The rat: reference tables and data for the albino rat (Mus norvegicus albinus) and the Norway rat (Mus norvegicus) / comp. and edited by Henry H. Donaldson.

Contributors

Donaldson, Henry Herbert, 1857-1938.

Publication/Creation

Philadelphia, 1915.

Persistent URL

https://wellcomecollection.org/works/kzp4bdkv

License and attribution

Conditions of use: it is possible this item is protected by copyright and/or related rights. You are free to use this item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

Wellcome Collection 183 Euston Road London NW1 2BE UK T +44 (0)20 7611 8722 E library@wellcomecollection.org https://wellcomecollection.org

THE RAT

DATA AND REFERENCE TABLES

HENRY H. DONALDSON

Herler

22102057279

Med K5894 Digitized by the Internet Archive in 2017 with funding from Wellcome Library

https://archive.org/details/b2982090x

MEMOIRS

OF

THE WISTAR INSTITUTE OF ANATOMY AND BIOLOGY

No. 6

THE RAT

REFERENCE TABLES AND DATA

FOR

THE ALBINO RAT

(MUS NORVEGICUS ALBINUS)

AND

THE NORWAY RAT

COMPILED AND EDITED BY

HENRY H. DONALDSON

PHILADELPHIA

1915

2601

COPYRIGHT 1915 BY HENRY H. DONALDSON

WELLCOME INSTITUTE
LIBRARY

Coll. well-Omec

Call
No. QL

PREFACE

For a number of studies on the growth of the mammalian nervous system made by my colleagues and myself we have used the albino rat. In the course of the work we frequently felt the need of referring to other physical characters of the rat to which the nervous system might be related. This led us to collect such data as were already in the literature and also led us to make further investigations. The facts gathered in this way have proved useful to us and are here presented in the hope that they will be useful to others also.

The plan of the presentation is simple. An introduction treats of the rat as a laboratory animal, indicates the methods of gathering the data, and also gives examples of our use of the tables. This is followed by an outline of the classification of the common rats and by a brief statement of the history of the rat since it arrived in western Europe.

The rest of the book falls into two parts. The first part deals with the domesticated albino rat—concerning which we have the larger amount of information.

The second part deals in a similar way with the wild Norway rat—the form from which the Albino has been derived. In connection with each part the several reference tables and the formulas employed for them and for the corresponding graphs are given, and at the end of the book a list of papers on the rat is added.

In the two parts which form the body of the book the purpose is to present for the rat under normal conditions the fundamental observations—giving data and conclusions only. It is hardly necessary to add that in most directions our information is fragmentary.

For all the formulas which apply to the data coming from the laboratories of The Wistar Institute, I take pleasure in thanking my colleague, Dr. S. Hatai.

iv

For aid in the preparation of these pages I am also much indebted to those unnamed assistants to whose lot has fallen the greater part of the computations for the tables and whose devotion to their work has added a human interest to a task otherwise monotonous.


To the many authors whose results are here briefly cited or quoted in extenso I take the opportunity to express my obligations—very sincere obligations—for experience shows that such results come only by hard labor.

Many of the illustrations have been taken from the journals in which they were originally published and my thanks are due to the editors and publishers of these journals for the privilege of reprinting the illustrations here.

During the preparation of this book my immediate colleagues have given me encouragement and aid, and I cherish the hope that, should the occasion arise, both of these will be again forthcoming to help mend the gaps and rectify the errors which a close scrutiny of these pages is certain to reveal.

CONTENTS

	PAGE
Preface	iii
Introduction	1-7
Classification.	7-10
Early records and migrations of the common rats	10-15
PART I	
ALBINO RAT—MUS NORVEGICUS ALBINUS	
Chapter 1—Biology.	19-28
Chapter 2—Heredity	29
Chapter 3—Anatomy	30-57
Chapter 4—Physiology	58-62
Chapter 5-Growth in total body weight according to age	63-72
Chapter 6-Growth of parts or systems of the body in weight	73-85
Chapter 7-Growth of parts and organs in relation to body length and	
in relation to age	86-175
Chapter 8—Growth in terms of water and solids	176-179
Chapter 9—Growth of chemical constituents	180-184
Chapter 10—Pathology	185-186
PART II	
NORWAY RAT—MUS NORVEGICUS	
Chapter 11—Life history and distinguishing characters	189-194
Chapter 12-Growth in weight of parts and systems of the body	195-197
Chapter 13—Growth of organs in relation to body length	198-210
Chapter 14—Growth in terms of water and solids	211-213
Chapter 15—References to the literature	214-267
Index	

THE RAT

INTRODUCTION

The Norway rat, Mus norvegicus, is the one mammal now easily obtainable both wild and as a domesticated form. This latter is represented by either the Albino or the pied rats so common in our laboratories.

The Albinos are clean, gentle, easily kept and bred, and not expensive to maintain. They are omnivorous, thriving best on table scraps. The span of life is about three years and breeding begins at about three months. Furthermore the species is cosmopolitan. The litters are large and may be had at any season. The young are immature at birth. The domesticated Albino crosses readily with the wild Norway. The rat, both wild and domesticated, takes exercise voluntarily and is susceptible to training. It is also highly resistant to the usual wound-infecting organisms. For a number of lines of study therefore, the rat seems to be a peculiarly suitable animal.

Through the researches of several investigators at The Wistar Institute (since 1906) and through those of E. H. Dunn and of J. B. Watson at the University of Chicago, of Chalmers Watson and Sir Edward Schäfer at Edinburgh, of C. M. Jackson and L. G. Lowrey at the University of Missouri, of J. R. Slonaker at Leland Stanford University, of T. H. Osborne and L. B. Mendel at Yale University, of E. V. McCollum at the University of Wisconsin, as well as through those of several other investigators both in this country and abroad, there has been gathered a considerable body of data applying to the weight and size of the domesticated albino rat and its parts, as well as some similar data applying to the wild Norway rat, the parent species. It is the body of facts so gathered that it is our purpose to present, as far as possible in tabular form.

Attention should be called to the fact that the observations presented in the tables have been made mainly on rats in the first year of life and but rarely on those which are older. It follows from this that the data apply to the rat in its most vigorous period and do not give information that can be used for the study of old age.

Since the quantitative data appearing in the tables are biological, they naturally exhibit more or less variability and reflect in each instance something of the conditions under which they have been obtained. It follows therefore that they must not be expected to possess the precision of physical or chemical determinations. Nevertheless, so long as the values here presented are not mistaken for absolute standards representing ideal or final determinations, they may be used with advantage.

Most of the matter presented is taken from researches already published in full, but in a few instances data from work in progress have been included also. In the latter instance the author's name is followed by (MS with date) when it is based on work conducted at The Wistar Institute—while in other instances the laboratory is also named.

In a few of the published tables—mainly from our own laboratory—it has been found necessary to make corrections—so that when the tables here printed do not agree with the originals, it is to be assumed that the changes are due to revision.

Owing to the absence of tables for the normal animal or to the failure of the authors to express their results in a quantitative form, much of the literature which is cited is unaccompanied by any text. Such papers however often contain valuable information on either the Albino or Norway rat and the citation of them serves to indicate the range of the studies in which this animal has been used.

Extensive reference tables have been computed for the various characters only as these appear under normal conditions, while the modifications which may be experimentally induced in these characters are merely mentioned in the text or presented very briefly.

In a number of cases the results are represented by both graphs and tables. The purpose of the graphs is merely to furnish a general view of the form of change which occurs, while for the exact values, the tables must always be consulted. In those tables which are based on size, the body length of the rat, because it is least subject to incidental variations, is the measurement to which the others have been referred.

It is recognized however that some of the characters are functions of age and in that case it is of course necessary to know the age of the animal in order to obtain satisfactory results.

All of the longer tables are based on formulas. These formulas are those for the graphs which most closely fit the observed values—and their utility lies in giving precision to the values obtained and in making possible interpolations:—as a rule however they cannot be used for extrapolation. In this connection determinations of the normal variability are always wanted, yet although this need has been met in a measure, it is far from being satisfied.

Since heretofore tables of this nature have not been commonly available, a word as to their use is in order.

There exist now—and there will probably continue to appear—strains of the Albino having physical peculiarities related to the locality in which they are bred: e.g., a relatively short tail. The treatment of such an instance by the use of the tables is considered in the paragraph which follows.

As has been stated, the tabular values here given apply to the stock strain reared at The Wistar Institute and furnish data from which deviations found in other local strains can be measured. In all experimental work it is now generally agreed that the control and the test animals should be taken from the same litter, and the determinations of any modification made within the litter—the results for the several litters being given the same statistical weight in the subsequent computations. While this procedure might at first seem to render the reference tables superfluous, yet to compare the results from two laboratories working with different local strains, having according to the example chosen different normal tail lengths, a series of reference values

such as the tables furnish, serves to reveal the relations in which the control animals from the respective laboratories stand to one another, and thus permits a more trustworthy comparison of the experimental results.¹

Moreover in the course of routine work on the same colony one cannot be sure that the animals retain during successive years the same relations to the reference table values. For this reason we have been following the custom of referring all measurements to the reference tables and using the difference in deviation shown by the controls and by the test animals respectively as the measure of the modification experimentally produced,

By using such a procedure—in place of the assumption that the control animals from the same colony remain similar—the experimental results obtained from year to year are made fairly comparable with one another.²

But there is still another use of the tables which is perhaps the most important of any. In all experiments on the relative weights of parts or organs in which the size of the test animals differs from that of the controls, we readily obtain by weighing or measuring the differences for the entire animal. If however we wish to determine whether the relative size (weight or length) of the parts or organs of the test animals has been affected, we find that this cannot be done by comparing the test and control groups directly—for the relative values of parts and organs differ with the absolute size of the animal—but it can be done by reference to the tables in which the desired values are given ac-

¹ If a strain appears in which the length of the tail is on the average 4 per cent below the reference table value then if we compared directly with them the test animals which came from a strain normally in agreement with the reference tables—but which through experiment had had their tail length reduced by 3 per cent—it follows that the test animals, though modified by experiment, would still have relatively longer tails than the first strain.

Consequently to compare with each other the results obtained from the two strains, the deviations of both the controls and the test animals from the reference table values must be determined in both series and the differences within the series be used for the cross comparison.

² The same principle and procedure as described in Note 1 applies to the treatment of different series taken, for example from our own colony, at different times.

cording to body weight or body length or age, as the case may be. Thus by the use of the tables the determinations of the deviations shown by the test animals taken individually can be made and these values compared with the corresponding individual determinations for the control group.³

One further use of the tables when these are based on age, may be mentioned. The comparison of the experimental re-

³ When the experimental conditions produce control and test animals different in size a determination of the relative size of any organ cannot be made directly or by the assumption that its normal size is in proportion to the body lengths or body weights of the contrasted groups—but only by comparison of the observed values with previously established normal values.

The following observed values are taken from Hatai ('15 a), Table 3. D. Normal females—1914 series. They read as follows:

GROUP	RATION	BODY LENGTH	BODY WEIGHT FINAL	BRAIN WEIGHT
		mm.	gms.	gms.
Controls Test animals	V200.2.500.099500	185	137	1.729
rest animais	and egg fat	162	100	1.569

It is desired to determine in this case whether the relative brain weight of th test animals has been modified by the lipoid-free ration.

The absolute brain weight of the test animals is 0.160 grams less than that of the controls or 9.2 per cent of the larger number. If we assume that it should be in proportion to the observed body lengths it appears that the expected brain weight in the test animals would be 1.540. Hence the observed value, 1.569, is about 2 per cent high—by such a determination.

If we assume on the other hand that it should be in proportion to the observed body weights it appears that the expected brain weight in the test animals would be 1.262. Hence the observed value is some 20 per cent too high by this determination. No one of these procedures is justifiable though examples of their use can be found in the literature. The only correct method is to compare the observed values with the reference table values for the brain weights of animals having the body lengths of the controls and test animals respectively—to determine in each case the percentage difference between the observed and the table value and finally to compare these percentages.

Using table 68 and reading the values for the females, we find that in this case the controls are 0.053 grams or 2.97 per cent below the table value while in the test animals the corresponding differences are 0.103 grams or 6.16 per cent.

The brain in the test animals is therefore smaller than that of the controls by (6.16-2.97) = 3.19 per cent and this value may be taken as expressing the experimental modification of the brain in this series.

The foregoing represents the procedure to be generally used for determining modifications in the relative weight of any organ. sults obtained on animals with the corresponding results on man has heretofore been difficult because of the absence of a good basis for comparison. We have found reason to assume that in the case of the rat the postnatal span of life of three years is approximately equivalent to the span of ninety years in man—or to put it another way, that the rat grows thirty times as fast as man. This ratio appears to hold for fractions of the span of life, as well as for the entire span. All of the data for the Albino, based on postnatal age, may therefore be compared fairly with the corresponding data for man, if the time intervals are taken as one for the rat to thirty for man.⁴

Finally it is desirable to explain here a seeming inconsistency in the arrangement of the material presented. In the Preface the statement is made that Part I deals with the albino at, while Part II deals with the Norway. So far as all of the important tables and records are concerned this statement does not need revision.

⁴ As an example of the comparison of the rat with man in respect to certain changes which are related to age the observations on the percentage of water in the brain may be quoted—Donaldson ('10):

TABLE 1

Comparison of the percentage of water in the encephalon of man and the albino rat at corresponding ages

W =	Weisbach,	1868

K = Koch and Mann, '09

MAN		RAT		
Age, years	Percentage of water	Percentage of water	Age, days	
Birth	88.3 (W)	87.7	Birth	
2 years	81.1 (K)	81.3	26 days	
9.5 years	79.2 (W)	78.6	115 days	
25 years maturity	77.0 (W) 77.8 (K)	77.7	290 days	

In table 1 the data for man, collected from various studies, are compared with data for the rat—on the assumption that the conditions in the rat brain at any age will be represented by those in the human brain at that age multiplied by thirty.

It has been found however in arranging the literature that it would prove most useful to include in Part I all of the incidental and general observations on the wild Norway, on the ground that these applied to the entire species, and to reserve for Part II the more precise data which apply to the wild Norway, as contrasted with the domesticated Albino.

The reader therefore will find in the literature cited in Part I papers referring to M. decumanus, M. norvegicus and Epimys norvegicus as well as to the Albino (M. norvegicus albinus or var. Albino), sometimes designated the 'white' rat.

As will be pointed out in the section on The Early History of the rat, there is one more complication in this connection. Through an error, unfortunately perpetuated by some of the natural histories, the common Albino has been described as an Albino of the house rat—Mus rattus.

It thus happens that in some of the papers cited it is reported that the observations had been made on Mus rattus or ratus (sic), the word albino being sometimes added—sometimes omitted. In a few instances it is impossible to determine whether M. rattus is used for the Albino or whether the house rat was really studied.

In forming a judgment on these cases it must be kept in mind that for the last half century the house rat has been rare and hard to obtain both in western Europe and in the northern United States, so that unless the author gives good evidence for the name he has employed, it becomes highly probable that he was working with some form of the Norway. For these reasons it has been found most convenient to include also in Part I all the references to the house rat (Mus rattus).

CLASSIFICATION AND NOMENCLATURE OF THE COMMON RATS

Up to 1881 Mus (Linnaeus, 1758) was used as the generic designation for both the rats and mice. In 1881 Trouessart proposed the subgenus Epimys for the larger forms, the rats, reserving Mus for the smaller forms, the mice—Mus musculus being the type. In 1910 Miller established the use of Epimys for the rats and the change has been accepted.

In the pages which follow however the designation Mus has been retained for the rat—as the older term is well understood, while the new term—Epimys—is at present generally unfamiliar.

The following condensed citations of the place of the original descriptions—with some of the associated references—serve to give a brief history of the nomenclature.

MUS, Linnaeus, 1758

EPIMYS, Trouessart, 1881-Miller, 1910.

-norvegicus, Erxleben (1777 descr. orig.)

-decumanus, Pallas (1778).

—aquaticus, Gessner, 1551.

Cosmopolita; ab Asia occident. in Europam navibus translat. et inde in omnes Orbis Regiones.

-rattus, Linnaeus (1758 descr. orig.)

Cosmopolita; ab Asia occident., in Europam a navibus translat., et inde in omnes orbis regiones.

—alexandrinus, Geoffroy, (1812 (or 1829 vide Sherborn, 1897) descr. orig.)

Asia minori, Arabia, Aegyptus, Algeria, etc.

Italia, Hispania, Gallia merid.—orient. et occid., et inde in omnes orbis regiones.

Since attention was called to Erxleben's description in 1777 (Rehn, 1900) his specific name, norvegicus, as the designation for the common brown or Norway rat, has been used in place of decumanus (Pallas, 1778). The designation norvegicus is now well established and will be used here.

There seems no question that Mus rattus and Mus r. alexandrinus are related to one another as color varieties of the same species (de l'Isle, 1865; Millais, '05) and they are so considered in the following pages. For convenience we shall use the term Norway or Norway rat for Mus norvegicus—and the term Rattus or house rat as a general designation for both Mus rattus rattus and M. rattus alexandrinus unless the occasion calls for the precise name.

Albinos of the house rat have without doubt existed in the west of Europe at one time or another ever since this form over-ran that region (Topsell, 1658) and one or more such skins as well as pied skins, from animals taken within the past fifty years, are in several of our United States museums.

At present Albinos of the house rat appear to be not uncommon in India (Lloyd, '12) where the house rat population is large. In western Europe and other regions in which the house rat population is waning, a careful search by several investigators during the last decade has failed to reveal a living albino specimen.

At the present time, therefore, the Albino of Mus norvegicus is the only albino variety generally found. In these pages this form is designated Mus norvegicus albinus—when the name is given in full, but where possible the single word Albino is used for it.

When the albino variety is mentioned here the strain as commonly reared is the one meant. As a rule this strain is far removed from its wild ancestor and moderately inbred. It may be conveniently designated as the common albino strain. In the colony at The Wistar Institute, we have in addition to this a closely inbred strain reared by Dr. King and also a strain of 'extracted' Albinos. These latter are the Albinos descended from the F₂ generation of hybrids from the wild Norway and the domesticated Albino.

During the first few generations after their appearance, these extracted Albinos show clearly certain Norway characters, which distinguish them from the rats with a longer albino ancestry. With the peculiarities of either the inbred or of the extracted strain, we are however not specially concerned at the present time.

While all Albinos breed true as to color, the composition of the gametes is undoubtedly different among them in accordance with their remote ancestry. Mudge ('10) recognizes thirteen gametic types. The gametic dissimilarity of various Albinos in respect to hair color is shown by the fact that in breeding tests (Doncaster, '06 and Mudge, '10) Albinos extracted from ancestors with characteristic differences in pigmentation will reveal their origin by producing, when crossed with the pigmented strain, characteristically pigmented descendents, the markings of which can be predicted.

We are naturally concerned with the gametic composition of the general population of Albinos constituting our colonies today. As the several colonies stand, the Albinos forming them do not form a strictly homozygous population, even from the standpoint of color, since in subsequent crosses with pigmented forms they give offspring with different color markings according to their several latent characters. On the other hand it may be fairly said that as yet we have no evidence for any correlation of the somatic characters so far studied, with those slight differences in gametic composition of the common albino strain which we can recognize. It is to be noted moreover that the difficulty which thus appears in the case of the albino rat repeats itself for other mammals also, and therefore it does not constitute a peculiarity of this animal.

CLASSIFICATION: REFERENCES

Alston, 1879–1882. Blasius, 1857. Doncaster, '06. Erxleben, 1777. Geoffroy, 1812. Gesner, 1551. l'Isle, 1865. Linnaeus, 1758, 1766. Lloyd, '12. Millais, '05. Miller, '10. Mudge, '10. Pallas, 1778. Rehn, 1900. Topsell, 1658. Trouessart, 1881, 1897, '10. Tullberg, 1900.

EARLY RECORDS AND MIGRATIONS OF THE COMMON RATS

The common wild rats in the United States usally live in close association with man. There are two species of these, both of which have been introduced from Europe. These are Mus rattus (Linnaeus, 1758; 1766 = Mus rattus rattus, Millais, '05) together with its gray form, Mus alexandrinus (Goeffroy, 1812; = Mus rattus alexandrinus, Millais, '05) and Mus norvegicus (Erxleben, 1777 = Mus decumanus, Pallas, 1778). This last species is our common gray, brown or Norway rat. In addition to these, all of which are wild, there is a fourth form—the albino rat (Mus norvegicus albinus) a variety of Mus norvegicus (Hatai, '07) which is known at present only as a domesticated strain (Donaldson, '12 b).

Mus rattus—the house rat—the first species described in western Europe, is probably indigenous to India.¹ As now found,

¹ Fossil remains of the rat (Mus rattus) are reported in the pliocene in Lombardy (Cornalia, 1858) and in the quaternary at Molina di Anosa near Pisa (Forsyth Major) and again from the pleistocene cave deposits of the island of Crete (Bate '12). This species appears in glacial times (Diluvialzeit) and in association with man in the remains of the Lake dwellers in western Germany and in Mecklenburg (Blasius, 1857). It is reported also from the diluvial deposits in Bohemia (Woldřich, 1880).

the melanic form of Mus rattus (or Mus rattus rattus, Millais) the 'black' rat, is more frequent in the colder latitudes, and Mus rattus alexandrinus (Millais) the gray form (the 'roof' or 'snake' rat) in the warmer latitudes, but the two are not sharply segregated. At the same time both of these seem more dependent on warmth, or more resistant to it, than the Norway rat.

Although we shall have little to say in the following pages about Mus rattus, yet it is desirable to give its history in order to obtain the proper setting for Mus norvegicus, at present the dominant species. The geological evidence just given indicates the very early appearance of the house rat in Europe but our records of its migrations all fall within the present era.

The history of the early migrations is of necessity vague and incomplete, and even in the later times when dates are given it must be remembered that such animals might have been present for some time without appearing in numbers sufficient to cause comment.

There is no good evidence that the Greeks or Romans before the present era were familiar with the rat as a pest, and therefore, even if present, it was probably not abundant at that period on the shores of the Mediterranean.

The history of the house rat from the earliest times to the eleventh century makes an interesting archaeological study, but the conclusions which may be drawn from the scanty records and indefinite allusions are too uncertain to be of value for our present purpose and we therefore pass directly to the later authors.

Possibly as far back as the migration of the hordes (Völkerwanderung, 400–1100 A. D.) and later in consequence of the increasing use of trade routes with the East, the house rat entered western Europe in appreciable numbers (Hehn, '11). It is reported to have arrived there after the twelfth century (Keller, '09, citing Theodoros Prodromos). Giraldus Cambrensis,² (1146?–1220) records several anecdotes concerning it.

² Albertus Magnus (d. 1280) is sometimes cited as having mentioned the black rat. This is not correct. A. de l'Isle (1865) has pointed out that the description in question applies to the dormouse—Myoxus quercinus.

As the Norway rat did not reach western Europe until 1727–1730 it follows that the European rat of the middle ages, the rat of the legends of the Pied Piper³ (1284), of the great plagues (before 1700) and of the early anathemas against vermin, was Mus rattus.

The species first brought to South America on the ships of the very early explorers was Mus rattus (Vega, 1609; de Ovalle, 1646). Pennant (1781) gives 1544 as the date of arrival in Peru.⁴ We have also a notable instance of a plague of these rats in the Bermudas in 1615 (Lefroy, 1882).

Of the two species in question, Mus rattus is alone recognized by Linnaeus in his Fauna suesica 1746, and in his Systema (1758 and 1766). It does not concern us here to follow the history of Mus rattus in the United States further than to say that this species only (represented by the two forms) was present up to the time of the arrival of the Norway rat in North America toward the end of the eighteenth century, and that Mus rattus rattus—the black rat—is still found in a number of scattered localities in the northern United States, while in the southern states, Mus rattus alexandrinus is much the more common. It does not appear that either of these forms has ever penetrated far into the interior of the country.

Turning to the cosmopolitan Mus norvegicus—the species at present established in China, Japan, India, western Europe and temperate North America—we find that the historical record of its movements, though by no means complete, has the virtue of being recent.

v. Gesner (Historia animalium, 1551) mentions a Mus aquaticus which appears to be the form now called Norvegicus, but apparently he himself had never seen it.

According to Pallas (1831) the Norway rat invaded Europe from the East early in the eighteenth century and was observed

³ It may be noted in passing that the ancient inscriptions in Hameln relating to the Pied Piper do not mention the rat (Meinardus, 1882).

⁴ Pennant (1781) says there were no rats in South America before the time of Blasco Minez. Minez is evidently a misprint for Núñez; Blasco Núñez being the first Viceroy of Peru, from 1544-1546.

in large numbers crossing the Volga in the Russian province of Astrakhan. Pallas gives 1727 as the year of this migration. In view of other dates, this can hardly be the date of the first invasion. The Norway rat reached England—probably by ships—about 1728–1730 (Donndorff, 1792) and was soon designated the 'Hanover' rat by those who wished to connect the misfortunes of the country with the recently established house of Hanover.

There is however no reason to suppose that the Norway rat had yet reached Germany and the name has a political rather than a scientific interest.

In 1750 the Norway rats are reported (Donndorff, 1792) to have reached eastern Prussia and in 1753 they were noticed in Paris (Donndorff, 1792). Their early distribution to other localities in Europe need not be recounted, but there is evidence that they spread rapidly and soon displaced more or less completely the Mus rattus which had preceded them.

This historical sketch shows that the migration of Mus rattus into western Europe antedated that of Mus norvegicus certainly by some six hundred years, but the Norway rat being the more pugnacious and powerful species has become dominant wherever it has followed the earlier form.

This dominance is undoubtedly due in part to these characters of the Norway, but it seems probable that the progressive disuse of wood as a building material has been a factor also (Przibram, '12).

We find however that in many places, both in Europe and the United States, where the house rat was thought to have been exterminated, it still survives in small numbers.

The arrival of the Norway rat on the north Atlantic seaboard of the United States is usually given as 1775 (Harlan, 1825). The exact date, though of interest, is hardly important for our present purpose.

Mus rattus was already in possession, but in the course of the years, how rapidly we do not know, the Norway rat became the dominant form in the northern latitudes of this country—moving along the trade routes to all points which furnish a continuous food supply and a moderate summer temperature.

In the present connection our interest in the Norway rat is due mainly to the fact that the common albino rat (M. n. a binus) kept as a pet or laboratory animal, and concerning which we desire all possible information, is a variety of the Norway rat. This relationship is shown not only by the usual methods of comparison, but also by the haemoglobin crystals (Reichert and Brown, '09) the shape of skull (Hatai, '07 c) and the fact that the two forms interbreed freely.

Concerning the place and time of origin of the albino strain there is little information at hand. Allusions to albino rats before the time when the Norway rat appeared in Europe clearly show that there must have been an albino strain of Mus rattus. What we know of the present distribution of Albinos of Mus rattus has been given on pages 8 and 9 in the preceding chapter.

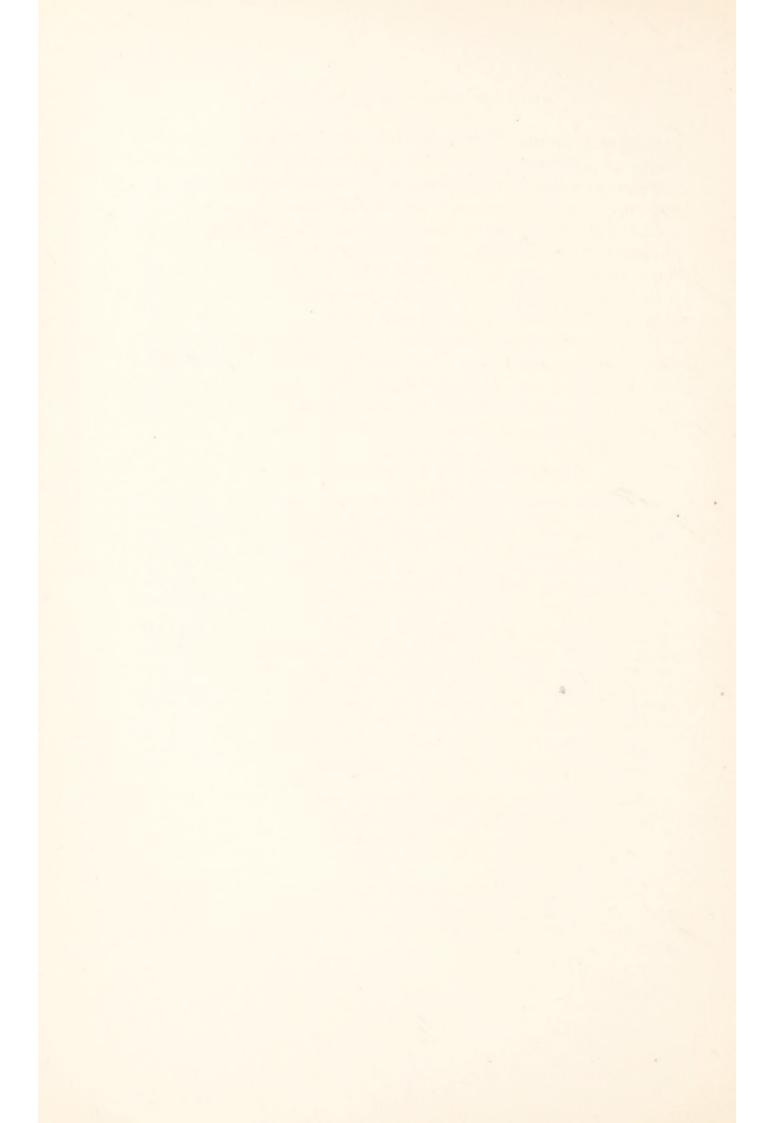
By some curious slip however, many of the natural histories and books of reference speak of the common Albino as an Albino of Mus rattus. This of course is not correct, but owing to the confusion thus early introduced, it is difficult to trace the history of the present albino variety⁵ of the Norway.

We do not know whether the common albino variety had a single or multiple origin, or whether the colonies found in Europe (Rodwell, 1858) are directly related to those now existing here. Moss, 1836, mentions Albinos in or near Bristol, England about 1822. In their general physical characters the European and American Albinos are similar (Donaldson, '12 and '12 a). Judging from the way in which the Albinos of other species arise, we may safely assume that the present strain is derived from one or more albino mutants or sports (Hatai, '12). These must have been captured and the albino descendents segregated and kept

⁵ Unfortunately there is one more complicating circumstance—namely, the existence of a melanic variety of Mus norvegicus. This melanic variety is often mistaken for Mus rattus rattus because of its color, and this leads to errors of statement concerning the distribution of Mus rattus and also concerning the ability of the two species—rattus and norvegicus—to interbreed. They are in fact mutually infertile (Morgan, '09). The number of incidental allusions to this melanic variety of norvegicus shows its occurrence to be widespread. See: Edwards, 1871, 1872. Hamy, '06. l'Isle, 1865. Lapicque and Legendre, '11. Schäff, 1891. Webster, 1892.

as pets, as at present⁶ there is nowhere to be found an established colony of Albinos living in open competition with the common Norways or with forms of Mus rattus, but all of the colonies are maintained practically under conditions of domestication.

In the northern United States, except along the water front of the larger ports, where the house rat arrives from time to time on vessels, we have therefore to deal almost exclusively with the Norway rat. The Norway has been in this region probably not more than a hundred and fifty years. Though living wild, it is more or less dependent on the food conditions found where man is established. The familiar Albino—Mus norvegicus albinus—is a sport derived from the wild Norway, and is the form on which most of the investigations here presented have been made.


EARLY RECORDS AND MIGRATIONS: REFERENCES

Albertus Magnus, b. 1206—d. 1280. Barrett-Hamilton, 1892. Bate, '12 Baumgart, '04. Blasius, 1857. Borcherding, 1889. Campbell, 1892. Clarke. 1891. Cornalia, 1858–1871. Cornish, 1890. Donaldson, '12 '12 a. '12 b. Donndorff, 1792. Edwards, 1871, 1872. Fischer, 1869. Geisenheymer, 1892. Geoffroy, 1812. Gesner, 1551. Giraldus Cambrensis, b. 1146?—d. 1220. Godman, 1826–1828. Gourlay, '07. Hamy, '06. Harlan, 1825. Hatai, '07, '07 c, '12. Hehn, '11. Hossack, '07, '07 b. l'Isle, 1865. Keller, '09. Keller-Zschokke, 1892. Lantz, '09. Lapicque, '11. Lefroy, 1882. Liebe, 1891. Lindner, 1891. Linnaeus, 1746, 1758. Lloyd, '10. '12. Löns, '08. Major (see Baumgart, '04). Meinardus, 1882. Messer, 1889. Middendorff, 1875. Millais, '04. Mojsisovics, '97. Moss, 1836. Murray, 1866. Ovalle, 1646. Pallas, 1831. Pennant, 1781. Prodromus, Theodorus (see Keller, '09). Przibram, '12. Reichert and Brown, '09. Rodwell, 1858. Schäff, 1891. Vega, 1688. Ward, '06. Webster, 1892. Woldřich, 1880–1884.

Rattenkönig.

Ahrend, '03. Demaison, '06. Dollfus, '06. Koepert, '04.

⁶ Rodwell, 1858, page 10, mentions what may have been a colony of Albinos living wild at the Ainsworth Colliery near Bury, England.

PART I

ALBINO RAT—MUS NORVEGICUS ALBINUS

CHAPTER 1

BIOLOGY

- Life history.
 Span of life.
 Puberty—ovulation—menopause.
 Period of gestation—lengthening of the gestation period.
 Superfectundation—Superfetation.
 Fecundity and weight at birth.
 Recognition of sex.
 Sex ratio.
 Body weight according to sex.
 Behavior.
 Under natural conditions.
- 1. Life history. The albino rat is born blind, hairless, with a short tail, closed ears and undeveloped limbs. It responds to contacts and olfactory and taste stimuli, utters a squeaking sound and is capable of some locomotory movements which are a combination of wriggling and paddling. The head is always searching. The young can find their way back to the mother at about ten days of age (Watson, '03). The eyes open at from the 14th to the 17th days, most often on the 15th or 16th. King has also observed that in a given litter the eyes of the females usually open some hours before those of the males. For some seven days more, i.e., up to the time when the young rats are 21–22 days of age, they are dependent on the mother. After this they may be weaned, although if permitted, the young will depend partly on the mother for some days longer.

This adjustment of relations fits with the fact that the female may be impregnated one or two days after casting a litter (Kirkham, '10; Kirkham and Burr, '13) and since the gestation period is about 21.5–22.5 days, this would enable the female to free herself from the first litter before the second one was born. As will be pointed out later, the gestation period may be prolonged in nursing animals.

When the young rats become habituated to independence, i.e., at about 25 days, they enter on a period of activity, the phases of which have been followed by Slonaker ('07, '12). In the cases which he observed, it was found that increasing age was accom-

20

panied by increasing activity up to the age period of 87-120 days, after which the activity declined.

On the assumption that the span of life in man is thirty times that of the albino rat (Donaldson, '08) this age of greatest activity would correspond to the age of 7.5–10 years in man.

As shown by the records of activity (Slonaker, '12) the albino rat is nocturnal. This habit can be modified more or less by feeding or by disturbance during the day time.

The measure of activity in the cases observed by Slonaker was the number of turns of the revolving cage in which the animal was kept, the cage being set in motion by the voluntary running or other movements of the animal, and the revolutions being automatically recorded. In the case of four rats kept in separate revolving cages from 30 days of age until natural death, the following record of activity was obtained (Slonaker, '12).

TABLE 2

Total number of miles run during life

AGE IN MONTHS AT DEATH,	M. MILES	NO. 4 M. MILES	NO. 2 M. MILES	NO. 3 F. MILES
5	1265	1391	2098	
4				5447

This table shows not only great variability in the total performances, but also for the one female a record of over five thousand miles in a little less than three years. On the average, three-fourths of the total distance is run before the rat has reached middle life, and the last months of old age are always marked by greatly lessened activity.

2. Span of life. The assumption has been made (Donaldson, '08) that dating from birth, the span of life of the albino rat is three years. A rat three years old therefore may be regarded as corresponding to a man ninety years old. So far as this assumption has been tested, it appears to be a useful approximation.

Slonaker ('12, '12 a) working at Leland Stanford University under the favorable climatic conditions of California, has made some direct tests.

Four albino rats living in revolving cages attained an average age of 29.5 months, while three control animals reared in stationary cages, but under conditions otherwise similar, attained an average age of 40.3 months. In all these cases, death was reported as due to 'old age.'

The average age of these seven individuals was about 34 months, while the greatest age, attained by one of the controls, was 45 months. The three controls all lived longer than any of the four in the revolving cages. It appears from this that living in the revolving cage shortened the span of life—an unexpected result.

3. Puberty—Ovulation and Menopause. Sexual maturity as indicated by the structure of the gonads usually occurs in both males and females at the age of about two months or less.

According to our observations, puberty in the female may occur at 60–70 days after birth—although the females usually begin to breed at 90–100 days. On the other hand there are occasional instances of remarkable precocity. In the breeding Albino it is found that impregnation most readily follows 1–4 days after a litter has been cast. This accords with the time of ovulation (Kirkham, '10; Sobotta and Burckhard, '10; Kirkham and Burr, '13). During the breeding season of the female ovulation occurs at intervals of about three weeks, but only from April to October do the females regularly ovulate 20–48 hours after parturition (Kirkham and Burr, '13). The menopause commonly appears at the age of 15–18 months, but King (MS., '15) reports a female 22 months old—crossed with a male of like age—giving birth to a litter of one.

4. Period of gestation. The gestation period of the non-lactating albino rat is usually stated to be about 21–22 days. In the cases where the gestation period has been exactly recorded in our colony the exact time of copulation and of birth having been observed, Stotsenburg (MS '14) has found it to be from 21 days and 15 hours to 22 days and 16 hours.

