon laboratory experiments, and that under the normal conditions the rate may be accelerated. From Mr. Warburton's experience it is perfectly obvious that, unless regularly fed, body-lice very quickly die. Of all the verminous clothing sent to the Quick Laboratory,

¹ Nicolle: Compt. rend. Acad. Sci., July 12, Sept. 6, 1909.

² Ricketts and Wilder: Jour. Infect. Dis., 1911, 9, p. 9.

³ Anderson and Goldberger: Public Health Reports, (Dec. 24) 1909, 24, ² p. 1941; 1910, 25, ¹ p. 177; (May 31) 1912, 27, ¹ p. 835.

⁴ Shipley, A. E.: "The Minor Horrors of War," London, 1915.

very little contained *live* vermin. The newly hatched larvae perish in a day and a half unless they can obtain food.

"Lice occur chiefly on the body (Pediculus vestimenti) and head (P. capitis). They are small grayish-white insects. The female lays about sixty eggs during two weeks; the eggs hatch after nine to ten days. The lice are small at first; they undergo several moults and grow in size, sucking blood every few hours, and attain sexual maturity in about two weeks. The eggs will not develop unless maintained at a temperature of 22 C. or over—such as prevails in clothing worn on the human body, or in the hair of the head. This is why, when clothing is worn continuously, men are more prone to become infested with lice derived from habitually unclean persons, their clothing, bedding, etc. P. capitis lives between the hairs in the head, and the eggs, called 'nits,' are attached to the hairs. P. vestimenti lives in the clothing, to which it usually remains attached when feeding on man; it lays its eggs in the clothing, and usually retreats into the seams and permanent folds therein."

Lice that have bitten typhus patients during the febrile stage of the attack contain large numbers of peculiar minute bodies, especially in the epithelial cells of the digestive tract. Guinea-pigs injected with the crushed bodies of lice containing these bodies develop the febrile reaction considered characteristic of typhus infection.

The mild form of typhus endemic in the southeastern United States seems to differ in its mode of transmission from that of Old World typhus.¹ Epidemiologists find no evidence of louse transmission of this type of typhus. Maxcy's observations suggest that a reservoir of the disease exists in rats or mice and that accidental transmission to man may occur through the bite of some parasitic blood-sucking arthropod.

Prophylaxis.—Protection against typhus in a typhus-ridden district consists mainly in avoidance of the infected vermin. This is often very difficult for those whose work as physicians or nurses brings them in close contact with typhus patients. Several investigators of the disease, including the talented Ricketts,² have laid

¹ Maxey: Public Health Reports, 1926, 41², p. 2967.

^{2 &}quot;Those near him know that he fully understood the dangers to which he would be exposed and the risks he would run. He decided he would take those risks, meet the dangers with all possible means of prevention, and do the work that would come to his hands. And so he made the great sacrifice and gave all that a man can give to his fellow-men."—Hektoen.

down their lives as the result of infection contracted during their studies, and there were a number of eminent victims among German physicians during the Great War and among American and English physicians and nurses in Serbia.

Among the measures recommended for avoidance of infection are the use of underclothing and socks made of silk, a fabric repugnant to lice; frequent bathing and change of clothing (in clothes that have been discarded for a week the lice are usually dead of starvation—Shipley); boiling or burning clothing known to be infected. Lice may be killed with kerosene, nits (eggs) with vinegar. A variety of body ointments have been used, with more or less success. A lather of dilute cresol soap applied to the skin and also allowed to dry on the inside of garments has been effective for protecting soldiers from lice under war-time conditions (Lancet, February 6, 1915). Powdered sulfur sprinkled over the skin is said to repel the vermin (from the generation of H2S?), but the efficacy of this procedure has been questioned. In the great Serbian epidemic of 1915 it is said that "measures looking to the eradication of lice from people and from their habitations, the improvement of personal and community cleanliness and hygiene, and the isolation of people afflicted with the disease, within a short time placed the epidemic under complete control."1

The serum of typhus convalescents possesses specific preventive properties, and Nicolle² has prepared an antityphus serum from asses which is said to have given favorable results in human typhus. The ass is injected intravenously with emulsions of leukocytes from infected guinea-pigs, followed by similar injections with emulsions of infected guinea-pig spleen. The serum has preventive as well as curative properties.

The Weil-Felix Reaction.—In 1915 two strains of Proteus isolated from typhus cases were found by Weil and Felix³ to be markedly agglutinated by the serum from these and other typhus patients. A little later (1916) the same workers found another strain (Proteus X19) that agglutinated in still higher dilutions. This strain has been extensively employed in testing serum from typhus and suspected typhus patients, using an agglutination tech-

¹ Caldwell: Jour. Amer. Med. Assoc., 1916, 66, p. 326.

² Nicolle and Blaizot: Ann. de l'Inst. Past., 1916, 30, p. 446.

³ Weil and Felix: Wien. klin. Wchnschr., 1916, 29, pp. 33, 297.

nic similar to that used for the Widal reaction. In practically all cases tested the Weil-Felix reaction has proved of diagnostic value. Ordinary strains of saprophytic Proteus and other bacilli such as the typhoid bacillus are not agglutinated by typhus serum, and conversely Proteus X19 is not agglutinated by the serum from typhoid fever, meningitis, and other diseases.1 The significance of the agglutination of Proteus X19 by typhus serum is not clear. There is little reason to suppose that the organism has any causal relation to the disease. Perhaps the simplest explanation is that the Proteus is a secondary invader, but its relatively infrequent isolation in some hundreds of cases and its apparent lack of marked pathogenic properties count against this view. Some writers are of the opinion that the sera of typhus cases are especially rich in secondary agglutinins.

The Specific Organism.—The virus of typhus is present in the circulating blood during the febrile period, as was shown by Moczutkowski, who developed a typical case of the disease after inoculating himself with typhus blood.2 Nicolle,3 Ricketts and Wilder,4 and Anderson and Goldberger⁵ obtained similar results in animal experiments and were able to transmit the disease to various species of monkeys. Gaviño and Girard6 report success in inoculation of the guinea-pig with typhus virus even to the extent of 11 passages through the animals.

The earlier statements on the filterability of the typhus virus were conflicting, but it seems now to be established that the virus does not pass through a Berkefeld filter. Inoculation with filtered blood does, however, render monkeys refractory to further infection, according to the testimony of several observers.

The minute bacterium-like organisms found in human tissues (Fig. 179) and in lice fed on typhus patients (Fig. 180) are generally considered distinct from the ordinary bacteria and classed in the genus Rickettsia. These micro-organisms were first observed by

Bengtson, Ida A.: Public Health Reports, 1919, 32², p. 2446

² Moczutkowski: Allg. med. Centr.-Ztg., 1900, 69, p. 1055.

³ Nicolle: Compt. rend. Acad. Sci., July 12, Sept. 6, 1909.

⁴ Ricketts and Wilder: Jour. Amer. Med. Assoc., 1910, 54, pp. 1304 and 1373; 1910, 55, p. 309.

⁵ Anderson and Goldberger: Public Health Reports, Dec. 10 and 24,

^{1909;} Feb. 4 and 18, 1910; Jour. Med. Research, 1910, 22, p. 469.

⁶ Gaviño and Girard: Pub. Instit. Bact. National Univ., Mexico, 1911.

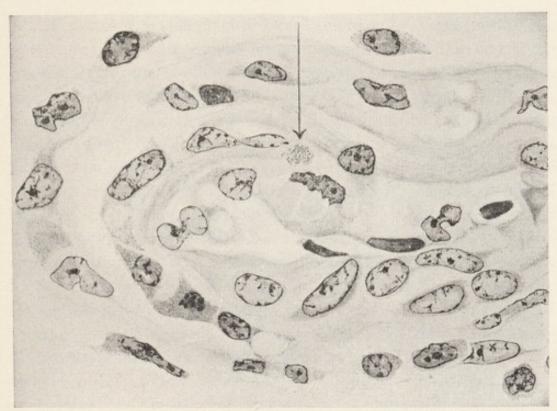


Fig. 179.—A venule of the skin showing a compact cluster of small paired Rickettsiae. The vessel shows an early lesion, the endothelium is swollen and has taken up red corpuscles. The intima is invaded by leukocytes. There is also a perivascular accumulation of endothelial leukocytes (Wolbach, Todd,

and Palfrey).

Fig. 180.—Louse Box 54, Louse 1. Rickettsiae prowazeki. 1800 diameters. Section. Swollen epithelial cell of the mid-gut containing bacillary forms of Rickettsiae. The organisms are usually arranged in skeins of thread-like chains. They also occur singly, in pairs, and in short chains. Lying free in the lumen of the gut is a short Rickettsia thread (Wolbach, Todd, and Palfrey).

Ricketts in lice. The species found in typhus is R. prowazeki, the specific name honoring the memory of the distinguished protozoölogist Prowazek, who, like Ricketts, lost his life in studying typhus.

The rickettsia bodies stain with difficulty by the ordinary staining methods used for bacteria; Giemsa's solution gives the most satisfactory results. R. prowazeki has never been cultivated and hence little is known about it beyond its morphologic characters. Wolbach, Todd, and Palfrey¹ marshall an imposing array of evidence in support of its causal relation to typhus fever. Lice fed on typhus patients sometimes but not always acquire R. prowazeki. In all cases, however, it is found that lice shown to contain the virus of typhus also harbor R. prowazeki. Bodies indistinguishable from R. prowazeki are demonstrable with great regularity in the lesions of typhus in man. Especially significant is the fact that lice taken from a region free from typhus and proved by examination not to contain rickettsiae acquire the organisms when fed on typhus patients and then become capable of transmitting the disease.

RICKETTSIAE IN OTHER CONNECTIONS

Trench Fever.—In the course of the Great War a specific infection became known under the name of trench fever or Wolhynian fever. It is said to have caused almost one-third of all the sickness in some of the armies in northern France and it occurred also in the armies in Mesopotamia and Saloniki. It has a long incubation period (six to twenty-two days); the most constant symptom is said to be pain in the legs; the fever is often high and of the relapsing type. Recovery is the rule. The disease can be transmitted to healthy men by the intravenous injection of whole blood taken from patients up to the fifty-first day of the disease.

Natural transmission is chiefly, if not solely, through the body louse. The bites of infective lice appear not to produce trench fever, but the virus is present in the excreta of these vermin and enters through abrasions in the skin such as are caused by scratching. The virus is present in the urine of trench fever patients and is said to remain active for a long time in dry louse feces and dried urine.

¹ Wolbach, Todd, and Palfrey: "The Etiology and Pathology of Typhus," Cambridge, 1922, p. 222.

The studies of Arkwright, Bacot and Duncan¹ established the fact that in most cases lice or the excreta of lice that had been proved by inoculation to contain the virus contained large numbers of rickettsiae. There is other evidence. Bacot, who became accidentally infected with trench fever, had for over two years previously been feeding upon his person a stock of lice known to be free from rickettsiae. Two days after the onset of his attack, he resumed the feeding of these lice, and rickettsiae were observed eight days afterward in enormous numbers in their excreta. Infection of the lice with rickettsiae continued possible for as long as three months after the disappearance of all symptoms. Nothing, however, is certainly known about the occurrence of rickettsiae in the bodies of patients with trench fever. Further evidence is necessary to establish the causal relation of Rickettsia pediculi to trench fever, although there is a strong presumption that such a connection obtains.

Heartwater Disease.—In a highly fatal disease of cattle, goats and sheep in South Africa, Cowdrey has found an organism (R. rumantium) which appears to be the cause of the infection.² It is transmitted by ticks. Experimentally produced heartwater disease shows that the presence of rickettsiae coincides in all cases with the presence of the heartwater virus.

Besides the several presumably pathogenic forms of rickettsiae just described, nearly forty apparently nonpathogenic microorganisms of this group have been found in various species of insects and arachnids. Little is known about them. Their presence in some seemingly normal insects with no known connection with disease adds to the difficulty of detecting and studying pathogenic types. Noguchi succeeded in cultivating one of the nonpathogenic rickettsia-like organisms from the Rocky Mountain spotted-fever tick.³

¹ Arkwright, Bacot and Duncan: Jour. Hyg., 1919-20, 18, p. 76.

² Cowdrey: Jour. Exper. Med., 1925, 42, pp. 231, 253.

³ Noguchi: Jour. Exper. Med., 1926, 43, p. 515.

CHAPTER 35

THE BACTERIOLOGY OF MILK AND MILK PRODUCTS

It is a familiar observation that milk sours on standing. The agency of bacteria in this, one of the earliest known fermentive processes, was established by the work of Pasteur in 1857. It was first shown by Hueppe in 1884 that a particular species of microorganism was usually associated with the process.

The Fermentation of Milk.—Lactic fermentation consists in the conversion of milk sugar or lactose into lactic acid. Lactose itself is not directly fermentable, but must first be converted into the simpler sugars, dextrose and galactose. The equation,

$$\begin{array}{c} \mathrm{C_{12}H_{22}O_{11}\,+\,H_2O}\,=\,4\mathrm{C_3H_6O_3} \\ \mathrm{Lactose} \quad \mathrm{Water} \quad \mathrm{Lactic\ Acid} \end{array}$$

although substantially correct, has only an approximate value.

The quantity of acid necessary to effect the curdling of milk (precipitation of the casein) varies somewhat according to the amount of casein and phosphate present, but averages about 0.45 per cent. The terminal acidity may go much higher than this (0.85 per cent). Sometimes the coagulation of milk takes place in the presence of a relatively small amount of acid, especially if the milk is boiled or pasteurized. In general, the curdling of milk depends upon degree of acidity, temperature, time of action, amount and solubility of calcium salts present, and other factors. The heat generated in the spontaneous souring of milk is far greater than could come from the lactose fermentation alone; the process is, therefore, a complicated one.

Many different species of bacteria are able to provoke the lactic fermentation, among them such familiar organisms as Staphylococcus aureus, Streptococcus pyogenes, and Bact. coli. A few species are commonly responsible, however, for the natural souring of milk. The common lactic-acid bacteria may be divided into two groups. One of these comprises capsulated gas-forming bacilli of the Bact. (lactis) aërogenes type. These organisms are closely related

to Bact. coli, differing principally in their possession of capsules, lack of motility, and ability to produce gas from potato starch. (See p. 321.)

The second type is a streptococcus to which the name Streptococcus lacticus has been given (Kruse)¹ (Fig. 181). This streptococcus is very abundant in naturally soured milk, particularly when the acidity has reached a high point. Streptococcus lacticus has been found by Heinemann on the skin of cows, in cow-dung, and in milk at all stages of handling. The milk streptococcus in all its

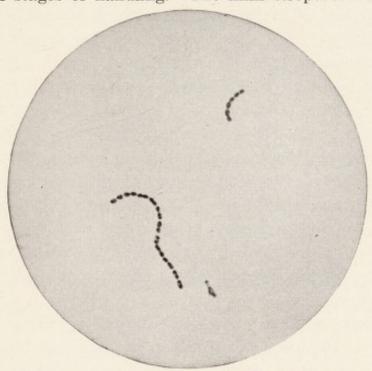


Fig. 181.—Streptococcus lacticus from serum broth (Heinemann).

properties is extraordinarily like Streptococcus pyogenes (Heinemann).² As the result of a comprehensive investigation Heinemann concludes that both B. aërogenes and Streptococcus lacticus are ordinarily present in naturally souring milk, the former species in abundance in the beginning of the fermentation, the latter in the later stages. Inoculation of sterilized milk with pure cultures of either one of these two organisms and with mixtures reproduces very closely the process of natural souring.

¹Leichmann ("Milchzeit," 1899, 23, p. 523) was the first to demonstrate the importance of this group of organisms, although he erroneously regarded them as bacilli, and gave them a name (Bacillus lactici acidi) which has been the source of much confusion.

² Heinemann: Jour. Infect. Dis., 1906, 3, p. 173.

Although milk allowed to stand ordinarily turns sour from the formation of lactic acid, other fermentations are exceptionally observed. The butyric acid fermentation¹

$$C_6H_{12}O_6 = 2H_2 + 2CO_2 + C_4H_8O_2$$
Hydrogen Carbon Butyric
Dioxide Acid

is one of the most thoroughly studied, and can be caused by a number of different, but closely related, anaërobic bacteria. Several well-known pathogenic anaërobes, such as the bacilli of symptomatic anthrax and of malignant edema (both nonmotile), are able to produce butyric acid. Schattenfroh and Grassberger,2 who have made a particular study of this fermentation, describe also a "motile butyric acid bacillus" which, like the two nonmotile forms above mentioned (nonmotile butyric acid bacilli), is widely distributed in nature, but, unlike them, is not pathogenic. A distinction is also made between those bacteria that are able to produce butyric acid from carbohydrates (and to some extent from lactic acid and glycerol) and those that produce butyric acid accompanied by the generation of malodorous gases in the course of protein decomposition. To the former class belong the anaërobes already mentioned; to the latter, certain aërobes closely allied to the hay bacillus or potato bacillus.

The spontaneous alcoholic fermentation of milk is less usual under natural conditions than either the lactic or butyric. The manufacture of certain alcoholic beverages is, however, dependent upon the artificial production of this form of milk fermentation. A well-known drink called koumiss is made by Tartars from mare's milk, a small quantity of old koumiss often being added to fresh milk as a starter. The bacteriology of the process is not known. The similar beverage known as kefir, an effervescent sour milk prepared by the inhabitants of the Caucasus from the milk of cows, goats, and sheep, is made with the aid of "kefir grains," small, irregular, yellowish granules of a gelatinous consistency. The microbic composition of the kefir grain has been studied by a number of investigators, with rather discordant results. Several species of bacteria have been described as present, but it does not seem

¹ The actual process is much more complex than indicated by this equation.

² Schattenfroh and Grassberger: Arch. f. Hyg., 1900, 37, p. 54.

³ Beijerinck: Centralbl. f. Bakt., 1889, 6, p. 44; v. Freudenreich: Landw. Jahrb. d. Schweiz, 1896, 10, p. 1.

probable that all the organisms found in kefir grains are necessarily concerned in the specific fermentation process. According to Nikolaiewa, only two micro-organisms (B. caucasicus and Torula kefir) are essential, and all the others are to be regarded as accidental contaminations. B. caucasicus is a long, slender, nonmotile bacillus which produces great quantities of lactic acid from milk-sugar. The yeast organism ferments lactose, dextrose, and sucrose, and is apparently responsible for the alcoholic part of the fermentation. By the symbiotic use of these two species of micro-organisms in pure cultures Nikolaiewa succeeded in preparing the characteristic kefir beverage. In such processes, however, the action of bacteria is not always indispensable. Some species of yeasts are able to effect the alcoholic fermentation of milk in pure culture.

A variety of other fermentations of milk may be sometimes caused by bacteria. Casein may be precipitated by rennet of bacterial origin (Conn)² or dissolved by bacterial casease. The behavior of pure cultures of various micro-organisms inoculated into sterilized milk gives evidence of widespread ability to provoke fermentation changes. Many cultures cause acid production and consequent precipitation of the casein, which is then slowly dissolved (casease); others dissolve the casein without initial precipitation, and still others curdle the milk without acidity.

A series of unusual or abnormal changes, sometimes called "diseases" of milk, are produced by certain bacteria which occasionally find their way into milk. "Blue milk" (B. cyanogenes), "red milk" (B. prodigiosus, B. erythrogenes, et al.), and "yellow milk" (B. synxanthus) are caused by the presence of various chromogenic organisms. The bitterness that sometimes develops in milk after a short interval is due to the products of certain micro-organisms. Several different bacteria have been met with in outbreaks of this not very uncommon dairy trouble. Harrison³ found that a yeast-like organism (Torula amara) was apparently the active agent in an epidemic of bitter milk in Canada. There seems little doubt that a number of species are capable of imparting a bitter taste to milk and its products, although nothing is known of the chemical nature of the substances concerned. Milk sometimes suffers also

¹ Nikolaiewa: Centralbl. f. Bakt., II, 1908, 21, p. 161.

Conn: Storrs Agri. Exp. Sta. Rep., 1892, 5, p. 106.
 Harrison: Centralbl. f. Bakt., II, 1902, 9, p. 206.

from a ropy or slimy fermentation which, under most circumstances, is considered undesirable and has caused great loss to the butter industry in Switzerland and elsewhere. Thorough disinfection of the utensils and premises is usually sufficient to stamp out all these anomalous and in some instances disastrous fermentations. For certain purposes, as in the manufacture of Edam cheese in Holland, slimy milk is intentionally produced by use of a particular species of streptococcus.

Methods of Bacterial Examination of Milk.—The need for controlling the character of the public milk supply has led to the development of special methods of laboratory examination. These have been tested and simplified for routine purposes by the cooperation of many laboratory workers in this country and are set forth in detail in a special laboratory guide prepared under the auspices of the American Public Health Association and other interested organizations.¹

Samples of milk (at least 10 cc.) are taken with a sterile tube after thorough mixing in the original container. For transportation they must be transferred to a tightly stoppered vial or bottle, and iced. If possible, plates should be poured within four hours. The standard agar medium with a P_{II} between 6.2 and 7.0, preferably 6.6, should be used. Three dilutions—1:100, 1:1000 and 1:10,000—are ordinarily plated. The standard incubation period is forty-eight hours at 37 C. As in water analysis the colony count has only a relative significance, since the most favorable medium does not permit all the viable bacteria in the milk to develop. The colony count or "standard plate count" is assigned greater importance in the examination of milk than in that of water, no enumeration of specific bacteria—as of Bact. coli in water examinations—having yet been shown to possess much value.

Besides the ordinary macroscopic colony count obtained by plating, a microscopical method devised by Breed² is of value for many purposes. In the Breed method milk is taken in a capillary pipet discharging 0.01 cc., and is dried over an area of one square centimeter on a microscopical slide. After washing out the fat with xylol and fixing with alcohol, the film is stained with Löffler methylene blue. The number of bacteria per cubic centimeter is esti-

Standard Methods of Milk Analysis, 5th Edition, 1927.

² Breed: N. Y. Agri. Exp. Station Bull., No. 443, 1917.

mated by counting a carefully measured area. The ratio used in comparing the microscopical count with the standard plate count is 4:1. The direct microscopic count has proved of special value in judging the quality of fresh milk as delivered at pasteurizing plants or other milk-receiving stations.

Sources of Bacteria in Milk.—Freshly drawn milk is not sterile, but always contains some bacteria. Under ordinary conditions these come in part from the surface of the udder, from the hands of the milker, and other outside sources, but always in part also from the udder itself. After much conflicting testimony, it is now well established that the milk in the udder of the cow is rarely, if ever, germ-free, but that the germ-content is different in different animals, and that the first portion of the milk drawn (fore-milk) always contains more bacteria than the last (strippings). The milk secreted by healthy milk-glands is, as a rule, sterile, but the milk-ducts in the teats of the cow afford a ready pathway for the invasion of the udder. The bacteria that abound in the milk-ducts would probably grow back into the udder more freely than they do if it were not for the germicidal power possessed by milk, as by other bodyfluids. The existence of a germicidal property has been called in question,1 and the death of bacteria falling into milk ascribed simply to their inability to grow in that medium; but even those kinds best adapted for growth die off at first when introduced into perfectly fresh milk. Most investigators agree that milk, like serum, possesses a genuine although feeble germicidal power.2 The action is different for different species of bacteria, and the milk from one animal may be more actively bactericidal than that from another. At least, the germicidal property can never be relied upon to take the place of cleanliness and icing.

When milk is collected under ordinary conditions, the udder germs form but an insignificant fraction of the total number of bacteria in the milk. The skin of the cow, the hands of the milker, the vessels used for collection, and the dust of the cowbarn all contribute their quota to the number found immediately after milking. If milk is obtained with aseptic precautions, it contains only a few hundred (200 to 400) germs in a cubic centimeter. Collected with

Stocking: Storrs Agri. Exp. Sta. Rep., 1904.

² Rosenau and McCoy: Jour. Med. Res., 1908, 18, p. 165; Jones and Little: Jour. Exper. Med., 1927, 45, p. 319.

somewhat less care, it may contain a few thousand (2000 to 6000); with careless manipulation milk, even when freshly drawn, may be highly contaminated (30,000 to 100,000 per cc.). Milk is a particularly favorable medium for bacterial growth, and when it is richly seeded at the outset, enormous multiplication will occur, provided it is kept at ordinary summer temperatures. The temperature factor is indeed all important. If milk is kept at 0 C. (32 F.), it shows a decrease in the bacterial content during the first one hundred sixty-eight hours, but at higher temperatures the rate of multiplication is prodigious.

MILK COLLECTED WITH GREAT CARE*

Initial Content, 3000	Kept at:				
	4 C.	6 C.	13 C.	20 C.	
24 hours	2,500	3,100	3,400,000	450,000	
48 "	3,600	12,000	18,800		
96 "	218,000	1,480,000			
168 "	4,209,000	80,000,000			

ORDINARY MILK

Initial Content 20 000	Kept at:				
Initial Content, 30,000	4 C.	6 C.	13 C.	20 C.	
24 hours	38,000	42,000	187,000	4,000,000	
48 "	56,000	360,000	38,000,000		
96 "	4,300,000	12,200,000			
168 "	38,000,000	300,000,000			

^{*} Adapted from Park: "Pathogenic Bacteria," N. Y., 1905, p. 463.

Many such figures might be cited, but they all lead to the same conclusion: namely, that the number of bacteria in milk depends chiefly—(1) upon the degree of original contamination of the milk, (2) upon the age of the milk, and (3) upon the temperature at which it has been kept. In other words, the bacterial count gives valuable information both as to the cleanliness and staleness of this indispensable food. The excessive importance at one time placed by some public health workers upon the number of bacteria in milk has been lessened in recent years. As Breed¹ expresses it: "High

¹ Breed, R. S.: N. Y. State Agric. Exper. Sta., Bull. No. 567, 1929.

count milk is very frequently milk that is undergoing normal lactic acid fermentation, a process which is not properly described as a filthy or dirty process."

All observations emphasize the importance of rapidly chilling the milk as soon as possible after it is drawn, and of keeping it constantly at as low a temperature as possible. Milk collected in sterilized vessels with proper precautions, and then cooled and kept cool, has been preserved in a thoroughly sweet and fresh state for periods that seem surprisingly long judged by ordinary household experience. Bottles of such clean and cool milk, without addition of any preservatives, have been transported from the vicinity of Chicago to Europe without losing either palatability or wholesomeness.

Top milk and gravity cream contain more bacteria than skim milk, since bacteria rise with the cream. Fresh separator cream contains, as a rule, fewer bacteria than the original milk. In the process of centrifugalization, the bacteria, being heavier than water, tend to drop to the bottom, while the cream, being lighter, rises to the top.

Before the introduction of pasteurization much of the milk distributed in large cities was too far advanced in bacterial decomposition to be a desirable food. In New York City it was found by Park¹ that during the coldest weather the milk in the shops averaged over 300,000 bacteria per cubic centimeter; during cool weather, about 1,000,000, and during hot weather, about 5,000,000. In Chicago Heinemann and the writer² found, in market milk collected during April, May, and June, numbers ranging from 10,000 to 74,000,000; and in Boston Sedgwick and Batchelder³ reported that samples of milk from groceries averaged over 4,500,000.

The question has often been raised whether there are not certain kinds of bacteria that invariably predominate in milk; whether, in short, it is not desirable to recognize the existence of a special class of milk bacteria. Swithinbank and Newman⁴ give descriptions of some 120 "milk bacteria," the statement being expressly made

¹ Park: Jour. Hyg., 1901, 1, p. 391.

² Report of the Civic Federation of Chicago, 1904.

³ Sedgwick and Batchelder: Boston Med. and Surg. Jour., 1892, 126, p. 25. This paper is the first report made upon the bacterial content of milk in an American city.

⁴ Swithinbank and Newman: "Bacteriology of Milk," New York, 1903, pp. 392-451.

that "organisms of water, soil, etc., are not included." Other writers also appear to believe that certain species are especially adapted for life in milk, and habitually gain the upper hand in this fluid under natural conditions. As a matter of fact, there is little or no evidence to support this view. Fresh milk is an admirable medium for the growth of a great many species of bacteria, as reference to lists of "milk bacteria" will show, and there is no reason to consider it as preëminently favorable for a few special kinds. If some varieties are found in milk more commonly than others, this is in large part, if not altogether, because they are more commonly present in the environment in which the milk is collected. The dependence of the flora of milk upon the bacterial environment has been noted by many observers. The dust of the cow-stable, the nature of the straw used for bedding, even the character of the pasture, have been observed to affect the kind and abundance of the species found in milk. Weigmann and Zien1 have shown that the use for bedding of a poor quality of straw, which is almost always full of molds-so-called "wild yeasts"-and peptonizing bacteria, is likely to be followed by undesirable fermentations in milk. On the whole, it would seem that the kinds of bacteria found in milk are determined by the opportunities of contamination to which the milk is exposed, and the temperature at which it is kept, rather than by any special adaptability to this particular food medium.

The entrance of pathogenic bacteria into raw milk sometimes occurs. Both individual cases and epidemics of several infectious diseases have been clearly traced to the drinking of uncooked milk. Two ordinary sources of infection are recognized. The germs may be derived directly from the cow, or they may be introduced into milk with infectious material of human origin. The latter is much the more common source. The bacteria of typhoid fever, of cholera, of diphtheria, of scarlet fever and of septic sore throat may find their way into milk through the agency of convalescents or persons suffering from mild attacks of these diseases who are engaged in the milking process, or in the handling of milk and milk products.² Sometimes, too, infections may come about in a more circuitous fashion, as exemplified in the causation of typhoid fever by the use

Weigmann and Zien: Milchzeit, 1893, 22, p. 569.

² "Milk and Its Relation to the Public Health," Bull. 41, Hyg. Lab., Pub. Health and Mar. Hosp. Service, 1908, pp. 19–159.

of contaminated water for rinsing milk-cans or other utensils. A serious source of danger lies in the improper disposition of excreta in country privies and in the fact that flies may convey typhoid bacilli from the excreta to milk (pp. 349, 350).

Tuberculosis attributed to milk is probably caused commonly by bacilli of bovine origin, but it is also possible for milk to become contaminated with tubercle bacilli from tuberculous persons. It is a not unknown practice in country districts for milkmen to begin the milking process by moistening their hands with saliva. Milk may also conceivably become contaminated with human tubercle bacilli by means of the "infectious droplets" discharged in coughing or sneezing. Owing to the difficulty of tracing a case of tuberculosis to its origin, the degree of danger from this source is uncertain, although the possibility of contamination through tuberculous milkers should not be overlooked. The relation of bovine tuberculosis to human tuberculosis is elsewhere considered (pp. 463–466).

Among other diseases of the cow transmissible to man through the medium of milk, may be mentioned foot-and-mouth disease (p. 630). Extensive outbreaks of this affection, which attacks especially children, have been caused by the use of raw milk. In fact, milk, butter, and cheese are the usual, if not the exclusive, vehicles of this malady.

Inflammation of the udder of cows (garget or mastitis), a condition that may be provoked by a variety of organisms, is apparently fraught with some danger to the consumer of raw milk. On more than one occasion the use of milk from udder-sick cows has been followed by illness, but the bacteriology of these cases has not been always determined. The same must be said of the association of enteritis in cows with gastro-intestinal troubles in man. The epidemiologic connection between sudden attacks of illness and the use of the milk of cows suffering from diarrhea is undoubted, but the nature of the micro-organisms (or toxins?) concerned has remained in many instances uncertain. Streptococci have been regarded as the cause of some of these outbreaks, paratyphoid bacilli and organisms resembling Bact. coli of others.

Some other affections to which cattle are liable seem of less importance. Actinomycosis attacks the cow's udder not infrequently, but not a single case of this disease in man has ever been shown to have been communicated by milk. Anthrax likewise is

not ordinarily and directly a milk-borne disease, probably in part. at least, because anthrax bacilli are not able to pass from the circulation into the milk of an infected animal except in the later and easily recognizable stages of the disease. It is not known that rabies or the pleuropneumonia of cattle has ever been conveyed to man by milk, although if injuries of the mouth or digestive tract exist, rabic infection by this channel is theoretically conceivable. Goat's milk has been shown to be the chief medium of infection in undulant or Malta fever. (See p. 366.) Contagious abortion of cattle is caused by Brucella abortus, an organism closely similar to and perhaps a variety of the germ of undulant fever (Brucella melitensis). Human infection with Br. abortus was definitely reported in 1924. A number of other cases of undulant fever due to this organism have since come under observation, many of them in persons who had drunk heavily of raw milk.2 At the present writing human infection with Brucella abortus seems to be rare especially in temperate countries, but final judgment as to its frequency must be suspended. In view of all these manifold, if not yet clearly understood, possibilities of infection, it would seem an indispensable precaution to avoid the use of uncooked milk from an animal with any symptom of illness whatever.

Infant Diarrhea.—The occurrence of "infant" or "summer" diarrhea in young children whose food consists wholly or in large part of cow's milk has been the subject of much investigation. The predominant influence that the kind of feeding has upon this condition is shown by numerous comparisons that have been made between the sickness and mortality among breast-fed children and among those fed with condensed milk or cow's milk. The following figures (from Park) are typical of the difference observed everywhere:

	Children That					
	Did Well	Did Fairly	Did Badly	Died	Total	
Store milk	21	23	20	15	79	
Condensed milk	22	20	14	14	70	
Best bottled milk	9	3	0	0	12	
Breast feeding	17	7	7	0	31	

¹ Keefer: Bull. Johns Hopkins Hosp., 1924, 35, p. 6.

² Evans, Alice: Jour. Amer. Med. Assoc., 1927, 88, p. 630.

In Berlin, during the five years 1900–04 there were 41,383 deaths of infants whose method of feeding was ascertained; only 3995 of these were breast-fed; in other words, more than nine-tenths of the infant mortality occurred among those fed artificially. Harrington¹ pointed out that infant mortality is a class mortality, highest, as a rule, in those cities and towns where women work in industrial establishments and put their children early to the bottle.

The bacteriology of infant diarrhea is itself by no means definitely established. Some observers would lay the responsibility at the door of certain streptococci very similar to, if not identical with, Streptococcus pyogenes, but this view has not met with general acceptance. Several varieties of the dysentery bacillus have been connected with summer diarrhea, and have been found in large numbers and repeatedly in the stools in typical cases by a number of observers.2 It is not necessary to assume, however, that identical clinical symptoms are invariably caused by one and the same micro-organism. Booker,3 one of the most indefatigable workers in this field, expressed the opinion that "no single micro-organism is found to be the specific exciter of the summer diarrhea of infants, but the affection is generally to be attributed to the result of the activity of a number of varieties of bacteria." Park and Holt, as the result of a comprehensive study of the relation between milk-supply and infant diarrhea in New York City, reached the conclusion that "no special varieties of bacteria were found in unheated milk which seemed to have any special importance in relation to the summer diarrhea of children."4 While it is therefore impossible to assign a uniform bacterial cause for every case of infant diarrhea or to attempt to differentiate between different causes, there can be no doubt as to the significance of the numbers of bacteria in milk. The most conclusive investigations on this point are those of Park and Holt. These observers found that during hot weather the effect of bacterial contamination on the health of infants was very marked when milk was fed without previous heating. "When milk is taken raw, the fewer the bacteria

¹ Harrington: Amer. Jour. Med. Sci., 1906, 132, p. 811.

² Studies from the Rockefeller Inst. for Medical Research, 2, 1904.

³ Booker: Johns Hopkins Hosp. Rep., 1896, 6, p. 159.

⁴ Park and Holt: Archives of Pediatrics, Dec., 1903, 20, p. 881.

present the better the results. Of the usual varieties, over 1,000,000 bacteria per cubic centimeter are certainly deleterious to the average infant."

It should be remembered that when once the specific agent of intestinal trouble, whatever it be, is introduced into the gastro-intestinal canal of infants, the continued use of milk from any source is injurious. If the resistance of an infant is depressed by hot weather, the effect of abnormal fermentation and putrefaction of the milk within the body may be especially serious. The factors involved in the causation of summer diarrhea in infants are varied and complex.

Certified Milk .- One of the earliest attempts to avoid the dangers of milk-borne infection was the elaboration of methods designed to safeguard milk at every step in its production, collection and distribution. To this end "Medical Milk Commissions" were established in a number of localities in the United States, usually under the auspices of the local medical society. Milk conforming to certain standards is certified by such a Commission to be of high quality. The regulations, which are generally excellent, deal with such matters as the cleanliness of barnyard and dairy; the purity of the farm water supply; the proper sterilization of utensils; and the health of the cows and of the milkers. Especial attention is paid to the bacterial content of the milk, for which a maximum limit of 10,000 germs per cubic centimeter is set. Certified milk is undoubtedly safer to use than milk collected and transported without suitable supervision, and the work of the milk commissions has done much to improve dairy conditions in many parts of the country. At the same time raw milk, certified or not, can never be looked upon as beyond all chances of contamination. The difficulty-not to say impossibility-of making sure that no typhoid carriers, and no persons suffering from a mild case of diphtheria or scarlet fever are ever employed in a dairy is often urged as an objection. In point of fact outbreaks of diphtheria, paratyphoid fever and other diseases have been traced to certified milk. For this reason as well as because of the relatively high cost of production the use of certified milk remains limited.

Pasteurization.—The use of a temperature high enough to kill most micro-organisms but not so high as to produce radical alterations in organic substance was first applied by Pasteur to preserving wines without destroying their original flavor or bouquet. At the present day the method of pasteurization is chiefly used for the treatment of milk. Numerous epidemics of disease were formerly traced to milk. Up to 1927, there were actual records of 613 outbreaks of milk-borne typhoid in the United States alone, 65 of scarlet fever and 43 of diphtheria besides many outbreaks of septic sore throat and other infections. The amount of unidentified disease in infants and young children caused by raw milk cannot be estimated.

The general pasteurization of the milk supply of the larger American cities has greatly diminished milk-borne disease. In 1924 over 90 per cent of the milk supply in all the largest cities (over 500,000 population) was pasteurized and more than 50 per cent in most of the smaller cities (over 25,000 population). The proportion of pasteurized milk used throughout the country seems to be steadily increasing. Corresponding with the growth of pasteurization the amount of disease traced to milk has dwindled to a low point. In 1907–15 in Massachusetts 2215 typhoid cases were traced to milk; in 1919–23, only 297.

Some of the earlier types of pasteurizing machines were quite defective and failed to achieve their purpose. This was particularly true of the "flash" process where the machine was designed to expose milk for a brief period to a relatively high temperature. The use of a lower temperature continuously for a longer period as exemplified in the "holding" process is now general. Even so, the existence of defects in certain types of modern pasteurization must be squarely faced.²

The aim of pasteurization being primarily the destruction of pathogenic organisms in the milk, there has been much experimentation and discussion as to the most suitable temperature and time of exposure. Current requirements usually specify exposure for thirty minutes either to 142 or 145 F. (62.2–63.9 C.). Experiments indicate that the tubercle bacillus, probably the most resistant of the pathogenic bacteria likely to be found in milk, is killed by exposure to 140 F. (61.1 C.) for twenty minutes,³ and at 136 for

Armstrong and Parran: Public Health Reports, Suppl. No. 62, 1927.

² Commercial Pasteurization. Pub. Health Bull. No. 147, Washington, 1925; Putnam: Am. Jour. Pub. Health, 1927, 17, p. 121.

³ Park: Am. Jour. Pub. Health, 1927, 17, p. 36.

thirty minutes, so that a temperature of 142 F. (for thirty minutes) should allow an ample margin of safety. In practice the difficulty has arisen of insuring that "every particle" of milk be held at the given temperature for the required period. Objection to the use of a temperature of 145 F. has been made on the ground that if "every particle" of milk be heated to at least this temperature some particles will inevitably be heated to temperatures as high as 147 or 148 F. and that these high temperatures will destroy the creaming ability of the milk. Many sanitary authorities believe that the destruction, or even the material reduction, of the creaming ability of commercially pasteurized milk would cause great prejudice against the pasteurizing process. On the other hand, there are those that believe that any temperature lower than 145 F. (63.9 C.) does not allow a sufficient margin of safety. Whatever the outcome of the controversy, it is clear that one of the immediate needs is the correction of mechanical defects in the existing types of pasteurizing devices so that "cool pockets," dead ends and leaky valves are eliminated. When this has been done it may be found that a temperature of 142 F. affords an entirely adequate safety margin.2

The general decline in milk-borne disease, including bovine tuberculosis, which has occurred in communities where pasteurization has been put into effect, indicates that whatever may be the shortcomings of some forms of pasteurizing equipment, the general introduction of the process has greatly lowered the danger of infection. Relatively little disease is now traced to milk in our large American cities. Supervision of commercial pasteurization is, however, essential, not merely to detect defects in machinery but to insure the proper conduct of the whole process. In the extensive Montreal typhoid outbreak in 1927 it was thought that only part of the milk entering a large pasteurizing plant was subjected to pasteurization, the balance being distributed to the consumers in a raw condition.³

Not all bacteria, of course, are killed by pasteurization.⁴ Besides the resistant spore-formers, aërobic and anaërobic, certain

¹ North and Park: Am. Jour. Hyg., 1927, 7, p. 147.

² Frank, Moss and LeFevre: Pub. Health Reports, 1927, 42, p. 1152. Putnam: Am. Jour. Pub. Health, 1927, 17, p. 121.

³ Jour. Amer. Med. Assoc., 1927, 89, p. 217.

⁴ Prucha: Am. Jour. Pub. Health, 1927, 17, p. 356.

streptococci are able to survive the pasteurizing temperature. All the known disease-producing streptococci, however, appear to have a low thermal death point. Milk pasteurized at the usual temperatures (62–64 C. or 142–145 F.) sours in the ordinary way on standing, but if higher temperatures be used (180 F. or 82.2 C.) the lactic acid bacteria are killed. In such cases the peptonizing bacteria which survive this temperature cause the milk to decompose.

The high food value of milk makes it desirable to keep the expense of producing safe milk as low as possible. It has been estimated that the average cost of pasteurizing one gallon of milk is a little less than $\frac{1}{2}$ cent per gallon.

Current objection to pasteurization is mainly on the ground of vitamin destruction. Vitamins A (fat-soluble) and B (water-soluble), both abundant in milk, are quite resistant to heat, but the antiscorbutic vitamin C is weakened or destroyed by pasteurizing temperatures. Infants fed exclusively on a diet of pasteurized milk will develop scurvy. Furtunately the addition to the diet of readily accessible antiscorbutics such as orange juice or tomato juice is tolerated by infants much earlier than used to be supposed, even in the first month of life. The reasonable procedure, therefore, appears to be to use pasteurized milk to insure protection against disease germs of various kinds and to supply the vitamin deficiency through other foods. The success in infant feeding based on this principle is evinced especially in the amazing reduction in infant mortality in the summer months.

It is self-evident that pasteurization should not be used to conceal slovenly methods of milk production. To this end limits as to bacterial content before and after pasteurization are established by many city health departments. In New York City "Grade A" milk must not contain more than 200,000 bacteria per cc. before, or more than 30,000 after, pasteurization; "Grade B" milk not more than an average of 1,500,000 before or 100,000 after pasteurization.

It is of course essential that milk once pasteurized should be protected against contamination with pathogenic microbes. To this end the health of the workers in and about a pasteurizing plant is a proper matter for concern; careful oversight should be given also to those engaged in the work of distribution.

¹ Ayers: Bull. 342, U. S. Dept. of Agr., Sept., 1926.

Bacillus bulgaricus.—The name Bacillus bulgaricus is given to an organism isolated from milk in 1905 and made prominent by the work of Metchnikoff. The bacillus is a slender, gram-positive organism showing granular staining with methylene-blue. It produces a large amount of lactic acid in milk and shows marked ability to grow in highly acid media. It is similar to, if not identical with, the Boas-Oppler bacillus found in the gastric juice of patients suffering from carcinoma of the stomach. Organisms of this group are found in large numbers in normal ensilage at an important stage of fermentation, and are believed to produce a large part of the acid found in silage fermentation.

Metchnikoff first suggested feeding cultures of this bacillus in cases of intestinal putrefaction, the underlying idea being that the large amount of acid produced by B. bulgaricus will restrain putrefactive bacilli. The benefits derived, however, in such cases are not due to the presence of the Bulgarian bacillus which does not seem to become readily naturalized in the intestinal tract, but to the consumption of the highly acid milk.

Bacillus acidophilus.—In recent years there has been a renewal of interest in sour milk therapy with particular reference to milk soured by pure cultures of Bacillus acidophilus (page 320). This organism is a normal inhabitant in the intestinal canal of infants and, to a lesser degree, of adults. It appears to be better adapted to maintenance in the intestine than B. bulgaricus, and hence, on a priori grounds, might be expected to serve better in those cases in which the implantation of an aciduric flora is desired.

Rahe distinguishes four types of B. bulgaricus and four types of B. acidophilus² on the basis of variations in carbohydrate fermentations. All the B. bulgaricus strains ferment dextrose, some ferment sucrose and raffinose, and none ferment maltose; all B. acidophilus strains ferment maltose as well as dextrose and vary in the fermentation of lactose, sucrose, and raffinose.

From the work of numerous investigators and particularly of Rettger and his colleagues³ it appears that the types of bacteria developing in the alimentary tract may be significantly influenced

¹ Heinemann and Hefferan: Jour. Infect. Dis., 1909, 6, p. 304.

² Rahe: Jour. Bact., 1918, 3, p. 420.

³ Rettger, L. F., and Cheplin, H. A.: "A Treatise on the Transformation of the Intestinal Flora with Special Reference to the Implantation of Bacillus Acidophilus," New Haven, 1923, 135 pp.

by alterations in the chemical composition of the diet, by the ingestion of cultures of B. acidophilus with or without carbohydrates or by the ingestion of certain carbohydrates (lactose and dextrin) alone. There is some evidence to indicate that coincident with stimulation of the growth of B. acidophilus there is a suppression of the customary flora. In extreme cases the flora may come to be dominated not by B. acidophilus, but by the closely related organism, B. bifidus. When experimental subjects are fed cultures of B. bulgaricus with lactose or dextrin there follows an intestinal growth of B. acidophilus such as is obtained with the ingestion of the same quantity of carbohydrate alone.

The mechanism whereby a particular species of bacteria which normally is not a predominant type in the intestinal flora becomes implanted is undoubtedly highly complex. It was suggested that aciduric organisms may overgrow other types which are present in the contents of the intestine and on the mucous membranes because the acids which are formed in the course of their metabolic activity—in the presence of utilizable carbohydrates—are favorable to their growth and multiplication and unfavorable to the organisms whose optimal hydrogen ion concentration lies nearer or beyond neutrality. On the basis of PH measurements upon the feces of white rats and of man Rettger and Cheplin inclined to doubt the validity of such an explanation. However, the work of Cannon and McNease1 makes such an explanation seem not unreasonable. These authors report that concurrently with a change from the usual mixed, proteolytic flora to an aciduric flora in the intestine of the white rat there is a change in the hydrogen ion concentration of the contents of the cecum from P_H 7.0-7.1 to P_H 4.4 and of the contents of the colon from P_H 7.0-7.1 to P_H 6.4-6.8.

A number of authors have reported significantly favorable results obtained in the treatment of chronic constipation and other intestinal disorders with acidophilus milk. Thus, Gompertz and Vorhaus² report that a favorable influence was observed in the 200 cases of chronic constipation and 100 cases of diarrhea and mucous colitis which they studied. Cheplin, Fulmer and Barney,³ Kope-

¹ Cannon and McNease: Jour. Infect. Dis., 1923, 32, p. 175.

² Gompertz and Vorhaus: Jour. Amer. Med. Assoc., 1923, 80, p. 90.

³ Cheplin, Fulmer and Barney: Jour. Amer. Med. Assoc., 1923, 80, p. 1896.

loff, and others have similarly reported therapeutic success. Kopeloff found that sterile milk or pasteurized acidophilus milk does not relieve constipation, while milk containing viable B. acidophilus is effective. Hence he concluded that the effects produced are due to bacterial and not to physical or chemical influences. Viable B. acidophilus may be recovered from the feces during several months after acidophilus milk feeding.

The marketing of commercial preparations of organisms that produce lactic acid is plainly in need of control.² The approximate number of milk organisms of a suitable type and the absence of undesirable contaminants are important matters requiring expert supervision.

Milk Products.—Butter.—The share of bacteria in the processes involved in the manufacture of butter and cheese is important, although at present imperfectly understood. In the making of butter the proper ripening of the cream has long been recognized as essential to the production of a desirable flavor and aroma. Butter made from sweet cream is insipid, and lacks the pleasant taste of sour cream butter. On the other hand, if the ripening process be continued too long-for example, for six days instead of twoundesirable fermentations may set in, which injure the butter hopelessly. In other words, the products of some bacteria appear pleasant and aromatic to the average person, while the products of other bacteria are objectionable or even strongly offensive. Butter sometimes has a bitter, fishy, soapy, oily, or "turnip" taste, which completely destroys its palatability. Different species of bacteria have been reported as occurring in association with these various kinds of "bad" butter. Members of the Bact. coli group, for example, have been found in connection with the occurrence of the turnip taste. It is not yet certain to what extent the rancidity of butter is due to bacteria. The access of light and air certainly favors the development of the products-free acids-that give a rancid taste, but the influence of air seems to be indirect. is, the presence of oxygen favors the multiplication of those aërobic bacteria which are able to split up the butter-fats. The action of light seems to be one of direct oxidation of the fatty acids. becoming rancid of oleomargarine has been ascribed to the activity of two special kinds of bacteria.

¹ Kopeloff: Jour. Amer. Med. Assoc., 1923, 80, p. 602.

² James, W.: Jour. Amer. Med. Assoc., 1927, 89, p. 89.