Lengthening of gestation period. King ('13), makes the following statements which apply to lactating Albinos, maintained on a mixed diet.

The gestation period in lactating albino rats is of normal length if the female is suckling five or less young and is carrying five or less young.

The gestation period may be prolonged from one to six days if an albino female, suckling five or less young, is carrying six or more young.

The period of gestation is always prolonged when a female is suckling six or more young. In these cases the number of young in the second litter seems to have less influence on the length of the gestation period than has the number of young suckled; but if both litters are very large the gestation period may be extended to 34 days.

5. Superfection and superfetation. Superfection occurs occasionally in the albino rat and causes an interval of two, three or more days between the birth of different members of the litter (King, '13).

In support of this statement the following instances are cited:

- 1) Litter born October 27, 1911; examined November 10, 1911, 12 individuals—11 of these weighed about 14 grams each. The remaining one had very little hair, weighed 7.1 grams and appeared 4–5 days old.
- 2) Litter born December 20, 1911; examined January 2, 1912, 10 individuals—9 of like size weighed 16–17 grams each. The remaining one small; hair just appearing; weighed 10.8 grams.
- 3) Litter born February 26, 1912; examined March 11, 1912, 10 individuals—3 had their eyes open and weighed 10.1–10.5 grams. The remaining seven were apparently but one or two days old and weighed 4.2 grams on the average.

In rare instances ovulation takes place in the albino rat during pregnancy and superfoctation occurs. In two cases of this kind litters have been produced at intervals of about two weeks (King, '13, pp. 388 and 389).

6. Fecundity and weight at birth. At the beginning of ovulation in the albino rat Sobotta and Burckhard ('10) find on the average a total of thirteen ova in both fallopian tubes. The largest litter we have noted in the common Albino contained sixteen. One instance also of sixteen fetuses 18 days old has been observed Stotsenburg (MS '15).

Kolazy ('71) reports litters consisting of 5–17 young. Crampe ('84) records for 2503 young represented by 394 litters, an average of 6.3 per litter. From 1911–1913, 275 litters (1928 individuals) in our colony gave an average of 7.0 individuals per litter, and in 1914, 814 litters (5691 individuals) gave an average of 6.99 individuals per litter. Litter size does not appear to be influenced by season (King and Stotsenburg, '15).

Under certain food conditions the size of the litters is much modified. When an exclusive diet of ox flesh is given to Albinos—2–4 months of age at the beginning of the experiment—and these are compared with control rats fed on bread and milk, Chalmers Watson ('06 a) finds in the meat fed Albinos pregnancy less frequent, the weight of the mammae less, and the average number of young in a litter, as well as the average weight of the young, both smaller than in the controls. Such an exclusive meat diet is therefore unfavorable both for breeding and for early growth. On the other hand, Stotsenburg (MS '15) found that mothers fed on a table scrap diet produced a larger number of fetuses than those fed on bread and milk.

As to the size of the litters at different periods in the life of the female, there are a few observations. Lloyd ('09 a) in his studies on two strains of the house rat, published tables which he interpreted to mean that the number of individuals in a litter was independent of the body weight of the mother. Pearson ('10) however was able to show from Lloyd's data that in both groups the number in a litter increased with the body weight of the mother.

It seems probable however that the heavier rats were also older, as Pearson suggests, and that the proper interpretation of the increase in the size of the litter is to relate it with the age of the mother. In these groups none of the animals were beyond the prime of life and hence the explanation is very probably correct.

There is now available some detailed information on the relation between the weight and age of the mother and the characters of the young.

A study of 11 litters of common albino rats containing 91 young bred by King (MS '15) at The Wistar Institute, gives

the average individual birth weight for the male as 4.72 grams and for the female 4.56 grams.

The data from these 11 stock litters used for tables 3, 4, 5, 6 have not been published elsewhere in a separate form. In the paper by King ('15), however these data are combined with corresponding data for the inbred Albinos to form similar tables. The results obtained from the stock data here given are quite in agreement with those from the combined data of King ('15). The birth weight may be modified by a series of conditions as shown in the following tables.

TABLE 3.

Influence of the age of the mother on birth weight

NUMBER OF	MOTHER		AVERAGE WEIGHT-INDIVIDUALS		
MOTHERS	Body weight	Age in days	Males No.	Females No.	
	gms.				
4)	165	114	4.50 (12)	4.52 (20)	
3)	201	143	4.52 (14)	4.49 (14)	
(4)	225	217	4.97 (18)	4.81 (13)	

Table 3 shows that with increasing age up to 217 days the individual birth weight increases with the age of the mother. At the same time it is to be seen that the body weight of the mother also increases.

When the same data are arranged according to the bodyweight of the mother, we get the relations shown in table 4.

TABLE 4

Influence of weight of mother on birth weight

NUMBER OF	MOTHER		AVERAGE WEIGHT-INDIVIDUALS		
MOTHERS	Body weight	Age in days	Males	Females	
	gms.				
(4)	165	114	4.53 (12)	4.40 (20)	
(3)	200	150	4.65 (14)	4.55 (16)	
(4)	226	211	4.88 (18)	4.76 (11)	

Here the birth weight increases with the increasing bodyweight, but the age is also increasing in the successive groups. The influence of the size of the litter on birth weight does not give regular results, but if we take the extreme records, we find that in the small litters of 6.5 the individual birth weight is higher than in the large litters of 10 or more (table 5).

The failure to get regular results is probaby due to the small number of cases here used.

TABLE 5

The influence of the size of the litter on the individual birth weight

NUMBER OF MOTHERS	MOTHER			AVERAGE WEIGHT-		
ACTION .	Body weight	Age in days	No. in litter	Mates	Females	
	gms.					
4)	195	165	6.5	4.99 (14)	4.65 (12)	
3)	199	149	8.3	4.56 (13)	4.42 (12)	
4)	195	139	10.0	4.60 (17)	4.53 (23)	

Finally, if we take the individual birth weights as the criterion and compare the birth weights under 4.5 grams (for the male) with the birth weights of 5 grams or more (for the male) it appears that the heavier birth weights are associated with the heavier weight of the mother—as we should expect from table 4. At the same time it is to be noted that the age at which the heavier birth weights are recorded is greater.

TABLE 6

The individual birth weight in relation to body weight of mother

NUMBER OF	MOTHER		AVERAGE WEIGHT-INDIVIDUALS		
MOTHERS	Body weight	Age in days	Males	Females	
	gms.	-			
(6)	179	133	4.37 (23)	4.28 (28)	
(3)	201	144	4.96 (13)	4.80 (14)	
(2)	244	263	5.31 (8)	5.26 (5)	

These relations exhibited by table 6 and based on this small number of stock Albinos agrees with those already determined by King on a much larger series which combines the data here used with a large series of litters from inbred Albinos.

This agreement shows that in these respects there is no significant difference between the stock Albinos and the inbred strain

26 BIOLOGY

of King. The general conclusion which King reaches is that increasing weight or increasing age of the mother (the two being correlated) give a heavier birth weight, while the increase in the number in a litter tends to diminish the individual birth weight. There is to be observed also a diminution in birth weight in those litters born of mothers below the standard in size, or suffering from infectious disease. With the larger material just mentioned, it is also possible for King and Stotsenburg ('15) to show a modification of the birth weight in relation to the place of the litter in the series of litters born by a given female, see table 7.

TABLE 7
Showing the sex ratios and average number of young in 75 litters of stock albino rats. Data arranged according to the position of the litters in the litter series

LITTER SERIES	NUMBER OF LITTERS	NUMBER OF INDIVIDUALS	MALES	FEMALES	NUMBER MALES TO 100 FEMALES	AVERAGE NO. YOUNG PER LITTER
1	21	131	72	59	122.0	6.2
2	21	162	85	77	110.4	7.7
3	18	127	64	63	101.6	7.0
4	15	96	41	55	74.5	6.4
	75	516	262	254	102.1	6.8

The observations indicate that the number of individuals in the litter generally increases from the first to the second litter, and after that decreases. These results would quite accord with Crampe's conclusions. According to Crampe ('84) the second litter of albino rats is the best. The majority of albino females do not produce more than four or five litters.

7. Recognition of sex. The recognition of sex through external characters in the young rat has been studied by Jackson ('12). He finds in brief that the male, as contrasted with the female, may be recognized by (1) The larger size of the genital papilla; (2) the greater ano-genital distance (see table 8); (3) the absence of clearly marked nipples. (This test is applicable only up to the age of 16 days, i.e., before the development of hair on the ventral surface.) (4) Small extent of the bare area just ventral to the anus (test applicable only after the 16th day).

As a rule the descent of the testes occurs about the fortieth day of age or somewhat earlier. The following is a condensed form of Jackson's table for the ano-genital distance.

TABLE 8
Ano-genital distance in young albino rats of various ages

AGE	NUMBER O	F EACH SEX		AVERAGE GROSS BODY WEIGHT		NO-GENITAL
	Male	Female	Male	Female	Male	Female
			gms.	gms.	gms.	gms.
New born	10	12	5.7	5.4	2.8	1.2
7 days	17	26	11.0	10.4	5.2	2.7
14 days	13	15	19.5	18.2	8.2	4.9
20 days	19	26	27.4	27.4	12.0	7.0
42-50 days	19	13	73.3	71.0	21.0	13.0

8. Sex ratio. On the basis of 30 litters comprising 255 individuals, Cuenot ('99) reports among albino rats—when the litters are examined shortly after birth—105.6 males to each 100 females.

King ('11 b) in 80 litters containing 452 individuals, found 107.3 males to 100 females, and in a later series of 120 litters (which includes the 80 litters just mentioned) containing 690 individuals, a sex ratio of 107.8 males to 100 females. Finally, in a group of 814 litters, comprising 5691 individuals, King and Stotsenburg ('15) found 108.1 males to 100 females.

In a thriving colony therefore a ratio of about 108 males it to be expected. This however is subject to a seasonal variation. At the two periods of greatest reproductive activity—in the spring (March—May) and again in the autumn (September—November) the proportion of males (the sex ratio) is low.

In the first litters of young females the sex ratio tends to be higher than in the later litters—but no relation of sex ratio to size of litter has been found (King and Stotsenburg, '15).

9. Body weight according to sex—at maturity. At maturity the body weight of the male Albino is much greater than that of the female. According to our records for the common strain—ages not known—the four largest males thus far examined weighed 320, 327, 343 and 438 (fat) grams respectively, and the four largest females 280, 287, 319 and 359 (fat) grams. In Albi-

28

nos of the common strain, the following maximum weights for each sex at known ages have been observed by King (MS '15).

TABLE 9
Body weight in grams

AGE IN DAYS	MALES	FEMALES
395		284
425	397	201
455	409	
485	437	\begin{cases} 265 \\ 324 \end{cases}

10. Behavior. a) The normal activities of the rat under natural conditions have been studied and described by a number of observers (see references).

b) As the albino rat is easily tamed and responds readily to training it has already been used for a number of studies in which behavior tests have been employed. Studies have been made for example on imitation, temperament, the influence of practice, retentiveness, the rôle of the several organs of sense and the relation of the learning rate to age and to the relative brain weight (see references).

BIOLOGY: REFERENCES

Life history. Donaldson, '08. King, '13. Kirkham, '10. Kirkham and Burr, '13. McCoy, '09. Slonaker, '07, '12. Stewart, 1898. Watson, '03.

Span of life. Donaldson, '08. Slonaker, '12, '12 a.

Puberty, Ovulation, Menopause. Hewer, '14. Kirkham and Burr, '13. Sobotta and Burckhard, '10.

Period of gestation. King, '13.

Superfecundation. King, '13.

Fecundity and weight at birth. Crampe, '84. King, '15. King and Stotsenburg, '15. Kolazy, 1871. Lloyd, '09 a. Pearson, '10. Sobotta and Burckhard, '10. Watson, '06 a.

Recognition of sex. Jackson, '12.

Sex ratio. Cuenot, 1899. King, '11 a, 11 b. King and Stotsenburg, '15.

Body weight according to sex. King and Stotsenburg, '15.

Behavior. a) Under natural conditions. Advisory Committee, '12. Bechstein, 1801. Bell, 1837–1874. Buckland, 1859. Buffon, 1749–1789. Dehne, 1855. Fisher, 1872. Hewett, '04. Kolazy, 1871. Lambert, '10. Lantz, '10. Manouvrier, '05. Mitchell, '11. b) Under experimental conditions. Adams, '13. Basset, '14. Berry, '06. Carr and Watson, '08. Cesana, '10. Hubbert, '14, '15. Hunter, '12, '13. Lashley, '12. Richardson, '09. Small, 1899, 1900, '01. Szymanski, '14. Ulrich, '13. Vincent, '12, '13, '15, '15 a, '15 b. Watson, J. B., '03, '07, '13, '14.

CHAPTER 2

HEREDITY

1. General.-2. Coat color

Inbreeding brother and sister from the same litter of Albinos for twenty successive generations (King, 1911–1915, MS) has not been followed by any physical deterioration.

Studies on heredity in the Norway rat have been concerned mainly with the inheritance of coat color. The gray coat of the wild Norway is dominant in crosses between the wild gray and the Albino. The Albinos in the F_2 generation appear in the proportion of one Albino to three pigmented. In the F_2 and in the later generations pied animals may be had and the color pattern both fixed and modified by selection (Castle, '12, 12 a, and Castle and Phillips, '14). The inheritance of brain weight in the reciprocal crosses Norway \times Albino has been studied by Hatai (MS '13).

The references to the literature are grouped into 1) those touching the general problem and 2) those especially applying to coat color.

HEREDITY: REFERENCES

General. Castle, '11, '12, '12 a. Castle and Phillips, '14. Crampe, 1883,
 Darwin, 1883. Hagedoorn, '11, '14. Hatai, '11 a, '12. Lloyd, '08, '09, '11. Pearson, '11. Przibram, '07, '10, '11. Ritzema-Bos, 1894. Yerkes, '13.

Coat color. Bateson, '03. Castle, '14 a, '14 b. Castle and Phillips, '14.
 Crampe, 1877. Doncaster, '06. Fischer, 1874. Frédéric, '07. Haacke, 1895.
 MacCurdy and Castle, '07. Morgan, '09. Mudge, '08, '08 a, '09.

CHAPTER 3

ANATOMY

1. Anatomy, general. 2. Embryology. a) Spermatogenesis. b) Ovulation. c) Earlier stages. d) Later stages. 3. Bones, joints and connective tissues. a) Teeth. 4. Muscles. 5. Vessels and lymphatics. a) Blood. 6. Nervous system. a) Central 1) Brain. 2) Spinal cord. b) Peripheral. 1) Cerebral. 2) Spinal nerves and ganglia. 3) Autonomic. c) Technical methods. 7. Sense organs. 8. Integument. 9. Gastro-pulmonary system. a) Gastro-intestinal system. b) Pulmonary system. 10. Uro-genital system. 11. Endocrine system.

Since this book purposes to present mainly those results that can be systematically arranged and are in a quantitative form—there will appear several divisions of this chapter marked only by references to the literature.

Further, even in those divisions for which there are some available data it happens in many instances that the presentation of them can be better given in the chapters which treat of growth—and in such instances the reader is merely referred to the later place of presentation. These general statements apply to the subsequent chapters as well.

- 1. Anatomy, general. In only two instances has the rat been used as the basis for a general presentation of mammalian anatomy. These are in the books by Martin and Moale, 1884, and Goto, 1906. The remaining references are to studies which apply to portions or systems only (see classified references—at the end of the chapter).
- Embryology, a) Spermatogenesis. According to Hewer ('14):

In the newborn animal, active mitosis is occurring in the testis, and at $3\frac{1}{2}$ weeks the spermatogonia can be distinguished from the spermatocytes. No lumen begins to appear in the tubules as a rule until 7 weeks. At 8 weeks spermatids are easily distinguishable: at $8\frac{1}{2}$ weeks isolated spermatozoa may occasionally be seen. At 9 weeks typical ripe spermatozoa are plentiful, but the fully formed epididymis contains no free spermatozoa. At 10 weeks all the tubules show active

spermatogenesis: the second crop of spermatozoa is appearing, while the first crop can be seen in the epididymis. Reduced number of chromosomes 19. Allen (MS '15).

b) Ovulation. According to the observations of Sobotta and Burckhard, '10, ovulation is simultaneous in both ovaries—as many as 13 egg cells have been found discharged. The ovum—after fixation with Zenker's solution containing somewhat less than the usual proportion of acetic acid—measured 60–65 μ in diameter with a nucleus about 25 μ in diameter. The reduced number of chromosomes is 16. The full number of chromosomes 32. The authors incorrectly assume that the common Albino is a variety of Mus rattus.

For the diameter of the living unsegmented egg Kirkham and Burr ('13) give 79 μ as a mean value.

For the volume of the ovum see table 11.

c) On the early stages of development we have the observations of Huber ('15 a). His description is as follows:

The material at hand permits the conclusion that in the albino rat the segmenting ova pass from the oviduct to the uterine horn at the end of the fourth day after the beginning of insemination, probably in the 12-cell to 16-cell stage. With the beginning of the fifth day, as will appear from further discussion, all of the ova are to be found in the uterine horn.

The following summary of the data gained by a study of the models of oviducts containing ova in stages from the pronuclear to 12-cell to

TABLE 10
Showing the distance of the ova from the fimbria at various ages. Based on table 3, Huber ('15a)

RECORD NUM- BER	SIDE RECON- STRUCTED	AGE	NUM- BER OF OVA	STAGE	LENGTH OF OVI-	DISTANCE OF OVA	RELATIVE LENGTH OF TUBE TRA- VERSED.
106	R.	1 day	8	Pronuclear	cm. 3.2	cm. 0.8	0.25
59	R.	2 days	4	2-cell	2.291	1.4	0.63
62	L.	2 days 22 hrs.	5	2-cell	2.451	2.0	0.84
50	R.	3 days 1 hour	4	4-cell	2.8	2.5	0.90
51	L.	4 days	5	12 to 16 cell	2.86	2.86	1.00

¹ Not the entire length of oviduct was available for reconstruction.

16-cell stages in which latter stage transit to the uterine horn occurs, is presented to indicate rate of transit within the oviduct. The regularity of the rate of transit as revealed in the summary may perhaps speak for the trustworthiness of the age data as concerns my material.

It will be observed that the ova approach the uterine end of the oviduct while in the 2-cell stage (see table 10); transit through the last portion of the oviduct, where the greater part of the segmentation occurs, being relatively slow. It is hoped that these data, for the accuracy of which I am dependent on reconstructions, may be of service to others who may desire to collect segmentation stages of the albino rat.

In order to obtain the volume changes of the ova during transit through the oviduct, beginning with the pronuclear and extending to the 8-cell to 11-cell stages, reconstructions were made at a magnification of 1000 diameters of ova presenting the stage in question. The respective volumes of these models were determined and the data reduced to the actual volumes.

Table 11

Volumes of ova and embryos. Based on table 4 Huber ('15 a)

RECORD	A	GE		ACTUAL VOL. OF	AVERAGE VOL. PEI
NUMBER	Days	Hours	STAGE	C. MM.	STAGE GIVEN IN C. MM.
106	1	0	Pronuclear	0.000151	0.000156
106	1	0	Pronuclear	0.000143	
106	1	0	Pronuclear	0.000158	
106	1	0	Pronuclear	0.000171	
59	2	0	2 cell	0.000162	0.000173
59	2	0	2 cell	0.000183	
50	3	1	4 cell	0.000183	0.000162
50	3	1	4 cell	0.000155	100000000000000000000000000000000000000
57	3	17	8 cell	0.000189	0.000184
57	3	17	8 cell	0.000160	800000000000000000000000000000000000000
57	3	17	8 cell	0.000187	
57	3	17	8 cell	0.000182	
57	3	17	8 cell	0.000200	
57	3	17	11 cell	0.000210	0.000210

The uniformity of the figures giving the actual volume of the egg mass, as determined by the weight of the water displaced by the models of the respective ova reconstructed, leads me to feel that the errors committed in reconstruction were not serious. The last column of the table, giving averages, is of interest since it shows a very slight increase in the volume of the egg mass during segmentation and transit through the oviduct. Following the pronuclear stage, which, as has been seen, extends through a relatively long period and into the beginning of the second day, by which time the ova have migrated about one-fourth of

the length of the oviduct, there occurs only three successive mitotic divisions, including the first segmentation division, namely mitoses resulting in 2-cell, 4-cell, and 8-cell stages while the ova are in transit in the oviduct. In making this statement it is assumed that in the successive segmentations, the several cells divide synchronously, which is not in conformity with the fact. These three mitotic divisions are spaced at intervals of about 18 hours.

In the next following division, the fourth, the ovum passes from the oviduct to the uterine horn. Since the normal gestation period of the non-lactating albino rat is only 21 to 23 days, this slow rate of increase in volume and multiplication of cells during the first four days of development is of especial interest and is very probably to be accounted for by the inadequacy of the food supply of the ovum during its transit

through the oviduct.

d) Later stages. Observations have been made by Stotsenburg (MS '15) on the daily increase in the weight of the fetus from the 13th to the 22nd day after insemination. The data and graph are given in chapter 5, pp. 64 and 65.

3. Bones, joints and connective tissues. On the following page is an enumeration of the bones forming the skeleton of the rat.

For data on the growth of the entire skeleton see Chapter 6. Skull measurements have been made by Hatai ('07 c). The following description is extracted from his paper.

For this study 53 male and 51 female skulls of mature Albinos (rats more than 150 days old) were measured. These skulls had been carefully cleaned and dried at room temperature. The following measurements were made with vernier calipers: 1) the length of the entire skull; 2) the fronto-occipital length; 3) the zygomatic width; 4) the length of the nasal bone; 5) the height of the skull; 6) the width of the cranium or the squamosal distance. In every case the maximum length alone was recorded in millimeters.

The horizontal straight line joining the tip of the nasal bone to the end of the occipital bone is called the length of the entire skull. This however is not exactly equal to the sum of the length of the nasal bone

and that of the fronto-occipital.

The fronto-occipital length was determined in the following way: Since the length measured with the calipers from the tip of the nasal bone to the posterior end of the inter-parietal bone is usually less than the length measured from the same point to the end of the occipital bone, both measurements were taken (see fig. 1). The difference between these two measurements was added to the length from the tip of the frontal bone to the end of the inter-parietal bone, and the sum was called the fronto-occipital length.

The width of the cranium (squamosal distance) was determined by

	LIST OF BONES	
	Nasals	Sternum 6
	Maxillae	Shoulder Scapula 2 girdle Clavicle 2
	Palatines	$\begin{array}{c} \text{Pelvic} & \begin{cases} \text{Ilium} & 2\\ \text{Ischium} & 2 \end{cases} \\ \end{array}$
Cranic	Ethmoid	Os pubis 2 Humerus
- Committee	Presphenoid 1	
	Parietals	
		Radius 2
		(0
	Interparietal 1	Carpus 16
	Occipital	Fore feet Metacarpus 10
Skull {	Periotic capsules 2	Phalanges 28
SKUII (Tympanic bones 2	_
	Ear Malleus 2	Femur
	bones Incus 2	Tibia 2
	(Stapes 2	Fibula 2
Mandi	ble 2	
		∫Patellae 2
(Teeth.		Sesamoid { 2 back of
Haraid		bones Femur 4
Hyoid		(m
(0		Tarsus 16
	ervical 7	Hind feet Metatarsus 10
	orsal or thoracie	Phalanges 28
	ımbar 6	
	eral 4	281
(Ca	udal (about) 30	Nails (20) omitted
	ertebro-sternal 14	
Ribs { Ve	ertebro-costal 6	
	ertebral 6	

taking the maximum distance between the two points (right and left) where the zygomatic bones rest on the lateral walls of the cranium. The height of the skull was determined by measuring a perpendicular distance between the greatest convexity of the parietal bone in the median line and the junction line between the basi-occipital and the basi-sphenoidal bones on the ventral surface.

The cranial capacity was determined in the following way: The skull was held vertically, with the nose downwards and was filled with fine shot (no. 11) to the upper level of foramen magnum and then the nose of the skull gently struck twice against the palm of the hand.

The space thus formed was again filled. Although this is a simple procedure yet it needs the greatest care to produce uniform results.

TABLE 12

Giving the mean values for several measurements on the cranium, together with the standard deviation and the coefficient of variation and the

		+	MEAN	AN	STANDARD DEVIATION	DEVIATION	COEFFICIENT	COEFFICIENT OF VARIATION	STAN 9
		-		Difference		Difference		Difference	NO. 03
	Length of the entire cranium	800	43.255±0.166 41.549±0.119	1.706 ± 0.204 3.944%	1.786 ± 0.117 1.256 ± 0.084	0.530 ± 0.144	4.129±0.271 3.016±0.202	1.113±0.338	53
	Zygomatic width	· 00	21.745±0.109 20.925±0.083	0.820±0.137 3.771%	1.177 ± 0.077 0.876 ± 0.059	0.301 ± 0.064	5.412 ± 0.356 4.186 ± 0.280	1.226 ± 0.453	53
819	Length of the nasal bone	50 O+	16.958 ± 0.096 15.962 ± 0.075	1.266±0.122 7.465%	1.038 ± 0.068 0.793 ± 0.053	0.245±0.086	6.121 ± 0.403 5.053 ± 0.338	1.068±0.526	53
35 amillimet	Fronto-occipital length	50 O+	27.264±0.093 26.373±0.085	0.911±0.126 3.341%	1.007 ± 0.066 0.904 ± 0.060	0.103 ± 0.090	3.693 ± 0.242 3.427 ± 0.229	0.256±0.334	53
ıuı	Squamosal distance	°0 0+	15.273 ± 0.010 15.056 ± 0.039	0.217 ± 0.040 1.420%	0.338 ± 0.022 0.409 ± 0.027	-0.071±0.036	2.213 ± 0.145 2.716 ± 0.181	-0.503±0.232	53
	Height of cranium	°5 0+	11.493 ± 0.049 11.139 ± 0.035	0.354±0.065 3.080%	0.526 ± 0.034 0.375 ± 0.025	0.151 ± 0.043	4.576 ± 0.300 3.366 ± 0.225	1.210±0.375	53
	(Length x width x height)*	° 0+	16.875 ± 0.044 16.423 ± 0.036	0.452 ± 0.056 2.678%	0.478 ± 0.031 0.382 ± 0.026	0.096 ± 0.040	2.832 ± 0.186 2.326 ± 0.155	0.506 = 0.242	53
Cra	Cranial capacity in gms. of shot	° 0+	10.896±0.068 10.368±0.070	0.528 ± 0.098 4.845%	0.735 ± 0.048 0.743 ± 0.050	-0.008±0.069	6.745 ± 0.444 7.166 ± 0.481	-0.421 ± 0.655	53
Вос	Body-weight in gms	50 O+	9 214.886±5.318 9 167.345±2.739	47.541±5.982 22.170%	52.887±3.760 20.474±1.605	32.413 ± 4.088	25.076 ± 2.675 12.235 ± 0.974	12.841 ± 2.847	45

By practice Hatai has been able to reduce the difference between the first and second filling to less than one per cent. The cranial capacity thus determined in the terms of shot weight can be transformed into brain weight as follows: by dividing the weight of the shot in the case of the males by 5.980 and in the case of the females by 6.009. The relations between the cranial capacity, in terms of shot weight, and the body weight are represented by the formulas (8) and (9).

TABLE 13

Showing the range of variates and rate of increase for various characters according to sex Hatai ('07 c)

		MALE		FEMALE				
	Mini- mum	Mean1	Maxi- mum	Maxi- mum	Mean ¹	Mini- mum		
	mm.	mm.	mm.	mm.	200 200 .	mm.		
Length of the entire cran-								
ium	39.4	43.3	47.4	44.5	41.5	38.9		
Rate	100	100	100	100	100	100		
Zygomatic width.	19.6	21.7	24.8	23.4	20.9	18.9		
Rate	49.8	50.2	52.3	52.5	50.3	48.5		
Length of the nasal bone.	14.7	17.0	18.7	17.8	15.7	14.4		
Rate	37.3	39.2	39.3	40.0	37.7	37.0		
Fronto-occipital length.	24.9	27.3	28.8	28.2	26.4	24.9		
Rate	63.2	63.0	60.7	63.3	63.5	64.0		
Squamosal distance.	14.6	15.3	16.2	16.2	15.1	14.4		
Rate	37.0	35.3	34.1	36.4	36.2	37.0		
Height of cranium	10.4	11.5	13.0	12.2	11.1	10.3		
Rate	26.4	26.5	27.4	27.4	26.8	26.4		

¹ Taken from Table 12.

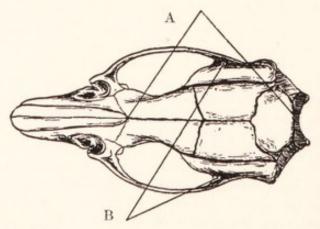


Fig 1. A. Fronto-occipital length. B. Squamosal distance.

The greatest difference found between the measurements of the skulls for the two sexes is in the nasal bones, which are nearly 2 per cent longer in the male skull. The greater relative length of the nasal bones in the male may be regarded as a secondary sexual character (Hatai).

a) Teeth. Addison and Appleton ('15) report as follows on the size and growth of the incisor teeth in the Albino.

The dental formula of the albino rat is

$$I_{\overline{1}}^{1} C_{\overline{0}}^{0} P_{\overline{0}}^{0} M_{\overline{3}}^{3}$$

There is only one set of teeth, and hence the dentition is monophyodont. The time of eruption of the various teeth extends over a period of $3\frac{1}{2}$ weeks. The incisors are the first to appear, viz., at 8 to 10 days after birth. The first and second molars erupt at about the 19th and 21st days respectively, and it is after this latter period that the young animals may be weaned and are able to maintain an independent existence, as far as food is concerned. The third molars are delayed until two weeks later and do not appear until about the 35th day.

The incisors are permanently-growing (or rootless) teeth, while the molars have a definite limited period of development and acquire roots. A wide diastema separates the incisors from the molars as may be seen by reference to figure 1 (loc. cit.) The incisors are strongly curved and Owen (1840–1845) has described the lower incisor as being the smaller segment of a larger circle, and the upper incisor as the larger segment of a smaller circle. In the case of lower incisor of the albino rat this statement needs a slight modification.

The times of the early stages of development of the incisors were as follows:

14 day fetus-slight thickening of oral epithelium.

15 day fetus—distinct thickening and growth inwards of oral epithelium.

16 day fetus—dental ledge and beginning of flask-shaped enamel organ.

17 day fetus—dental papilla with crescentic enamel organ capping it.

19 day fetus—both ameloblasts and odontoblasts differentiated.

New-born animal—enamel and dentine formation begun.

8 to 10 days-eruption of the tooth.

The rate at which the teeth increase in length during their formative period and prior to attrition is given in the following table:

TABLE 14

	LENGTH O	F INCISORS
	Upper	Lower
	mm.	mm.
1 day old	2.3	3
4 days old	3.6	5
7 days old	5	7-8
10 days old	7	- 11

Average growth of upper incisor 0.52 mm. and of lower incisor 0.88 mm. per day.

TABLE 15

	INCIS	ORS
	Upper	Lower
Total thickness. Outer fibrous layer. Pigmented portion of outer fibrous layer. Inner plexiform layer.	# 100-110 30-40 8-10-12 70	140-150 20-30 6-8 120-125

TABLE 16

	DAYS	41 DAYS	10 WEEKS	15 WEEKS	5 MONTHS	8 MONTHS	10 MONTHS
	mm.	mm.	mm.	mm.	mm.	mm.	mm.
Naso-occipital length	29.7	32.5	39	40	43	44	46.5
Interzygomatic ¹	13.7	14	14.5	14.6	15.4	15.1	15.5
Upper diastema	7.4	9.5	10	11.4	12.3	12.5	13
Upper incisor—total length Upper incisor—extra alveolar	12.8	15	18.3	20.3	23.3	23.7	26.2
length	5.1	5.5	7	8.4	8.7	9	9.3
Lower diastema	4.6	5	5.6	6	6.7	7	6.8
Lower incisor—total length Lower incisor—extra alveolar	18.1	21.7	25.5	26.4	29.4	29.9	31.3
length	6.5	7	10.5	11.4	11.6	12	12.4

¹ Same as 'squamosal distance,' figure 1, p. 36.

Throughout life growth continues, and in the adult animal is on the average 2.2 mm. per week in the upper and 2.8 mm. per week in the lower incisor.

In a five months animal the thickness of the enamel and its constituent layers measured in the mid-line of the teeth is given in table 15.

Measurements of the incisors and skulls of animals of different ages were made and are shown in table 16.

The lower incisor of a five months animal forms a segment of about four-fifths of a semicircle (140–145°).

 Muscles. Morpurgo (1898) has furnished data on the Musc. radialis of the albino rat; giving the number of muscle fibers and of nuclei at different ages (table 17).

	TABLE	A1	
AGE	NO. OF MUSCLE FIBERS	NO. OF NUCLEI PER CUBIC MM.	AREA OF CROSS SECTION IN MM. X 37 DIAM.
Newborn	5919	570645	552
15 days	7252	357764	868
(very well grown)	7587	347343	1010
30 days	7625	139861	2766
420 days	8014	37542	11817

TABLE 17

5. Vessels and lymphatics. a) Blood. Specific gravity 1.056 (Sherrington and Copeman, 1893). The diameter of the erythrocytes is as follows (White, '01):

FOR M. DECUMANUS	DIAMETERS IN #
Determination by (Treadwell)	6.5
Determination by (Wormley, 1888)	7.0
Determination by (Gulliver, 1875)	6.5

Percentage of water in the blood. Hatai (MS '15) has determined the percentage of water in the blood of a small series of Albinos.

The Albinos were from The Wistar Institute stock strain, grown on the scrap diet and examined before the day's feeding. The rat was chloroformed, but before the heart ceased beating it was exposed in situ, the tip clipped away and the blood from it caught in a small glass weighing bottle. The fresh weight was immediately taken and after drying at 95°C. for a week the weight of the residue was obtained.

The results are given in table 18.

TABLE 18
Percentage of water in the blood of the Albino, Hatai (MS. '15)

SEX	NO. OF CASES	BODY WEIGHT RANGE	MEAN	PERCENTAGE OF WATER IN BLOOD		
				Range	Mean	
			gms.			
M	4	106-127	121	79.47-81.05	80.09	
M	4	135-194	157	79.05-81.15	80.00	
F	5	72-100	88	78.13-81.12	79.88	
F	6	105-125	117	80.25-80.97	80.30	

In 50 rats (27 males + 23 females) between the weights of 50 and 150 grams the average number of erythrocytes was found by Chisolm ('11) to be 8.8 millions and the average hemoglobin content 87.8 per cent as measured on the human scale.

TABLE 19
Rivas (University of Pennsylvania MS. '14). Observations on the Albino rat blood—normal.

PERCENTAGE	IN 1 Ct	J. MM.	PERCENTAGES OF					
OF HEMOGLOBIN	Erythro- cytes in millions	Leuco- cytes	Poly- morph.	Small lymph.	Large lymph.	Eosinoph.	Basoph	
85	8.6	8,800	68.5	24.9	6.2			
85	9.2	7,200	56.5	34.4	9.1	0.4	0	
88	8.2	8,400	47.5	44.9	5.9	3.0	0.85	
90	7.4	8,000	44.9	49.3	5.2	0.9	0	
90	8.0	8,000	69.9	25.4	4.2	0.7	0.70	
90	8.4	9,400	42.4	50.5	4.0	0.0	0	
93	8.4	16,000	43.6	51.9	4.3	0.5	0.26	
95	. 7.6	11,600	71.6	20.7	4.1	0.6	0	
97	7.6	8,800	56.4	37.6	4.5	1.5	0	
.0000	8.4	9,400	51.2	42.1	6.2	0.7	0	

In addition the observations of Rivas, University of Pennsylvania (MS '14) are given in table 19. The data are arranged according to the increasing haemoglobin content.

For the wandering cells we have tables 20 and 21 by Kanthack and Hardy, 1894.

TABLE 20

Showing the percentage and size of the various forms of the wandering cells of the blood in the rat

TYPE OF CELL	GRANULATION	PERCENTAGE OF TYPE	DIAMETERS IN #
01:1-	∫ Coarse	2	10
Oxyphile	Fine	45	7-8
Basophile	(absent)		
Hyaline		2	8-10
Lymphocytes		50	6

Shows the percentage and size of various forms of the wandering cells in the peritoneal fluid of the rat

TABLE 21 (From the same authors)

TYPE OF CELL	GRANULATION	PERCENTAGE OF TYPE	DIAMETERS IN P
Oxyphile	{Coarse Fine	20-40 (absent)	10
Basophile ¹	Coarse Fine	5-10 (absent)	18
Hyaline Lymphocytes		(65-80)	13 6.5

¹ Basophile cells in connective tissue 23 μ in diameter.

6. Nervous system. a) Central. 1) Brain. Specific gravity 1.050-1.056, Reichardt ('06). For brain weight see Chapter 7, p. 90, and table 68. For the percentage of water see Chapter 8, p. 176 and table 74. For the chemical composition see Chapter 9, p. 181 and tables 80, 81. Cell division in the central nervous system continues after birth. The observations of Hamilton ('01) are given in table 22.

TABLE 22

The number of mitoses in 13 consecutive sections, each section 6.75 μ in thickness, from the brain and spinal cord of rats at different stages of development. The fetus weighed 0.78 gms. and had a crown-rump length of 17 mm. It was probably at 17.5 days of gestation.

	1	BRAIN	
STAGE OF DEVELOPMENT	Ventricular mitoses	Extra-ventricular mitose	
Foetus	2196	966	
Birth	390	595	
24 hours	24	386	
4 days	115	443	
	LUMBAR CORD		
	Ventricular mitoses	Extra-ventricular mitoses	
Foetus	28	18	
Birth	8	45	
24 hours	1	13	
4 days	8	64	

For the first 25 days after birth Allen ('12) has obtained the results given in table 23.