BUTTER 681

When the manufacture of butter is carried on in a dairy or creamery under uncontrolled conditions, it is largely chance that determines what kinds of bacteria take part in the ripening process. Some dairies happen to contain varieties of bacteria which have become naturally domesticated in the surroundings and produce palatable compounds, while others are infested with species that impart a bitter or tainted flavor to the ripened cream. For these reasons many attempts have been made to control the ripening process. Storch in Denmark, Weigmann in Germany, and Conn and Russell in the United States have been foremost in applying to butter-making the use of pure cultures of favorable germs.

Before the use of pure cultures it had been the custom in many successful dairies to use a "starter," that is, a small quantity of cream that had shown the looked-for qualities of ripening. This was added to fresh cream, the obvious if unconscious purpose of this proceeding being to impregnate the fresh cream with the specific organism or organisms present in the starter. Examination of the "natural starters" has shown that they are mixtures of several different organisms, but that bacteria able to produce lactic acid greatly preponderate (95 per cent). The next step toward putting butter-making on a scientific basis was to remove the uncertainty due to the use of mixed cultures, and different investigators soon isolated micro-organisms which were able, especially under carefully controlled conditions, to imbue butter with an agreeable aromatic taste and odor. Over a score of such artificial starters are now said to be in use in various parts of the world. At the present time inoculation with pure cultures after preliminary pasteurization of the cream is practised chiefly in Denmark. In the United States the procedure has not won very extensive acceptance, partly, it is said, because the public taste in this country demands a butter with a rather strong flavor.

The nature and interrelationship of the several cultures used for cream-ripening are not altogether clear. All seem to be lactic acid bacteria; some are streptococci, apparently identical with Streptococcus lacticus (Heinemann). The difference in ability to produce desirable flavor is in many cases undoubtedly a racial or varietal rather than a specific difference, organisms otherwise closely allied differing in this respect. It seems important to control the conditions of ripening (for instance, to maintain a temperature

of 60 to 75 F.) if the best results with artificial starters are to be obtained. Especially advantageous is the preliminary pasteurization of the cream, which eliminates most of the bacteria that might interfere with the free development of the organism added in the starter. Clean utensils and surroundings are quite indispensable to the successful use of an artificial starter (pure cultures) and the output of a product of uniform quality. In short, the manufacture of butter is tending to become essentially a bacteriological process dependent upon the action of particular bacterial species and upon the conditions that surround their growth.

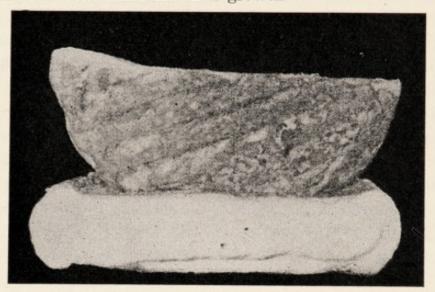


Fig. 182.— Camembert cheese cut open to show the softening of the curd (Conn).

Cheese.—The bacteriology of cheese-making is, generally speaking, on a more indefinite footing than that of butter-making. Some of the flavors characteristic of the different varieties of cheese are without doubt due to bacteria and molds, but the precise nature of the species concerned, and the conditions of their action, are in most cases largely a matter of conjecture. The casein or curd of milk, when freshly precipitated, usually by the addition of rennet, is insoluble; but a process of ripening ensues during which it is converted into soluble bodies. The digestion of the casein is effected principally through the agency of bacteria, but possibly in part also by enzymes in the milk (galactase, Babcock and Russell). Two types of cheese, the "hard" and the "soft," are made from ripened curd, the difference being primarily due to a difference in the

¹ The so-called "cottage cheese" and the cheese sold in the United States under the name of Neufchâtel are merely unripened curd.

CHEESE 683

mechanical treatment of the curd. The milk for the hard cheeses is curdled rapidly, and much of the whey is separated from the curd by heating, manipulation, and pressure. For soft cheeses the whey is never thoroughly drained from the curd. The difference in consistency brings about difference in rapidity of ripening and in amount of bacterial action. The soft cheeses (Brie, Camembert, Gorgonzola, et al.) are ready for the table much sooner than the others, and are also more perishable. The flavor and odor of these cheeses are often strong and sometimes offensive, as in the case of the classic Limburger. In the ripening of certain varieties of the

soft cheeses, only bacteria are thought to be concerned; in others, molds growing on the exterior contribute to the ripening (Brie, Camembert), and in still others molds permeate the whole curd, and are, perhaps, the main agents (Roquefort, Gorgonzola, Stilton). Some advance has been made in determining the species of micro-organisms that take part in the production of certain cheeses. The ripening of Camembert cheese, for example, has been carefully studied by Conn and his collaborators,1 who conclude that two kinds of molds are necessary for the proper ripening and the development of the characteristic flavor (Figs. 183, 184). One of these is a species

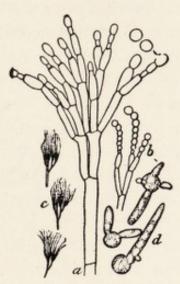


Fig. 183.— Penicillium of Camembert cheese, showing method of forming spores (Thom).

of white mold (Penicillium candidum?) closely allied to the common blue-green mold (Penicillium glaucum). This mold is not found in ordinary milk—in fact, for a long time one of the main obstacles to the manufacture of Camembert cheese in the United States was the failure to obtain and control this organism.

The texture of Camembert cheese seems to be due primarily to the growth of the species in question. Other species of Penicillium either fail to soften the curd characteristically or else impart to it an unpleasant bitter taste. The Camembert Penicillium (Fig. 183) forms a felted mass on the surface, penetrating perhaps $\frac{1}{16}$ of an inch into the curd. The spores of the mold usually ripen during the third week, and no further change takes

¹ Conn et al.: Bull. 35, Storrs Agr. Expt. Station, 1905.

place. "A cheese ripened by this mold alone is white, soft, creamy, and entirely palatable, but is wanting in color, and completely lacks the peculiar flavor for which Camembert cheese is sought in the markets." The Camembert flavor is due mostly, perhaps wholly, to the well-known and widely distributed mold or yeast-like organism, Oïdium lactis (Fig. 184). Much seems to depend upon maintaining a proper balance between the Penicillium and the Oïdium. A final conclusion as to whether or not Oïdium lactis alone produces the flavor will depend upon an exhaustive test of the bacteria practically always associated with it.

Other cheeses derive their characteristic qualities from the relative proportion of various micro-organisms. In certain Swiss and

Fig. 184.—Oïdium lactis colony on gelatin (Conn).

Belgian soft cheeses the principal share in ripening is attributed to Oïdium lactis (Freudenreich and Marchal). The famous Roquefort cheese owes its characteristics, at least in part, to a Penicillium (P. glaucum?) which grows at the low temperature prevailing in the limestone caverns common in that district in France which gives its name to the cheese. Various kinds of Penicillium, perhaps all to be regarded as varieties of Penicillium glaucum, are particularly active in cheese ripening. They not only exert a proteolytic action themselves, but by their destruction and alteration of the acid products facilitate the action of the peptonizing bacteria. They also influence the flavor of the cheese. The sharp taste of such varieties as the English Stilton, the French Roquefort, and the Italian Gorgonzola and Parmesan cheeses is due to the products of these molds. The hard cheeses (Cheddar, Swiss, American, Edam, and others) are thought to be ripened exclusively by bacteria

CHEESE 685

without intervention of molds. Edam cheese is made with slimy whey containing as an artificial starter a streptococcus (Str. hollandicus).

The number of bacteria present depends to a large extent upon the age of the cheese. Both hard and soft cheese may contain enormous numbers, especially in the first days after preparation. Cheddar cheese, for example, has been found to contain as many as 635,000,000 bacteria per gram. After an apparently somewhat variable period of increase, a diminution sets in, and the numbers decrease at first rapidly, then more slowly. In old cheese as few as 1400 germs per gram have been found. The increase of the first two weeks is thought to be due principally to the lactic acid bacteria, although at first this group of bacteria shows a slight decrease, owing apparently to the fact that the peptonizing bacteria then have the upper hand (Russell and Weinzirl). Some difference of opinion has existed regarding the relative share of the peptonizing and lactic acid bacteria in the normal ripening process. The view especially advocated by E. von Freudenreich that the lactic acid bacteria are primarily concerned in the ripening of cheese has met with some opposition. Many investigators believe that the peptonization of the curd by aërobic, casein-dissolving bacilli of the Bacillus subtilis group—the Tyrothrix bacteria of Duclaux—or by casease-producing cocci (Weigmann) is to be regarded as the essential feature of the ripening of cheese. On the other hand, most investigators are agreed that the acid reaction brought about by the lactic acid bacteria is requisite to a normal ripening. Were it not for the restraining influence of the acid, the peptonizing bacteria would carry on their activities to the stage of putrefaction.

The ripening of cheese may, therefore, be considered as a process in which different groups of bacteria participate, one species after another gaining the upper hand (metabiosis). The lactic fermentation organisms are particularly important, since various decomposition processes are checked by their products. It has been urged by some investigators (Rodella) that anaërobic bacilli are intimately connected with the ripening of many varieties of cheese, and there is some evidence for this view.

The use of pasteurized milk inoculated with pure cultures or selected mixed cultures of micro-organisms has in some cases given rise to a normal ripened product, but in others has been unsuccessful. The complicated nature of cheese-ripening, which seems to depend upon the successive activity of different groups of bacteria as well as upon the presence at the right time of suitable aromaproducing species, renders the bacterial control of cheese manufacture particularly difficult.

Both butter and cheese are liable to "abnormal" ripenings or fermentations which impair the palatability and other marketable qualities. Bitterness has been attributed to the products of various micro-organisms, such as Oïdium lactis, Bacillus fluorescens liquefaciens, and others. Sometimes genuine putrefactive changes are observed. Hard cheese is not uncommonly spoiled by the growth of gas-producing bacteria, which cause the formation of numerous cavities in the substance of the cheese. The "spongy" or inflated cheeses usually acquire also an unpleasant flavor. The bacteria concerned belong to the lactic group (Russell), and are perhaps to be identified with Bacillus aërogenes. The formation of the cavities is best prevented by carrying on the ripening at a temperature so low that the gas-producing organisms do not thrive. "Tainted" and "bitter" cheeses, as well as cheeses spotted or patched with color (chromogenic bacteria), are also reported from time to time. The rusty spots on American Cheddar cheese are due to a chromogenic bacillus named Bacillus rudensis.1 This organism seems to find especially favorable conditions for its growth in spring and early summer, and, although it does not seem to injure the taste of the cheeses on which it grows, it does affect their marketability. The remedy for the nauseous or unpalatable fermentations of cheese and butter lies in a more scrupulous attention to cleanliness in the surroundings of factory and dairy, and generally in a more rigorous bacteriologic control.

Infection from Butter and Cheese.—Pathogenic bacteria which occur in milk may, of course, sometimes find their way into the milk-products. Butter and cheese made from the milk of animals suffering from foot-and-mouth disease are known to have produced infections (Ebstein,² Thiele³). Tubercle bacilli (of bovine origin?) have been found in butter by a number of observers. According

¹ Harding, Rogers and Smith: Bull. No. 183, N. Y. Agr. Expt. Sta., 1900.

Ebstein: Deut. med. Wchnschr., 1896, 22, pp. 129, 154.
 Thiele: Deut. Militärärztl. Ztschr., 1900, 29, p. 548.

to one tabulation of such investigations, covering 727 samples tested (mainly the market butter in German cities), tubercle bacilli were found in 88 samples, or about 12 per cent. Tubercle bacilli have also been reported in the quick-ripening varieties of cheese by Rabinowitsch, Harrison, and others. As pointed out in the chapter on tuberculosis (p. 463), the significance of such findings for public health is quite problematic. It is by no means impossible for milk and milk products to become contaminated with tubercle bacilli of human origin, and it needs no argument to show that the employment of tuberculous persons in the dairy is fraught with more or less peril to the community.

Berry⁴ showed a survival period for the typhoid bacillus in butter of at least three and one half months, and an even greater longevity for certain bacilli of the paratyphoid group. Epidemiologic evidence of butter-borne infection is obviously difficult to secure. The relatively long interval ordinarily elapsing between the production and consumption of butter and cheese undoubtedly renders the danger of typhoid infection much less than in the case of milk. The life of the cholera spirillum in butter and cheese is much shorter than that of the typhoid bacillus, and the danger of contracting cholera from the use of these foods is probably so slight as to be negligible. It is possible that various milk products, like other foods, may be contaminated independently after manufacture, and precautions to prevent such chance contamination are especially necessary since these foods are commonly eaten without cooking.

¹ Lafar: "Handbuch der Technischen Mykologie," 1898–1910, 2, p. 31.

² Rabinowitsch: Ztschr. f. Unters. d. Nahrungs u. Genussm., 1900, 3, p. 801.

³ Harrison: Landw. Jahr. d. Schweiz, 1909, 14, p. 317.

⁴ Berry: Jour. Prevent. Med., 1927, 1, p. 429.

CHAPTER 36

BACTERIA AND THE NITROGEN CYCLE

The fact that the chemical element nitrogen enters into the composition of all living things raises a number of important problems. One of these relates to the available sources of nitrogen. Not all forms of nitrogen are capable of being built up directly into living matter. The complex nitrogen substances in the body after death are disintegrated by bacterial activity, and it is well known that ammonia (NH3) is one of the products of this decomposition. This nitrogenous compound is not an available food for animals, although it is directly utilizable by some of the higher plants. Certain bacteria, however, can oxidize ammonia to nitrates. It is a familiar fact that all animals depend ultimately upon plants for their supply of nitrogen, and that the higher plants derive their nitrogen for the most part from nitrates in the soil. The conversion of ammonia into nitrate by bacterial agency is, therefore, of peculiar interest, both practically and from a broad biological point of view. Again, the atmosphere is a great reservoir of nitrogen, but in its elementary gaseous form nitrogen is wholly inert and useless for all the higher forms of life. In recent years it has been found that certain micro-organisms possess the singular ability of fixing free nitrogen. The supply of available nitrogen is, therefore, practically inexhaustible and to a considerable extent under control.

The relation of bacteria to nitrogen compounds may conveniently be considered under three heads: (a) Nitrogen-Fixation, (b) Nitrification, (c) Denitrification.

(a) Nitrogen-Fixation.—It is a striking fact that the store of nitrogen in ordinary uncultivated soil rich in vegetable matter increases naturally without human interference. Exact analyses have shown that the increase is due to the annexation of atmospheric nitrogen; the agency of micro-organisms in this process is attested by the fact that heated soil fails to show any nitrogen assimilation.

Nitrogen-Fixation by Soil Bacteria.—Winogradsky was the first to demonstrate the share of a particular micro-organism in this

process. Clostridium pastorianum (Winogradsky, 1895)¹ is a sporeforming anaërobe very closely resembling the butyric acid bacilli
morphologically, but differing from them in its inability to ferment
lactose and some other substances. When grown in a nitrogen-free
solution of mineral salts and dextrose, the total nitrogen assimilation in twenty days may amount to as much as 53.6 mg. per liter.
Winogradsky did not find any other organism capable of fixing free
nitrogen, but Beijerinck² (1901) later discovered a group of large
aërobic bacteria which also possess this property. The name Azoto-

bacter has been bestowed upon this genus, and several species have been described. One of the two species first described by Beijerinck (A. agile) is decidedly more motile than the other (A. chroöcoccum), and there are other slight differences (Beijerinck). A rather complicated symbiotic relation is believed by Beijerinck to subsist between Azotobacter and Clostridium or Radiobacter, but his view has not been generally accepted. Löhnis

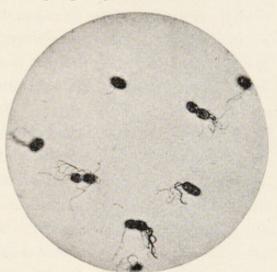


Fig. 185.—Azotobacter agile; × 1000 (Zettnow).

and Westermann³ have compared a large number of strains from different sources. The cells of Azotobacter are round or oval bodies about 4 to 6 μ in diameter (Fig. 185); they are motile and possess rather short flagella; spore formation has not been observed; coccus forms, filaments, and pear-shaped involution forms are not uncommon; luxuriant growth does not occur on the ordinary culture media. The amount of nitrogen assimilated is dependent, within certain limits, upon the amount of carbohydrate available, one experiment showing that while a solution containing one gram of dextrose gave an increase of but 7.4 mg. of nitrogen, a similar solution containing 12 grams of dextrose gave an increase of 127.9 mg. (Gerlach and Vogel).⁴ According to Stoklasa⁵ the respiration processes of these

¹ Winogradsky: Arch. d. sei. biol., 1895, 3, p. 297.

² Beijerinck: Centralbl. f. Bakt., II, 1901, 7, p. 561.

³ Löhnis and Westermann: Centralbl. f. Bakt., II, 1909, 22, p. 234.

⁴ Gerlach and Vogel: Centralbl. f. Bakt., 1902, II, 8, p. 669; 9, p. 817; 1903, 10, p. 636

⁵ Stoklasa: Centralbl. f. Bakt., II, 1908, 21, p. 506.

organisms are wonderfully active; one gram of bacterial substance (reckoned as dry substance) exhaling in twenty-four hours as much as 1.27 grams of CO₂. This same author observed the evolution of hydrogen in pure cultures of Azotobacter. Mannite solutions (e. g., 1000 cc. tap-water, 20 grams mannitol, 0.5 gram di-potassium phosphate) and mannitol-agar have proved the most satisfactory media for cultivating this micro-organism. Upon solid media the growth often has a black, brown, or yellow tinge.

It has been shown that certain other species of bacteria are able to assimilate free nitrogen. Among them may be mentioned B. mesentericus, Ps. pyocyanea, B. prodigiosus, B. asterosporus, and the spore-forming aërobe, B. danicus (Löhnis and Westermann, loc. cit.). Certain of the common molds, such as Aspergillus niger and Penicillium glaucum, are claimed by several investigators to be capable of nitrogen assimilation, but the point is still in dispute. As respects algae and the higher plants, independent nitrogen assimilation, although often affirmed, is not proved, many cases of apparent assimilation by these organisms being due to symbiosis with some species of Azotobacter. Attempts to increase the yield of cultivated fields by inoculation with certain bacteria alleged to possess the power of nitrogen assimilation (B. ellenbachensis $\alpha =$ B. megatherium?; sold under the trade name of alinit) have not been generally successful, and the results of similar experiments with Azotobacter have also been negative. Azotobacter and Clostridium, as a matter of fact, seem to be universally distributed. It is, hence, more important to modify favorably the factors that influence the activity of these bacteria, such as the physical or chemical condition of the soil, than to add more bacteria to soil in which they are already present. These conditions have been sometimes summed up under the name of soil-climate (Bodenklima), and are being made the subject of study by many investigators. It is considered that the favorable modification of the soil-climate for the free nitrogen-fixing organisms is one of the most important tasks before scientific agriculture. It has been shown already that certain carbohydrates favor greatly the nitrogen enrichment of soil to which they are added. Dextrose, saccharose, and probably also the carbohydrates present in dried grain stalks (straw) are among the substances which increase the nitrogen assimilation of free-living bacteria. Phosphates also exert a favorable influence. Potassium

sulfate and especially potassium chloride, on the other hand, are distinctly detrimental to nitrogen-fixing activity. It is probable also that other bacteria present in the soil affect the fixation of nitrogen either through the action of their products or through

direct competition for food material.

Nitrogen-Fixation by Nodule Bacteria. One phase of nitrogen assimilation that has attracted universal attention, and that has long been familiar in certain of its practical aspects, is the accumulation of nitrogen by leguminous plants. One of the basic facts of agriculture is that while certain crops, notably the grains, exhaust the nitrogen in the soil, others, such as the clovers, peas, beans, and lupines, not only do not diminish the nitrogen-content, but augment it, so that their growth tends to enrich soil impoverished by other plants. Exact experiments have shown that a crop of crimson clover is able to add more than 200 pounds of nitrogen per acre. A long step toward the explanation of this remarkable fact was made by Hellriegel and Wilfarth in 1886.1 These observers showed that the tubercles or nodules² (Fig. 186), long known to occur on the roots of the common Leguminosae, and shown by Frank³ (1879) to be absent from plants grown in sterilized soil, were not merely reserve storehouses for protein substances, but stood in active causal con-

Fig. 186.—Root nodules of Lupinus luteus (Mayer).

nection with the assimilation of free nitrogen. The nodules themselves are largely filled with rod-shaped organisms, which were discovered by Woronin⁴ in 1866, but whose bacterial nature was not

¹ Hellriegel and Wilfarth: Centralbl. f. Bakt., 1887, 1, p. 133 (Rev.).

² The root-tubercles were described by Malpighi in 1687 (Opera omnia, Leyden), but first recognized to be normal, not pathologic, structures by Treviranus in 1853 (Bot. Zeit., 11, p. 393).

Frank: Bot. Zeit., 1879, 37, p. 377.
 Woronin: Bot. Zeit., 1866, 24, p. 329.

definitely established until Beijerinck¹ grew them (1888) on an artificial medium composed of a decoction of pea leaves, gelatin (7 per cent), asparagin (0.25 per cent) and saccharose (0.5 per cent).

The nodule-bacteria (Bacillus or Rhizobium radicicola) when of full size are rather large rods about 1 μ wide and 4 to 5 μ long; they are actively motile, strongly aërobic, and form no spores. On nutrient gelatin small, viscous, nonliquefying colonies are formed; their appearance has been compared to that of fat-droplets. Inside of the nodules the bacteria become metamorphosed into considerably larger branching structures, the so-called "bacteroids." Bacteroids may also develop in cultures; they appear with great

Fig. 187.— Development of root bacteria: a, root-bacteroids; b-d, forms in nodules of Vicia sativa (Beijerinck).

constancy in media rich in carbohydrates and certain organic acids (Fig. 187). Different species of Leguminosae harbor bacteroids that are often strikingly different in size and shape. Functional differences also exist; bacteroids that are very active or "virulent" when in association with one species may refuse to form nodules on the roots of a closely allied species. Such facts have been thought by some observers to indicate the existence

of a large number of more of less independent varieties of nodule bacteria. Others would restrict classification to two or more groups, but thus far there has not been general agreement upon the features characterizing such groups. Certain investigators have succeeded in transforming apparently independent varieties into one another, thus proving their essential identity. On the whole, it must be regarded as uncertain how far the nodule bacteria associated with different species of Leguminosae are distinct, but there are probably at least two groups.

The view that the relation between nodule bacteria and hostplants is from the start one of true symbiosis in which both organisms uniformly derive benefit from the association has lost ground in the face of recent researches. So far from welcoming the advent

¹ Beijerinck: Bot. Zeit., 1888, 46, p. 725.

of B. radicicola to its tissues, the host-plant offers a determined resistance. The root-hairs constitute the usual portal of entry, and a very definite tissue reaction is produced at the point of invasion. Decided differences in the "virulence" of the bacteria are noticed (Hiltner). Some bacteria are not able to effect an entrance at all; others enter and provoke a reaction in the tissues which leads to advantageous nodule formation; and still others injure the host-plant. In brief, the bacteria behave toward the plant, at least in the beginning, like true parasites against which the plant strives to protect itself with all possible means of defense. Eventually a state of equilibrium or kind of armed truce is brought about, in which both bacterium and plant benefit by the association.

The size, number, and activity of the nodules depend upon the qualities of the invading bacteria and upon the resisting powers of the host. As an example of the relation between plant and bacterium may be mentioned the action of potassium nitrate in preventing nodule formation. The addition of a small quantity of this salt to a water culture of a nodule-forming plant suffices to abolish nodule formation altogether. According to Hiltner, the effect of the saltpeter is due less to any strengthening of the plant's resistance than to its direct influence upon the nutrition of the bacteria. however, increase the resistance of the plant by lessening its "nitrogen hunger." Inoculation experiments have brought out the interesting fact that the bacteria obtained from active nodules confer upon the plant immunity toward bacteria of the same virulence or of lower virulence; only those bacteria possessing a higher virulence than the ones in the nodules are able to penetrate the roots. There is thus a natural adjustment between the resistance of the plant and the invasive power of the micro-organism.

The question how the possession of root-nodules enables the leguminous plant to transfer free nitrogen from the atmosphere to its tissues has received various answers. Frank, one of the earliest investigators in this field, came to the conclusion that nitrogen assimilation was a property of all green plants, and that the nodule bacteria acted simply as a "stimulus" to provoke its more intense manifestation. The fact, however, that no direct nitrogen-fixation by green plants could be proved weighed heavily against this view, which, indeed, was soon abandoned by its author. Subsequent

¹ Hiltner: Arb. a. d. k. Gesund., 1906, 1, p. 175.

researches have plainly shown that the accumulation of nitrogen takes place first of all inside the nodule, and that the bacteroids are the seat of the active processes. B. radicicola is able of itself in pure culture to fix atmospheric nitrogen, but in much smaller quantity than in the legumes. Granting that the bacteroids gather nitrogen, how it is transferred to the plant? It has been assumed that the bacteroids are absorbed bodily, but against this supposition stands the disproportionately small quantity of nitrogen in the bacteroids of all the nodules of the plant as compared with the total nitrogen gain of the plant. Nobbe and Hiltner1 cite an instance in which a plant had taken 1 gram of nitrogen from the air, although all the nodules on its roots weighed only 300 mg. Still another conception, supported by definite chemical observation, has been recently received with much favor. This is the view that certain compounds formed by the bacteroidal protoplasm are soluble and diffusible through the cell wall, and that these, passing out from the bacteroids, are taken up by the host-plant.

Mazé based an interesting theory of nitrogen utilization upon the great viscosity of cultures of Bacillus radicicola. The viscosity is due to the presence of a gum which is a slightly modified portion of the capsule or outer portion of the cell wall of the organism. It was Mazé's assumption that this gum or mucus was a nitrogenous compound, and that the simultaneous production of this substance and the fixation of nitrogen in solution were proof of its connection with the latter process. Buchanan, however, has shown that the gum contains no combined nitrogen, but is a carbohydrate substance closely related to the dextroses produced by other groups of bacteria. Its connection with the fixation of nitrogen by the legume organism is hence improbable.

Broadly considered, therefore, the process of nitrogen-fixation by leguminous plants consists, first, in the penetration of the root tissues by certain bacteria which establish themselves there in a sort of half-parasitical, half-symbiotic relation; second, in the accumulation of nitrogenous substances by the bacteria under the influence of the abundant carbohydrate food-supply available in the plant tissues, the nitrogen used in the constructive process being derived from the atmosphere; and, finally, in the appropriation by the plant

¹ Nobbe and Hiltner: Centralbl. f. Bakt., II, 1900, 6, p. 449.

² Buchanan: Centralbl. f. Bakt., II, 1909, 22, p. 371.

of the nitrogenous compounds contained within or diffusing out from the nutritionally and structurally modified bacteria (bacteroids). The conditions under which the plant extracts nitrogenous substances from the bacteroids is yet unexplained, but there are facts that seem to connect the phenomenon with a state of "nitrogen hunger," or lack of other sources of nitrogen supply, such as the nitrates of the soil or the nitrogenous stores in seeds. The "virulence" or invasive power of the micro-organism may be connected with a similar condition in the plant.

Many attempts have been made to utilize the enrichment of the soil that results from nitrogen-fixation. The custom of green manuring—that is, of plowing under leguminous crops—which has been long practised empirically, has won much wider extension as a consequence of the establishment of its underlying principles. The discovery that certain soils on which leguminous plants grow feebly could be made to yield much more luxuriantly by soil inoculation has given rise to a train of experiments having for their purpose the perfecting of the relations between bacteria and plants. In the earliest ventures, soil obtained from fields where the proper bacteria were present in abundance was used for inoculating other fields where leguminous plants failed to grow or developed poorly. The results were in some cases brilliantly successful. Following up this success, pure cultures of nodule bacteria were employed experimentally and were marketed on a large scale under names such as "nitragin" or "nitro-culture." Impregnation of the soil with these pure cultures has by no means been uniformly successful, although in some cases it has given unquestionably good results. The coating of seeds with pure cultures of the nodule bacteria has led in many hands to somewhat better results than inoculation of soil, but cannot be unreservedly depended upon. One of the reasons for the rather frequent failures reported is the lack of the requisite technical skill and judgment in the application of pure cultures; another is that the presence or absence of proper nodule bacteria is only one of many factors that determine the prosperity of leguminous plants; and still another is that the "virulence" of the culture is at present not wholly susceptible of control. The upshot of practical experience in the United States has been that the use of pure cultures is attended with much uncertainty, and that "the simplest and surest and most economical method of inoculation is by means of well-infected natural soil, collected where the proper bacteria are found in abundance (as shown by the tubercles on the roots of the plants) and scattered over the field to be seeded at the rate of one hundred pounds or more per acre." It can hardly be doubted, however, that greater precision will eventually be introduced into the practice of soil inoculation, and that the use of pure cultures is likely in the future to become more important than at present.

As already stated, all the members of the family of leguminous plants are endowed with nodules. In this respect they stand almost but not quite alone, since similar nodules have been observed on other plants, notably the alders. The alder nodules apparently sustain the same physiologic relation to the plant as do the leguminous nodules, and enable the alder to gather nitrogen from the atmosphere. There has been much dispute as to the nature of the organisms present in the alder nodule, but several investigators agree in regarding them as very much like the bacteroids, although mold-like characters are rather more pronounced.

A peculiar mycelial growth, known as mycorrhiza, was observed first in association with the roots of orchids, and has since been found in and upon the roots of many other plants; probably it occurs either constantly or occasionally on the roots of the majority of the higher plants. A number of different molds, some of them belonging to common species, are able to develop this singular structure. While there are many points about the physiologic significance and development of mycorrhiza that are far from being elucidated, it seems to be definitely established that at least the endotrophic mycorrhiza is able to fix free nitrogen. So far as determined, the protoplasmic changes within the hyphae are like those in the bacteroids, and the whole physiologic process of nitrogen-fixation and plant-absorption is probably the same. Possibly the ectotrophic mycorrhiza has the same function, but this seems doubtful.

(b) Nitrification.—The complex nitrogen compounds that are among the most important constituents of the body-substance of all forms of life furnish a source of energy not overlooked by bacteria. As soon as an animal or plant dies and the influences that restrain bacterial activity vanish, a breaking-down process, due to bacteria, sets in, which ends in producing substances that are chemically of simple structure. Practically nothing is known about the earliest

¹ Illinois Agr. Exp. Sta. Cir., No. 86.

stage of protein decomposition, not only because the constitution of the protein molecule is largely conjectural, but because the process is almost hopelessly complicated by a variety of modifying influences. Eventually out of the seething caldron of molecular disintegration emerge such relatively simple bodies as the organic acids and amines, mercaptan, sulfuretted hydrogen, carbon dioxide, and ammonia. Some of these substances are susceptible of further decomposition. Ammonia, for instance, which is produced abundantly from nitrogencontaining compounds, may be oxidized to nitrites, and the nitrites oxidized in turn to nitrates. This process has received the name of nitrification. In addition to its theoretical interest, nitrification is of great agricultural importance, since it is the means by which the ammonia produced from decaying vegetable matter and from manures is converted into a form utilizable by the growing plant.

Like other processes of oxidation, nitrification was long believed to be due simply to the action of atmospheric oxygen, or in some cases to that of ozone. The share of living micro-organisms in the process was first definitely foreshadowed by Pasteur's discoveries concerning acetic fermentation, another oxidation process. Pasteur himself clearly expressed his conviction concerning the essential nature of nitrification in 1862, but his suggestions were not acted upon until Schloesing and Müntz took up the question in 1877.1 These investigators carried on a series of extensive researches which showed convincingly that living organisms were at the bottom of the phenomenon. Chemical substances like chloroform, that check or interfere with microbes, prevent the process of nitrification; heating to temperatures that effect sterilization likewise abolishes it; on the other hand, temperatures that favor the activity of bacteria and their allies promote nitrification. While thus successful in demonstrating that micro-organisms were answerable for the occurrence of the natural process of nitrification, Schloesing and Müntz were not able to fix the responsibility upon any particular species. In fact, for some time it remained doubtful whether many different kinds of bacteria might not possess the ability to oxidize ammonia to nitrates. The isolation of an unmistakable nitrifying organism in pure culture was first accomplished by the dilution method.²

¹ Schloesing and Müntz: Compt. rend. Acad. d. sci., 1877, 84, p. 301; 85, p. 1018; 1878, 86, p. 892; 1879, 89, pp. 891, 1074.

² Winogradsky: Ann. de l'Inst. Pasteur, 1890, 4, pp. 213, 257; Jordan, E. O., and Richards, Ellen: Spec. Rpt. Massachusetts State Board of Health, Purification of Water and Sewage, 1890, Part II, p. 865.

It appeared from these researches that the main reason why previous investigators had been baffled in their effort to isolate a nitrifying organism was that they placed too implicit confidence upon the use of the ordinary gelatin medium. The nitrifying organism does not grow upon nutrient gelatin, and while readily cultivable upon solutions containing simple ammonium salts, is distinctly inhibited by the presence of organic matter. At first it was supposed that the whole process of nitrification from ammonia to nitrates could be completed by a single species, but it was later found that the chemical division of the process into two stages, first, the oxidation of ammonia to nitrites, and then that of nitrites to nitrates, corresponded to the physiologic activity of two different groups of micro-organisms.

Nitrification may be readily provoked in solutions of certain mineral salts by the addition of a small amount of ordinary cultivated soil. Provided the nitrifying organism is present and organic matter is absent, the process is not interfered with by the presence of foreign micro-organisms. A simple nitrifiable solution used by Winogradsky in his researches has the following composition:

Ammonium sulfate	1 Gm.
Potassium phosphate	1 "
Well-water	
Basic carbonate of magnesia in excess.	

The fact that the transfer of a small quantity of material from a solution that had undergone nitrification sometimes induced complete nitrification in a fresh solution, sometimes carried the process only to the formation of nitrites, and sometimes failed altogether, was at first explained by assuming that the nitrifying organism had become weakened; but the discovery that the production of nitrites and that of nitrates were independent processes, due to the activity of distinct organisms, finally afforded the true explanation. Nitrites cannot be formed unless the nitrite-forming organism is present. If the nitrite-former alone is present, the process stops midway; if the nitrate-former alone, the first step cannot be taken.

The nitrite-forming organism has received the name *Nitro-somonas*. Unlike the common bacteria, it has a definite life-cycle. When a vigorous culture is inoculated into a suitable mineral solution, a strong nitrite reaction develops by the end of four or five days. At this time scattered cells are few, most of the organisms

being gathered in compact zoöglea-like masses in the sediment at the bottom of the flask. Staining with a weak solution of iodine in potassium iodide brings out the structure of these masses most satisfactorily (Winogradsky). Some days later (seven to ten) these aggregates are found to have resolved themselves into separate ellipsoid cells, which bear a flagellum on one end and swim actively about through the fluid. After twenty-four to forty-eight hours the swarming cells become quiescent and sink again to the bottom, where they remain singly or joined in small groups. Variations from this process are not uncommon, but Winogradsky regards the development just described as typical. The zoöglea cells are thought by Winogradsky to represent a resting stage; they are somewhat more resistant to drying than the free cells.

The description given above holds good only for the nitriteforming organism found in western Europe (Zürich, Gennevilliers). The nitrite-formers found in St. Petersburg (no swarming stage observed), in Java (swarming stage present), and in Quito, South America (no swarming stage certainly observed), differ morphologically from the Nitrosomonas of western Europe and from one another. The peculiarities are constant and are maintained in cultures for a considerable period, but it is yet uncertain whether the differences correspond to true specific differences or are merely the expression of differences in local conditions. No two forms of the nitrite-producing organisms have ever been found in one locality. The cultivation of Nitrosomonas on solid culture media was first achieved by Winogradsky by the use of silicic acid jelly ("water glass").1 The organism has also been grown in the presence of suitable ammonia salts on washed and purified agar by Beijerinck,2 and on gypsum magnesium carbonate plates and on disks of filter-paper by Omelianski.3 On the silicic acid medium the colonies are quite characteristic, though they always remain small and are best studied with a magnification of about 100 diameters. At first colorless, they soon become dead brown and opaque, the surface

¹ The successful preparation of this medium requires a considerable degree of experience. Details are given in a paper by Omelianski (Centralbl. f. Bakt., Abt. II, 1899, 5, p. 537). See also Lafar's "Handb. d. techn. Mykologie," 1898–1910, 3, pp. 155–8; and Stevens and Temple: Centralbl. f. Bakt., II, 1908, 21, p. 84.

² Beijerinck: Centralbl. f. Bakt., II, 1896, 2, p. 698.

³ Omelianski: Centralbl. f. Bakt., II, 1899, 5, p. 652; II, 1902, 8, p. 785.

colonies being rounded, the deeper colonies more irregular in outline. Later the colonies become granulated and translucent. This change from opaque to translucent colonies corresponds to a morphologic transformation from zoögleae to free cells.

A highly remarkable physiologic peculiarity of the nitrite-forming organism is its ability to grow normally and produce active oxidation in a medium devoid of all trace of organic substance. The formation of nitrite has been shown by Winogradsky to depend upon the presence of carbon dioxide either free or in loose combination, and is accompanied by the accumulation of organically bound carbon, the amount of carbon assimilated bearing a definite relation to the amount of nitrogen oxidized. There seems no escape from the conclusion that Nitrosomonas, a colorless organism, and one therefore unable to utilize the energy of light rays, assimilates carbon dioxide by virtue of the energy obtained by the oxidation of ammonia. Under some conditions carbon dioxide appears to be the only available source of carbon, since organic substances, like dextrose and peptone, not only do not favor growth, but exercise an inhibitory influence upon the nitrite-forming organism, and may even check it altogether. Corresponding to this inability to utilize the carbon of organic compounds is its inability to effect the oxidation of organic nitrogen. When grown in pure cultures in solutions, in the presence of nitrogenous substances like urea, asparagin, and egg-albumen, Nitrosomonas remains impotent, and no trace of either nitrite or ammonia formation is found after the lapse of months. Not even the amines, which are so closely related chemically to ammonia, can be attacked.

As already stated, the oxidation of nitrites to nitrates is effected by another organism, which differs in some important respects from the nitrite former. It is much smaller, is provided with a capsule, and stains with difficulty, the pointed ends not staining as deeply as the middle (Fig. 188). No "swarming stage" has yet been observed. Growth occurs both in a nitrite solution and on nitrite

1	Sodium nitrite (natr. nitros-puriss, Merck)	1.0 gram
	Potass. phosphate	0.5 "
	Magnes. sulfate	0.3 "
	Soda (water-free)	
	Sodium chloride	
	Ferrous sulfate	
	Distilled water	

agar. It is however, extraordinarily slow; after two weeks the round or oval colonies in the depth of the agar have attained a diameter of only about 30 μ to 50 μ . The colonies on the surface are round, colorless droplets, and may reach a size 3 or 4 times as great as those in the depths. In the fluid medium neither turbidity nor sediment makes its appearance, and usually no sign of growth can be observed. By repeated enrichment of a culture with nitrite, however, an opalescent veil forms slowly over the walls and bottom of the flask, and microscopic examination shows this film to be composed of spindle-shaped rods that stain with difficulty.

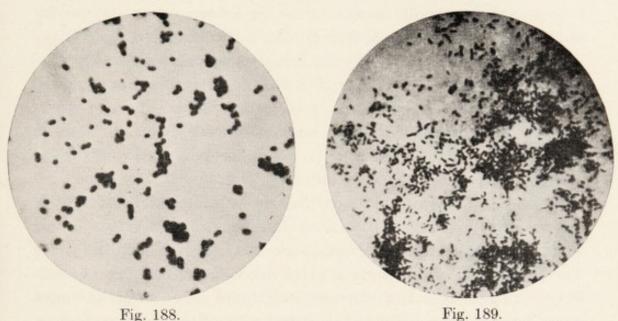


Fig. 188.—Nitrosomonas preparation from culture; × 1000 (Nowak: Documenta Microbiologica I, 1927).

Fig. 189.—Nitrosomonas bacteria preparation from culture; × 1000 (Nowak: Documenta Microbiologica I, 1927).

The physiology of the nitrate-former has been less completely worked out than that of the nitrite-producing organism. It seems probable, in view of experiments by Winogradsky and Omelianski and by Gärtner, that, like Nitrosomonas, the nitrate-former can obtain its carbon supply only from carbon dioxide. The nitrate-former is less sensitive toward the presence of organic substances than the nitrite-former, although both its development and, to a less degree, the production of nitrates are interfered with to some extent. On the other hand, ammonia exercises a remarkably harmful influence upon the nitrate-former, restraining its development more powerfully than the strongest antiseptic (Winogradsky). Nitrates, even in considerable quantities, do not hinder nitrate formation.

The fact that under varied natural conditions the process of complete nitrification goes on steadily and quite rapidly is not in reality out of accord with the singular physiologic qualities and limitations of the nitrifying organisms. Although neither nitrite- nor nitrateforming organisms are able to generate ammonia from organic substances, they are constantly in association, in the soil and in water, with myriads of bacteria which do produce ammonia in abundance. Given ammonia as a starting-point, nitrite formation can occur, provided too much organic matter be not present, while after nitrite makes its appearance, the nitrate-former can pursue it activity. Ammonia seems to be injurious, especially to the development of the nitrate-former, less so to its oxidizing activity; however, both phases of the nitrifying process can go on simultaneously, provided living cells of the nitrate-forming organism are abundant at the time nitrite is produced. There is hence no real contradiction between the phenomena of nitrification observed under natural conditions and the characteristics of the nitrifying organisms exhibited in pure culture.

It should be especially noted that in soils the conditions of life for the nitrifying organisms are so different from those in solution that a direct comparison of metabolic activities is hardly possible. The presence of a multitude of other micro-organisms, and the difference in chemical and physical conditions where large amounts of sand and earth are in contact with the liquid medium, are factors that must influence powerfully the nitrifying processes. Stevens and Withers, in fact, have shown that nitrification can proceed vigorously in the soil in the presence of large quantities of such organic matter as cottonseed meal, peptone, and cow manure.

(c) Denitrification.—Several essentially different chemical and bacterial processes are commonly included under this head. Among these are a variety of reducing processes, such as the reduction of nitrates to nitrites and ammonia, the reduction of nitrates and nitrites to gaseous oxides of nitrogen (N₂O, NO), and the complete reduction of nitrates and nitrites with evolution of nitrogen gas (true denitrification). Other processes, such as the liberation of nitrogen in the course of protein decomposition and the constructive utilization of nitrate nitrogen, are quite far removed from the strictly reducing actions.

¹ Stevens and Withers: Centralbl. f. Bakt., II, 1910, 27, p. 169.

The ability to reduce nitrates to nitrites and ammonia is a wide-spread bacterial characteristic; Maassen, who investigated 109 kinds of bacteria, found 85 to possess reducing power. In reducing processes of this nature the presence of organic nitrogenous matter is necessary; on the other hand, dextrose and other carbohydrates exert a hindering influence. It is not clear whether any physiologic significance should be attributed to the reduction of nitrates to nitrites, or whether the process is incidental and the reduction due simply to the chemical products of the bacteria. It is possible that, as in the case of the true denitrifying bacteria to be considered presently, the reduction is caused by the need of the cells for oxygen.

The formation of the oxides of nitrogen (N₂O and NO) is less commonly observed. It is not yet known to what extent this phenomenon is dependent upon conditions of growth, or how far it is a specific peculiarity of certain species. Among the more familiar species that can give rise to these gases under suitable conditions is Ps. pyocyanea.

The "true" denitrifying bacteria, those that are able to reduce nitrates with the formation of free nitrogen as an end-product, are relatively few in number, but include such well-known species as Bact. coli, E. typhi, Ps. fluorescens, and Ps. pyocyanea. nitrate broth (cf. p. 37) denitrifying species cause a foamy appearance which is quite characteristic, and is due to the liberated nitrogen. Light is thrown upon the physiology of the denitrifying bacteria by the circumstance that while they ordinarily grow under aërobic conditions, they can also thrive anaërobically, provided nitrite or nitrate be present. The inference seems plain that in these cases the reduction of nitrates is to be regarded as due to the respiratory needs of the micro-organism, which wrests the oxygen from its combination with nitrogen, setting free the latter as a gas. Jensen, however, points out that denitrification must always be accompanied by oxidation processes. The same author has found that denitrifying bacteria produce considerably more peroxidase than other bacteria. The necessary conditions for denitrification are: (1) the presence of nitrates; (2) the presence of certain specific micro-organisms; (3) a considerable amount of readily assimilable organic substance; (4) limited access of oxygen.

¹ Maassen: Arb. a. d. k. Gesund., 1901, 18, p. 21.

² Jensen: Centralbl. f. Bakt., II, 1909, 22, p. 314.

The practical importance of soil denitrification for agriculture has been considerably exaggerated. Loss of nitrogen by this means can play an important part only if very large quantities of fresh manure are added to a soil exceedingly rich in nitrates or if manure and nitrates be added simultaneously.

CHAPTER 37

BACTERIA IN THE INDUSTRIES

From its birth bacteriology has been more or less concerned with practical pursuits. As has been pointed out in the first chapter, the science owes its origin largely to the studies of Pasteur upon the phenomenon of fermentation; in particular, to his memorable researches upon the diseases of beer and wine. The further development of bacteriology has brought it unexpectedly into contact with a variety of industries and occupations outside of alcoholic fermentation, disclosing previously unseen opportunities for exploitation and utilization. The share of bacteria in advantageous or commercially valuable processes has so far been less thoroughly explored than their agency in inciting disease, but the field already opened is a wide one. Much of the work that has been accomplished in this direction is special and technical; space forbids its consideration here except in its broader aspects. Some of the applications of bacteriology to agriculture have been touched on already in connection with the nitrogen cycle and with the rôle of bacteria in the dairy; but there are also several special industries which are in part or altogether bacterial processes, or which depend upon the proper application of bacterial methods.

Bacteria in Tanning.—Bacterial activity is involved at several points in the tanning process, the object of which is to treat the animal skin so that it shall offer the greatest possible resistance to decomposition without losing the qualities for which leather is valued. In the process of tanning, hides which have been previously protected against decomposition by drying or salting are freed from hair either by a carefully controlled decomposition, in which Proteus (p. 496) is said to be specially concerned, or by simple chemical treatment with sulfite of sodium or lime. After depilation, the hides are "drenched" or steeped in a liquor prepared according to various formulas that read like the therapeutic mixtures of the middle ages. Animal excrements, especially the droppings of hens, pigeons, and dogs, are a common ingredient; bran is

45 705

also used ordinarily in these mixtures. In the "bran drench" the essential feature seems to be that the starch of the bran is hydrolyzed and converted into sugar, and an acid fermentation occurs in which lactic acid is usually most abundant, although acetic, formic, and butyric acids are also found. The lactic acid is the active agent in removing the lime from the skin. Gas-forming bacteria are present in this fermentation, one of them having been described under the name of B. furfuri.1 It is obvious that the heterogeneous character of the mixture introduces many uncertainties into the process. Attempts have been made to put the treatment on a more systematic basis. A distinction has been made between "bating" and "puring," bird dung being used in the first process and dog dung in the puring of the lightest leather. In spite of the great disadvantages that attend the use of such substances, practical tanners assert that they give results with some skins, notably goat skins, that no other material does. Substitutes for the objectionable animal feces have been proposed and used with some success. Wood2 has carried on extended researches on the kinds of bacteria concerned in "bating" and "puring." One organism, B. erodiens, has been used in pure culture with results said to be very satisfactory. (See Wood.)2 The bated hides are placed either in a tan-pit (the coarse kinds destined for sole-leather) or in bark liquor (the thinner skins). The souring of the bark liquor is considered in Europe to influence favorably the quality of the product, making the leather soft and supple. Tanners have sometimes seeded fresh bark liquor with old soured liquor in order to insure that the fermentation takes a proper course. It is uncertain whether the favorable effect is due primarily or wholly to the acid or whether other bacterial products are concerned. As might be expected, numerous micro-organisms of different sorts-bacteria, yeasts, and molds-occur in the bark liquor. Varying amounts of carbohydrates and nitrogenous compounds in bark liquors of different origin influence materially the souring process and determine to some extent the character of the product. American tanners for the most part avoid sour liquor. A beginning is being made in the study of bacterial action in the curing of animal skin and will

¹ Perhaps the same as B. gasoformans.

² Wood: Jour. Soc. Chem. Ind., 1894, p. 218; 1895, p. 449; 1898, pp. 856, 1010; 1899, pp. 117, 990; 1910, 29, p. 666.

doubtless lead to the control of the proteolytic bacteria that influence this process.¹

The Curing of Tobacco.—The organic substances present in the leaves of the tobacco plant are exposed, at the death of the plant, to a variety of bacterial influences. The first stage in the treatment of the leaf, the drying in specially prepared rooms, is not, however, a bacterial process, the conspicuous changes that occur, such as the dissolving of the starch and the browning, being due to leaf enzymes. Certain maladies may overtake the leaf at this stage. Some of these are caused by saprophytic fungi (such as Botrytis); the so-called "pole-burn" has been attributed in part to putrefactive bacteria.

In the next stage the dried tobacco leaves are ripened by being heaped up in great piles which undergo heating and fermentation. The temperature in the interior of these masses may rise as high as 50 C., exceptionally as high as 61° (Suchsland). Among the more noteworthy chemical features of this fermentation is the loss of nicotine, which amounts to about 28 per cent.

The share taken by micro-organisms in the ripening process has been and still is a matter of dispute. Some observers hold that the oxidizing enzymes of the tobacco leaf itself are responsible for the changes that occur in this stage. Since a desirable aroma and other qualities of a successful product are dependent upon the course of the fermentation process, it is a matter of no small importance to the tobacco industry that the nature of the process should become clearly understood as the first step toward efficient control. Bacteria of a great variety of kinds are naturally not lacking in the fermenting masses of tobacco leaves. Many attempts have been made to determine what kinds, if any, are of significance in the ripening process.