TABLE 23

Showing the number of mitoses per cubic millimeter of nerve tissue in the central nervous system of the stock Albino at certain levels. The figures are taken from calculations of the volume of tissue and based on the number of mitoses in the consecutive sections at each level of the cord, five in the largest portion of the cerebellum and five in the cerebrum in the region of the optic chiasma. The letters (a) (b) and (c) refer to different rats of the same age

		CORD			
AGE, DAYS	Cervical	Thoracic	Lumbar	CEREBELLUM	CEREBRUM
1	208	115	259	1597	430
4	437	176	351	2111	447
6	446	236	320		193
7				4848	
2	46	75	14	839	37
20	00	00	00	(c) 520	
20	00	00	00	(b) 61	(b) 27
90	00	00	00	(a) 00	(a) 18
5	00	00	00	00	27

The diameters of the Purkinje cells have been studied by Addison, '11.

The Albinos were from the stock colony of The Wistar Institute, reared on the scrap diet. The cerebellum was fixed in Ohlmacher's solution (King, '10) imbedded in paraffin and stained with carbol-thionine and acid fuchsin. The values for the respective diameters given in table 24 are in each instance averages of ten measurements from the largest cells found in equivalent areas at the several ages. The measurements stop at 20 days of age. After this age there is but little change in the diameters of the largest cells.

TABLE 24

Diameters of Purkinje cells and their nuclei

	DIAMETERS IN μ				
AGE IN DAYS	Cell	Nucleus			
Birth	12×7	8×6.3			
3	14×8	8.3×7.4			
8	18×12	11×8.5			
10-20	21×14	12×9.0			
	(largest) 24 × 19				

- 2) Spinal cord. For the weight of the spinal cord see Chapter 7, p. 90, and table 68. For the percentage of water see Chapter 8, p. 176, and table 74. For the chemical composition see Chapter 9, p. 180 and table 80. Cell division in the spinal cord after birth has been studied by Hamilton, '01, see table 22 and Allen (12) see table 23.
- b) Peripheral. 1) Cerebral nerves. Fortuyn ('14) counted 3000 myelinated fibers in the n. cochlearis of the Norway rat.

Boughton ('06) studied the increase with age (body weight) in the number of myelinated fibers in the oculomotor nerve in the albino rat and measured the areas of the entire fiber and the axis in osmic preparations. The results are given in table 25.

2) Spinal nerves and ganglia. One of the larger spinal ganglia from a cervical nerve root of an Albino weighing 140 grams was fixed in a formalin-acetic sublimate mixture (6, loc.

TABLE 25
Oculo motor nerve

вог	OY WEIGHT IN	NU	NUMBER OF FIBERS			AREAS IN μ ²		
GR	AMS AND SEX	Large	Small	Total	Entire fiber	Axis	OF AXIS	
11	M	764		764				
14	M	880	38	918	13.2	6.6	50	
44	M	885	220	1105				
51	F	926	227	1153				
80	F	887	290	1177	41.8	21.2	51	
109	F	888	329	1217				
172	M	882	465	1347				
192	M	932	316	1248				
213	M	925	383	1308				
218	M	926	471	1397				
278	M	901	566	1467				
318	M	930	379	1309				
414	M	928	408	1336	56.7	27.3	48	

cit. p. 3) by Hatai ('01) and cut in paraffin sections 6–7 μ thick.

Selecting cells according to size from large to small the measurements of the cell body and the nucleus were made as in table 26.

TABLE 26

		AVERAGE DIAMETERS IN μ		
SERIES	NO. OF CELLS	Cell body	Nucleus	
A	10	55×46	18 ×15	
a	10	38×25	15×14	
В	5	26×23	13×12	
b	5	19×17	10×10	

Further studies on the spinal roots and ganglia were made by Hatai ('02) and ('03 b).

From a series of male Albinos the spinal ganglia with accompanying dorsal root nerves were fixed in one per cent osmic acid and cut in paraffin. The measurements on this material Hatai ('02) are given in table 27. Incorporated in the same table

are the enumerations for the myelinated fibers in the ventral roots (Hatai, '03 b).

It was found that the number of myelinated fibers in the ventral roots diminishes from sections near the spinal cord to those near the spinal ganglion. The amount of the diminution decreases with the age (body weight) of the rat. The increase in the number of cells in the spinal ganglia from the small to the large rats is certainly due in part to the fact that in the small animals some of the smallest ganglion cells escape enumeration.

The increase in the number of myelinated fibers in the spinal roots with advancing age is due mainly to progressive myelination. Both roots at maturity still contain functional fibers without myelin sheaths (Ranson, '06).

Number of ganglion cells and number and size of myelinated root fibers in spinal
nerves from three levels of the spinal cord at five ages (body weights)
Results from Tables II, VI and VIII combined. Hatai ('02)
Also data on ventral root fibers from Hatai ('03 b)

	Y WEIGHT N GMS.	TOTAL OF MYELINATED VENTRAL ROOT FIBERS	TOTAL OF GANGLION CELLS	TOTAL OF MYELINATED DORSAL ROOT FIBERS	TOTAL COMPOSED OF MATURE FIBERS	IMMATURE FIBERS	MEAN DIAMETER IN \$\mu\$ of 20 largest dor SAL ROOT FIBERS ENTIRE	
Sal	10.3	558	10996	1998	1043	955	7.5	
Cervical	24.5	1007	9793	2569	2263	306	11.6	
e.	68.5	1302	11772	3683	3569	114	13.3	
	167.0	1474	12200	4227	4173	54	13.9	
M	264.3	1522		4028				
Thoracic	10.3	286	7142	607	283	424	4.8	
ra	24.5	24.5 43	434	7068	683	497	366	7.1
Pho	68.5	561	7611	1420	1259	161	8.9	
	167.0	613	7406	1522	1460	82	11.6	
I	264.3	772		1650				
3.r	10.3	333	8315	723	303	420	5.1	
흽	24.5	698	8200	911	678	233	8.0	
Lumbar	68.5	704	9514	1317	1181	136	11.3	
	167.0	1028	9442	1644	1565	79	12.0	
=	264.3	965		2102				

46

For the numerical relations of cells and fibers in the second cervical nerve data have been furnished by Ranson ('06).

TABLE 28

Second cervical nerve

Observations on normal male rats (Albinos.) Osmic acid fixation—paraffin sections

100 10 0 10		CELLS IN	NUMBER OF MYELINATED FIBERS		
AGE IN DAYS	BODY WEIGHT	GANGLION	Dorsal root	Ventral roo	
72	110	7721	2472	689	
72	110	8116	2394	660	
72	110		1959	590	
72	110		2217	591	
72	155	9343			
	161		2090	672	
240 (left side)	188	8624	2689	703	
240 (right side).	188		2891	773	
	302		2386	646	

When the number of myelinated fibers in the two rami on the distal side of the II cervical spinal ganglion is compared with the total number found in the two roots—a distal excess in the number of fibers is found. This is shown in table 29. The distal excess appears to be due to branching of the fibers in their course, Ranson ('06).

TABLE 29

BODY		IN ROOTS		DISTAL	EXCESS	IN RAMI			
WEIGHT GMS.	Ventral	Dorsal	Sum	Absolute	Percent- age	Sum	Ventral Ramus	Dorsal Ramus	
161	672	2090	2762	276	10	3098	708	2390	
302	646	2386	3032	257	8	3289	887	2402	

Enumerations of the myelinated fibers in the ventral roots of the II spinal nerve of the Albino have been made by Dunn ('12). Each record is the mean of two enumerations of rats of like age. Areas in μ^2 of the entire fiber and of the axis—together with the percentage value of the axis. Each entry is based on the mean of the 20 largest fibers. In this series there is a change

in the relative area of the axis with age, as well as a decrease in the total areas in the oldest group.

Giving for Albinos of different ages the numbers of myelinated fibers in the ventral root of the second cervical nerve and the areas of the fibers. Dunn ('12)

AGE, NUMBER, SEX	WEIGHT	NUMBER FIBERS	AVERAGE AREA TEN LARGEST FIBERS	AVERAGE AREA OF AXES IN μ ²	PERCENTAGE OF AXIS
	grams				
7 days					
Two females	8.59	368	17.2	10.6	61.6
Two males	9.33	366	22.3	13.9	62.3
14 days				1.	
Two females	20.92	542	38.5	18.1	47.0
Two males	21.33	565	32.9	15.2	46.2
36 days					
Two females	42.24	653	78.2	31.2	40.0
Two males	41.93	613	80.6	31.7	39.3
75 days					
Two females	136.70	560	115.4	49.6	43.0
Two males	169.55	668	116.9	52.8	45.1
132 days					
Two females	164.26	683	136.0	59.3	43.6
Two males	267.00	625	141.0	63.2	44.8
180 days					
Two females	212.50	518	168.8	75.9	44.9
Two males	264.80	609	201.3	98.2	48.7
270 days					
Two females	176.91	776	261.0	133.4	51.3
Two males	340.05	617	216.8	107.1	49.4
640 days					
Three males	334.47	864	170.7	78.2	45.8

From a study of the diameters of the cell bodies and their nuclei in the second cervical spinal ganglion of the adult Albino, values which apply to the mean of the entire cell 'population' of this ganglion have been obtained (Hatai, '07 b). The ganglion examined was from a mature male weighing 194 grams. The

ganglion was fixed in osmic acid and imbedded in paraffin. The mean values are as follows:

TABLE 31

	MEAN DIAMETER	STANDARD DEVIATION	COEFFICIENT OF VARIATION
	μ		
Cell body	28.6	14.9	18.4
Nucleus	13.1	1.8	13.7

On the basis of these observations, formula (12) was devised for computing the diameter of the nucleus from the diameter of the cell body.

For comparison with the data in table 31 see data in table 26 obtained by a different method of fixation.

The number of myelinated fibers in the peroneal nerve of the normal Albino is given from Greenman's observations ('13) in table 32. Ages not known.

TABLE 32

LEVEL OF SECTION COUNTED	BODY W 104 RIGHT N	F.	BODY W 117 RIGHT N	F.	BODY W 182 LEFT N	M.	AVERAGES	
1. Proximal	2240		2430		2192		2288	
mm		3.0		4.7		3.1		
2. Middle Distance from 2 to 3 in	2118		2292		2418		2276	
mm		4.5		2.3		3.3		
3. Distal	2392		2213		2364		2323	
Averages	2250		2312		2325		2296	

TABLE 33

Normal Albinos: Sectional area of ten largest in \(\mu^2 \); relation of axis to sheath

	PROXIMAL E	DISTAL END				
Body weight	Entire fiber	Axis	Per cent of axis	Entire fiber	Axis	Per cent of axis
104	109.8	55.6	50.6	85.0	42.3	49.7
117	137.7	75.2	54.6	85.8	42.6	49.6
182	150.3	82.9	55.1	113.0	56.7	50.1
Average						
135	132.6	71.2	53.7	94.6	47.2	49.9

Greenman ('13) also found in osmic preparations the sectional areas of the 10 largest myelinated fibers and the areas of their axes. The length of nerve used was 10 mm. The results are given in table 33.

3) Autonomic. In the course of a study intended primarily to determine whether the small myelinated fibers in the spinal accessory could be regarded as representing the fibers of the rami communicantes, Roth ('05) in a series of cervical nerves, counted on one side the number of myelinated fibers 4 μ or less in diameter, and in the corresponding ramus communicans he also counted the myelinated fibers of like size. His findings are given in table 34.

TABLE 34

NERVE	MYELINATED FIBER DIAMETER IN	MYELINATED FIBERS LESS THAN 4 μ IN	
	Rat I	Rat II	RAMUS COMMUNICANS
2nd cervical	130	168	None
3rd cervical	105	126	None
4th cervical	380	363	195
5th cervical	432	449	220

c) Technical methods. To determine the effects of various fixatives on the brain of the rat, King ('10) carried through a series of weighings of mature rat brains which had been subjected to the action of various fixatives. A summary of the results is given in table 35.

The solution of Ohlmacher ('97), the formula for which is as follows:

Absolute alcohol, 80 parts.

Chloroform, 15 parts.

Glacial acetic acid, 5 parts.

Corrosive sublimate to saturation (about 20 per cent) was found to give excellent results with the cells of the cerebral cortex.

ANATOMY

TABLE 35
Summary of Data Collected (King '10)

RAT NO.	SEX	BODY WEIGHT IN GRAMS	BODY LENGTH IN MM.	NORMAL WEIGHT OF FRESHBRAIN COMPUTED	SOLUTIONS USED FOR FIXATION	NO. HOURS SOLUTIONS ACTED	WEIGHT OF BRAIN IN GRAMS WHEN REMOVED PROM SOLUTION	PER CENT GAIN OR LOSS IN WEIGHT	WEIGHT OF BRAIN IN GRAMS AFTER REMAIN- ING IN 70% ALCOHOL FOR 48 HOURS	PER CENT GAIN OR LOSS IN WEIGHT
1	3	277	219	1.94	4% Formaldehyde	48	2.5750	+33	1.5706	-19
2	07	163	100000	1.83	10	48	2.8200	+54	1.6463	-10
3	Q	158		1.85			2.2437	+21	1.5537	-16
4	Q	129		1.78	10000	48	2.6778	+50	1.6577	- 7
5	Q	164	1000	1.80		20	2.0110	1.00	1.0077	- '
					(warm)	3	2.1880	+22	1.8711	+ 4
6	3	187	198	1.85	Ohlmacher	5	1.6100	-12	1.4471	-22
7	Q	137	184	1.78	Ohlmacher	2	1.7389	- 2	1.4099	-21
8	-	100	100	1 01	∫ Zenker	6	1.8716	+ 3	1.6666	- 8
0	0	160	190	1.81	Müller	48		1	1,000	
9	Q	170	107	1.84	Dahlgren	4	1.9000	+ 3	1.7273	- 7
9	¥	170	197	1.84	Müller	48				
10	ਰਾ	182	186	1.79	Picro-formol	4	1.7881	- 0	1.4663	-18
11	ਰਾ	275	228	1.98	Ohlmacher	6	1.8267	- 8	1.6248	-18
12	on on	206	207	1.88	Ohlmacher	2	1.6924	-10	1.5748	-16
13	o"	228		1.90	Ohlmacher	4	1.5787	-17	1.4498	-25
14	o ⁿ	169		1.83	Ohlmacher	3	1.5458	-16	1.4633	-20
15	3	126		1.65	Ohlmacher	3	1.3978	-16	1.3099	-21
16	o ⁷	158		1.77	Ohlmacher	3	1.4590	-18	1.4000	-21
17	ਰੋ	232		1.85	Ohlmacher	3	1.6390	-11	1.4875	-20
18	Q.	111		1.63	Zenker-formol	$1\frac{1}{2}$	1.6040	- 2	1.3297	-18
19	Q	106		1.66	Zenker (modified)	11	1.7451	+ 5	1.3167	-21
20	3	6		0.30	Ohlmacher	1	0.2523	-16	0.2074	-31
21	Q	6		0.29	Ohlmacher	2	0.2489	-14	0.2011	-30
22	ਰਾ	108		1.64	$2\frac{1}{2}\% \text{ K}_2\text{Cr}_2\text{O}_7$	48	2.8445	+73	2.1409	+31
23	3	88		1.68	2½% K ₂ Cr ₂ O ₇	48	2.5594	+52	1.7518	+ 4
24	o ⁿ	162		1.79	Alcohol K ₂ Cr ₂ O ₇	48	2.5073	+40	1.8885	+ 6
25	07	190		1.88	Alcohol K ₂ Cr ₂ O ₇	48	2.8169	+50	2.1797	+16
26	3	174		1.78		27	1.7753	-00	1.6201	- 9
27	o ⁿ	168	1000000	1.81	Alcohol-formol	24	1.6392	-10	1.5147	-16
28	07	221	C. / Com !!	1.85		24	1.4418	-22	1.4611	-21
29	07	151		1.78	Sublimate-acetic	$1\frac{1}{2}$	1.8604	+ 5	1.4484	-19
30	9	213		1.86	Carnoy's fluid	3	1.8192	+ 2	1.4077	-24
31	0	181		1.82	Carnoy's fluid	4	1.7575	- 3	1.3042	-23
32	000	141 165		1.75	Graf (5% formalin)	$\frac{2^{1}}{2}$	2.1520	+23	1.7421	-00
34	0	149	191		Graf (10% formalin)	11/2	1.9283	+ 7	1.5994	-12
04	¥	149	184	1.11	Carnoy's fluid	19	1.7416	- 2	1.3110	-28

TABLE 35-Concluded.

RAT NO.	SEX	BODY WEIGHT IN GRAMS	BODY LENGTH IN MM.	NORMAL WEIGHT OF FRESH BRAIN COMPUTED	SOLUTIONS USED FOR PIXATION	NO. HOURS SOLUTIONS ACTED	WEIGHT OF BRAIN IN GRAMS WHEN REMOVED FROM SOLUTION	PER CENT GAIN OR LOSS IN WEIGHT	WEIGHT OP BRAIN IN GRAMS AFTER REMAIN- ING IN 70% ALCOHOL FOR 48 HOURS	PER CENT GAIN OR LOSS IN WEIGHT
35	Q	167	189	1.80	Lang's fluid	20	2.0670	+15	1.6794	- 7
36	3	208	203	1.86	Lang's fluid	4	2.0429	+10	1.7970	- 3
37	Q	173	194	1.82	Marina's fluid	72	1.2219	-33	1.2913	-29
38	3	197	201	1.86	Marina's fluid	96	1.2146	-35	1.2546	-33
39	3	259	214	1.92	Cor. sublimate	4	2.0760	+8	1.4695	-23
40	3	177	195	1.83	Cor. sublimate	20	2.0229	+11	1.4087	-23
41	3	265	216	1.92	Sublimate-formol	4	2.3315	+21	1.6565	-14
42	07	213	203	1.86	NaCl + sublimate	4	1.9927	+ 7	1.3947	-25
43	Q	213	204	1.86	Tellyesniczky	48	1.9643	+ 6	1.6372	-12
44	δ	137	177	1.74	Tellyesniczky	24	1.7981	+ 3	1.4906	-14
45	0	196	200	1.85	NaCl + sublimate	20	2.1549	+16	1.5074	-19
46	Q	135	179	1.75	Sublimate-formol	20	2.0512	+17	1.3687	-22
47	07	141	179	1.75	Cox (osmie)	48	1.9917	+ 2	1.5483	-12
48	3	150	182	1.76	Cox (osmic)	72	2.1555	+22	1.8365	+ 4
49	3	171	192	1.81	Cox (formol-acetic)	48	1.7687	- 2	1.5003	-17
50	3	137	178	1.75	Cox (formol-acetic)	72	1.8944	+ 8	1.5221	-13

In a later study King ('13 a) followed in some detail the effects of formaldehyde on the brain of the Albino. The conclusions reached were as follows:

- A 4 per cent solution of formaldehyde causes a pronounced swelling in the brains of rats of all ages.
- 2. A solution of formaldehyde undergoes some chemical change on standing, since a solution five months old causes less swelling in the brain of the rat than does a freshly made solution.
- 3. A 4 per cent solution of formaldehyde neutralized with NaCO₃ produces a much greater amount of swelling in the brain of the rat than does a solution that has a faintly acid reaction.
- 4. A strong neutralized solution of formaldehyde causes a greater percentage weight increase in the rat's brain than does a weak neutralized solution. A reverse result is obtained when the solutions are not neutralized.

- 5. If rats' brains are subjected to the action of a solution of formaldehyde that is kept at a constant temperature of 36°C., they undergo a greater amount of swelling than is produced when the solution is kept at a temperature of 8 to 11°C. The maximum weight increase in the brains is reached by the end of the first day in the former case, and not until the third day in the latter case.
- 6. When the conditions under which the solution acts are uniform, the maximum weight increase in rats' brains subjected to the action of a 4 per cent solution of formaldehyde is attained in all cases by the third day, and there is then a gradual decrease in weight. Brains of very young animals tend to reach the maximum earlier than do those of older animals.
- 7. The percentage weight increase in rats' brains as the result of the action of a 4 per cent formaldehyde solution tends to be greater in the brains of young animals than in those of adults.
- 8. In animals of the same age the larger brain does not show a greater percentage weight increase after treatment with a solution of formal-dehyde than does the smaller one.
- 9. A 4 per cent solution of formaldehyde extracts solids from the brains of rats of all ages. This is shown by the fact that the percentage of solids in brains that have been subjected to the action of such a solution is always less than that found in the fresh brains of animals of the same age. Brains of very young rats lose much more of their solids than do brains of older animals.
- 10. Brains of animals infected with pneumonia show a slightly greater percentage weight increase when treated with a 4 per cent solution of formaldehyde than do the brains of healthy animals.
- 11. Even under the most favorable conditions an aqueous solution of formaldehyde is not a satisfactory fixative for the cell structures in brain tissues, as it causes a pronounced distention of the nuclei and gives a poor preservation of the nuclear contents.

The more important data are given in tables 36, 37, 38, 39, 40.

TABLE 36

Percentage weight increase in rats' brains, each kept for ten weeks on 40 cc. of a neutralized solution of 4 per cent formaldehyde made five months before the experiments began (averages for three brains at each age)

	AGE OF RATS									
TIME SOLUTION ACTED	New- born	10 days	20 days	40 days	50 days	70 days	100 days	200 days		
1 day	29.71	28.8	25.0	25.2	26.91	24.5	28.31	15.3		
3 days	28.0	35.01	28.31	26.31	26.8	27.31	26.8	21.0		
7 days	27.3	33.0	27.3	25.0	25.1	25.1	25.7	18.6		
2 weeks	23.9	31.9	27.3	24.5	25.1	25.3	26.3	18.9		
3 weeks	23.4	31.4	28.3	24.9	25.5	24.4	25.3	19.3		
4 weeks		30.5	26.7	24.5	24.8	25.6	26.2	19.4		
10 weeks	17.6	27.9	26.9	24.7	25.2	25.6	25.0	19.2		
Average percentage gain	24.6	31.2	27.1	25.0	25.6	25.4	26.2	18.8		

¹ Maximum weight increase.

TABLE 37

Percentage weight increase in rats' brains, each kept for ten weeks in 40 cc. of a neutralized solution of 4 per cent formaldehyde made at the time the experiments began (averages for three brains at each age)

	AGE OF RATS									
TIME SOLUTION ACTED	New- born	10 days	20 days	40 days	50 days	70 days	100 days	200 days		
1 day	44.41	58.2	39.5	37.91	39.31	34.4	45.61	32.4		
3 days	42.0	64.61	41.51	37.6	38.5	38.61	43.1	34.71		
7 days		62.1	40.1	36.4	35.6	34.1	41.1	30.9		
2 weeks	38.0	62.9	39.7	35.9	36.1	34.9	41.0	30.8		
3 weeks	37.7	63.4	40.0	35.7	36.9	34.3	40.4	31.2		
4 weeks	36.1	62.8	39.9	35.5	35.4	35.7	40.5	31.6		
10 weeks	33.9	61.4	39.4	35.5	36.1	35.5	37.7	31.8		
Average percentage gain	39.1	62.2	40.0	36.4	36.7	35.4	41.3	31.9		

¹ Maximum weight increase.

TABLE 38

Percentage weight increase in rats' brains, each kept for four weeks in 40 cc. of a neutralized solution of 4 per cent formaldehyde made fresh for each lot of animals killed (averages for two brains at each age)

	AGE OF RATS								
TIME SOLUTION ACTED	New- born	10 days	20 days	40 days	50 days	70 days	100 days	200 days	
1 day	60.4	54.7	45.8	47.61	50.41	44.9	44.21	36.1	
3 days	65.81	58.51	52.91	47.4	47.7	48.81	42.7	40.1	
7 days	65.4	58.5	48.3	45.6	45.1	44.2	38.3	36.2	
2 weeks	65.1	58.4	48.9	45.3	44.8	43.2	38.6	33.0	
3 weeks	64.8	58.2	48.9	44.7	45.2	43.9	38.8	34.7	
4 weeks	61.7	57.8	50.4	45.1	45.4	44.9	39.3	34.9	
Average percentage gain	63.4	57.7	49.2	35.9	46.4	44.8	40.3	35.8	

¹ Maximum weight increase.

TABLE 39

Percentage weight increase in rats' brains, each kept for four weeks in 40 cc. of non-neutralized solution of 4 per cent formaldehyde made fresh for each lot of animals killed (averages for two brains at each age)

	AGE OF RATS									
TIME SOLUTION ACTED	New- born	10 days	20 days	40 days	50 days	70 days	100 days	200 days		
1 day	34.51	37.3	36.7	39.71	44.21	39.5	41.11	32.2		
3 days		45.11	45.41	39.1	42.8	42.31	39.4	35.4		
7 days		37.8	38.2	35.6	38.1	34.3	33.8	30.2		
2 weeks	3.5	30.4	34.6	31.5	32.6	31.5	29.0	26.7		
3 weeks	0.4	25.9	30.7	28.3	30.6	29.5	27.4	24.5		
4 weeks	-1.5	23.5	27.9	26.6	27.8	27.3	24.3	24.5		
Average percentage gain	13.1	33.3	35.6	33.5	36.0	34.1	32.5	28.9		

¹ Maximum weight increase.

TABLE 40

The percentage of solids in brains of rats of various ages kept from four to eighteen weeks in solutions of 4 per cent formaldehyde (computations made from original brain weights)

	AGE OF RATS							
EXPERIMENTS	New- born	10 days	20 days	40 days	50 days	70 days	100 days	200 days
Brains kept 18 wks. in neu-								
tralized stock solutions	8.1	10.3	14.7	18.4	19.4	19.5		20.9
Brains kept 10 wks. in sol.			10.	10.4	10.4	00 =	10.5	00.5
5 mos. old	8.1	10.1	16.5	19.4	19.4	20.5	19.7	20.5
Brains kept 10 wks. in freshly made sol	7.8	10.3	16.0	19.2	19.5	20.1	20.1	21.6
Brains kept 4 wks. in 40	1.0	10.5	10.0	19.2	19.5	20.1	20.1	21.0
cc. neutral sol	8.2	10.1	16.4	19.3	19.6	19.6	20.9	21.8
Brains kept 4 wks. in 40	0.2	10.1	10.1	10.0	10.0	10.0	20.0	21.0
cc. acid sol	9.6	10.9	16.7	19.3	19.1	20.7	20.1	21.1
Brains kept 4 wks. in 20								
cc. neutral sol	9.2	9.8	16.2	19.7	20.5	19.9	20.2	21.5
Brains kept 4 wks. in 20								
ec. acid sol	10.5	10.9	16.3	19.0	20.0	20.1	20.8	21.6
Brains kept 4 wks. in neu-							1	2000
tral sol. at temp. 26°C	9.7	9.8	15.1	18.7	19.4	19.8	20.1	20.1
Brains kept 4 wks. in neu-								
tral sol. at temp. 8 to	8.3	10.6	16.3	19.2	19.0	20.1	20.1	21.7
11 0	0.0	10.0	10.5	19.2	19.0	20.1	20.1	21.7
Averages for above series	8.6	10.6	16.3	19.2	19.6	20.1	20.3	21.2
Normal percentage of sol-		200 20	18.00					100000000000000000000000000000000000000
ids in rats' brains (Don-								
aldson)	12.2	14.6	17.5	19.5	20.9	21.1	21.3	21.6
Percentage loss of solids					1			
as result of action of	9222000	252 48	-	10 14				1000
formaldehyde	29.5	29.4	7.4	1.5	6.2	4.7	4.7	1.8

- Sense organs. The cochlea makes 2¹/₄ turns (Fortuyn, '14, p. 348).
 - 8. Integument (see references).
- 9. Gastro-pulmonary systems. For the weights of the various viscera see tables 68–72.
- a) Gastro-intestinal system. The volumes of the liver and pancreas cells—with those of their respective nuclei—have been de-

termined by Morgulis ('11). The organs were fixed in Zenker's solution and imbedded in paraffine and were taken from one normal Albino—110 days old; body length 176 mm.; body weight, 137.7 grams.

TABLE 41
Liver cells

	270007 00000		
VOLUME	IN μ ³ OF	NO. OF	DIAMETERS OF
Entire cell	Nucleus	OF NUCLEUS	NUCLEUS IN #
5075	247.2	50	7.56×8.25
	Pancreas cells		
1829	94.3	40	5.48 × 6.00
	Entire cell 5075	5075 247.2 Pancreas cells	VOLUME IN μ^3 OF NO. OF MEASUREMENTS OF NUCLEUS 5075 247.2 50 Pancreas cells

- b) Pulmonary system (see references), also table 70.
- 10. Uro-genital system (see references), also table 70.
- 11. Endocrine system (see references), also table 77.

ANATOMY: REFERENCES

- Anatomy, general. Akamatsu, '05. Brisson, 1756. Duesberg, '07. Flower, 1872. Goto, '06. Hewer, '14. Krause, 1876. Leydig, 1854, 1857. Martin and Moale, 1884. Meyer, 1800. Morrell, 1872. Owen, 1868. Waller, 1693.
- Embryology. a) Spermatogenesis. Benda, 1887. Brown, 1885. Duesberg, '08, '08 a, '09. Ebner, 1888. Hewer, '14. Jensen, 1887. Leeuwenhoeck, 1693. Lenhossék, 1898. Meves, 1898. Montane, 1889. Regaud, '04. Renson, 1882. Retzius, '09. Wiedersperg, 1885. b) Ovulation. Bellonci, 1885. Blanc, 1892. Coe, '08. Kirkham, '10. Kirkham and Burr, '13. Mark and Long, '12. Sobotta and Burckhard, '10. Tafani, 1889, 1889 a. c) Early stages. Cristiani, 1892. Fraser, 1883. Huber, '15, '15 a, '15 b. Klebs, 1891. Melissinos, '07. Robinson, 1892, '04. Ryder, 1888. Selenka, 1883, 1884. Solger, 1889. d) Later stages. Adloff, 1898. Askanazy, '08. Braun, 1882. Brunn, 1887. Chievitz, 1885. Freund, 1892. Glas, '04. Gottschau, 1883. Henneberg, 1899, 1900. Lewis, '15. Meyerheim, 1898. Robinson, 1889, 1892, 1892a, 1896. Soulié, '03. Tandler, '02. Uskow, 1883. Weiss, '01. Widakowich, '09. Willach, 1888. Williams, '96. Zuckerkandl, '03.
- 3. Bones and joints and connective tissues. Bignotte, 1900. Donaldson, '12 a. Hansemann, '04. Hartley, '07. Hatai, '07 c. Hyrtl, 1845. Katzenstein, '03. Kohlmeyer, '06. Renaut, '04. Retterer, '05. Weiss, 1900. a) Teeth. Addison and Appleton, '15. Beretta, '13. Brunn, 1880. MacGillavry, 1875, 1876. Owen, 1840–1845. Terra, '11. Wiedersheim, '03.
- Muscles, Bell, '11. Gulliver, 1839, 1842. Kolster, '01. McMunn, 1884.
 Meek, '99. Mellanby, '08. Morpurgo, 1898, 1899, 1899 a. Rosenfeld, 1899.
 Schäfer, 1900a. Stirling, 1883.

- Vessels and blood. Chisholm, '11. Gamgee, '98. Gulliver, 1875. Halliburton, 1888. Höber, '11. Job, '15. Jolly and Stini, '05. Kanthack and Hardy, 1894. Minot, 1900. Preyer, 1866, 1871. Quinquaud, 1873. Reichert and Brown, '09. Schäfer, 1898. Sherrington and Copeman, 1893. Tandler, 1899; White, '01. Wormley, 1888.
- 6. Nervous system. a) Central. 1) Brain. Addison, '11. Allen, '12. Bechterew, 1890. Bradley, '03. Cajal, 1897, 1909-1911. Donaldson, '08, '09, '10, '11, '11 a, '11 b. Donaldson and Hatai, '11, '11 a. Fortuyn, '14. Gentes, '03. Goldstein, '04. Haller, '10. Hamilton, '01. Hatai, '03, '09, '09 a. King, J. L., '10. King, H. D., '11. Lapicque, '07. Lewis, 1881. Meek, '07. Reichardt, '06 Retzius, 1894. Watson, '03. Wagner, 1841. 2) Spinal cord. Allen, '12. Bardeleben, 1899. Hatai, '02 b. Lenhossek, 1889. Pontier and Gérard, 1900. Ranson, '13, '14 a. Retzius, 1893. Robinson, 1892 a. Spitzka, 1886. Sterzi, '04. Stieda, 1869. Van der Vloet, '06. b) Peripheral. 1, 2) Cerebrospinal. Beck, 1896. Benedicenti, 1892. Berkley, 1893, 1895. Bischoff, 1832. Boughton, '06. Cabibbe, '04. Cannieu, '94. Donaldson, 1900, '05. Dunn, '12. Fortuyn, '14. Greenman, '13. Hamilton, '01. Hatai, '01, '01 a, '02, '02 a, '03, '03 b, '03 c, '03 d, '04, '07 b. Krause, 1870. Ploschko, 1897. Ramström, '05. Ranson, '06. Stirling, 1883. 3) Autonomic. Apolant, 1896. Asp, 1873. Barteneff, 1891. Cajal, 1893. Carpenter and Conel, '14. Fusari and Panasci, 1891. Fusari, 1894. Korolkow, 1892. Martinotti, 1889. Roth, '05. c) Technical methods. Cajal, 1889, '03. King, '10, '13 a. Ohlmacher, 1897. Turner, '04.
- Sense organs. Asai, '08. Bulle, 1887. Ebner, 1873. Fortuyn, '14.
 Gmelin, 1892. Hönigschmied, 1873. Koganei, 1885. Lauber, '01. Lovén, 1868, Mayer, 1843. Münch, 1896. Schäfer, 1900 a. Stahr, '03. Tello, '06. Tuckerman, 1892. Wyss, 1870.
 - Integument. Calef, 1900. Durham, '04. Peters, 1890. Romer, 1896.
- 9. Gastro-pulmonary systems. a) Gastro-intestinal. Asher, '08. Asher and Erdely, '03. Asp, 1873. Brümmer, 1876. Bujard, '05, '09. Custor, 1873. Cuvier, 1805. Demjanenko, '09. Edelmann, 1889. Ellenberger and Guenther, '08. Falcone, 1898. Frenkel, 1892. Garnier, 1897. Gillette, 1872. Heuser, '14. Home, 1807. Hoyer, 1890. Klein, 1871. Kupffer, 1876. Langley, 1882. Loewenthal, 1894, 1894 a, 1900, '08. Mayer, 1894. Mazzarelli, 1890. Morgulis, '11. Mouret, 1895. Müller, 1830. Nicolas, 1890. Podwisotzky, 1878. Podwyssotzki, 1882. Ranvier, 1883, 1884, 1885, 1886, 1886 a. Rapp, 1839. Retzius, 1841. Rubeli, 1890. Salter, 1859. Saviotti, 1869. Schmidt, 1863. Schwalbe, 1872. Severin, 1885. Toepfer and Fleischmann, 1891. Watney, 1874. Zillinberg-Paul, '09. Zumstein, 1891. b) Pulmonary system. Arnstein, 1877. Frankenhaeuser, 1879. Fuchs-Wolfring, 1898. Gegenbaur, 1892. Guieysse, 1898. Hansemann, 1895. Klein, 1875. Linser, 1900. Livini, 1896. Miller, 1893. Schulze, 1871. Zumstein, 1890.
- Urogenital system. Beiling, '06. Belloy, 1899. Disselhorst, 1897, 1897 a, '04. Fischel, '14. Harz, 1883. Leydig, 1850. Lowenthal, 1897. Mueller, '02. Oudemans, 1892. Rauther, '03. Regaud, 1900, 1900 a, 1900 b, 1900 c, '01, 01 a, '01 b, '01 c, '01 d, '02, '02 a, '03. Stutzmann, 1898. Watson and Campbell, '06.
- 11. Endocrine system (see also Endocrine system under Physiology). Dostoiewsky, 1886, 1886 a. Elliot and Tuckett, '06. Erdheim, '06. Gemelli, '03, '05, '06. '06 a. Hatai, '14, '14 a. Sandri, '08. Stendell, '13. Tilney, '11, '13. Vincent, '10. Watson, C., '07, '09.

CHAPTER 4

PHYSIOLOGY

Muscle and nerve. 2. Nervous system. a) Central. b) Peripheral. b¹)
 Degeneration. b²) Regeneration. 3. Special senses. 4. Blood and lymph. 5.
 Circulation—blood and lymph. 6. Respiration. 7. Digestion and secretion (exclusive of ductless glands). 8. Nutrition. a) Body temperature. 9. Reproduction. 10. Endocrine system.

The quantitative data for the functions of the normal Albino are rather scanty. Those available are given in their topical order and the references at the end of the chapter are also arranged by topics—as usual.

Tabular records for the very important studies of Osborne and Mendel on the modifications of body growth by the use of various proteins are reluctantly omitted because of the general plan of presenting in these pages data for the normal rat only.

8. Nutrition. A study of the nitrogen excretion has been made by Hatai ('05). Chicago Colony, ration: Uneeda biscuit and water.

From observations on 89 male rats at different ages and weights the

following results were obtained:

1. The total amount of urine increases with the weight up to 120 grams, then decreases very decidedly. From 180 grams it again increases up to 220 grams, beyond which weight it remains rather constant. A diminution of urine in animals between 120 and 180 grams, or approximately 70–125 days old, seems to be a normal phenomenon rather than mere statistical variation. Whether or not this is a phenomenon of adolescence needs further investigation. It must be noted, however, that puberty in the rat begins at about seventy days after birth. The smaller animals excrete a relatively greater quantity of urine than the larger animals.

The total amount of nitrogen is quite independent of the amount of urine, and increases constantly and continuously throughout life. The smaller rats, however, excrete a relatively greater quantity than

the larger animals.

The percentage value of urinary nitrogen is 91 per cent of the total in the case of smaller animals, and 89 per cent in the case of the larger.

NUTRITION

TABLE 42
Showing the amount of urine, feces, and nitrogen during three days. Male rats alone were used

BODY	NO. OF ANIMALS	URINE	PECES	NITROGEN IN URINE	NITROGEN IN PECES	TOTAL	BODY WEIGHT	NO. OF ANIMAIS	URINE	PECES	NITROGEN IN URINE	NITROGEN IN PECES	TOTAL
gm. 38	8	cc. 5.75 6.25	mgm. 327 217	mgm. 52 45	mgm. 4 4	mgm. 56 49	gm. 162	4	cc. 16.13 11.50	mgm. 748 208	mgm. 162 140	mgm. 32 11	mgm. 194 151
-		5.00	105	42	1	43	100		12.00	227	141	16	157
vera	ge	5.7	216	46	3	50	Aver	age	13.2	394	148	20	168
		12.62	347	85	11	96			12.13	379	187	17	204
53	7	9.52	0	65	0	65	178	4	12.00	482	154	21	175
		9.17	57	54	3	57	_		13.38	374	162	15	177
Lvera	ge	10.4	135	68	5	73	Aver	age	12.5	412	168	18	185
70		16.69	395	93	13	106	101		16.00	177	194	9	203
70	8	10.87	205 68	103 92	7 3	110 95	191	3	17.30 11.30	163 348	185 164	9	194 181
vera	ge	12.8	223	96	8	104	Aver	age	14.9	229	181	12	193
_	1 1	15.9	438	97	22	119		1 1	19.30	776	158	29	187
85	5	12.4	219	102	4	106	207	4	10.80	516	182	24	206
		9.5	330	83	13	96			19.00	195	181	7	188
lvera	ge	12.6	329	94	13	107	Aver	age	16.4	496	174	20	194
	1	15.50	556	137	20	157			24.00	809	217	42	259
99	6	10.83	38	124	3	127	220	2	20.00	235	181	8	189
		8.98	199	100	5	105	-	1	19.00	382	148	29	177
Avera	ge	11.8	264	120	9	130	Aver	age	21.00	475	182	26	208
100	0	15.41	374	122	10	132	000		18.80	794	207	30	237
106	6	17.67 17.33	294 248	119 110	5 18	124 128	239	4	17.80 18.00	502 404	175 178	15 16	190 194
Avera	ige	16.8	305	117	11	128	Aver	age	18.2	566	187	20	207
	1	22.3	776	143	26	169		1 1	20.38	333	204	21	225
116	5	14.5	138	135	8	143	266	4	24.00	896	225	32	257
		18.0	39	123	0	123			22.00	690	259	28	287
Avera	ige	18.3	318	134	11	145	Aver	age	22.1	639	229	27	256
		18.25	906	120	26	146			20.25	956	246	37	283
127	4	13.00	346	115	17	132	298	5	18.00	638	272	26	298
	1	18.75	127	129	6	135	l-,-	1	17.35	598	262	24	286
Avera	ige	16.7	460	121	16	138	Aver	rage	18.5	731	260	29	289
144	5	17.58 16.25	359 360	153 166	15	168 176	333	3	16.88 26.50	1424 475	261 280	25 20	300
144	0	15.00	49	113	1	114	000	0	19.50	857	297	37	334
Avera	age	16.3	256	144	9	153	Aver	rage	20.9	919	279	27	306
	I	13.90	425	126	14	140		1	13.00	877	250	45	29
156	5	13.90	638	151	16	167	370	3	12.80	817	289	32	32
	1	15.75	445	169	17	186			19.30	217	291	9	299
Avera	age	14.5	503	149	16	165	Ave	rage	15.00	637	277	29	30

4. The total amount of nitrogen eliminated by the rat during twentyfour hours at different weights may be determined with a high degree of accuracy by the formula (33).

The normal protein metabolism of the rat has been studied by Folin and Morris ('13). They find a distribution of nitrogen in the urine as shown in tables 43, 44.

TABLE 43
Female rat weighing 290 grams. Average of 5 days

	MGM.	PER CENT
Total N	173.50	100.00
Urea N	143.20	77.30
Ammonia N	9.10	5.20
Uric Acid N	0.69	0.40
Creatinine N	4.50	2.65
Creatinine + Creatine N	4.70	2.71

TABLE 44

Male rat weighing 197 grams. Average of 6 days

	MGM.	PER CENT
Total N	126.00	100.00
Urea N	105.90	84.00
Ammonia N	6.70	5.30
Uric Acid N	0.52	0.41
Creatinine N	2.90	2.30
Creatinine + Creatine N	3.00	2.38

"It will be seen from examination of the average results that the percentage composition of rat urine differs but little from that of human urine."

a) Body temperature. Using the mercurial thermometer in the rectum, Pembrey ('95) reports a body temperature of 37.5°C. in adult Albinos. Macleod ('07) by the same method finds a range of 37.5–38.5°C. with a mean of 37.9°C.; Congdon ('12) also by the same method a temperature of 37.9°C. in the young; in the adult, when reared at 16°C., a temperature of 36.2°C. and when reared at 33°C., of 37.2°C. Graham and Hutchison

('14) using the thermoelectric method of Philips and Demuth—obtained the following:

TABLE 45

	BODY TEMPERATURE (C.		
EXTERNAL TEMPERATURE	High	Low	
5 CSeries (a)	36.1	21.1	
Series (b)	34.9	19.0	
21 C	38.7	32.4	
37 C	41.8	32.9	

PHYSIOLOGY: REFERENCES

- Muscle and nerve. Boinet, 1895. Engelmann, 1877. Lee, '10. Mellanby, '08.
- Nervous system. a) Central. Ferrier, 1886. Hatai, '03 a, '04 a, '07 a, '08, '15 a. Mills, 1897. Schäfer, 1900. Watson, '05. b) Peripheral. b¹) Degeneration. b²) Regeneration. Greenman, '13. Ranson, '03, '04, '06, '14. Tournade, '13.
- 3. Special Senses. Bogardus and Henke, '11. Hunter, '14. Vincent, '12, '13, '15, '15 a, '15 b.
- Blood and Lymph. Erdély, '05. Robertson, 12. Rywosch, '07. Tromms-dorf, '09.
 - 5. Circulation. Rattone and Mondino, 1888, 1888 a, 1889, 1889 a.
- Respiration. Bert, 1878. Boycott and Damant, '08 a. Boycott and Damant and Haldane, '08. Pembrey, 1895. Pembrey and Spriggs, '04.
- 7. Digestion and Secretion (exclusive of the ductless glands). Ackroyd, '14, '15. Astaschewsky, 1877. Basch, 1870. Basler, '09. Bohlen, 1894. Drasch, 1886. Eimer, 1869. Ellenberger, '06. Elliott and Barclay-Smith '04. Gruetzner, 1875, 1878, 1894, 1898, '05. Hohmeier, '01. Jolyet and Chaker, 1875. Langley and Sewall, 1879. Langley, 1879. Matthes and Marquardsen, 1898. Paneth, 1888, 1888 a. Ranvier, 1887, 1888, 1894. Schiff, 1859. Zawarykin, 1883.
- 8. Nutrition and body temperature. Aldrich, '12. Aron, '12, '13. Brüning, '14, '14 a. Chidester, '12. Congdon, '12. Cook, '13. Czermak, 1895. Falta and Noeggerath, '05. Folin and Morris, '13. Forbes and Keith, '14. Frank and Schittenhelm, '12. Gevaerts, '01. Graham and Hutchison, '14. Gregersen, '11. Gudernatsch, '15. Hart and McCollum, '13. Hatai, '05. Hewer, '14. Heymann, '04. Hill, '13. Hill and Macleod, '03. Hopkins, '12. Hopkins and Neville, '12. Hunt, '10. Hunter, Givens and Guion, '14. Jackson, '15 b. Jacob. '06. Knapp, '08. Kreidl and Neumann, '08. Lane-Claypon, '09. Langlois and Loir, '02. McCollum, '09. McCollum and Davis, '13, '13 a, '14. Macleod, '07. Mendel, '13. Morgulis, '11. Osborne, '13. Osborne and Mendel, '11, '11 a, '11 b, '12, '12 a, '12 b, '12 c, '12 d, '12 e, '12 f, '12 g, '13, '13 a, '13 b '14, '14 a, '14 b, '14 c, '14 d, '14 e, '15. Paul, '06. Pembrey. 1895. Pitts, 1898. Poljakoff, 1888. Rohdé and Jones, '09. Watson, B. P., '07. Watson, C., '06,

 $^{\prime}06$ a, $^{\prime}06$ b. $^{\prime}07$ a, $^{\prime}07$ b, $^{\prime}07$ c, $^{\prime}07$ d, $^{\prime}10$, $^{\prime}12.$ Watson and Lyon, $^{\prime}06.$ Watson and Gibbs, $^{\prime}06.$

Reproduction. Carmichael and Marshall, '07. Cuénot, 1899. Fischel, '14. Hewer, '14. Marshall and Jolly, '07, '08. Regaud, 1900 d, 1900 e, 1900 f. Steinach, '10, '11, '12, '13.

10. Endocrine System. Barnabo, '13. Biedl, '13. Boinet, 1895, 1895 a. Brown-Sequard, 1856. Cristiani, 1893, 1893 a, 1893 b, 1895, 1900. Cristiani and Cristiani, '02, '02 a, '02 b, '02 c, '02 d. Erdheim, '06 a, '07, '11, '11 a, '11 b. Gemelli, '06. Goetsch and Cushing, '13. Goldmann, '09, '12. Harley, 1857, 1858, 1858 a, 1858 b. Hohlbaum, '12. Hunt and Seidell '09. Iselin, '08. Leischner, '07. Leischner and Köhler, '11. Leopold and Reuss, '08. Olds, '10. Poll, 1898, 1899. Schäfer, '08. Schiff, 1884, 1884 a. Steinach, 1894. Strehl and Weiss, '01. Toyofuku, '11. Vincent, 1897, 1897 a. '12. Vincent and Jolly, '05, '06. Watson, C., '14. Wiesel, 1899, 1899 a.

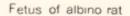
CHAPTER 5

GROWTH IN TOTAL BODY WEIGHT ACCORDING TO AGE

- Introduction. 2. Growth before birth. 3. Growth between birth and maturity. 4. Modifications of growth in total body weight. 5. Weight-length ratios.
- 1. Introduction. Under the general caption of growth several series of data are grouped in this chapter and in the four chapters which follow it. The chapter heads explain the several groupings and show that some data are presented according to age and other data according to some bodily measurement.

The reasons for this procedure will be evident in each instance. The effort has been made to gather as much of the data as possible under the caption of growth as this seemed the best way to make the records available for reference.

The following tables present the size, weight and composition of the albino rat and some of its parts, under conditions which may be considered normal.


As regards absolute measurements, it must be borne in mind that the Albino is very responsive to external conditions as represented by food, housing, temperature, exercise, and incidental disturbances, especially light and noises.

No two colonies today are kept under more than approximately similar conditions and it follows that the average size of the animals from different colonies varies. The conditions just noted also appear to influence the relative weights of some of the viscera. For these reasons, each set of determinations will be accompanied by a statement, as complete as possible, concerning the special conditions surrounding the animals on which the observations were made.

2. Growth before birth. For the data on growth during the first few days of fetal life, see Chapter 3, Embryology, early stages, pp. 31–33 Huber ('15 a) and other references there given.

At about the 13th day after insemination the fetus is large enough to be directly weighed and from this date to birth the growth has been followed.

In a series of 38 females, each of which had already born one litter, Stotsenburg (MS '15) has observed exactly the time of

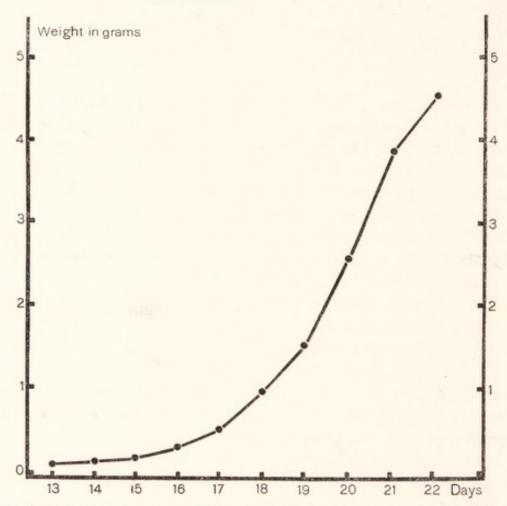


Chart 1 shows the course of fetal growth from the 13th to the 22nd day gestation. Stotsenburg (MS '15). The data are given in table 46.

insemination and then weighed the fetuses at the ages given in table 46. Before weighing the membranes were removed and in some instances the crown-rump length was measured (table 47). The graph representing the growth before birth from the 13th day on is given in chart 1, the interval used for one day being two-fifths of that used for one gram.

3. Growth between birth and maturity. The first observations were made at the University of Chicago by Donaldson, Dunn and Watson ('06) on stock rats fed mainly on milk-soaked bread

TABLE 46
Showing the mean weights of the fetuses at ten ages during gestation

AGE IN DAYS	NUMBER OF FETUSES	AVERAGE WEIGHT OF FETUS IN GRAMS	RATE OF INCREASE IN WEIGHT
			per cent
13	34	0.040	
14	44	0.112	179
15	37	0.168	50
16	44	0.310	83
17	21	0.548	77
18	43	1.000	83
19	30	1.580	58
20	25	2.630	65
21	42	3.980	51
22	10	4.630	16

TABLE 47

Giving the crown-rump length of fetus in millimeters. Scrap diet only. The fetuses here measured are part of those used for Table 46

SERIAL NUMBER	AGE IN DAYS	NUMBER IN LITTER	AVERAGE WEIGHT OF FETUS IN GRAMS	AVERAGE CROWN- RUMP LENGTH IN MM.	RANGE OF LENGTH IN MM.
42	14	8	0.093	9.5	9.0-10.0
43	15	12	0.107	9.4	9.0-10.0
37	15	8	0.218	12.1	12.0-12.5
41	16	11	0.322	13.0	12.5-13.0
40	17	7	0.525	16.3	16.0-17.0
36	18	9	0.947	19.1	18.0-21.0
37	19	8	1.490	22.7	20.5-24.0
35	20	10	2.510	27.7	24.0-32.0
34	21	9	4.070	36.7	35.0-39.0
14	22	10	4.630	39.2	36.0-41.0

with corn as a staple. The values before fourteen days of age were obtained from weighing different litters, each litter being weighed only once. The original values at birth and for the first ten days were plainly too high and have been replaced by new data (Donaldson, MS '14). After the 14th day the weighing of 19 males and 17 females was made at frequent intervals, so long as the animals kept in good condition. Tables 63 and 64 give for males and females respectively not only the mean values but the range, and in the case of the females, after 90 days, the

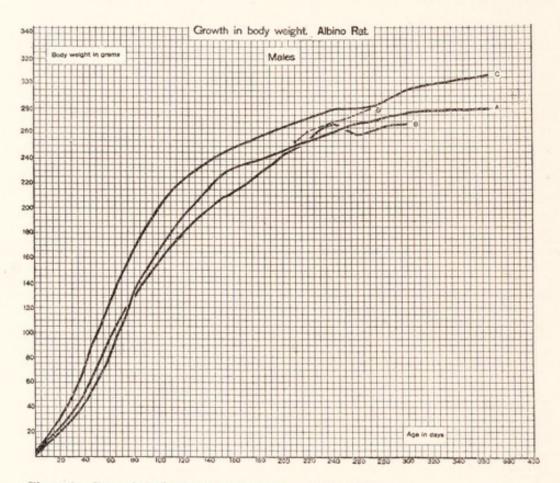


Chart 2 Growth in body weight on age. Male albino rat.

- Observations of Donaldson, Dunn and Watson ('06). See table 63.
- B. Observations of Ferry, '13. See table 65.
- B'. Observations of Ferry, '13. See column 2, table 65.
- C. Observations of King (MS '15). Data from two series combined. See table 67.

observed values for the unmated animals are accompanied by a second series of values computed for mated rats on the basis of Watson's ('05) observations which show that mated females gain in weight about 0.03 per cent per diem faster than the unmated. These data are used for graph A, chart 2, males, and graph A, chart 3, females.

Using the mean values in table 63 for the males from 10 days of age on, and the corresponding values in table 64 for the females and taking the records for the mated females where given, Hatai has determined the graph for which formulas 34 and 35 give the values for the male, and formulas 36 and 37 the values for the female for this special series. By the use of these formulas the body weights have been computed for each day of age

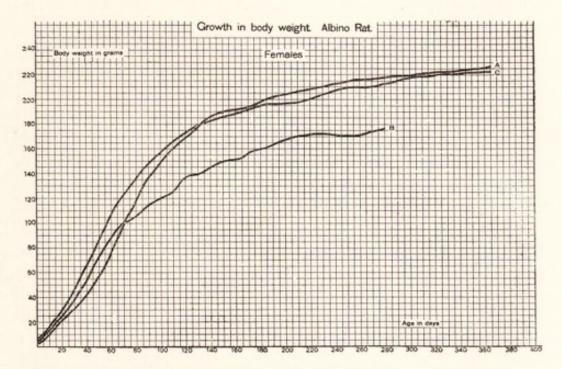


Chart 3 Growth in body weight on age. Female albino rat.

- A. Observations of Donaldson, Dunn and Watson ('06). See table 64.
- B. Observations of Ferry, '13. See table 65.
- C. Observations of King (MS '15). Data from two series combined. See table 67.

from 10–100 days and at intervals of five days from 100–365 days (see table 62).

The values given for the first ten days of age in table 62 have been obtained from a revised series of direct observations Donaldson (MS '14).

The weight at birth as here given, is for rats that have suckled.

A second series of data for body weight on age have been gathered by Miss Ferry.

Using the rats from the colony maintained for the experiments of Osborne and Mendel at the Connecticut Agricultural Station in New Haven, Ferry ('13) has recorded the growth with age from the 10th to the 280th day of life.

The diet of the rats consisted of Austin's dog-biscuit, and sunflower seeds with fresh vegetables (chiefly carrots or corn and string beans) two or three times a week, and a small amount of cooked meat twice a week. A little salt was always kept in the cage. The cages were small.

Table 66 gives the numbers of rats weighed at the several ages and table 65 the mean values for each sex. The females were unmated. In chart 2 graph B shows the values for the males and in chart 3 graph B shows the values for the females.

The broken line record marked B' in chart 2 gives the values found in column 2, table 65, and probably gives the truer picture for the normal weight change.

Finally at The Wistar Institute King (MS '15) has conducted two series of observations (1912–1913) (1913–1915) on the increase in body weight with age in stock Albinos. There were 23 males and 23 females in the first series and 27 of each sex in the second. The records for the two series have been combined. The observations extend from 13–485 days and the weighings were made at the ages given in table 67. These rats received a 'scrap' diet (i.e., a diet composed of table refuse from which materials known to be injurious had been removed).

In chart 2 the record for the males is given by graph C and in chart 3 the record for the females by graph C. In chart 4 the graphs for both sexes appear extended to 485 days.

In 1913 Jackson ('13) published a series of body weights for both sexes according to age, but as these animals did not grow well after about 70 days of age, the table has not been copied here.

On comparing the graphs for the males in the several series—(see chart 2) it appears that the males reared by King grew best—while in the graphs for the females (chart 3) the record by Ferry shows the poorest growth for the females. It appears therefore that laboratory conditions including diet (assumed in each case to be wholesome) may modify the growth and that the two sexes are not necessarily affected to a like degree.

4. Modifications of growth in total body weight. No change occurs in the growth of castrated males, Stotsenburg ('09).

A slight increase in growth was observed by Hatai ('03 a, p. 61) after lecithin feeding.

Increased growth occurs in spayed females, Stotsenburg ('13). This increase is in part due to the accumulation of fat and in part to general enlargement.

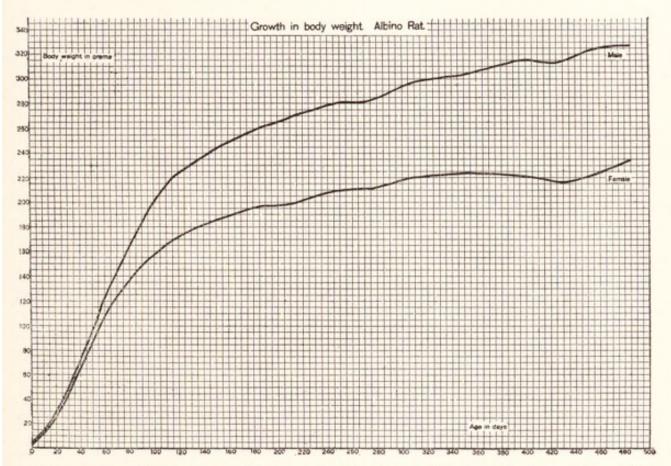


Chart 4 Growth in body weight on age for 485 days. Males and females. Observations by King (MS., '15). Data from two series combined. See table 67.

Bearing young also causes an increase in body weight in the females, J. B. Watson ('05).

A decrease follows all forms of underfeeding (Hatai, '04 a, '07 a, '08; Donaldson, '11 a) including feeding with certain vegetable proteins. See many references to Osborne and Mendel in chapter 4, Physiology: Nutrition, p. 61.

Decrease also follows an excessive meat diet when begun with young animals (Mus norvegicus) (C. Watson, '06, '06 a, '06 b).

TABLE 48
Giving in grams the values obtained by dividing the body weight by body length in millimeters. Based on data in Table 68

BODY	RA	TIO	BODY	RA	TIO	BODY	RA	TIO
LENGTH	Male	Female	LENGTH	Male	Female	LENGTH	Mate	Female
50	0.10	0.10	86	0.22	0.23	121	0.37	0.39
51	0.10	0.10	87	0.23	0.24	122	0.37	0.39
52	0.10	0.10	88	0.23	0.24	123	0.38	0.40
53	0.10	0.11	. 89	0.23	0.24	124	0.38	0.40
54	0.10	0.11	90	0.24	0.25	125	0.39	0.41
55	0.11	0.11				126	0.39	0.41
56	0.11	0.12	91	0.24	0.25	127	0.40	0.42
57	0.11	0.12	92	0.24	0.26	128	0.40	0.43
58	0.12	0.12	93	0.25	0.26	129	0.41	0.43
59	0.12	0.13	94	0.25	0.27	130	0.41	0.44
60	0.13	0.13	95	0.26	0.27			
2000000	A STATE OF THE PARTY OF THE PAR		96	0.26	0.27	131	0.42	0.44
61	0.13	0.14	97	0.26	0.28	132	0.42	0.45
62	0.13	0.14	98	0.27	0.28	133	0.43	0.45
63	0.14	0.14	99	0.27	0.29	134	0.43	0.46
64	0.14	0.15	100	0.28	0.29	135	0.44	0.47
65	0.14	0.15				136	0.44	0.47
66	0.15	0.16	101	0.28	0.30	137	0.45	0.48
67	0.15	0.16	102	0.28	0.30	138	0.46	0.48
68	0.16	0.16	103	0.29	0.30	139	0.46	0.49
69	0.16	0.17	104	0.29	0.31	140	0.47	0.50
70	0.16	0.17	105	0.30	0.31			
			106	0.30	0.32	141	0.47	0.50
71	0.17	0.18	107	0.30	0.32	142	0.48	0.51
72	0.17	0.18	108	0.31	0.33	143	0.48	0.52
73	0.17	0.18	109	0.31	0.33	144	0.49	0.52
74	0.18	0.19	110	0.32	0.34	145	0.50	0.53
75	0.18	0.19				146	0.50	0.54
76	0.18	0.19	111	0.32	0.34	147	0.51	0.54
77	0.19	0.20	112	0.33	0.34	148	0.52	0.55
78	0.19	0.20	113	0.33	0.35	149	0.52	0.56
79	0.19	0.21	114	0.34	0.35	150	0.53	0.56
80	0.20	0.21	115	0.34	0.36			1
			116	0.34	0.36	151	0.54	0.57
81	0.20	0.21	117	0.35	0.37	152	0.54	0.58
82	0.21	0.22	118	0.35	0.37	153	0.55	0.58
83	0.21	0.22	119	0.36	0.38	154	0.56	0.59
84	0.21	0.23	120	0.36	0.38	155	0.56	0.60
85	0.22	0.23			1000	156	0.57	0.61

TABLE 48-Concluded

BODY	R.	ATIO	BODY	BA	OIT	BODY	RA	TIO
LENGTH	Male	Female	LENGTH	Male	Female	LENGTH	Male	Female
157	0.58	0.61	188	0.84	0.90	219	1.22	1.32
158	0.58	0.62	189	0.85	0.91	220	1.24	1.34
159	0.59	0.63	190	0.86	0.92			
160	0.60	0.64				221	1.25	1.36
			191	0.87	0.94	222	1.27	1.38
161	0.60	0.65	192	0.88	0.95	223	1.28	1.40
162	0.61	0.65	193	0.89	0.96	224	1.30	1.41
163	0.62	0.66	194	0.90	0.97	225	1.32	1.43
164	0.63	0.67	195	0.91	0.98	226	1.33	1.45
165	0.63	0.68	196	0.92	1.00	227	1.35	1.47
166	0.64	0.69	197	0.94	1.01	228	1.37	1.49
167	0.65	0.70	198	0.95	1.02	229	1.38	1.51
168	0.66	0.70	199	0.96	1.03	230	1.40	1.52
169	0.67	0.71	200	0.97	1.05	1000000		A TRANSPORT
170	0.67	0.71				231	1.42	1.54
2000		100000000000000000000000000000000000000	201	0.98	1.06	232	1.44	1.56
171	0.68	0.72	202	0.99	1.07	233	1.45	1.58
172	0.69	0.73	203	1.01	1.09	234	1.47	1.60
173	0.70	0.75	204	1.02	1.10	235	1.49	1.62
174	0.71	0.76	205	1.03	1.11	236	1.51	1.64
175	0.72	0.77	206	1.04	1.13	237	1.53	1.67
176	0.73	0.78	207	1.06	1.14	238	1.55	1.69
177	0.73	0.79	208	1.07	1.16	239	1.56	1.71
178	0.74	0.80	209	1.08	1.17	240	1.58	1.73
179	0.75	0.81	210	1.10	1.19			
180	0.76	0.82				241	1.60	1.75
			211	1.11	1.20	242	1.62	1.78
181	0.77	0.83	212	1.12	1.22	243	1.64	1.80
182	0.78	0.84	213	1.14	1.23	244	1.67	1.82
183	0.79	0.85	214	1.15	1.25	245	1.69	1.84
184	0.80	0.86	215	1.17	1.26	246	1.71	1.87
185	0.81	0.87	216	1.18	1.28	247	1.73	1.89
186	0.82	0.88	217	1.19	1.29	248	1.75	1.92
187	0.83	0.89	218	1.21	1.31	249	1.77	1.94
100 100 11		100000000000000000000000000000000000000				250	1.79	1.97

^{5.} Weight-length ratios. Although it is not our purpose to introduce derived values among the tables, yet it seemed desirable in this connection to put in a table showing the ratio of body weight to body length. This gives the weight value of a running millimeter of the animal. By the use of this table it can be de-

termined whether a given rat is emaciated or fat. The values for the weights and lengths as given in table 68 have been used for obtaining these ratios.

GROWTH IN TOTAL WEIGHT: REFERENCES

2. Growth before birth. Huber, '15 a. 3. Growth after birth. Chisolm, '11. Donaldson, '06, '12 c. Dunn, '08. Ferry, '13. Jackson, '13. King, '15. King and Stotsenburg, '15. Robertson, '08. 4. Modifications of growth. Donaldson, 11 a. Hatai, '03 a. '04 a, '07 a, '08, '13 a, '15. Jackson, '15, '15 a, '15 b. Osborne and Mendel (See Physiology: Nutrition). Schäfer, '12. Stotsenburg, '09, '13. Watson, C., '06, '06 a, '06 b. Watson, J. B., '05.

CHAPTER 6

GROWTH OF PARTS AND SYSTEMS OF THE BODY IN WEIGHT

- 1. Larger divisions. 2. Systems. 3. Teeth. 4. Blood. 5. Fat.
- Larger divisions. The relative growth of the component parts (head, trunk and limbs) and of the systems (integument ligamentous skeleton, musculature and viscera) has been studied by Jackson and Lowrey ('12).

The rats were reared at the University of Missouri and fed daily with wheat bread soaked in whole milk—a supply of chopped corn being kept constantly in the cages. In addition fresh beef was given once a week. The rats were well grown except at five months and one year, when both sexes were somewhat low in body weight—the deficiency being most marked in the females.

The report of the work by Jackson and Lowrey ('12) is given largely in their own words.

The method of dissection was as follows. The animal was taken in the morning before feeding and killed by chloroform. The gross body weight, and the lengths of body and tail were recorded. The head (with skin) was then removed (just posterior to the foramen magnum and anterior to the larynx) and weighed. In the meantime, the trunk was suspended and the blood (unmeasured) was allowed to escape. Then the viscera were carefully removed and weighed individually (including brain, spinal cord, eyeballs, thyroid, thymus, heart, lungs, liver, spleen, stomach and intestines, both with contents and empty, suprarenals, kidneys and gonads). Urine was estimated if present. The extremities were separated at the shoulder and hip joints and weighed with skin. The skin (including ears, claws and adherent subcutaneous tissue) was next removed and weighed. The trunk weight was estimated by substracting the weight of the head and extremities from the net body weight.

Then the musculature with skeleton was weighed, the few remaining additional structures (genitalia, large vessels, pharynx and oesophagus, larynx and trachea, and masses of fat connected with the musculature) having been carefully removed. Finally the musculature was care-

fully dissected off and the skeleton, including bones, cartilages and ligaments, was weighed. This weight, subtracted from that of the skeleton and musculature together, gives the weight of the musculature, including the tendons. Evaporation was reduced to a minimum by keeping the various structures in a closed moist container, so far as The net body weight, which is the gross body weight minus contents of stomach, intestines and urinary bladder, was used as the basis in calculating the percentage weights. The percentages therefore differ slightly from those calculated upon the gross body weight. The difference is not of material importance in the case of the albino rat, however, as the intestinal and other contents do not average more than 5 per cent of the body at the ages observed (excepting at 6 weeks, where the average was about 8 per cent.) The observations were grouped at seven ages, chosen for the following reasons. At one week the weight at birth has about doubled. At three weeks it has about doubled again, and this moreover is the age at which the animal is usually weaned. At six weeks the body weight has again about doubled, and the animal is well established upon its permanent diet. Ten weeks represents the age of puberty, and the body weight of six weeks has again about doubled. At one year the body weight has again nearly doubled, and this represents nearly the adult weight. Five months was arbitrarily selected as the time when the body weight is approximately half way between those of ten weeks and one year. While therefore observations are not available for the various intermediate age periods, these are sufficiently close together so that no important change in the relative weights of the constituent parts is likely to be overlooked. Moreover, on account of the variations at the different ages in the body weights, these form a fairly continuous series; and the relative weights of the various constituent parts are apparently more closely correlated with the body weight than with the age.

The relative weights of the component parts examined are given in table 49 (modified from table 2, p. 455, loc. cit.).

TABLE 49

Albino rat—Average percentage weight of head, trunk and extremities at various ages—sexes combined (Jackson and Lowrey, '12)

AGE, DAYS	BODY WEIGHT	HEAD	FORE-LIMBS	HIND-LIMBS	TRUNK
	gms.	per cent	per cent	per cent	per cent
0	5.4	21.65	7.39	9.45	61.51
7	11.6	23.70	8.92	11.97	55.41
21	25.5	20.22	9.25	14.87	55.66
42	79.2	11.80	6.72	14.94	66.54
70	141.9	9.56	5.32	15.59	69.53
50	190.7	9.42	5.87	15.64	69.07
65	222.2	9.29	4.76	14.63	71.32

The authors call attention to the relative increase in the weight of the head during the first week—as peculiar in the rat—and also point out that the maximum relative weight is shown by the head at one week—by the forelimbs at three weeks, by the hind limbs at five months and by the trunk at a year—the wave of most active growth thus passing from the head caudad with advancing age.

2. Systems. The relative growth of the various systems is also given for the integument, ligamentous skeleton, musculature and viscera. The method of preparing each system has been previously noted. The following table is based on table 4 (loc. cit., p. 460) to which has been added the average values of the net body weights.

It is to be noted that the percentages in tables 49 and 50 are based on the 'net body weight' of the rats. According to Jackson and Lowrey this is about 95 per cent of the gross weight, and this factor can be used therefore to transform net into gross weight.

Average percentage weights of integument, ligamentous skeleton, musculature, viscera and remainder. Based on Jackson and Lowrey ('12), table 4. For the corresponding absolute weights see table 51

			PER	COMBINED	FOR		
AGE IN DAYS	SEX AND NUMBER	WEIGHT	Integument	Liga- mentous skeleton	Muscula- ture	Viscera	Remainder
		qms.					
0	M. 9 F. 9	3 4.7	19.8	17.3	24.4	18.1	20.4
7	{M. 8 F. 11	10.1	25.9	18.5	22.8	19.2	13.6
21	M. 7 F. 6	24.8	22.4	16.6	26.9	21.3	12.8
42	M. 6 F. 8	64.5	20.9	14.0	32.7	20.4	12.0
70	M. 5 F. 5	30.5	18.7	11.7	41.1	16.0	12.5
150	M. 6 F. 7	184.3	18.1	11.5	42.6	14.8	13.0
365	M. 4 F. 2	234.6	18.0	10.9	45.4	13.3	12.4

TABLE 51.

Shows for the series of body weights of the albino rat by Jackson and Lowrey ('12) the absolute weights of integument, ligamentous skeleton, musculature, viscera and remainder determined by the use of the percentage values given in the preceding table 50

IN DAYS	MEAN BODY	SEX	No.	INTEG	UMENT	T	MEN- OUS LETON	MUSCU	LATURE	VIS	CERA	REMA	INDER
0	Average M. + F.			g	ms.	g	ms.	gi	ns.	g	ms.	gı	ms.
	5.11	M.	9		1.00		0.87		1.19		0.90		1.15
	4.27	F.	9		0.85		0.75		1.09		0.79		0.79
	4.69	1000		0.93		0.81		1.15		0.85		0.97	
7	10.47	M.	8		2.79		1.93		2.40		2.00	-	1.00
	9.83	F.	11		2.33		1.70		2.24		1.90		1.36
	10.10			2.62		1.87	2.10	2.30	0.01	1.94		1.37	1.30
21	26.91	M.	7		6.35		4.20		7.45		5.71		3.23
	22.31	F.	6		4.69		3.97		5.78		4.77		
	24.78			5.55		4.11		6.67	0.10	5.28		3.17	3.08
42	60.10	M.	6		12.14		9.08		19.41		12.86		6.67
	67.80	F.	8		14.51		8.95		22.37		13.36		8.61
	64.50			13.48		9.03		21.09		13.16		7.74	0.01
70	143.60	М.	5		26.14		15.94		57.15		23.26		21.11
	117.50	F.	5		22.56		14.34		50,900,000		18.68		11.99
	130.50			24.40				53.64		20.88	10.00	16.31	11.99
150	218.70	M.	6		41.99		22.84		93 38	-	29.96		25.52
	154.80	F.	7		26.62		18.73				24.30		19.20
	184.30			33.36		21.38		78.51		27.28	21.00	23.77	19.20
365	260.20	M.	4		44.75		25.50	1	20.99		33.83	7 70 3	35.13
	183.50	F.	2		35.78		24.22				25.32		18.72
	234.60			42.23		25.57		106.51	120000000000000000000000000000000000000	31.20		29.09	15.72

Ligamentous skeleton. Since the values for the skeleton as given in tables 50 and 51 were obtained by dissection of the soft parts from the bones, it is evident that these determinations for the skeleton, which here corresponds to the 'ligamentous skeleton' would be high as compared with those obtained after the soft parts had been completely removed by maceration—thus giving the 'cartilaginous skeleton' in the strict sense.

In view of this difference we have made recently a series of determinations of the relative weight of the cartilaginous skeleton after maceration, Conrow (MS '15). Using these determinations as a basis, table 52 has been formed which gives the values thus

obtained. The differences between the values for the moist skeleton after maceration and those obtained after gross dissection may be designated as values for the 'periosteum, ligaments, etc.' and are so entered in table 52.

It is thus possible from these two tables to compare subsequent determinations of the skeleton after either dissection or maceration.

If rats normal in body weight for their age are compared, we find that the cartilaginous skeleton at birth represents 52.5 per

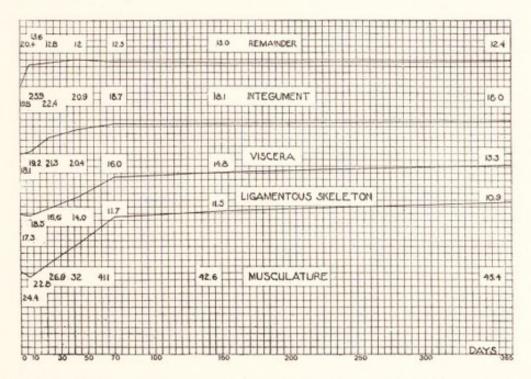


Chart 5 Giving for the sexes combined the percentage of the entire body weight represented by each of the several systems. Plotted on age in days. Table 50, Jackson and Lowrey ('12).

cent of the weight of the ligamentous skeleton, while at one year it represents 64.5 per cent. The ratio for the weight of the bony skeleton rises therefore one point for each 23 grams increase in body weight, or for each gram of increase in body weight the ratio rises about 0.044 of a point. Within the age limits here given, these factors may be used for transforming one set of values into the other.