The majority of those investigators who have studied in the laboratory the ripening of tobacco after inoculation with pure cultures of bacteria have obtained a product that, on the whole, possesses a more satisfactory aroma than tobacco ripened under natural conditions. The bacteria found in tobacco-curing seem to belong for the most part to the Proteus, Subtilis, and Mycoides groups.

¹ McLaughlin and Rockwell: Jour. Amer. Leather Chemists Assoc., July, 1922; June, 1923; July, 1924; July, 1925.

Some investigators (Suchsland, A. Koch) have used for inoculation cultures of bacteria obtained by them from tobacco "of the finest quality." It is said that spraying tobacco leaves with these cultures has imparted highly satisfactory qualities to a grade of tobacco which, if allowed to ferment simply by the aid of native bacteria, would have been of inferior character. The nature of the culture employed in this case has not been divulged, and it seems to be a fact that the method of using such cultures has not won any wide acceptance in the tobacco industry.

The relatively high temperatures in the interior of the ripening masses undoubtedly favor the development of thermophilic varieties; Vernhout reported the constant occurrence of a thermophilic bacterium, belonging to the potato-bacillus group, in fermenting leaves of Java tobacco. Additional evidence in favor of some bacterial share in tobacco-curing is given by the existence of the practice of "petuning." This custom consists in sprinkling the unripened leaves with a liquid prepared in various ways, such as by infusing old tobacco, mixing water with molasses, rum, etc. The petuning liquid used on different plantations is different and is often prepared by exact formulas. Havana tobacco fermented in the United States does not develop the true "Havana flavor." There seems to be no doubt that petuning enhances the aroma and value of the product, and that in some manner the quality of the tobacco produced on different plantations is affected by the nature of the petuning liquid applied. Such a fluid may conceivably act either by stimulating the growth of desirable bacteria already present on the leaves, or by infecting the leaves with the varieties that impart aromatic qualities.

On the other hand, Loew² has expressed the opinion that the curing of tobacco is not in essence a bacterial process, but is due to the action of leaf enzymes (oxidase, peroxidase, katalase) which effect all the chief changes that are observed. According to Loew's view, bacterial intervention is not necessary to secure a desirable product.

Both enzymes and bacteria are perhaps concerned in the curing process, although the relative and absolute importance of the two factors is still uncertain. If bacteria grow at all upon the ferment-

¹ Lafar: "Hand. d. techn. Mykologie," 1898–1910, 5, p. 10.

² Loew: Report No. 59, U. S. Dept. of Agri., 1899.

ing tobacco leaves, there seems no escape from the conclusion that their products must permeate to some extent the ripened tobacco. Whether the bacterial influence preponderates over that of the enzymes, and whether certain species give a better flavor than others, cannot at present be positively asserted. Jensen¹ has reported experiments which cast doubt on the microbic nature of the tobacco fermentation. The process is not hindered by germicides such as mercuric chloride, formalin, and chloroform; on the other hand, the characteristic qualities of the fermentation can be produced, at least in part, by heating the tobacco leaves at a temperature of 90 to 100 C. for ten minutes to two hours. The characteristic ryebread odor of freshly fermented tobacco, for example, can be brought about by this procedure. It is true that the oxidizing enzymes described by Loew are destroyed by high temperatures like those used in Jensen's experiments, so that according to these results both leaf enzymes and bacteria would seem to be excluded as essential factors in tobacco curing.

The Preservation of Foods.—The fact that many valuable foods, both of animal and plant origin, are abundant at certain seasons of the year and in certain localities, and are lacking or scarce in others, has made it a matter of great importance to the human race to find some way of preserving such food-products against natural decomposition. Simple methods of food preservation have long been practised. One of these is drying. Fish, meat, and fruits may be exposed under suitable conditions to sun and air, and the consequent loss of moisture renders the organic substance unadapted for bacterial growth (p. 83). Meats are sometimes smoke-dried, a procedure which involves another process besides drving, namely, the impregnation of the meat with antiseptic substances, such as creosote, present in ordinary wood smoke. Neither smoking nor pickling, however, can be depended upon to free meat from any pathogenic bacteria it may originally contain. Tubercle bacilli in smoked meat and the bacilli of swine erysipelas in pickled pork, for example, have been observed to retain their vitality and virulence for long periods.

The addition of chemical substances that check or inhibit decomposition is a time-honored mode of food preservation. Common salt and sugar are frequently used for this purpose. Preserves to

¹ Jensen: Centralbl. f. Bakt., II, 1908, 21, p. 469.

which a large quantity of sugar has been added and meats pickled in brine are not adapted for bacterial growth because of their great avidity for water. A germ falling into a strong sugar or salt solution is unable to grow because the density of the solution is greater than that of the cell protoplasm of the germ and tends to extract water from it. "Condensed milk" owes its keeping qualities when exposed to the air to the large amount of sugar it contains. The acetic acid of the vinegar used in pickling is another well-known chemical preservative. Sometimes rather strongly germicidal chemical substances, such as salicylic acid, borax, boracic acid, formaldehyde, and sodium sulfite are employed as food preservatives. While these last-named compounds undoubtedly prevent the decomposition of food, there is evidence that they are likewise injurious to the health of the consumer.

In some few cases the access of bacteria to the decomposable substance may be partially interfered with so that decay or putrefaction is to some extent retarded. The shell of the hen's egg is so porous that bacteria can pass through after the egg is laid, and many attempts have been made to preserve eggs by giving them an impervious coat. The most successful of the substances experimented with is the commercial fluid known as "water-glass," a syrupy mixture of sodium and potassium silicate (1 part of water-glass to 10 of water); but success in preservation is only partial, since eggs have usually become contaminated with bacteria while still in the oviduct, and hence at the time they are laid contain a considerable number of germs. Eventually eggs treated with water-glass will decay.

Many fruits, such as apples and pears, can be kept for a long time from spoiling if the skins are carefully wiped and dried and if bruising is avoided. In other words, any measure that tends to make difficult the growth or ingress of bacteria is an aid toward preservation.

A familiar method of food preservation and one widely employed at the present day is storage at low temperatures. Bacterial multiplication is greatly checked by temperatures a few degrees above freezing, and ceases at or near the freezing-point. Refrigeration is consequently an effectual hindrance to decomposition.

Much food in the large cold-storage warehouses is maintained in a frozen condition, and its wholesomeness is in no degree impaired throughout a considerable period, although it is evident that the practice calls for constant watchfulness.

The most extensively used and by far the most important method of food preservation consists in the use of heat. This method was devised by Appert in 1810. The principles underlying the well-known process of canning, which are, in fact, those of ordinary laboratory sterilization, are, first, the destruction of all germs originally present, and, second, the prevention of subsequent contamination. In practice the process may fail either through incomplete sterilization or through failure to seal hermetically. One of the chief difficulties in practical canning is caused by the presence on vegetables of the spores of anaërobic soil bacteria which are not killed by simple boiling. The sterilizing or "processing" of peas, and especially corn, gives much trouble. If all spores are not killed, gas may be produced and the cans "swell," or the contents may become sour without any external signs of spoiling. In canning corn it has been found necessary to employ a temperature of 250 F. (121 C.) for sixty-five minutes under conditions that insure penetration, in order to preclude spoiling. To this end the cans are placed in a steam retort, in a bath of oil or in water to which certain chemicals, such as calcium salts, are added to raise the boiling-point. In this way the necessary high temperatures are reached. Leaks in the can, as well as insufficient sterilization, may also allow opportunity for bacterial growth. Too thin tin plate, poor soldering material, or imperfect soldering may be responsible for the admission of germs to the sterilized contents. If sterilization is complete at the outset and bacteria do not subsequently find access, canned goods apparently keep indefinitely without deterioration.

Vinegar-making.—The oxidation of alcohol to acetic acid in weak alcoholic solutions, such as cider and wine, was for a long time thought to be a purely chemical process. When finely divided platinum, the so-called "platinum black," is mixed with dilute alcohol, oxidation of the latter occurs, accompanied by the evolution of heat, and at first the "mother of vinegar" was thought to act in a similar manner. The oxidation by platinum black, however, unlike the natural fermentation, takes place much more rapidly at high temperatures, and goes on unimpeded in the presence of an amount of acid that completely prevents the ordinary fermentation process. Pasteur's investigations finally made clear the share of

living micro-organisms in this as in other natural fermentations. The equation

$$C_2H_6O + O_2 = C_2H_4O_2 + H_2O$$

Alcohol Oxygen Acetic Acid Water

is only approximately correct, the actual chemical changes in which the micro-organisms participate being much more complicated.

The acetic acid fermentation of cider proceeds most satisfactorily at temperatures of about 18 to 24 C., and is greatly facilitated if vinegar containing "mother of vinegar" is first added to the cider. The "mother," or "Mycoderma aceti," consists of a felt-like scum which commonly forms on the surface of cider or wine during its conversion into vinegar. Different micro-organisms are found in this pellicle, and there is no doubt that several distinct species or varieties are able to bring about the acetic acid fermentation. The acetic acid bacteria that are usually met with possess certain characteristics in common, such as a marked tendency toward pleomorphism and the production of involution forms. Long filaments which break up into bead-like chains are usually observed, and portions of the filaments are often greatly swollen. The essential physiologic requirement of the acetic acid fermentation is an abundant supply of oxygen, for without this the oxidation of the alcohol cannot be effected. When ordinary casks are used for vinegar-making, they should be not more than two-thirds to threefourths filled with apple-juice; the outer air should be allowed free access to the cask through a bung-hole, open or stopped with a cotton plug. Special "generators" are in use for hastening the formation of acetic acid by facilitating the absorption of oxygen. A common method in Germany consists in allowing the alcoholic fluid to trickle slowly through a cask filled with shavings impregnated with old vinegar, thus exposing the fluid to the air in thin layers. In the ordinary farm management of vinegar-making freshly pressed applejuice placed in casks and allowed to stand in the cellar (at a temperature of about 7 to 13 C.) completes the alcoholic fermentation in about five to six months. If the cider is then removed and kept at a warmer temperature, the acetic acid fermentation may be carried out in fifteen to eighteen months, or if left at the lower temperature, in twenty-one to twenty-four months.1

Bull. No. 258, N. Y. Agr. Expt. Sta., 1904.

It is sometimes noticed that vinegar allowed to stand for a long time loses its sourness, and that finally all the acetic acid disappears. This is due to the action of certain bacteria (B. xylinum, Browne) which, in the presence of oxygen, split up the acetic acid into other compounds. The deteriorative change can be readily avoided by preventing the free access of oxygen after a sufficient degree of acidity has been reached.

Pure cultures of acetic acid bacteria are not in use in vinegarmaking. If undiluted apple-juice with a sufficient sugar content is employed, and if the fermentation processes as above outlined are properly carried out, there seems to be little or no difficulty in obtaining a satisfactory grade of cider vinegar conforming to the legal standard of acetic acid content (4 to 4.5 per cent acetic acid). In other words, the increased trouble and care incident to working with pure cultures does not at present meet with adequate recompense in an increased value of the commodity.

The Fermentation of Sauerkraut.—Several investigators have reported the presence in sauerkraut of organisms which apparently bear a causal relation to the fermentive process. One of these which seems to be especially significant belongs to the Bact. coli group. Lactic acid and perhaps other organic acids are produced in abundance by this organism. Gruber¹ has carried out inoculation experiments with pure cultures of the coli-like bacillus isolated by him. The inoculated samples of cabbage are said to have given "a more delicate and aromatic" product than the control samples, and to have reached the desirable stage in a short time. The sauerkraut fermentation and similar souring processes can be carried on successfully only when the air is at least partially excluded from the fermenting mass, since lactic acid formation is inhibited by the presence of oxygen.

The Bakery Fermentations.—In the making of bread, the action of micro-organisms is manifested in several ways, such as (1) the spontaneous fermentation of dough; (2) the use of leaven; (3) the use of yeast; (4) the abnormal fermentations that sometimes cause batches of loaves to spoil.

(1) The natural or spontaneous "rising" which occurs under some conditions in dough made simply with flour and water has been the object of considerable bacteriological study. At first Gruber: Centralbl. f. Bakt., II, 1909, 22, p. 555. a specific bacillus, designated as Bacillus levans, was thought responsible for the phenomenon. Later Bacillus levans came to be regarded as merely a variety of the Bact. coli group, representatives of which are known to be found in some abundance on the surface of grains and in meal. Still further observations again appeared to throw doubt on the nature of the bacteria concerned, for some investigators differentiate Bacillus levans from Bact. coli on the ground of its slow liquefaction of gelatin, its gas ratio, and other qualities. There seems no reason to suppose that different kinds of aërogenic organisms may not be able under certain conditions to produce the spontaneous rising. More important than the kind of bacteria seem to be (a) the carrying out of the process at a low temperature and (b) the sugar content of the meal.

- (2) The preservation of a small portion of the dough from a previous rising and the thorough kneading of this into fresh dough is a practice of great antiquity. The sour dough, a little of which leaveneth the whole lump, contains, as might be expected, a great variety of micro-organisms. As with the micro-organisms in meal, the relative importance of the various organisms found in leavens is uncertain. Yeasts are probably in the main responsible for the rising, but at least four different kinds have been found in sour dough, and it has not yet been determined that any one of them is more active than another. Aërogenic bacteria seem to have little or no share in the gas production brought about by inoculation with sour dough. The presence of bacilli of the lactic acid group, however, appears to favor the typical fermentation, since the acid-products not only check the growth of foreign bacteria, but aid in maintaining a suitable reaction for the growth of yeasts.
- (3) The use of top yeast from distilleries, dried or pressed in cakes, is more convenient than the use of sour dough, and, as is well known, is now the general practice. Both yeasts and bacteria occur abundantly in the yeast-cakes, but the former are the active agents in the production of gas, which is practically pure CO₂, not, as with the aërogenic bacteria, mixtures of CO₂ and H. Theoretically the yeast-cells should be so evenly distributed throughout the fermenting mass that the gas from the alcoholic fermentation is regularly and uniformly generated. This is more easily accomplished with the use of distillery yeast than with sour dough.

¹ Some of the descriptions of B. levans suggest Bact. cloacae.

Pure cultures of yeasts have been successfully employed by several experimenters in the preparation of bread. Certain species have been found particularly well adapted for this purpose, for example, the so-called "Race XII", discovered in the Berlin Institute for Fermentation Industries. It is said that bread prepared with certain of these pure cultures contains so little butyric and acetic acids that its digestibility is much greater than that of ordinary bread.

(4) The most frequent and most feared abnormal fermentation in the bakery is that which gives rise to the so-called "sticky" or "slimy" bread. This is caused by the common potato bacillus—Bacillus mesentericus—an organism which forms highly resistant spores and is hence able to survive the temperature reached in the baking process (often not over 100 C.). The spores of this bacillus are sometimes present in large numbers in flour, sometimes also perhaps in the yeast-cakes. The successful combatting of the mischief due to the presence of this very resistant organism has been found extremely difficult. An artificial increase of the acidity of the dough is recommended by some experimenters.

The molding of bread is a very common occurrence, and in general the eating of slightly moldy bread does not seem to be accompanied by any serious injury to health. At the same time, the recorded instances of occasional illnesses attributed to this cause are sufficiently numerous to warrant caution in the use of bread in which molds of any kind are growing. Penicillium, Rhizopus, and Aspergillus are the fungi that most commonly attack bread, and there is some evidence indicating that poisonous races of these organisms may possibly exist in some localities. Certain Italian observers claim to have extracted toxic substances from both the spores and the hyphae of some of these fungi. Pathogenic or toxin-producing races of molds are said to occur in samples of maize suspected of having given rise to pellagra, but no general agreement has been reached among investigators of this malady.

The Butyl Alcohol Fermentation.—The World War created a demand for acetone as a solvent, particularly in the manufacture of smokeless powder, which could not be met by the current sources of supply. Attempts were naturally made to utilize the production of acetone by the long-known butyl alcohol bacteria. As a result, certain of the patented "processes" (Fernbach and Strange, 1912;

Scheckenbach, 1914; Weizmann, 1915) for the utilization of butylic fermentation were employed successfully on a large scale for the manufacture of acetone and butyl alcohol from such substances as corn mash, and the production of these solvents by bacteria has become an important industry.

The butyl alcohol bacteria are anaërobes that have been described under various names, but are today commonly placed in the species Clostridium acetobutylicum. The strains studied appear to have certain qualities in common, such as subterminal spore formation, marked amylolytic and proteolytic properties and low thermal death point. Spores are killed in three minutes at 100 C. under certain conditions. Nearly all the common carbohydrates are attacked. Little is known about the possible existence of varieties. Contamination of the growth by lactic-acid bacteria prevents the development of Cl. acetobutylicum and has sometimes proved an interference in the industry.

The Retting of Flax and Hemp.—The fibers of certain plants which are used for textile purposes can only in rare cases be separated mechanically from the rest of the plant tissues. Ordinarily such separation is effected by a fermentation process—the so-called retting or rotting. Sometimes the plants are put directly into standing or slowly running water, sometimes they are left on the ground in such a way that the dew and rain supply the necessary moisture. The process may be accelerated by the use of water warmed to 30–32 C. The fermentation consists essentially in the dissolving of the substance which binds the fibers together. This cementing substance is largely composed of certain carbohydrates known as pectin bodies, and it is the dissolving of the pectin which permits the isolation of the bast fibers.

Only certain kinds of bacteria are able to accomplish pectose fermentation. The water-retting of hemp is attributed to the special activity of an anaërobic bacillus, Clostridium amylobacter. The water-retting of flax is also ascribed to a specific anaërobic bacillus (Granulobacter pectinovorum). These bacteria hydrolyze the cementing substance by means of an enzyme (pectosinase) which they secrete, and then ferment the simpler products (sugars) which result from the splitting. Some observers have declared

¹ McCoy, Elizabeth, Fred, E. B., Peterson, W. H., and Hastings, E. G.: Jour. Infect. Dis., 1926, 39, p. 457.

that certain common aërobic organisms, such as Bacillus subtilis and B. mesentericus, can bring about the pectose fermentation, but the evidence does not seem to warrant this opinion.¹

Pure cultures of pectose-fermenting bacteria have been employed by several observers in the retting process, it is said with considerable success. Whether natural or artificial methods be employed, the process should not last too long, otherwise the bast fibers themselves will be injured or destroyed. Such injury may probably be brought about both by the pectose fermenters themselves and by cellulose-fermenting bacteria which may be present.

The Bacterial Destruction of Cellulose.—Under the name cellulose, as is well known, are grouped a variety of nitrogen-free substances which occur especially in the cell-wall of plants and have the general carbohydrate composition indicated by the formula $C_xH_{2y}O_y$. Such substances as cotton, flax, and the Swedish filter-paper used in chemical laboratories are practically pure cellulose. Powerful chemical reagents are not able to effect either the oxidation or the hydrolysis of these bodies. Their disintegration by bacterial agency is, therefore, of special interest. Our knowledge of the cellulose fermentation is due largely to the work of Omelianski.²

Two kinds of anaërobic cellulose fermentation have been especially studied: the hydrogen fermentation and the methane fermentation. For the former Omelianski gives the following balance-sheet of an actual experiment:

Cellulose	Grams	Fermentive Products	Grams
Amount at beginning of experiment	3.4743	Fatty acids	0.9722
experiment			3.2232
Decomposed during fer- mentation			

The hydrogen fermentation of cellulose is brought about by a long, very slender bacillus, with round terminal spores. No growth occurs usually in the ordinary culture media, though Omelianski has observed on some occasions very minute translucent colonies on potato.

¹ Tanner, F. W.: Bot. Gaz., 1922, 74, p. 174.

² Omelianski: Centralbl. f. Bakt., II, 1902, 8, p. 195; 1904, 11, p. 369; 1904, 12, p. 33.

The methane (marsh-gas) fermentation of cellulose yields, like the hydrogen fermentation, a large amount of fatty acids and an even higher proportion of gas (a mixture of carbon dioxide and marsh-gas). About 50 per cent by weight of the dissolved cellulose is liberated in gaseous form. Morphologically the bacillus of the methane fermentation is very similar to the bacillus of the hydrogen fermentation. Pure cultures have not been obtained. A separation of the two varieties of fermentation, however, is obtained regularly by Omelianski by the method of repeated heatings (75 C. for fifteen minutes), which is based on differences in the life-history of the two organisms. The methane-fermentation organism develops more rapidly than the other variety and gains the upper hand in the early stages of the process. If heat is applied at this stage, the more slowly germinating spores of the hydrogen-fermenting organism are in a resistant stage and survive. On the other hand, successive inoculations of material from the methane fermentation at its height eliminate finally the hydrogen organism, and, when this stage has been reached, heating of a culture no longer yields the results obtained when mixed cultures are so treated. It should be noted that neither of these bacilli stains blue with iodine in any stage of development and that they consequently lack the distinguishing feature of the "Amylobacter" of earlier writers.

In addition to the two common and widely distributed organisms studied by Omelianski, other bacteria, including some aërobic forms, are able to decompose cellulose, but the conditions of their activity have not been adequately determined. A number of cellulose-dissolving molds are also known.

The destruction of cellulose in the alimentary tracts of some of the higher animals, particularly the herbivora with their enormous length of intestine, is undoubtedly chiefly due to cellulose-dissolving bacteria and not to the digestive fluids. The proportion of cellulose broken up in this way in the alimentary tract may reach as high as 75 per cent of the amount fed, and since some of the products of this fermentation are utilizable by the animal organism, the nutritional significance of the process is considerable.

The Bacteriology of Silage.—Hunter and Bushnell¹ and Sherman² have pointed out the presence of acid-tolerant and acid-

¹ Hunter and Bushnell: Science, 1916, 43, p. 318.

² Sherman: Jour. Bact., 1916, 1, p. 445.

producing bacilli in large numbers in silage juice. The character of the fermentations that occur in the curing of corn silage makes it a fair supposition that these organisms are largely concerned in the curing process. They are closely related to the groups of B. bulgaricus (p. 678) and B. acidophilus (p. 320). The acid-producing bacteria of silage are found constantly on corn fodder, so that silage made from corn is always amply seeded with organisms.

CHAPTER 38

THE BACTERIA OF AIR, SOIL, AND WATER

Bacteria in Air.—As might be supposed, the number of bacteria in the air bears a close relation to the quantity of larger suspended particles or "dust." There are fewer bacteria in the air of the country than of the city; there are fewer in mountain air than in the air of the lowlands; the air in mid-ocean is nearly germ-free. Pasteur, in an experiment made during the course of his celebrated researches on spontaneous generation, observed that only 12 out of 20 flasks of organic infusion which were opened at a low altitude escaped contamination, while out of 20 opened on the Mer de Glace 19 escaped. Tyndall's experiment at the Bel Alp in Switzerland was a "yet more emphatic instance of the same kind, 90 per cent of the flasks opened in the hayloft being smitten, while not one of those opened on the free mountain ledge was attacked." These facts, which indicate the relation of the floating matter of the air to bacterial contamination, have been supplemented by data obtained with the more precise methods of recent investigation.

Several devices for determining the number of bacteria in the atmosphere have been employed. These vary from the simple expedient of exposing agar on gelatin plates to the air for a fixed period, to rather elaborate pieces of apparatus for drawing an accurately measured quantity of air through a filtering substance. The exposure of plates of nutrient media can, of course, give numerical results that are only rudely approximate. Much more definite data have been secured by employing various filtering devices. With the aid of such an apparatus it was found, for example, that in every 10 liters of the outdoor air in the city of Boston in winter there were present about 10 to 15 bacteria capable of growing on the ordinary culture media and about half as many molds.¹

The method recommended by the Committee of the American Public Health Association on Standard Methods for Examination of Air² utilizes a glass tube of 15 mm. in diameter and 70 mm.

¹ Tucker, Twentieth Ann. Rept. State Board of Health of Mass., 1889.

² Amer. Jour. of Pub. Health, 1917, 7, p. 54.

long with a smaller tube 6 mm, in diameter and 40 mm, long fused into one end (Fig. 190). A plug of cotton on the shoulder where the tubes join supports a layer of sand 10 mm, deep. "The sand should be capable of passing a 100-mesh sieve but not a 200-mesh sieve. The opposite or inlet end of the larger tube is stoppered by a cork stopper (which need not be exactly tight) perforated by a

glass tube 6 mm. in diameter and 40 mm. long, bent at an angle of 45 degrees to prevent direct precipitation of dust particles into the filter tube.

"Five cubic feet of air should be drawn through the filter by the use of an aspirator of known volume, preferably one of the double or continuous type, or by the use of some form of pump and meter."

The sand is shaken out into 10 cc. of sterile water, and after thorough shaking aliquot portions of the suspension are plated on ordinary nutrient agar.

A simple water aeroscope in which the bacteria are caught by bubbling water is said to give much more satisfactory results than the standard sand method.²

Flemming³ has obtained samples of air high above the earth's surface by the use of balloons, and has found that the air contains living germs up to an altitude of over 4000 meters, although in much smaller numbers at heights above 500 meters than below this altitude. The same observer also found that the bacterial content of

the air is much lower in a period of prolonged sunshine than in cloudy weather, that it is especially large at the level of the lower cloud limits, and that chromogenic bacteria and yeasts or torulae are noticeably abundant.

The kinds of micro-organisms in the air vary somewhat in different localities, but certain forms are pretty uniformly present. Molds and yeasts are quite common in the atmosphere, and in some situations outnumber the bacteria. Spore-forming bac-

¹ Amer. Jour. of Pub. Health, 1917, 7, p. 65.

² McConnell and Thomas: Pub. Health Reports, 1925, 40², p. 2167.

³ Flemming: Zeitschr. f. Hyg., 1908, 58, p. 345.

teria, like the hay bacillus (B. subtilis), are of almost universal distribution, and from their resistance to desiccation are likely to be found in air examinations. Among the saprophytic organisms commonly met with in air are the blue-green mold (Penicillium glaucum), the pigment-producing, yeast-like organism known as "red yeast," and a number of familiar bacteria, including several micrococcus and sarcina forms (Sarcina lutea, a yellow chromogen, et al.).

Pathogenic micro-organisms, such as the tubercle bacillus and the pyogenic cocci, have been found in the air of hospitals and sick-rooms, but, as a rule, pathogenic bacteria in dry dust are of rare rather than frequent occurrence. Observations and experiments, especially by Flügge and his associates, have shown, however, that bacteria of various kinds may be expelled from the mouth or throat of healthy or sick persons and persist for a time in the immediate surroundings. The fact that minute droplets of moisture or mucus that are discharged into the air by coughing, sneezing, and talking, may float about for some time in the neighborhood of the person discharging them, seems to be the most significant result of air examination. Neither typhoid bacilli nor diphtheria bacilli have ever been found in sewer air, which, as a rule, is nearly free from bacteria of all kinds. The absence of germs from the air of sewers is to be explained in large part by the fact that the particles in a current of air passing over a moist surface tend to adhere to the surface and are not easily dislodged. For the same reason the air expired from the lungs contains fewer bacteria than the air inhaled.

Routine bacterial examination of the air of dwellings or schoolrooms has not yielded, and does not seem likely to yield, results of much sanitary importance. The presence of dust particles, to which bacteria chiefly adhere, may be determined in simpler ways.

Bacteria in Soil. —The distribution of bacteria in the soil is naturally dependent upon the presence of organic matter, moisture, and other factors that influence their development and continued vitality. More bacteria are found, for example, in manured soil than in dry sand. Houston² found uncultivated sandy soils to

¹ Waksman, S. A.: "Principles of Soil Microbiology," Baltimore, 1927, pp. 897.

² Houston: "Report on Chemical and Bacteriological Examination of Soils," London, Local Gov't Bd., 1897–98.

contain on an average 100,000 bacteria per gram, and garden soils 1,500,000, while sewage-contaminated soils might harbor as many as 115,000,000. Very heavily manured soils may contain over 200,-000,000. These figures refer only to the numbers of bacteria developing on ordinary culture media in aërobic plates. A gram of average field soil probably contains from 100,000,000 to 50,000,000,-000 living bacteria. The upper six inches of the soil are richest in bacteria. Few bacteria are found in undisturbed soil below a depth of 4 to 5 feet. In sand-beds used for filtering sewage a similar vertical distribution is observed; bacteria are most abundant in the upper layers, and very few are alive in the lower strata.

The supply of bacteria present in the soil is being continually renewed by the excrements of animals, by the bacteria concerned in the various fermentive and putrefactive processes occurring everywhere, and by those that are precipitated out of the air by rain. One is consequently likely to find a large variety of organisms in soil samples, the kinds found at any particular time and place being the result not only of recent additions, but of long-continued selection and adaptation. Unless contamination has been recent and extensive, certain species of bacteria usually predominate in soil. Aërobic spore-forming bacteria (like B. subtilis and allied forms) and also anaërobes (like the bacillus of malignant edema) are particularly characteristic of the normal soil flora. Proteus (p. 496) is also very common in soil.

Certain spore-forming pathogenic bacteria are found more or less commonly in soil. Spores of the anthrax bacillus may retain their vitality and virulence in the earth for many years, and pasture-lands that are once contaminated with anthrax become practically unsafe for grazing cattle. As already mentioned, the group of pathogenic anaërobes (Cl. tetani, Cl. edematis, et al.) finds a congenial habitat in the soil.

Typhoid bacilli sometimes find their way into soil along with human excreta. There is evidence in this case that little or no multiplication takes place, but vitality, on the other hand, may be considerably prolonged, possibly for two or three months. The danger from this source is worth recognizing, since soil contaminated with typhoid bacilli may readily be washed into a water-supply.

¹ Firth and Horrocks: Brit. Med. Jour., 1902, 2, p. 936; Jordan: Jour. Infect. Dis., 1926, 38, p. 306.

Contamination of the water may take place either more or less continuously, or at irregular intervals under certain unusual conditions, as after exceptionally heavy rains. The abundance of Bact. coli in soil is sometimes, with certain reservations, taken as an indication of the extent and recency of soil pollution. It must be borne in mind, however, that Bact. coli is commonly present in the intestines of many animals, and that findings must be interpreted with discrimination. Houston¹ showed that Bact. coli and other sewage bacteria tend to disappear more or less rapidly from soil to which they are added; that, in a word, a process of bacterial self-purification of soils occurs. Savage² also observed the disappearance of Bact. coli from "made soil."

The burial of the bodies of persons dying from infectious diseases does not, as has been sometimes surmised, tend to perpetuate pathogenic germs. Rather elaborate experiments by Lösener³ and others have shown that the longevity of nonspore-bearing organisms under the ordinary conditions of earth burial is not great, a few weeks sufficing for the complete disappearance of S. cholerae, C. diphtheriae, etc. The hygienic arguments against earth burial, therefore, do not seem to be decisive, whatever be the force of the esthetic and economic objections.

The detailed study of bacteria in soils has been pursued especially in connection with the investigation of agricultural processes. Since the chemical changes produced by bacteria depend both upon the number of organisms present and upon their physiologic activity or "virulence," methods have been devised to determine soil efficiency from these two points of view. Rémy's method⁴ consists in adding weighed amounts of soil to nutrient solutions compounded in such a way as to favor the development of various kinds of bacteria, such as the nitrifying, the nitrogen-fixing, the ammonifying, etc. Hiltner and Störmer⁵ attempted to place the determinations on a quantitative basis by the dilution method, using for the inoculation of special solutions constantly decreasing amounts of soil until a point is reached at which the specific physiologic

¹ Houston: Rept. Local Gov't Board, London, 1900–01, p. 405; 1901–02, p. 455.

² Savage: Jour. Sanit. Inst., 1903, 24, p. 442.

³ Lösener: Arb. a. d. k. Gesund., 1896, 12, p. 448.

⁴ Rémy: Centralbl. f. Bakt., II, 1902, 8, pp. 657, 699, 728, 761.

⁵ Hiltner and Störmer: Arb. a. d. k. Gesund., 1903, Biol. Abt., 3, p. 445.

action fails to appear. Löhnis,¹ by the use of Hiltner and Störmer's dilution method, found in 1 gram of soil 3,750,000 peptone-decomposing bacteria, 50,000 urea-decomposing bacteria, 50,000 denitrifying bacteria, 7500 nitrifying bacteria, and 25 nitrogen-fixing bacteria. In the same soil only 1,270,000 bacteria developed in soil-extract gelatin plates. Interesting studies have been made upon the effect of adding carbon bisulfide to soils. This substance, which is a powerful germicide, seems to destroy the existing bacterial equilibrium in the soil and to open the way for an entirely new bacterial development. The change thus brought about in the relations of the different groups of soil bacteria favors in some way not wholly understood the accumulation of certain available nitrogen compounds, which are readily utilized by the higher plants.

The interrelationships of micro-organisms in the soil and the question of the existence of a microbiological equilibrium have aroused much interest. It has been suggested that in normal soils bacterial development is kept in check by soil protozoa and that destruction of the protozoa may be followed by more luxuriant growth of bacteria, leading to richer production of ammonia and consequently better plant growth. This protozoa theory of soil fertility is in many ways attractive, but has been much criticized. The "sterilization" of soil by steam and chemical disinfectants apparently owes its beneficial effect, when such is produced, largely to the destruction of soil-borne plant pathogens. Other reasons for the increase in soil fertility, such as the effect on the higher soil fungi, may, however, exist.

The Bacteriology of Water.²—The bacteria in air are not under suitable conditions for multiplication, but are simply floating about in the forlorn hope that a chance breeze may happen to waft them to a favorable environment; in soil the conditions for development occur only at certain times and places, and in the long run are adapted only for particular species; in water, on the other hand, a proper temperature and abundant food-supply often coexist, and permit the development of a rich and varied bacterial flora. Add to this the fact that many kinds of bacteria are washed into water from air and soil and from the living and dead bodies of plants and

¹ Löhnis: Centralbl. f. Bakt., II, 1905, 14, pp. 2, 3.

² The leading book on the bacteriology of water is: Prescott and Winslow, "Elements of Water Bacteriology," 5th ed., New York, 1930.

animals, and it is not surprising that almost any germ, pathogenic or saprophytic, may be occasionally or exceptionally found in water. At all events, it is clear that, large as is the number of bacteria that succeed in thriving in water, a far larger number must from time to time make their way into it, to survive there for a longer or shorter period.

The methods used to determine the number and kind of bacteria present in water have been elaborated particularly with a view to the sanitary significance of such an examination. The quantitative examination in its simplest form consists in the enumeration of colonies of bacteria developing upon plates of nutrient gelatin or agar. Specimens of water must be collected in sterilized bottles, carefully avoiding contamination from the hands or other outside sources. Considerable change may take place in the bacterial content of a water during transportation, even in ice-packed samples, 1 so that the best procedure consists in mixing the water with nutrient agar and plating the mixture within one hour, or preferably one-half hour, after removal of the water from its source. The committees on Standard Methods for the Examination of Water and Sewage appointed by the Laboratory Section of the American Public Health Association and by the American Water Works Association make the following recommendations:²

The final reaction for broth, gelatin and agar shall be between PH 6.2 and PH 7.0 . . . Samples for bacterial analysis shall be collected in bottles which have been cleansed with great care, rinsed in clean water and sterilized at a temperature not less than 160 C. for not less than one hour or in a steam autoclave at 15 lb. pressure for one-half hour . . . All sample and dilution bottles shall be shaken vigorously 25 times before samples are removed for plating. Plating shall be done immediately after the dilutions are made. One cubic centimeter of the sample or dilution shall be used for plating and shall be placed in the Petri dish first. Ten cubic centimeters of liquefied medium at a temperature of 40 C. shall be added to the 1 cc. of water in the Petri dish. The cover of the Petri dish shall be lifted just enough for the introduction of the pipette or culture medium, and the lips of all test-tubes or flasks used for pouring the medium shall be flamed. The medium and sample in the Petri dish shall be thoroughly mixed and uniformly spread over the bottom of the Petri dish by tilting and rotating the dish. All plates shall be solidified as rapidly as possible after pouring and placed immediately in the appropriate incubator . . . Gelatin plates shall be incubated for forty-eight hours at 20 C. in a dark, well-

¹ Jordan and Irons: Reports and Papers of Amer. Pub. Health Assoc., 1899, 25, p. 564.

² Standard Methods of Water Examination, 6th edition, 1925.

ventilated incubator in an atmosphere practically saturated with moisture. Agar plates may be used for counts made either at 20 C. or 37 C. The time for incubation at 20° shall be forty-eight hours and at 37°, twenty-four hours. The incubator shall be dark, well ventilated and the atmosphere shall be practically saturated with moisture. Glass covered plates shall be inverted in the incubator . . . In preparing plates, such amounts of the water under examination shall be plated as will give from 30 to 300 colonies on a plate; and the aim should be to always have at least two plates giving colonies between these limits. Where it is possible to obtain plates showing colonies within these limits, only such plates should be considered in recording results, except where the same amount of water has been planted in two or more plates, of which one gives colonies within these limits, while the others give less than 30 or more than 300. In such case, the result recorded should be the average of all the plates planted with this amount of water. Ordinarily it is not desirable to plant more than 1 cc. of water in a plate; therefore, when the total number of colonies developing from 1 cc. is less than 30, it is obviously necessary to record the result as observed, disregarding the general rule given above. Counting shall in all cases be done with a lens of 2½ diameters' magnification, 3½ X, with a focal distance of 3½ inches. The Engravers' Lens No. 146 made by the Bausch & Lomb Optical Company fills the requirements and is a convenient lens for the purpose . . . In order to avoid fictitious accuracy and yet to express the numerical results by a method consistent with the precision of the work, the numbers of colonies of bacteria per cubic centimeter shall be recorded as follows:1

NUMBER OF BACTERIA PER CUBIC CENTIMETER

From	1	to	50	shall be recorded as found	
44	51	44	100	shall be recorded to the nearest	5
"	101	11	250		10
**	251	"	500		25
"	501	**	1,000		50
"	1,001	11	10,000		100
"	10,001	"	50,000		500
44	50,001	"	100,000		1,000
44	100,001	"	500,000		10,000
**	500,001	"	1,000,000		50,000
66	1,000,001	66	10,000,000		100,000

This applies to the gelatin count at 20 C. and to the agar counts at 20 C. and 37 C.

The results obtained by the use of quantitative methods are in all cases relative and approximate rather than absolute and exact. Certain bacteria, such as the strict anaërobes, do not grow under the conditions in which the plates are incubated, and others, like the nitrifying organisms, have peculiar nutritional requirements and do not develop on the ordinary media.

¹ Standard Methods for the Examination of Water and Sewage, 1925, 6th edition.

Nevertheless the "colony counts" or "numbers of bacteria" reported by different observers are in some degree comparable, especially when standard methods are employed.

As might be supposed, very large numbers of bacteria are found in sewage and sewage-polluted waters, whereas very few occur in the water of most springs or deep wells. River-water contains, as a rule, more bacteria than lake- or pond-water, the difference being due in part at least to the sedimentation that occurs in quiet waters. The following table includes some representative determinations of the number of bacteria in water:

Source	Number of Colonies per Cubic Centimeter	Authority	
Thames River Illinois River at Ottawa (about 55 miles below mouth of Chicago Drain-	277 (Apr.)-2075 (Jan.)		
age Canal)	6300-8200 (May)	Jordan	
Potomac River Mississippi River at New	750 (May)-11,500 (Mar.)	Longley	
Orleans	805 (Aug.)-3597 (Apr.)	Weston	
Loch Katrine	74	Frankland	
Lake of Lucerne Lake Michigan near	8-51	Frankland	
Chicago	68-2000	Jordan	
Deep well-waters	0-12	Prescott and Winslow	
Spring-water: average of 54			
samples	41	Mass. State Bd. of Health	
Sewage (Boston)	712,000 (Dec.)-11,487,500 (Sept.)	Winslow	

The degree of sanitary significance attaching to such data has been the subject of some difference of opinion and some confusion. The belief is widespread among the general public that the sanitary character of a water can be estimated pretty directly by the number of bacteria it contains. Taken by itself, however, the number of colonies which develop when a given sample of water is plated affords no secure basis for judging potability. A pure spring-water containing at the outset less than 100 bacteria per cubic centimeter may come to contain tens of thousands per cubic centimeter within twenty-four to forty-eight hours, after standing in a clean glass

flask at a fairly low temperature. There is no reason for supposing that the wholesomeness of the water has been impaired in any degree by this multiplication of bacteria.

As a matter of fact, like the sanitary chemical analysis of water, the quantitative bacterial analysis has only an empirical value. Experience in a broad way has shown that most natural waters known to be pure contain relatively few bacteria capable of developing by the usual methods, whereas sewage and sewage-polluted waters contain large numbers. Some observers of wide experience are inclined to hold that natural waters which are found by approved methods to contain more than 1000 bacteria per cubic centimeter should be regarded as distinctly suspicious. A turbid river-water, however, may be relatively unpolluted, and yet at times contain several thousand bacteria per cubic centimeter.

It has been shown in the chapters on typhoid fever and cholera that the epidemiologic evidence connecting the use of sewage-polluted water with the causation of specific disease is of a very definite and cogent character. At the time when methods for the bacterial examination of water first came into use it was confidently expected that with their aid it would be possible to discover the presence of specific pathogenic bacteria, and so obtain more or less precise information as to the wholesomeness of a water. These expectations have never been realized, partly because of the great difficulty, in spite of the invention of many ingenious methods, in picking out specific micro-organisms from among immense numbers of sewage bacteria, partly because the life of the typhoid bacillus and the cholera spirillum in water is short and examination of a water known to have dealt disease or suspected of having done so is often so long delayed that any disease germs that may have been originally present have perished. For these reasons the search for specific pathogenic bacteria in water is rarely crowned with success, and the real or apparent absence of pathogens affords no good ground for judging the general safeness of the water examined. As pointed out above, the actual number of bacteria in a water is also no absolute criterion of wholesomeness, although, taken together with other factors concerning the source and history of the water, it may prove of service in forming an opinion.

The practical failure of colony enumeration and the search for specific disease germs to disclose important sanitary relations has led to other attempts to correlate the bacterial content of a water with its sanitary quality. The most widely used and, by general consensus, the most valuable of these tests is the "B. coli test." This is based upon the circumstance that the colon bacillus is a common inhabitant of the human intestine, and is found in great abundance in sewage. Its close biological relationship to the typhoid bacillus and the fact that like the latter organism it finds its way into sewage chiefly from the discharges of the human body render its presence, especially when in large numbers, peculiarly suggestive.

The test for the presence of members of the coli-aërogenes group is thus dealt with in the 6th Report of the Committee on Standard Methods (1925);

1. INTRODUCTION AND DEFINITIONS

It is recommended that the coli-aërogenes group be considered as including all gram-negative nonspore-forming bacilli which ferment lactose with gas formation and grow aërobically on standard solid media.

The formation of 10 per cent or more of gas in a standard lactose broth fermentation tube within twenty-four hours at 37 C. is presumptive evidence of the presence of members of this group, since the majority of the bacteria which give such a reaction belong to the group.

The appearance of aërobic lactose-splitting colonies on Endo or eosin methylene blue plates made from a lactose broth fermentation tube in which gas has formed, confirms to a considerable extent the presumption that gas formation in the fermentation tube was due to the presence of members of the coliaërogenes group.

To complete the demonstration of the presence of organisms of this group, it is necessary to show that one or more of these aërobic plate colonies consist of nonspore-forming bacilli which, when inoculated into a lactose broth fermentation tube, form gas.

It is recommended that the standard tests for the coli-aërogenes group be either the Presumptive, the Partially Confirmed, or the Completed test as hereafter defined, each test being applicable under the circumstances specified.

2. PRESUMPTIVE TEST

(a) Inoculation.—Inoculate a series of lactose broth fermentation tubes with appropriate graduated quantities of the water to be tested. In every fermentation tube there must always be at least twice as much medium as the amount of water to be tested. When required to examine larger amounts than 10 cc. as many tubes as necessary shall be inoculated with 10 cc. each.

(b) Incubation and Reading.—Incubate these tubes at 37 C. for forty-eight hours. Examine each tube at twenty-four and forty-eight hours, and record gas formation. The records should be such as to distinguish between:

As many as 100,000 per cubic centimeter in fresh sewage.

- (1) Absence of gas formation.
- (2) Formation of gas occupying less than 10 per cent of the inverted vial.
- (3) Formation of gas occupying more than 10 per cent of the inverted vial. More detailed records of the amount of gas formed, though desirable for the purpose of study, are not necessary for carrying out the standard tests prescribed.
- (c) Positive Presumptive Test.—Formation within twenty-four hours of gas occupying more than 10 per cent, the incubation shall be continued to forty-eight hours. The presence of gas in any amount in such a tube at forty-eight hours constitutes a doubtful test. (An arbitrary limit of forty-eight hours' observation doubtless excludes from consideration occasional members of the coli-aërogenes group which form gas very slowly, but for the purpose of a standard test the exclusion of these occasional slow gas-forming organisms is considered immaterial.)

3. PARTIALLY CONFIRMED TEST

- (a) Preparation of Plates.—Make one or more Endo or eosin methylene blue plates from the tube which shows gas formation from the smallest amount of water tested. It is desirable to make transfers to Endo or eosin methylene blue as soon as possible after gas formation occurs. If gas formation occurs at the end of twenty-four hours make transfers at that time. If at the end of forty-eight hours gas has formed in tubes containing less of the sample of water than at twenty-four hours, transfers should be made from these tubes. (For example, if the water has been tested in amounts of 10 cc., 1.0 cc., and 0.1 cc., and gas is formed in 10 cc. and 1 cc., not in 0.1 cc., the test need be confirmed only in the 1 cc. amount.)
- (b) Incubation of Plates.—Incubate the plates at 37 C. for eighteen to twenty-four hours.
- (c) Results, Typical and Atypical.—(1) If typical colonies have developed upon the plate within this period, the confirmed test may be considered positive.
 (2) If, however, no typical colonies have developed within twenty-four hours, the test cannot yet be considered definitely negative, since it not infrequently happens that members of the coli-aërogenes group fail to form typical colonies on Endo or eosin methylene blue plates, or that the colonies develop slowly. In such case, it is always necessary to complete the test as directed under 4, (b) and (c).

4. COMPLETED TEST

- (a) From Typical Plates.—From the Endo or eosin methylene blue plates made as prescribed under 3, fish at least two typical colonies, transferring each to an agar slant and a lactose broth fermentation tube.
- (b) From Atypical Plates.—If no typical colonies appear upon the plate within twenty-four hours, the plate should be incubated another twenty-four hours, after which at least two of the colonies considered most likely to be organisms of the coli-aërogenes group, whether typical or not, shall be transferred to agar slants and lactose broth fermentation tubes.
- (c) Interpretation of (a) and (b).—The lactose broth fermentation thus inoculated shall be incubated until gas formation is noted—the incubation not to exceed forty-eight hours. The agar slants shall be incubated at 37 C. for twenty-four hours, when a microscopical examination shall be made of at least

one culture, selecting the one which corresponds to one of the lactose broth fermentation tubes which has shown gas formation.

The formation of gas in lactose broth and the demonstration of gram-negative nonspore-forming bacilli in the agar culture shall be considered a satisfactory completed test, demonstrating the presence of a member of the coli-aërogenes group.

The absence of gas formation in lactose broth or failure to demonstrate gram-negative nonspore-forming bacilli in a gas-forming culture constitutes a negative test.

APPLICATION AND OUTLINE OF PRESUMPTIVE, PARTIALLY CONFIRMED, AND COMPLETED TESTS

1. THE PRESUMPTIVE TEST

- (a) When definitely positive, that is, showing more than 10 per cent of gas in twenty-four hours, is sufficient:
- As applied to all except the smallest gas-forming portion of each sample in all examinations.
- (2) As applied to the smallest gas-forming portion in the examination of sewage or of water showing relatively high pollution, such that its fitness for use as drinking water does not come into consideration. This applies to the routine examination of raw water in connection with control of the operation of purification plants.
- (b) When definitely negative, that is, showing no gas in forty-eight hours, is final and therefore sufficient in all cases.
- (c) When doubtful, that is, showing gas less than 10 per cent (or none) in twenty-four hours, with gas either more or less than 10 per cent in forty-eight hours, must always be confirmed.

2. THE PARTIALLY CONFIRMED TEST

- (a) When definitely positive, that is, showing typical plate colonies within twenty-four hours, is sufficient:
- (1) When applied to confirm a doubtful presumptive test in cases where the latter, if definitely positive, would have been sufficient.
- (2) In the routine examination of water supplies where a sufficient number of prior examinations have established a satisfactory index of the accuracy and significance of this test in terms of the completed test.
- (b) When doubtful, that is, showing colonies of doubtful or negative appearance in twenty-four hours, must always be completed.

3. THE COMPLETED TEST

The completed test is required as applied to the smallest gas-forming portion of each sample in all cases other than those noted as exceptions under the "presumptive" and the "partially confirmed" test.

The completed test is required in all cases where the result of the partially confirmed test has been doubtful.

Using the term "B. coli" broadly, the interpretation of the results of the test is a matter on which there is now general agreement. It must be remembered that the relative abundance, rather than the presence, of colon bacilli, is the essential feature of this test. The discovery of a single Bact. coli in 50 cc. of water or even occasionally in 5 cc. affords no reasonable ground for casting suspicion upon the character of the water. The possibility of sporadic contamination with colon bacilli derived, not from man, but from domestic animals or birds, must always be kept in mind. Manured fields and pastures filled with grazing cattle or sheep are likely sources of colon bacilli, and may give rise to mistaken inferences if the environmental examination of a water-supply is neglected. Considerable numbers of colon bacilli in a water, however, are always suggestive of marked fecal contamination by man or animals.