Jackson and Lowrey conclude (p. 472) that the data indicate no noteworthy differences between the sexes in the relative weights of the various parts and systems, and that the body of the albino rat has practically reached the adult proportions in its component parts and systems at the age of ten weeks.

Corresponding observations, though less extensive, made on the Norway rat are given in chapter 12.

TABLE 52

Giving the percentage values for the cartilaginous skeleton when this has been prepared by maceration (Conrow, MS. '15), also giving—by difference between these values and those in table 50—the percentage values for the "periosteum, ligaments, etc."

			PERCENTAGE V	ALUE OF MOIST
AGE IN DAYS	SEX AND NUMBER	BODY WEIGHT NET BOTH SEXES	Cartilaginous skeleton (by maceration) Conrow	Periosteum ligaments, etc. Based on table 50
0	$ \begin{pmatrix} M. & 9 \\ F. & 9 \end{pmatrix} $	4.7	8.95	8.35
7	M. 8 F. 11	10.1	9.36	9.14
21		24.8	9.61	6.99
42	$\begin{Bmatrix} \mathbf{M.} & 6 \\ \mathbf{F.} & 8 \end{Bmatrix}$	64.5	7.46	6.54
70	$ \left\{ \begin{array}{ll} \text{M.} & 5 \\ \text{F.} & 5 \end{array} \right\} $	130.5	7.32	4.38
150	$ \left\{ \begin{array}{ll} \text{M.} & 6 \\ \text{F.} & 7 \end{array} \right\} $	184.3	6.32	4.18
365	$\begin{Bmatrix} M. & 4 \\ F. & 2 \end{Bmatrix}$	234.6	6.04	4.05

Weight of entire cartilaginous skeleton. Using a 2 per cent solution of the commercial gold dust washing powder ('Gold dust washing powder' consists of about 45 per cent sodium carbonate, 30 per cent soap powder, and 25 per cent water), the skeletons of some 70 inbred Albinos (King) have been carefully prepared by Conrow (MS '15) at The Wistar Institute. The animals were reared on a scrap diet. A careful comparison with the stock Albinos has not yet been made, but at the same time there is no suggestion thus far that the values for the inbreds differ from

those for the stock, when both age and body weight are taken into consideration. The weight of the skeleton is given in relation to the body weight. The value for the body used here is that normal to the body length (see table 68) when the observed body weight is less than that to be expected—but the observed body weight is used when that is above the normal for the body length. In the case of old rats undergoing senile loss of body weight the maximum body weight is the one used.

The weight of the teeth is included with that of the skeleton—but the weight of the nails is excluded. Under these conditions the following table gives the weight of the moist cartilaginous skeleton—immediately after complete cleaning, and also

TABLE 53

Giving data on the cartilaginous skeleton of the (inbred) Albino (Conrow MS '15).

The weights for the moist skeleton are given—but not for the room dried skeleton.

The percentage values for both on the body weight have been computed.

	AGE	BODY	BODY	SKELETON	PERCENTAG	E VALUE OF
SEX	IN DAYS	LENGTH	WEIGHT	WEIGHT	Moist skeleton	Dry skeleton
		mm.	gms.			
M	New born	45	4.0	0.379	9.38	1.78
M	New born	47	4.0	0.401	10.03	2.35
F	New born	47	4.7	0.351	7.43	1.70
۸	4	58	6.8	0.791	11.59	2.48
vI	2	59	7.1	0.986	13.85	3.51
M	3	59	7.1	0.613	8.59	2.24
4	11	65	9.4	0.909	9.63	2.47
F	10	65	9.9	0.904	9.09	2.67
F	17	76	14.8	1.469	9.89	3.61
r. .	20	90	22.4	2.114	9.40	3.59
P		102	30.5	3.005	9.82	3.81
	28	103	29.6	2.543	8.56	3.91
M		113	37.3	3.301	8.82	3.91
1	33	118	41.6	3.532	8.46	3.72
vI	34	123	46.3	4.030	8.73	4.06
M	32	125	48.3	3.965	8.18	3.84
P	41	126	52.3	3.959	7.54	3.89
A	40	131	54.7	4.374	7.97	3.85
Л	36	133	56.9	4.662	8.16	3.74
vi Iv		135	59.3	4.620	7.76	3.89
F	1000	140	69.5	4.997	7.16	4.03

GROWTH IN PARTS

TABLE 53—Concluded

SEX	AGE	BODY	вору	SKELETON	PERCENTAG	E VALUE O
36.4	IN DAYS	ENGTH	WEIGHT	WEIGHT	Moist skeleton	Dry skeletor
		mm.	gms.			
F	73	145	76.7	5.930	7.70	4.84
P	54	148	81.3	6.349	7.78	4.34
	102	153	89.4	7.278	8.12	5.20
	84	164	109.9	8.114	7.36	4.79
	117	164	109.9	7.424	6.74	4.58
	106	171	125.0	8.876	7.08	4.72
	189	172	127.3	9.665	7.57	5.36
	119	181	149.7	10.209	6.80	4.77
	120	183	155.2	9.983	6.41	4.43
*************	135	185	160.8	11.155	6.92	4.56
ſ	99	185	149.6	10.609	7.07	5.03
[105	186	152.3	10.539	6.90	4.74
	125	188	169.6	11.469	6.74	4.79
		190	175.7	11.888	6.75	5.00
	320	196	223.0	13.386	5.98	4.00
[173	197	184.3	11.283	6.10	4.00
	281	199	205.8	13.132	6.36	4.64
[253	199	190.8	12.557	6.56	4.82
	196	200	194.1	12.409	6.38	4.53
	299	202	216.8	14.378	6.62	4.57
	302	203	220.7	13.974	6.32	4.69
	392	203	220.7	12.911	5.84	3.56
	121	207	218.7	13.594	6.22	4.37
	203	211	234.1	14.600	6.23	4.21
	371	211	295.0	15.019	5.08	3.42
*******	169	214	246.3	15.543	6.30	4.52
	205	215	250.5	15.688	6.25	4.58
	304	216	307.0	16.810	5.47	3.76
	367	219	318.0	19.321	6.07	4.26
	221	219	267.9	16.158	6.02	4.09
****************	314	221	344.0	20.078	5.83	4.05
	462	223	342.9	20.277	5.90	4.22
	357	225	410.0	19.147	4.66	3.47
	518	226	343.0	20.433	5.95	4.29
	332	226	419.0	22.257	5.30	
	474	228	355.0		0.800 (3.00)	3.93
	276	228	413.0	19.518 22.323	5.49	3.88
	726	230	446.0		5.40	3.96
	255	238		21.720	4.86	3.55
	253	240	420.0	25.390	6.04	4.49
[10.000	10000	440.0	23.698	5.38	4.01
**********	408	252	463.4	23.823	5.03	3.79

the weight of the dry skeleton after drying in open, but dust free vessels, for thirty days or more at room temperature (17°–23°C.).

In table 54 the same material has been used to show the lengths of the femur and tibia and the humerus and ulna together with some simple relations. In the case of the Albinos less than 30 days of age, drying in the air may cause so considerable a reduction in the lengths of these bones that no measurements are given in table 54 for dried long bones younger than 30 days—at which time the skeleton is fairly well calcified.

TABLE 54

From some of the same (inbred) Albinos as were used for table 53 the lengths of the femur, tibia, humerus and ulna have been determined and also the percentage lengths of the humerus and ulna on the femur and tibia, as well as the relation of both of these pairs to the body length (Conrow, MS '15)

			ME	N LENGT	HS IN mm.	OF	PE	RCENTAGES	OF
SEX	AGE DAYS	BODY	Femue	Tibia	Humerus	Ulna	$\frac{H.+U.}{F.+T.}$	F. T. Bd. L.	H. U. Bd. L.
		mm.							
M	32	125	18.7	23.0	15.9	18.8	83	33	27
F	41	126	18.7	23.0	15.4	18.3	80	33	26
M	40	131	18.2	22.9	15.4	18.7	82	31	26
M	36	133	20.9	25.0	16.9	20.2	80	34	28
M	43	135	19.8	23.6	16.0	18.9	80	32	25
F	46	140	21.2	24.6	17.1	19.7	80	32	26
F	73	145	23.1	26.4	17.8	21.4	79	34	27
F	54	148	23,5	27.4	18.4	22.0	79	34	27
F	102	153	25.3	29.3	20.5	23.6	80	35	28
F	84	164	26.1	29.8	20.7	24.6	81	34	27
F	117	164	27.3	31.5	21.3	25.7	79	35	28
F	106	171	27.8	31.5	22.1	25.8	80	34	28
F	189	172	28.8	32.2	22.6	26.8	80	35	28
F	119	181	30.3	33.0	23.6	27.1	-80	34	27
F	120	183	29.0	32.9	22.7	27.1	80	33	27
M	119	183	30.7	33.6	23.9	26.6	78	35	27
F	135	185	31.5	34.6	24.6	28.3	80	35	28
M	99	185	30.6	34.0	23.9	27.1	78	34	27
M	105	186	30.8	33.8	24.1	27.4	79	34	27
F	125	188	30.6	33.8	23.6	28.1	80	34	27
F		190	30.7	34.6	24.4	28.6	81	34	27
F	730	193	33.5	36.5	26.3	31.5	82	35	29

TABLE 54-Concluded

	LOP	nonv	MEA	N LENGT	HS IN mm.	OF	PE	RCENTAGES	OF
SEX	DAYS	LENGTH	Femur	Tibia	Humerus	Ulna	$\frac{H.+U.}{F.+T.}$	F. T. Bd. L.	H. U. Bd. L.
		mm.							-
F	320	196	34.8	36.5	26.8	30.5	80	36	29
M	173	197	32.8	35.6	25.5	28.9	79	34	27
M	253	199	34.3	37.4	26.8	31.4	81	35	29
F	281	199	32.9	36.5	25.9	30.8	81	34	28
M	196	200	33.9	36.9	26.3	30.3	79	35	28
F	392	203	32.1	35.1	25.0	29.3	80	33	26
F	302	203	34.5	37.8	26.6	31.9	80	35	28
M	121	207	34.1	36.9	26.7	30.2	80	34	27
M	203	211	34.6	38.6	26.9	31.6	79	34	27
MI	371	211	37.0	39.2	28.3	32.5	79	36	28
M	169	214	35.0	37.3	27.3	30.7	80	33	27
M	205	215	35.1	37.7	27.1	31.3	80	33	27
M	304	216	37.9	41.7	29.8	34.6	81	36	29
M	221	219	37.5	39.8	28.7	32.3	78	35	27
M	367	219	37.3	38.6	28.9	31.8	79	34	27
M	314	221	38.6	40.4	29.9	34.1	81	35	28
M	462	223	37.3	39.2	29.4	32.1	80	34	27
M	357	225	39.2	41.5	30.5	34.1	80	35	28
M	518	226	37.7	39.2	29.6	32.4	80	34	27
MI	332	226	38.2	41.5	29.6	34.6	80	35	28
I	276	228	38.3	39.7	29.8	32.5	79	34	27
A	474	228	40.0	41.3	30.9	34.2	80	35	28
A	726	230	39.2	40.9	30.5	33.1	79	34	27
4	255	238	39.6	42.5	30.7	35.9	81	34	27
4	253	240	40.7	43.8	32.0	36.0	80	35	28
M	408	252	41.0	43.1	31.7	36.1	80	33	26

Tests show that after 30 days of age, drying at room temperature causes less than one per cent of shrinkage in the absolute lengths of the bones. The values for the bone lengths given in the table are means for the right and left sides—the length for the two sides usually being very nearly the same. The body length in every case is taken on the rat immediately after chloroforming.

Weight of cranium. Determinations of the weight of the cranium dried at room temperature have been made, Donaldson ('12 a). By the cranium is meant the skull with upper

teeth, minus the mandible with lower teeth and minus the ear bones. The mean weights are given in table 55.

TABLE 55

The mean weight in grams of the crania in each body weight group of the four series of albino rats from Paris, London, Philadelphia, Vienna (based on table 4) Donaldson ('12 a). Each weight group is based on six cases, three males and three females

BODY WEIGHT GROUP	WEIGHT OF CRANIA IN GRAMS				
	London	Paris	Philadelphia	Vienna	
grams					
125	0.89	1.03	1.05	1.00	
175	1.23	1.27	1.41	1.40	
225	1.52	1.52	1.51	1.73	
275	1.79		1.87	2.10	
325			2.15		

For the corresponding weights of the Norway crania see Table 84.

- 3. Teeth. For the data on the growth of the incisor teeth (Addison and Appleton, '15), see chapter 3, p. 37–39.
- 4. Blood. By means of a formula (19) based on his observations Chisolm ('11) was able to compute approximately the volume of the blood in rats of different body weights. Hatai (MS '14) has added two formulas (19 a) (19 b) based on that of Chisolm and giving results somewhat closer to the observations when the determinations are made according to sex.

These three formulas have been transformed in turn from volume to weight by using as a factor 1.056—the specific gravity of the blood—and three formulas for blood weight (20) (20 a) (20 b) have been thus obtained. These last have been used to compute the weight of the blood as given in table 70. Table 56 here given presents Chisolm's data on the other growth changes in the blood.

5. Fat. Boycott and Damant ('08, '08 a) have recorded the proportion of fat in rats of both sexes and of increasing body weights.

The total fat was determined in healthy animals living under ordinary laboratory conditions as to food. No details given. The fat was estimated by Leathes' modification of Liebermann's

TABLE 56

Showing growth changes in the blood in rats of increasing age (body weight). Sexes combined—based on tables I and II, Chisolm ('11)

TALE	AGE IN	DODY WE	LENGTH	Нв	O2 CAPACITY IN CC.		BLOOD VOLUME IN CO	
NO. OF ANIMALS	DAYS	BODY WT. IN GMS.	OF BODY IN MM.	PER CENT	Total	Per kilo body wt.	Total	Per kilo body wt
2	1	3.6		89.0	0.0411	11.59	0.249	70.3
5	2	4.8	47	72.0	0.0466	9.79	0.350	73.5
3	8	10.0	59	50.3	0.0485	4.83	0.522	52.0
9	16	12.8	72	63.0	0.0639	4.99	0.544	42.5
3	21	14.2	82	49.0	0.0773	5.44	0.863	60.4
3	28	14.3	84	44.7	0.0891	6.17	1.070	74.4
9		37.0	112	76.0	0.3730	10.00	2.620	70.0
8		57.0	134	84.6	0.5630	9.92	3.610	63.7
8		66.0	140	85.1	0.6490	9.88	4.120	62.7
12		75.0	144	79.9	0.7220	9.60	4.940	65.7
15		86.0	148	82.4	0.8600	10.02	5.670	66.0
8		95.0	155	84.0	0.9550	10.02	6.070	63.9
8		106.0	159	82.4	1.0270	9.74	6.810	64.5
11		115.0	166	92.5	1.2130	10.51	6.970	60.5
9		125.0	169	92.6	1.2410	9.89	7.260	57.9
8		146.0	178	89.1	1.4460	9.92	8.870	60.8
8		165.0	180	92.0	1.6630	10.10	9.890	59.3
7		194.0	189	92.4	1.9880	10.28	11.820	61.0
10		227.0	201	89.9	2.1860	9.68	13.180	58.2
8		268.0	206	85.4	2.2300	8.36	14.150	53.0

methods (see Hartley, '07) which is easily applicable to the entire carcasses of animals. The figures, given as percentages of fatty acid on the crude weight of the animal, represent therefore masked as well as anatomical fat.

From the table 57 based on body weight it appears that the proportion of fat tends to be greater in the heavier animals, and from the tables based on the data grouped according to sex, it appears that the females have a somewhat larger percentage of fat than do the males.

1.0

5.6

Giving the proportion of fat (fatty acids) with increasing age (body weight.) Based on table A, Boycott and Damant ('08 a)

SUMBER AND SEX		BODY WEIGHT	PERCENTAGE OF FATTY ACIDS			
М.	F.	IN GMS.	Max.	Min.	Average	
15	10	20- 49	9.2	0.85	4.1	
8	7	50- 99	6.1	1.00	4.0	
19	25	100-149	16.1	0.80	6.1	
11	17	150-199	14.6	1.30	7.6	
7	2	200-247	9.7	1.30	5.8	

GROWTH OF PARTS AND SYSTEMS: REFERENCES

Larger divisions. Jackson and Lowrey, '12.
 Systems. Donaldson, '11, '11 c, '12, '12 a. Donaldson and Hatai, '11, '11 a. Jackson and Lowrey, '12.
 Teeth. Addison and Appleton, '15. MacGillavry, 1875. Meyerheim, 1898.
 Blood and 5. Fat. Boycott and Damant, '08, '08 a. Chisolm, '11. Hartley, '07.

CHAPTER 7

GROWTH OF PARTS AND ORGANS IN RELATION TO BODY LENGTH AND IN RELATION TO AGE

1. Introduction. 2. Methods of examination and graphs. 3. Body length on body weight. Body weight on body length. Tail length on body length. 4. Organs with an early rapid growth: Brain, spinal cord, eyeballs. 5. Organs with a nearly uniform growth: Heart, kidneys, liver, spleen, lungs, blood, alimentary tract, thyroid, hypophysis and suprarenals. 6. Organs with a rapid growth just preceding puberty. Ovaries, testes, thymus (on age). 7. Determinations of variation. 8. General tables. a) Tables, weight of entire body on age. Before birth; from birth on. b) Tables, increase in the length and weight of parts and organs on body length. 9. Table, weight of thymus on age. 10. Table, weight of all viscera combined. 11. Tables, values for characters linked with age. 12. Formulas.

1. Introduction. The organs, the growth of which has been followed are tail (length), brain, spinal cord, eyeballs, heart, kidneys, liver, spleen, lungs (blood), alimentary tract, testes, ovaries, hypophysis, suprarenals, thyroid and thymus.

All the observations were made on stock Albinos from the colony at The Wistar Institute, except those for the total blood which are

based on the records of Chisolm, '11.

The mean values for the several organs were in each instance charted and with these as a guide a theoretical graph was found which could be expressed by a formula or a series of formulas. All the formulas were devised by Hatai.

To present the results in a convenient form the organs are grouped in the text according to the manner of their growth, each organ is accompanied by a chart showing the original data and the graph based on these data.

In each case reference is made to the formula or formulas on which the graph is based, but as a matter of convenience, the formulas utilized here for the graphs are grouped in the section entitled "Formulas" pp. 158-175. The charts serve to show the form of the graph of growth in each instance, but the precise weight values of the organs are to be read from the tables. For those who desire to find the weight of an organ in a rat of any body length or body weight a series of values—computed by the aid of the appropriate formulas—are given in tables 68–71 inclusive.

In making these tables the determinations for the corresponding body weights for each millimeter of length in each sex were first made by formulas (2a) and (2b) and the body weights so obtained were then used in computing the weights of the several organs.

In table 72 for the thymus however, it was found necessary to enter the weight values of the organ according to the age of the rat.

In table 73 the computed weight of the thymus on body weight is given on the assumption that the *body weights are normal to age* in conformity with the data in table 62.

- 2. Methods of examination and graphs. Unless otherwise stated the following determinations were made on stock Albinos taken from the colony at The Wistar Institute. The animals were killed with chloroform twenty hours after the last feeding and were dissected according to a fixed procedure.
- 3. Body length on body weight. Technic: Immediately after killing the rat was laid on its back and gently extended—the tail being drawn out straight. With jointed calipers the distance from the tip of the nose to the tip of the tail was taken and its values in millimeters found by applying the points to a scale. Next the distance from the tip of the nose to the center of the anus was found and its value in millimeters determined in the same way. These measurements give first the total length, second, the body length and by the difference, the tail length.

Chart 6 gives the body length on the body weight. The data used are given in table 68. The values were computed by formula (1). The graphs show that for a given body weight the male has the greater body length. Donaldson '09; Donaldson and Hatai '11.

Body weight on body length. The entire rat was next weighed to one-tenth of a gram. The weight thus obtained was not corrected for the contents of the alimentary canal—which according to Jackson and Lowrey ('12) amounts to about 5 per cent of the gross body weight. In gravid females a correction was made however by subtracting the weight of the uterus and fetuses from the observed value. The weight of the body on the body

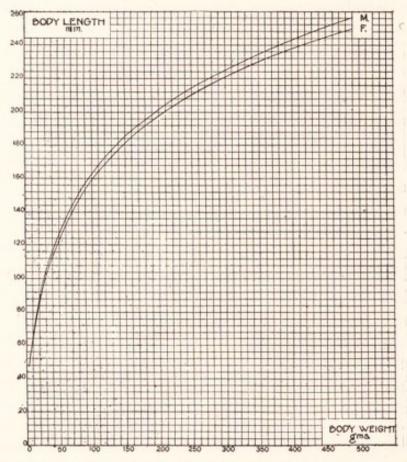


Chart 6 Giving for the males and females respectively the body length on the body weight. Formula (1), table 68.

length is given in chart 7. The values for each millimeter of body length in each sex are given in table 68. The graphs were computed by formulas (2a) and (2b), and show that for a given body length the female has a greater body weight. Donaldson '09, Donaldson and Hatai, '11.

Tail length on body length. The method of obtaining the tail length has been given under body length. The values for

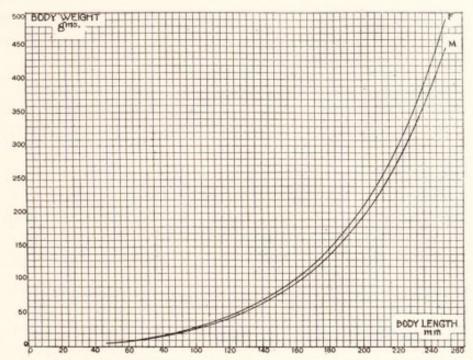


Chart 7 Giving for the males and females respectively the body weight on the body length. Formulas (2 a) and (2 b), table 68.

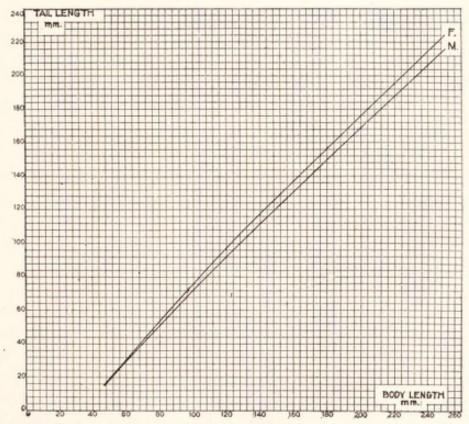


Chart 8 Giving the length of tail in millimeters on the body length, males, females. Formulas (4) and (5), table 68.

the graphs in chart 8 and for the table 68 were determined by formulas 4 and 5. The tail in the female is relatively longer than in the male. Hatai (MS '14).

4. Following the plan of grouping the organs according to the manner of their growth we shall first consider the weights of the brain, the spinal cord and both eyeballs. All of these organs have an early rapid growth.

Brain weight on body weight. Technic: The rat was first eviscerated—this leaves in the brain a minimal amount of blood. The bones of the skull were removed from above—the meninges being left intact. Care was taken to preserve the flocculi which lie in bony pockets. The brain was severed from the cord by a section at the level of the first cervical nerve-coinciding as a rule with the tip of the calamus as seen from the dorsal aspect. The brain was then raised from the floor of the cranium—the nerves being clipped close to the base. The hypophysis was not included. Care was taken to obtain the olfactory bulbs entire. Thus prepared the brain was dropped into a small glass stoppered weighing bottle in which it was weighed to the tenth of a milligram. In this instance, as in the case of all of the other organs, the dissection was made under a glass hood to protect the operator from all drafts which might dry the organ during its preparation. The values for the graph, males only, chart 9 and for table 68 were computed by formulas (6) and (7).

The graph for the male alone is given. As will be seen from table 68, for the same body length the female has a slightly lighter brain and this difference increases to about 1.5 per cent when the female is of the same body weight.

Spinal cord weight on body weight. Spinal cord—Technic: Following the removal of the brain (vide ante) the spinal cord was exposed by removing the arches of the vertebrae from neck to sacrum. The filum terminale was found and the cord raised—so that the roots of the spinal nerves could be clipped close to the cord. The mass thus removed with meninges—was placed in a glass stoppered weighing bottle and weighed to the tenth of a milligram. The values for the graph, males only, in chart 9 and for table 68 were computed by formula (11). Donaldson ('08), ('09); Hatai, ('09a).

For convenience the graph for the spinal cord is given on the same chart as that for the brain. The graph for the male only is entered. For the same body length as the male the spinal cord in the female is about 5 per cent heavier, and for the same body weight, about 2 per cent heavier. Donaldson ('08, '09); Hatai ('09a).

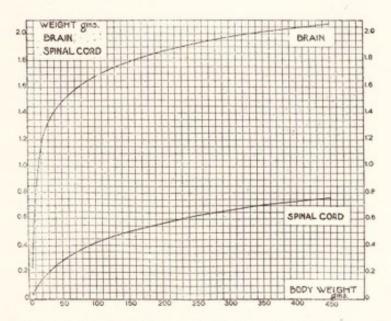


Chart 9 Giving the brain weight on the body weight. Males only. Formulas (6) and (7), table 68. Also spinal cord weight on the body weight. Males only. Formula (11), table 68.

Weight of both eyeballs on body weight. Technic: Care being taken to remove the muscle attachments, both eyes were weighed in a closed weighing bottle. There is usually a close similarity in the weight of the right and left eyeballs. The graph is based on rats studied by Jackson ('13). His results have been corroborated by studies on the stock Albinos from the colony of the Wistar Institute, Hatai ('13). The values for the graph in chart 10 and those given in table 68 are based on formula (13). The graph for the male only is entered, but the values for the female are like those for the male of the same body weight. Under unfavorable nutritional conditions the weight of the eyeballs follows the age rather than the body weight. Hatai (MS '14).

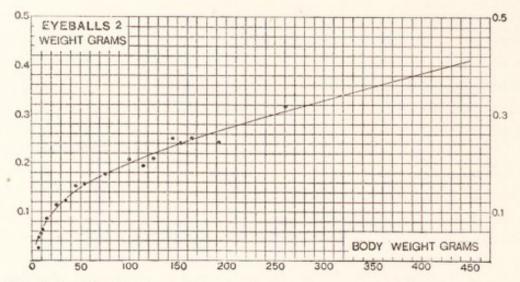


Chart 10 Showing the weight of eyeballs of the male albino rat according to body weight. The observed weights are represented by 149 male rats (Jackson). Table 68, formula (13).

• Observed weight. --- Calculated weight.

5. Organs with a nearly uniform growth after the first very early phase of rapid growth—heart, kidneys, liver, spleen, lungs (blood), alimentary tract, hypophysis, suprarenals and thyroid.

In case of all of the organs to be described the preparation was carried on beneath a glass hood to prevent drying. The organ was weighed in a small glass stoppered bottle and the weight was taken to a tenth of a milligram.

The weight of the heart on body weight. Technic: The heart was removed after cutting all its vessels close to their proximal ends. It was then opened by longitudinal slits through its walls and the clots removed from the cavities thus exposed.

The graph given in chart 11 and the values in table 69 have been determined by formula (14).

The weight of the heart is closely correlated with that of the body and no difference according to sex has been noted. Hatai ('13); Jackson ('13).

Weight of both kidneys on body weight. Technic: All vessels were cut close to the hilum and any superficial fat removed.

The graph given in chart 12 and the values in table 69 were determined by formula (15).

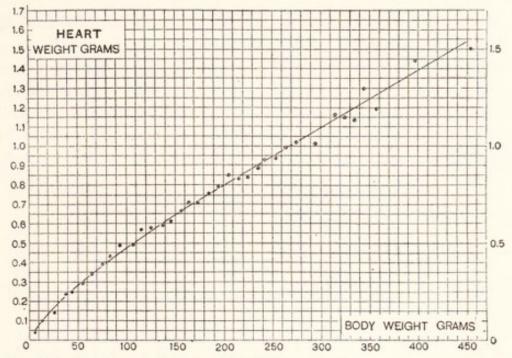


Chart 11 Showing the heart weight of the male albino rat according to body weight. The observed weights are represented by 134 male rats. Table 69, formula (14).

Observed weight. — Calculated weight.

Chart 12 Showing the weight of kidneys of the male albino rat according to body weight. The observed weights are represented by 136 male rats. Table 69, formula (15).

Observed weight. — Calculated weight.

No sex difference was observed but the graph represents the determinations for the male only. Hatai ('13); Jackson ('13).

Weight of the liver on the body weight. Technic: The vessels were cut close to their entrance into the liver and the blood in the larger vessels gently pressed out. The graph given in chart 13 and the values in table 69 were determined by formula (16).

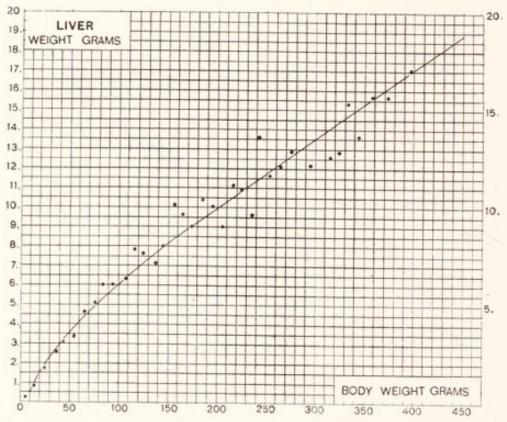


Chart 13 Showing the weight of liver of the male albino rat according to body weight. The observed weights are represented by 136 male rats. Table 69, formula (16).

Observed weight. —— Calculated weight.

No sex difference in the weight of the liver has been noted—but the graph is given for the males only. Considerable variability is to be expected in the weight of an organ with such complex functions as those of the liver and this appears. A heavy liver usually accompanies a heavy spleen (Hatai). Hatai ('13); Jackson ('13).

The weight of the spleen on the body weight. Technic: The vessels were cut close to the hilum. The determination of the weight of the spleen is complicated by the occurrence of "enlarged spleens"—so called. These differ from the normal by being often several times the normal weight, darker in color, soft to the touch and showing on the surface dark or grayish patches. Spleens with these characters plainly marked were not used. The graph in chart 14 and the values in table 69 were determined

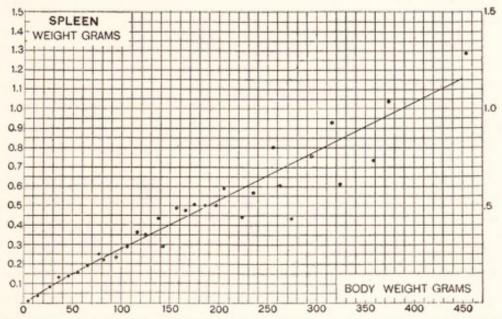


Chart 14 Showing the weight of spleen of the male albino rat according to body weight. The observed weights are represented by 87 male rats. Table 69, formula (17).

• Observed weight. - Calculated weight.

by formula (17). No sex difference was observed but the graph is based on male records only. Hatai ('13); Jackson ('13).

The weight of both lungs on the body weight. Technic: The lungs are severed from the trachea and the portion of the esophagus usually taken out with them is removed. After the first three months of life the lungs of the rat are often infected. Such infected lungs may be highly altered—but are always abnormally heavy. The endeavor has been made to exclude infected lungs from the series—but doubtless some have been used. The graph in chart 15 and the values in table 70 were determined by

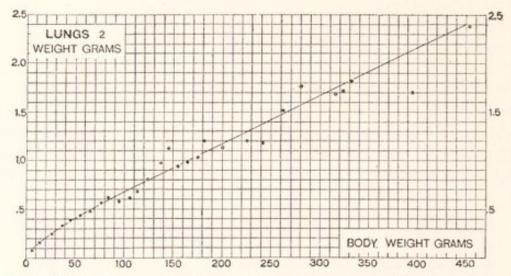


Chart 15 Showing the weight of lungs of the male albino rat according to body weight. The observed weights are represented by 90 male rats. Table 70, formula (18).

• Observed weight. --- Calculated weight.

formula (18). No sex difference has been noted but the graph is based on male data alone. Hatai ('13); Jackson ('13).

Weight of the total blood on body weight. Technic: The observations on this relation were made by Chisolm '11 on Albinos and pied rats. His methods are given in the paper cited above (pp. 207–208) and depend on determinations of the oxygen capacity. Chisolm's formulas have been revised by Hatai (MS '14). The graph in chart 16 and the values in table 70 have

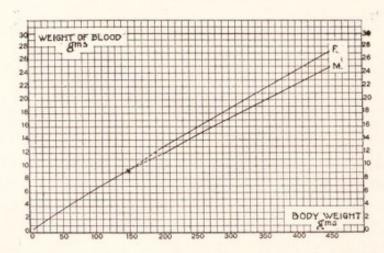


Chart 16 Giving weight of total blood on body weight. Males, females. Formulas (20), (20 a), and (20 b), table 70.

been determined by formulas (20), (20 a), and (20 b). The data are for both sexes combined. Chisolm ('13); Jolly and Stini ('05).

The weight of the alimentary tract on body weight. Technic: The digestive tube from the level of the diaphragm to the anus was removed in its entirety—the pancreas, mesentery and small masses of fat being left adherent. The stomach and the large intestine were cut open and the contents removed while gentle

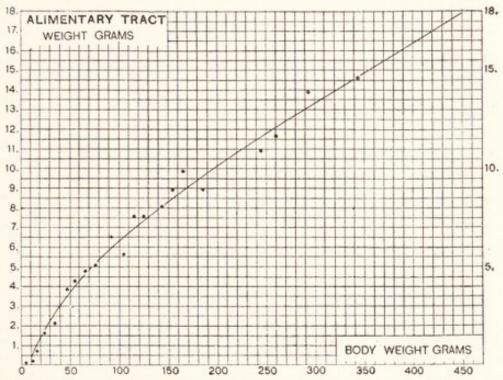


Chart 17 Showing the weight of alimentary tract of the male albino rat according to body weight. The observed weights are represented by 112 (Jackson) rats below 50 grams in body weight, and 82 (Wistar) rats above 50 grams in body weight. Table 70, formula (21).

Observed weight. —— Calculated weight.

pressure on the small intestine—exerted from above downwards—served to expel what it contained. The records are based on one series examined by Jackson ('13) and another series from The Wistar Institute colony. All are males. The graph in chart 17 and the values in table 70 were determined by formula (21). Hatai ('13); and Jackson ('13).

Weight of the thyroid gland on body weight. Technic: Several minute muscles nearly the color of the gland must be re-

moved before weighing. The data are from observations by Jackson ('13), as well as from those made at The Wistar Institute. A study of the data has not revealed any difference according to sex and the graph therefore is for both sexes combined. The graph in chart 18 and the values in table 71 have been determined by formula (32). Hatai ('13); Jackson ('13).

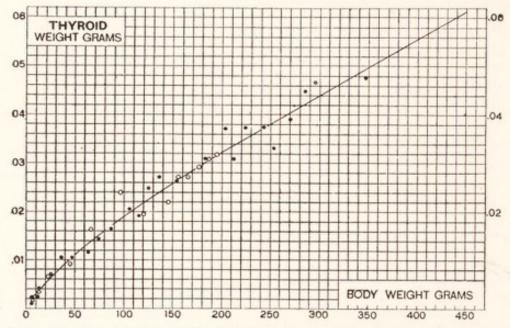


Chart 18 Showing the weight of thyroid gland of the albino rat according to body weight. The observed weights are represented by 42 (Jackson) female rats below 50 grams in body weight, and 49 (Wistar) male rats above 50 grams in body weight; and 36 (Jackson) female rats below 50 grams in body weight, and 27 (Wistar) female rats above 50 grams in body weight. Table 71, formula (32).

Observed weight male. —— Calculated weight for both sexes. Observed weight, female.

The weight of the hypophysis on body weight. Technic: After the removal of the brain, the hypophysis is readily picked up from the floor of the skull with a small forceps. It is weighed as removed.

At about 40–50 days of age there appears a difference in the weight of the hypophysis according to sex and with advancing age this difference tends to increase. The female has the heavier hypophysis. The graph for the male in chart 19 and the values for the male in table 71 have been determined by formula (28).

The graph for the female and the corresponding tabular values by formulas (28) and (29). Hatai ('13).

The weight of the suprarenals on body weight. Technic: The suprarenals are usually imbedded within some fat tissue—but with a little practice they may be dissected out cleanly. At about 40–50 days of age there appears a difference in the weight

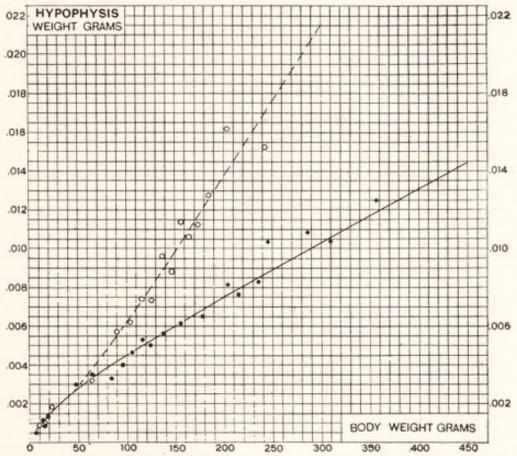


Chart 19 Showing the weight of hypophysis of the albino rat according to body weight. The observed weights are represented by 78 male and 80 female rats. Table 71, formulas (28) and (29).

Observed weight, male.

Observed weight, female.

--- Calculated weight, male.

- - - - Calculated weight, female.

of the suprarenals according to sex and with advancing age this difference tends to increase. The female has the heavier suprarenals. The graph for the male in chart 20 and the values for the male in table 71 have been determined by formula (30). The graph for the female and the corresponding tabular values, by formula (31). Hatai ('13); Jackson ('13).

6. The third group of the organs here considered is formed by those the growth of which is represented by a sinuous graph in which the most marked rise appears shortly before puberty. These organs, so far as examined, are the ovaries, the testes and the thymus.

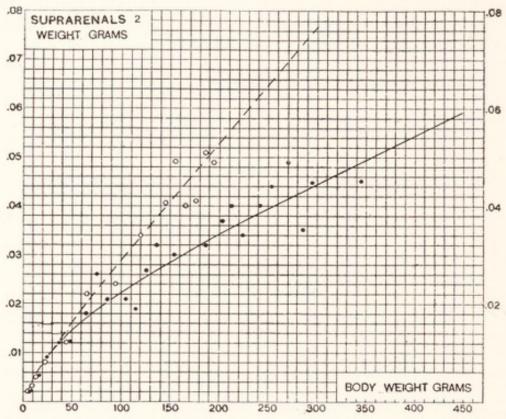


Chart 20 Showing the weight of suprarenals of the albino rat according to body weight. The observed weights are represented by 92 (Jackson) male rats below 50 grams in body weight, and 53 (Wistar) male rats above 50 grams in body weight; and 84 (Jackson) female rats below 50 grams in body weight, and 29 (Wistar) female rats above 50 grams in body weight. Table 71, formulas (30) and (31).

Observed weight, male.
 Calculated weight, male.

Observed weight, female.
 - - - Calculated weight, female.

The weight of both ovaries on the body weight. Technic: The ovaries must be carefully dissected from their capsules and from the end of the fallopian tube. When the animal is small it is sometimes necessary to do this under a dissecting microscope. The data collected by Jackson ('13) are those used. The graph in chart 21 and the values in table 70 have been determined by formulas (25), (26), and (27). Hatai ('13, '14a); Jackson ('13).

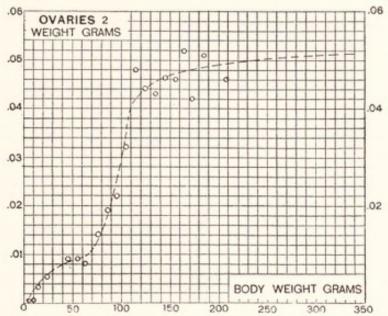


Chart 21 Showing the weight of ovaries of the female albino rat according to body weight. The observed weights are represented by 136 (Jackson) rats. Table 70, formulas (25), (26) and (27).

Observed weight.

- - - - Calculated weight.

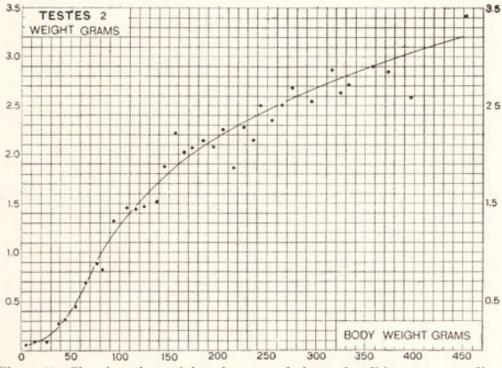


Chart 22 Showing the weight of testes of the male albino rat according to body weight. The observed weights are represented by 121 male rats. Table 70, formulas (22), (23) and (24).

Observed weight.

— Calculated weight.

The weight of both testes on body weight. Technic: The epididymis was removed before the testes were weighed. The graph in chart 22 and the values in table 70 were determined by formulas (22), (23) and (24). Hatai ('13); Jackson ('13).

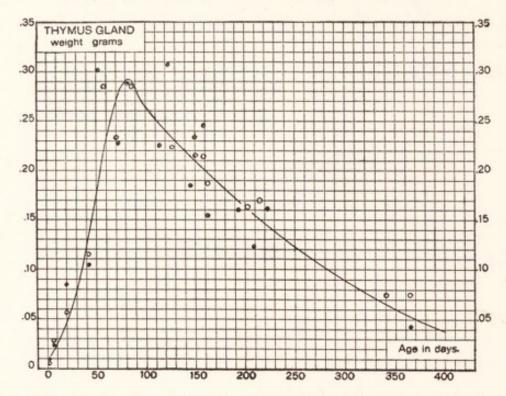


Chart 23 Showing the weight of the thymus of the albino rat according to age. The observed weights are represented by 229 males (164 Jackson and 64 Wistar) and 207 females (179 Jackson and 28 Wistar). Table 72, formulas (38) and (39). Observed weight ● male, ○ female, ─ computed weight.

Weight of thymus on age. In the case of the thymus the data are more useful when presented according to age than when presented according to body weight.

Technic: In preparing the thymus care must be taken to dissect away the large lymph glands as well as the fat lying about it. The records by Jackson ('13) have been combined with those from The Wistar Institute. The graph in chart 23 and the values in table 72 have been determined by the formulas (38) and (39). No weight difference according to sex has been noted. Hatai ('14); Jackson ('13).

7. Determinations of variation. Variation in body weight and organ weight. In table 58 Jackson ('13) gives a series of determinations of the coefficient of variation for body weight on a litter basis and in age groups. The animals were selected by the method of 'random sampling.' These values are to be compared with those determined by King (MS '15). In King's series the same groups of rats were examined at different ages (table 67).

For the same animals as were used in table 58 Jackson ('13) also gives for the several organs the coefficient of variation (table 59) and the coefficients of correlation with the body weight (table 60). The coefficients of variation for body weight on age are given by King (MS '15) in her growth series (table 67).

TABLE 58.

Coefficient of variation in body weight for total population by ordinary method, and on litter basis (fraternal variation) estimated by various methods (Jackson, '13).

	SEX	NEWBORN	7 DAYS	20 DAYS	6 WEEKS	10 WEEKS	5 MONTHS
Total population	∫ Male	13.61	16.91	24.42	20.82	18.81	18.5
(ordinary method)	Female	9.91	13.71	29.42	24.2^{2}	16.81	15.3
Litter basis	∫ Male	7.0	6.1	5.7	6.6	5.8	7.4
(average of litters calculated by ordinary method)	Female	4.4	5.4	4.0	5.9	12.0	10.4
Litter basis	Male	6.8	7.6	6.8	7.1	6.1	8.1
(calculated from Yule's formula)	Female	5.2	4.4	4.5	7.9	12.2	9.3
Litter basis	∫ Male	7.3	8.4	6.0	7.2	6.7	8.5
(from Kellogg's for- mula)	\ Female	5.2	4.5	4.1	8.5	12.0	9.0

¹ For net body weight.

² For gross body weight, larger series.

TABLE 59

Coefficients of variation in organ weights, albino rat at different ages. Arranged according to mean values in the last column (Jackson, '12).

	0 days	7 days	21 days	42 days	70 days	150 days	AVERAGE
Brain	12		7	12			10
Eyeballs	16	15	13	8	11	9	12
Head	10	11	15	10	14	13	12
Total body	12	16	28	21	20	19	19
Lungs	23	17	24	19	21		21
Kidneys	24	22	34	15	17	19	22
Heart	18	20	34	30	18	21	24
Liver	22	19	41	19	33	25	26
Suprarenals		20	33	22	21	39	26
Testes	25	18	30	27	35	41	29
Thymus	31	32	43	50	25	22	34
Spleen	39	34	51	26	38	19	34
Intestinal canal (plus contents)	38	29	42	30		20	35
Ovaries		- Francisco	42	47	51	33	43
Average of viscera	23	22	31	24	26	24	25

TABLE 60

Coefficients of correlation of organ weights with the body weight: albino rat at different ages. Arranged according to mean values in the last column (Jackson, '13).

	0 days	7 DAYS	21 days	42 days	70 days	150 days	AVERAGI
Head	0.76	0.89	0.93	0.95	0.75	0.85	0.86
Kidneys	0.70	0.79	0.96	0.92	0.90	0.91	0.86
Liver	0.76	0.76	0.97	0.84	0.74	0.87	0.83
Lungs	0.74	0.80	0.87	0.94	0.62		0.80
Brain	0.69		0.78	0.88			0.78
Heart	0.58	0.50	0.91	0.97	0.86	0.84	0.78
Testes	0.67	0.75	0.95	0.75	0.48	0.88	0.75
Ovaries	0.0.		0.73	0.64	0.82	0.81	0.75
Intestinal canal				2			
(plus contents)	0.29	0.59	0.84	0.76			0.62
Thymus	0.67	0.74	0.89	0.90	0.51	-0.09	0.60
Spleen	0.54	0.44	0.97	0.50	0.41	0.46	0.55
Eyeballs	0.67	0.52	0.67	0.31	0.22	0.32	0.45
Suprarenals	0.51	0.13	0.58	0.41	0.41	0.35	0.40
Average	0.63	0.63	0.85	0.75	0.62	0.70	0.70

- 8. General Tables. The tables which are not represented by charts in the text are usually short and have been introduced where they are mentioned, but as a matter of convenience all of those which are so represented are here grouped together as general tables under the following heads:
- a). Tables for the increase in the weight of the entire body on age. Tables 61–67.
- b). Tables for the increase in the length of the tail, in the weight of the entire body, and in the weight of several of the viscera according to body length. Tables 68–71 (72).
- 9. Table 72 for the weight of the thymus—based not on body length but on age.
 - 10. Weight of all the viscera combined. Table 73.
- 11. Tables giving the values for characters other than body weight, linked with age. Table 74.

For the most part the tables are preceded by a slight descriptive heading only. Reference is made to the corresponding charts in connection with which all the details concerning them have been noted.

Tables showing the increase in the weight of the entire body with age.

Growth before birth, Stotsenburg (MS '15) (p. 64), table 61. This table duplicates table 46, but gives one additional entry.

TABLE 61

Showing the mean weights of the fetuses at ten ages during gestation and at birth.

Stotsenburg (MS '15). Chart 1

AGE IN DAYS	NUMBER OF FETUSES	AVERAGE WEIGHT OF FETUS	RATE OF INCREASE IN WEIGHT
		grams	per cent
13	34	0.040	
14	44	0.112	179
15	37	0.168	50
16	44	0.310	83
17	21	0.548	77
18	43	1.000	83
19	30	1.580	58
20	25	2.630	65
21	42	3.980	51
22	10	4.630	16
Strictly new born	37	4.680	

Growth after birth, tables 62-67.

TABLE 62

Body weight on age—both sexes. Based on records by Donaldson, Dunn and Watson ('06) and computed from 10-365 days, by formulas (34), (35) males; (36), (37) females. The values for the first ten days are from direct observation, Donaldson (MS '15). Not charted

AGE	BODY V	VEIGHT	AGE	BODY	VEIGHT	AGE	BODY	WEIGHT	100	BODY	WEIGHT
DAYS	Male	Female	DAYS	Male	Female	DAYS	Male	Female	DAYS	Male	Femal
В.	4.8	4.7	33	32.8	34.4	66	94.5	89.4	99	164.3	145.1
1	5.5	5.4	34	34.1	35.7	67	97.0		100	165.8	
2	5.9	5.8	35	35.4	37.0	68	99.5	2000	-	1	110
3	6.4	6.3	36	36.8	38.3	69	102.1		105	172.7	151.4
4	6.9	6.8	37	38.1	39.6	70	104.7		110	179.1	
5	7.6	7.5	38	39.6	40.9				115	185.2	1000
6	8.5	8.4	39	41.0	42.3	71	107.3	100.2	120	190.9	
7	9.5	9.4	40	42.5	43.7	72	110.0		125	196.2	
8	10.5	10.4				73	112.7		130	201.2	
9	11.8	11.6	41	44.1	45.1	74	115.5	1	135	206.0	
10	13.5	13.0	42	45.7	46.6	75	118.3		140	210.5	
			43	47.3	48.1	76		111.6	145	214.7	183.1
11	13.9	13.7	44	48.9	49.6	77		114.0	150	218.7	186.1
12	14.4	14.4	45	50.6	51.1	78		116.4		210.1	200.2
13	14.9	15.1	46	52.3	52.7	79	129.8		155	222.5	188.9
14	15.5	15.8	47	54.1	54.3	80	132.8		160	226.0	191.6
15	16.1	16.5	48	55.9	55.9		1000000		165	229.4	194.2
16	16.7	17.3	49	57.7	57.5	81	134.7	122.6	170	232.6	196.5
17	17.3	18.1	50	59.6	59.2	82	136.5	124.0	175	235.7	198.8
18	18.0	18.9				83	138.4		180	238.6	201.0
19	18.7	19.8	51	61.5	60.9	84	15-21-25-25-25		185	241.3	203.0
20	19.5	20.7	52	63.4	62.6	85		128.1	190	243.9	204.9
			53	65.4	64.3	86	143.7	129.5	195	246.3	206.7
21	20.3	21.6	54	67.4	66.1	87	E 20 20 20 20 20 20 20 20 20 20 20 20 20	130.8	200	248.6	208.4
22	21.1	22.5	55	69.5	67.9	88	147.2	132.1		210.0	200.1
23	22.0	23.4	56	71.6	69.7	89	148.9		205	250.9	210.1
24	22.9	24.4	57	73.7	71.6	90	150.5	134.6	210	253.1	211.6
25	23.9	25.4	58	75.9	73.4	-			215	254.9	213.1
26	24.9	26.5	59	78.1	75.3	91	152.1	135.8	220	256.8	214.4
27	25.9	27.5	60	80.3	77.3	92		137.1	225	258.6	
28	27.0	28.6				93	100000000000000000000000000000000000000	138.3	230	260.2	
29	28.1	29.7	61	82.5	79.2	94	ALL STREET PARTY OF THE PARTY O	139.4	235	261.9	
30	29.2	30.9	62	84.9	81.2	95	100000000000000000000000000000000000000	140.6	240		219.2
			63	87.2	83.2	96		141.8	245	264.8	
31	30.4	32.0	64	89.6	85.2	97		142.9	250	266.1	221.2
32	31.6	33.2	65	92.0	87.3	98		144.0	200	200.1	221.2

TABLE 62—Concluded

AGE DAYS Male Female BODY WEIGHT AGE DAYS	BODY W	EIGHT	AGE	BODY W	VEIGHT	AGE	BODY V	EIGHT	AGE	BODY V	VEIGHT
	DAYS	Male	Female	DAYS	Male	Female	DAYS	Male	Female		
255	267.3	222.1	290	274.2	226.9	320	277.7	229.3	355	279.7	230.4
260	268.5	223.0	295	274.9	227.4	325	278.1	229.5	360	279.8	230.4
265	269.6	223.7	300	275.5	227.9	330	278.5	229.8	365	279.9	230.4
270	270.7	224.5		270000000		335	278.8	229.9			
275	271.6	225.1	305	276.2	228.3	340	279.1	230.1			
280	272.5	225.8	310	276.8	228.7	345	279.3	230.2			
285	273.4	226.4	315	277.2	229.0	350	279.6	230.3			

TABLE 63

Body weight on age. Male Albinos unmated. Chicago colony. Donaldson, Dunn and Watson, ('06). The records for the first ten days as given in the original table are here omitted. Those values may be obtained from table 62. In addition to the average values the highest and lowest are also given. See graph A in chart 2

	ъ	ODY WEIGHT IN GRAN	ds	NUMBER OF
AGE IN DAYS	Average	Lowest	Highest	ANIMALS
11	13.3	13.0	13.6	4
12	14.8	11.4	19.5	6
13	15.3	14.1	16.0	5
14	15.2	14.0	17.6	6
15	16.5	12.5	22.4	19
17	17.8	13.9	24.0	19
19	19.5	15.2	26.0	19
21	21.2	14.6	30.1	19
23	22.9	17.9	32.5	19
25	25.3	19.0	35.8	19
27	27.4	19.8	38.3	19
29	29.5	22.1	39.3	19
31	31.8	25.9	41.2	19
34	34.9	27.4	43.3	19
37	37.8	28.5	48.0	19
40	42.2	30.8	52.2	19
43	46.3	33.7	62.4	19
46	50.5	35.9	66.2	19
19	56.7	38.9	73.9	19
52	62.5	39.8	82.5	19
55	68.5	40.6	87.5	19
58	73.9	45.1	100.1	19
31	81.7	49.0	116.6	19
34	89.1	52.7	129.6	19
37	99.3	57.7	140.2	19
70	106.6	71.2	148.5	19
73	113.8	71.4	152.4	19
76	121.3	89.8	157.5	19
79	128.2	97.0	161.2	19
32	135.0	105.1	165.5	19
85	143.8	117.0	168.5	19
38	148.4	124.5	174.0	19
02	152.3	124.0	179.6	19
07	160.0	124.0	180.7	19
)2	168.8	120.0	192.2	19
07	177.6	120.0	206.0	19
2	183.8	125.0	215.6	19

TABLE 63—Concluded

	В	NUMBER OF		
AGE IN DAYS	Average	Lowest	Highest	ANIMALS
117	191.4	130.0	223.0	19
124	197.3	123.0	238.2	19
131	202.5	132.4	249.2	19
138	209.7	145.6	248.4	19
143	218.3	155.5	259.4	19
150	+225.4	162.4	268.2	19
157	227.0	162.4	271.4	19
164	231.4	159.0	271.8	17
171	235.8	165.2	289.0	17
178	239.4	167.9	291.2	17
185	239.8	176.0	294.0	15
216	252.9	190.5	294.5	10
256	265.4	190.5	310.0	10
365	279.0	203.6	320.0	6
730	308.5	285.0	375.6	6

TABLE 64

Body weight on age. Female albinos unmated. Values for 'mated' computed (Watson '05) Chicago colony. Donaldson, Dunn and Watson, ('06). The records for the first ten days as given in the original table are here omitted. Those values may be obtained from table 62. In addition to the average values the highest and lowest are also given. See graph A, in chart 3.

AGE IN DAYS	В	ODY WEIGHT IN GR	AMS	NUMBER OF
	Average	Lowest	Highest	ANIMALS
11	12.8	12.1	13.6	2
12	15.1	13.6	17.7	5
13	15.1	14.7	16.0	5
14	15.6	13.5	18.1	5
15	17.7	13.1	23.2	17
17	19.2	15.1	24.5	17
19	20.6	16.9	27.0	17
21	22.6	16.1	30.1	17
23	24.9	17.3	33.3	17
25	27.4	20.8	36.0	17
27	30.0	23.9	38.5	17
29	31.4	24.0	39.0	17
31	32.9	26.3	42.8	17
34	35.7	26.4	44.1	17
37	39.5	29.8	47.4	17
10	43.7	30.6	52.4	17
13	47.9	35.0	60.7	17
6	52.0	41.4	63.0	16
19	57.7	42.0	69.2	16
52	62.9	41.7	74.8	16
55	68.4	49.8	80.7	13
8	74.6	53.6	86.6	13
51	78.4	56.2	96.7	13
34	85.8	57.5	106.8	12
7	96.0	71.2	114.1	12
0	99.8	79.0	122.6	11
3	105.6	80.2	126.5	11
6	110.4	89.6	131.6	11
9	118.8	97.7	136.0	11
2	124.7	101.0	139.2	11
5	131.5 mated	105.0 mated	143.2 mated	11
8	136.0	115.6	157.4	11
2	139.6 139.8	118.7 118.9	161.4 161.6	11
7	145.9 146.3	119.6 120.0	174.5 175.0	11
2	152.4 153.1	124.6 125.2	185.7 186.5	11
7	154.9 155.8	129.6 130.3	191.4 192.5	11
2	160.2 161.4	138.5 139.5	193.6 195.0	11

TABLE 64-Concluded

AGE IN DAYS		NUMBER OF						
	Average		Lowest		Highest		ANIMALS	
117	166.5	168.0	142.5	143.8	199.0	200.8	11	
124	170.7	172.6	146.4	148.0	206.7	209.0	11	
131	178.6	181.0	151.2	153.0	214.7	217.5	11	
138	182.2	185.0	151.0	153.3	210.2	213.4	11	
143	183.4	186.6	154.0	156.7	219.4	223.4	11	
150	184.6	188.2	153.7	156.7	220.7	225.0	11	
157	184.0	188.0	154.9	158.2	217.6	222.4	11	
164	185.1	189.5	154.0	157.6	215.0	220.1	11	
171	187.4	192.2	154.0	158.0	210.0	215.4	11	
178	191.7	197.0	153.0	157.2	215.0	221.0	11	
185	194.2	200.0	152.0	156.6	215.0	221.4	11	
192	195.9	202.2	155.0	160.0	217.0	224.0	11	
365		226.4		171.4		280.0	7	

TABLE 65

Increase in the body weight of the albino rat with age, based on a personal communication, Ferry ('13'). New Haven Colony. See graphs B and B¹ Chart 2, and B, Chart 3

		BODY WEIGHT	
AGE IN DAYS	Males (1)		Females (3)
	grams		grams
10	14.6		13
20	22.3		25
80	35.3		38
10	51.7		54
50	73.1		73
30	96.8		89
70	113.6		100
80	127.7		105
90	143.7		115
00	157.3		120
10	168.3		125
20	180.8		133
30	190.4		137
10	197.4		146
50	208.3		150
30	211.9	Males.	152
70	218.3		158
80	225.7		160
90	233.5	(2)	164
00	243.1		168
10		254.0	169
20	253.3	262.0	172
30		264.0	172
40	268.2	270.0	172
50		272.0	170
80	259.1	276.0	171
70		280.0	173
80	265.2	287.0	176
00	267.4		

Column 1, males, includes some rats declining in body weight after 200 days. Column 2, males, contains values from the normal growth curve (New Haven series).

Column 3, females, contains values read directly from normal growth curve, New Haven.

TABLE 66

Giving the number of animals used by Ferry, ('13) in computing her growth table 65, for the rats at the Connecticut Agricultural Experiment Station in New Haven. (Personal Communication).

In both groups the maximum number of observations was made at 30 days of age

MAL	ES	FEMALES			
Age in days	Number of rats	Age in days	Number of rate		
20- 80	47-81	20- 90	39-68		
90-170	30-40	100-160	20-37		
180-210	18-27	170-190	11-14		
220-280	6-12	200-280	6-8		

TABLE 67

Giving the increase in body weight with age—stock Albinos. Mean of two series— King (MS '15) and giving also the coefficients of variation with their probable errors. The Wistar Institute Colony. See graph C, Charts 2 and 3, and Chart 4.

		MALES			FEMALE	CS .
Age in days	No. individuals	Average bd. wt.	Coefficient of variation	No. individuals	Average bd. wt.	Coefficient of variation
		grams .			grams	
13	50	17.2	11.8 ± 0.795	50	15.7	11.4 ± 0.768
30	50	48.5	10.2 ± 0.687	50	45.7	11.0 ± 0.741
60	50	122.9	17.0 ± 1.140	50	107.1	15.7 ± 1.050
90	50	184.8	14.8 ± 0.998	39	148.0	12.5 ± 0.951
120	50	223.2	13.4 ± 0.903	42	173.4	10.3 ± 0.755
151	50	244.8	13.3 ± 0.896	45	186.3	10.4 ± 0.735
182	50	258.4	14.2 ± 1.220	42	196.5	12.3 ± 0.903
212	48	268.0	14.0 ± 0.964	42	197.3	12.4 ± 0.910
243	44	279.7	13.9 ± 0.998	43	209.6	12.6 ± 0.910
273	41	280.9	13.4 ± 0.997	38	210.8	11.5 ± 0.890
304	36	296.1	14.0 ± 1.110	38	219.1	10.3 ± 0.795
334	33	300.8	13.7 ± 1.130	35	222.4	10.8±0.870
365	28	306.1	13.0 ± 1.160	31	223.1	10.7 ± 0.910
395	24	314.1	12.6 ± 1.220	31	220.5	11.5 ± 0.984
425	23	312.2	13.4 ± 1.320	30	215.8	10.9 ± 0.944
455	15	323.9	13.6 ± 1.670	18	220.2	8.9 ± 0.998
485	12	326.0	15.0 ± 2.060	13	234.7	13.4 ± 1.770

The four tables 68, 69, 70 and 71 which follow have been worked out on the basis of body length by the use of the appropriate formulas. The details touching the organs represented, as well as the corresponding graphs, are to be found in the earlier paragraphs of this chapter. The values for the body weights are repeated in each table.

Weights of viscera combined. Using the data in tables 68–71 (72) the total weight of the viscera—brain, spinal cord, both eyeballs, heart, both kidneys, liver, spleen, both lungs, alimentary tract, both testes, both ovaries, hypophysis, both suprarenals, thyroid and thymus (given separately)—has been entered after the total body weight at each millimeter of body length and for each sex. For obvious reasons the weight of the total blood (see table 70) has not been included.

For the thymus, the weight of which is most closely correlated with age, the following procedure has been employed. Using table 62 for the values for the body weights at given ages, the relation between age, body weight and thymus weight has been directly tabulated, and using these data as a basis, the values of the thymus for the body weight—which is assumed to be normal to the age—have been determined as given in table 73. Owing to the manner in which they have been obtained, it has seemed best to give the thymus values in a separate column.

The entries for the thymus cease after a body length of 221 mm. for males and 198 mm. for females, as these mark the limit of the data in table 62. But in animals of this size or larger, the value for the thymus has become very small both absolutely and relatively.

Tables giving characters which depend primarily on age.

Table 74 gives the percentage of water in the brain and in the spinal cord for each sex from birth to 365 days. These values have been computed by formulas (40), (41) and (42). The graphs corresponding to these data for the males are given in chart 26.

TABLE 68

Giving for each sex the tail length and the weights of the brain, spinal cord and both eyeballs for each millimeter of body length. See Charts 6, 7, 8, 9, 10

	MALES Weight in gms.						1	EMALES		
Body	Tail	Body	Weight	in gms.	Both	Tail	Body	Weight	in gms.	Both
length	length	weight	Brain	Spinal cord	balls	length	weight	Brain	Spinal cord	eye- balls
7717774.	mm.	gms.			gms.	mm.	gms.			gms.
47	14.9	4.9	0.226	0.033	0.029	15.4	4.7	0.211	0.033	0.028
48	15.8	4.9	0.226	0.033	0.029	16.6	4.7	0.214	0.033	0.028
49	16.9	5.0	0.232	0.034	0.030	17.8	4.9	0.217	0.034	0.029
50	18.0	5.1	0.238	0.034	0.031	19.0	5.0	0.222	0.035	0.029
51	19.2	5.2	0.252	0.035	0.031	20.2	5.1	0.227	0.035	0.030
52	20.4	5.3	0.266	0.036	0.032	21.5	5.3	0.255	0.036	0.032
53	21.6	5.4	0.280	0.037	0.033	22.7	5.5	0.283	0.038	0.034
54	22.7	5.6	0.300	0.038	0.034	23.9	5.8	0.323	0.041	0.036
55	23.9	5.8	0.320	0.040	0.036	25.2	6.2	0.361	0.044	0.039
56	25.0	6.1	0.358	0.043	0.039	26.4	6.5	0.398	0.048	0.041
57	26.2	6.4	0.395	0.046	0.041	27.6	6.9	0.433	0.051	0.044
58	27.3	6.8	0.431	0.049	0.044	28.8	7.2	0.468	0.054	0.046
59	28.5	7.1	0.465	0.052	0.046	30.0	7.6	0.500	0.057	0.049
60	29.6	7.5	0.498	0.055	0.048	31.2	8.0	0.532	0.061	0.051
61	30.7	7.9	0.530	0.059	0.050	32.3	8.4	0.564	0.064	0.053
62	31.9	8.2	0.561	0.062	0.052	33.5	8.7	0.594	0.068	0.055
63	33.0	8.6	0.591	0.065	0.054	34.7	9.1	0.624	0.071	0.057
64	34.1	9.0	0.621	0.068	0.056	35.9	9.5	0.652	0.074	0.059
65	35.2	9.4	0.650	0.071	0.058	37.0	9.9	0.679	0.077	0.061
66	36.3	9.8	0.678	0.075	0.060	38.2	10.3	0.703	0.081	0.068
67	37.4	10.1	0.695	0.078	0.062	39.4	10.8	0.726	0.084	0.065
68	38.5	10.6	0.711	0.081	0.064	40.5	11.2	0.772	0.088	0.067
69	39.6	11.0	0.761	0.084	0.066	41.7	11.6	0.811	0.091	0.068
70	40.7	11.4	0.803	0.088	0.068	42.8	12.0	0.846	0.095	0.070
71	41.8	11.8	0.840	0.091	0.069	43.9	12.5	0.876	0.098	0.075
72	42.9	12.2	0.872	0.094	0.071	45.1	12.9	0.904	0.101	0.073
73	44.0	12.7	0.901	0.098	0.073	46.2	13.4	0.929	0.105	0.075
74	45.1	13.1	0.928	0.101	0.074	47.3	13.9	0.952	0.108	0.077
75	46.2	13.6	0.952	0.104	0.076	48.5	14.3	0.974	0.112	0.078
76	47.2	14.0	0.974	0.107	0.077	49.6	14.8	0.994	0.115	0.080
77	48.3	14.5	0.995	0.111	0.079	50.7	15.3	1.013	0.119	0.082
78	49.4	15.0	1.015	0.114	0.081	51.8	15.8	1.031	0.122	0.083
79	50.4	15.4	1.033	0.117	0.082	52.9	16.3	1.047	0.126	0.085
80	51.5	15.9	1.051	0.121	0.084	54.0	16.8	1.064	0.129	0.086

TABLE 68-Continued

		MA	LES			14	. 1	EMALES		
Body	Tail	Body	Weight	in gms.	Both eye-	Tail	Body	Weight	in gms.	Both
length	length	weight	Brain	Spinal cord	balls	length	weight	Brain	Spinal cord	eye- balls
mm.	mm.	gms.			gms.	mm.	gms.			gms.
81	52.6	16.4	1.067	0.124	0.085	55.1	17.3	1.079	0.133	0.08
82	53.6	16.9	1.083	0.128	0.087	56.3	17.9	1.093	0.136	0.08
83	54.7	17.4	1.098	0.131	0.088	57.4	18.4	1.107	0.140	0.09
84	55.7	18.0	1.112	0.134	0.090	58.5	19.0	1.121	0.143	0.09
85	56.8	18.5	1.126	0.138	0.091	59.5	19.5	1.134	0.147	0.09
86	57.8	19.0	1.139	0.141	0.093	60.6	20.1	1.146	0.150	0.09
87	58.9	19.6	1.152	0.144	0.094	61.7	20.7	1.159	0.154	0.09
88	59.9	20.1	1.165	0.148	0.095	62.8	21.2	1.170	0.158	0.09
89	61.0	20.7	1.177	0.151	0.097	63.9	21.8	1.181	0.161	0.10
90	62.0	21.3	1.188	0.155	0.098	65.0	22.4	1.193	0.165	0.10
91	63.0	21.9	1.200	0.158	0.100	66.1	23.1	1.203	0.168	0.10
92	64.1	22.4	1.211	0.162	0.101	67.2	23.7	1.214	0.172	0.10
93	65.1	23.0	1.221	0.165	0.102	68.2	24.3	1.224	0.176	0.10
94	66.2	23.7	1.231	0.168	0.104	69.3	25.0	1.234	0.179	0.10
95	67.2	24.3	1.242	0.172	0.105	70.4	25.6	1.244	0.183	0.10
96	68.2	24.9	1.252	0.175	0.107	71.4	26.3	1.253	0.186	0.10
97	69.2	25.6	1.261	0.179	0.108	72.5	27.0	1.262	0.190	0.11
98	70.3	26.2	1.271	0.182	0.109	73.6	27.7	1.271	0.194	0.11
99	71.3	26.9	1.280	0.186	0.111	74.6	28.4	1.280	0.197	0.11
100	72.3	27.5	1.289	0.189	0.112	75.7	29.1	1.289	0.201	0.11
101	73.3	28.2	1.298	0.193	0.113	76.8	29.8	1.298	0.205	0.1
102	74.3	28.9	1.307	0.197	0.115	77.8	30.5	1.306	0.209	0.11
103	75.4	29.6	1.315	0.200	0.116	78.9	31.3	1.314	0.212	0.11
104	76.4	30.3	1.323	0.204	0.117	79.9	32.0	1.322	0.216	0.12
105	77.4	31.1	1.332	0.207	0.119	81.0	32.8	1.330	0.220	0.12
106	78.4	31.8	1.340	0.211	0.120	82.0			0.223	
107	79.4	32.5	1.348	0.214	0.121		34.4		0.227	
108	80.4	33.3	1.356	0.218	0.123		35.2		0.231	
109	81.4	34.1	1.363	0.221	0.124		36.0		0.235	
110	82.4	34.9	1.371	0.225	0.125		36.9		0.238	0.12
111	83.4	35.7	1.378	0.228	0.126	87.3	37.7	1.376	0.242	0.13
112	84.4	36.5	1.386		0.128	88.3			0.246	0.13
113	85.4	37.3	1.393	0.236	0.129	89.4	39.5		0.250	
114	86.4		1.400		0.130	90.4			0.253	
115	87.4		1.407		0.132				0.257	
116	88.4				0.133				0.261	

TABLE 68—Continued

		MA	LES				F	EMALES		
Body	Tail	Body	Weight	in gms.	Both	Tail	Body	Weight	in gms.	Both
length	length	weight	Brain	Spinal cord	balls	length	weight	Brain	Spinal cord	balls
mm.	mm.	gms.			gms.	mm.	gms.			gms.
117	89.4	40.8	1.421	0.250	0.134	93.5	43.1	1.418	0.265	0.138
118	90.4	41.6	1.428	0.254	0.136	94.5	44.1	1.424	0.268	0.139
119	91.4	42.6	1.435	0.257	0.137	95.6	45.0	1.431	0.272	0.14
120	92.4	43.5	1.442	0.261	0.138	96.6	46.0	1.438	0.276	0.143
121	93.4	44.4	1.448	0.265	0.140	97.6	47.0	1.444	0.280	0.14
122	94.4	45.4	1.455	0.268	0.141	98.7	48.0	1.450	0.284	0.14
123	95.4	46.3	1.461	0.272	0.142	99.7	49.1	1.457	0.287	0.14
124	96.4	47.3	1.468	0.276	0.143	100.7	50.1	1.463	0.291	0.14
125	97.4	48.3	1.474	0.279	0.145	101.7	51.2	1.469	0.295	0.14
126	98.4	49.3	1.480	0.283	0.146	102.8	52.3	1.476	0.299	0.15
127	99.3	50.4	1.487	0.287	0.147	103.8	53.4	1.482	0.303	0.15
128	100.3	51.4	1.493	0.290	0.149	104.8	54.5	1.488	0.307	0.15
129	101.3	52.5	1.499	0.294	0.150	105.8	55.6	1.494	0.310	0.15
130	102.3	53.6	1.505	0.297	0.151	106.8	56.8	1.500	0.314	0.15
131	103.3	54.7	1.511	0.301	0.153	107.9	58.0	1.506	0.318	0.15
132	104.2	55.8	1.517	0.305	0.154	108.9	59.2	1.512	0.322	0.15
133	105.2	56.9	1.523	0.309	0.155	109.9	60.4	1.518	0.326	0.15
134	106.2	58.1	1.529	0.312	0.157	110.9	61.6	1.523	0.330	0.16
135	107.2	59.3	1.535	0.316	0.158	111.9	62.9	1.529	0.334	0.16
136	108.2	60.5	1.541	0.320	0.160	112.9	64.2	1.535	0.338	0.16
137	109.1	61.7	1.546	0.323	0.161	114.0	65.5	1.540	0.341	0.16
138	110.1	62.9	1.552	0.327	0.162	115.0	66.8	1.546	0.345	0.16
139 140	111.1 112.1	64.1 65.4	1.558 1.563	0.331	$0.164 \\ 0.165$	116.0 117.0	68.1 69.5	1.552	0.349	0.16
141	113.0	66.7	1.569	0.338	0.166	118.0	70.9	1.563	0.357	0.17
142	114.0	68.0	1.575 1.580	0.342	0.168	119.0	72.3 73.7	1.568	0.361	0.17
143	115.0	69.3		0.349		120.0	75.2	1.579	0.369	0.17
144	115.9	70.7	1.586		0.171	121.0	76.7		0.373	0.17
145	116.9	72.1	1.591	0.353	0.172	122.0		1.585	0.377	0.17
146	117.9	73.5	1.597 1.602	0.357 0.361	0.173 0.175	123.0 124.0	78.2 79.7	1.595	0.380	0.18
147	118.8	74.9	1.602	0.365	0.175	125.0	81.3	1.601	0.384	0.18
148	119.8 120.8	76.3 77.8		0.368	0.178	126.0	82.8	1.606	0.388	0.18
149 150	121.7	79.3	1.613 1.618	0.372	0.179	127.0	84.4	1.611	0.392	0.18
151	122.7	80.8	1.623	0.376	0.181	128.0	86.1	1.616	0.396	0.18
152	123.7	82.4	1.629	0.380	0.182	129.0	87.7	1.622	0.400	0.18