The Bact. coli content of shellfish has been used as an index of sanitary quality. The undiluted shell liquor is subjected to a series of tests similar to those used in water examination. Different interpretations may be placed upon the bacterial score (Bact. coli number) in shell oysters and shucked stock. Sanitary inspection and control of the oyster beds is a prime consideration.

General reliance upon the principle of the Bact. coli test has led in recent years to its wide-spread application. It is not only almost invariably employed in the routine examinations of water from suspected sources, but has also been resorted to for the study of special problems, such as the efficiency of sand filters² and the self-purification of streams,³ as well as the pollution of oyster-beds.⁴ On the whole, it is felt by water analysts that greater weight can be attached to the results of the Bact. coli test in the hands of an experienced observer than to any other laboratory determination, bacterial or chemical.

An advisory committee appointed by the U. S. Treasury Department to recommend standards of purity for drinking-water supplied to the public by common carriers engaged in interstate traffic, has formulated the following standard:⁵

² Thirtieth and Thirty-first Rept. Mass. State Bd. of Health, 1898, 1899.

³ Jordan: Jour. Exper. Med., 1900, 5, p. 271.

¹ Standard Methods for the Examination of Shellfish: Am. Jour. Pub. Health, 1922, 12, p. 574.

⁴ Klein, E.: Report of Experiments and Observations on the Vitality of the Bacillus of Typhoid Fever and of Sewage Microbes in Oysters and Other Shell-fish, London, 1905.

⁵ Public Health Reports, 1925, 40, p. 693.

- "(1) Of all the standard (10 cc.) portions examined in accordance with the procedure specified below, not more than 10 per cent shall show the presence of organisms of the B. coli group.
- "(2) Occasionally three or more of the five equal (10 cc.) portions constituting a single standard sample may show the presence of B. coli. This shall not be allowable if it occurs in more than:
- "(a) Five per cent of the standard samples when twenty (20) or more samples have been examined.
- "(b) One standard sample when less than twenty (20) samples have been examined.
- "Note.—It is understood that in the examination of any water supply the series must conform to both the above requirements, (1) and (2). For example, where the total number of samples is less than six, the occurrence of positive tests in three or more of the five portions of any single sample, although it would be permitted under requirement (2), would constitute a failure to meet requirement (1).

"Definition.

- "The B. coli group is defined, for the purposes of this test, as in Standard Methods of Water Analysis, American Public Health Association, New York, 1923, and the procedures for demonstration of organisms of this group shall conform to those of the 'completed test' as therein specified.
- "The $standard\ portion$ of water for this test shall be ten cubic centimeters (10 cc.).
- "The $standard\ sample$ for this test shall consist of five (5) standard portions of ten cubic centimeters (10 cc.) each . . .
- "The bacteriological examinations which have come to be generally recognized as of most value in the sanitary examination of water supplies, are:
- "(1) The count of total colonies developing from measured portions planted on gelatin plates and incubated for forty-eight hours at 20 C.
- "(2) A similar count of total colonies developing on agar plates incubated for twenty-four hours at 37 C. (or in some laboratories incubated forty-eight hours at 20 C.).
- "(3) The quantitative estimation of organisms of the B. coli group by applying specific tests to multiple portions of measured volume.

"Of these three determinations, the test for organisms of the B. coli group is almost universally conceded to be the most significant, because it affords the most nearly specific test for the presence of fecal contamination. The committee has, therefore, agreed, after full consideration, to include only this test in the bacteriological standard recommended, believing that neither the 37 C. nor the 20 C. plate count would add information of sufficient importance to warrant complicating the standard by including them in the required examination. The omission of plate counts from the standard is not to be construed, however, as denying or minimizing their importance in routine examinations made in connection with the control of purification processes. On the contrary, the committee wishes to record its opinion that one or both plate counts are of definite value in such examinations, and to emphasize that it is chiefly in the interest of simplicity that they have been omitted from the standard here proposed."

Some attempts have been made to discover other organisms besides Bact. coli that are equally indicative or more indicative of sewage contamination. Streptococci, for example, have been supposed by some observers to show that recent and hence specially objectionable pollution has occurred, but the weight of available evidence is against this view. The longevity of streptococci in water is sometimes greater, sometimes less, than that of colon bacilli. The lack of suitable differential characters in the group of streptococci renders the use of these organisms as an index of sewage pollution a procedure of doubtful value.

Among other bacteria found frequently in sewage and polluted water may be mentioned the Proteus group (p. 496), Bact. cloacae (p. 322), Cl. welchii (p. 421), and B. subtilis (p. 282). These forms occur also in pure water, but much less commonly. A host of different microbes have been described as inhabiting uncontaminated water; one of the most common and abundant of these is B. fluorescens liquefaciens, an organism resembling Ps. pyocyanea in nearly all respects except that the former does not produce a blue pigment.

The great majority of bacteria in water are killed by freezing, hence ice always contains but a fraction of the number in the water from which it was formed. Over 90 per cent both of the ordinary water bacteria and of typhoid bacilli die within a few hours, and a progressive decline in numbers then takes place, less than 1 per cent of typhoid bacilli surviving at the end of a week of freezing, according to experiments. Ice stored for six months is practically sterile. Outbreaks of typhoid fever have rarely been traced to the use of ice, although in at least one case the evidence of ice transmission seems quite conclusive. Danger of typhoid infection from the use of ice in drinking-water is always less than from the use of water from the same source.

When by bacterial examination or otherwise a water is known to be unsafe for consumption, the question arises as to ways and means of artificial purification. There are a number of useful methods of purifying water, differing according to the amount and character of the water to be treated. Large public water-supplies

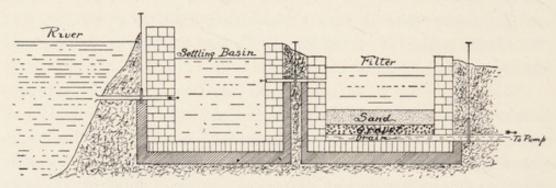


Fig. 191.—Cross-section of filter plant (after Hazen).

in Europe are commonly purified by sand-filtration. The sand filters are constructed so that the water passes through from 1 to 5 feet of sand supported upon carefully graded layers of gravel (Fig. 191). The rate of filtration must be accurately regulated, and the efficiency of operation controlled by frequent bacterial tests of the effluent.² Such filters are now in operation in Lawrence, Mass., Albany, N. Y., Washington, D. C., Philadelphia, Pa., and other cities in the United States. At Lawrence water pumped from the Merrimac River is applied to the filters; the river-water contained in 1905 an average of 12,700 bacteria per cubic centimeter, and the effluent from the filters only 70, while the percentage of 1 cc. samples containing Bact. coli was diminished from 100 per cent in the raw water to 4.7 per cent in the filtered water. The real sanitary efficiency of the filtering process is further attested by the

¹ Hutchings and Wheeler: Amer. Jour. Med. Sci., 1903, 126, p. 680.

² Thirtieth and Thirty-first Rept. Mass. State Bd. of Health, 1898, 1899.

typhoid fever death-rate in Lawrence, which sank from an average of 9.24 in the fourteen years before the filter was installed to an average of 3.02 in the years 1894–1904.

Highly turbid waters, such as those of the Mississippi, Ohio, Missouri, and other western rivers, require to be clarified as well as purified. So-called mechanical or rapid filters are often used where a simple sand-filter could not yield a clear effluent, or would become quickly clogged. The mechanical filters, of which there are many, require for their operation the use of a coagulant. Either sulfate of aluminum or ferric sulfate is commonly employed for this purpose. On the addition of the coagulant to the water, a flocculent precipitate is formed which carries down with it a large part of the suspended matter. When properly managed, a high degree of bacterial efficiency may be reached with mechanical filters. They have the advantage of being able to treat a large quantity of water upon a relatively small filtering area, and also of removing minute particles of clay which the ordinary sand filter allows to pass. A combination of the use of a coagulant with the hygienically efficient sand-filters has been recommended for use in some localities where high turbidity prevails only during certain periods.

Methods of purifying water by chemical treatment are steadily increasing in use. Ozone was one of the first germicides to be used in this way, and very effective generators have been devised for producing ozone on a large scale and introducing it into the water to be treated. The germicidal power of the gas is high and, where a clear, slightly polluted water is to be treated, the results are excellent. Of late the ozone treatment has lost ground in competition with the method of chlorination, which is equally efficacious and very much cheaper.¹

Bleaching powder, the active agent of which is hypochlorite of calcium, was extensively used for a time (about 1908–14) in water purification in this country, but has been superseded by liquid chlorine. Chlorine is usually applied to public water supplies in accurately measured dosage, the amount used being determined by the character of the water treated. It is now believed that the germicidal effect is due to the direct action of chlorine and its derivatives and not to nascent oxygen as was at one time supposed. The tastes and odors in chlorinated waters may be due to an over-

¹ Water Works Practice, 1925, p. 265.

dose of chlorine caused by inadequate control methods or to the action of chlorine upon certain organic compounds found in the water treated. The most objectionable odors appear to be those caused by the action of chlorine on certain manufacturing wastes.¹

In practice this mode of water treatment has obtained wide extension. In 1924 over 3,750,000,000 gallons of water per day were being chlorinated in more than 3000 cities and towns in the United States. Probably about one-third of the population of the United States is today efficiently protected against water-borne disease by chlorination. When liquid chlorine is added to ordinary surface water, clear and not highly contaminated, in the proportion of about 0.5 to 1 part of "available chlorine" per million gallons, the ordinary intestinal bacteria are destroyed, including such pathogenic forms as the typhoid bacillus. In cities like Minneapolis and Milwaukee, where the chlorine treatment has been applied to the city water-supply, a distinct reduction of typhoid fever has occurred. In Minneapolis only 20 deaths from typhoid fever were reported in the first ten months of 1911, as compared with 159 in the corresponding period of 1910. Portable hypochlorite plants have been devised,2 and may be quickly shipped to places where a sudden emergency arises.

Ultraviolet rays have also been used in some French cities for sterilizing water-supplies, but the method has not come into general use.³ In the United States at present the ultraviolet-ray process is chiefly used in the treatment of swimming pools.

When, as is too often the case, a public supply is known to be impure, domestic or house filters are often resorted to. Many of the articles sold as filters or water purifiers have little sanitary value, and at most remove excessive color or turbidity from the water without materially increasing its safety. Certain kinds of small filters are attached directly to the tap, and the water is filtered under pressure; others are simple gravity filters on which the water is poured and through which it percolates slowly. The principle underlying the operation of all the best house filters operated under pressure is essentially the same, namely, straining out of the bacteria. Since bacteria can pass freely through a thin layer of loose

¹ Water Works Practice, 1925, pp. 173-188.

² Childs and Whittaker: Eng. News, 1911, 65, p. 402.

³ Eng. News, 1911, 66, p. 525; Water Works Practice, 1925, p. 264.

or coarse material, only filters made of some exceedingly compact substance can achieve the end desired. Among the best-known filters of this class are the Pasteur-Chamberland (baked clay) and the Berkefeld (infusorial earth). Both of these have been repeatedly demonstrated to be efficient when operated under the conditions obtaining in a bacteriological laboratory, and yield sterile water, the Berkefeld for several days, the Pasteur-Chamberland for somewhat longer. Under actual working conditions in the household and elsewhere, the use of the compact filters not infrequently presents certain difficulties. The yield of these filters, particularly and necessarily of the more efficient types, is always scanty, and if the details of connection and cleansing are intrusted to unskilled or negligent hands, the filter may become entirely useless. A good deal of time and care are needed to insure that a battery of these tubes in a large school or factory is kept continually in good working order. Daily inspection by competent and trustworthy persons is indispensable, and bacterial tests should be made at frequent intervals.

"It might be thought that nowadays most people understood the proper use of filters on the Pasteur principle; it has, however, been found that in regimental soda-water factories in India (managed and supervised by regimental officers), where the water was known to be dangerous and in need of efficient filtration, the filter bougies have been fixed in such a way as to permit of the water passing through the joint, instead of through the wall, of the bougie; this being done in order to get a more rapid flow . . .

"During fifteen years a large number of filters have been used in barracks and hospitals; they have proved to be wonderfully serviceable. But they require minute attention; and every fortnight taking to pieces, cleaning, inspection, replacement of perhaps 150 fragile tubes and receptacles. In default of such attention, the filters rapidly become useless or even dangerous."

Gravity or low-pressure house filters with a 12-inch sand layer may be constructed on the same principle as the large sand-filters above described; when properly operated, they constitute a considerable safeguard. Animal charcoal, by removing color, gives brilliancy to the water, but is not in other respects suitable for a filtering substance.

¹ Jour. Roy. Army Med. Corps, 1904, 2, pp. 706, 751.

At all times the safest method of purifying water is by boiling. It is not necessary to render the water sterile, that is, to free it altogether from the spores of the hay bacillus or other harmless organisms. Boiling for five minutes is quite sufficient to destroy with certainty the typhoid bacillus and allied forms, as well as the cholera spirillum. Anthrax infection by way of drinking-water, although theoretically possible, is so rare as to be practically unknown; even anthrax spores, however, are killed by ten minutes' boiling. The flat taste of freshly boiled water may be removed by pouring the water a few times back and forth from one vessel to another, or by passing it through an inexpensive sand or sandstone gravity filter, which also removes the larger suspended particles. When water-borne disease is prevalent, or when a water-supply is notoriously impure or exposed to chance of infection, boiling is the only wholly safe procedure.

CHAPTER 39

THE BACTERIAL DISEASES OF PLANTS

ALTHOUGH the diseases of plants demonstrated to be caused by bacteria are perhaps not so numerous as those of animals, there can be no doubt that bacteria play a much more important part in plant pathology than was at one time supposed. It seems likely that there are many bacterial infections still unrecognized. Up to the present over forty have been described. Only a few of the better-known plant diseases can be considered here.

Pear Blight (Bacillus amylovorus).—In 1880 Burrill¹ found a motile bacillus constantly present in the freshly blighted twigs of pear trees. No trace of fungous growth was present in the infected region, and the bacillus was always found pushing into the sound tissues in advance of visible browning and death. Inoculations made with material taken directly from diseased tissues produced the blight in healthy fruit trees. Later experiments made by Arthur and by Waite,2 using more modern methods, confirmed the essential features of Burrill's work. Pure cultures of B. amylovorus inoculated by means of delicate reedle punctures into young shoots almost always produce the disease in the inoculated trees, while uninoculated trees in the neighborhood remain healthy. Careless pruning may sometimes be responsible for the orchard transfer of the disease. Waite isolated B. amylovorus from the mouth parts of bees that had visited blighted pear flowers, and saw bees pass from such flowers to healthy ones, blight subsequently appearing in the latter. The extent to which insects actually spread the disease is, however, doubtful. Stevens and his associates3 advanced strong evidence to show that wind is the main agent of transmission.

Apple, quince, and apricot trees are also susceptible to this infection. Some varieties of pears show higher resistance than others. Wild native trees, such as crabs, hawthorns, and plums,

Burrill: Proc. Am. Assoc. Adv. Sci., 1880, 29, p. 583.
 See Smith, E. F.: Centralbl. f. Bakt., II, 1899, 5, p. 810.

³ Stevens, F. L., Ruth, W. A., Spooner, C. S.: Science, Nov. 1, 1918, p. 449

are liable to infection and may constitute an important source of orchard trouble.

B. amylovorus possesses, according to Waite,¹ the following characteristics: It is a motile, noncapsulated bacillus, about 0.6 to 0.8 μ in diameter, and from 1 to 6 μ in length. The flagella are disposed peritrichally. In broth a marked turbidity is produced and a delicate pellicle is formed which finally breaks up and sinks. Gelatin is liquefied, although not with great rapidity. Upon agar, potato, and other solid media the color of the growth is milky white.

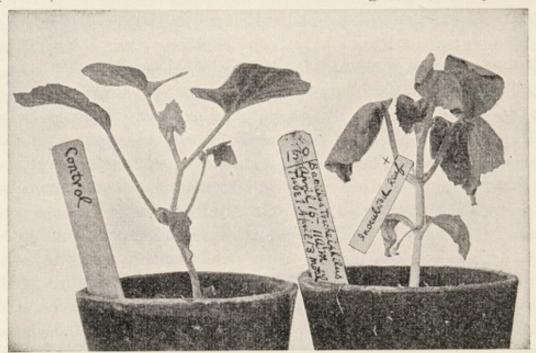


Fig. 192.—Muskmelon plant inoculated with a pure culture of B. tracheiphilus (Erwin F. Smith).

Acid is produced in various carbohydrate solutions, more vigorously with maltose than with saccharose, dextrose, or levulose. No gas is formed in the fermentation tube. Starch is not fermented. No pigment is formed and the cultures emit no odor.

The Wilt Disease of Cucurbita (Bacillus tracheiphilus).²—Cucumbers, muskmelons, pumpkins, and squashes are liable to a disease characterized by the wilting of the vines, followed by shriveling and death (Fig. 192). It is caused by a bacillus whose growth fills up the water-ducts or tracheae with a white, viscid mass. If a cucumber leaf is lightly pricked with a needle dipped in a pure culture of B. tracheiphilus, the bacteria make their way down the

¹ Waite: Science, N. S., 1898, 8, p. 692.

² Smith, Erwin F.: Centralbl. f. Bakt., II, 1895, 1, p. 364.

petiole of the leaf into the stem, where enormous multiplication occurs in the water-ducts. The first signs of the disease occur usually after about a week and always first on the inoculated leaf. In nature the disease appears to be spread mainly, if not solely, through the wounds inflicted by insects, such as the striped cucumber beetle and the common squash bug. Erwin Smith produced the disease by allowing these insects to feed on diseased vines and subsequently on healthy ones; this observer never saw the disease escape to control plants during greenhouse experiments, except through the exclusive agency of insects.

B. tracheiphilus grows in culture media, but is a sensitive species. Upon agar a white, extremely viscid growth is produced. In milk no visible change occurs. The growth on potato resembles that of the typhoid bacillus. Acid is formed from dextrose and saccharose. The optimum temperature for development is between 20 and 30 C.; no growth takes place at 37 C. Gelatin is not liquefied.

Brown Rot of Tomato, Egg Plant, and Potato (Bacillus solanacearum). 1—A disease which affects a number of solanaceous plants2 and is somewhat similar to the cucumber wilt in its general symptoms such as wilting, is due to a different micro-organism. After a premonitory wilting of one or more shoots, the stem, especially in young plants, shrivels and finally changes to brown or black. The vessels of the affected vascular bundles are filled with myriads of bacilli. In the potato plant the bacilli spread by way of the vascular bundles to the tubers, which are attacked and destroyed. Smith and others believe that a large part of the common potato rot of the northern United States is due to this bacterial infection. In this disease, as in the cucumber wilt and pear blight, the part played by insects in the rôle of bacillus-carriers seems to be of the first importance. Experiments made with potato beetles show that when the insects are fed on diseased plants, they become capable of transmitting the rot to healthy ones. It seems possible that other leaf-eating insects may be the means of transmitting the disease. Injury to roots during transplanting is also a source of infection.

Bacillus solanacearum grows on the ordinary culture media with formation of a dirty white pigment which discolors the substratum.

¹ Smith, Erwin F.: Bull. No. 12, Div. of Veg. Physiol. and Path., U. S. Dept. of Agric., 1896.

² The tobacco plant and the nasturtium are also liable to this infection.

The growth is not viscid, or only slightly so. Gelatin is not liquefied. Acid is not formed from any of the sugars. The fat of milk is dissolved and the medium becomes strongly alkaline and translucent. The bacillus grows well at 37 C. The micro-organism is not pathogenic for the cucurbitaceous plants, and, conversely, attempts to infect the potato and tomato with the bacillus of cucumber wilt (B. tracheiphilus) have given negative results.

A serious disease of the tobacco plant in Florida and North Carolina (Granville wilt of Stevens and Sackett) is caused by the same organism (Smith). In this case infection probably first occurs in the root. Observations in Sumatra indicate that land infected with nematodes which attack the root or base of the plant stem is particularly subject to the disease, so that the bacteria are probably brought into contact with the plant tissues through the agency of these parasitic worms. Tomato plants can be successfully inoculated with the micro-organism of tobacco wilt; the reciprocal is also true. Plants of one species grown in soil previously occupied by affected plants of another species of the same family also contract the disease.

The Basal Stem-rot of Potato (Bacillus phytophthorus). —We are indebted to Otto Appel, of Berlin, for our first exact knowledge of this disease. In the United States Appel's work has been repeated and confirmed by Smith. The stems of the potato rot off at the surface of the earth; the tubers are rotted in the earth and also subsequently in storage. Often tubers which appear to be sound or nearly sound externally are badly rotted internally. This disease is widely prevalent in the United States and in Europe. It is much less a vascular disease than brown rot.

The organism causing it is a white, peritrichial bacillus, having the following characteristics (Smith): Clouds bouillon very rapidly at 30 C.; on thin sown gelatin plates, large circular colonies; gelatin is slowly liquefied; negative gram stain; does not produce indol; no gas from potato juice, or Witte's peptone in water with grape-sugar or cane-sugar; reddens litmus milk, and throws down a pleasant-smelling curd after five or six days; does not grow in Cohn's solution;

¹ Appel, Otto: "Untersuchungen ü. d. Schwarzbeinigkeit, etc.," Arb. Biol. Abt. d. k. Gesundh., Berlin, 1903.

² Smith, Erwin F.: "Bacillus phytophthorus, Appel," Science, 1910, 31, p. 748.

potato starch not much acted upon; reduces nitrates; streaked on sterile raw potato from agar there is prompt growth along the line of the needle (twenty-four hours or less), with a brown stain and rapid disintegration and decay of the tissues. All varieties of potato are subject to the disease, but some to a much greater extent than others.

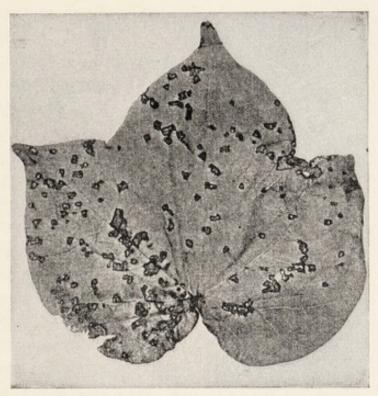


Fig. 193.—Angular leaf spot of cotton in which stomatal infections appear to be the rule. This leaf represents the secondary stage of a natural infection; the spots are browned and shriveled and they involve the entire thickness of the leaf. In an earlier stage of the disease the spots are limited to the under side of the leaf (mesophyll), and occur in the form of small water-soaked areas surrounding the stomata, under which nests of bacteria occur. These spots gradually deepen so as to involve the palisade tissue, and then they become visible on the upper surface of the leaf. The spots are not yet shriveled or browned, but if the leaf is held up and viewed by transmitted light, they appear as translucent areas, while by reflected light they are dull and wet looking. A little later they present the appearance shown in this figure. All stages of this disease have been obtained by spraying upon the plants young agar cultures of Bacterium malvacearum suspended in sterile water (Erwin F. Smith).

The Black Rot of Cabbage and Allied Plants (Bacillus campestris).—The chief diagnostic character of this disease is the blackening of the fibrovascular bundles, which may be readily observed in the stem and leaf-stalks. There is an accompanying decrease in the water-flow, and the lower leaves of the cabbage wilt, turn brown, and drop off. Rutabagas and turnips are also attacked by the same disease, but not so seriously as are some of the other

members of the cabbage family. The micro-organism of the cabbage rot was first discovered by Pammel¹ in diseased Swedish turnips or rutabagas. It has been more fully studied and its etiologic relations to the disease of cabbage and cauliflower established by Russell² and by Smith.³ The disease is widely spread throughout the United States and is also common in Europe.⁴ Infection of the plant may take place from the soil when the roots are injured at the time of transplanting, exposing the ends of the fibrovascular

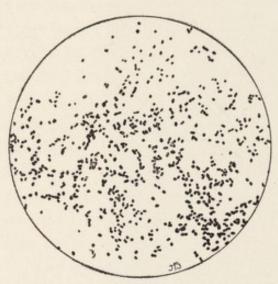


Fig. 194.—Bacillus campestris. Cover-glass (smear) preparation from the vessels of a cabbage plant received from Racine, Wis. Stained with carbol-fuchsin. Drawn from a microphotograph; × 1000 (Erwin F. Smith).

bundles, or it may occur from the bite of insects. There is evidence also that a common, perhaps the usual, mode of infection is through the water-pores at the margin of the leaves. The fluid which is exuded from these pores under favorable atmospheric conditions has been shown to be an excellent medium for bacterial growth, and the pores offer a ready means of ingress. The fluid may become infected by the visits of slugs or various insects or may be seeded with bacilli borne to the leaf by air-currents. The precise methods of dissemin-

ation from plant to plant have not been fully determined. In other bacterial infections the bacteria appear to enter the leaf through the stomata (Fig. 193).

The bacillus of black rot, B. campestris, is a short, motile, gram-negative bacillus with rounded ends (Fig. 194). It grows readily in the ordinary culture media, the optimum temperature being about 25 to 30 C. Gelatin is slowly liquefied and the casein in milk is gradually digested. In solutions of the various carbohydrates that have been tested no acid is formed. Upon potato a characteristic yellow pigment, perhaps a lipochrome, is produced, which is at first of a rather light color, but becomes darker with

¹ Pammel: Bull. No. 27, Iowa Agr. Expt. Sta., 1895, p. 130.

² Russell: Bull. No. 65, Wisc. Agr. Expt. Sta., 1898.

³ Smith, Erwin F.: Centralbl. f. Bakt., II, 1897, 3, p. 284.

⁴ Harding: Centralbl. f. Bakt., II, 1900, 6, p. 305.

age. Inoculations of cabbages, cauliflowers, turnips, and other plants with pure cultures of B. campestris have reproduced the typical and characteristic disease (Fig. 195). Part of the injury done to the turnip root consists in the destruction of the cell wall,

which is probably brought about by the solvent action of a cytolytic enzyme.¹ There is prompt action on potato starch.

Stem Blight of Alfalfa.-Sackett² has described a bacterial disease of alfalfa, widely distributed in Colorado and occurring in some other western states. In one district the first cutting of the alfalfa crop is said to have been reduced to onefifth its original tonnage by the ravages of this malady. In the early stages a clear, yellowish, viscid liquid oozes from the diseased tissues and dries with a varnish-like luster on the stem. The leaves also usually show the disease, sometimes independently of the stem. "One-year-old plants may exhibit blackened areas in the crown, and black streaks which run down into the tap root. As the plant grows older, this blackening increases until the whole crown becomes

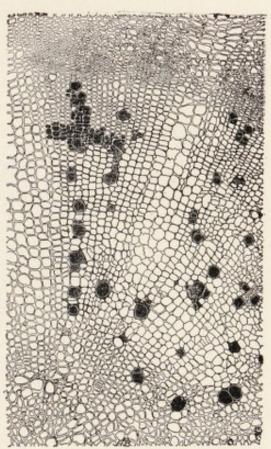


Fig. 195.—Cross-section of a turnip root, showing vessels occupied by Bacillus campestris as the result of a pure culture inoculation by means of needle pricks on the leaves. The bacteria are confined to the vessels and their immediate vicinity. They do not occur in the phloem, a small portion of which is shown at the top of the picture. Drawn from a microphotograph; × 57 (Erwin F. Smith).

involved, and either the crown buds are destroyed or the root is no longer able to perform its functions, and the plant dies."

A short, motile, aërobic bacillus (Bacillus medicaginis) has been isolated by Sackett from the diseased tissue. It grows readily on the ordinary media at 28 C. It produces a fluorescent pigment on

² Sackett: Bull. 158, Colorado Agr. Exp. Sta., 1910.

¹ Smith, Erwin F.: Bull. No. 25, Bureau of Plant Industry, U. S. Dept. of Agr., 1903.

agar; it does not liquefy gelatin, peptonize casein, or acidify milk. Inoculation of healthy plants with pure cultures produces the typical disease in seven to nine days.

The Yellow Disease of Hyacinths (Bacillus hyacinthi).—A disease of hyacinths studied by Wakker¹ and by Smith² is due to a bacillus closely related to B. campestris. The disease is manifested to the naked eye by a yellow striping of the leaves, which appears, as a rule, in long narrow areas separated by tracts of green tissue. The infection spreads to the bulb, which becomes filled with a bright yellow slime. Multiplication of the bacillus takes

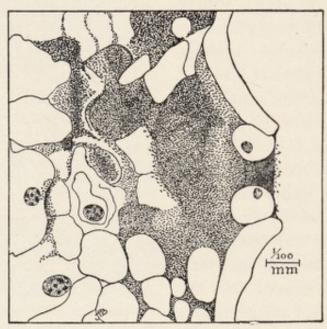


Fig. 196.—Bacterium stewarti filling the substomatic chamber and pushing out into the deeper tissues of a maize leaf. The result of an inoculation made by placing a small quantity of a pure culture on the tip of a sweet-corn leaf in the seedling stage. The globose bodies are nuclei (Erwin F. Smith).

place chiefly in the vascular system; the walls of the vessels are destroyed, and large cavities formed in fibrovascular bundles.

B. hyacinthi is a small, motile, chromogenic bacillus which grows well on the ordinary culture media. Gelatin and blood-serum are slowly liquefied. Yellow pigment is produced on most media and in the tissues of the host plant. Acid but no gas is formed in dextrose and saccharose broth. Milk is rendered alkaline and the casein is precipitated. Indol is formed in peptone solu-

¹ Wakker: Bot. Centralbl., 1883, 14, p. 315; Arch. neérland. d. sc. ex. et nat., 1889, 23, p. 1.

² Smith, Erwin F.: Bull. No. 26, Div. of Veg. Physiol. and Path., U. S. Dept. of Agr., 1901.

tion. The optimum temperature is about 28 to 30 C.; growth does not occur at 37 C. There is very slight action on potato starch.

According to Erwin F. Smith, B. hyacinthi, B. campestris, B. phaseoli (parasitic on beans; see below), and B. stewarti (parasitic on corn, especially sweet corn; Fig. 196) constitute a natural group. They are all bacilli with a single polar flagellum. All produce a yellow or brown pigment and live parasitically or semiparasitically on various plants. Cultural characters show a resemblance in many important particulars.

Citrus Canker.—A disease attacking various citrus trees, especially grape-fruit, seems to have been introduced into this country about 1912, probably on nursery stock from Japan. The causal organism was isolated by Clara Hasse, and is described as an aërobic bacillus (B. citri) with a yellow growth on culture media. Gelatin is liquefied. No gas is formed from carbohydrates. Inoculation of cultures on grape-fruit plants produces characteristic cankers.

This species is evidently very closely related to the bacillus causing a bean disease, next considered.

Bacterial Blight of Beans.—An important bacterial disease attacking the foliage, stems, and pods of the common beans and also the lima varieties is caused by a short motile rod with rounded ends (B. phaseoli). This organism produces a yellow growth on culture media. Gelatin is liquefied and milk rendered slowly alkaline. On the pods and leaves appear small reddish spots, which increase rapidly in size and "develop into watery ambercolored blisters surrounded by a pink or reddish border. These blisters are filled with myriads of bacteria, and in time they dry down, forming a pale yellow or amber-colored crust over the affected areas. Ultimately the diseased leaves become brittle, ragged, and are worthless, while the pods curl, shrivel, and rot" (Sackett). It is supposed that the disease is introduced into a bean field by the seed, and spread from plant to plant by rain and leafeating insects.

Olive-knot (Bact. savastanoi = Bacillus oleae in Part).—Savastano in 1886–87 found a cultivable bacillus constantly present in the interior of young, growing olive galls.² Later he succeeded in infecting healthy plants with pure cultures of the bacillus and in

¹ Hasse, Clara H.: Jour. Agric. Res., 1915, 4, p. 97.

² Savastano: Compt. rend. de l'Acad. d. sc., 1886, 103, p. 1144.

practically establishing the etiologic relation of the micro-organism to the disease. The olive-knot is present on the trees of certain olive groves in California, where it seems to be due to the same bacillus described by Savastano. From this source it has been especially studied by Smith, who has cleared away much of the confusion caused by the other observers' use of mixed cultures and organisms of mistaken identity. Smith's work has been thoroughly controlled by inoculation experiments (Fig. 197). The genuine

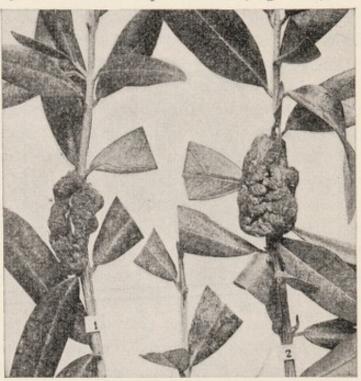


Fig. 197.—Bacterial olive-knots produced by needle-pricks of a pure culture. Inoculated January 4; photographed May 16. The organism came originally from an olive-knot obtained in California, where the disease has been very destructive (Erwin F. Smith).

olive-tubercle organism produces a whitish growth on various culture media, does not liquefy gelatin, ferments dextrose but not lactose, and produces abundant alkali in litmus milk. It is actively motile, strongly anaërobic, and forms no spores. The interesting fact that tumors can occur by metastasis was discovered by Schiff-Giorgini, and has been confirmed experimentally by Smith, using pure cultures. The primary tubercles, which are due to external infection, begin in the cortex. From the point of infection the bacteria make their way to distant points by way of the vascular

¹ Smith, Erwin F.: Bull. No. 131, Bureau of Plant Industry, U. S. Dept. of Agri., 1908.

system. The secondary tumors begin deep in the tissues at the junction of wood and pith.

The Crown-gall of Plants.—A very common disease of plants occurs in the form of a swelling or gall of the crown, the junction of stock and scion just below the ground line (Fig. 198). It is especi-

Fig. 198.

Fig. 199.

Fig. 198.—Soft gall of peach producing hard gall on apple. Time, two years (Smith, Brown, and Townsend in Bulletin No. 213, Bureau of Plant Industry, U. S. Dept. of Agriculture, 1911).

Fig. 199.—Radial section through a daisy petiole, showing the internal origin of a small metastatic tumor. The normal tissues are bracketed, the epidermis is not yet ruptured, and the tumor includes all kinds of tissues peculiar to the petiole (Smith, Brown, and Townsend in Bulletin No. 213, Bureau of Plant Industry, U. S. Dept. of Agriculture, 1911).

ally likely to follow injury in grafting or cultivating. Smith, Brown, and Townsend¹ have described under the name Bacillus tumefaciens an organism first found by them in the galls of a cultivated marguerite or daisy in 1904 (Fig. 199). Obtained in pure culture it produces typical galls when inoculated into healthy daisies. Cross-inocula-

¹ Smith, Brown, and Townsend: Bull. 213, Bureau of Plant Ind., U. S. Dept. of Agri., 1911.

tions have shown that the same bacillus is capable of inducing tumors in widely separated species, genera, and families. The organism has also been isolated from natural galls on such plants as the willow, turnip, beet, hop, grape, poplar, cotton, rose, peach, and apple. Hard and soft galls and the "hairy-root" of apple seem to be etiologically similar. The olive is not infected.

The organism producing the plant tumor is a short, motile bacillus with polar flagella. It grows quite readily in the ordinary media, at room temperature forming white colonies on agar and gelatin plates. It does not liquefy gelatin, renders milk akaline, and precipitates the casein.

These plant galls or tumors were believed by Smith to resemble malignant animal tumors in various particulars, such as their permanent and very rapid new growth, involving all the tissues of the part attacked; enormous round-celled or spindle-celled hyperplasia; great reduction of amount of conductive tissues; early necrosis, especially of the more fleshy tumors, with renewed growth at the margins; frequent recurrence after extirpation; extension of the disease to other parts by metastases. The disease progresses slowly, first stunting the plant and finally destroying it, unless removed by extirpation or by the development of increased resistance on the part of the plant.

Mode of Entrance and Spread.-In the preceding pages instances have been given of the frequent conveyance of bacterial plant diseases by biting insects. The question whether bacteria can penetrate plant tissues only through wounds due to insect injuries or some other kind of crushing or bruising, or whether they can enter through natural openings, has been the object of considerable discussion. The fact that certain leaf-spot and fruitspot bacterial diseases appear to spread with particular rapidity during rainy seasons might be thought to favor the view that under some conditions pathogenic bacteria can enter the uninjured plant through ordinary stomata. This assumption has been fully confirmed by experiment in several affections, such as the bacterial spot of peach and plum, the sweet corn disease due to Bacillus stewarti, the leaf-spot of cotton (Fig. 193), and Burrill's bacterial disease of broom-corn. Simply spraying pure cultures upon the surface of leaves or fruit is sufficient to produce the disease in these instances.

Within the plant itself the bacteria seem to be able to pass from one part to another through vessels, through the parenchymatic tissues by the way of the intercellular spaces, and directly from cell to cell. Destruction of tissue or dissolution of cell-walls does not seem necessary.

Other Diseases.—Among other carefully studied bacterial diseases of plants may be mentioned a disease of cauliflower and

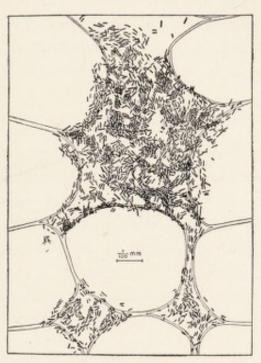


Fig. 200.—B. carotovorus wedging apart cells of the carrot. Drawn mostly from one plane. In placing the cover-glass a few of the bacteria have been crowded out of the intercellular spaces into parts they did not originally occupy; × 500 (Erwin F. Smith).

allied plants described by Harrison (Bacillus oleraceae), a soft rot of carrots (Bacillus carotovorus: Fig. 200), a leaf-spot disease of broom-corn (Burrill), the so-called "gum disease" of the sugarcane (Cobb), and a soft rot of the calla lily. The so-called "bacteriosis of carnations" seems not to be a bacterial disease.

Harrison⁵ has made the interesting observation that different varieties of turnips show varying degrees of susceptibility to infection with Bacillus oleraceae, the amount of rot present varying

¹ Harrison: Centralbl. f. Bakt., II, 1904, 13, p. 46.

² Jones: Centralbl. f. Bakt., II, 1901, 7, pp. 12, 61; also 1905, 14, p. 257.

³ Townsend: Bull. 60, Bureau of Plant Ind., U. S. Dept. Agr., 1904.

⁴ Woods: Centralbl. f. Bakt., II, 1897, 3, p. 722.

⁵ Harrison: Centralbl. f. Bakt., II, 1904, 13, p. 197.

from less than 5 per cent in some varieties to 65 per cent in others. One variety seemed to be immune under natural conditions. A similar difference in susceptibility to bacterial infection has been observed in other plant diseases. Different varieties of peas, pears, cherries, and alfalfa show varying degrees of resistance to the attacks of pathogenic bacteria. It is not known upon what this varietal immunity depends.

APPENDIX

INFECTIOUS DISEASES OF DOUBTFUL OR UNKNOWN CAUSATION

There are a number of diseases that are infectious, and therefore in all probability due to some micro-organism, but concerning the actual causation of which there is at present either much difference of opinion among competent observers or absolute uncertainty.

HODGKIN'S DISEASE

A pleomorphic organism resembling the diphtheria bacillus has been found with considerable frequency in the lymphatic glands in the affection known as Hodgkin's disease. An etiologic relationship has been suggested by the work of some investigators. Other studies on the bacterial flora of lymphatic glands show that a variety of nonpathogenic bacteria can be cultivated from lymphatic glands, especially in diseased conditions. Further research in this field may give more definite results.

TRACHOMA

The name "trachoma" is given to an inflammation of the conjunctiva accompanied by the formation of so-called "granules" and, usually, of scar tissue. There is no absolute agreement, however, as to the symptoms and lesions of "true" trachoma, and the name has probably been applied to eye affections etiologically distinct. Trachoma is generally considered an infectious disease spread by contact, but there is much uncertainty with respect to the causal agent or agents.³

The disease is characteristic of poverty, uncleanliness, and generally unhygienic conditions of life. It appears to be easily controlled by the application of the rules of public and personal hygiene.

Bunting and Yates: Jour. Amer. Med. Assoc., 1913, 61, p. 1803; 1914,
 62, p. 516; Bull. Johns Hopkins Hosp., 1915, 26, p. 376.

² Bloomfield: Arch. Int. Med., 1915, 16, p. 197.

³ Royer: Jour. Am. Med. Assoc., 1926, 87, p. 482.

Cell inclusions have been found in the conjunctival epithelial cells in cases diagnosed as trachoma and have been regarded by many writers as bearing an important relation to the disease. They have been variously interpreted as being organisms akin to the protozoa ("Chlamydozoa" or mantle animals—Prowazek) and as "nests" of growing bacteria (Williams). Hemoglobinophilic bacteria similar to the influenza bacillus were found by Williams and her collaborators¹ in a large proportion of cases of chronic conjunctivitis and also in cases with trachoma inclusions. "These bacilli show morphologic and staining characteristics similar to those seen in trachoma inclusions; and transition forms between bacilli and inclusions are frequently seen in these cases" (Williams).

Noguchi,² working among American Indians in the Southwest, isolated a motile, aërobic, strictly hemoglobinophilic bacillus which, on subconjunctival inoculation of massive doses into chimpanzees, appeared to produce the typical lesions of human trachoma, including the characteristic follicle and scar formation. This bacillus, to which the name B. granulosis was given, has been used by a number of investigators in the attempt to produce trachoma, but the results have been conflicting and no final judgment as to the etiology of this disease is at present warranted.³

COLDS

Little is definitely known about the bacteria causing the common colds. Undoubtedly, the term "cold" is used for a variety of affections etiologically distinct. Pneumococci and streptococci, as well as the influenza bacillus and even the tubercle bacillus, may be responsible for the train of symptoms to which the name "cold" is popularly applied. Colds are apparently largely spread by close personal contact and by the infectious droplets discharged in sneezing and coughing. Whether certain micro-organisms are more commonly concerned in the production of colds than others is quite uncertain. Some specific organisms have been implicated. An

¹ Williams, Anna W., et al.: Jour. Infect. Dis., 1914, 14, p. 261. This article contains a comprehensive survey of the subject.

² Noguchi, H.: Bull. N. Y. Acad. of Medicine, 2nd series, 1927, 3, p. 295; Jour. Exper. Med., 1928, 48, Suppl. 2.

³ For a review of our knowledge, see Weiss, C.: Jour. Infect. Dis., 1930, 47, p. 107.

MUMPS 757

anaërobic organism has been found in some series of cases of acute and chronic rhinitis and has given rise to rhinitis when introduced experimentally into the nose of a healthy person. Specific antibodies are present in the sera of persons infected experimentally and of those suffering from a natural infection with this bacillus. A specific filterable virus has been reported by some observers (Foster), and infection has been produced in monkeys by means of filtered nasopharyngeal washings.

MUMPS

A diplococcus was found in the exudate of the parotid gland by Laveran and Catrin³ in a large proportion of all cases examined. Other investigators have found a similar diplococcus in the gland exudate and in the blood in cases of mumps. Korentschewsky4 obtained a diplococcus from the exudate in 21 out of 29, and from the blood in 8 out of 32, cases. A diplococcus isolated by Isabella Herb⁵ shows the following characteristics: It averages from 0.5 to 1.5μ in diameter, stains easily with the ordinary aniline dyes, and is gram-positive. It has no capsule. Development takes place on all the ordinary media, but is very slow, the colonies on glycerol-agar being scarcely visible in twenty-four hours. Gelatin is very slowly liquefied. Milk is coagulated in forty-eight hours. Mixing sterilized saliva with agar, as in making blood-agar, gives a favorable medium, and in twelve to twenty-four hours an abundant growth occurs. This diplococcus apparently corresponds with the organism isolated by Laveran and Catrin. Miss Herb's inoculation experiments are significant. "Inoculations of suspensions of the diplococcus into Steno's duct in the monkey and in the dog produce an acute, uniform enlargement of the parotid gland, accompanied with some slight fever. In the dog this enlargement is the result of an infiltration that consists largely of mononuclear cells, and is accompanied with a general increase in the mononuclear cells in the blood, as well as a distinct rise in the opsonic index with respect to the diplococcus."

¹ Tunnicliff, Ruth: Jour. Infect. Dis., 1913, 13, p. 283; 1915, 16, p. 493.

² Dochez, A. R., Shibley, G. S., and Mills, Katherine: Proc. Soc. Exper. Biol. and Med., 1929, 26, p. 562.

³ Laveran and Catrin: Compt. rend. de la Soc. Biol., 1893, 45, p. 95.

⁴ Korentschewsky: Centralbl. f. Bakt., I, Orig., 1907, 44, p. 394.

⁵ Herb, Isabella: Archives of Int. Med., 1909, 4, p. 201.

Other observers have not been able to confirm these findings, but have reported finding a filterable virus, Wollstein¹ succeeding in producing parotitis and orchitis in cats by inoculations of filtered saliva from cases of mumps.

SPRUE

This is a tropical disease characterized by a catarrhal inflammation of the alimentary tract. The mouth and tongue show a peculiar ulcerative condition. The stools are pale and frothy. Anemia and general wasting occur. Ashford reports that in Porto Rico it is far more common and fatal among American residents than tuberculosis.

A yeast-like organism has been observed in the stools of sprue patients by a number of investigators, and its relationship to the disease has been especially emphasized by Ashford.2 The yeast in question, named by Ashford Monilia psilosis, is found by him to be constantly present in the mouths and in the feces of patients suffering from sprue. Serological tests, including the complementfixation reactions, support the view of a causal relation. Experiments by L. W. Smith³ are confirmatory of Ashford's conclusions. Gastro-intestinal lesions roughly comparable to those found in man are said to be produced in the guinea-pig by intraperitoneal and oral inoculation with Monilia psilosis. Lesions rarely develop, however, except in animals kept on a deficiency diet. These experiments give some support to the view that sprue originates as a food deficiency disease and that Monilia-or some other fungus of relatively low pathogenicity-becomes implanted in the weakened organism.

MEASLES

At the present time measles is one of the most serious diseases of early childhood. In 1924 the deaths reported from measles in the registration area of the United States numbered 8517, a figure larger than the deaths from scarlet fever (3122) or from typhoid (6677) and but slightly lower than the deaths from diphtheria (9316).

Wollstein, M.: Jour. Exper. Med., 1916, 23, p. 353.

² Ashford, B. K.: Amer. Jour. Med. Sci., 1915, 150, p. 680; 1917, 154, p. 157.

³ Smith, L. W.: Jour. Amer. Med. Assoc., 1924, 83, p. 1549.

Hektoen¹ was first to obtain rather convincing evidence that the specific agent of measles is contained in the blood. Blood drawn from the veins of a patient and mixed with ascites broth was found to give no visible growth when incubated at 37 C. for twenty-four hours. A few cubic centimeters of this mixture injected into a healthy man produced the typical symptoms and eruption after the usual period of incubation. Sellards,² however, in carefully controlled observations upon eight subjects failed to transmit measles by the injection of blood.

Anderson and Goldberger³ seemingly succeeded in communicating the disease to the lower animals (monkeys) in definite and regular fashion. The apparent reason for the preponderating negative and irregular results of earlier experimenters is the fact that human blood is infective for monkeys during a very limited period. This period begins before the appearance of the characteristic eruption, and continues for about twenty-four hours after the eruption shows itself. "At the end of about twenty-four hours from the first appearance of the eruption the infectivity of the blood for the rhesus monkey already appears very greatly reduced, and becomes progressively less thereafter."

Further experiments by the same investigators⁴ demonstrated the presence of the virus of measles in the mixed buccal and nasal secretions, and showed that the virus could pass through a Berkefeld filter, could resist desiccation for twenty-five and a half hours and freezing for twenty-five hours, while infectivity of the virus was destroyed by heating for fifteen minutes at 55 C.

Finally Blake and Trask⁵ were able to produce in monkeys, by intratracheal inoculation of nasopharyngeal washings taken from measles patients before the rash, symptoms and lesions essentially identical with those of human measles.

In 1917 Ruth Tunnicliff reported the isolation of a green-producing coccus from the blood in the pre-eruptive and eruptive stages

¹ Hektoen: Jour. Infect. Dis., 1905, 2, p. 238.

² Sellards, A. W.: Bull. Johns Hopkins Hosp., 1919, 30, p. 257.

³ Anderson and Goldberger: Public Health Reports, Washington, 1911, 26, pp. 847, 887.

⁴ Goldberger and Anderson: Jour. Amer. Med. Assoc., 1911, 57, pp. 476, 971.

⁵ Blake, F. G., and Trask, J. D.: Jour. Exper. Med., 1921, 33, pp. 385, 413.

of measles.¹ The relations of this organism to measles were carefully studied by Tunnicliff, and the results reported in a series of papers.² At first the coccus could be cultivated only anaërobically but in the second generation it grew aërobically. It is gram-positive, small and grows in pairs (diplococcus) and short chains. Nothing distinctive has been reported concerning its fermentive powers and other cultural characteristics. The organism was grown from the blood, sputum, nasopharyngeal secretions and ear discharges of measles patients in the pre-eruptive stage and in the earlier stages of rash. Rabbits inoculated with the Tunnicliff coccus manifested symptoms and lesions showing some resemblance to measles. Skin tests with killed cultures of the coccus gave positive reactions in 26 persons who had not had measles and in only 1 out of 29 persons with a history of measles.