TABLE 68—Continued

		MAI	LES				У	EMALES		
Body	Tail	Body	Weight	in gms.	Both	Tail	Body	Weight	in gms.	Both
length	length	weight	Brain	Spinal cord	balls ·	length	weight	Brain	Spinal cord	balls
mm.	mm.	gms.			gms.	mm.	gms.			gms.
153	124.6	83.9	1.634	0.383	0.183	130.0	89.4	1.627	0.404	0.189
154	125.6	85.5	1.639	0.387	0.185	131.0	91.1	1.632	0.408	0.190
155	126.5	87.1	1.644	0.391	0.186	132.0	92.9	1.637	0.412	0.192
156	127.5	88.7	1.649	0.395	0.188	133.0	94.6	1.642	0.416	0.193
157	128.5	90.4	1.654	0.398	0.189	134.0	96.4	1.647	0.420	0.195
158	129.4	92.1	1.659	0.402	0.191	135.0	98.3	1.652	0.424	0.196
159	130.4	93.8	1.664	0.406	0.192	136.0	100.1	1.657	0.428	0.198
160	131.3	95.6	1.670	0.410	0.194	137.0	102.0	1.662	0.432	0.200
161	132.3	97.3	1.675	0.414	0.196	137.9	103.9	1.667	0.436	0.201
162	133.3	99.2	1.680	0.417	0.197	138.9	105.9	1.672	0.440	0.203
163	134.2	101.0	1.685	0.421	0.199	139.9	107.9	1.677	0.444	0.204
164	135.2	102.8	1.690	0.425	0.200	140.9	109.9	1.682	0.448	0.206
165	136.1	104.7	1.695	0.429	0.202	141.9	111.9	1.687	0.452	0.208
166	137.1	106.7	1.699	0.433	0.203	142.9	114.0	1.692	0.456	0.209
167	138.0	108.6	1.704	0.436	0.205	143.9	116.1	1.697	0.460	0.211
168	139.0	110.6	1.709	0.440	0.207	144.9	118.3	1.702	0.464	0.213
169	139.9	112.6	1.714	0.444	0.208	145.9	120.5	1.707	0.468	0.213
170	140.9	114.8	1.719	0.448	0.210	146.8	122.7	1.711	0.472	0.216
171	141.8	116.7	1.724	0.452	0.212	147.8	125.0	1.716	0.476	0.218
172	142.8	118.9	1.729	0.456	0.213	148.8	127.3	1.721	0.480	0.220
173	143.7	121.0	1.734	0.459	0.215	149.8	129.6	1.726	0.484	0.223
174	144.7	123.2	1.738	0.463	0.217	150.8	132.0	1.731	0.488	0.223
175	145.6	125.4	1.743	0.467	0.218	151.8	134.4	1.735	0.492	0.22
176	146.6	127.7	1.748	0.471	0.220	152.7	136.8	1.740	0.496	0.22
177	147.5	130.0	1.753	0.475	0.222	153.7	139.3	1.745	0.500	0.229
178	148.5	132.3	1.757	0.479	0.224	154.7	141.9	1.750	0.504	0.23
179	149.4	134.6	1.762	0.483	0.225	155.7	144.4	1.754	0.508	0.23
180	150.4	137.0	1.767	0.486	0.227	156.7	147.1	1.759	0.512	0.23
181	151.3	139.5	1.771	0.490	0.229	157.6	149.7	1.764	0.516	0.23
182	152.3	142.0	1.776	0.494	0.231	158.6	152.4	1.768	0.520	0.23
183	153.2	144.5	1.781	0.498	0.233	159.6	155.2	1.773	0.524	0.24
184	154.1	147.0	1.785	0.502	0.234	160.6	158.0	1.778	0.528	
185	155.1	149.6	1.790	0.506	0.236	161.5	160.8	1.782		0.24
186	156.0	152.3	1.795	0.510	0.238	162.5	163.7	1.787	0.536	
187	157.0	155.0	1.799	0.513	0.240	163.5	166.6	1.791		
188	157.9	157.7	1.804	0.517	0.242	164.5	169.6	1.796		

TABLE 68—Continued

	MALES Weight in gms.						1	EMALES		
Body	Tail	Body	Weight	in gms.	Both	Tail	Body	Weight	in gms.	Both
length	length	weight	Brain	Spinal cord	balls	length	weight	Brain	Spinal cord	balls
mm.	mm.	gms.			gms.	772 772 .	gms.			gms.
189	158.9	160.5	1.808	0.521	0.244	165.4	172.6	1.801	0.548	0.252
190	159.8	163.3	1.813	0.525	0.246	166.4	175.7	1.805	0.552	0.254
191	160.7	166.2	1.818	0.529	0.248	167.4	178.8	1.810	0.556	0.250
192	161.7	169.1	1.822	0.533	0.250	168.4	182.0	1.814	0.560	0.258
193	162.6	172.0	1.827	0.537	0.252	169.3	185.2	1.819	0.564	0.26
194	163.6	175.0	1.831	0.541	0.254	170.3	188.5	1.823	0.569	0.26
195	164.5	178.1	1.836	0.545	0.256	171.3	191.9	1.828	0.573	0.26
196	165.4	181.2	1.840	0.548	0.258	172.2	195.3	1.832	0.577	0.26
197	166.4	184.3	1.845	0.552	0.260	173.2	198.7	1.837	0.581	0.26
198	167.3	187.5	1.849	0.556	0.262	174.2	202.2	1.841	0.585	0.27
199	168.3	190.8	1.854	0.560	0.264	175.1	205.8	1.846	0.589	0.27
200	169.2	194.1	1.858	0.564	0.266	176.1	209.4	1.850	0.593	0.27
201	170.1	197.4	1.863	0.568	0.268	177.1	213.1	1.855	0.597	0.27
202	171.1	200.8	1.867	0.572	0.271	178.0	216.8	1.859	0.601	0.28
203	172.0	204.3	1.872	0.576	0.273	179.0	220.7	1.864	0.605	0.28
204	172.9	207.8	1.876	0.579	0.275	180.0	224.5	1.868	0.609	0.28
205	173.9	211.4	1.880	0.583	0.277	180.9	228.4	1.872	0.613	0.28
206	174.8	215.0	1.885	0.587	0.280	181.9	232.4	1.877	0.617	0.29
207	175.7	218.7	1.889	0.591	0.282	182.9	236.5	1.881	0.621	0.29
208	176.7	222.5	1.894	0.595	0.284	183.8	240.6	1.886	0.625	0.29
209	177.6	226.3 230.2	1.898	0.599	0.288	184.8 185.8	244.8	1.890	0.630	0.30
210	178.5	250.2	1.903	0.003	0.289	180.8	249.1	1.894	0.634	0.30
211	179.5	234.1	1.907	0.607	0.291	186.7	253.4	1.899	0.638	0.30
212	180.4	238.1	1.911	0.611	0.294	187.7	257.8	1.903	0.642	0.30
213	181.3	242.2	1.916	0.615	0.296	188.7	262.3	1.908	0.646	0.30
214	182.3	246.3	1.920	0.619	0.299	189.6	266.9	1.912	0.650	0.31
215	183.2	250.5	1.924	0.623	0.301	190.6	271.5	1.916	0.654	0.31
216	184.1	254.7	1.929	0.626	0.304	191.5	276.2	1.921	0.658	0.31
217	185.0	259.1	1.933	0.630	0.306	192.5	281.0	1.925	0.662	
218	186.0	263.5	1.937	0.634	0.309	193.5	285.8	1.929	0.666	0.32
219	186.9	267.9	1.942	0.638	0.312	194.4	290.8	1.934	0.670	
220	187.8	272.5	1.946	0.642	0.314	195.4	295.8	1.938	0.675	0.32
221	188.8	277.1	1.950	0.646	0.317	196.3	300.9	1.942	0.679	0.33
222	189.7	281.8	1.955	0.650	0.320	197.3	306.1	1.947	0.683	0.33
223	190.6	286.5	1.959	0.654	0.322	198.3	311.3	1.951	0.687	0.33

TABLE 68-Concluded

		MAL	ES				F	EMALES		
Body	Tail	Body	Weight	in gms.	Both	Tail	Body	Weight	in gms.	Both
length	length	weight	Brain	Spinal cord	balls	length	weight	Brain	Spinal cord	eye- balls
mm.	mm.	gms.			gms.	mm.	gms.			gms.
224	191.5	291.4	1.963	0.658	0.325	199.2	316.7	1.955	0.691	0.340
225	192.5	296.3	1.968	0.662	0.328	200.2	322.1	1.960	0.695	0.343
226	193.4	301.3	1.972	0.666	0.331	201.1	327.7	1.964	0.699	0.346
227	194.3	306.4	1.976	0.670	0.334	202.1	333.3	1.968	0.703	0.349
228	195.3	311.5	1.981	0.673	0.337	203.0	339.0	1.972	0.707	0.352
229	196.2	316.8	1.985	0.677	0.340	204.0	344.8	1.977	0.712	0.355
230	197.1	322.1	1.989	0.681	0.343	205.0	350.7	1.981	0.716	0.359
231	198.0	327.5	1.993	0.685	0.346	205.9	356.7	1.985	0.720	0.362
232	198.9	333.0	1.998	0.689	0.349	206.9	362.8	1.989	0.724	0.365
233	199.9	338.6	2.002	0.693	0.352	207.8	369.0	1.994	0.728	0.369
234	200.8	344.3	2.006	0.697	0.355	208.8	375.3	1.998	0.732	0.372
235	201.7	350.0	2.010	0.701	0.358	209.7	381.7	2.002	0.736	0.37
236	202.6	355.9	2.014	0.705	0.361	210.7	388.2	2.006	0.740	0.379
237	203.6	361.9	2.019	0.709	0.365	211.6	394.9	2.011	0.744	0.38
238	204.5	367.9	2.023	0.713	0.368	212.6	401.6	2.015	0.749	0.38
239	205.4	374.1	2.027	0.717	0.371	213.5	408.4	2.019	0.753	0.390
240	206.3	380.3	2.031	0.721	0.375	214.5	415.4	2.023	0.757	0.393
241	207.3	386.6	2.036	0.725	0.378	215.4	422.4	2.028	0.761	0.39
242	208.2	393.1	2.040	0.729	0.382	216.4	429.6	2.032	0.765	0.40
243	209.1	399.6	2.044	0.733	0.385	217.3	436.9	2.036	0.769	0.40
244	210.0	406.3	2.048	0.737	0.389	218.3	444.3	2.040	0.773	0.40
245	210.9	413.1	2.052	0.741	0.392	219.2	451.9	2.044	0.777	0.41
246	211.9	419.9	2.057	0.745	0.396	220.2	459.5	2.049	0.782	0.41
247	212.8	426.9	2.061	0.748	0.400	221.1	467.3	2.053	0.786	0.42
248	213.7	434.0	2.065	0.752	0.403	222.1	475.2	2.057	0.790	0.42
249	214.6	441.2	2.069	0.756	0.407	223.1	483.3	2.061	0.794	0.42
250	215.5	448.5	2.073	0.760	0.411	224.0	491.5	2.065	0.798	0.43

TABLE 69

Giving for each sex the weights of body, heart, both kidneys, liver and spleen—for each millimeter of body length. See Charts 11, 12, 13 and 14

		MA	LES				1	FEMALES		
Body length	Body weight	Heart	Both kidneys	Liver	Spleen	Body weight	Heart	Both kidneys	Liver	Spleen
mm.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.
47	4.9	0.031	0.046	0.21	0.009	4.7	0.030	0.046	0.20	0.008
48	4.9	0.031	0.047	0.21	0.009	4.7	0.030	0.046	0.20	0.008
49	5.0	0.032	0.048	0.22	0.009	4.9	0.032	0.048	0.21	0.009
50	5.1	0.033	0.049	0.22	0.009	5.0	0.033	0.050	0.22	0.009
51	5.2	0.033	0.052	0.22	0.010	5.1	0.034	0.052	0.23	0.009
52	5.3	0.034	0.055	0.23	0.010	5.3	0.035	0.055	0.23	0.009
53	5.4	0.035	0.058	0.23	0.010	5.5	0.036	0.062	0.24	0.011
54	5.6	0.036	0.064	0.24	0.011	5.8	0.038	0.070	0.25	0.012
55	5.8	0.038	0.070	0.25	0.012	6.2	0.042	0.081	0.27	0.014
56	6.1	0.041	0.078	0.26	0.014	6.5	0.044	0.088	0.28	0.015
57	6.4	0.043	0.086	0.28	0.015	6.9	0.047	0.097	0.30	0.017
58	6.8	0.046	0.095	0.29	0.017	7.2	0.049	0.103	0.32	0.018
59	7.1	0.049	0.101	0.31	0.018	7.6	0.052	0.112	0.34	0.020
60	7.5	0.052	0.110	0.33	0.020	8.0	0.056	0.119	0.36	0.022
61	7.9	0.055	0.117	0.35	0.021	8.4	0.058	0.127	0.38	0.023
62	8.2	0.057	0.123	0.37	0.023	8.7	0.061	0.132	0.40	0.025
63	8.6	0.060	0.130	0.40	0.024	9.1	0.064	0.139	0.43	0.026
64	9.0	0.063	0.137	0.42	0.026	9.5	0.067	0.145	0.45	0.028
65	9.4	0.066	0.143	0.45	0.027	9.9	0.069	0.151	0.48	0.029
66	9.8	0.069	0.150	0.48	0.029	10.3	0.072	0.157	0.52	0.031
67	10.1	0.071	0.154	0.50	0.030	10.8	0.076	0.165	0.59	0.033
68	10.6	0.074	0.162	0.56	0.032	11.2	0.079	0.171	0.63	0.034
69	11.0	0.077	0.168	0.61	0.033	11.6	0.081	0.176	0.68	0.036
70	11.4	0.080	0.173	0.66	0.035	12.0	0.084	0.182	0.73	0.037
71	11.8	0.083	0.179	0.71	0.036	12.5	0.087	0.188	0.79	0.039
72	12.2	0.085	0.184	0.75	0.038	12.9	0.090	0.194	0.83	0.040
73	12.7	0.089	0.191	0.81	0.039	13.4	0.093	0.200	0.89	0.042
74	13.1	0.091	0.194	0.85	0.041	13.9	0.097	0.206	0.94	0.044
75	13.6	0.095	0.203	0.91	0.042	14.3	0.099	0.211	0.98	0.045
76	14.0	0.097	0.207	0.95	0.044	14.8	0.102	0.217	1.03	0.047
77	14.5	0.100	0.214	1.00	0.046	15.3	0.105	0.223	1.09	0.048
78	15.0	0.104	0.220	1.06	0.047	15.8	0.109	0.229	1.14	0.050
79	15.4	0.106	0.224	1.10	0.049	16.3	0.112	0.235	1.19	0.051
80	15.9	0.109	0.230	1.15	0.050	16.8	0.115	0.241	1.24	0.053

* TABLE 69—Continued

		MA	LES				1	FEMALES		
Body length	Body weight	Heart	Both kidneys	Liver	Spleen	Body weight	Heart	Both kidneys	Liver	Spleen
mm.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.
81	16.4	0.112	0.236	1.20	0.052	17.3	0.118	0.246	1.28	0.055
82	16.9	0.115	0.242	1.24	0.053	17.9	0.121	0.253	1.34	0.057
83	17.4	0.118	0.247	1.29	0.055	18.4	0.124	0.258	1.39	0.058
84	18.0	0.122	0.254	1.35	0.057	19.0	0.128	0.265	1.44	0.060
85	18.5	0.125	0.259	1.40	0.059	19.5	0.131	0.270	1.49	0.062
86	19.0	0.128	0.265	1.44	0.060	20.1	0.134	0.277	1.54	0.064
87	19.6	0.131	0.271	1.50	0.062	20.7	0.138	0.283	1.59	0.065
88	20.1	0.134	0.277	1.54	0.064	21.2	0.141	0.288	1.64	0.067
89	20.7	0.138	0.283	1.59	0.065	21.8	0.144	0.294	1.69	0.069
90	21.3	0.141	0.289	1.64	0.067	22.4	0.147	0.300	1.74	0.071
91	21.9	0.145	0.296	1.69	0.069	23.1	0.151	0.307	1.79	0.073
92	22.4	0.147	0.300	1.74	0.071	23.7	0.155	0.313	1.84	0.075
93	23.0	0.151	0.306	1.79	0.072	24.3	0.158	0.319	1.89	0.076
94	23.7	0.155	0.313	1.84	0.075	25.0	0.162	0.326	1.95	0.078
95	24.3	0.158	0.319	1.89	0.076	25.6	0.165	0.332	1.99	0.080
96	24.9	0.161	0.325	1.94	0.078	26.3	0.169	0.339	2.05	0.082
97	25.6	0.165	0.332	1.99	0.080	27.0	0.172	0.344	2.10	0.084
98	26.2	0.168	0.338	2.05	0.082	27.7	0.176	0.352	2.15	0.086
99	26.9	0.172	0.345	2.09	0.084	28.4	0.180	0.359	2.21	0.088
100	27.5	0.175	0.350	2.14	0.086	29.1	0.183	0.365	2.26	0.090
101	28.2	0.178	0.357	2.19	0.088	29.8	0.187	0.372	2.31	0.092
102	28.9	0.182	0.364	2.24	0.090	30.5	0.190	0.378	2.36	0.094
103	29.6	0.186	0.370	2.29	0.092	31.3	0.194	0.386	2.41	0.097
104	30.3	0.189	0.377	2.34	0.094	32.0	0.198	0.392	2.46	0.099
105	31.1	0.193	0.384	2.40	0.096	32.8	0.202	0.400	2.52	0.101
106	31.8	0.197	0.390	2.45	0.098	33.6	0.206	0.407	2.57	0.103
107	32.5	0.200	0.397	2.50	0.100	34.4	0.209	0.414	2.63	0.106
108	33.3	0.204	0.404	2.55	0.102	35.2	0.213	0.421	2.68	0.108
109	34.1	0.208	0.411	2.61	0.105	36.0	0.217	0.428	2.73	0.110
110	34.9	0.212	0.419	2.66	0.107	36.9	0.221	0.436	2.79	0.113
111	35.7	0.216	0.426	2.71	0.109	37.7	0.225	0.444	2.84	0.115
112	36.5	0.219	0.433	2.77	0.112	38.6	0.229	0.451		0.117
113	37.3	0.223	0.440	2.82	0.114		0.234	0.459		0.120
114	38.2	0.227	0.448	2.88	0.116		0.237	0.466		0.122
115	39.0	0.231	0.455	2.93	0.118	41.3	0.242	0.475		0.125
116	39.9	0.235	0.463	2.98	0.121		0.246	0.483		0.127
117	40.8	0.239	0.471	3.04	0.123		0.250	0.491		0.130

TABLE 69—Continued

		MA	LES)	PEMALES		
Body length	Body weight	Heart	Both kidneys	Liver	Spleen	Body weight	Heart	Both kidneys	Liver	Spleer
mm.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.
118	41.6	0.243	0.478	3.09	0.126	44.1	0.254	0.499	3.24	0.133
119	42.6	0.248	0.486	3.15	0.128	45.0	0.258	0.507	3.29	0.135
120	43.5	0.252	0.494	3.20	0.131	46.0	0.263	0.515	3.35	0.138
121	44.4	0.256	0.502	3.26	0.133	47.0	0.267	0.524	3.41	0.14
122	45.4	0.260	0.510	3.32	0.136	48.0	0.272	0.532	3.47	0.143
123	46.3	0.264	0.518	3.37	0.139	49.1	0.276	0.542	3.53	0.14
124	47.3	0.269	0.526	3.43	0.141	50.1	0.281	0.550	3.59	0.14
125	48.3	0.273	0.535	3.49	0.144	51.2	0.285	0.559	3.65	0.15
126	49.3	0.277	0.543	3.54	0.147	52.3	0.290	0.568	3.71	0.15
127	50.4	0.282	0.553	3.61	0.150	53.4	0.295	0.578	3.77	0.15
128	51.4	0.286	0.561	3.66	0.152	54.5	0.299	0.587	3.83	0.16
129	52.5	0.291	0.570	3.72	0.155	55.6	0.304	0.596	3.89	0.16
130	53.6	0.295	0.579	3.78	0.158	56.8	0.309	0.606	3.96	0.16
131	54.7	0.300	0.588	3.84	0.161	58.0	0.314	0.616	4.02	0.17
132	55.8	0.305	0.598	3.90	0.164	59.2	0.319	0.626	4.09	0.17
133	56.9	0.309	0.607	3.96	0.167	60.4	0.324	0.635	4.15	0.17
134	58.1	0.314	0.617	4.03	0.171	61.6	0.328	0.645	4.21	0.18
135 136	59.3 60.5	0.319	0.626	4.09	0.174	62.9 64.2	0.334	0.656	4.28	0.18
137	61.7	0.324	0.646	4.22	0.180	65.5	0.344	0.677	4.35	0.18
138	62.9	0.334	0.656	4.28	0.183	66.8	0.349	0.687	4.48	0.19
139	64.1	0.338	0.666	4.34	0.186	68.1	0.354	0.698	4.54	0.19
140	65.4	0.344	0.676	4.41	0.190	69.5	0.360	0.709	4.61	0.20
141	66.7	0.349	0.687	4.47	0.193	70.9	0.365	0.720	4.68	0.20
142	68.0	0.354		4.54		72.3			4.75	
143			0.708		0.200			0.743		0.21
144			0.719	4.67	0.204	75.2	0.382	0.755		
145	72.1	0.370	0.730	4.74	0.208	76.7	0.387	0.767	4.97	0.22
146	73.5	0.375	0.741	4.81	0.211	78.2	0.393	0.779	5.04	0.22
147	74.9	0.380	0.752	4.88	0.215	79.7	0.399	0.791	5.11	0.22
148	76.3	0.386		4.95	0.219	81.3			5.19	
149	77.8			5.02	0.223		0.410		5.26	
150	79.3	0.397	0.787	5.09	0.227	84.4	0.416	0.828	5.33	0.24
151	80.8	0.403	0.799	5.16	0.230	86.1	0.422	0.841	5.41	0.24
152	82.4	0.409	0.812	5.24	0.235			0.854	5.48	0.24
153	83.9	0.414	0.824	5.31	0.239	89.4	0.435	0.867	5.56	0.25

TABLE 69-Continued

11/1/2		MA	LES				1	FEMALES		
Body length	Body weight	Heart	Both kidneys	Liver	Spleen	Body weight	Heart	Both kidneys	Liver	Spleer
mm.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.
154	85.5	0.420	0.836	5.38	0.243	91.1	0.441	0.880	5.64	0.257
155	87.1	0.426	0.849	5.46	0.247	92.9	0.447	0.894	5.72	0.262
156	88.7	0.432	0.862	5.53	0.251	94.6	0.453	0.908	5.80	0.266
157	90.4	0.438	0.875	5.61	0.255	96.4	0.460	0.922	5.88	0.271
158	92.1	0.444	0.888	5.68	0.260	98.3	0.467	0.937	5.96	0.276
159	93.8	0.450	0.901	5.76	0.264	100.1	0.473	0.951	6.04	0.281
160	95.6	0.457	0.916	5.84	0.269	102.0	0.480	0.965	6.12	0.288
161	97.3	0.463	0.929	5.92	0.273	103.9	0.486	0.980	6.21	0.290
162	99.2	0.470	0.944	6.00	0.278	105.9	0.493	0.996	6.29	0.298
163	101.0	0.476	0.958	6.08	0.283	107.9	0.500	1.011	6.38	0.301
164	102.8	0.483	0.971	6.16	0.287	109.9	0.507	1.026	6.47	0.306
165	104.7	0.489	0.986	6.24	0.292	111.9	0.514	1.042	6.55	0.311
166	106.7	0.496	1.002	6.33	0.298	114.0	0.522	1.058	6.64	0.316
167	108.6	0.502	1.016	6.41	0.302	116.1	0.529	1.074	6.73	0.322
168	110.6	0.510	1.032	6.50	0.308	118.3	0.536	1.091	6.82	0.327
169	112.6	0.517	1.047	6.58	0.313	120.5	0.544	1.108	6.92	0.333
170	114.7	0.524	1.063	6.67	0.318	122.7	0.551	1.125	7.01	0.339
171	116.7	0.531	1.079	6.76	0.323	125.0	0.559	1.142	7.10	0.344
172	118.9	0.538	1.096	6.85	0.329	127.3	0.567	1.160	7.20	0.350
173	121.0	0.545	1.112	6.94	0.334	129.6	0.575	1.178	7.29	0.356
174	123.2	0.553	1.129	7.03	0.340	132.0	0.583	1.196	7.39	0.362
175	125.4	0.560	1.145	7.12	0.345	134.4	0.591	1.214	7.49	0.368
176	127.7	0.568	1.163	7.22	0.351	136.8	0.599	1.232	7.59	0.375
177	130.0	0.576	1.181	7.31	0.357	139.3	0.607	1.251	7.69	0.381
178	132.3	0.584	1.198	7.40	0.363	141.9	0.615	1.271	7.79	0.387
179	134.6	0.591	1.216	7.50	0.369	144.4	0.624	1.290	7.89	0.394
180	137.0	0.599	1.234	7.60	0.375	147.1	0.632	1.311	8.00	0.401
181	139.5		1.253	7.70	0.381		0.641		8.10	
182	142.0	0.616	1.272	7.80	0.388	152.4		1.351	8.21	0.414
183		0.622	1.291	7.90	0.394	155.2		1.372	8.32	0.421
184	147.0	0.632	1.310	8.00	0.400	158.0		1.393	8.43	0.428
185	149.6	0.641	1.330	8.10	0.407	160.8	0.677	1.414	8.54	0.435
186	152.3	0.649	1.350	8.21	0.414	163.7	0.686	1.436	8.65	0.443
187	155.0	0.658	1.370	8.31	0.421	166.6	0.696	1.458	8.77	0.450
188	157.7	0.667	1.391	8.42	0.428	169.6	0.705	1.481	8.88	
189	160.5	0.676	1.412	8.53	0.435	172.6		1.503	9.00	
190	163.3	0.685	1.433	8.64	0.442	175.7	0.725	1.526	9.12	0.473

TABLE 69-Continued

		MA	LES				1	PEMALES		
Body length	Body weight	Heart	Both kidneys	Liver	Spleen	Body weight	Heart	Both kidneys	Liver	Spleen
mm.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.
191	166.2	0.694	1.455	8.75	0.449	178.8	0.734	1.550	9.23	0.481
192	169.1	0.704	1.477	8.86	0.456	182.0	0.744	1.574	9.36	0.489
193	172.0	0.713	1.499	8.98	0.464	185.2	0.755	1.598	9.48	0.497
194	175.0	0.722	1.521	9.09	0.471	188.5	0.765	1.622	9.60	0.505
195	178.1	0.732	1.544	9.21	0.479	191.9	0.776	1.648	9.73	0.514
196	181.2	0.742	1.568	9.33	0.487	195.3	0.786	1.673	9.86	0.522
197	184.3	0.752	1.591	9.45	0.495	198.7	0.797	1.699	9.99	0.531
198	187.5	0.762	1.615	9.57	0.503	202.2	0.808	1.725	10.12	0.540
199	190.8	0.772	1.640	9.69	0.511	205.8	0.819	1.752	10.25	0.549
200	194.1	0.782	1.664	9.82	0.519	209.4	0.830	1.779	10.39	0.558
201	197.4	0.793	1.689	9.94	0.528	213.1	0.841	1.806	10.52	0.567
202	200.8	0.803	1.714	10.07	0.536	216.8	0.853	1.834	10.66	0.577
203	204.3	0.814	1.740	10.20	0.545	220.7	0.865	1.863	10.80	0.586
204	207.8	0.825	1.767	10.33	0.554	224.5	0.876	1.891	10.94	0.596
205	211.4	0.836	1.793	10.46	0.563	228.4	0.888	1.920	11.09	0.606
206	215.0	0.847	1.820	10.59	0.572	232.4	0.900	1.950	11.23	0.616
207	218.7	0.859	1.848	10.73	0.581	236.5	0.913	1.980	11.38	0.626
208	222.5	0.870	1.876	10.87	0.591	240.6	0.925	2.011	11.53	0.636
209	226.3	0.882	1.904	11.01	0.600	244.8	0.938	2.042	11.68	0.647
210	230.2	0.894	1.933	11.15	0.610	249.1	0.951	2.074	11.84	0.657
211	234.1	0.905	1.962	11.29	0.620	253.4	0.964	2.106	11.99	0.668
212	238.1	0.918	1.992	11.44	0.630	257.8	0.977	2.138	12.15	0.679
213	242.2	0.930	2.023	11.59	0.640	262.3	0.990	2.171	12.31	0.691
214	246.3	0.942	2.053	11.74	0.650	266.9	1.004	2.205	12.47	0.702
215	250.5	0.955	2.084	11.89	0.661	271.5	1.018	2.239	12.64	0.713
216	254.7	0.968		12.04	0.671	276.2		2.274	12.80	0.725
217			2.148		0.683			2.310		
218			2.180		0.694			2.345		
219			2.213		0.704	290.8			13.32	
220	272.5	1.021	2.247	12.67	0.716	295.8	1,090	2.419	13.50	0.774
221	277.1	1.034	2.281	12.84	0.727		1.105		13.67	0.787
222	281.8	1.048	2.316	13.00	0.739		1.120		13.86	
223	286.5	1.062	2.350	13.17	0.751		1.135		14.04	
224	291.4	1.077	2.386		0.763		1.151		14.23	
225	296.3	1.091	2.423	13.51	0.775	322.1	1.167		14.41	
226		1.106	2.460	13.69	0.788	327.7	1.183		14.61	
227	306.4	1.121	2.497	13.87	0.801	333.3	1.200	2.695	14.80	0.868

TABLE 69-Concluded

		MA	LES				1	FEMALES		
Body length	Body weight	Heart	Both kidneys	Liver	Spleen	Body weight	Heart	Both kidneys	Liver	Spleen
mm.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.
228	311.5	1.136	2.535	14.05	0.813	339.0	1.216	2.737	15.00	0.882
229	316.8	1.152	2.574	14.23	0.826	344.8	1.233	2.780	15.20	0.896
230	322.1	1.167	2.613	14.41	0.840	350.7	1.250	2.823	15.40	0.911
231	327.5	1.183	2.652	14.60	0.853	356.7	1.268	2.867	15.61	0.926
232	333.0	1.199	2.693	14.79	0.867	362.8	1.285	2.912	15.82	0.941
233	338.6	1.215	2.734	14.99	0.881	369.0	1.303	2.957	16.03	0.956
234	344.3	1.232	2.776	15.18	0.895	375.3	1.321	3.004	16.24	0.972
235	350.0	1.248	2.818	15.38	0.909	381.7	1.340	3.050	16.46	0.988
236	355.9	1.265	2.861	15.58	0.924	388.2	1.358	3.098	16.68	1.004
237	361.9	1.283	2.905	15.79	0.939	394.9	1.377	3.147	16.91	1.021
238	367.9	1.300	2.949	15.99	0.954	401.6	1.397	3.196	17.14	1.037
239	374.1	1.318	2.995	16.20	0.969	408.4	1.416	3.246	17.37	1.054
240	380.3	1.336	3.040	16.42	0.984	415.4	1.436	3.297	17.61	1.072
241	386.6	1.354	3.086	16.63	1.000	422.4	1.456	3.349	17.84	1.089
242	393.1	1.372	3.134	16.85	1.016	429.6	1.477	3.401	18.08	1.107
243	399.6	1.391	3.182	17.07	1.032	436.9	1.497	3.455	18.33	1.125
244	406.3	1.410	3.231	17.30	1.049	444.3	1.518	3.509	18.58	1.143
245	413.1	1.429	3.280	17.53	1.066	451.9	1.540	3.564	18.83	1.162
246	419.9	1.449	3.330	17.76	1.083	459.5	1.561	3.620	19.09	1.181
247	426.9	1.469	3.381	17.98	1.100	467.3	1.583	3.677	19.35	1.200
248	434.0	1.489	3.433	18.23	1.118	475.2	1.606	3.734	19.61	1.220
249	441.2	1.509	3.486	18.47	1.136	483.3	1.628	3.794	19.88	1.240
250	448.5	1.530	3.539	18.72	1.154	491.5	1.652	3.853	20.15	1.260

TABLE 70

Giving for each sex the weights of body, lungs, blood, alimentary tract and gonads (testes and ovaries) for each millimeter of body length. See Charts 15, 16, 17, 21 and 22.

,		MA	LES			FEMALES				
Body length	Body weight	Lungs	Blood	Alimen.	Testes	Body weight	Lungs	Blood	Alimen.	Ovaries
mm.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.
47	4.9	0.078	0.44	0.14	0.004	4.7	0.078	0.41	0.14	0.0000
48	4.9	0.079	0.44	0.14	0.004	4.7	0.079	0.41	0.14	0.0006
49	5.0	0.080	0.45	0.15	0.004	4.9	0.080	0.43	0.15	0.0008
50	5.1	0.081	0.45	0.15	0.004	5.0	0.081	0.44	0.15	0.0009
51	5.2	0.082	0.46	0.15	0.004	5.1	0.082	0.45	0.15	0.0009
52	5.3	0.083	0.47	0.16	0.006	5.3	0.084	0.47	0.16	0.0010
53	5.4	0.085	0.48	0.16	0.006	5.5	0.086	0.49	0.16	0.0011
54	5.6	0.087	0.50	0.17	0.007	5.8	0.090	0.51	0.18	0.0013
55	5.8	0.090	0.51	0.18	0.007	6.2	0.094	0.54	0.19	0.0013
56	6.1	0.093	0.53	0.19	0.009	6.5	0.097	0.56	0.20	0.0016
57	6.4	0.096	0.56	0.20	0.011	6.9	0.102	0.60	0.22	0.0019
58	6.8	0.101	0.59	0.21	0.013	7.2	0.105	0.62	0.23	0.0020
59	7.1	0.104	0.61	0.22	0.016	7.6	0.109	0.65	0.24	0.0022
60	7.5	0.108	0.64	0.24	0.019	8.0	0.113	0.68	0.25	0.0024
61	7.9	0.112	0.67	0.25	0.023	8.4	0.117	0.71	0.27	0.0023
62	8.2	0.115	0.69	0.26	0.026	8.7	0.120	0.73	0.27	0.0026
63	8.6	0.119	0.73	0.27	0.031	9.1	0.124	0.76	0.28	0.0028
64	9.0	0.123	0.76	0.28	0.036	9.5	0.128	0.79	0.30	0.0029
65	9.4	0.127	0.79	0.29	0.041	9.9	0.131	0.82	0.31	0.003
66	9.8	0.130	0.82	0.30	0.047	10.3	0.135	0.85	0.34	0.0033
67	10.1	0.133	0.84	0.31	0.050	10.8	0.139	0.89	0.41	0.003
68	10.6	0.138	0.88	0.39	0.051	11.2	0.143	0.92	0.47	0.0033
69	11.0	0.141	0.91	0.44	0.052	11.6	0.146	0.95	0.52	0.0036
70	11.4	0.145	0.93	0.50	0.053	12.0	0.150	0.98	0.58	0.0037
71	11.8	0.148	0.96	0.55	0.054	12.5	0.154	1.02	0.64	0.0039
72	12.2	0.152	0.99	0.60	0.055	12.9	0.157	1.04	0.69	0.0040
73	12.7	0.155	1.03	0.67	0.057	13.4	0.161	1.08	0.76	C.0041
74	13.1	0.159	1.06	0.72	0.058	13.9	0.165	1.12	0.82	0.0043
75	13.6	0.163	1.10	0.78	0.060	14.3	0.169	1.13	0.87	0.0043
76	14.0	0.166	1.12	0.83	0.061	14.8	0.173	1.18	0.93	0.0044
77	14.5	0.170	1.16	0.89	0.063	15.3	0.177	1.22	0.99	0.0046
78	15.0	0.174	1.20	0.95	0.065	15.8	0.180	1.25	1.04	0.0047
79	15.4	0.177	1.23	1.00	0.067	16.3	0.184	1.29	1.10	0.0048
80	15.9	0.181	1.26	1.05	0.069	16.8	0.188	1.33	1.16	0.0049

TABLE 70—Continued

		MAI	LES			FEMALES				
Body length	Body weight	Lungs	Blood	Alimen. tract	Testes	Body weight	Lungs	Blood	Alimen.	Ovaries
mm.	gms.	gms.	gm e .	gms.	gms.	gms.	gms.	gms.	gms.	gms.
81	16.4	0.185	1.30	1.11	0.071	17.3	0.192	1.36	1.21	0.0050
82	16.9	0.189	1.33	1.17	0.073	17.9	0.196	1.40	1.28	0.005
83	17.4	0.193	1.37	1.22	0.076	18.4	0.200	1.44	1.33	0.0052
84	18.0	0.197	1.41	1.29	0.078	19.0	0.204	1.48	1.39	0.0053
85	18.5	0.201	1.45	1.34	0.081	19.5	0.208	1.52	1.44	0.005
86	19.0	0.204	1.48	1.39	0.084	20.1	0.212	1.56	1.50	0.005
87	19.6	0.209	1.52	1.45	0.087	20.7	0.216	1.60	1.56	0.005
88	20.1	0.212	1.56	1.50	0.089	21.2	0.220	1.63	1.61	0.005
89	20.7	0.216	1.60	1.56	0.093	21.8	0.224	1.68	1.67	0.0058
90	21.3	0.221	1.64	1.62	0.096	22.4	0.228	1.72	1.73	0.005
91	21.9	0.225	1.68	1.68	0.100	23.1	0.233	1.76	1.79	0.005
92	22.4	0.228	1.72	1.73	0.103	23.7	0.237	1.81	1.85	0.006
93	23.0	0.232	1.76	1.78	0.107	24.3	0.241	1.85	1.90	0.006
94	23.7	0.237	1.81	1.85	0.112	25.0	0.246	1.90	1.96	0.006
95	24.3	0.241	1.85	1.90	0.116	25.6	0.250	1.94	2.02	0.006
96	24.9	0.245	1.89	1.96	0.120	26.3	0.254	1.98	2.08	0.006
97	25.6	0.250	1.94	2.02	0.125	27.0	0.259	2.03	2.14	0.006
98	26.2	0.254	1.98	2.07	0.130	27.7	0.264	2.08	2.20	0.006
99	26.9	0.258	2.02	2.13	0.135	28.4	0.268	2.13	2.25	0.006
100	27.5	0.262	2.06	2.18	0.140	29.1	0.273	2.17	2.31	0.006
101	28.2	0.267	2.11	2.24	0.145	29.8	0.277	2.22	2.37	0.006
102	28.9	0.271	2.16	2.30	0.151	30.5	0.282	2.27	2.42	0.006
103	29.6	0.276	2.21	2.35	0.157	31.3	0.287	2.32	2.49	0.007
104	30.3	0.280	2.25	2.41	0.163	32.0	0.291	2.37	2.54	0.007
105	31.1	0.285	2.31	2.47	0.171	32.8	0.296	2.42	2.60	0.007
106	31.8	0.290	2.35	2.53	0.177	33.6	0.301	2.47	2.66	0.007
107	32.5	0.294	2.40		0.184	34.4	0.306	2.53	2.72	0.007
108	33.3	0.299	2.45		0.192	35.2	0.311	2.58	2.78	0.007
109	34.1	0.304	2.51		0.200	36.0	0.316	2.63	2.84	0.007
110	34.9	0.309	2.56			36.9	0.321	2.69	2.90	0.007
111	35.7	0.314	2.61	2.82	0.216	37.7	0.326	2.74	2.96	0.007
112	36.5	0.319				38.6	0.332	2.80	3.02	0.007
113	37.3	0.324				39.5	0.337	2.86	3.09	0.007
114	38.2	0.329				40.3	0.342	2.91	3.14	0.007
115	39.0	0.334				41.3	0.348	2.98	3.21	0.007
116	39.9	0.339				42.2	0.353	3.04	3.27	0.008
117	40.8	0.345				43.1	0.358	3.09	3.33	0.008