In 1926 Ferry and Fisher reported the demonstration of an extracellular toxin in filtered culture of green-producing streptococci from measles; with this toxin they obtained positive skin reactions in a considerable proportion of susceptible persons.3 Ferry and Fisher believed that the organism isolated by them differed from that described by Tunnicliff in growing aërobically and in producing a specific soluble toxin. Variations in cultural methods may explain the discrepancies. Tunnicliff and Taylor4 later obtained from Tunnicliff's diplococcus an extracellular toxin which gave a specific skin reaction in persons with a negative history of measles in about the same percentage as that obtained by Ferry and Fisher. The serum from goats immunized with the Tunnicliff diplococcus seems to confer a high degree of protection when given to measles contacts not later than the fifth day of exposure.⁵ Many bacteriologists believe that the green-producing diplococcus of Tunnicliff and the green-producing streptococcus of Ferry are identical.

A gram-negative anaërobic diplococcus, isolated by the Italian bacteriologist Caronia, differs somewhat according to the published

¹ Tunnicliff: Jour. Am. Med. Assoc., 1917, 68, p. 1028.

² See for example: Jour. Infect. Dis., 1918, 22, p. 462; 1918, 23, p. 572; 1919, 24, pp. 76, 181; 1922, 31, p. 382; 1925, 37, p. 193.

³ Ferry and Fisher: Jour. Amer. Med. Assoc., 1926, 86, p. 932.

⁴ Tunnicliff and Taylor: Jour. Amer. Med. Assoc., 1926, 87, p. 846.

⁵ Tunnicliff and Hoyne: Jour. Infect. Dis., 1926, 38, p. 48; Hoyne and Gasul: Jour. Amer. Med. Assoc., 1926, 87, p. 1185; Barenberg, L. H., et al.: Jour. Amer. Med. Assoc., 1930, 95, p. 4.

description, but perhaps may be the same as the organism studied by Tunnicliff and Ferry.

Long and Cornwell¹ were unable to isolate any toxin-producing green streptococci from the blood of 26 measles patients.

There is no doubt that the blood of persons who have recovered from measles contains substances of immunizing power. The whole blood, the blood plasma, and the serum from measles convalescents have been used quite extensively for prophylactic purposes in various parts of the world.² In New York City where about 1000 exposed children, mostly in institutions, were injected with convalescent serum measles was either prevented altogether or modified so that the attack was very mild.³

INFLUENZA4

Epidemic influenza, so far as can be recognized by the meager historical descriptions, occurred at least as early as the fourteenth century. Since the beginning of the sixteenth century epidemic waves of this disease have swept over the world at more or less frequent intervals, the latest being the great pandemic of 1918–19. The loss of life in that outbreak was enormous, amounting to over 450,000 deaths in the United States and to over 6,000,000 in India. Among the characteristic features of influenza epidemics are: the great morbidity—from 25 to 50 per cent of the population or higher; the rapid spread of the disease; the age incidence—young adults of the ages twenty to thirty being especially affected; and the tendency to the development of pneumonia and other complications.

In the years between pandemics, for example between 1890 and 1918, many deaths have been attributed to "influenza," but since recognition of true influenza in nonepidemic periods is hardly possible by either clinical or bacterial methods the identity of the "influenza" of 1917 with the epidemic influenza of 1918 is uncertain. It is perhaps significant that the age-grouping of the "influenza" deaths in nonepidemic periods is very different from that in pandemics.

¹ Long and Cornwell: Jour. Infect. Dis., 1927, 40, p. 408.

² Zingher: Jour. Amer. Med. Assoc., 1924, 82, p. 1180; Godfrey, E. S., Jr.: Jour. Prev. Med., 1928, 4, p. 11.

³ Park and Freeman: Jour. Amer. Med. Assoc., 1926, 87, p. 556.

⁴ For a review of the literature see Jordan, E. O.: "Epidemic Influenza," Chicago (Amer. Med. Assoc.), 1927, pp. 599.

The mode of transmission of influenza is not known. The conspicuous symptoms of respiratory involvement in many cases have naturally led to the supposition that the infecting agent is present in the discharges from the nose or throat. Experiments upon human volunteers, however, made by spraying such discharges upon the mucous surfaces of healthy persons or by direct exposure to coughing and sneezing influenza patients in various stages of the disease, have been singularly unsuccessful in producing infection. Leake1 obtained results that could be regarded as positive in only a very small proportion of cases in spite of the drastic methods used to produce infection. This is in contrast to the rapidity with which the disease spreads under natural conditions.

If immunity is conferred at all by an attack of influenza it seems to be very transient.2

The specific organism that has been most commonly regarded as the cause of influenza since the pandemic in 1890 is the hemophilic bacillus discovered by Pfeiffer (Hemophilus influenzae, p. 390). Pfeiffer's bacillus, although not found by Pfeiffer until 1892, after the initial wave of true influenza had passed, was generally regarded by bacteriologists up to 1918 as the causal agent of influenza. There were some dissenting voices and these have swelled into a chorus of negation as a consequence of the bacterial observations made in 1918-20. The chief reasons for doubting that Pfeiffer's bacillus is the cause of influenza are these: (1) the finding of this organism—or one not at present distinguishable from it—in the throats of healthy persons and of persons suffering from other diseases, such as measles, tuberculosis, and whoopingcough;3 (2) its occurrence in miscellaneous respiratory infections during nonepidemic periods with nearly if not quite as great frequency as in influenza epidemics; (3) its relative abundance in certain localities in the epidemic period and its relative scarcity in others—this appears to be demonstrated by the postmortem examinations in the U.S. army camps even when allowance is made for differences in technic of isolation; (4) the signal failure of most inoculation experiments. Rosenau4 describes experiments made

Leake: Boston Med. and Surg. Jour., 1919, 181, p. 675.

² Jordan and Sharp: Jour. Infect. Dis., 1920, 26, p. 463.

³ See for example, Bourn, J. M.: Jour. Prev. Med., 1928, 2, p. 441. ⁴ Rosenau: Jour. Amer. Med. Assoc., 1919, 73, p. 11.

upon 19 volunteers each of whom was given "a very large quantity of a mixture of thirteen different strains of the Pfeiffer bacillus, some of these obtained recently from the lungs at necropsy." Suspensions of these organisms were sprayed with an atomizer into the nose and into the eyes, and back into the throat, several billions of the bacteria being introduced in this way into the respiratory tract of each volunteer, but no illness resulted; (5) the fact that in the rare cases when infection of any kind has been produced in man by the inoculation of Pfeiffer's bacillus it has not borne any close clinical resemblance to influenza; (6) the failure of recently effected inoculation with the Pfeiffer bacillus to protect against attacks of influenza.

On the other hand, the great frequency with which the Pfeiffer bacillus is found in all parts of the world in the pneumonic lesions associated with influenza, and the important experimental results simulating the production of true influenza obtained by Blake and Cecil² through monkey inoculations (see p. 394) must be taken into consideration in any discussion of the relation of this organism to influenza. For the present it seems possible only to return the verdict "not proved."

A great variety of other micro-organisms are found associated with cases of influenza both in the upper respiratory tract during the attack and in the pathologic lesions after death. Among these are streptococci, especially of the green-producing type, pneumococci, staphylococci, N. catarrhalis, Friedländer's bacillus, and various nondescript organisms. In some instances these organisms as in the case of certain green-producing streptococci, possess an exceptionally high virulence and seem to be a potent factor, at least in the late stages of the influenza processes; their absence from certain localities and from certain cases and epidemics of influenza is, however, an obstacle to accepting them as the primary cause. Perhaps the most plausible explanation of these bacteriological findings is to regard the streptococci, N. catarrhalis forms and the like (including Pfeiffer's bacillus?), as secondary invaders whose pathogenicity becomes heightened in the presence of the true causal agent of influenza. Falk and his collaborators,3 however, have

¹ Davis: Jour. Infec. Dis., 1906, 3, p. 1.

² Blake and Cecil: Jour. Exper. Med., 1920, 32, pp. 691, 719.

³ Falk, I. S., et al.: Jour. Amer. Med. Assoc., 1929, 93, p. 2030.

reported the isolation of highly pleomorphic, green-producing streptococci which have produced definite respiratory symptoms on injection into monkeys, and are regarded by these investigators as probably related to the influenza outbreak of the winter of 1928–29.

The manifestly inconclusive nature of the evidence with respect to the ordinary cultivable bacteria has led many investigators to make search for a filterable virus. Some of the earlier attempts in this direction were not made with suitable technical methods and the results have not stood destructive criticism. The most promising work in this field is that of Olitsky and Gates,1 who recovered from filtrates of nasopharyngeal washings of epidemic-influenza patients a minute, bacilloid body to which they gave the name of Bacterium pneumosintes (lung-devastator). It is quite uniform in shape and size, strictly anaërobic, gram-negative, staining with difficulty with the usual basic dyes. It passes Berkefeld filters Vand N; resists freezing and drying, but is killed by a temperature of 56 C., and withstands the action of glycerol for many months. Rabbits inoculated with nasopharyngeal washings or pure cultures of Bact, pneumosintes develop leukopenia and hemorrhagic areas in the lungs similar to those observed in human influenza. Bact. pneumosintes is demonstrable in the lung tissue of inoculated rabbits.

Identical antigenic characters were manifested by ten different strains of Bact. pneumosintes from the influenza epidemics of 1918, 1920 and 1922. Resistance to intratracheal inoculation was developed in rabbits injected with killed cultures of this organism, while control animals suffered typical infections.

The inoculation of human volunteers with Bact. pneumosintes led to transitory leukocytosis and the appearance of specific agglutinins in the blood. Agglutinins were demonstrated in the serum of 17 out of 19 persons examined within five months after recovery from epidemic influenza. In most of the cases where agglutinins occurred, specific precipitins also were found.

There are many facts that suggest that influenza is due to some type of filterable virus, but this has not yet been proved.

Olitsky and Gates: Jour. Amer. Med. Assoc., 1920, 74, p. 1497; 1921, 76,
p. 640; Jour. Exper. Med., 1921, 33, pp. 125, 361, 373, 713; 1921, 34, p. 1; 1922,
35, pp. 1, 553, 813; 1922, 36, pp. 501, 685; 1923, 37, pp. 303, 471.

INDEX OF AUTHORS

ABBA, 294 Abbatucci, 590 Abel, 324 Achalme, 221, 421 Achard and Bensaude, 326 Adamson, 431 Agramonte, Lazear, Reed, and Carroll, 636 Albert and Kelman, 394 Amoss and Bliss, 225 Amoss and Eberson, 632 Amoss and Poston, 373 Anders and Morgan, 411 Anderson, 412 Anderson and Frost, 634 Anderson and Goldberger, 654, 655, 658, 759 Anderson and McClintic, 42 Anderson and Opie, 460 Anderson and Rosenau, 195, 196, 414 Andrade, 34 Andrewes, Derick, and Swift, 223 Andrews and Hegner, 579 Appel, 744 Appert, 711 Aragão, 638, 639, 640 Aristovsky and London, 408 Arkwright, 132 Arkwright and Ledingham, 352 Arkwright, Bacot, and Duncan, 661 Arloing, 419 Arloing, Cornevin, and Thomas, 434, 436 Armstrong, 413 Armstrong and Parran, 675 Armstrong, McCoy, and Branham, 643 Arning, 483 Arnold, 28 Arrhenius and Madsen, 119, 158 Arthur, 741 Arthus, 195 Ashburn and Craig, 544, 653 Ashford, 758 Ashhurst and Johns, 415 August and Toomey, 298 Avery, 249, 250, 391 Avery and Cullen, 113, 215 Avery and Dochez, 239 Avery and Goebel, 194 Avery and Heidelberger, 193

Avery and Tillett, 197

Avery, Chickering, Cole, and Dochez, 238, 239, 240 Avery, Lancefield, and Dochez, 215 Avery, North, and White, 228 Axenfeld, 400 Aycock, 635 Aycock and Luther, 635 Aycock, Knapp, and Godfrey, 634 Ayers, 113, 677 Ayers and Rupp, 36, 114

Babcock and Russell, 682 Babes, 525, 627 Bacot, Duncan, and Arkwright, 661 Baenziger and Silberschmidt, 283 Baerthlein, 130 Bail and Petterson, 281 Bang, 367 Banzhaf, 297 Banzhaf and Gibson, 297 Barber, 49, 130, 153, 204 Barber, Komp, and Newman, 608 Barenberg, 760 Barnett and Chapman, 30 Barney, Chaplin, and Fulmer, 679 Barret and Smith, 579 Barret and Yarborough, 618 Barton, 498 Bass and Johns, 596 Bassett and Duval, 362 Bastianelli, Grassi, and Bignami, 595 Bastin, 111 Batchelder and Sedgwick, 669 Battistini and Noguchi, 499 Bauer, 638 Bauer and Meyer, 404 Bauer and Tenbroeck, 404, 413 Bauer, Hudson, and Stokes, 638 Baumgarten, 469 Bayne-Jones, 545 Bayne-Jones and Van der Lingen, 81 Bayon, 481 Beach, Mansfield, and Hastings, 474 Becht and Luckhardt, 161 Beck and Proskauer, 451 Becker, 201 Bedson, Western, and Levy, 643 Behring, 295, 296, 311, 414, 448, 462, Behring and Kitasato, 157, 296, 403 Beijerinck, 84, 104, 621, 664, 689, 692, 699

Beijerinck and Van Delden, 87 Belt and Klotz, 639 Bencke, 130 Bengtson, 440, 442, 496, 498, 658 Bengtson and McCoy, 405 Bensaude and Achard, 326 Bergey, 128, 285, 313, 332, 365, 545 Berry, 687 Bertarelli, 533 Besançon and Griffon, 249 Besredka, 217, 363 Bevan, 370 Bignami, 601 Bignami, Bastianelli, and Grassi, 595 Billings, 218 Birkhaug, 221, 222, 224, 225, 226 Bizio, 106 Blackstein, 344
Black and Lavan, 312
Blaizot and Nicolle, 657
Blake, 214, 216, 528
Blake and Cecil, 247, 394, 395, 763
Blake and Trask, 759
Blake Track, and Lavak, 222 Blake, Trask, and Lynch, 233 Blanc and Pozerski, 430 Bliss, 215, 229 Bliss and Amoss, 225 Bloomfield, 755 Blumer, 526 Boccaccio, 375 Bockhart, 205 Boeck and Danielsson, 477 Boeck and Drbohlav, 579 Boeck and Stiles, 578 Boekhout and de Vries, 103 Böhme, 115 Bokay, 235 Bolduan, 166 Bollinger, 434, 546 Bolton, 161 Bolton and Fisch, 412 Bond, 319 Booker, 673 Bordet, 158, 165, 166, 171, 188, 645, Bordet and Ciuca, 647 Bordet and Gengou, 181, 397 Bortniker, Swingle, Koser, and Reiter. 360 Borun, 762 Bostroem, 550, 554 Boughton, 195 Bourn and Stillman, 393 Bovie, 82 Boyers, Swezy, and Kofoid, 576 Branham, 262 Branham, Armstrong, and McCoy, 643 Brau and Denier, 509 Brauell, 270 Braun and Hofmeier, 295 Breed, 666, 668 Breinl and Hindl, 614

Brem, 454 Breymann, 494 Brieger and Cohen, 408 Brieger and Fränkel, 291 Brieger and Kempner, 441 Brill, 654 Brill and Libman, 495 Broadhurst, Buchanan, Krumwiede, Rogers, Smith, and Winslow, 124 Bronfenbrenner, 645, 646, 648 Bronfenbrenner and Korb, 646 Bronfenbrenner and Noguchi, 536 Bronfenbrenner and Schlesinger, 442 Brown, 214, 562 Brown and Pearce, 589 Brown and Simpson, 279 Brown and Smith, 215 Brown, Freese, and Kolmer, 632 Brown, Frost, and Shaw, 228 Brown, Petroff, and Heise, 453 Brown, Townsend, and Smith, 751 Browne, 713 Browning, 410 Browning and Russ, 83 Bruce, 365, 411, 582, 586 Bruck, 257 Brückner, 351 Brues, 633 Brumpt, 560 Buchanan, 126, 128, 186, 694 Buchanan, Krumwiede, Rogers, Smith, Winslow, and Broadhurst, 124 Buchner, 46, 156, 163, 283, 559 Bull, 632 Bull and McKee, 293 Bull and Pritchett, 425, 426 Bullock, 427 Bullowa, Rosenblüth, and Park, 250 Bumm, 253, 254, 256 Bunting and Yates, 755 Bürgers, 504 Burke, 51, 439, 440, 441, 443 Burnet, 204
Burri, 130
Burrill, 741, 752, 753
Bushnell and Hunter, 718 Busse, 559 Bütschli, 67 Buxton, 326 Buxton and Coleman, 345

Cabot, 252
Caldwell, 657
Calkins, 71, 614
Calmette, 471, 472
Calmette and Guérin, 472
Calmette and Salimbeni, 384
Calmette, Valtis, and Saenz, 447
Cannon, 38
Cannon and McClelland, 499
Cannon and McNease, 679
Capps, 228, 229

Capps and Miller, 227 Carlisle, 517, 519 Carp, Meleney, and Humphreys, 416 Carpenter and Levene, 34 Carrion, 498 Carroll, 636 Carroll and Reed, 63, 636 Carroll, Ag Reed, 636 Agramonte, Lazear, Cary, Woolpert, Wiggers, and Dack, 204 Castellani, 188, 543, 544 Catrin and Laveran, 757 Caulfeild and Falk, 193 Caulfeild, Winslow, and Falk, 89, 192 Cecil and Blake, 247, 394, 395, 763 Cecil, Nicholls, and Stainsby, 222 Celli, 610 Centanni and Tizzoni, 627 Chambers, 49 Chantemesse, 356 Chapin and McCoy, 385 Chapman and Barnett, 30 Charlton and Schultz, 231 Charrin and de Nittis, 283 Cheplin and Rettger, 678, 679 Cheplin, Fulmer, and Barney, 679 Cheyney and Weinzirl, 443 Chickering and Park, 206 Chickering, Cole, Dochez, and Avery, 238, 239, 240 Childs and Whittaker, 738 Chodzko, 235 Chowning and Wilson, 650 Christophers, 614 Church and Thom, 564, 567 Churchman, 58, 59, 272 Ciuca and Bordet, 647 Clark, 30 Clark and Lubs, 30 Clark and Ruehl, 64 Clark, Davis, and Rogers, 40, 317 Clawson, 216, 222 Clegg, 478, 480 Cleghorn, 525 Clough, 250 Cobb, 753 Cobbett, 161 Coblentz and Fulton, 81 Coca, 195, 199 Cohen, 30 Cohen and Brieger, 408 Cohendy, 116 Cohn, 19 Cole, 342 Cole, Dochez, Avery, and Chickering, 238, 239, 240 Coleman and Buxton, 345 Coleman and Gunnison, 416 Coleman and Meyer, 416 Coley, 224 Conn, 665, 681, 683 Conor and Nicolle, 399

Conradi and Drigalski, 336 Conte, 489 Cooper and Petroff, 447 Corbitt, McCoy, and Leake, 403 Cornevin, Thomas, and Arloing, 434, 436 Cornwell and Long, 761 Cotton and Schroeder, 461 Councilman and Lafleur, 574 Councilman, Mallory, and Wright, 259, 265, 266 Courtois, Suffit, and Giroux, 415 Cowdry and Kitchen, 639 Cowdry and Olitsky, 63 Craig, 572, 579, 598 Craig and Ashburn, 544, 653 Craige, 54 Creel, 505 Cromwell, 305 Crowe and Thompson, 217 Cullen and Avery, 113, 215 Cummings and Gibson, 411, 416 Cummins, Smith, and Halliday, 562 Cunningham, 574, 593 Currie, 483, 484 Currie and Hollmann, 481 Curtis, 560 Cutler, 578 Czapek, 114 Dack, Cary, Woolpert, and Wiggers, Dale, 197 Dallinger, 90 Dammann and Gärtner, 278 Daniel and Greene, 364 Danielssen and Boeck, 477 Daranyi, 74 Darwin, 71 Davaine and Rayer, 270 Davidson and Waksman, 107 Davis, 37, 228, 229, 389, 395, 396, 397, 639, 763 Davis, Rogers, and Clark, 40, 317 Davison, 360, 649 De Christmas, 256 Defoe, 375 Dehler and Havens, 337, 352 DeKruif and Ireland, 217 DeKruif and Northrup, 192, 193 Delafond, 270 Deneke, 514 Denier and Brau, 509 De Nittis and Charrin, 283 Denys, 474 Derick, Swift, and Andrewes, 223 De Schweinitz and Dorset, 76 De Vries, 129 De Vries and Boekhout, 103

De Witt, Long, and Wells, 452

Dick and Dick, 230, 231, 233, 234

Dickson, 438, 439, 441, 442, 444, 445

D'Herelle, 645, 646, 648

Dickson and Shevky, 444 Diehl, Larson, and Hartzell, 89 Dieudonné, 90, 504 Dingman, 634 Dobell, 572, 578 Dochez, 233, 250 Dochez and Avery, 239 Dochez and Gillespie, 239 Dochez and Sherman, 230 Dochez and Stevens, 224, 229, 233 Dochez, Avery, and Lancefield, 215 Dochez, Avery, Chickering, and Cole, 238, 239, 240 Dochez, Shibley, and Mills, 757 Doerr, 640 Donnan, 192 Donovan, 590 Dopter, 261, 363 Dorset, 450 Dorset and de Schweinitz, 76 Doull, 312 Doull and Lara, 301 Dozler and Richardson, 47 Drbohlav and Boeck, 579 Drigalski and Conradi, 336 Dubovsky and Meyer, 439, 442 Duclaux, 685 Dudgeon and Pulvertaft, 319 Dudgeon and Simpson, 208 Duflocq and Voisin, 332 Dujardin, 19 Duncan, Arkwright, and Bacot, 661 Dunham, 38, 75, 289, 504 Dusch and Schröder, 24 Dutton and Todd, 522, 523, 589 Duval, 478, 479, 480 Duval and Bassett, 362 Duval and Gurd, 480

Eberson and Amoss, 632 Eberth, 332 Ebstein, 686 Edmunds and Long, 444 Eggstein and Jobling, 526 Ehrenberg, 19, 111
Ehrlich, 38, 118, 155, 157, 159, 166, 176, 178, 179, 182, 312, 410, 512
Eichhorn, 282 Eichhorn and Mohler, 366 Eijkman, 41 Ellis, 70 Elser and Huntoon, 265 Elv. 576 Emmerich, 316, 318, 505 Emmerich and Löw, 494 Emrick and Huddleson, 368 Endo, 336 Engelmann, 91, 111 Eppinger, 556 Epstein, 56 Erb, 252 Ermengem, 55, 66, 438, 439, 441 Escherich, 220, 316

Esty, 421, 426 Esty and Meyer, 440 Takaki, Taniguchi, Eutaki, Osumi, 528 Evans, 366, 370, 629, 672 Evans and Freeman, 629 Faber, 223 Faber and Schussler, 593 Falk, 763 Falk and Caulfeild, 193 Falk and Jordan, 59, 99, 199, 470, 516, Falk, Caulfeild, and Winslow, 89, 192 Fehleisen, 211, 224, 225 Felix and Weil, 134, 657 Felton, 251 Fermi and Pernossi, 408 Fernbach and Strange, 715 Ferran, 153, 511 Ferry and Fisher, 760 Ferry and Houghton, 394 Feser, 434 Fildes and McIntosh, 47 Finger and Landsteiner, 532 Finkler and Prior, 514 Finlay, 636 Firth and Horrocks, 723 Fisch and Bolton, 412 Fischer, 70 Fisher and Ferry, 760 Flemming, 721 Fletcher and Stanton, 492 Flexner, 266, 267, 360, 628, 629, 630 Flexner and Jobling, 267 Flexner and Lewis, 631 Flexner and Noguchi, 631 Flexner and Sweet, 362 Flügge, 460 Force and Gay, 353 Fordos, 493 Fornaca, 210 Forssman and Lundstrom, 445 Forster, 78 Foster and Gaskell, 259 Fowler, 28 Francis, 385, 387, 412, 634 Francis and Mayne, 385 Frank, 691,692 Frank, Moss, and Le Fevre, 676 Frankel, 36, 236, 421, 475 Fränkel and Brieger, 291 Franklin and Haslam, 436 Fred, Peterson, Hastings, and McCoy, 716 Freeman and Evans, 629 Freeman and Park, 761 Freese, Kolmer, and Brown, 632 Freudenreich, 664, 685 Freudenreich and Marchal, 684 Friedländer, 322

Frobisher, 639

Frobisher, Lloyd, Sawyer, and Kitchen, 639 Fromme and Uhlenhuth, 526 Frosch and Löffler, 619, 630 Frost, 38, 39, 310 Frost and Anderson, 634 Frost, Gumm, and Thomas, 229 Frost, Shaw, and Brown, 228 Frothingham and Johne, 474 Frothingham, Paige, and Page, 570 Fuhrmann, 107 Fuller, 349 Fuller and Johnson, 60 Fulmer, Barney, and Cheplin, 679 Fulton and Coblentz, 81 Furth, 459, 476

Gabritschewsky, 234 Gaffky, 210, 332, 333 Gaffky and Koch, 574 Gamaléia, 513 Gamaléia and Straus, 455 Gammel, Miskdjian, and Thatcher, 555 Garbat, 352 Garfinkle, Goddard, and Stanley, 361 Garré, 204 Gärtner, 325, 339, 701 Gärtner and Dammann, 278 Gaskell and Foster, 259 Gasperini, 462 Gasul and Hoyne, 760 Gates and Olitsky, 764 Gaviño and Girard, 658 Gay, 166 Gay and Force, 353 Gay and Rhodes, 225 Geiger, 413 Geiger and Gouwens, 442 Geiger and Meyer, 443 Gengou and Bordet, 181, 397 Gerlach and Vogel, 689 Gessard, 493 Ghon and Sachs, 420 Gibson, 297 Gibson and Banzhaf, 297 Gibson and Cummings, 411, 416 Giemsa, 58 Gilchrist, 560 Gillespie and Dochez, 239 Gilliland and Pearson, 472 Gins, 289 Giordano, 366 Girard and Gaviño, 658 Giroux, Courtois, and Suffit, 415 Glaser, 208, 644 Goddard, Stanley, and Garfinkle, 361 Godfrey, 761 Godfrey, Aycock, and Knapp, 634 Goebel and Avery, 194 Goldberger, 503 Goldberger and Anderson, 654, 655, 658, 759

Goldhorn, 530 Golgi, 594, 598 Gomez and Ricketts, 652 Gompertz and Vorhaus, 679 Gordon, 215, 232, 234 Gordon and Murray, 261 Gordon and Young, 225 Gorham, 287 Goss, 437 Gotschlich, 381, 513 Gouwens and Geiger, 442 Govenlock and McLeod, 85 Graham and Irons, 562 Gram, 51 Grassberger and Schattenfroh, 119, 664 Grassi, 603 Grassi, Bignami, and Bastianelli, 595 Greene and Daniel, 364 Greig, 505, 506 Griffith, 133, 230, 241 Griffon and Besançon, 249 Grinnell, 134 Gros, 580 Gruber, 713 Gruber and Widal, 183, 354 Grünbaum, 332, 340 Grund, 457 Guarnieri, 623 Guérin and Calmette, 472 Guillermond and Tanner, 558 Guinochet, 295 Guiteras, 637 Guldberg and Waage, 119 Gumm, Thomas, and Frost, 229 Gunnison and Coleman, 416 Gunnison and Meyer, 442 Günther, 201 Gurd and Duval, 480 Guthrie, Marshall, and Moss, 291 Gwyn, 47, 326

Hadley, 132, 134, 645, 647 Haendel and Joetten, 590 Haffkine, 383, 511 Hahnemann, 133 Hall, 47, 404, 405, 407, 417, 426, 429, 430 Hall and Peterson, 429, 431 Hall and Randall, 424 Hall and Scott, 429 Hall and Whitehead, 429 Hall, Hitchens, and Siler, 641 Halliday, Cummins, and Smith, 562 Hallman and Huddleson, 368, 372 Hamburger, 227 Hamilton, 350 Hanger and Mackenzie, 299 Hankin, 377, 502 Hannum and Huntoon, 394 Hansen, 477, 482, 484, 558, 559 Hansen and Neisser, 477 Harbitz, 464, 466

Hardenbergh, 373 Harder, 109 Harding, 746 Harding, Rogers, and Smith, 686 Hardy, 366, 371, 372 Harmon, 634 Harmon and Jordan, 315, 326 Harrington, 673 Harris, 41, 56, 336, 525 Harrison, 106, 665, 687, 753 Hart, 444 Hartwell and Lee, 209 Hartzell, Diehl, and Larson, 89 Harvey and Morrison, 104 Harz, 545, 546 Haslam and Franklin, 436 Hasley, 371 Hasse, 749 Hastings, Beach, and Mansfield, 474 Hastings, McCoy, Fred, and Peterson, 716 Hauser, 66, 496 Havens, 306 Havens and Dehler, 337, 352 Havens and Powell, 293 Hayne, 640 Hecker, 375 Hefferan and Heinemann, 678 Hegner, 580 Hegner and Andrews, 579 Hegner and Taliaferro, 572, 577, 617 Heidelberger and Avery, 193 Heidelberger and Jacobs, 589 Heine, 631 Heinemann, 36, 39, 334, 663, 681 Heinemann and Hefferan, 678 Heinemann and Jordan, 669 Heise, Brown, and Petroff, 453 Hektoen, 171, 172, 175, 176, 190, 281, 656, 759 Hektoen and Perkins, 570 Heller, 431, 434, 436 Hellriegel and Wilfarth, 691 Helmholtz, 619 Henrici, 64, 558 Henrijean, 405 Henry, 423, 427 Herb, 757 Herms and Sawyer, 634 Herter, 320, 321, 363, 424 Herzog and Nuzum, 632 Hess, 458 Hesse, 29 Hicks, 170 Highberger and Rockwell, 85 Hill, 41, 49, 288, 411, 413 Hiltner, 693 Hiltner and Nobbe, 694 Hiltner and Störmer, 724 Hindle, 639, 640 Hindle and Breinl, 614 Hindle and Sellards, 638 Hippocrates, 137, 413

Hirsch, 193 Hiss, 35, 54 Hitchens, Siler, and Hall, 641 Hoddenpyl and Prudden, 455 Hodgkin, 755 Hoffmann and Schaudinn, 529 Hofmann-Wellenhof, 304 Hofmeier and Braun, 295 Hoki, Ito, Wani, and Ido, 526 Hollman, 484 Hollmann and Currie, 481 Holman, 214 Holmes, 220 Holmes and Taliaferro, 579 Holst, 232 Holt and Park, 673 Horlein, 608 Horrocks and Firth, 723 Houghton and Ferry, 394 Houston, 722, 724 Howard, 324, 426 Howell, Wherry, and Walker, 383 Hoyne and Gasul, 760 Hoyne and Tunnicliff, 760 Hsu and Norton, 95 Hubbard and Winslow, 228 Hübener and Reiter, 526 Huddleson, 368, 370 Huddleson and Emrick, 368 Huddleson and Hallman, 368, 372 Huddleson and Johnson, 371 Hudson, 208, 639 Hudson, Stokes, and Bauer, 638 Hueppe, 374, 662 Hueppe and Kikuchi, 384 Hufnagel and Flexner, 269 Humphreys, Carp, and Meleney, 416 Hunter and Bushnell, 718 Huntoon and Elser, 265 Huntoon and Hannum, 394 Hutchings and Wheeler, 348, 736 Huxley, 23

Ipo and Inada, 526
Ido, Hoki, Ito, and Wani, 526
Inada, 527
Inada and Ido, 526
Ireland and DeKruif, 217
Irons, 131, 255, 415
Irons and Graham, 562
Irons and Jordan, 726
Israel and Wolff, 546, 550, 552
Issaeff and Pfeiffer, 165
Ito and Matsuzaki, 526
Ito, Wani, Ido, and Hoki, 526

Jablons, 421 Jacobs and Heidelberger, 589 Jacobson, 243 Jäger, 259 James, 604, 680 Jantzen, Whitmore, and Roberts, 608 Jeans and Sellards, 473

Jenner, 57, 623 Jennings, 90 Jensen, 123, 276, 703, 709 Jobling and Eggstein, 526 Jobling and Flexner, 267 Jochmann and Krause, 397 Joetten and Haendel, 590 Johne, 272, 554 Johne and Frothingham, 474 Johns and Ashhurst, 415 Johns and Bass, 596 Johnson, 49 Johnson and Fuller, 60 Johnson and Huddleson, 371 Johnston, 355 Jones, 627, 753 Jones and Little, 307, 667 Jordan, 36, 130, 133, 204, 207, 216, 221, 222, 318, 322, 327, 328, 339, 350, 389, 390, 393, 438, 494, 723, 733, 761 Jordan and Falk, 59, 99, 119, 470, 516, 645 Jordan and Harmon, 315, 326 Jordan and Heinemann, 669 Jordan and Irons, 726 Jordan and Richards, 697 Jordan and Sharp, 762 Jordan, Russell, and Zeit, 339 Jörgensen, 558 Julianelle, 323

Kahlbaum, 391 Kahn, 537 Kahn, Kendrick, and Landau, 542 Kaplan and Singer, 226 Karlinski, 342 Kartulis, 574 Kaserer, 87 Kaufmann, 205 Kawamura, 654 Kayser, 283, 352 Kean, 357 Kedrowski, 478 Keefer, 370, 672 Kelman and Albert, 394 Kelser, 437 Kempner, 444 Kempner and Brieger, 441 Kempner and Pollack, 439 Kendrick, Landau, and Kahn, 542 Kerner, 438 Kerr and MacNeal, 367 Keyes, 39 Kikuchi and Hueppe, 384 Kilborne and Smith, 612 King, 601, 652 Kinoshita, 614 Kitasato, 376, 403, 405, 407 Kitasato and Behring, 157, 296, 403 Kitashima and Miyajima, 653 Kitchen and Cowdry, 639

Kitchen, Frobisher, Lloyd, and Sawyer, 639 Kitt, 375, 485 Klauder, 556 Klebs, 286 Klein, 733 Kleine, 588 Kligler and Noguchi, 638 Kligler and Olitsky, 362 Klimenko, 364, 398 Klinger, 351 Klotz and Belt, 639 Knapp and Novy, 518, 522 Knapp, Godfrey, and Aycock, 634 Knaysi, 96 Kneass and Sailer, 283 Knorr, 160, 227, 296, 396, 408 Knowles, 572 Koch, 20, 24, 29, 41, 43, 46, 200, 270, 396, 419, 431, 446, 463, 464, 469, 471, 473, 474, 500, 505, 507, 606, 614, 708 Koch and Gaffky, 574 Koch and Petruschky, 225 Kofoid and Swezy, 576 Kofoid, Boyers, and Swezy, 576 Köhler, 63 Kolle, 501, 511 Kolle and Otto, 384 Kolle and Pfeiffer, 340, 353 Kolle and Wassermann, 73, 244, 258, 266, 289, 291, 375, 525, 568, 569, 643 Kolmer, 543 Kolmer, Brown, and Freese, 632 Komp, Newman, and Barber, 608 Kopeloff, 680 Korb and Bronfenbrenner, 646 Korentschewsky, 757 Korschun and Spirina, 234 Koser, 322, 424 Koser, Reiter, Bortniker, and Swingle, 360 Kramer, 319, 620 Kraus, 189 Kraus and Lipschütz, 161, 162 Kraus and Russ, 509 Krause and Jochmann, 397 Kretschmer and Hufnagel, 269 Krönig and Paul, 95 Krumwiede, 327, 643 Krumwiede and Park, 465 Krumwiede, Rogers, Smith, Winslow, Broadhurst, and Buchanan, 124 Kruse, 663 Kuczynski, 639 Kühne, 451 Kürsteiner, 406 Kurth, 226 Kutscher, 490

Labat, 414 Lafar, 558, 687, 699, 708 Lafleur and Councilman, 574 Laidlaw, 47 Laigret, Mathis, and Sellards, 638 Lamb and Wherry, 385 Lancefield, Dochez, and Avery, 215 Landau, Kahn, and Kendrick, 542 Landsteiner, 158 Landsteiner and Finger, 532 Landsteiner and van der Scheer, 194 Lange, 276 Lara and Doull, 301 Larson, 447 Larson, Hartzell, and Diehl, 89 Lartigan, 495 Lautenschläger, 25 Lavan and Black, 312 Laveran, 591, 594 Laveran and Catrin, 757 Laveran and Mesnil, 582 Lawson and Mueller, 398 Lazear, Reed, Carroll, and Agramonte, 636 Leake, 762 Leake, Corbitt, and McCoy, 403 Leblanc, 546 Ledderhose, 494 Ledingham, 383 Ledingham and Arkwright, 352 Lee and Hartwell, 209 Lees, 231 Leeuwenhock, 17 LeFevre, Frank, and Moss, 676 Lehmann and Neumann, 285 Leichmann, 663 Leichtenstern, 259 Leighton, 443 Leishman, 57, 590 Leloir, 482 Lenthe, 234 Lesieur, 305 Leuchs, 445 Levaditi, 628, 629 Levaditi and Manouélian, 529 Levene and Carpenter, 34 Levine, 337 Levy, Bedson, and Western, 643 Lewis, 574, 640 Lewis and Flexner, 631 Leyden, 691 Libman and Brill, 495 Liborius, 46 Liebig, 20 Lieske, 109 Lilly, 311 Lippincott, 361 Lipschütz, 643 Lipschütz and Kraus, 161, 162 Lister, 20 Little and Jones, 307, 667 Lloyd, Sawyer, Kitchen, and Frobisher, 639 Loeb, 192 Loew, 708

Loewe and Strauss, 629 Löffler, 23, 35, 51, 54, 286, 290, 291, 304, 487, 643 Löffler and Frosch, 619, 630 Löffler and Schütz, 485 Löhnis, 64, 725 Löhnis and Westermann, 689, 690 London and Aristovsky, 408 Long, 122, 451, 455, 470, 471 Long and Cornwell, 761 Long and Edmunds, 444 Long, Pratt, and Peabody, 343 Long, Wells and De Witt, 452 Lord, 461 Lösch, 574 Lösener, 724 Löw and Emmerich, 494 Low and Sambon, 609 Lowden and Williams, 625, 626 Lubarsch, 164 Lubs and Clark, 30 Lucas and Osgood, 633 Luckhardt and Becht, 161 Lundstrom and Forssman, 445 Luther and Aycock, 635 Lvall, 214 Lynch, Blake, and Trask, 233

Maassen, 703 MacCallum, 556, 601, 643 MacConkey, 221, 414 Macfadyen, 156, 491 Mackenzie and Hanger, 299 MacNeal, 56 MacNeal and Kerr, 367 Madsen, 398 Madsen and Arrhenius, 119, 158 Mallory, 398, 399 Mallory, Wright, and Councilman, 259, 265, 266 Malone, 389 Malpighi, 691 Mann, 227 Mann, Park, and Williams, 306 Manouélian and Levaditi, 529 Mansfield, Hastings, and Beach, 474 Manson, 483, 594, 599 Mantoux, 471 Manwaring, 182 Maragliano, 473 Marchal and Freudenreich, 684 Marchoux and Salimbeni, 523 Marchoux and Simond, 637 Marchoux, Salimbeni, and Simond, 637 Marshall, Moss, and Guthrie, 291 Martin and Roux, 296 Marzinowsky, 475 Mason, 193 Massini, 130 Mathers, 632 Mathis, Sellards, and Laigret, 638 Matsuzaki and Ito, 526

Maxcy, 654, 656 Mayer, 295, 352, 438 Mayer and Zeiss, 590 Mayne and Francis, 385 Mazé, 694 McClelland and Cannon, 499 McClintic, 93 McClintic and Anderson, 42 McClintock, 342 McCollom, 292 McConnell and Thomas, 721 McCoy, 383 McCoy and Bengtson, 405 McCoy and Chapin, 385 McCoy and Richey, 396 McCoy and Rosenau, 667 McCoy and Wherry, 381 McCoy, Branham, and Armstrong, 643 McCoy, Fred, Peterson, and Hastings, 716 McCoy, Leake, and Corbitt, 403 McDaniel, Wesbrook, and Wilson, 287 McDill and Wherry, 397 McFarland, 43 McIntosh and Fildes, 47 McKee and Bull, 293 McKinley, 619, 629, 643 McLaughlin, 503, 505 McLaughlin and Rockwell, 707 McLeod, 85 McLeod and Govenlock, 85 McNeal and Novy, 585, 586 McNease and Cannon, 679 Mease, 386 Medin, 631 Meleney, 220
Meleney, Humphreys, and Carp, 416
Mellon, 64, 305
Mesnil and Laveran, 582 Metchnikoff, 163, 168, 178, 384, 433, 498, 508, 678 Metchnikoff and Roux, 532 Metchnikoff, Roux, and Taurelli-Salimbeni, 509 Meyer, 436 Meyer, A., 68 Meyer, K. F., 420, 571 Meyer and Bauer, 404 Meyer and Coleman, 416 Meyer and Dubovsky, 439, 442 Meyer and Esty, 440 Meyer and Geiger, 443 Meyer and Gunnison, 442 Meyer and Ransom, 409 Miehe, 104 Migula, 74, 124, 422 Mikulicz, 176 Miller, 344 Miller and Capps, 227 Mills, Dochez, and Shibley, 757 Miskdjian, Thatcher, and Gammel, 555

Mitzmain, 278 Miyajima and Kitashima, 653 Mochtar and Schüffner, 638 Moczutkowski, 658 Mohler and Eichhorn, 366 Mohler, Washburn, and Rogers, 462 Molisch, 104, 109, 125 Möller, 53 Moltke, 496, 497 Moore, 316, 491 Moorhead and Shearman, 364 Morax, 400 Morgan and Anders, 411 Moro, 320 Morrison and Harvey, 104 Morse, 305 Moser, 229, 233 Moss, Guthrie, and Marshall, 291 Moss, Le Fevre, and Frank, 676 Mueller and Lawson, 398 Mueller and Zinsser, 193 Mühlens, 608 Muir, 481 Müller, 18, 210 Mulzer and Uhlenhuth, 533 Müntz and Schloesing, 697 Murata, 511 Murchison, 517 Murphy, 301 Murphy and Rous, 643 Murray and Gordon, 261 Musehold, 452 Myers, 110 Neelsen, 53

Nägeli, 19, 466 Nakanishi, 70 Nakayama, 217 Neal, 628 Negri, 625 Neisser, 56, 130, 253, 532 Neisser and Hansen, 477 Neisser and Wechsberg, 180, 203, 204 Nelson, 38 Netter, 242 Neufeld, 171, 238, 249, 344 Neumann and Lehmann, 285 Newell and Rettger, 497 Newman and Swithinbank, 669 Newman, Barber, and Komp, 608 Newsholme, 466, 467 Nicati and Rietsch, 508 Nicholls, Stainsby, and Cecil, 222 Nichols, 352, 544 Nicolaier, 403 Nicoll and Park, 415 Nicolle, 51, 480, 655, 658 Nicolle and Blaizot, 657 Nicolle and Conor, 399 Nikitin, 234 Nikolaiewa, 665 Nobbe and Hiltner, 694 Noble, 403

Nocard, 331, 414, 488, 490, 491, 492, 556, 642 Nocard and Roux, 450, 624 Noguchi, 70, 499, 516, 518, 526, 530, 531, 535, 594, 638, 640, 652, 756 Noguchi and Battistini, 499 Noguchi and Bronfenbrenner, 536 Noguchi and Flexner, 631 Noguchi and Kligler, 638 Norgaard, 436 North and Park, 676 North, White, and Avery, 228 Northrop and DeKruif, 192, 193 Norton, 264 Norton and Hsu, 95 Nott, 636 Novy, 46, 85, 426, 428, 522 Novy and Knapp, 518, 522 Novy and McNeal, 585, 586 Novy and Soule, 85 Nowikoff, 487 Nuttall, 163, 191, 459 Nuttall and Smith, 614 Nuttall and Thierfelder, 115 Nuttall and Welch, 421, 425 Nuzum and Herzog, 632

OBERMEIER, 517 Oergel, 505 Ogston, 201, 211 Olitsky, 621 Olitsky and Cowdry, 63 Olitsky and Gates, 764 Olitsky and Kligler, 362 Oliver and Wherry, 84 Omelianski, 699, 701, 717 Ophüls, 562 Ophüls and Wilbur, 443, 444 Opie, 463 Opie and Anderson, 460 Oppenheimer, 558 Osborne and Wells, 196 Osgood and Lucas, 633 Osler, 292 Ostertag, 461 Osumi, Eutaki, Takaki, and Taniguchi, 528 Otten, 205 Otto, 195 Otto and Kolle, 384

Page, Frothingham, and Paige, 570
Paige, Page, and Frothingham, 570
Palfrey, Wolbach, and Todd, 660
Palmer and Rush, 33
Paltauf, 568
Pammel, 746
Pappenheim, 52
Park, 187, 298, 309, 311, 348, 669, 672, 675
Park and Chickering, 206
Park and Freeman, 761
Park and Holt, 673

Park and Krumwiede, 465 Park and Nicoll, 415 Park and North, 676 Park, Bullowa, and Rosenblüth, 250 Park, Williams, and Mann, 306 Parker, 204, 394 Parkes, 302 Parran and Armstrong, 675 Paschen, 623 Pasquale, 513
Pasteur, 19, 24, 46, 84, 138, 140, 154, 201, 241, 246, 280, 419, 433, 559, 617, 626, 662, 674, 697, 705, 711, 720 Paul and Krönig, 95 Peabody, Long, and Pratt, 343 Pearce, 589 Pearce and Brown, 589 Pearson, 468 Pearson and Gilliland, 472 Perkins and Hektoen, 570 Pernossi and Fermi, 408 Perty, 19 Peterson and Hall, 429, 431 Peterson, Hastings, McCoy, Fred, 716 Petroff, 450 Petroff and Cooper, 447 Petroff, Heise, and Brown, 453 Petruschky, 66, 363 Petruschky and Koch, 225 Pettenkofer, 345, 505 Petterson and Bail, 281 Pettit and Stefanopoulo, 639 Pfeiffer, 120, 390, 509, 512, 762 Pfeiffer and Issaeff, 165 Pfeiffer and Kolle, 340, 353 Philip, 639 Phisalix, 273 Plaut, 568, 569 Plotz, 518 Pollack and Kempner, 439 Pollender, 270 Ponder, 57 Pope and Scammon, 312 Pope and White, 262 Poston and Amoss, 373 Powell, 306, 511 Powell and Havens, 293 Pozerski and Blanc, 430 Pratt, Peabody, and Long, 343 Prazmowski, 402 Prescott and Winslow, 725 Pringsheim, 132 Prior and Finkler, 514 Pritchett and Bull, 425, 426 Pritchett and Stillman, 393 Proskauer and Beck, 451 Proskauer and Voges, 321 Prowazek, 660, 754 Prucha, 676 Prudden and Hodenpyl, 455 Pulvertaft and Dudgeon, 319

Pusey, 401 Putnam, 675, 676

Räbiger, 272 Rabinowitsch, 78, 475, 687 Rahe, 678 Ramon, 312 Randall and Hall, 424 Ransom, 409 Ransom and Meyer, 409 Ravenel, 278, 463, 464 Rayer, 485 Rayer and Davaine, 270 Reddish, 42, 99 Reed, 636 Reed and Carroll, 63, 636 Reed, Carroll, Agramonte, and Lazear, 636 Reed, Vaughan, and Shakespeare, 350 Rees, 618 Reimann, 241 Reincke, 505 Reiter and Hübener, 526 Reiter, Bortniker, Swingle, and Koser, Remlinger, 340, 627 Rémy, 724 Rettger, 114, 495 Rettger and Cheplin, 678, 679 Rettger and Newell, 497 Rettger and Wenner, 496 Rhein, 389 Rhodes and Gay, 225 Richards and Jordan, 697 Richardson, 343 Richardson and Dozler, 47 Richet, 195 Richey and McCoy, 396 Ricketts, 560, 650, 652 Ricketts and Gomez, 652 Ricketts and Wilder, 655, 658 Rideal and Walker, 42, 99 Rietsch and Nicati, 508 Ritchie and Walker, 570 Rivas, 38 Rivers, 225, 389, 393, 619, 643, 645 Rivers and Tillett, 225 Roberts, Jantzen, and Whitmore, 608 Robertson, 421, 426 Robertson and Thomson, 572, 616 Robinson and Theiler, 442 Rockwell and Highberger, 85 Rockwell and McLaughlin, 707 Rodella, 685 Roehl, 608 Roger, 88 Rogers, 477, 590, 592 Rogers, Clark, and Davis, 40, 317 Rogers, Mohler, and Washburn, 462

Rogers, Smith, and Harding, 686 Rogers, Smith, Winslow, Broadhurst,

Buchanan, and Krumwiede, 124

Rolly, 495 Romanowsky, 55, 377 Rosenau, 396, 633, 762 Rosenau and Anderson, 195, 196, 414 Rosenau and McCoy, 667 Rosenbach, 201, 211 Rosenblüth, Park, and Bullowa, 250 Rosenow, 131, 216, 218, 228, 241, 249, 250, 629 Rosenow, Towne, and Wheeler, 632 Ross, 594, 599, 601, 608 Rothberg, 33 Roubakine, 388, 642 Rous, 643 Rous and Murphy, 643 Roux, 273, 437 Roux and Martin, 296 Roux and Metchnikoff, 532 Roux and Nocard, 450, 624 Roux and Yersin, 286, 294, 384 Roux, Taurelli-Salimbeni, and Metchnikoff, 509 Royer, 755 Ruediger, 217, 229, 407 Ruehl and Clark, 64 Rupp and Ayers, 36, 114 Rush and Palmer, 33 Russ and Browning, 83 Russ and Kraus, 509 Russell, 66, 278, 337, 357, 358, 681, 686, 746 Russell and Babcock, 682 Russell and Weinzirl, 685 Russell, Zeit, and Jordan, 339 Ruth, Spooner, and Stevens, 741 Ryffel and Walker, 221

Sachs and Ghon, 420 Sackett, 747 Sackett and Stevens, 744 Saenz, Calmette, and Valtis, 447 Sailer and Kneass, 283 Sakharoff, 523 Salimbeni and Calmette, 384 Salimbeni and Marchoux, 523 Salimbeni, Simond, and Marchoux, 637 Salmon and Smith, 329 Sambon and Low, 609 Sanarelli, 636 Sander, 452 Sanfelice, 563 Sanford, 410, 552 Savage, 227, 303, 724 Savage and White, 328, 329 Savastano, 749 Sawyer and Herms, 634 Sawyer, Kitchen, Frobisher, Lloyd, 639 Scammon and Pope, 312

Schattenfroh and Grassberger, 119, 664

Schaudinn and Hoffmann, 529

Schaudinn, 62, 518

Scheckenbach, 716 Schellack, 523 Scheller, 289 Schenck, 570 Schereschewsky, 530 Schering, 94 Schick, 309 Schiff-Giorgini, 750 Schlesinger and Bronfenbrenner, 442 Schlesinger and Wolbach, 653 Schloesing and Müntz, 697 Schmitt, 481 Schmitz, 360 Schöbl, 437 Schottelius, 115 Schottmüller, 214, 326 Schröder and von Dusch, 24 Schroeder and Cotton, 461 Schucht, 533 Schüder, 346 Schüffner and Mochtar, 638 Schultz, 197 Schultz and Charlton, 231 Schussler and Faber, 593 Schütz and Löffler, 485 Schweinitz and Dorset, 76 Scott, 436 Scott and Hall, 429 Seddon, 444 Sedgwick, 345, 348 Sedgwick and Batchelder, 669 Séguin and Weinberg, 417, 419, 421, 424, 426, 428, 429, 431, 433 Sellards, 638, 639, 654, 759 Sellards and Hindle, 638 Sellards and Jeans, 473 Sellards and Theiler, 638 Sellards, Laigret, and Mathis, 638 Semmelweis, 220 Semple, 627 Sergent, 367 Setchell, 78 Shakespeare, Reed, and Vaughan, 350 Sharp and Jordan, 762 Shaughnessy, 635 Shaw, Frost, and Brown, 228 Shearman and Moorhead, 364 Sherman, 718 Sherman and Dochez, 230 Shevky and Dickson, 444 Shibley, Mills, and Dochez, 757 Shiga, 359, 360, 362, 363, 480 Shipley, 655, 657 Shunk, 54 Siedentopf and Szigmondy, 63 Silberschmidt, 283 Silberschmidt and Baenziger, 283 Siler, Hall, and Hitchens, 641 Sill, 399 Simmonds, 218 Simon, 643 Simond and Marchoux, 637

Simond, Marchoux, and Salimbeni, 637 Simonds, 423, 424 Simpson and Brown, 279 Simpson and Dudgeon, 208 Singer and Kaplan, 226 Sioli, 608 Smith, 47 Smith, Erwin F., 36, 741, 742, 743, 744, 746, 747, 748, 750 Smith, J., 230, 306 Smith, L. W., 758 Smith, Theobald, 28, 32, 38, 80, 131, 195, 294, 311, 372, 404, 453, 457, 463, 464, 556, 611 Smith and Barret, 579 Smith and Brown, 215 Smith and Kilborne, 612 Smith and Nuttall, 614 Smith and Salmon, 329 Smith, Brown, and Townsend, 751 Smith, Halliday, and Cummins, 562 Smith, Harding, and Rogers, 686 Smith, Winslow, Broadhurst, Buchanan, Krumwiede, and Rogers, 124 Sobernheim, 282, 512 Sonne, 360 Soper, 351 Sordelli, 429 Sörensen, 30, 31 Sormani, 404 Soule, 133 Soule and Novy, 85 Spencer, 652 Spengler, 397 Spirina and Korschun, 234 Spooner, Stevens, and Ruth, 741 Stainsby, Cecil, and Nicholls, 222 Stanley, Garfinkle, and Goddard, 361 Stanton and Fletcher, 492 Stefanopoulo and Pettit, 639 Stefansky, 481 Sterling, 52 Sternberg, 40, 41, 241, 246, 636 Stevens and Dochez, 224, 229, 233 Stevens and Sackett, 744 Stevens and Temple, 699 Stevens and Withers, 702 Stevens, Ruth, and Spooner, 741 Sticker, 483 Stiles and Boeck, 578 Stillman, 242 Stillman and Bourn, 393 Stillman and Pritchett, 393 Stimson, 503 Stocking, 667 Stokes, 340, 640 Stokes, Bauer, and Hudson, 638 Stoklasa 689 Storch, 681 Störmer and Hiltner, 724 Strange and Fernbach, 715 Straus, 490, 492

Straus and Gamaléia, 455 Strauss and Loewe, 629 Strong, 384, 499 Suchsland, 707, 708 Suffit, Giroux, and Courtois, 415 Sugai, 480 Süpfle, 219 Svenson, 506 Sweeney and Walker, 481 Sweet and Flexner, 362 Swezy and Kofoid, 576 Swezy, Kofoid, and Boyers, 576 Swift, Andrewes, and Derick, 223 Swingle, Koser, Reiter, and Bortniker. Swithinbank and Newman, 669 Symmers, 225 Szigmondy and Siedentopf, 63

Takaki and Wassermann, 409 Takaki, Taniguchi, Osumi, and Eutaki, 528 Taliaferro, 583, 590, 611 Taliaferro and Hegner, 572, 577, 617 Taliaferro and Holmes, 579 Tamura, 449 Taniguchi, (Takaki, 528 Osumi, Eutaki, and Tanner, 717 Tanner and Guillermond, 558 Taurelli-Salimbeni, Metchnikoff, and Roux, 509 Taylor and Tunnicliff, 760 Temple and Stevens, 699 Tenbroeck and Bauer, 404, 413 Thatcher, Gammel, and Miskdjian, 555 Thaxter, 124 Theiler and Robinson, 442 Theiler and Sellards, 638 Thiele, 686 Thierfelder and Nuttall, 115 Thom, 564 Thom and Church, 564, 567 Thomas and McConnell, 721 Thomas, Arloing, and Cornevin, 434, 436 Thomas, Frost, and Gumm, 229 Thompson, 381 Thompson and Crowe, 217 Thomson and Robertson, 572, 616 Thorne, 302 Thresh, 347 Thucydides, 654 Tillett and Avery, 197 Tillett and Rivers, 225 Tissier, 320 Tizzoni and Centanni, 627 Todd and Dutton, 522, 523, 589 Todd, Palfrey, and Wolbach, 660 Tomcsik, 197 Toomey and August, 298 Torrey, 257

Towler and Walker, 527
Towne, Wheeler, and Rosenow, 632
Townsend, 499, 753
Townsend, Smith, and Brown, 751
Toyoda, 235
Trask and Blake, 759
Trask, Lynch, and Blake, 233
Treviranus, 691
Trillat, 94
Trudeau, 473
Tucker, 720
Tunnicliff, 175, 215, 216, 224, 229, 231, 525, 757, 759, 760
Tunnicliff and Hoyne, 760
Tunnicliff and Taylor, 760
Tunnicliff and Weaver, 524, 525
Twort, 645
Tyndall, 20, 720

UHLENHUTH, 190, 448 Uhlenhuth and Fromme, 526 Uhlenhuth and Mulzer, 533 Unna, 482 Uschinsky, 36

Vaillard, 414 Vallée, 472 Vallery-Radot, 270 Valtis, Saenz, and Calmette, 447 Van Delden and Beijerinck, 87 Van der Lingen and Bayne-Jones, 81 Van der Scheer and Landsteiner, 194 Van Ermengem, 55, 66, 438, 439, 441 Van Gieson, 625 Van Leeuwenhoek, 17 Van Sant and Young, 592 Vaughan, 120, 198, 250, 585 Vaughan, Shakespeare, and Reed, 350 Veillon and Zuber, 421 Veldee, 234 Vernhout, 708 Villemin, 446 Vogel and Gerlach, 689 Voges, 375 Voges and Proskauer, 321 Voisin and Duflocq, 332 Vom dem Borne, 543 Von Behring, 448, 462, 463 Von Behring and Kitasato, 403 Von Dusch and Schröder, 24 Von Freudenreich, 664, 685 Von Heine, 631 Von Hofmann-Wellenhof, 304 Von Pirquet, 471 Von Wiesner, 629 Vorhaus and Gompertz, 679

Waage and Guldberg, 119 Wadsworth, 247, 249 Wadsworth and Wheeler, 393 Waite, 741, 742 Wakker, 748 Waksman, 107, 722

Waksman and Davidson, 107 Walker, 174, 480, 481, 483 Walker and Rideal, 42, 99 Walker and Ritchie, 570 Walker and Ryffel, 221 Walker and Sweeney, 481 Walker and Towler, 527 Walker, Howell, and Wherry, 383 Wälsch, 570 Wani, Ido, Hoki, and Ito, 526 Warburton, 655 Ward, 75, 82 Washburn, Rogers, and Mohler, 462 Wassermann, 161, 250, 495, 533 244. Wassermann and Kolle, 73, 258, 266, 289, 291, 375, 525, 568, 569, 643 Wasserman and Takaki, 409 Weaver and Tunnicliff, 524, 525 Wechsberg and Neisser, 180, 203, 204 Weeks, 396 Weichselbaum, 236, 244, 259, 346, 485 Weigmann, 681, 685 Weigmann and Zien, 670 Weil, 525 Weil and Felix, 134, 657 Weinberg and Séguin, 417, 419, 421, 424, 426, 428, 429, 431, 433 Weinzirl and Cheyney, 443 Weinzirl and Russell, 685 Weiss, 756 Weizmann, 716 Welch, 53, 180, 424 Welch and Nuttall, 421, 425 Wells, 195, 197, 200, 411 Wells and Osborne, 196 Wells, DeWitt, and Long, 452 Wenner and Rettger, 496 Wenyon, 572, 579, 581, 616 Wernicke, 296 Wertheim, 254 Wesbrook, 184 Wesbrook, Wilson, and McDaniel, 287 Westermann and Löhnis, 689, 690 Western, Levy, and Bedson, 643 Wevl. 346 Wheeler and Hutchings, 348, 736 Wheeler and Wadsworth, 393 Wheeler, Rosenow, and Towne, 632 Wherry, 377, 481, 487 Wherry and Lamb, 385 Wherry and McCoy, 381 Wherry and McDill, 397 Wherry and Oliver, 84 Wherry, Walker, and Howell, 383 Whipple, 33, 75 White and Pope, 262 White and Savage, 328, 329 White, Avery, and North, 228 Whitehead and Hall, 429

Whitmore, Roberts, and Jantzen, 608 Whittaker and Childs, 738 Widal and Gruber, 183, 354 Wiesner, 629 Wiggers, Dack, Cary, and Woolpert, 204Wilbur and Ophüls, 443, 444 Wilder and Ricketts, 655, 658 Wilfarth and Hellriegel, 691 Williams, 425 Williams, Anna, 756 Williams and Lowden, 625, 626 Williams, Mann, and Park, 306 Wilson and Chowning, 650 Wilson, McDaniel, and Wesbrook, 287 Winogradsky, 86, 109, 111, 112, 124, 689, 697, 698, 700 Winslow, 227 Winslow and Hubbard, 228 Winslow and Prescott, 725 Winslow, Broadhurst, Buchanan, Krumwiede, Rogers, and Smith, 124 Winslow, Falk, and Caulfeild, 89, 192 Withers and Stevens, 702 Wolbach, 643, 650, 652, 653 Wolbach and Schlesinger, 653 Wolbach, Todd, and Palfrey, 660 Wolff and Israel, 546, 550, 552 Wollstein, 257, 394, 395, 397, 758 Wood, 706 Woods, 753 Woolpert, Wiggers, Dack, and Cary, Woronin, 691 Woulff, 43 Wright, 47, 57, 171, 175, 209, 376, 546, 548, 549, 550, 555, 593 Wright, Councilman, and Mallory, 259, 265, 266 Wyatt, 364

Yarborough and Barret, 618 Yates and Bunting, 755 Yersin, 376 Yersin and Roux, 286, 294, 384 Young, 344, 640 Young and Gordon, 225 Young and Van Sant, 592 Yu and Zinsser, 223

Zeiss and Mayer, 590
Zeit, Jordan, and Russell, 339
Zettnow, 67, 69
Ziehl, 53
Zien and Weigmann, 670
Zingher, 761
Zinsser, 193, 195, 200
Zinsser and Mueller, 193
Zinsser and Yu, 223
Zuber and Veillon, 421

INDEX OF SUBJECTS

Aberrant forms of bacteria, 64 Abortion, infectious, of cattle, 367 of mares, 330 Abrin, 120, 155 Abscess, amebic, 573 of ear, Pseudomonas pyocyanea in, 495 Abscesses in sporotrichosis, 571 Absorption test of Castellani, 188 Acetic acid as food preservative, 710 fermentation, 697, 711 in tanning, 706 oxidation of alcohol to, 711 Acetone, production of, 715 Achalme's bacillus, 221 Acid production by bacteria, 112 Acid-fast bacilli, 471, 474 staining, 52 Acidophilus milk, 678 mechanism of effects produced by, Acne, 304, 307 vaccine treatment, 209 Acquired immunity, 149, 152 Actinobacillus, 556 actinoides, 556 lignieresi, 556 Actinomyces, 108, 483, 545 asteroides, 556 characteristics, 546 club-shaped bodies of, 547, 552 coccus-like bodies of, 548 colonies, 548, 550 cultivation of, 549 farcinicus, 556 glands, 552 granules, 545, 546, 552 hominis, 550, 551 in suppuration, 546, 552 madurae, 555 method of infection, 553 on grains, 545, 551, 553 pathogenicity for cattle and other animals, 551 rosettes, 546, 547, 552 scabies, 551 Wright's method of isolating, 549 Actinomycetales, 125 Actinomycosis, 545 bovine, 551 milk infection from, 671

generalized, 552

Actinomycosis in man, 552 iodine in, therapeutic value, 553 method of infection, 553 related infections, 556 Active immunity, 152 methods of production, 153–156 Adaptability of bacteria, 89, 130 Adsorption theory of immunity, 158 Aëdes aegypti in transmission of dengue, 641 of yellow fever, 636 Aerobacter, 313 Aërobes, obligate, 83 Aeroscope for estimation of bacteria in air, 721 African horse sickness, 643 tick fever, 523 Agar, blood-, 35 chocolate, 391 dextrose and lactose, 34 oleate hemoglobin, 391 preparation of, 34 Age as factor in infection, 139 Agglutination, 183 and bactericidal power of serum, relation between, 189 group, 187 in diagnosis of glanders, 491 mechanism of, 192 of Bacterium coli, 183, 319 of Brucella melitensis, 366 of Clostridium welchii, 426 of gonococcus, 256, 257 of Hemophilus influenzae, 395 pertussis, 398 of leprosy bacillus, 480 of meningococcus, 261, 266 of Pasteurella tularensis, 388 of pneumococcus, 239, 247, 249 of Proteus X19 in typhus, 657 of rough and smooth colonies, 133, 134 of Spirillum cholerae, 504, 506 of tetanus bacilli, 413 of typhoid bacillus, 327, 344, 354 spontaneous, 134, 185 technic of, 183 temperatures for, 185 tests, 183 Agglutinins, 179, 183, 184 group, 187 in influenza, 764

Agglutinins, mode of action, 185 Amebiasis, diagnosis, 579 of H-O varieties, 134 Amebic abscesses, 573 American cheese, 684 properties of, 185 specific, 187 Ammonia in nitrification, 688, 697. Agglutinogen, 186 700, 702 flagellar, 134 production by bacteria, 113, 114, somatic, 135 688, 697 Agitation, mechanical, effect on bacby protein decomposition, 697 Amphitricha, 70 Anaërobes, 28, 402–445 terial growth, 89 Agriculture, bacteria in, 705, 724 Air, bacteria in, 720, 721 butyl alcohol fermentation by, 716 apparatus for quantitative esticultivation of, 45 mation, 720 by absorption of oxygen, 46 pathogenic, 722 hydrogen method, 46 filter, 721 vacuum method, 47 denitrification by, 703 differentiation of, 402 infection through, 83, 720 molds in, 720, 721 yeasts in, 721 facultative, 83 Alastrim, 622 fermentation and, 84, 664 Alcaligenes, 332, 365 found in wound infections, 418 Alcohol, butyl, fermentation, 716 in retting of flax and hemp, 717 oxidation to acetic acid, 711 in soil, 723 in water analysis, 727 morphologic and biochemical dif-Alcoholic fermentation by yeasts, 558 of milk, 664 Alcoholism, cholera following, 506 ferentiation, 402 pneumonia following, 245 obligate, 83, 84 tuberculosis following, 466 outstanding pathological changes Alders, nitrogen-fixation by, 696 in guinea pigs inoculated with, 417 Alexin, 164, 167, 182 persistence in canned foods, 711 Alfalfa, stem blight of, 747 products of, 114 Algae, 90, 111, 122, 564 saprophytic nature of, 146 destruction of, in water, 97 spore-forming, 402 nitrogen assimilation by, 690 sulfur production by, 111 Alimentary tract as avenue of infec-Anaërobic agents of gaseous infection, tion in tuberculosis, 461, 465 418 bacteria in, rôle of, 115 jar, 47 Alinit, 690 Novy's, 46 Alkali production by bacteria, 112 Anaërobiosis, 85 Anaphylactic shock, 197 Alkaline-egg-peptone solution, Goldberger's, 503 Allergy, 195 Alligator, immunity to tetanus toxin, Anaphylactogens, 197 Anaphylatoxin, 198 Anaphylaxis, 195 anti-, 197 relation of, to drug hypersensitive-Amboceptor, 167, 179 ness, 199 of anthrax bacilli, 281 of cholera vibris, 512 to hay-fever, 199 of gonococcus, 257 to immunity, 199 of meningococcus, 266 to infection, 199 Ameba, 169 to serum disease, 199 intestinal, 573 theories of, 198 cultivation of, 578 Anatoxin, 118, 155 immunization in diphtheria, 312 Barret-Smith method, 579 Boeck-Drbohlav method, 579 Andrade's indicator, 34 in children, nonpathogenic, 578 Clostridium Anemia welchii infection in, 424 of dysentery, 573 Angina, pseudomembranous, 524 carriers, 576 streptococcus in, 219 characteristics and life-cycle, 574 dissemination of, 576 ulceromembranous, 524 Vincent's, 524 glycogen in cysts, 575 Aniline gentian-violet stain, 51 secondary sites of infection, 576 Animal inoculation, 47, 48 separation of bacterial species of gums, 580 Amebiasis, 572 by, 45 complement fixation test, 579

Animals, infusion, 19 Anthrax, immunity to, 160, 280 Animistic theory of disease, 136 by injections of foreign bacteria, Anopheles, 599, 601 156 albumanus, 604 in fowls, 280 and Culex, differences between, intestinal, 279 604, 605 local versus general reaction in, 277 barberi, 604 control by destruction of larvae, milk infection from, 671 mode of infection in, 277, 278, 279 608, 609 pulmonary, 279 by draining, 608 routes of infection, 278 by screening, 609 serum treatment, 282 by top minnows, 609 susceptibility to, 280 crucians, 604 symptomatic, 270, 434 culicifacies, 604 bacillus of, in milk, 664 febrifer, 604 toxin of, 119 habits and distribution, 604 vaccination against, 281 methods of extermination, 608 Anti-anaphylaxis, 197 Antibacterial and antitoxic sera, difpunctipennis, 604 quadrimaculatus, 604 ferences between, 167 rossi, 603 Antibodies, 149, 155, 177 Anoplura in typhus fever, 655 for Pfeiffer's bacillus, 395 Antagonism between bacteria, 92 Antiformin for examination of sputum Anthrax, 270–284 in tuberculosis, 448 Antigens, 149, 166 bacilius, 20, 41, 66, 164, 170, 270 adaptability of, 90 for Kahn precipitation test, 537 asporogenous varieties, 273 titration of, 539 attenuation of, 154 for Wassermann reaction, 535 behavior toward gentian-violet, reactions produced by, 182 residue, 193 capsule of, 272 Antimicrobic vaccine, immunization characteristics of, 271 in diphtheria with, 312 feeding experiments with, 276 Antipneumococcus serum, 168 growth characteristics, 274 Antiseptics, 92 in fowl, 103 in soil, 723 adaptation to, 131 effect on pigment production, 105 in water, 740 on virulence, 141 method of causing injury to Antitoxic and antibacterial sera, difanimal organism, 279 ferences between, 167 morphology, 271 Antitoxin, 117 pathogenicity for lower animals, botulism, 444, 445 Clostridium novyi, 427, 429 153, 275for man, 278 welchii, 425 phagocytosis of, 281 diphtheria, 157, 285, 296. See also portal of entry, 276 relation to hay bacillus, 283 Diphtheria antitoxin. erysipelas, 225 rough and smooth colonies, 133, pyocyaneus, 157 scarlet fever, 231, 233 tetanus, 157, 413. See also *Tetanus* routes of infection in animals, 276 antitoxin. in man, 278 Antitoxins, 157 chemical character, 158 spores and spore formation, 72, 73, 83, 92, 96, 272 concentration of, 158 temperature relations, 79 immunity and, 162 thermal death-point, 80 neutralization of, 119 bacteremia in, 142 origin of, 160 standardization of, 159 diagnosis, 279 Apple, hairy-root of, 752 factors affecting susceptibility to, Argas persicus, 524 Arnold steam sterilizer, 28 forms of, 278 Arrhenius and Madsen's theory of from shaving brushes, 278 toxin-antitoxin reaction, 158 historical, 270 Arsenic dips in piroplasmosis of human mortality, 278 animals, 611

Arthritis, chronic, streptococcus in, deformans, streptococcus in, 222 Ely's, Endameba histolytica in, 576 Ascomycetes, 566 Asiatic cholera, 500. See also Cholera, Asiatic. Aspergillosis, 568, 569 Aspergillus, 564 in making fermented drinks, 567 in moldy bread, 715 niger, 690 pathogenicity for man, 568 Atmospheric pressure, effect on bacterial growth, 88 Atopy, 199 Atricha, 70 Atropine, fatal dose, 118 Attenuated bacteria, 141 production of immunity with, Autoclave sterilization, 26 Auto-intoxication, gastro-intestinal, 117 Autolysis, 155 transmissible, Bordet's theory of, Automobile accidents, infection from, 416Autotoxins, 92 Autotrophic bacteria, 123 Avian diphtheria, 303, 624 malaria, 610 tuberculosis, 458 Ayers and Rupp's culture medium, 36 Azotobacter, 689 agile, 689 chroöcoccum, 689 involution forms, 689 Babes' treatment of rabies, 627 Babesia, 611 bigemina, 611, 612 bovis, 611, 612 caballi, 611 canis, 611, 614 life cycle in dog, 614, 615 equi, 611 motasi, 611 mutans, 611, 612 ovis, 611 sergenti, 611 vitalii, 611 Bacillary dysentery, 358, 360 emulsion, Koch's, 474 white diarrhea of chicks, 331 Bacillus, 127 Achalme's, 221 acid-fast, 471, 474 staining, 52 acidophilus, 320, 678, 719 acne, 304, 307

Bacillus aërogenes, 313, 315, 321 capsulatus, 421 in cheese, 636 in milk, 663 ambiguum, 360 amylovorus, 741 anthracis, 20, 41, 66, 164, 170, 270. See also Anthrax bacillus. anthracoides, 284 asterosporus, 690 avisepticus, 374 bifidus, 320, 679 Boas-Oppler, 678 Bordet-Gengou, 389, 397 botulinus, 437. See also Clostridium botulinum. bovisepticus, 374 bulgaricus, 321, 678, 719 butter, 475, 481 butyric acid, in sour milk, 664 Calmette-Guérin, vaccine of, 472 campestris, 745, 746, 747, 749 carotovorus, 753 caucasicus in milk, 665 chauvei, 434 cholerae, 500. See also Spirillum cholerae. citri, 749 coli, 316. See also Bacterium coli. comma, 500 cyanogenes, 105 in milk, 665 danicus, 690 diphtheriae, 285. See also Diphtheria bacillus diphtheroid, 303 classification, 305 relation to diphtheria bacillus, 305, 306 diphtheroides liquefaciens, 305 Ducrey's, 389 dysentery, 358. See also Dysentery bacilli. Eberth-Gaffky, 332 ellenbachensis, 690 enzymicus, 305 erodiens, 706 erythrogenes in milk, 665 fecalis alcaligenes, 363 fitzianus, 79 flavidus, 305 Flexner's, 360, 362 fluorescens, 79, 105, 130 liquefaciens in cheese, 686 in water, 735 Friedländer's, 315, 322 in influenza, 763 in pneumonia, 236, 322 furfuri, 706 fusiformis, 524 gasoformans, 706 granulosis, 756 grass, 471, 475, 479

Bacillus, Hansen's, 477, 480, 482 hay, 78, 79, 282, 475, 481, 717. also Hay bacillus. hemophilic, 37, 389 hepatodystrophicans, 639 Hirschfeld's, 328 histolyticus, 429 hoagii, 305 Hofmann's, 304, 305 hog cholera, 330 hyacinthi, 748, 749 influenza, 37. See also Hemophilus influenzae. janthinus, 105 Klebs-Löffler, 286. See also Diphtheria bacillus Koch-Weeks, 389, 396 lactici acidi, 663 lacunatus, 400 leprae, 131, 151, 474, 477. See also Leprosy bacillus. levans, 714 mallei, 485. See also Glanders bacillus. malvacearum, 745 medicaginis, 747 megatherium, 284, 690 mesentericus, 284, 690, 717 in bread-making, 715 Metchnikoff's, 513 Morax-Axenfeld, 389, 400 Morgan's, 315 mortiferus, 525 mycoides, 284, 304 in tobacco-curing, 707 neapolitanus, 316 novyi, 426. See also Clostridium oedematiens, 418, 427. See also Clostridium novyi. oedematis in soil, 723 maligni Nr. II, 426 of food poisoning, 328 of malignant edema, 73, 419 in milk, 664 in soil, 723 of rabbit septicemia, 375 of rhinoscleroma, 324 of symptomatic anthrax, 73 in milk, 664 oleae, 749 oleraceae, 753 oligocarbophilus, 87 ovis, 307 ozenae, 324 pantotrophus, 87 paratuberculosis, 474 paratyphoid, 325. See also Salmonella. perfringens, 422 pertussis, 389, 397 pestis, 375. See also Pasteurella pestis.

Bacillus, Pfeiffer's, 390, 762. See also Hemophilus influenzae. phaseoli, 749 phlegmonis emphysematosae, 421 phosphorescens, 78, 79, 512, 515 phytophthorus, 744 plurisepticus, 375 pneumosintes, 764 potato, 284, 708, 715 Preisz-Nocard, 307 prodigiosus, 105, 106, 156, 224, 690 in milk, 665 in tetanus bacilli cultures, 410 Proteus, 496 pseudoanthracis, 284 pseudodiphtheria, 288, 304 diphtheria bacillus and, interrelation, 305 pseudotuberculosis, 384 psittacosis, 331, 642 pyocyaneus, 75, 105, 493, 690. also Pseudomonas pyocyanea. pyogenes, 307 radicicola, 692, 694 capsule of, 694 ramosus, 284 rudensis in cheese, 686 ruedigeri, 305 savastanoi, 749 Schmitz's, 360 septicus, 419 Shiga's, 359, 360, 362 smegma, 475, 479, 481 solanacearum, 743 Sonne's, 360 sordellii, 418, 429 sporogenes, 431 stewarti, 748, 749, 752 subtilis. See Hay bacillus. suis, 370 suisepticus, 374 synxanthus in milk, 665 termo, 496 tetani, 403. See also Clostridium tetani. thermophilus, 78, 79 tracheiphilus, 742 tuberculosis, 446. See also Tubercle bacillus. tumefaciens, 751 typhoid, 307, 332. See also Typhoid bacillus. tyrogenus, 514 violaceus, 105, 129 Voldagsen's, 330 vulgatus, 284 welchii, 421. See also Clostridium weichii. whitmori, 492 xerosis, 288, 305 xylinum, 713 Bacillus-carriers, chronic, 344 Bacteremia, 142

Bacteria, aberrant forms, 64 acid-fast, 474 adaptability of, 130 to varying conditions of life, 89 aërobic, 83 agglutination of, 183. See also Agglutination. anaërobic. See Anaërobes. antagonism between, 92 attenuated, 141 production of immunity with, 154 autotrophic, 123 Brownian movement, 69 butyl alcohol, 716 capsulated, 66, 322 capsule of, 64 cell-division of, 70 cell-membrane of, 67 cellulose in, 76 chemical composition, 76 chlorophyl-bearing, 86 chromatin of, 67 chromogenic, 105 in air, 720, 721 in cheese, 686 classification, 122 colonies of, 74 composition of, 76 cytoplasm of, 67 dead, immunization with, 154 defenses of body against, 144 degeneration forms, 64, 129 denitrification by, 702 development of, 62 dimensions of, 62 discovery of, 17 disease and, 136 disintegration products of, 105, 108 immunization with, 155 distribution throughout body in disease, 143 elective localization, 131 electric charge of, 186, 192 entoplasm of, 67 environmental influences, 78, 88 excretions of, 105 fermentation tests, 38 products of, 107 filtration of, 620 finer structure of, 64 flagella of, 69 food preservation and, 709 supply of, 86 forms of, and their interpretation, 63 gas formula, 39 production, 38 gaseous exchange of, 85 gram-negative, 51 gram-positive, 51 growth of, 70 accessory factors, 88 effect of antiseptics, 92

Bacteria, growth of, effect of atmospheric pressure, 88 of chemical agents on, 90 of concentration and reaction of nutrient substance, 88 of disinfectants, 92 of electricity, 89 of food supply, 86 of light, 81 of mechanical agitation, 89 of moisture, 82 of oxygen supply, 83 of physical and chemical agents, 78 of temperature, 78 of vitamins, 88 physical effects, 103 products of, 103 hemicellulose in, 76 hemoglobinophilic, in conjunctivitis, 756 hemophilic, 37, 389 H-O variations, 134 immunological varieties, 132 in agriculture, 705, 724 in air, 720 apparatus for quantitative estimation, 720 pathogenic, 722 in alimentary tract, rôle of, 115 in bread-making, 713 in butter, 680 in cheese, 682 in cream, 669 in ice, 735 in industries, 705 in milk, 662. See also Milk, bacteria in. products, 680 in retting of flax and hemp, 716 in sauerkraut, 713 in sewage, 728, 729, 735 test for, 732 in silage, 718 in smoked meats, 709 in soil, 110, 722 nitrogen-fixation by, 688 pathogenic, 723 virulence of, 692 quantitative estimation, 724 in tanning, 705 in tobacco curing, 707 in vinegar-making, 711 in water, 88, 725. See also Water, bacteria in. indol as product of, 38, 114 influence of, on welfare of man, 22 intestinal, beneficial or harmful?, 115 comparative differential reactions of, 315 involution forms, 64, 66 iron, 108

Bacteria, lactic acid, 662 in bread-making, 714 in cheese, 685 limiting hydrogen ion concentration for, 113 microscopic examination of, 49 milk, 669 miracle, 105 morphology, 62, 74 motility of, 68, 122, 135 mutations, 129, 130 nitrates in, reduction of, 37 nitrification by, 696 carbon dioxide in, 700 nitrifying, 86, 696 in water analysis, 727 nitrogen cycle and, 688 nitrogen-fixation by, 688 nodule, host plants and, relation between, 692 nitrogen-fixation by, 691 of food poisoning, 328 organs of locomotion, 68 parasitic, 87 pathogenic, 138 peptonizing, in cheese, 685 photogenic, 104 physical effects, 103 plant nature of, 62, 122 plants or animals?, 122 poisonous products of, 116 products of, 103 acid, 112 alkali, 112 chemical, 105 disintegration, 105, 108 enzymes, 105, 107 fermentation, 107 indol, 38, 114 iron, 108 phosphorescence, 104 pigments, 75, 105 ptomaines, 116 putrefactive, 114 spontaneous combustion, 103 sulfur, 110 toxins, 116 putrefactive products of, 114 reactions produced by, 148, 182 reducing power, 37 relation of, to food assimilation by higher forms of life, 115 respiration of, 84, 85 retrograde variety, 129 rough and smooth strains, 76, 132 saprophytic, 87 secondary colonies, 130 secretions of, 105 separation of species by animal inoculation, 45 by heat, 45 size of, 62

Bacteria, soil, immunity and, 693 nitrogen-fixation by, 688, 702 persistence in canned foods, 711 virulence of, 692, 695 spore-formation in, 28, 41, 72 sports, 129 stained, examination of, 50 staining, 50. See also Staining. structure of, 62, 64 study of methods, 24 sulfur, 110 physiology of, 112 red or purple, 111 temperature relations, 78 thermal death-point, 40, 80 thermogenic, 103 Tyrothrix, in cheese, 685 useful, 22 variations within species, 63, 128 virulence of, infection and, 140 Bacterial blight of beans, 749 destruction of cellulose, 717 diseases of plants, 741 mode of entrance and spread, 752 products, immunization with, 155 Bactericidal action, selective, of gentian violet, 58 and agglutinating power of serum, relation between, 189 serum, 165, 166 substances in blood, 163 Bacteriology, biologic significance, 22 hygienic or sanitary, 21 nomenclature of, 127 origin of, 18 pathologic, 21 scope of, 21 Bacteriolysis, 164 of leprosy bacillus, 480 Bacteriophages, 621, 645 Bordet's theory of transmissible autolysis, 647 characteristics of action, 645 d'Herelle's theory, 646 enzymes of, 648 filters, 646 homogamic theory, 647 in sewage, 648 mode of action, 648 nature of, 646 number of, 648 therapeutic use of, 649 Bacteriosis of carnations, 753 Bacteriostatic method of differentiating bacteria, 58 Bacterium, 313 aceticus, 66 aërogenes, 315, 321 Bact. coli and, differential tests, characteristics and subdivisions, 313

Bacterium cloacae, 315, 322, 714 in water, 735 coli, 187, 316 aberrant forms, 318 acid production by, 113 agglutination of, 183, 319 Bact. aërogenes and, differential tests, 321 colonies of, 130 commune, 316 cultural characteristics, 37, 317 denitrification by, 703 fermentation products, 105 in bakery fermentations, 714 in butter, 680 in cystitis, 319 in diarrhea, 320 in fermentation of sauerkraut, 713 in gallstones, 319 in hookworm infection, 320 in intestine, 146 in milk, 662 in shellfish, 733 in soil, 724 in water, completed test, 731 partially confirmed test, 731 presumptive test, 730 quantitative estimation, 730-733 tests, 732 in wounds, 319 morphology, 316 mutations in, 130 papillae, 130 pathogenicity, 318 Salmonella enteritidis, Eberthella typhi and, differentiation, 314, 335 Spirillum cholerae and, differentiation, 501 subinfection by, 320 comparative differential reactions of important species, 315 friedländeri, 315, 322 halophilus, 66 lactis aërogenes, 321 in milk, 662 levans, 714 malvacearum, 745 mucosum, 322 mucosum-capsulatum, 322 of putrefaction, 496 ozenae, 324 pneumoniae, 322 pneumosintes, 764 rhinoscleromatis, 324 savastanoi, 749 stewarti, 748, 749, 752 Bacteroids, 692, 694, 695, 696 Bakery fermentations, 713 Balantidium coli, 617 minutum, 617

Barber's method for study of bacteria, Barbone, 374 Barret and Smith's method for cultivating ameba, 579 Bartonella, 498 bacilliformis, 499 muria, 499 Basal stem-rot of potato, 744 Bating, 706 BCG vaccine, 472 Beans, bacterial blight of, 749 Beck and Proskauer's medium, 451 Bedbugs, transmission of Rickettsiae by, 650 of spirochetosis by, 524 Beef broth culture medium, preparation, 29 Bees in transmission of pear blight, 741 Beggiatoa, 111 Berkefeld filter, 739 Bichloride of mercury as disinfectant, 97 Bile solubility test for determining pneumococcus, 238 typhoid bacillus in, 344 Bilious fever in dogs, 614 Biochemical tests, 37 Biological products, tetanus from, 412 significance of bacteriology, 22 Birds, malaria of, 601, 610 Salmonella infections of, 330 Birkhaug's reaction in erysipelas, 224 Black assizes, 654 death, 375, 382 rot of cabbage and allied plants, 745 Blackleg, 434 Clostridium chauvei in, 434 vaccination against, 436 vibrion septique in, 420 Blake's classification of green-producing streptococci, 216 Blanching phenomenon in scarlet fever, 231 Blastomycetic dermatitis, 560 Blastomycosis, 560, 562 Bleaching powder for purification of water, 737 Blepharo-conjunctivitis, 401 Blight, bacterial, of beans, 749 pear, 741 stem, of alfalfa, 747 Blood, bactericidal substances in, dried, agglutinin in, 184 human, precipitation test for, 190 normal, germicidal power of, 163 study of, 59 typhoid bacillus in, 345 Blood-agar for study of streptococci, 214, 216preparation of, 35 Blood-poisoning, 142

Blood-serum as culture medium, 35 Breed's method of examining milk for Löffler's, sterilization of, 27 bacteria, 666 Blue milk, 665 Brewing, yeasts in, 558, 559 Boas-Oppler bacillus, 679 Brie cheese, 683 Bodenklima, 690 Brilliant green medium, 337, 338 Body resistance to disease, 148 Brill's disease, 654 Boeck-Drbohlav method for cultivat-Bristles, anthrax-contaminated, 278 ing ameba, 579 Brom-cresol-purple indicator, 34 Boil, Delhi, 593 Bronchopneumonia, 244 Boiling, purification of water by, 740 Brucella bronchiseptica in, 373 Boils, 205 in whooping cough, 399 bacteria in, 201 micro-organisms in, 244 vaccine treatment, 209 streptococci in, 223 Bombardment, molecular, 69 Broom-corn, Burrill's bacterial disease Boöphilus annulatus, 612 of, 752, 753 Borax as food preservative, 710 Broth filtrate, Denys', 474 Bordet-Gengou bacillus, 389, 397 nitrate, 37 culture medium, 397 sugar-free, Clostridium welchii in phenomenon, 181. See also Compreparation of, 424 plement fixation. Brown rot of tomato, egg plant, and Bordet's sensitizing substance, 167 potato, 743 theory of toxin-antitoxin reaction, Brownian movement, 69 158 Brucella, 365 of transmissible autolysis, 647 abortus, 367 Borrelia anserinum, 523 in milk, 371, 672 carteri, 523 tests for, 368 classification, 520, 521 bronchiseptica, 373 duttoni, 523 classification, 370 gallinarum, 523, 524 infections, epidemiology of, 370 kochi, 523 in cattle, 367 muris, 528 in man, 365, 370 novyi, 523 in swine, 370, 372 melitensis, 365 obermeieri, 518 allied varieties, 522 agglutination of, 366 flagellum of, 518, 519 porcine strain, 370, 371, 372 immunity to, 519, 522 varieties, 370 pathogenicity, 519 suis, 370 theileri, 523 Bubonic plague, 375, 376, 379, 381 Botrytis, 707 Bottle, Woulff, 43 bacteriophage treatment, 649 Buchner's pyrogallic acid method for Botulism, 116, 437 cultivating anaërobes, 46 antitoxin, 444, 445 Budding, cell-division by, 71 canned goods as cause, 443 fungi, 557 foods concerned in, 442, 443 Sporothrix, 571 immunity, 444 in animals, 444 Bulb, fermentation, 40 Sternberg's, for testing thermal death-point, 40, 41 mortality in, 443 pathogenesis, 442 Bulgarian bacillus, 321 toxin, 441, 445 in milk, 678 detection of, 443 Burial, earth, 724 Bovine actinomycosis, 551 Burke's modification of Gram's stain, malaria, 611 tuberculosis, 456 Burrill's bacterial disease of broomcorn, 752, 753 and human tuberculosis, relation between, 453 Butter bacilli, 475, 481 tuberculin reaction in, 470 bacteria in, 680 Braun and Hofmeier's medium, Bacterium coli in, 680 Mayer's modification, 295 cholera vibrio in, 687 Bread-making, bacteria in, 713 Eberthella typhi in, 349, 687 yeasts in, 714 infection from, 686 Breads, molding of, 715 rancidity of, causes, 666, 680 sticky or slimy, 715 Salmonella bacilli in, 687 Breakbone fever, 641 tubercle bacillus in, 461, 462, 686

Buttermaking, starters in, 681 Butyl alcohol fermentation, 715 Butyric acid bacillus, motile, in sour milk, 664 fermentation in tanning, 706 of milk, 664

Cabbage, black rot of, 745 Calcium hydroxide as disinfectant, 98 Calla lily, soft rot of, 753 Calmette-Guérin bacillus vaccine, 472 Calmette's tuberculin reaction, 471 Camembert cheese, 683 Penicillium of, 683 Camp fever, 654 Canker, citrus, 749 Canned goods as cause of botulism, Canning, preservation of foods by, 711 Capsulated bacteria, 66, 322 Capsules, 64, 194, 323

polar, of Cnidosporidia, 573 stains for, 53

stain for tubercle Carbol-fuchsin bacilli, 53, 449

Carbolic acid as disinfectant, 98 coefficient of disinfectants, 42 resistance of tubercle bacilli to,

gentian-violet stain, 51

Carbon dioxide in formation of nitrite,

production by bacteria, 85, 114

Carbuncles, 205 vaccine treatment, 209

Carcinoma, Boas-Oppler bacillus in,

Carnations, bacteriosis of, 753 Carp. pox disease of, 617

tuberculosis, 458

Carriers, 147 amebic dysentery, 576 cholera, 504

diphtheria, 147, 285, 300, 312

dysentery, 361 meningococcus, 263

paratyphoid bacilli, 352 pneumococcus, 242, 243, 246

poliomyelitis, 633, 634

pseudodiphtheria bacillus, 306 Salmonella infections, 329, 352

scarlet fever, 232

tetanus, 404 typhoid, 147, 344, 351

vermin as, 329

whooping cough, 398 Carrots, soft rot of, 753

Castellani's absorption test, 188

Catalase, 86

Catgut, infection from, 416, 429 Cattle, actinomycosis in, 551

Babesia infections of, 611 Borrelia infection of, 523

Cattle, diseased, milk infection from,

farcy-like disease of, 556

foot-and-mouth disease of, 63, 619,

heartwater disease in, 661 infectious abortion in, 367

pearl-disease of, 456

piroplasmosis of, 611, 612

plague, 153, 643

pleuropneumonia of, 63, 619, 643 tick in Texas fever, 612

Cauliflower, bacterial disease of 753

Cell, devouring, 168 zoöglea, 699, 700

Cell-division of bacteria, 70

Cell-inclusions in diseases due to filterable viruses, 621

Cell-membrane of bacteria, 67

Cell-receptors, 176

Cell-substance of bacteria, 67

Cellulose, bacterial destruction of, 717

fermentation, 717 hydrogen, 717 methane, 718 in bacteria, 76

in yeasts, 557

Cerebrospinal fever, 259 Certified milk, 674

Chagas' disease, 590

Charbon, 270

Charlton-Schultz blanching phenom-enon in scarlet fever, 231

Cheddar cheese, 684, 685, 686 Cheese, abnormal ripening of, 686

Bacillus aërogenes in, 686 fluorescens liquefaciens in, 686

rudensis in, 686 bacteria in, 682 number of, 685

cholera vibrio in, 687 chromogenic bacteria in, 686

cottage, 682

Eberthella typhi in, 687 hard and soft, 682, 683, 684

infection from, 686 lactic acid bacteria in, 685

Oïdium lactis in, 684, 686 Penicillium in, 683, 684

peptonizing bacteria in, 685 ripening of, 682, 685 Salmonella bacilli in, 687

Streptococcus hollandicus in, 685

tainted or bitter, 686 tubercle bacillus in, 687

Tyrothrix bacteria of Duclaux in, 685

varieties of, 683

Chemical agents, effect on bacteria,

composition of bacteria, 76 preservation of foods, 709 products of bacteria, 105

Clegg's method of cultivating leprosy Chemical purification water. of 737 bacillus, 478 Clostridium, 72, 402 acetobutylicum, 716 Chemotaxis, negative, 90, 171 positive, 90 amylobacter, 716 botulinum, 432, 437 Chicken, Borrelia infection of, 523 sarcoma, 643 Chickenpox, 147, 643 antitoxin, 444 encephalitis following, 630 distribution in nature, 438, 439 Chicks, white diarrhea in, 331 flagella of, 439 Childbed fever due to streptococcus, immunity against, 444 morphology, 439 Childbirth infections, 140 pathogenicity, 442 Chilomastix mesnili, 580, 581 for animals, 444 Chitin, 77 physiology, 439 spores, 439, 440 Chlamydothrix ochracea, 109 Chlamydozoa, 756 toxin, 118, 119, 146, 441, 445 Chlorination of water supply, 737 detection of, 443 Chlorine, effect on bacteria, 89 types, 442 butyricum, 402 Chlorophyl-bearing organisms, 86 chauvei, 432, 434 Chocolate agar, 391 Cholera, Asiatic, 500 immunity to, 436, 437 in blackleg, 434 pathogenicity, 435 alcoholism and, 506 animal inoculation, 508 bacillus of, 500. See also Spirilspores of, 434 lum cholerae. vibrion septique and, differentiacarriers, 504 tion, 420, 435 epidemiology, 506 histolyticum, 429 laboratory infections, 505 flagella of, 430 modes of dissemination, 506 in gaseous gangrene, 429 Naples cholera germ, 316 pathogenicity, 430 opsonic index, 506 physiology, 430 quarantine in, 503 spores of, 429 toxin, 509 nitrogen assimilation by, 689, 690 vaccination against, 153, 509 novyi, 418, 426 antitoxin, 427, 429 flagella of, 427 Haffkine's method, 511 Kolle's method, 511 water-supply as cause, 507 fowl, 154, 168, 374, 513 germ, Naples, 316 hog, 329, 330, 643 in gaseous gangrene, 426, 428 morphology, 427 pathogenicity for animals, 428 for man, 428 milk as cause, 670 physiology, 427 spores of, 427 nostras, 328 See Spirillum cholerae. toxin, 427, 428 vibrio. Cholera-red reaction, 502 cedematis, 426, 723 Chromatin of bacteria, 67 parabotulinum, 440 Chromatoids, 576 pastorianum, 689 Chromogenesis, loss of, 130 septicum, 419. See also Vibrion Chromogenic bacteria, 105 septique. in air, 721 sordellii, 418, 429 in cheese, 686 in gaseous gangrene, 429 Churchman's method of determining sporogenes, 431 difference in behavior of bacteria in gaseous gangrene, 431 to gentian-violet, 58 Ciliates, 617 morphology, 432 pathogenicity, 433 physiology, 432 spores of, 432 Ciliophora, 573, 617 Citrus canker, 749 Cladothrix asteroides, 556, 596 tetani, 403, 432 Classification of bacteria, 122 carriers, 404 based on morphology, 123 cultural characteristics, 404 on physiology, 123 by Society of American Bactedistribution in nature, 403 exotoxins of, 119 riologists, 124 filtration of cultures, 407 Claviceps purpurea, 567 in gelatin, 410, 412

Clostridium tetani in soil, 403, 723 indol production by, 407 pathogenicity for lower animals, 413 for man, 410 products of growth, 407 saprophytic nature of, 146 separation by animal inoculation, 45 serological types, 404, 416 spore-formation by, 73 spores of, 405 temperature for growth, 405 toxin production by, 118, 407 welchii, 221, 421, 432 agglutinins, 426 antitoxin therapy, 425 capsules of, 422 cultural characters, 422 immunity against, 426 in anemia in children, 424 in gaseous gangrene, 421, 424 in preparation of sugar-free broth, 424 in water, 422, 735 pathogenicity for animals, 425 for man, 424 spores of, 422 toxigenicity of, 425 types, 423 Clover, nodules of, 691 Clubs of Actinomyces, 547, 552 of molds, 564 Cnidosporidia, 573, 616 Coal-tar products as disinfectants, 98 Coccidia, 616 Coccidioidal granuloma, 562 Coccoid bodies of actinomycosis, 548 Cold, effect on bacterial growth, 80 exposure to, and infection, 139 sores, 643 virus of, and virus of encephalitis, relationship, 628 storage of foods, 710 Colds, 756 diphtheria bacillus in, 291 droplet infection, 756 filterable virus in, 756 influenza bacillus in, 756 pneumococcus in, 246, 756 streptococci in, 756 tubercle bacillus in, 756 Coley's mixture in malignant tumors, Coli-aërogenes bacteria in water, test for, 730–732 Colitis, mucous, acidophilus milk in, 679 ulcerative, 361 Colloidal theory of anaphylaxis, 198 Colon bacillus, 316. See also Bacterium coli.

Colonies, 62, 74 rough and smooth, changes in type, 132, 133 secondary, 130 Combustion, spontaneous, production by bacteria, 103 Comma bacillus, 500 Complement, 179, 281 deviation of, 181 fixation, 181 test in amebiasis, 579 in syphilis, 533 for Wassermann reaction, 535 Composition of bacteria, 76 Congo sleeping sickness, 588 Conjunctiva, diphtheria of, 291 glanders bacillus infection, 489 Conjunctivitis due to Koch-Weeks bacillus, 389, 396 to Morax-Axenfeld diplobacillus, 389, 400 to pneumococcus, 245 to xerosis bacillus, 288 gonorrheal, 253, 258 trachomatous, 755 onradi and Drigalski's culture Conradi medium, 336 Constipation, chronic, acidophilus milk in, 679 Convalescent serum in measles, 761 Copper sulfate as disinfectant, 97 Copperas as disinfectant, 97 Cornea, syphilis of, 533 Corrosive sublimate as disinfectant, Corynebacterium, 285 acne, 304, 307 diphtheriae, 285. See also Diphtheria bacillus. flavidus, 305 hoagii, 305 hofmannii, 304, 305 murisepticum, 307 ovis, 307 pyogenes, 307 typhi, 307 xerosis, 288, 305 Cottage cheese, 682 Cotton, cellulose in, 717 leaf-spot of, 745 plugs, 24, 25 Cough, whooping, 397 Cowpox and smallpox, relation between, 623 Cream, bacteria in, 669 pasteurization of, 682 ripening of, bacteria in, 680 Crenothrix polyspora, 108 Crescent-shaped bodies in malaria, 597, 599, 600 Cresol, 98 Cristispira, 516 classification, 520, 521

Crotin, 120 Croup, membranous, 291 Crown-gall of plants, 751 Cucumbers, mosaic disease of, 644 wilt disease of, 742 Cucurbita, wilt disease of, 742 Culex and Anopheles, differences between, 604, 605 fasciatus, 636 Cultivation of anaërobes, 45 Culture media, agar, 34 Ayers and Rupp's, 36 beef broth, 29 blood-agar, 35 blood-serum, 35 Boeck-Drbohlav, 579 Bordet-Gengou, 397 Braun and Hofmeier's, Mayer's modification, 295 brilliant green, 337, 338 chocolate agar, 391 concentration and reaction, 88 dextrose and lactose agar, 34 dextrose-free broth, 32 Dieudonne's, 504 Dorset's egg, 450 Drigalski and Conradi's, 336 Endo's, 336, 337 gelatin, 32 glycerol-agar, 450 Harris's, 336 Heinemann's, 36 Hiss's serum-water, 238 hydrogen ion concentration, 30 indicators for determination of, 30, 31 Levine's, 337 milk, 34 nitrifiable, 698 Noguchi's, for Leptospira icterohemorrhagiae, 526 nonprotein, 36, 86 oleate hemoglobin agar, 391 Petroff's modified egg, 450 potato, 35 preparation of, 28 Proskauer and Beck's, 451 Russell's, 337 solid, 29, 43 effects of invention and application of, 21 special, 37 sterilization of, 26, 27 synthetic, 36 Uschinsky's, Frankel's modification, 36 Wertheim's, 254 Cultures, chart of methods and characteristics, Society of American Bacteriologists, facing p. 60

plate, technic of making, 44

pure, cultural characteristics, 60

methods of obtaining, 43

Cultures, pure, morphologic appearance, 59 rejuvenation of, 60 study of, 59 throat, in diphtheria, 307 Curing of tobacco, 707 Cutaneous plague, 382 Cystitis, Bacterium coli in, 319 Proteus in, 497 Cysts of intestine, 575, 580 Cytolytic serum, 166 Cytoplasm of bacteria, 67 Cytoryctes vacciniae, 623 Dairy products, bacteria in, 662 Danysz virus, 325 Daylight, effect on bacteria, 81 Death-point, thermal, of bacteria, 40, Decay, 19 Decomposition of foods, 116 products of bacteria, 114 protein, bacteria in, 696, 697 Deerfly fever, 385 Defenses, external, of body, 144 Degeneration forms of bacteria, 64, products of filterable viruses, 621 Dejecta, disinfection of, 95, 98, 100 Delhi boil, 593 Demoniacal possession, 136 Deneke's spirillum, 514 Dengue, 641 Denitrification by bacteria, 702 Denys' broth filtrate, 474 Dermacentor venustus, 650 Dermacentroxenus rickettsi, 653 Dermatitis, blastomycetic, 560 Dermatomycoses, 570 Desensitization, 197 Deuterotoxins, 119 Devouring cells, 168 Dextrose agar, preparation of, 34 Dextrose-free broth, preparation, 32 d'Herelle-Twort phenomenon, 645 Diabetes, tuberculosis following, 466 Diarrhea, acidophilus milk in, 679 bacillary white, in chicks, 331 bovine, milk infection from, 671 colon bacillus in, 320 infantile, 672 bacteriology of, 673 dysentery bacillus in, 362, 673 Proteus in, 498 Streptococcus pyogenes in, 673 Dick prophylactic inoculation against scarlet fever, 234 serum, 233 test in scarlet fever, 200, 231 Dientameba fragilis, 577, 578 Dieudonné's medium, 504

Dilutions of polluted fluids, 45 Dimensions of bacteria, 62 Diphtheria, 142, 285 age distribution, 301, 310 animal inoculations, 292 antitoxin, 157, 285, 296 as preventive, 308 concentrated, 297, 298 curative value, 298 disappearance from blood, 162 preparation of, 152, 155, 296 presence in normal organism, 160 results of treatment, 299 sensitization to, 195 serum sickness from, 298 tetanus from use of, 412 avian, 303, 624 bacillus, 285 alkali production by, 113 animal inoculations, 292 test for virulence, 293 bacteria resembling, 304 barred types, 287 behavior toward gentian-violet, branching forms, 288 carriers, 147, 285, 300, 312 chromogenic forms, 105 cultural characteristics, 289 in throat examination for, cultures, 307 exotoxins of, 119 feeding experiments with, 293 granular types, 287, 288 identification of, method, 307 in colds, 291 in human body, 291 in pneumonia, 244 in presence of streptococci, 219 in sore throat, 306 in typhoid fever, 342 involution forms, 288 Löffler's serum for isolating, 290 morphology, 286 on mucous membrane, 145 organism resembling, in Hodgkin's disease, 755 postfission movements in, 288 pseudodiphtheria bacilli interrelation, 305, 306 serological types, 306 solid types, 287 staining, 56, 286, 287, 289 thermal death-point, 80 toxin of, 118, 293 transmutations, 305 virulence of, 290 virulent and avirulent, 306 Wesbrook's types, 287 carriers, 147, 285, 300, 301, 312 death rate from, 299, 758 diagnosis, 307 disinfection, 95 fowl, 643

Diphtheria, immunity and susceptibility, 288, 310 of infants, 310 immunization in, 310 with antimicrobic vaccine, 312 with antitoxin, 308 with toxin-antitoxin mixture, 311 with toxoid (anatoxin), 312 lesions, 291, 292, 295 membrane, 291 milk as cause, 670, 675 mixed infections, 144, 303 modes of infection, 300 nasal, 291 of conjunctiva, 291 of larynx, 291 opsonic index in, 174 prophylactic inoculation, 310 release from quarantine, 308 Schick reaction, 285, 309 pseudo-reaction in, 309 school attendance and, 301, 302, 308 serum prophylaxis, 308 spread of, school attendance and, 301 unsanitary habits and, 302 staphylococcus in, 303 streptococcus in, 219, 303 subclinical infections, 310 susceptibility of various ages to, 309 symptoms, 291, 292, 295 toxic effect on organs, 292 toxin, 146, 157, 293 chemical nature of, 294 effects upon animals, 295 Diphtheroid bacilli, 303 classification, 305 relation to diphtheria bacillus, forms of leprosy bacillus, 479, 480 Diplobacillus, Morax-Axenfeld, 400 Diplococcus, 236 in mumps, 757 intracellularis meningitidis, 259 pneumoniae, 236 Tunnicliff's gre measles, 759 in Discharges, study of, 59 Discontinuous sterilization, 27 Discovery of bacteria, 17 Disease, animistic theory of, 137 bacteria in relation to, 136 body resistance to, 148 germ theory of, 138 Hippocratic theory of, 137 homeopathic theory of, 137 theories of, 136 Diseases of milk, 665 Disinfectants, 92, 97 methods of testing, 41 phenol coefficient of, 42, 99 standardization of, 41, 99

Disinfection, 92 for surgical operations, 102 in infectious diseases, 100 of dejecta, 95, 98, 100 of hands, 97, 102 of skin, 102 of sputum, 95 practical, 97 procedures for, 100 room, 93, 101, 102 terminal, value of, 95 theory of, 95 Disintegration products of bacteria, 105, 108 immunization with, 155 Distemper of dogs, 373, 643 Dochez's serum in scarlet fever, 233 Dogs, distemper of, 373, 643 piroplasmosis of, 614 Donnan equilibrium, 192 Dorset's egg medium, 450 Dough, sour, 714 spontaneous fermentation of, 713 Dourine, 587 Drbohlav and Boeck's method for cultivating ameba, 579 Drigalski and Conradi's culture media, Drinking-water, standards of purity, Drug hypersensitiveness, relation of anaphylaxis to, 199 Drusen, 546, 552 Drying as means of preserving foods, 709Duclaux's Tyrothrix bacteria cheese, 685 Ducrey's bacillus, 389 Dum-dum fever, 590 Dunham's peptone solution, 38 Dust, bacteria in, 720 in transmission of poliomyelitis, 634 typhoid bacillus in, 350 Duval's method of cultivating leprosy bacillus, 478 Dysentery, 358, 360 ameba of, 573 carriers, 576 characteristics and life-cycle, 574 dissemination of, 576, 577 glycogen in cysts, 575 secondary sites of infection, 576 bacilli, 186, 358 acid production by, 113 bacteriophage of, 645, 649 characteristics of, 359 differentiation of types, 315 distribution, 360 Flexner type, 360, 362 in infantile diarrhea, 362, 673 in water, 361 isolation of, 359 mutations in, 130

Dysentery bacilli, pathogenicity, 360 Shiga type, 360, 362 Sonne type, 133, 360 toxins of, 119, 362 varieties, 360 Balantidium coli causing, 618 carriers, 361 dissemination of, 361 Flexner, 361 immunity in, 363 infantile paralysis due to, 363 serum treatment, 363 toxin production in, 362 Ear, Aspergillus infections, 568 middle, abscesses of, Proteus in, 497 Pseudomonas pyocyanea in, 495 inflammation of. See media. Earth burial, 724 East Coast fever, 613 Eberthella, 332 alcaligenes, 315, 337, 363, 365 comparative differential reactions of important species, 315 dysenteriae, 186, 358. See also Dysentery bacilli. fluorescens nonliquefaciens, 364 typhi. See Typhoid bacillus. Eberth-Gaffky bacillus, 332 Edam cheese, 684 Edema, malignant, bacillus of, 73. in milk, 664 in soil, 723 Eel-blood, 121 Egg plant, brown rot of, 743 Eggs, preservation with water-glass, 710 Ehrlich's reagent, 38 receptor theory, 176, 182 theory of toxin-antitoxin reaction, 157 Eichhorn's serum, 282 Eimeria stiedae, 616 El Tor vibrios, 513 Elective localization, 131 Electric charge of bacteria, 186, 192 of filters, 620 light, effect on bacteria, 81 Electricity, effect on bacterial growth, Ely's arthritis, Endameba histolytica in, 576 Embadomonas intestinalis, 580, 581 Encephalitis, epidemic lethargic, 628 following influenza, 628, 629 streptococcus in, 629 virus of, and virus of herpes, relationship, 628 following measles and chickenpox,

postvaccinal, 630

Endameba, 573 barreti, 579 coli, 574, 577, 578 gingivalis, 577, 580 histolytica, 573, 575, 577 carriers, 576 characteristics and life-cycle, 574 cultivation of, 578, 579 in arthritis, 576 in Hodgkin's disease, 576 secondary sites of infection, 576 Endocarditis, gonorrheal, 258 staphylococcus in, 205 ulcerative, 140 Endolimax nana, 577, 578 Endo's culture medium, 336, 337 Endospores, formation of, 72 Endotoxins, 120 Enteric fever, 341. See also Typhoid fever. Enteritis, bovine, milk infection from, due to pneumococcus, 245 to streptococcus, 220 Enterococcus, 216 Entoplasm of bacteria, 67 Environmental factors in bacterial growth, 88 Enzymes, production by bacteria, 105, 107 by bacteriophage, 648 by filterable viruses, 621 by molds, 567 by Pseudomonas pyocyanea, 494 by staphylococci, 203 by yeasts, 156, 558 catalase, 86 Eosin solution, Giemsa's, 529 Epidemic infantile paralysis, 631. See also Poliomyelitis, acute. lethargic encephalitis, 628 meningitis, 259 Epithelium contagiosum, 643 Epitoxoid, 157 Epstein's stain for diphtheria bacilli, Equilibrium, Donnan, 192 Ergotism, 567 Erysipelas, 143, 223 antitoxin treatment in, 225 Birkhaug's reaction, 224 effect of, on malignant tumors, 224 immunity in, 225 serum treatment, 225 streptococcus of, 223 swine, bacillus of, in pickled pork, 709 Erysipeloid, 556 Erysipelothrix, 556 Escherichia, 313 Estivo-autumnal fever, 600 malarial parasite, 598 Eubacteriales, 125

Eumycetes, 564 Excretions of bacteria, 105 Exotoxins, 117, 119 Extracellular toxins, 119 Eye, infection with Proteus, 497 with staphylococci, 207 Facultative anaërobes, 83 Farcin du boeuf, 556 Farcy, 488, 556 buds, 488 pipes, 488 Fatigue as factor in infection, 139 Favus, 570 Feces, disinfection of, 98, 100 examination of, for cholera vibrio, typhoid bacillus in, 343 Fermentation, 19, 84, 85, 558, 706 acetic acid, 697, 711 anaërobic bacteria and, 84 bakery, 713 bulb, 40 butyl alcohol, 715 cellulose, 717 hydrogen, 717 methane, 718 of dough, spontaneous, 713 of milk, 662 alcoholic, 664 butyric acid, 664 lactic, 662 of sauerkraut, 713 of sugars, 113 pectose, 716 products of bacteria, 107 reactions, 60 tube, 38 Ferrous sulfate as disinfectant, 97 Ferry and Fisher's green-producing streptococcus in measles, 760 Filamentous growth of tubercle bacillus, 447 Filaria, 594 Film preparation, 50 Filter plant for water supply, 736 Filterable stage of tubercle bacillus, 447 viruses, 619. See also Viruses, filterable. Filter-paper, 717 Filters, 43, 44 air, 721 bacteriophage, 646 Berkefeld, 739 electrical charge of, 620 gravity, 739 house, for water, 738 mechanical, 737 Pasteur-Chamberland, 739 pressure, 44, 738 sand, 736 test of efficiency, 733

Filtrates, 189 Foot, Madura, 554 Filtration of bacteria, 620 trench, tetanus developing in, 411 purification of water by, 736 Foot-and-mouth disease, 63, 619, 630 sterilization by, 42 butter and cheese infection in, 686 Finkler and Prior, spirillum of, 514 from milk, 630, 671 Fish, myxosporidium infection in. Forage poisoning, 444 Formaldehyde as disinfectant, 93, 101 Fisher and Ferry's green-producing as food preservative, 710 streptococcus in measles, 760 methods of use, 93, 94 Fishing a colony, 44 Formalin as disinfectant, 93 Fission-fungi, 123 Formic acid fermentation in tanning, Fixation of complement, 181 Fixed virus, 626 Forms of bacteria, 63 Fixing film, 50 Fowl, anthrax induced in, 280 Flagella, 69, 70, 134, 573 cholera, 154, 168, 374, 513 staining, 54, 55 diphtheria, 643 variations connected with, 134 limberneck in, 444 Flagellar agglutinogen, 134 pest, 643 Flagellated forms of malaria parasite, pox, 624 599, 601 tuberculosis, 458 Flagellates, adaptability of, 90 typhoid, 331 intestinal, of man, 580 Fränkel's modification of Uschinsky's Flasks, sterilization of, 25 culture medium, 36 Flax, cellulose in, 717 pneumococcus, 236 Free receptors, 177, 178 Friedländer's bacillus, 194, 315, 322 retting of, 716 Fleas in transmission of plague, 380 of trypanosomes, 582 in influenza, 763 Flexner-Jobling serum, 267 in pneumonia, 236, 322 Flexner's bacillus, 360, 362 rough and smooth strains, 323 dysentery, 361 Frost's gasometer card, 39 Flies in transmission of amebic dysen-Fruits, preservation of, 710 tery, 577 Fumigation, 93 of cholera, 508 Fungus, 564 of conjunctivitis, 396 budding, 557 of dysentery, 361 coccidioidal granuloma due to, 562 of leishmania, 592, 593 in moldy bread, 715 of leprosy, 483 of Oroya fever, 499 in tobacco curing, 707 of plant infections, 567 of pappataci fever, 640 of thrush, 569 of poliomyelitis, 633, 634 pathogenicity for man, 568 for plants, 567 of trypanosomes, 582, 586, 587, plant nature of, 122 of tuberculosis, 461 skin diseases from, 570 of typhoid, 350 sprue, 758 Foamy liver, 425 yeasts and, 558 Focal infection, 218 Furunculosis, vaccine treatment, 209 Foci, secondary, 143 Food poisoning, 116, 437 bacteria of, 319, 325, 328, 330 Gall, plant, 751 Gallbladder, typhoid bacillus in, 344, Proteus in, 498 Salmonella in, 328 Gallstones, Bacterium coli in, 319 staphylococcus in, 204, 206, 207 Eberthella alcaligenes in, 364 Foods, assimilation by higher forms Gametocytes, 602 of life, relation of bacteria to, 115 Gametophores, 566 decomposition of, 116 preservation of, 709 by canning, 711 by drying, 709 Gangrene, gaseous, 411, 416. See also Gaseous gangrene. Gangrenous stomatitis, 525 Garget, milk infection from, 671 by refrigeration, 710 Gas formula of bacteria, 39 by salt and sugar, 709, 710 Gaseous exchange of bacteria, 85 by smoking, 709 gangrene, 411, 416 chemical, 709 Food-supply of bacteria, 86 bacteriology of, 417, 418

Gaseous gangrene, Clostridium novyi	Glossina morsitans, 586
in, 426, 428	palpalis, 588, 589
histolyticum in, 429	Gloves, rubber, steriliza
sordellii in, 429	Glucosides, antigenic pr
sporogenes in, 431	Glycerol-agar, 450
welchii in, 421, 424	of Bordet-Gengou, 39
vibrion septique in, 419	Glycogen in amebic cys
infections, anaërobic agents of, 418	Goats' milk as cause
phlegmons, 417, 421, 428	fever, 366
Gasometer card, Frost's, 39	Goldberger's alkaline-eg
Gastro-enteritis, paratyphoid, 328	lution for recovery of
Gastro-intestinal auto-intoxication,	from feces, 503
117	Gonococcus, 252
Geese, Borrelia infection of, 523	agglutination of, 256,
Gelatin, preparation of, 32	amboceptor of, 257
tetanus bacilli in, 410, 412	cultural characters, 2
Generation, spontaneous, 19, 24, 720	immunity to, 256, 25
Gentian-violet, aniline, 51	inoculation experimen
carbolic, 51	Irons' cutaneous reac
selective bactericidal action of, 58	meningococcus and, r
Sterling's, 52	moisture for growth,
Germ theory of disease, 138	morphologic characte
Germicidal power of normal blood, 163	persistence of, 258
Germicides, 92	phagocytosis of, 254
tests for efficiency, 272	precipitins of, 257
Ghee, 378	results of infection w
Giardia lamblia, 580, 581	temperature for grow
Giemsa's eosin solution, 529	vaccination, 258
stain, 58	varieties, 256
van Gieson's modification, 625	Wertheim's culture n
Gins' modification of Neisser's stain	Gonorrhea, 252
for diphtheria bacillus, 289	incidence, 252
Glanders, 485	Gonorrheal conjunctivit
bacillus, 485	endocarditis, 258
morphologic and cultural charac-	ophthalmia, 257
ters, 485	rheumatism, 257
path of entrance, 489	vulvovaginitis, 258
pathogenicity for lower animals,	Gorgonzola cheese, 683.
487	Grains, Actinomyces on
for man, 488 spore formation by, 486	bacteria in, 714 Gram's method of stain
	Burke's modifica
staining of, 486	Granules in actinomyco
conjunctival infection, 489	metachromatic, 68
cutaneous, 488 diagnosis, 490	Paschen's, 623
agglutination method, 491	polar, 68
complement-fixation test, 492	staining, 56
guinea-pig inoculation, 490	Granulobacter pectinov
mallein test, 490	Granuloma, coccidioida
ophthalmic, 491	Granville wilt of tobacc
subcutaneous, 490	Grass bacillus, 471, 475
immunity to, 492	Gravity filter, 739
in lower animals, 487	Green manuring, 695
in man, 488	Green-producing strep
laboratory infections, 488	214, 216
nodule, 488, 490	
	Group agglutination, 18
prophylaxis, 492	Growth of bacteria, 70
Glandular plague, 382	accessory factors,
Glassware, sterilization of, 24	effects produced by
Globoid bodies of acute poliomyelitis,	Gruber-Widal tests, 183
632	Guarnieri bodies, 623
Globulins, 159	Guérin and Calmette's

588, 589 ber, sterilization of, 102 antigenic properties, 149 ar, 450 -Gengou, 397 amebic cysts, 576 k as cause of undulant s alkaline-egg-peptone sorecovery of cholera vibrio s, 503 252 tion of, 256, 257 tor of, 257 characters, 253 to, 256, 257 on experiments, 256 taneous reaction, 255 occus and, relation, 257 for growth, 255 gic characters, 253 ce of, 258 osis of, 254 s of, 257 infection with, 257 ure for growth, 255 on, 258 256 a's culture method, 254 252 , 252 conjunctivitis, 253, 258 itis, 258 nia, 257 sm, 257 initis, 258 cheese, 683, 684 inomyces on, 545, 551, 553 n, 714 hod of staining, 51 ce's modification, 51 actinomycosis, 545, 546 matic, 68 s, 623 ter pectinovorum, 716 coccidioidal, 562 rilt of tobacco, 744 lus, 471, 475, 479 er, 739 uring, 695 ucing streptococci, 213, utination, 187, 355 bacteria, 70 ry factors, 88 produced by, 103 lal tests, 183, 332, 354 odies, 623 Calmette's vaccine, 472

Guldberg and Waage's law of massaction, 119 Gum disease of sugar-cane, 753 Gums, ameba of, 580 Gwyn's method of anaërobic culture,

Haffkine's method of vaccination against Asiatic cholera, 511 prophylactic in plague, 384 tetanus from use of, 412 Hahnemann's theory of disease, 137 Hairy-root of apple, 752 Hands, disinfection of, 97, 102 Hanging block, 49 drop method for study of bacteria, Hansen's bacillus, 477, 480, 482 Haptenes, 193 Haptophore atom-group, 118, 121, 177, 178, 186 Harris's culture medium, 336 Havens' method of isolating typhoid bacillus, 337 Hay bacillus, 78, 79, 282, 475, 481, 717

in air, 722 in cheese, 685 in soil, 723 in tobacco curing, 707 in water, 735 pathogenicity of, 139 relation to anthrax bacillus, 283 spore-formation by, 73

Hay, damp, heating, of, 103 Hay-fever, relation of anaphylaxis to,

199Heartwater disease, 661 Heat, effect on bacterial growth, 79 exposure to, and infection, 139 production by bacteria, 103 resistance of toxins and antitoxins,

separation of bacterial species by, 45 Heinemann's culture medium, 36 Heine-Medin disease, 631. See also Poliomyelitis, acute.

Hemagglutinins, 187

Hemicellulose in bacteria, 76

Hemoglobinophilic bacteria in conjunctivitis, 756

Hemolysin from staphylococci, 203 from streptococcus, 217

Hemolysis, 165

Hemolytic serum, 166

for Wassermann test, 534 streptococci, 214, 215

acid reactions, 113 Hemophilic bacilli, 37, 389

Hemophilus, 127, 389 bronchisepticus, 393 influenzae, 390, 392, 762

antibodies, 395

biochemical reactions, 393

Hemophilus influenzae, cultural characters, 37, 88, 390 growth of, accessory substances,

> H. pertussis and, differentiation, 389

in colds, 756

in infections of respiratory tract,

in pneumonia, 236, 244 indol formation by, 393 media for culture of, 391 meningitis due to, 395

morphology, 390 organism resembling, choma, 756 in tra-

otitis media due to, 395

pathogenicity for animals, 394

for man, 395 satellite phenomenon, 391 secondary infections by, 396

pertussis, 389, 397, 400 agglutination of, 398

H. influenzae and, differentiation, 389

pathogenicity, 398 Hemoproteus, 610 Hemorrhagic septicemia, 374

Hemp, retting of, 716 Hepatotoxic serum, 166

Heredity as factor in leprosy, 484

in tuberculosis, 468 Herpes simplex, 643

tonsurans, 570 virus of, and virus of encephalitis, relationship, 628

zoster, 643

Herpetomonas, 591 Hides, anthrax-contaminated, 277,

Hill's method of testing disinfectants, 41

Hiltner and Störmer's test of soil

efficiency, 724 Hippocratic theory of disease, 137

Hirschfeld's bacillus, 328 Hiss' capsule stain, 54 serum-water, 35, 328 H-O variations, 134

Hodgkin's disease, 755

Endameba histolytica in, 576 Hoffmann and Schaudinn's staining method for Treponema pallidum, 529

Hofmann's bacillus, 304

Hofmeier and Braun's medium, Mayer's modification, 295

Hog cholera, 643

bacillus, 329, 330

Homeopathy, theory of, 137

Homogamic theory of bacteriophage action, 647

Hookworm infection, colon bacillus in, Horse, Salmonella infections of, 330 sickness, African, 643 swamp fever of, 643 Hospital fever, 654 Host, susceptibility of, 139 House filters for water, 738 fly, disease of, 208 Humoral theory of disease, 137 Hunger as factor in infection, 139 Hyacinths, yellow disease of, 748 Hydrogen fermentation of cellulose, 717 ion concentration, limits of, for bacteria, 113 of culture media, 30–32 indicators for determination of, 30, 31 method for cultivation of anaërobes, peroxide, production by bacteria, 85, 91 production by bacteria, 114 sulfuretted, production by bacteria, 110, 114 by Clostridium botulinum, 440 sporogenes, 432 welchii, 422 by tetanus bacilli, 407 Hydrophobia, 621, 624. See also Rabies. Hygienic Laboratory phenol coefficient, 42 Hypersensitiveness, 195 Hyphae of molds, 564, 566 of mycetoma, 555 Ice, bacteria in, 735 typhoid bacilli in, 348, 735 Immunity, 22, 148 acquired, 149, 152 active, 152 methods of production, 153-156 adsorption theory, 158 antitoxins and, 162 Ehrlich's conception of, 157 mechanism of, 157 natural, 149, 150, 171 individual differences in, 150 passive, 152 relation of anaphylaxis to, 199 to specific diseases or organisms. See subject in question. Immunological varieties, 132 Impetigo contagiosa, streptococci in, 226Inclusion bodies in filterable-virus diseases, 621 in smallpox, 623 Incubation period, anaphylaxis and, 199

India ink method of staining Treponema pallidum, 529 Indicator, Andrade's, 34 brom-cresol-purple, 34 Indicators for PH values of culture media, 30, 31 Indol as product of bacteria, 38, 114 Industries, bacteria in, 705 Infantile diarrhea, 672 bacteriology of, 673 dysentery bacillus in, 360 Proteus in, 498 paralysis, epidemic, 631. See also Poliomyelitis, acute. Infection, age and, 139 exposure to heat and cold and, 139 external defenses against, 144 factors affecting host, 139 microbe, 140 fatigue and, 139 focal, 218 hunger and, 139 local susceptibility and, 140 metastatic, 143 mixed, 143 number of bacteria and, 141 pneumococcus, 245 relation of anaphylaxis to, 199 routes of, 141 secondary, 143 thirst and, 139 through intestines, 146 lungs, 145 mucous membranes, 145 skin, 144 stomach, 145 transmission of, 146 virulence of bacteria and, 140 Infectious abortion of cattle, 367 of mares, 330 diseases, disinfection in, 100 of doubtful or unknown causation, 755 jaundice, 525 Inflammation of middle ear. See Otitis media. of pneumococcal origin, 245 suppurative, staphylococcus in, 206 streptococcus in, 218 Influenza, 761 agglutinins in, 764 bacillus of, 390, 762. See also Hemophilus influenzae. droplet infection in, 762 encephalitis following, 628, 629 filterable virus of, 764 green-producing streptococcus in, 763interepidemic, 761 mode of transmission, 762 Neisseria catarrhalis in, 763 pneumonia complicating, 761 precipitins in, 764

Influenza, specific organism of, 762 staphylococcus in, 763 Influenzal meningitis, 395 Infusion animals, 19 Infusionstierchen, 19 Infusoria, 19 Inoculation against tuberculosis, 472 animal, 47, 48 separation of bacterial species by, 45 soil, 695 tuberculous infection through, 463 Inoculation-smallpox, 623 Insects. See also Flies, Lice, Mosquitoes, Ticks. and undulant fever, 367 in transmission of Oroya fever, 499 of plant diseases, 741, 743, 746, 749, 752 of poliomyelitis, 633 of trypanosomes, 582 Instruments, sterilization of, 24, 26, 102Intermediary body, 179 Intestinal amebas, 573 cultivation of, 578 Barret-Smith method, 579 Boeck-Drbohlav method, 579 nonpathogenic, 578 anthrax, 279 auto-intoxication, 117 bacteria, beneficial or harmful?, comparative differential reactions of, 315 flagellates of man, 580 streptococci, 146, 220 Intestines, cysts of, 575, 580 infection through, 146 Intraperitoneal inoculation of animals, 48 Intra-uterine infection in tuberculosis, 469 Inulin-serum-water test, 238 Invertase, 558 Involution forms of bacteria, 64, 66 Iodameba williamsi, 577, 578 Iodine, therapeutic value, in actinomycosis, 553 in blastomycosis, 562 Ions, 95 Iris, syphilis of, 533 Iron bacteria, 108 Irons' cutaneous reaction in gonorrhea, 255 Isospora hominis, 616

Jail fever, 654
Jar, anaërobic, 47
Novy's, 46
Jaundice, infectious, 525
dissemination of, 526, 527
malignant, in dogs, 614

Jaw, lumpy, 551
Jenner's stain, Leishman's modification, 57
Jensen's classification of bacteria, 123
Jobling-Flexner serum, 267
Johne's disease, 474
Johnin test, 474

Kahn precipitation test in syphilis,
537-543
apparatus required, 537
control of, 542
interpretation of results, 543
procedure, 540
reagents employed in, 537
Kala-azar, 590, 592
Karyosome, 575
Kedrowski's method of cultivating
leprosy bacillus, 478
Kefir, 664

grains, 664 Klebsiella, 313, 322 Klebs-Löffler bacillus, 286. See also

Diphtheria bacillus.

Koch's bacillary emulsion, 474

method for obtaining pure cultures,
42

of testing disinfectants, 41 vibrio, 506 Koch-Weeks bacillus, 389, 396 Kolle's method of vaccination against Asiatic cholera, 511

Koumiss, 664

Lactic acid bacteria, 662
in bread-making, 714
in cheese, 685
fermentation in tanning, 706
of milk, 662, 678
Lactobacillus, 321
Lactose agar, preparation of, 34
Larynx, diphtheria of, 291
Lautenschläger hot-air sterilizer, 25

Law of mass-action, 119
Leaf-spot of broom-corn, 753
of cotton, 745
Leather-making, bacteria in, 705

Leavens, bacteria in, 714 Leech in transmission of trypanosomes, 582

Legumes, nitrogen-fixation by, 691 Leishman-Donovan bodies, 590 Leishmania braziliensis, 593 donovani 590 591

donovani, 590, 591 infantum, 593 tropica, 593 Leishmaniosis, 590

treatment, 592 Leishman's modification of Jenner's stain, 57

Leistungskern, 177 Leproma, 482 Leprosy, 477 anesthetic, 481 animal experiments, 480 bacillus, 131, 151, 474, 477 agglutination of, 480 animal experiments, 480 bacteriolysis of, 480 characteristics, 477 complement fixation by, 481 cultivation of, 477 diphtheroid forms, 479, 480 immunity reactions, 480 involution forms, 479 mode of transmission, 482 pathogenicity for man, 481 pigments of, 479 staining of, 478 types of, 481 germinal infection, 484 isolation of patients, 484 mode of transmission, 482 nerve, 482 nodular, 481 pathogenicity for man, 481 rat, 471 Leptospira, classification, 520, 521 icterohemorrhagiae, 525, 638 rats as carriers, 526, 527 water in spread of, 527 Leptothrix ochracea, 108, 110 Leptus akamushi, 653 Lethargic encephalitis, epidemic, 628 Leukocidin from staphylococci, 204, from streptococci, 217 Neisser-Wechsberg method for, 204 Leukocytes, action of, in phagocytosis, Leukocytosis, 175 Levaditi and Manouélian's staining method for Treponema pallidum, Levine's culture medium, 337 Lice in transmission of Bartonella infections, 499 of Rickettsiae 650, 659 of spirochetosis, 524 of trench fever, 661 of typhus fever, 655, 656 Light, effect on bacteria, 81 production by bacteria, 103 Lily, soft rot of, 753 Limberneck in fowls, 444 Limburger cheese, 683 Lime as disinfectant, 98, 101 Lipochromes, 106 Lipoids, antigenic properties, 149 Liver, foamy, 425 Living bacteria, microscopic examination, 49 236. See also Lobar pneumonia, Pneumonia, lobar.

Lobular pneumonia, micro-organisms in, 244 Localization, elective, 131 Lockjaw. See Tetanus. Locomotion, organs of, in bacteria, 68 Löffler's blood-serum mixture, preparation, 35 sterilization of, 27 methylene-blue stain, 51 serum, 290 stain for flagella, 54 Long's tuberculin reaction, 471 Lophotricha, 70 Luminous bacteria, 104 Lumpy jaw, 551 Lung-devastator, 764 Lungs, Aspergillus infection of, 568 infection through, 145 staphylococcus infection of, 206 Lupus, 473 Lyons vaccine, 436 Lysins, 163 Macfadyen's agglutination method in diagnosis of glanders, 491 Macrophages, 170 Madsen and Arrhenius' theory of toxin-antitoxin reaction, 158 Madura foot, 554 Madurella, 555 Mal de Caderas, 586 du coit, 587 Malaria, 594 bird, 601, 610 bovine, 611 crescent-shaped bodies in, 597. 599, 600 epidemiology of, 604, 606 historical, 601 kala-azar and, 590 mosquito in transmission of, 599, 603 Plasmochin treatment, 608 prophylaxis, 606 by drainage, 606 by exterminating host, 608 by screening, 609 medical, 606 quinine treatment, 606 dosages in, according to age, 607 quotidian, 598 types of, 596 Malarial parasites, 594 asexual forms, 595, 598, 600 development in mosquito, 602 differentiation of three forms, 600 estivo-autumnal, 598 flagellated forms, 599, 601 morphology, 596 quartan, 597 rosettes of, 595

Malarial parasites, sexual phase, 599, 600 tertian, 597 Malignant edema, bacillus of, 73, 419 in milk, 664 in soil, 723 jaundice in dogs, 614 pustule, 278 tumors, Coley's mixture in, 224 effect of erysipelas on, 224 relation of yeasts to, 563 Mallein test in glanders, 490 ophthalmic, 491 subcutaneous, 490 Malta fever, 365. See also Undulant fever. Maltase, 558 Mammalian tuberculosis, 456 Manouélian and Levaditi's staining method for Treponema pallidum, 529Mantle animals, 756 Mantoux tuberculin reaction, 471 Manure piles, 103 Marsh-gas fermentation of cellulose, production by bacteria, 114 Mass-action, law of, 96, 119 Mastigophora, 573 Mastitis, bovine, milk infection from, Mayer's modification of Braun and Hofmeier's medium, 295 Maze's theory of nitrogen-fixation, 694 Meal, bacteria in, 714 Measles, 758 convalescent serum in, 761 death rate in, 758 encephalitis following, 630 Ferry and Fisher's green-producing streptococcus in, 760 filterable virus in, 759 immunity in, 761 Pfeiffer's bacillus in, 396 skin tests in, 760 streptococci in, 219, 759 Tunnicliff's green-producing diplococcus in, 759 Meat poisoning, 116. See also Food poisoning. Meats, smoked, bacteria in, 709 tubercle bacillus in, 462 undulant fever from contact with, Mechanical agitation, effect on bacterial growth, 89 Media. See Culture media. Mediterranean fever, 365 Melioidosis, 492 Mellon's classification of diphtheroid bacilli, 305

infection Membranes, mucous, through, 145 undulating, of trypanosomes, 582 Membranous croup, 291 rhinitis, 291 Meningitis, epidemic, 259 age distribution, 265 course and diagnosis, 265 epidemiology, 262 fulminating cases, 265 mortality in, 265, 267 predisposing factors in military life, 263 prophylaxis, 263, 264 serum treatment, 266 influenzal, 395 pneumococcus, 245 Meningococcus, 258 absorption test, 188 agglutination of, 261, 266 amboceptors of, 266 carriers, 263 cultural characters, 260 curative antiserum, 266 fermentation reactions, 261 gonococcus and, relation, 257 immunity to, 266 isolation from nasopharynx, 261 morphology, 259 opsonins of, 266 pathogenicity for lower animals, 266 for man, 264 pneumococcus and, differentiation, 260portal of entry, 265 streptococcus and, differentiation, 260 types, 261 variations in virulence of, 264 Mercuric chloride as disinfectant, 97 Merozoites, 595 Metachromatic granules, 68 Metastatic infection, 143 Metchnikoff's phagocyte theory, 168 spirillum, 513 Methane fermentation of cellulose, 718Methyl red test for differentiation of Bact. aërogenes and Bact. coli, 321 Methylene-blue stain, Löffler's, 51 Mice in transmission of typhus fever, 656 pseudotuberculosis of, 307 Salmonella infections in, 323, 329 septicemia of, 556 Micrococcus, 127 lanceolatus, 236 tetragenus, 210 Microgametes, 602 Microgametocytes, 602 Microphages, 170 Microscopic examination of living bacteria, 49

Microsporon furfur, 570 Middle ear, inflammation of. See Otitis media. Midwifery, tetanus in, 410, 411 Migula's classification of bacteria, 124 Miliary tuberculosis, acute, 455 Military life, meningitis in, 263 Milk, acidophilus, 678 mechanism of effects produced by, 679 as culture medium, 34 Bacillus acidophilus in, 678 aerogenes in, 663 bulgaricus in, 678 caucasicus in, 665 cyanogenes in, 665 erythrogenes in, 665 of malignant edema in, 664 of symptomatic anthrax in, 664 prodigiosus in, 665 synxanthus in, 665 bacteria in, 669 methods of examination for, 666 number of, 667, 668 pathogenic, 670 sources of, 667 special classes of, 670 bacteriology of, 662 Bacterium coli in, 662 lactis aërogenes in, 662 bitter, 665 blue, 665 Brucella abortus in, 371, 672 butyric acid bacteria in, 664 certified, 674 condensed, 710 diseases of, 665 fermentation of, 662 alcoholic, 662, 664 butyric acid, 664 foot-and-mouth disease from, 630, from diseased cattle, 672 germicidal power of, 667 goats', as cause of undulant fever, infantile diarrhea from, 672 infection from anthrax, 671 from bovine actinomycosis, 671 enteritis, 671 from garget, 671 lactic acid bacteria in, 662, 678 molds in straw bedding affecting, 670 mother's, 672 pasteurization of, 674 objections to, 677 results in disease control, 676 temperature for, 675 vitamin destruction by, 677 pasteurized, grades of, 677 scurvy due to, 677 poliomyelitis from, 634

Milk, products of, bacteria in, 680 raw, as cause of undulant fever, 371 pathogenic bacteria in, 670 red, 665 Salmonella bacilli in, 671 septic sore throat due to, 228 slimy, 666 sour, bacteria in, 662 treatment with, 678 Spirillum cholerae in, 507 Staphylococcus aureus in, 662 Streptococcus lacticus in, 663 pyogenes in, 662 Torula amara in, 665 kefir in, 665 tubercle bacillus in, 461, 671 from droplet infection, 671 typhoid bacillus in, 349, 670 undulant fever from, 672 yellow, 665 Milk-borne diseases, 670, 675 Milzbrand, 270 Minnows for destruction of mosquito larvae, 609 Miracle bacteria, 105 Mite in transmission of Tsutsugamushi disease, 653 Mitochondria, 63 Mixed infections, 143 Moisture, effect on bacterial growth, Molding of bread, 715 Molds, 564 cellulose dissolving, 718 club-shaped growths of, 564 enzymes of, 567 gametophores of, 566 hyphae of, 564, 566 in air, 720, 721 in straw bedding affecting milk, 670 in tanning, 706 mycelium of, 564 nitrogen assimilation by, 690 pathogenicity for man, 568 for plants, 567 relation of Actinomyces to, 545 spore formation by, 566 zygospore of, 566 Molecular bombardment, 69 constitution of toxin, 118 Molluscum contagiosum, 643 Monilia, 558, 562 candida, 569 psilosis, 758 Monotricha, 70 Morax-Axenfeld diplobacillus, 389, 400 Morgan's bacillus, 315 Morphologic appearance of pure cultures, 59 classification of bacteria, 123, 124 Morphology of bacteria, 62

Morse's classification of diphtheroid bacilli, 305 Mosaic disease of plants, 643 of tobacco, 621 Moser's serum, 233 Mosquitoes, extermination of, to control malaria, 608, 609 in transmission of dengue, 641 of malaria, 599, 603 of yellow fever, 636, 637, 639 screening against, to control malaria, 609 wigglers, 607 Mother of vinegar, 711, 712 Motility of bacteria, 68, 122, 135 Mouth, amebas of, 580 Mucin production by Pseudomonas pyocyanea, 495 Mucor mucedo, 564, 565 mucilaginus, 565 Mucous membranes, infection through, 145 Mumps, 757 diplococcus of, 757 filterable virus of, 758 Mutations, 129, 130 Mycelium, 564 Mycetoma, 554 black variety, 555 hyphae of, 555 white variety, 555 Mycobacterium, 446 leprae, 131, 151, 474, 477. *Leprosy bacillus*. See also paratuberculosis, 474 smegmatis, 475 tuberculosis, 446. See also Tubercle bacillus. Mycoderma, 560 aceti, 712 Mycorrhiza, nitrogen-fixation by, 696 Mykol, 449 Myxobolus cyprini, 617 Myxosporidia, 616

Nagana, 585, 586 Naples cholera germ, 316 Nasal diphtheria, 291 Nasturtium, brown rot of, 743 Natural immunity, 149, 150, 171 individual differences in, 150 susceptibility, 149 Negative chemotaxis, 90, 171 Negri bodies in rabies, 625 method of examining for, 625 Neisseria, 127, 252 catarrhalis, 260, 268 in influenza, 763 fermentation reactions of group, 252flava, 261 gonorrheae, 252, 253. See also Gonococcus.

Neisseria meningitidis, 259. See also Meningococcus.pharyngis, 261, 269 Neisser's granule stain for diphtheria bacilli, 56 Neisser-Wechsberg method for leukocidin, 204 phenomenon, 180 Nematodes in relation to tobacco wilt, 744Nephrotoxic serum, 166 Nerve leprosy, 482 Nervous system, filterable viruses affecting, 628 Neufchâtel cheese, 682 Neutralization of toxins and antitoxins, 119 Newborn, gonorrheal ophthalmia of, 257 Nitragin, 695 Nitrate broth, 37 Nitrate-former, 700, 701, 702 Nitrates, reduction of, in bacteria, 37 Nitrifiable medium, 698 Nitrification by bacteria, 696 carbon dioxide in, 700 Winogradsky's solution for, 698 Nitrifying bacteria, 86, 696 in water analysis, 727 Nitrite-former, 698, 701, 702 Nitro-culture, 695 Nitrogen cycle, bacteria and, 688 hunger, 693, 695 production by bacteria, 114 Nitrogen-fixation, 688 by alders, 696 by legumes, 691 by mycorrhiza, 696 by nodule bacteria, 691 effect of potassium nitrate on, 693 practical application of principle, theories of, 693 Nitrogenous compounds, decomposition of, 114 Nitrosomonas, 698, 700, 701 culture of, 699 Nocardia, 545 Nocard-Preisz bacillus, 307 Nodule bacteria, host plants and, relation between, 692 nitrogen-fixation by, 691 formation by alders, 696 by legumes, 691 glanders, 488, 490 tubercular, 454 Noguchi's culture medium for Leptospira icterohemorrhagiae, 525 method for Borrelia obermeieri, 518 method of diagnosis in syphilis, 535 Noma, 525

Nomenclature, 19, 127

Nonprotein culture media, 36, 86 Nosema bombycis, 617 Novy's anaërobic jar, 46 bacillus, 426 method for culture of Trypanosoma lewisi, 585 Nucleic acid of tubercle bacillus, 122 Nyctotherus faba, 617 Obligate aërobes, 83 anaërobes, 83, 84 Oïdiomycosis, 562 Oïdium, 558, 562 albicans, 569 dermatitidis, 560 lactis in cheese, 684, 686 Oleate hemoglobin agar, 391 Olive-knot, 749 Omelianski's method of differentiating cellulose fermentation bacteria, 718 Oöcyst, 602 Oökinete, 602 Operations, surgical, disinfection for, 102 Ophthalmia, gonorrheal, 257 Ophthalmic test in glanders, 491 Opsonic index, 173 in diphtheria, 174 in mumps, 757 in pneumonia, 174 in scarlet fever, 174 in staphylococcus infections, 209 in tuberculosis, 473 method of treatment, 175 technic, 172 Opsonins, 171, 209, 281 constituents of, 174 Oriental sore, 593 Ornithodoros, 523 Oroya fever, 498 laboratory infection, 498 transmission of, 499 Oscillaria, 122 Osteomyelitis, bacteria of, 201 due to staphylococci, 206 following typhoid fever, 342 Osteosarcoma, 546 Otitis media, Pfeiffer's bacillus in, pneumococcus as cause, 245 streptococcus in, 219 Oxygen, absorption of, cultivation of anaërobes by, 46 and phosphorescence, 104 supply, effect on bacterial growth, Oysters, bacteria in, 733 typhoid bacillus in, 349 Ozena, 324 Ozone as disinfectant, 97 effect on bacteria, 89 for purification of water, 737

Panophthalmitis, hay bacillus in, 283 Papillae, 130 Pappataci fever, 640 differentiated from typhus, 640 flies, 640 Pappenheim's stain for pus, 52 Parabasal body, 582 Paradysentery bacilli, 187 Paraform for destruction of mosquitoes, 609 Paralysis, infantile, epidemic, 631. See also Poliomyelitis, acute. spinal, due to dysenteric infection, treatment, in rabies, 627 Parameningococcus, 261 Parasites, 87 malarial, 594 protozoan, Romanowsky stain for, Parasitic protozoa, 572 Paratuberculosis, bacillus of, 474 Paratyphoid bacilli, 325. See also Salmonella. fever, 326 prevalence compared with typhoid, 327 gastro-enteritis, 328 of shoats, 330 Paris green for destruction of mosquitoes, 609 Parmesan cheese, 684 Parotitis, 757 Parrot in transmission of psittacosis, 641, 642 Paschen's granules, 623 Passive immunity, 152 Pasteur treatment for rabies, 626 paralysis after, 627 Pasteur-Chamberland filter, 739 Pasteurella, 374 aviseptica, 374 boviseptica, 374 pestis, 375, 376 capsule, 377 cultural and biological characters, 377 involution forms, 377 modes of transmission, 378 morphology, 376 pathogenicity for lower animals, 382 for man, 381 protective inoculation, 383 stalactite formation, 378 pluriseptica, 375 pseudotuberculosis, 384 suiseptica, 374 tularensis, 375, 385-388 Pasteurization of cream, 682 of milk, 674 tubercle bacilli and, 453, 675, 676

Pasteurizing machines, 675, 676 Pathogenic bacteria, 138 Pathogenicity, 138 Pathologic material, study of, 59 Pathologists' warts, 463 Pathology, 21 Peach yellow, 644 Pear blight, 741 Pearl-disease of cattle, 456 Pébrine, 617 Pectin bodies, 716 Pectose fermentation, 716 Pectosinase, 716 Pellagra, 715 Penicillium, 564, 566 candidum, 683 glaucum, 684, 690 in air, 722 in moldy bread, 715 Peptone solution, Dunham's, 38 Peptonizing bacteria in cheese, 685 Perithecium, 566 Peritricha, 70 Peroxidase, production by dentrify-ing bacteria, 703 Pertussis, 397 vaccine treatment, 399 Pest, fowl, 643 Pestis minor, 382 Petri dishes, sterilization of, 26 Petroff's egg medium, 450 Petuning of tobacco, 708 Pfeifferella, 485 mallei, 485. See also Glanders bacillus. whitmori, 492 Pfeiffer's bacillus, 390, 762. See also Hemophilus influenzae. phenomenon, 165 in typhoid fever, 332, 353 P_H. See Hydrogen ion concentration. Phagocytes, 168 Phagocytosis, 168 in staphylococcus immunity, 209 of Bacillus anthracis, 281 of gonococcus, 254 of pneumococcus, 250 opsonins and, 171 Phenol as disinfectant, 98 coefficient of disinfectants, 42, 99 Phenomenon, Bordet-Gengou, See also Complement fixation. Neisser-Wechsberg, 180 Pfeiffer's, 165, 353 Schultz-Charlton blanching, 231 Theobald Smith, 195 Twort-D'Herelle, 645 Phlebotomus as carrier of leishmania, 592in transmission of oriental sore, 593 papatasii, 593 verrucarum, 499

Phlegmons, gaseous, 417, 421, 428 Phosphorescence, production by bacteria, 104 Photogenic bacteria, 104 Phthisis. See Tuberculosis. Phycomycetes, 564 Physical agents, effect upon bacteria, theory of anaphylaxis, 198 Physiologic classification of bacteria, salt solution for Kahn test, 540 Phytophthora infestans, 567 Phytotoxins, 120 Pigments of Pseudomonas pyoceanea, 493, 494 of Sporothrix, 571 of Staphylococcus aureus, 202, 203 production of, 75, 86, 105, 129 Pine oil disinfectant, 98 Pipets, sterilization of, 26 Piroplasmosis of cattle, 611, 612 of dogs, 614 Piroplasms, 611 Pityriasis, 570 Placental infection in tuberculosis, 469Plague, 374, 375, 381 bacillus of, 375. See also Pasteurella pestis. bubonic, 375, 376, 379, 381 bacteriophage treatment, 649 cattle, 153, 643 cutaneous, 382 glandular, 382 Haffkine's prophylactic, 384 tetanus from use of, 412 immunity in, 378, 383 laboratory infection, 381 pneumonia, 378, 381, 382 protective inoculation against, 383 swine, 154, 374 transmission of, 378 by fleas, 380 by rats, 379 by squirrels, 381 Yersin's serum in, 384 Plants, bacterial diseases of, 741 insects in transmission of, 741, 743, 746, 749, 752 mode of entrance and spread, 752crown-gall of, 751 fungous diseases of, 567 mosaic disease of, 643 Plasmochin treatment of malaria, 608 Plasmodium falciparum, 597, 598 crescent form, 597 malariae, 597 of birds, 610 vivax, 597 Plasmodroma, 573

Plate cultures, technic of making, 44 Platinum black, oxidation of alcohol by, 711 Pleuropneumonia of cattle, 63, 619, 643 septic, 374 Plugs, cotton, 24, 25 Pneumobacillus, Friedländer's, 322 Pneumococcus, 86, 193, 194, 197, 236, 392agglutination of, 239, 247, 249 attenuation of, 154 bile solubility test for, 238 biological characters, 238 capsules, 237, 249 carriers, 242, 243, 246 colony type, reversion of, 133 conjunctivitis due to, 245 cultural characters, 238 distribution, 241 enteritis due to, 245 fixed types, 240 Fränkel's, 236 Hiss's inulin-serum-water test for determining, 238 immunity to, 250 in colds, 246, 756 in influenza, 763 in lobar pneumonia, occurrence of types, 240 in typhoid fever, 342 infections, 245 inflammatory conditions due to, 245 meningitis, 245 meningococcus and, differentiation, 260 morphology, 237 mucosus, 238 on mucous membrane, 145 pathogenicity for lower animals, 246 for man, 243 phagocytosis of, 250 precipitins, 247, 249 rough and smooth variants, 241 secondary infection by, 144 septicemia, 243 serological types, 132 serum therapy, 250 streptococcus and, differentiation, 213, 238relation, 241 temperature range, 239 toxin production, 247, 248 Type III, 238 Streptococcus mucosus and, differentiation, 240 types, 239 change in, 241 differentiation by immunity reactions, 239, 249 mortality in relation to, 248 virulence of, 141, 247 Pneumo-enteritis, 374

Pneumonia, 142, 236 Actinobacillus actinoides in, 556 in influenza, 761 lobar, atypical cases, 244 contact transmission of, 243, 246 crisis, 250 epidemiology, 242 Friedlander's bacillus in, 236, 322 local versus general reaction in, micro-organisms associated with, Pfeiffer's bacillus in, 397 pneumococco-opsonic index in, pneumococcus types in, 240 predisposing factors, 242, 243, 245 serum therapy, 250 theory of causation, 244 vaccination against, 251 lobular, micro-organisms in, 244 plague, 378, 381, 382 staphylococcus, 206 types, 236 Pocket inoculations of animals, 48 Poisoning, food, 116, 437 bacteria of, 328 Proteus in, 498 staphylococci in, 204, 206, 207 forage, 444 meat, 116 "ptomaine," 116, 438 Poisonous products of bacteria, 116 Polar granules, 68 Pole-burn in tobacco, 707 Poliomyelitis, acute, 631 carriers, 633, 634 epidemiology, 633 globoid bodies of, 632 immunity to, 635 mode of transmission, 633 pathogenicity, 635 specific micro-organism of, 631 streptococcus in, 632 Polysaccharides, bacterial, 66, 193, 194, 197, 323 Ponder's stain for diphtheria bacilli, 57 Porcine strain of Brucella melitensis, 370, 371, 372 Positive chemotaxis, 90 Postfission movements in diphtheria bacillus, 288 Postvaccinal encephalitis, 630 tetanus, 412, 413 Potassium permanganate as disinfectant, 97 Potato bacillus, 284, 708, 715 basal stem-rot of, 744 brown rot of, 743 culture medium, 35 scab, 551

Potato-rot, 567 Protozoa, rate of multiplication, 71 staining, 55 Potentiometer, 30 Pox disease of carp, 617 theory of soil fertility, 725 fowl, 624 Pseudodiphtheria bacillus, 288 sheep, 643 carriers of, 304, 306 diphtheria bacillus and, interrela-Precipitation, mechanism of, 192 test, 190 tion, 305, 306 for human blood, 190 Pseudomembranous angina, 524 Precipitinogen, 191 Pseudomonas fluorescens, denitrification by, 703 liquefaciens, 494 Precipitins, 189, 199 gonococcus, 257 pyocyanea, 75, 105, 106, 156, 493, influenza, 764 pneumococcus, 247, 249 690, 735 tubercle bacillus, 473 alkali production by, 113 Preisz-Nocard bacillus, 307 cultural characters, 493 Preservation of foods, 709 denitrification by, 703 by canning, 711 enzymes of, 494 by drying, 709 immunity to, 495 by refrigeration, 710 in drinking water, 495 by smoking, 709 in suppuration, 495 chemical, 709 indol production by, 494 Pressure, atmospheric, effect on bacmorphology, 493 terial growth, 88 mucin production by, 495 filters, 44, 738 pathogenicity, 495 Prior and Finkler, spirillum of, 514 pigment formation, 493, 494 Privy vaults, disinfection of, 98 products of growth, 494 toxin of, 120, 495 typhoid bacilli in, 339 Pro-agglutinoid zone, 193 Pseudo-mucin, 495 Products of bacterial growth, 103 Pseudotuberculosis, 307, 556 Proskauer and Beck's medium, 451 due to Pasteurella, 384 Proskauer-Voges reaction, 321 Psittacosis, 641 Prosodemic, 346 bacillus of, 331 Protein, antigenic properties, 149 laboratory infections, 642 "Ptomaine" poisoning, 116, 438 decomposition, bacteria in, 696, 697 sensitization, 195 Ptomaines, 116 split products, 120 Puerperal sepsis due to streptococcus, Proteolytic theory of anaphylaxis, 198 Proteus, 129, 134, 496 due to tetanus bacillus, 410, 411 in diarrhea, 498 Pulmonary anthrax, 279 in food poisoning, 498 Pure cultures, methods of obtaining. in soil and water, 496, 723 in suppuration, 497 study of, 59 in tanning process, 705 Purification of water, 736 in tobacco-curing, 707 Puring, 706 in typhus fever, 657, 658 Purple sulfur bacteria, 111 in war wounds, 497 Pus, Pappenheim's stain for, 52 in water, 735 study of, 50, 59 in Weil-Felix reaction, 498 Pustule, malignant, 278 mirabilis, 66, 496 Putrefaction, 19, 103 pathogenicity, 497 bacterium of, 496 toxin of, 498 saccharobutyric, 424 vulgaris, 496 Putrefactive products of bacteria, 114 X19,657zenkeri, 496 Protobios bacteriophagus, 646 Pyemia, 143 Pyocyanase, 494 Prototoxins, 119 Pyocyaneus antitoxin, 157 Prototoxoids, 119 Pyocyanic infection, 495 Protozoa, 516, 562 Pyocyanine, 494 classification, 573 Pyocyanolysin, 494 filterable viruses as, 621 Pyorrhea alveolaris, 580 in trachoma, 756 Pyrogallic acid method for cultivating Negri bodies as, 626 parasitic, 572 anaërobes, 46

Quartan fever, 600 malarial parasite, 597 Quarter evil, 434 Quinine treatment of malaria, 606 dosages in, according to age, 607 Quotidian malaria, 598 Rabbit septicemia, 374 bacillus of, 375 Rabbits, coccidium infection in, 616 Rabies, 621, 624 control of, by muzzling dogs, 627 Negri bodies in, 625 method of examining for, 625 Pasteur treatment, 626 paralysis after, 627 virus of, 624 attenuation of, 154, 627 Radiobacter, 689 Rat-bite fever, 527 salvarsan in, 528 Rat leprosy, 481 Rats, Bartonella infections in, 499 in transmission of plague, 379 of typhus fever, 656 Leptospira icterohemorrhagiae in, 526, 527 Salmonella infections in, 325, 329 trypanosomes in, 582, 583 Ray-fungus, 545 Reaction. See *Test*. Receptor theory, Ehrlich's, 176, 182
Receptors, first, second, and third
orders, 179
free, 177, 178
Red wills 265 Red milk, 665 sulfur bacteria, 111 yeast, 722 Reddish method for disinfectants, 42, Reducing power of bacteria, 37 Refrigeration of foods, 710 Rejuvenation of cultures, 60 Relapsing fever, 517 cause of the relapses, 522 immunity to, 522 mode of transmission, 523 rat-bite fever and, 528 spirochetes of, 517. See al Spirochetes of relapsing fever. See also trench fever and, 660 Remlinger's treatment of rabies, 627 Rémy's test of soil efficiency, 724 Residue antigens, 193 Resistance of body to disease, 148 of tubercle bacillus, 452 Respiration of bacteria, 84, 85 Respiratory tract as avenue of infection in tuberculosis, 459 Retrograde variety, 129 Retting of flax and hemp, 716 Rheumatic fever, streptococcus in, 221

Rheumatism, Clostridium welchii in, 421 gonorrheal, 257 Rhinitis, membranous, 291 Rhinoscleroma, 324 Rhipicephalus, 614 Rhizobium radicicola, 692 Rhizopoda, 573 Rhizopus in moldy bread, 715 Rhodesian fever, 613 sleeping sickness, 587 Rhodobacteriaceae, 111 Rice-water stools, 506 Ricin, 120, 155 Rickettsia, 650 of heartwater disease, 661 of Rocky Mountain spotted fever, of trench fever, 660 of Tsutsugamushi disease, 653 of typhus fever, 654 pediculi, 661 prowazeki, 659, 660 rumantium, 661 staining of, 660 Rideal-Walker test for disinfectants, 42, 99 Rinderpest, 643 Rinderseuche, 374 Ringworm, 570 Robin, 120 Rocky Mountain spotted fever, 650 carriers, 650 distribution of, 651 immunity in, 652 laboratory infections, 652 Romanowsky's stain, 55 Wright's modification, 376 Röntgen rays, effect on bacteria, 82 Rooms, disinfection of 93, 101, 102 Roquefort cheese, 683 Rose spots in typhoid fever, 200, 344 Rosettes of Actinomyces, 546, 547, 552 of malarial parasite, 595 of Trypanosoma lewisi, 583 Rot, black, of cabbage and allied plants, 745 brown, of potato, egg plant, and tomato, 743 soft, of calla lily, 753 of carrots, 753 stem, of potato, 744 Rough and smooth colonies, 76, 274 changes in type, 132, 133 Roup, 303, 624 Rubber gloves, sterilization of, 102 stoppers, sterilization of, 26 Rupp and Ayers' culture medium, 36 Russell's culture medium, 337 method of vaccination against typhoid fever, 358 Rutabagas, black rot of, 745

Saccharobutyric putrefaction, 424 Scarlet fever, opsonic index in, 174 Saccharomyces, 557 Salmonella, 325 abortivo-equinus, 330 abortus equi, 330 acid production by, 113 aertrycke, 328, 330, 331, 642 agglutination of, 183 bacilli, 358 in butter and cheese, 687 in milk, 671 cholerae-suis, 329 alkali production by, 113 529comparative differential reactions of important species, 315, 326 distribution, 331 enteritidis, 187, 325, 326, 329, 330 Bacterium coli, Eberthella typhi and, differentiation, 314, 335 food poisoning strains and slow fever strains, 330 gallinarum, 331 hirschfeldii, 328 infections of animals, 330 miscellaneous strains, 330 paratyphi, 327 carriers, 352 pullorum, 331 sanguinarium, 331 schottmülleri, 328, 330 carriers, 352 reversion of colony type, 133 suipestifer, 329 Salt for preservation of foods, 709, 710 solution for Kahn test, 540 Salvarsan in rat-bite fever, 528 Sand filters, 736 flies in transmission of leishmaniosis, 592of oriental sore, 593 of pappataci fever, 640 Saprophytes, 87 Saprospira, classification, 520, 521 Sarcina, 70, 127 aurantiaca, 105 lutea, 105 rabbit, 374 in air, 722 Sarcocystis, 573 Sarcoma, chicken, 643 Sarcosporidia, 617 Satellite phenomenon in culture of Serratia, 106 Hemophilus influenzae, 391 Sauerkraut, fermentation of, 713 Scab, potato, 551 Scarlet fever, 229 antitoxin, 231, 233 carriers, 232 curative serum, 233 death rate from, 758 Dicks' test, 200, 231 isolation for, 232 199 milk as cause, 670, 675

prophylactic inoculation, 234 rash in, 232 Schultz-Charlton blanching phenomenon in, 231 streptococci in, 219, 221 terminal disinfection, 95 toxins, 231 standardization of, 234 without exanthem, 233 Schaudinn and Hoffmann's staining method for Treponema pallidum, Schering system of formaldehyde disinfection, 94 Schick reaction, 285, 309 pseudo-reaction in, 309 Schizomycetes, 123 suggested classification, 126 Schizosaccharomyces octosporus, 557 Schmitz's bacillus, 360 School attendance, diphtheria and, 301, 302, 308 Schultz-Charlton blanching nomenon in scarlet fever, 231 Schumann rays, effect on bacteria, 82 Schweineseuche, 374 Sclavo's serum, 282 Screening against mosquitoes to control malaria, 609 Scurvy, pasteurized milk and, 677 Secondary colonies, 130 infection, 143 Secretions of bacteria, 105 Semple's treatment of rabies, 627 Sensitization, protein, 195 Sensitizing substance of Bordet, 167 Sepsis, puerperal, due to streptococ-cus, 220 Septic pleuropneumonia, 374 sore throat, 227 milk as cause, 670, 675 Septicemia, 143 hemorrhagic, 374 mouse, 556 pneumococcus, 243 bacillus of, 375 sputum, 246 streptococcic, 223 Serological types, 132 Serum, agglutinating and bactericidal power, relation between, 189 antibacterial and antitoxic, differences between, 167 antipneumococcus, 168 bactericidal, 165, 166 cytolytic, 166 Dicks', 233 disease, relation of anaphylaxis to, Dochez's, 233

Serum, Eichhorn's, 282 Flexner-Jobling, 267 hemolytic, 166 for Wassermann test, 534 hepatotoxic, 166 Löffler's, 290 lytic action, 165 Moser's, 233 nephrotoxic, 166 prophylaxis in diphtheria, 308 Sclavo's, 282 sickness, 298, 299 anaphylaxis and, 199 treatment of anthrax, 282 of dysentery, 363 of epidemic meningitis, 266 of erysipelas, 225 of pneumonia, 250 of scarlet fever, 233 of tuberculosis, 471 of typhoid fever, 356 of typhus fever, 657 tetanus following, 412 Yersin's, 384 Serum-water, Hiss', 35, 238 Sewage, bacteria in, 728, 729, 735 test for, 732 bacteriophage in, 648 Bacterium cloacae in, 322 dysentery amebas in, 577 tubercle bacillus in, 452 typhoid bacilli in, 339 vibrios in, 512 Sewage-contaminated soils, 723 Shaving brushes, anthrax from, 278 Sheep pox, 643 Shellfish, Bacterium coli in, 733 typhoid bacilli in, 349 Shiga's bacillus, 359, 360, 362 Shigella, 332 Shingles, 643 Shoats, paratyphoid of, 330 Shock, anaphylactic, 197 Side-chain theory of Ehrlich, 176 Silage, bacteria in, 718 Silkworms, disease of, due to filterable virus, 643 pébrine in, 617 Silver precipitation method for Treponema pallidum, 529 Size of bacteria, 62 Skin diseases caused by fungi, 570 infections through, 144 penetration of, by staphylococcus, 144, 205by streptococcus, 144 reactions, anaphylaxis and, 199 in diphtheria. See Schick reaction. in typhoid, 353 in undulant fever, 366 scarlet fever streptococci. See Dick test.

Skin, sterilization of, 102 test for gonorrhea, 255 tuberculosis, 473 Sleeping sickness, 587, 628 Congo, 588 Rhodesian, 587 treatment, 589 trypanosome of, 587, 588 Slides, cleaning of, 50 Smallpox, 147, 622 and cowpox, relation between, 623 Asian and African types, 622 immunity to, 152 inclusion bodies in, 623 Paschen's granules in, 623 streptococcus in, 221, 624 vaccination against, 154, 622, 624 encephalitis following, 630 tetanus following, 412 Smegma bacillus, 475, 479, 481 Smith and Barret's method for cultivating ameba, 579 Smith's fermentation tube, 38, 39 method for dextrose-free broth, 32 phenomenon of anaphylaxis, 195 Smoked meats, bacteria in, 709 Smoking as means of preserving foods, Smooth and rough colonies, 76, 274 changes in type, 132, 133 Snake venom, 121 Sobernheim's method of vaccination against anthrax, 282 Society of American Bacteriologists, classification of bacteria, 124 standard methods and characteristics of cultures, facing p. 60 Sodium citrate medium for differentia-tion of Bact. coli and Bact. aërogenes, 322 Soil, Actinomyces in, 551 anthrax bacillus in, 723 bacteria in, 110, 722 immunity and, 693 nitrogen-fixation by, 688, 702 pathogenic, 723 persistence in canned foods, 711 quantitative estimation, 724 virulence of, 692, 695 Bacterium coli in, 724 Clostridium botulinum in, 440 edematis in, 723 tetani in, 403, 723 denitrification, 702, 704 efficiency of, Hiltner and Störmer's test, 724 Rémy's test, 724 fertility, protozoa theory of, 725 hay bacillus in, 723 inoculation, 695 leprosy bacillus in, 483 manured, bacteria in, 722, 723

Soil, Proteus in, 496, 723 Spirillum phosphorescens, 512, 515 sewage-contaminated, bacteria in, rubrum, 106 723 tyrogenum, 514 sterilization of, 725 Spirochetes, 516 typhoid bacillus in, 339, 723 classification, 520, 521 Soil-climate, 690 of infectious jaundice, 525 Soluble substances, specific, 193 of rat-bite fever, 527 toxins, 117 of relapsing fever, 517 Somatic agglutinogen, 135 allied varieties, 522 Sonne's bacillus, 133, 360 characteristics, 518 Sore, oriental, 593 immunity to, 522 throat, diphtheria bacillus in, 306 Noguchi's culture method, 518 septic, 227 pathogenicity, 519 milk as cause, 670, 675 relationship and nomenclature, streptococcus, 227 518 Sour dough, 714 of syphilis, 528 milk therapy, 678 of tick fever, 522 Souring of milk, 662 of Vincent's angina, 524 Specific soluble substances, 193 of yaws, 543 Spectrum of tungsten are, 83 Spirochetosis, mode of transmission, solar, effect upon assimilation, 91 523Spiral organisms, classification, 520, Spironema anserinum, 523 carteri, 523 Spirilla, pathogenic, 500 duttoni, 523 Spirillum, 516 gallinarum, 523, 524 cholerae, 65, 66, 86, 88, 142, 164, kochi, 523 165, 500 muris, 528 novyi, 523 agglutination test, 504, 506 allied varieties, 512 recurrentis, 518 amboceptor of, 512 theileri, 523 Bacterium coli and, differentiavincenti, 524 tion, 501 Spirophyllum ferrugineum, 109 Splenic fever, 270. See also Anthrax. behavior toward gentian-violet, 58 Splenomegaly, tropical, 590 Spontaneous agglutination, 134, 185 carriers, 504 cholera-red reaction, 502 combustion, production by bacteria, complement of, 512 103 cultural characters, 501 generation, 19, 24, 720 examination of feces for, 503 Sporangium, 564 flagellum of, 500 Spore-forming anaërobes, 402 in butter and cheese, 687 Spores, 28, 41 effect of pressure on, 88 in milk, 507 in water supply, 507, 729 formation of, 72 indol production by, 502 Möller's stain for, 53 involution forms, 500 of anthrax bacillus, 72, 73, 83, 92, laboratory infections, 505 96, 272 modes of dissemination, 506 of Clostridium botulinum, 439 chauvei, 434 morphology, 500 pathogenicity for man, 505 histolyticum, 429 resistance, 502 novyi, 427 Spirillum metchnikovii and, difsporogenes, 432 ferentiation, 513 tetani, 405 temperature relations, 79 welchii, 422 toxins of, 119, 509, 510 of Cnidosporidia, 573 danubicum, 512 of molds, 566 Deneke's, 514 of soil bacteria in canned foods, 711 desulfuricans, 110 Ghinda, 512, 513 of vibrion septique, 419 of yeasts, 557 Massauah, 512, 513, 514 temperature relations, 79 metchnikovii, 164, 510, 513 Sporoblasts, 603 Spirillum cholera and, differentia-Sporothrix, 570 tion, 513 budding of, 571 of Finkler and Prior, 514 pigment production, 571

Sporothrix schenckii-beurmanni, 571 Sporotrichosis, 570 Sporozoa, 573 Sporozoites, 603 Sports, 129 Spotted fever, 259 Rocky Mountain, 650 Sprue, 758 Sputum, disinfection of, 95, 101 septicemia, 246 tuberculous, 459, 460 examination of, 448 typhoid bacilli in, 344 Squirrels in transmission of plague, tularemia and, 385 Stained bacteria, examination of, 50 Staining, 50 acid-fast bacilli, 52 capsules, 53 diphtheria bacilli, 56, 286, 287, 289 flagella, 54, 55 glanders bacillus, 486 Gram's method, 51 Burke's modification, 51 granules, 56 leprosy bacillus, 478 preparation of film, 50 protozoa, 55 pus preparations, 52 Rickettsia, 660 spores, Möller's method, 53 staphylococcus, 202 Treponema pallidum, 529 tubercle bacillus, 52, 448 Ziehl-Neelsen method, 53, 449 Stains, 50 aniline-gentian-violet, 51 carbolic gentian-violet, 51 Epstein's, for diphtheria bacilli, 56 Giemsa's, 58 van Gieson's modification, 625 Gram's, 51 Hiss's, for capsules, 54 Jenner's, Leishman's modification, 57 Löffler's, for flagella, 54 methylene blue, 51 Neisser's, for diphtheria bacilli, 56 Pappenheim's, for pus, 52 Ponder's, for diphtheria bacilli, 57 Romanowsky's, 55 Wright's modification, 376 Sterling's gentian-violet, 52 van Ermengem's, for flagella, 55 Welch's, for capsules, 53 Wright's, 57 Ziehl-Neelsen carbol-fuchsin, 53 Stalactite formation of Pasteurella pestis cultures, 378 Staphylococcus, 70, 127, 201 albus, 201, 208

Staphylococcus aureus, 83, 105, 108, 201, 208enzyme production by, 203 in milk, 662 in Pfeiffer bacillus culture, 390 in pneumonia, 236 pigment of, 202, 203 bacteriophage of, 645 bovis, 207 citreus, 208 haemorrhagicus, 207 hemolysin, 203 immunity to, 208 phagocytosis in, 209 in diphtheria, 303 in endocarditis, 205 in food poisoning, 204, 206, 207 in influenza, 763 in lobular pneumonia, 244 in suppurative inflammation, 201, infection, bacteriophage treatment. of lung, 206 leukocidin, 204, 209 morphology of, 202 muscae, 208 on mucous membrane, 145 osteomyelitis due to, 206 pathogenicity for animals, 207 for man, 204 penetration of skin by, 144, 205 physiologic requirements, 202 pneumonia, 206 products of growth, 203 pyogenes albus, 201 aureus, 201 bovis, 207 citreus, 208 staining of, 202 vaccine, 209 varieties, 208 Staphylolysin, 203 Starters in buttermaking, 681 Steam sterilizer, Arnold's, 28 Stegomyia calopus, 637 Stem blight of alfalfa, 747 rot of potato, 744 Sterilization, autoclave, 26 by filtration, 42 discontinuous, 27 of culture media, 26, 27 of glassware, 24 of instruments, 24, 26, 102 of rubber gloves, 102 stoppers and tubing, 26 of skin, 102 of soil, 725 of water, 97 Sterilizer, Arnold's steam, 28 Lautenschläger's hot-air, 25 Sterling's gentian-violet stain, 52

Sternberg's bulb for testing thermal death-point, 40, 41 Stilton cheese, 683, 684 Stomach, infection through, 145 Stomatitis, gangrenous, 525 ulceromembranous, 524 Stools, rice-water, 506 Stoppers, sterilization of, 26 Störmer and Hiltner's test of soil efficiency, 724 Straw, nitrogen assimilation and, 690 Streptococcic septicemia, 223 Streptococcus, 70, 127, 164, 211 bile solubility, 214, 222 blood-agar plate method, 214, 216 brevis, 212 classification, 214 conglomeratus, 213 cultural characters, 211 effect of pasteurizing temperature on, 677 elective localization, 131 epidemicus, 228 erysipelatis, 223 fecalis, 216 Ferry and Fisher's green-producing, in measles, 760 green-producing, 213, 214, 216 Blake's classification, 216 in encephalitis, 629 in influenza, 763 hemolysin, 217 hemolytic, 214, 215 acid reactions, 113 hemolyticus, 214, 392 hollandicus in cheese, 685 in angina, 219 in arthritis deformans, 222 in bronchopneumonia, 223 in chronic arthritis, 222 in colds, 756 in diphtheria, 219, 303 in enteritis, 220 in epidemic lethargic encephalitis, 629 in focal infection, 218 in impetigo contagiosa, 226 in influenza, 763 in lobular pneumonia, 244 in measles, 219, 759 in otitis media, 219 in poliomyelitis, 632 in puerperal sepsis, 220 in pulmonary tuberculosis, 221 in rheumatic fever, 221 in scarlet fever, 219, 229 in smallpox, 221, 624 in suppurative inflammation, 211, 218 in tuberculosis, 221 in ulcerative endocarditis, 218 in water, 735 indifferent strains, 216

Streptococcus infection, effect on tumors, 156, 224 intestinal, 146, 220 lacticus in cream, 681 in milk, 663 leukocidin, 217 long and short chains, 212 longus, 212 meningococcus and, differentiation, morphologic characters, 211 mucosus in pneumonia, 236 Type III pneumococcus and, differentiation, 240 on mucous membrane, 145 pathogenicity for lower animals, 226 for man, 217 penetration of skin by, 144 pneumococcus and, differentiation, 213, 238, 241 pyogenes in infantile diarrhea, 673 in milk, 662 in pneumonia, 236 saprophytic, 212 scarlatinae, 229, 231 secondary infection by, 144 sore throat, 227 susceptibility to, 140 toxin production, 217 viridans, 214, 216 virulence of, 141, 217 Streptolysin, 217 Streptothrix, 545 Structure of bacteria, 62, 64 Strychnine, fatal dose, 118 Study of bacteria, methods, 24 Subcutaneous inoculation of animals, Sugar-cane, gum disease of, 753 Sugar-free broth, Clostridium welchii in preparation of, 424 Sugars, fermentation of, 113 preservation of food by, 709 Sulfur as disinfectant, 93 bacteria, 110 physiology of, 112 red or purple, 111 fumigation, 93 Sulfuretted hydrogen as disintegration product, 110 as product of Clostridium botulinum, 440 sporogenes, 432 welchii, 432 of protein decomposition, 697 of tetanus bacilli, 407 Summer diarrhea, 672 Sunlight, bactericidal action, 81, 99 Suppuration, 140, 143, 206 Actinomyces in, 546, 552 Proteus in, 497 Pseudomonas pyocyanea in, 495 staphylococcus in, 201, 206

Suppuration, streptococcus in, 211, Surgical operations, disinfection for, 102 Surra, 586 Susceptibility, local, and infection, 140 natural, 149 Swamp fever of horses, 643 Swarming stage of nitrifying bacteria, 699, 700 Swimming pools, purification of, 738 Swine, Brucella infections in, 370, 372 erysipelas bacilli in pickled pork, 709 plague, 154, 374 Salmonella infections in, 329 tuberculosis, 458 Swiss cheese, 684 Symbiosis, 689, 690, 692 Symptomatic anthrax, 434. See also Blackleg. Synthetic culture media, 36 Syphilis, 528 complement fixation test, 533 Kahn precipitation test, 537-543 apparatus required, 537 control of, 542 interpretation of results, 543 procedure, 540 reagents employed in, 537 micro-organism of, 528. See also Treponema pallidum. Noguchi's method of diagnosis, 535 of iris and cornea, 533 Wassermann reaction, 182, 533 control of, 536 substances employed in, 534 Syringes, sterilization of, 102 Taka diastase, 567 Tanning, bacteria in, 705 Tartar, ameba in, 580 Temperaments, doctrine of, 137 Temperature, adaptation to, 131 effect on bacteria, 78, 90 on bacteriolytic sera, 167 on spores, 440, 441 for agglutination, 185 for pasteurization, 675, 676 virulence and, 141 Terminal disinfection, value of, 95 Tertian fever, 600 malarial parasite, 597 Test, absorption, of Castellani, 188 agglutination, 183 bile solubility, for pneumococcus, 238 biochemical, 37 Calmette's tuberculin, 471 Castellani's absorption, 188 complement fixation, in amebiasis,

579

in syphilis, 533

Test, Dicks', in scarlet fever, 231 for efficiency of germicides, 272 Gruber-Widal, 183, 354 Hiltner and Störmer's, of soil efficiency, 724 Hiss's serum-water, 238 Irons', in gonorrhea, 255 johnin, 474 Kahn's precipitation, 537-543 Long's tuberculin, 471 mallein, in glanders, 490 Mantoux's tuberculin, 471 ophthalmic, in glanders, 491 Pfeiffer's, 353 precipitation, 190 for human blood, 190 Reddish, for disinfectants, 99 Rémy's, of soil efficiency, 724 Rideal-Walker, for disinfectants, 42, 99 Schick's, 285, 309 tuberculin, 200, 455, 470, 471 von Pirquet's tuberculin, 471 Wassermann, in syphilis, 533 Weil-Felix, in typhus fever, 657 Test-tubes, sterilization of, 25 Tetanolysin, 410 Tetanospasmin, 410 Tetanus, 142, 150, 403 agglutinins, 413 antitoxin, 157, 413 curative value, 415 disappearance from blood, 162 mode of action, 414 prophylactic value, 414 reduction of war fatalities by, 411 standardized, 414 therapy, 415, 416 bacillus of, 403. See also Clostridium tetani. carriers, 404 feeding experiments, 413 following Fourth of July celebrations, 411, 415 hemostatic injection of gelatin, 410, 412 serum therapy, 412 vaccination, 412, 413 immunity to, 413 in lower animals, 413 in man, 410 in midwifery, 410, 411 mixed infection, 144 neonatorum, 411 occurrence of, 410 toxin, 146, 157, 177, 407, 413 fatal dose, 118 trench foot and, 411 war incidence of, 411 Texas fever, 611, 612 cattle tick in dissemination of, 612 Theileria, 611 hirci, 611

Treponema pallidum, distribution in Theileria parva, 611, 613 Theobald Smith phenomenon, 195 body, 531 flagellum of, 530 Theories of disease, 136 Thermal death-point of bacteria, 40, morphology, 530 pathogenicity for lower animals, of botulinum spores, 440, 441 532 staining, 529 Thermogenic bacteria, 103 India ink method, 529 Thiophysa, 111 and Hoffmann's Thiothrix, 111 Schaudinn Thirst as factor in infection, 139 method, 529 silver precipitation method, 529 Three-day fever, 640 pertenue, 543 Throat cultures in diphtheria, 307 vincenti, 524 sore, diphtheria bacillus in, 306 xanthogenes, 639 septic, 227, 670, 675 Triatoma megista, 590 streptococcus, 227 Tricercomonas intestinalis, 580, 581 Thrush, 569 Trichomonas hominis, 580, 581 Tick fever, 522, 611 Ticks, cattle, in Texas fever, 612 Trichophyton, 570 Tricresol, 98 in transmission of heartwater dis-Trillat system of formaldehyde disease, 661 infection, 94 of Rocky Mountain spotted Tropical splenomegaly, 590 fever, 650 ulcer, 593 of spirochetosis, 523 Tropins, 171 Tinea versicolor, 570 Tobacco, curing of, 707 Granville wilt of, 744 mosaic disease of, 621, 643 Trypan-blue injections in piroplasmosis in cattle, 611 Trypanosoma, 573, 585 brucei, 586, 587 petuning of, 708 pole-burn in, 707 cruzi, 590, 591 equinum, 586 Tomato, brown rot of, 743 equiperdum, 587 Tongue, wooden, 551 evansi, 586 Torula, 557 gambiense, 587, 588 lewisi, 582, 584 amara in milk, 665 in air, 721 characteristics, 582 kefir, 665 Novy's method of cultivating, 585 in milk, 665 parabasal body of, 582 Toxemia, 142 reproduction of, 583 immunization in Toxin-antitoxin rosettes of, 583 diphtheria, 311 undulating membrane of, 582 in scarlet fever, 234 rhodesiense, 587 reaction, 157 Trypanosomes, 581 Toxins, 116, 117, 177 carriers of, 582 extracellular, 119 of sleeping sickness, 587 heat resistance of, 157 rat, 582, 583 molecular constitution of, 118 Trypanosomiasis, 586, 587 neutralization, 119 treatment, 589 soluble, 117 Tsetse-fly, 589 disease, 582, 586 vegetable, 120 Toxoid immunization in diphtheria, Tsutsugamushi disease, 653 Tube, fermentation, 38 Toxoids, 118, 155, 157 Tubercle bacillus, 446 Toxon, 118, 157 adaptability of, 90 Toxophore atom-group, 118, 121 agglutination of, 473 Trachoma, 643, 755 allergy and, 200 autolysis, Bordet's Transmissible avian, 458 theory of, 647 biological characters, 451 Transmission of infection, 146 bovine and human types com-Trench fever, 660 pared, 457 foot, tetanus developing in, 411 type, 458 Treponema, classification, 520, 521 carbolic acid as germicide, 453 pallidum, 528 channels of infection, 459 as cause of syphilis, 531 chemical characters, 451 cultural characteristics, 530

Tubercle bacillus, cultivation, 37, 450 Tuberculosis, disinfection in, 100 culture media for, 450 droplet infection, 459 filamentous growth, 447 flies in spread of, 461 filterable stage, 447 fowl, 458 gaseous exchange of, 85 germinal transmission, 469 in air, 722 heredity and, 468 in butter, 461, 462, 686 immunity, 471 in cheese, 686 in animals, 456 in cold-blooded animals, 458 in children, 140 in colds, 756 in cold-blooded animals, 458 in man and animals, relation in man, 453 between, 456, 463 and animals, relation between, in meat, 462 in milk, 461, 671 456, 463 infected houses and, 460 in sewage, 452 milk and, 671 in sputum, 459 intestinal infection, 464 examination for, 448 intra-uterine infection, 469 in typhoid fever, 342 mammalian, 456 involution forms, 447 Micrococcus tetragenus in, 210 isolation by animal inoculation, mortality reduction, 446, 467 opsonic index in, 473 morphology, 446 Pfeiffer's bacillus in, 396 nucleic acid of, 122 predisposing factors, 142, 466 odor of, 452 protective inoculations, 471, 472 pasteurization of milk and, 453, skin, 473 675, 676 sputum in, 459, 460 plant or animal, 122 examination for, 448 powers of resistance, 452 streptococcus in, 221 precipitins of, 473 susceptibility to, 468 relation of Actinomyces to, 545 swine, 458 saprophytic strains, 459 tubercle formation in, 454 staining, 52, 448 Ziehl-Neelsen method, 53, 449 tuberculin in, 200, 469 in treatment, 473 sunlight as germicide, 453 temperature range, 78, 79, 80, 452 Tubing, sterilization of, 26 Tularemia, 385 virulence of, 141 agglutinins in, 388 waxy substance in, 452 Tuberculin, 469 immunity to, 388 insect transmission, 386 old, 471, 473 laboratory infection, 386 new, 474 squirrels and, 385 reaction, 200, 455, 470 Tumors, malignant, Coleys' mixture Calmette's, 471 in, 224 Long's, 471 effect of erysipelas on, 224 Mautoux', 471 of streptococcus infection on, von Pirquet's, 471 156 residuum, 474 relation of veasts to, 563 treatment of tuberculosis, 473 Tungsten arc, effect on bacteria, 82 Tuberculosis, 446 spectrum of, 83 acute miliary, 455 Tunnicliff's green-producing diplococavian, 458 cus in measles, 759 bacillus of, 446. See also Tubercle Turnip taste of butter, bacteria bacillus. causing, 680 Turnips, black rot of, 745 Twort-d'Herelle phenomenon, 645 BCG vaccine in, 472 bovine, 456 and human, relation between, Typhoid bacillus, 99, 139, 156, 164, 456, 463 165, 186, 187, 332 tuberculin reaction in, 470 absorption test, 188 carp, 458 acid production by, 113 channels of infection, 459 agglutination of, 183, 344, 354 alimentary tract, 461, 465 Bacterium coli, Salmonella enteriinoculation, 463 tidis and, differentiation, 314, respiratory tract, 459 curative inoculations, 471 335

Typhoid bacillus, behavior toward gentian-violet, 58 characteristics, 37, 88, 332 contact infection with, 350 denitrification by, 703 distribution in body, 343 in nature, 338 fermentation products, 108 flagella of, 333 flies as carriers, 350 group-agglutinins, 355 identification of, 334 in bile, 344 in blood, 345 in butter, 349, 687 in cheese, 687 in dust, 350 in feces, 343 in gallbladder, 344, 351 in ice, 348, 735 in intestine, 146 in milk, 349, 670 in oysters and shellfish, 349 in privy vaults, 339 in rose spots, 344 in sewage, 339 in soil, 339, 723 in sputum, 344 in urine, 343 in vegetables, 349 in water, 339, 346, 729, 736, 738 destruction by boiling, 740 methods of isolating, 335 motility of, 336 pathogenicity for lower animals, 142, 340for man, 341 portal of entry, 342 rough and smooth colonies, 132 survival period, 339, 346 thermal death-point, 80 toxin of, 120 carriers, 147, 344, 351 fever, 142, 341 agglutination test in, 327, 354 channels of infection, 346-351 contact infection, 350 death rate from, 758 diagnosis, 341 disinfection in, 99, 100 distribution of bacilli in body, 343 dust as cause, 350 epidemiology, 345 feeding experiments in, 332 flies as cause, 350 Gruber-Widal reaction in, 183, 332, 354ice as cause, 348 immunity, 352 milk as cause, 349, 670, 675 mixed infections, 342 osteomyelitis following, 342 oysters and shellfish as cause, 349

Typhoid fever, Pfeiffer's phenomenon in, 332, 353 prevalence, 341 compared with paratyphoid, 327 rose spots in, 200, 344 serum therapy, 356 skin reaction in, 353 susceptibility to, variations in, 151 survival of, 346 symptoms, 341, 342 tuberculosis following, 466 vaccination against, 134, 353, effects in military life, 356 Russell's method, 358 vegetables as cause, 349 water supply as cause, 346, 736, 738 fowl, 331 Mary, 351 Typhus fever, 307, 341, 654 laboratory infection, 658 mild form, 654, 656 mode of transmission, 655 pappataci fever and, differentiation, 640 prophylaxis, 656 Proteus strains in, 657 serum prophylaxis, 657 specific organism of, 658 Weil-Felix reaction, 657 Tyrothrix bacteria of Duclaux in cheese, 685 Uhlenhuth's antiformin method for detection of tubercle bacillus in sputum, 448 Ulcer, amebic, 573 tropical, 593 Ulcerative colitis, 361 endocarditis, 218 Ulceromembranous angina and stomatitis, 524 Ultramicroscope, 63, 516, 619 Ultramicroscopic viruses, 619 Ultraviolet light, effect on bacteria, in purification of water, 738 Undulant fever, 365 agglutination test, 366 complement fixation, 366 due to contact with meats, etc., 371epidemiology, 370 from milk, 366, 672 goats and, 366, 367 insects and, 367 laboratory infections, 366, 372 mode of infection, 366 skin reaction in, 366 Undulating membrane of trypanosomes, 582

Urine, typhoid bacillus in, 343 Uschinsky's culture medium, Fränkel's modification, 36

Vaccination against acne, 209
anthrax, 281
Asiatic cholera, 153, 509
blackleg, 436
boils and carbuncles, 209
gonorrhea, 258
plague, 384
pneumonia, 251
smallpox, 154, 622, 624
encephalitis following, 630
tetanus following, 412
tuberculosis, 472
typhoid fever, 134, 353, 356
anaphylaxis and, 199
tetanus following, 412

Vaccine, antimicrobic, immunization in diphtheria with, 312

BCG, 472 Calmette and Guérin's, 472 Lyons, 436 staphylococcus, 209

Vaccinia and smallpox, relation between, 623

Vacuum method for cultivation of anaërobes, 47

Van Ermengem's method for flagella staining, 55

Van Gieson's modification of Giemsa's stain, 625

Variations, 63, 128 H-O type, 134

Varicella, 643. See also Chickenpox. Variety, retrograde, 129

Variola, 622. See also Smallpox. inoculata, 623

Vegetable toxins, 120

Vegetables, typhoid fever spread by, 349

Venom, snake, 121 fatal dose, 118

Vermin as carriers of Salmonella infections, 329

Verruga peruviana, 498

Vibrio, 516 cholerae, 500. See also Spirillum cholerae.

El Tor, 513 Ghinda, 512, 513 Koch's, 506 Massauah, 512, 513 metchnikovii, 513 phosphorescent, 515 Vibrion septique, 419

> antiserum, 421 Clostridium chauvei and, differentiation, 420, 435 flagella of, 419

in blackleg, 420 in gaseous gangrene, 419, 420 Vibrion septique, spores of, 419 Vincent's angina, 524 Vincent's angina, bacteria in 711

Vinegar-making, bacteria in, 711 generators in, 712

Virulence, fluctuations in, 134 increased by animal passage, 141 infection and 140

infection and, 140 loss of, 129, 130 Virus, Danysz, 325

fixed, 626

ultramicroscopie, 619 Viruses, filterable, 619

affecting nervous system, 628 cell-inclusions in diseases associated with, 621

degeneration products of, 621 diseases due to, 622

enzymes of, 621 filtration methods, 620 nature of 619 621

nature of, 619, 621 of colds, 757

of dengue, 641 of epidemic infantile paralysis, 631

lethargic encephalitis, 628 of foot-and-mouth disease, 630

of influenza, 764 of measles, 759 of mumps, 758

of pappataci fever, 640

of postvaccinal encephalitis, 630

of psittacosis, 641 of rabies, 624 of smallpox, 622 of yellow fever, 635

Vitamins, destruction by pasteurization of milk, 677

effect on bacterial growth, 88 Voges-Proskauer reaction, 321

Voldagsen type of Salmonella cholerae-suis, 330

Von Pirquet's tuberculin reaction, 471 Vulvovaginitis, gonorrheal, 258

Waage and Gulberg's law of mass action, 119

Walker-Rideal method of standardizing disinfectants, 42, 99

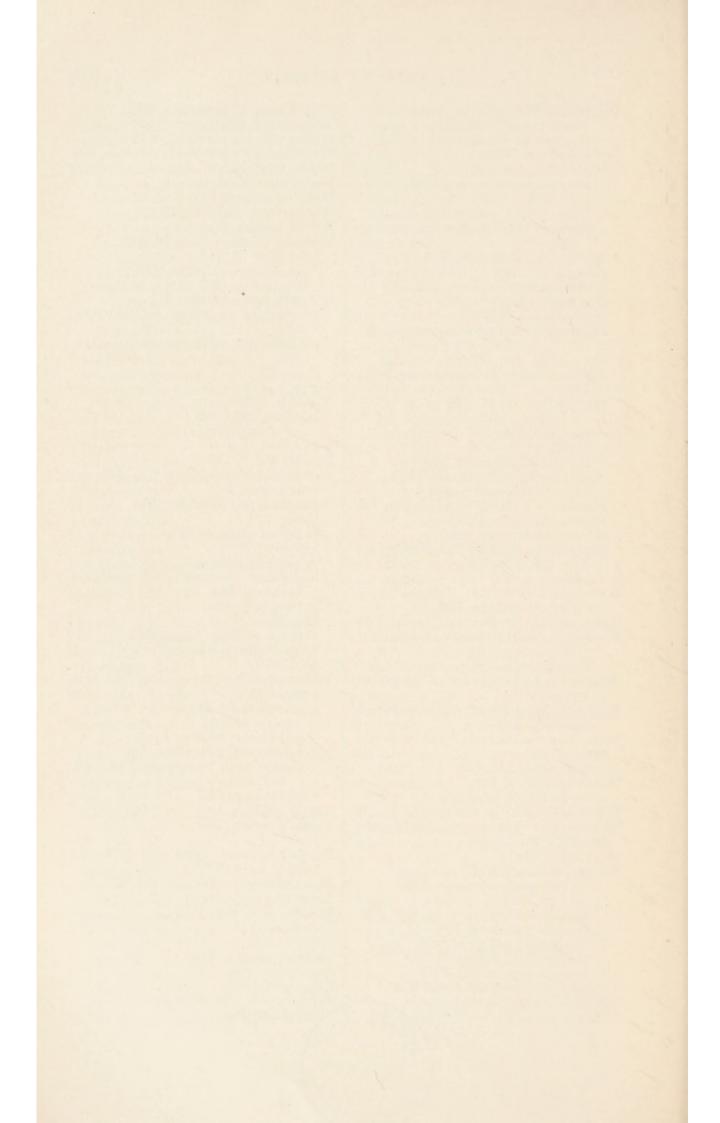
Warts, 643

pathologists, 463

Wassermann reaction in syphilis, 182, 533

> control of, 536 substances employed in, 534

Water, amebas in, 577 analysis of, 726–730 anthrax bacillus in, 740


Bacillus coli in, application of tests, 732

completed test, 731 partially confirmed test, 731 presumptive test, 730

Water, Bacillus coli in, quantitative estimation, 730-733 fluorescens liquefaciens in, 735 subtilis in, 735 bacteria in, 88, 725 from various sources, 728 pathogenic, 729 quantitative estimation, 726 sanitary significance of number. 728Bacterium cloacae in, 735 calamities, 109 Clostridium welchii in, 422, 735 dysentery bacilli in, 361 examination, 726-730 Leptospira icterohemorrhagiae in, Proteus in, 496, 735 Pseudomonas pyocyanea in, 495, purification of, 97, 736 by boiling, 740 by chemicals, 737 by filtration, 736 by ultraviolet rays, 738 Spirillum cholerae in, 507, 729 phosphorescens in, 515 standards of purity for, 733, 734, 735 streptococcus in, 735 sulfur bacteria in, 111 typhoid bacillus in, 151, 339, 346, 729, 736, 738, 740 vibrios in, 512 Water-glass, 699 for preserving eggs, 710 Water-retting of flax and hemp, 716 Wechsberg and Neisser's method for leukocidin, 204 phenomenon, 180 Weichselbaum's theory of cause of pneumonia, 244 Weigert's principle of regeneration of tissue cells, 177 Weil-Felix reaction in typhus fever, 657 Weil's disease, 525, 638 Welch's bacillus, 421 stain for capsules, 53 Wertheim's culture medium, 254 Wesbrook's of diphtheria types bacilli, 287 West tube, 261 Whooping cough, 397 bronchopneumonia in, 399 carriers, 398 complement fixation in, 398, 399 lymphocytosis of, 399 Pfeiffer's bacillus in, 396 tuberculosis following, 466 vaccine treatment, 399 Widal-Gruber reaction, 183, 354 Wigglers, mosquito, 607 Wildseuche, 374

Wilt disease of cucurbita, 742 Granville, of tobacco, 744 Wines, pasteurization of, 675 Winogradsky's nitrifiable solution, 698 Wires, sterilization of, 26 Wolhynian fever, 660 Wooden tongue, 551 Woolsorters' disease, 279 Woulff bottle, 43 Wounds, colon bacillus in, 319 infections of, 416 anaërobes found in, 418 Proteus in, 497 Wright's bodies, 593 method of isolating Actinomyces, 549 modification of Romanowsky stain, 376 stain, 57 Xerosis, 288 bacillus, 288, 305 YAWS, 543 Yeasts, 557 alcoholic fermentation by, 558 cellulose in, 557 enzymes produced by, 558 in air, 721 in bread-making, 714 in sprue, 758 in tanning, 706
malignant tumors and, relation
between, 563 pathogenic, 559 red, 722 relation to other fungi, 558 spore formation by, 557 wild, 670 Yellow disease of hyacinths, 748 fever, 635 complement fixation in, 639 control of, 637 immunity, 639 laboratory infections, 640 mosquito in transmission of, 636, 637, 639 pathology, 640 milk, 665 Yersin's serum, 384 Ziehl-Neelsen stain for tubercle bacilli, 52, 449 Zinc chloride as disinfectant, 97 Zone, pro-agglutinoid, 193 Zoöglea cells, 699, 700 Zoötoxins, 121 Zopfius, 496 Zwischenkörper, 179 Zygospore, 566 Zygote, 602 Zymase, 104, 107, 108, 559

Zymophore, 186