TABLE 70—Continued

	-	MA	LES	TABL	FEMALES					
							1			1
Body length	Body weight	Lungs	Blood	Alimen. tract	Testes	Body weight	Lungs	Blood	Alimen.	Ovaries
mm.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.
118	41.6	0.349	3.00	3.23	0.285	44.1	0.364	3.16	3.39	0.008
119	42.6	0.355	3.06	3.29	0.298	45.0	0.369	3.22	3.45	0.008
120	43.5	0.361	3.12	3.35	0.309	46.0	0.375	3.28	3.51	0.008
121	44.4	0.366	3.18	3.41	0.321	47.0	0.381	3.35	3.58	0.008
122	45.4	0.372	3.24	3.47	0.335	48.0	0.387	3.41	3.64	0.008
123	46.3	0.377	3.30	3.53	0.348	49.1	0.393	3.48	3.71	0.008
124	47.3	0.383	3.36	3.59	0.362	50.1	0.399	3.54	3.77	0.008
125	48.3	0.389	3.43	3.66	0.377	51.2	0.405	3.61	3.83	0.008
126	49.3	0.394	3.49	3.72	0.392	52.3	0.411	3.68	3.90	0.008
127	50.4	0.401	3.56	3.78	0.408	53.4	0.418	3.75	3.96	0.008
128	51.4	0.406	3.63	3.84	0.424	54.5	0.424	3.82	4.03	0.008
129	52.5	0.413	3.69	3.91	0.442	55.6	0.430	3.89	4.09	0.008
130	53.6	0.419	3.76	3.97	0.460	56.8	0.437	3.97	4.15	0.009
131	54.7	0.425	3.83	4.04	0.478	58.0	0.444	4.04	4.22	0.009
132	55.8	0.431	3.90	4.10	0.497	59.2	0.450	4.12	4.29	0.009
133	56.9	0.437	3.97	4.16	0.516	60.4	0.457	4.19	4.36	0.009
134	58.1	0.444	4.05	4.23	0.537	61.6	0.464	4.27	4.42	0.009
135	59.3	0.451	4.12	4.30	0.559	62.9	0.471	4.35	4.49	0.009
136	60.5	0.458	4.20	4.36	0.581	64.2	0.478	4.43	4.56	0.009
137	61.7	0.464	4.27	4.43	0.604	65.5	0.485	4.51	4.63	0.009
138	62.9	0.471	4.35	4.49	0.627	66.8	0.492	4.59	4.70	0.009
139	64.1	0.477	4.42	4.56	0.651	68.1	0.499	4.67	4.77	0.010
140	65.4	0.485	4.50	4.63	0.677	69.5	0.507	4.76	4.84	0.010
141	66.7	0.492	4.58	4.70	0.704	70.9	0.515	4.84	4.91	0.011
142	68.0	0.499	4.66	4.76	0.731	72.3	0.522	4.93	4.98	0.011
143	69.3	0.506	4.74	4.83	0.759	73.7	0.530	5.01	5.05	0.012
144	70.7	0.514	4.83	4.90	0.790	75.2	0.538	5.11	5.13	0.012
145	72.1	0.521	4.92	4.97	0.821	76.7	0.546	5.20	5.20	0.013
146	73.5	0.529	5.00	5.04	0.853	78.2	0.554	5.29	5.27	0.013
147	74.9	0.536	5.09	5.11	0.885	79.7	0.562	5.38	5.35	0.014
148	76.3	0.544	5.17	5.18	0.918	81.3	0.571	5.48	5.42	0.015
149	77.8	0.552	5.27	5.26	0.955	82.8	0.579	5.57	5.50	0.016
150	79.3	0.560	5.36	5.34	0.991	84.4	0.587	5.67	5.57	0.017
151	80.8	0.568	5.45	5.40	1.031	86.1	0.596	5.77	5.65	0.018
152	82.4	0.577	5.54	5.48	1.055	87.7	0.605	5.86	5.72	0.019
153	83.9	0.585	5.64	5.55	1.078		0.614	5.97	5.80	0.020

TABLE 70-Continued

		MA	LES				FEMALES				
Body length	Body weight	Lungs	Blood	Alimen.	Testes	Body weight	Lungs	Blood	Alimen.	Ovaries	
mm.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	
154	85.5	0.593	5.73	5.63	1.102	91.1	0.623	6.07	5.88	0.0219	
155	87.1	0.602	5.83	5.70	1.125	92.9	0.632	6.18	5.96	0.0233	
156	88.7	0.610	5.92	5.77	1.148	94.6	0.641	6.28	6.04	0.0247	
157	90.4	0.619	6.03	5.85	1.173	96.4	0.651	6.39	6.12	0.0262	
158	92.1	0.628	6.13	5.93	1.196	98.3	0.661	6.50	6.20	0.0279	
159	93.8	0.637	6.23	6.00	1.219	100.1	0.670	6.61	6.28	0.0296	
160	95.6	0.646	6.34	6.08	1.243	102.0	0.680	6.72	6.46	0.0314	
161	97.3	0.655	6.44	6.16	1.265	103.9	0.690	6.83	6.44	0.0334	
162	99.2	0.665	6.55	6.24	1.290	105.9	0.700	6.95	6.53	0.0344	
163	101.0	0.675	6.66	6.32	1.313	107.9	0.711	7.07	6.62	0.0377	
164	102.8	0.684	6.77	6.40	1.335	109.9	0.721	7.18	6.70	0.0400	
165	104.7	0.694	6.88	6.48	1.358	111.9	0.731	7.30	6.78	0.0411	
166	106.7	0.704	7.00	6.56	1.382	114.0	0.742	7.43	6.87	0.0419	
167	108.6	0.714	7.11	6.65	1.404	116.1	0.753	7.55	6.96	0.0425	
168	110.6	0.725	7.23	6.73	1.428	118.3	0.764	7.68	7.05	0.0431	
169	112.6	0.735	7.34	6.81	1.450	120.5	0.776	7.81	7.14	0.0433	
170	114.7	0.746	7.47	6.90	1.473	122.7	0.787	7.93	7.23	0.0439	
171	116.7	0.756	7.58	6.98	1.495	125.0	0.799	8.07	7.32	0.0443	
172	118.9	0.768	7.71	7.07	1.519	127.3	0.811	8.20	7.41	0.0446	
173	121.0	0.778	7.83	7.16	1.541	129.6	0.822	8.33	7.50	0.0449	
174	123.2	0.790	7.96	7.25	1.564	132.0	0.835	8.47	7.60	0.0452	
175	125.4	0.801	8.09	7.33	1.586	134.4	0.847	8.61	7.69	0.0455	
176	127.7	0.813	8.22	7.43	1.609	136.8	0.859	8.75	7.78	0.0457	
177	130.0	0.824	8.36	7.52	1.632	139.3	0.872	8.89	7.88	0.0459	
178	132.3	0.836	8.49	7.61	1.654	141.9	0.885	9.04	7.98	0.0462	
179	134.6	0.848	8.62	7.70	1.675	144.4	0.898	9.19	8.07	0.0464	
180	137.0	0.860	8.76	7.79	1.698	147.1	0.911	9.34	8.18	0.0466	
181	139.5	0.873	8.90	7.89	1.721	149.7	0.925	9.49	8.28	0.0468	
182	142.0	0.886	9.05	7.98	1.743	152.4	0.938	10.22	8.38	0.0469	
183	144.5	0.898	9.19	8.08	1.765	155.2	0.952	10.39	8.48	0.0471	
184	147.0	0.911	9.26	8.17	1.787	158.0	0.967	10.56	8.58	0.0478	
185	149.6	0.924	9.33	8.27	1.809	160.8	0.981	10.73	8.69	0.0474	
186	152.3	0.938	9.40	8.37	1.832	163.7	0.995	10.90	8.79	0.0476	
187	155.0	0.951	9.50	8.47	1.854	166.6	1.010	11.07	8.90	0.0477	
188	157.7	0.965	9.64	8.57	1.876	169.6	1.025	11.25	9.01	0.0479	
189	160.5	0.979	9.80	8.68	1.898	172.6	1.040	11.43	9.12	0.0480	
190	163.3	0.993	9.95	8.78	1.920	175.7	1.055	11.62	9.23	0.0482	

TABLE 70-Continued

		MA	LES					FEMALES		
Body length	Body weight	Lungs	Blood	Alimen.	Testes	Body weight	Lungs	Blood	Alimen.	Ovaries
mm.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.
191	166.2	1.008	10.11	8.88	1.942	178.8	1.071	11.80	9.34	0.0483
192	169.1	1.022	10.27	8.99	1.964	182.0	1.087	11.99	9.45	0.0484
193	172.0	1.037	10.43	9.09	1.985	185.2	1.103	12.18	9.56	0.0485
194	175.0	1.052	10.59	9.20	2,007	188.5	1.119	12.38	9.68	0.0487
195	178.1	1.067	10.76	9.31	2.030	191.9	1.136	12.58	9.80	0.0488
196	181.2	1.083	10.93	9.42	2.051	195.3	1.153	12.78	9.92	0.0489
197	184.3	1.098	11.10	9.53	2.073	198.7	1.170	12.98	10.03	0.0490
198	187.5	1.114	11.27	9.64	2.094	202.2	1.188	13.18	10.15	0.0491
199	190.8	1.131	11.45	9.76	2.117	205.8	1.206	13.39	10.28	0.0492
200	194.1	1.147	11.63	9.87	2.138	209.4	1.223	13.61	10.40	0.0493
201	197.4	1.164	11.81	9.99	2.159	213.1	1.242	13.82	10.53	0.0494
202	200.8	1.181	11.99	10.11	2.181	216.8	1.260	14.04	10.65	0.0495
203	204.3	1.198	12.18	10.23	2.203	220.7	1.279	14.26	10.78	0.0496
204	207.8	1.215	12.36	10.35	2.224	224.5	1.298	14.48	10.91	0.0497
205	211.4	1.233	12.56	10.47	2.246	228.4	1.317	14.71	11.04	0.0498
206	215.0	1.251	12.75	10.59	2.267	232.4	1.337	14.94	11.17	0.0499
207	218.7	1.269	12.95	10.71	2.289	236.5	1.357	15.18	11.31	0.0500
208	222.5	1.288	13.15	10.84	2.311	240.6	1.378	15.42	11.44	0.0501
209 210	226.3 230.2	1.307 1.326	13.35 13.46	10.97 11.10	2.332 2.354	244.8 249.1	1.398	15.66 15.90	11.58 11.72	0.0502
911	234.1	1.346	13.76	11.23	2.375	253.4	1.441	16.15	11.86	0.0504
211 212	238.1	1.365	13.98	11.36	2.397	257.8	1.462	16.41	12.00	0.0505
213	242.2	1.386	14.19	11.49	2.418	262.3	1.484	16.66	12.14	0.0506
214	246.3	1.406	14.41	11.63	2.439	266.9	1.507	16.92	12.29	0.0507
215	250.5	1.426	14.63	11.76	2.461	271.5	1.530	17.19	12.44	0.0508
216	2000	1.447	14.85	11.90	2.482		1.553	17.45	12.59	0.0508
217	259.1	1.469	15.08	12.04	2.503	281.0	1.576	17.73	12.74	0.0509
218	263.5	1.490	15.31	12.18	2.525	285.8	1.600	18.00	12.89	0.0510
219	267.9	1.512	15.54	12.32	2.546		1.624	18.28	13.05	0.0511
220	272.5	1.534	15.78		2.567	295.8	1.648	18.57	13.21	0.0512
221	277.1	1.557	16.02	12.62	2.588	300.9	1.673	18.85	13.36	0.0512
222	281.8	1.580	16.26	12.77	2.609	306.1	1.705	19.15	13.53	0.0513
223	286.5	1.603	16.55	12.91	2.630	311.3	1.724	19.44	13.69	0.0514
224	291.4	1.627	16.76	13.07	2.652	316 7	1.751	19.74	13.85	0.0515
225	296.3	1.651	17.02	13.22	2.673	322.1	1.777	20.05	14.02	0.0516
226	3 01.3	1.675	17.27		2.694	327.7	1.804	20.36	14.19	0.0516
227	306.4	1.700	17.54	13.54	2.715	333.3	1.831	20.67	14.36	0.0517

TABLE 70—Concluded

		МА	LES				4	FEMALES		
Body length	Body weight	Lungs	Blood	Alimen. tract	Testes	Body weight	Lungs	Blood	Alimen.	Ovaries
mm.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gm_3 .	gms.
228	311.5	1.725	17.80	13.74	2.736	339.0	1.859	20.99	14.54	0.0518
229	316.8	1.751	18.07	13.86	2.757	344.8	1.887	21.31	14.71	0.0519
230	322.1	1.777	18.34	14.02	2.778	350.7	1.916	21.64	14.89	0.0519
231	327.5	1.803	18.62	14.19	2.799	356.7	1.945	21.97	15.07	0.0520
232	333.0	1.830	18.90	14.35	2.820	362.8	1.975	22.31	15.26	0.0521
233	338.6	1.857	19.19	14.52	2.841	369.0	2.005	22.65	15.44	0.0522
234	344.3	1.885	19.47	14.68	2.862	375.3	2.035	23.00	15.63	0.0522
235	350.0	1.913	19.77	14.87	2.883	381.7	2.067	23.35	15.82	0.0523
236	355.9	1.941	20.07	15.05	2.904	388.2	2.098	23.71	16.01	0.0524
237	361.9	1.970	20.37	15.23	2.926	394.9	2.130	24.08	16.21	0.0524
238	367.9	2.000	20.68	15.41	2.946	401.6	2.163	24.45	16.41	0.0528
239	374.1	2.030	20.99	15.59	2.967	408.4	2.196	24.82	16.61	0.0526
240	380.3	2.060	21.30	15.78	2.988	415.4	2.230	25.20	16.82	0.0526
241	386.6	2.090	21.62	15.97	3.009	422.4	2.264	25.58	17.02	0.0527
242	393.1	2.122	21.95	16.16	3.030	429.6	2.298	25.98	17.23	0.0528
243	399.6	2.153	22.27	16.35	3.051	436.9	2.334	26.37	17.45	0.0529
244	406.3	2.186	22.61	16.55	3.072	444.3	2.369	26.77	17.66	0.0529
245	413.1	2.219	22.95	16.75	3.093	451.9	2.406	27.18	17.88	0.0530
246	419.9	2.251	23.28	16.95	3.113	459.5	2.443	27.60	18.10	0.0531
247	426.9	2.285	23.64	17.15	3.134	467.3	2.480	28.02	18.33	0.0531
248	434.0	2.320	23.99	17.36	3.155	475.2	2.518	28.45	18.55	0.0532
249	441.2	2.354	24.35	17.57	3.176	483.3	2.557	28.89	18.79	0.0532
250	448.5	2.390	24.71	17.78	3.197	491.5	2.597	29.32	19.02	0.0533

Giving for each sex the weights of body, hypophysis, suprarenals and thyroid for each millimeter of body length. See charts 18, 19, and 20.

		MALES			PEMALES					
Body length	Body weight	Hypo- physis	Supra- renals	Thyroid	Body weight	Hypo- physis	Supra- renals	Thyroid		
mm.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.		
50	5.1	0.0005	0.0017	0.0015	5.0	0.0005	0.0017	0.0014		
51	5.2	0.0005	0.0017	0.0015	5.1	0.0005	0.0017	0.0015		
52	5.3	0.0005	0.0017	0.0015	5.3	0.0005	0.0018	0.0015		
53	5.4	0.0005	0.0018	0.0016	5.5	0.0006	0.0019	0.0016		
54	5.6	0.0005	0.0019	0.0016	5.8	0.0006	0.0021	0.0017		
55	5.8	0.0006	0.0021	0.0017	6.2	0.0006	0.0024	0.0018		
56	6.1	0.0006	0.0023	0.0018	6.5	0.0006	0.0026	0.0019		
57	6.4	0.0006	0.0025	0.0018	6.9	0.0007	0.0028	0.0020		
58	6.8	0.0007	0.0027	0.0019	7.2	0.0007	0.0030	0.0021		
59	7.1	0.0007	0.0029	0.0020	7.6	0.0007	0.0032	0.0022		
60	7.5	0.0007	0.0031	0.0021	8.0	0.0008	0.0034	0.0023		
61	7.9	0.0008	0.0034	0.0022	8.4	0.0008	0.0036	0.0024		
62	8.2	0.0008	0.0035	0.0023	8.7	0.0008	0.0038	0.0023		
63	8.6	0.0008	0.0037	0.0024	9.1	0.0009	0.0040	0.0026		
64	9.0	0.0009	0.0039	0.0025	9.5	0,0009	0.0042	0.0027		
65	9.4	0.0009	0.0041	0.0026	9.9	0.0009	0.0044	0.0028		
66	9.8	0.0009	0.0043	0.0027	10.3	0.0009	0.0045	0.0029		
67	10.1	0.0009	0.0045	0.0028	10.8	0.0010	0.0048	0.0030		
68	10.6	0.0010	0.0047	0.0030	11.2	0.0010	0.0049	0.0031		
69	11.0	0.0010	0.0049	0.0031	11.6	0.0010	0.0051	0.0032		
70	11.4	0.0010	0.0050	0.0032	12.0	0.0011	0.0053	0.0033		
71	11.8	0.0011	0.0052	0.0033	12.5	0.0011	0.0055	0.0034		
72	12.2	0.0011	0.0054	0.0034	12.9	0.0011	0.0056	0.0035		
73	12.7	0.0011	0.0056	0.0035	13.4	0.0012	0.0058	0.0037		
74	13.1	0.0011	0.0057	0.0036	13.9	0.0012	0.0060	0.0038		
75	13.6	0.0012	0.0059	0.0037	14.3	0.0012	0.0062	0.0039		
76	14.0	0.0012	0.0061	0.0038	14.8	0.0012	0.0064	0.0040		
77	14.5	0.0012	0.0063	0.0039	15.3	0.0013	0.0065	0.0041		
78	15.0	0.0013	0.0064	0.0041	15.8	0.0013	0.0067	0.0042		
79	15.4	0.0013	0.0066	0.0042	16.3	0.0013	0.0069	0.0044		
80	15.9	0.0013	0.0067	0.0043	16.8	0.0014	0.0070	0.0045		
81	16.4	0.0013	0.0069	0.0044	17.3	0.0014	0.0072	0.0046		
82	16.9	0.0014	0.0071	0.0045	17.9	0.0014	0.0074	0.0047		
83	17.4	0.0014	0.0072	0.0046	18.4	0.0014	0.0076	0.0049		

TABLE 71—Continued

		MALES			PEMAL	ES		
Body length	Body weight	Hypo- physis	Supra- renals	Thyroid	Body weight	Hypo- physis	Supra- renals	Thyroid
mm.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.
84	18.0	0.0014	0.0074	0.0048	19.0	0.0015	0.0078	0.0050
85	18.5	0.0015	0.0076	0.0049	19.5	0.0015	0.0079	0.0051
86	19.0	0.0015	0.0078	0.0050	20.1	0.0015	0.0081	0.0052
87	19.6	0.0015	0.0079	0.0051	20.7	0.0016	0.0083	0.0054
88	20.1	0.0015	0.0081	0:0052	21.2	0.0016	0.0084	0.0055
89	20.7	0.0016	0.0083	0.0054	21.8	0.0016	0.0086	0.0056
90	21.3	0.0016	0.0084	0.0055	22.4	0.0017	0.0087	0.0058
91	21.9	0.0016	0.0086	0.0056	23.1	0.0017	0.0089	0.0059
92	22.4	0.0017	0.0087	0.0058	23.7	0.0017	0.0091	0.0060
93	23.0	0.0017	0.0089	0.0059	24.3	0.0017	0.0093	0.0062
94	23.7	0.0017	0.0091	0.0060	25.0	0.0018	0.0094	0.0063
95	24.3	0.0017	0.0093	0.0062	25.6	0.0018	0.0096	0.0064
96	24.9	0.0018	0.0094	0.0063	26.3	0.0018	0.0098	0.0066
97	25.6	0.0018	0.0096	0.0064	27.0	0.0019	0.0100	0.0067
98	26.2	0.0018	0.0098	0.0066	27.7	0.0019	0.0101	0.0069
99	26.9	0.0019	0.0099	0.0067	28.4	0.0019	0.0101	0.0070
100	27.5	0.0019	0.0101	0.0068	29.1	0.0020	0.0105	0.0070
101	28.2	0.0019	0.0103	0.0070	29.8	0.0020	0.0106	0.0073
102	28.9	0.0020	0.0104	0.0071	30.5	0.0020	0.0108	0.0075
103	29.6	0.0020	0.0106	0.0073	31.3	0.0021	0.0110	0.0076
104	30.3	0.0020	0.0108	0.0074	32.0	0.0021	0.0112	0.0078
105	31.1	0.0021	0.0109	0.0076	32.8	0.0021	0.0114	0.0079
106	31.8	0.0021	0.0111	0.0077	33.6	0.0022	0.0117	0.0078
107	32.5	0.0021	0.0113	0.0079	34.4	0.0022	0.0119	0.0082
108	33.3	0.0021	0.0114	0.0080	35.2	0.0022	0.0121	0.0084
109	34.1	0.0022	0.0116	0.0082	36.0	0.0023	0.0123	0.0088
110	34.9	0.0022	0.0118	0.0083	36.9	0.0023	0.0126	0.0087
111	35.7	0.0022	0.0120	0.0085	37.7	0.0023	0.0128	0.0089
112	36.5	0.0023	0.0121	0.0086	38.6	0.0024	0.0130	0.0090
113	37.3	0.0023	0.0123	0.0088	39.5	0.0024	0.0133	0.0092
114	38.2	0.0024	0.0125	0.0090	40.3	0.0024	0.0135	0.0094
115	39.0	0.0024	0.0126	0.0091	41.3	0.0024	0.0138	0.0096
116	39.9	0.0024	0.0128	0.0093	42.2	0.0025	0.0140	0.0097
117	40.8	0.0024	0.0130	0.0095	43.1	0.0025	0.0143	0.0099
118	41.6	0.0025	0.0132	0.0096	44.1	0.0026	0.0145	0.0101
119	42.6	0.0025	0.0132	0.0098	45.0	0.0026	0.0148	0.0102
120	43.5	0.0026	0.0134	0.0100	46.0	0.0026	0.0148	0.0102

TABLE 71—Continued

		MALES				FEMAL	ÆS	
Body length	Body weight	Hypo- physis	Supra- renals	Thyroid	Body weight	Hypo- physis	Supra- renals	Thyroid
mm.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.
121	44.4	0.0026	0.0137	0.0101	47.0	0.0027	0.0153	0.0106
122	45.4	0.0026	0.0139	0.0103	48.0	0.0027	0.0156	0.0108
123	46.3	0.0027	0.0141	0.0105	49.1	0.0028	0.0159	0.0110
124	47.3	0.0027	0.0142	0.0106	50.1	0.0028	0.0161	0.0111
125	48.3	0.0027	0.0144	0.0108	51.2	0.0029	0.0164	0.0113
126	49.3	0.0028	0.0146	0.0110	52.3	0.0029	0.0167	0.0115
127	50.4	0.0028	0.0148	0.0112	53.4	0.0030	0.0170	0.0117
128	51.4	0.0029	0.0150	0.0114	54.5	0.0031	0.0173	0.0119
129	52.5	0.0029	0.0152	0.0116	55.6	0.0031	0.0176	0.0121
130	53.6	0.0029	0.0154	0.0117	56.8	0.0032	0.0179	0.0123
131	54.7	0.0030	0.0155	0.0119	58.0	0.0033	0.0182	0.0125
132	55.8	0.0030	0.0157	0.0121	59.2	0.0034	0.0185	0.0127
133	56.9	0.0031	0.0159	0.0123	60.4	0.0035	0.0188	0.0129
134	58.1	0.0031	0.0161	0.0125	61.6	0.0035	0.0191	0.0131
135	59.3	0.0031	0.0163	0.0127	62.9	0.0036	0.0195	0.0133
136	60.5	0.0032	0.0165	0.0129	64.2	0.0037	0.0198	0.0135
137	61.7	0.0032	0.0167	0.0131	65.5	0.0038	0.0201	0.0137
138	62.9	0.0033	0.0169	0.0133	66.8	0.0039	0.0204	0.0139
139	64.1	0.0033	0.0171	0.0135	68.1	0.0040	0.0208	0.0142
140	65.4	0.0034	0.0173	0.0137	69.5	0.0041	0.0211	0.0144
141	66.7	0.0034	0.0175	0.0139	70.9	0.0042	0.0215	0.0146
142	68.0	0.0034	0.0177	0.0141	72.3	0.0043	0.0218	0.0148
143	69.3	0.0035	0.0179	0.0143	73.7	0.0044	0.0222	0.0150
144	70.7	0.0035	0.0181	0.0146	75.2	0.0045	0.0226	0.0153
145	72.1	0.0036	0.0183	0.0148	76.7	0.0046	0.0230	0.0155
146	73.5	0.0036	0.0185	0.0150	78.2	0.0047	0.0233	0.0158
147	74.9	0.0037	0.0187	0.0152	79.7	0.0048	0.0237	0.0160
148	76.3	0.0037	0.0189	0.0155	81.3	0.0049	0.0241	0.0162
149	77.8	0.0038	0.0192	0.0157	82.8	0.0050	0.0245	0.0164
150	79.3	0.0038	0.0194	0.0159	84.4	0.0051	0.0249	0.0167
151	80.8	0.0039	0.0196	0.0161	86.1	0.0052	0.0253	0.0169
152	82.4	0.0039	0.0198	0.0164	87.7	0.0053	0.0257	0.0172
153	83.9	0.0040	0.0200	0.0166	89.4	0.0055	0.0261	0.0175
154	85.5	0.0040	0.0203	0.0169	91.1	0.0056	0.0266	0.0177
155	87.1	0.0041	0.0205	0.0171	92.9	0.0057	0.0270	0.0180
156	88.7	0.0041	0.0207	0.0173	94.6	0.0058	0.0274	0.0182
157	90.4	0.0042	0.0210	0.0176	96.4	0.0060	0.0279	0.0185

TABLE 71—Continued

		MALES				FEMA	LES	
Body length	Body weight	Hypo- physis	Supra- renals	Thyroid	Body weight	Hypo- physis	Supra- renals	Thyroid
mm.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.
158	92.1	0.0042	0.0212	0.0179	98.3	0.0061	0.0283	0.0188
159	93.8	0.0043	0.0214	0.0181	100.1	0.0062	0.0288	0.0190
160	95.6	0.0044	0.0217	0.0184	102.0	0.0064	0.0293	0.0193
161	97.3	0.0044	0.0219	0.0186	103.9	0.0065	0.0297	0.0196
162	99.2	0.0045	0.0222	0.0189	105.9	0.0067	0.0302	0.0199
163	101.0	0.0045	0.0224	0.0191	107.9	0.0068	0.0307	0.0201
164	102.8	0.0046	0.0226	0.0194	109.9	0.0070	0.0312	0.0204
165	104.7	0.0046	0.0229	0.0197	111.9	0.0071	0.0317	0.0207
166	106.7	0.0047	0.0231	0.0200	114.0	0.0073	0.0322	0.0210
167	108.6	0.0048	0.0234	0.0202	116.1	0.0074	0.0327	0.0213
168	110.6	0.0048	0.0236	0.0205	118.3	0.0076	0.0333	0.0216
169	112.6	0.0049	0.0239	0.0208	120.5	0.0077	0.0338	0.0219
170	114.7	0.0050	0.0242	0.0211	122.7	0.0079	0.0343	0.0222
171	116.7	0.0050	0.0244	0.0214	125.0	0.0081	0.0349	0.0225
172	118.9	0.0051	0.0247	0.0217	127.3	0.0082	0.0355	0.0228
173	121.0	0.0052	0.0250	0.0220	129.6	0.0084	0.0360	0.0232
174	123.2	0.0052	0.0252	0.0223	132.0	0.0086	0.0366	0.0235
175	125.4	0.0053	0.0255	0.0226	134.4	0.0088	0.0372	0.0238
176	127.7	0.0054	0.0258	0.0229	136.8	0.0089	0.0378	0.0243
177	130.0	0.0054	0.0261	0.0232	139.3	0.0091	0.0384	0.0248
178	132.3	0.0055	0.0264	0.0235	141.9	0.0093	0.0390	0.0248
179	134.6	0.0056	0.0266	0.0238	144.4	0.0095	0.0396	0.0251
180	137.0	0.0056	0.0269	0.0242	147.1	0.0097	0.0402	0.0255
181	139.5	0.0057	0.0272	0.0245	149.7	0.0099	0.0409	0.0258
182	142.0	0.0058	0.0275	0.0248	152.4	0.0101	0.0415	0.0262
183	144.5	0.0059	0.0278	0.0252	155.2	0.0103	0.0422	0.0260
184	147.0	0.0059	0.0281	0.0255	158.0	0.0105	0.0429	0.0269
185	149.6	0.0060	0.0284	0:0258	160.8	0.0108	0.0435	0.0273
186	152.3	0.0061	0.0287	0.0262	163.7	0.0110	0.0442	0.0277
187	155.0	0.0062	0.0291	0.0265	166.6	0.0112	0.0449	0.0280
188	157.7	0.0063	0.0294	0.0269	169.6	0.0114	0.0457	0.0284
189	160.5	0.0063	0.0297	0.0272	172.6	0.0117	0.0464	0.0288
190	163.3	0.0064	0.0300	0.0276	175.7	0.0119	0.0471	0.0292
191	166.2	0.0065	0.0304	0.0280	178.8	0.0121	0.0479	0.0296
192	169.1	0.0066	0.0307	0.0284	182.0	0.0124	0.0486	0.0300
193	172.0	0.0067	0.0310	0.0287	185.2	0.0126	0.0494	0.0304

TABLE 71—Continued

		MALES				FEMAL	E8	
Body length	Body weight	Hypo- physis	Supra- renals	Thyroid	Body weight	Hypo- physis	Supra- renals	Thyroid
mm.	, gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.
194	175.0	0.0068	0.0314	0.0291	188.5	0.0129	0.0502	0.0308
195	178.1	0.0068	0.0317	0.0295	191.9	0.0131	0.0510	0.0312
196	181.2	0.0069	0.0321	0.0299	195.3	0.0134	0.0518	0.0317
197	184.3	0.0070	0.0324	0.0303	198.7	0.0136	0.0526	0.0321
198	187.5	0.0071	0.0328	0.0307	202.2	0.0139	0.0535	0.0325
199	190.8	0.0072	0.0331	0.0311	205.8	0.0142	0.0543	0.0330
200	194.1	0.0073	0.0335	0.0315	209.4	0.0145	0.0552	0.0334
201	197.4	0.0074	0.0338	0.0319	213.1	0.0148	0.0560	0.0339
202	200.8	0.0075	0.0342	0.0323	216.8	0.0150	0.0569	0.0343
203	204.3	0.0076	0.0346	0.0328	220.7	0.0153	0.0579	0.0348
204	207.8	0.0077	0.0350	0.0332	224.5	0.0155	0.0588	0.0352
205	211.4	0.0078	0.0354	0.0336	228.4	0.0159	0.0597	0.0357
206	215.0	0.0079	0.0358	0.0341	232.4	0.0162	0.0606	0.0363
207	218.7	0.0080	0.0362	0.0345	236.5	0.0166	0.0616	0.0367
208	222.5	0.0081	0.0366	0.0350	240.6	0.0169	0.0626	0.0372
209	226.3	0.0082	0.0370	0.0355	344.8	0.0172	0.0636	0.0377
210	230.2	0.0083	0.0374	0.0359	249.1	0.0175	0.0646	0.0382
211	234.1	0.0084	0.0378	0.0364	253.4	0.0179	0.0656	0.0387
212	238.1	0.0086	0.0382	0.0369	257.8	0.0182	0.0667	0.0392
213	242.2	0.0087	0.0387	0.0374	262.3	0.0186	0.0677	0.0398
214	246.3	0.0088	0.0391	0.0379	266.9	0.0189	0.0688	0.0403
215	250.5	0.0089	0.0395	0.0384	271.5	0.0193	0.0699	0.0408
216	254.7	0.0090	0.0400	0.0389	276.2	0.0196	0.0710	0.0414
217	259.1	0.0092	0.0404	0.0394	281.0	0.0200	0.0721	0.0420
218	263.5	0.0093	0.0409	0.0399	285.8	0.0204	0.0733	0.042
219	267.9	0.0094	0.0414	0.0404	290.8	0.0208	0.0744	0.043
220	272.5	0.0095	0.0418	0.0410	295.8	0.0212	0.0756	0.0437
221	277.1	0.0097	0.0423	0.0415	300.9	0.0216	0.0768	0.0443
222	281.8	0.0098	0.0428	0.0421	306.1	0.0220	0.0781	0.0449
223	286.5	0.0099	0.0433	0.0426	311.3	0.0224	0.0793	0.0453
224	291.4	0.0101	0.0438	0.0432	316.7	0.0228	0.0805	0.046
225	296.3	0.0102	0.0443	0.0437	322.1	0.0232	0.0818	0.0467
226	301.3	0.0103	0.0448	0.0443	327.7	0.0237	0.0831	0.0474
227	306.4	0.0105	0.0453	0.0449	333.3	0.0242	0.0845	0.0480
228	311.5	0.0106	0.0458	0.0455	339.0	0.0246	0.0858	0.0486
229	316.8	0.0108	0.0464	0.0461	344.8	0.0250	0.0872	0.0493
230	322.1	0.0109	0.0469	0.0467	350.7	0.0255	0.0885	0.0500

TABLE 71—Concluded

			1.0	DLE 11-C	oncruded			
		MALES				FEMAL	ES	
Body length	Body weight	Hypo- physis	Supra- renals	Thyroid	Body weight	Hypo- physis	Supra- renals	Thyroid
mm.	gms.	gms.	gms.	gms.	gms.	gms.	gms.	gms.
231	327.5	0.0111	0.0474	0.0473	356.7	0.0259	0.0899	0.0507
232	333.0	0.0112	0.0480	0.0480	362.8	0.0264	0.0914	0.0513
233	338.6	0.0114	0.0485	0.0486	369.0	0.0269	0.0928	0.0520
234	344.3	0.0115	0.0491	0.0493	375.3	0.0274	0.0943	0.0527
235	350.0	0.0117	0.0497	0.0499	381.7	0.0279	0.0958	0.0535
236	355.9	0.0118	0.0503	0.0506	388.2	0.0284	0.0973	0.0542
237	361.9	0.0120	0.0509	0.0512	394.9	0.0290	0.0989	0.0549
238	367.9	0.0122	0.0514	0.0519	401.6	0.0295	0.1005	0.0557
239	374.1	0.0123	0.0521	0.0526	408.4	0.0300	0.1021	0.0564
240	380.3	0.0125	0.0527	0.0533	415.4	0.0306	0.1037	0.0572
241	386.6	0.0127	0.0533	0.0540	422.4	0.0311	0.1053	0.0580
242	393.1	0.0129	0.0539	0.0548	429.6	0.0317	0.1070	0.0588
243	399.6	0.0130	0.0546	0.0555	436.9	0.0323	0.1087	0.0596
244	406.3	0.0132	0.0552	0.0562	444.3	0.0329	0.1105	0.0604
245	413.1	0.0134	0.0559	0.0570	451.9	0.0335	0.1122	0.0613
246	419.9	0.0136	0.0565	0.0577	459.5	0.0341	0.1140	0.0621
247	426.9	0.0138	0.0572	0.0585	467.3	0.0347	0.1158	0.0630
248	434.0	0.0140	0.0579	0.0593	475.2	0.0353	0.1177	0.0638
249	441.2	0.0142	0.0586	0.0601	483.3	0.0359	0.1196	0.0647
250	448.5	0.0144	0.0593	0.0609	491.5	0.0366	0.1251	0.0656

TABLE 72

Giving the weight of the thymus in grams—sexes combined—for the first 400 days of life. See Chart 23

AGE IN DAYS	WEIGHT OF THYMUS	AGE IN DAYS	WEIGHT OF THYMUS	AGE IN DAYS	WEIGHT OF THYMUS	AGE IN DAYS	WEIGHT OF
В.	0.008	38	0.114	75	0.283	113	0.250
1	0.008	39	0.118	76	0.285	114	0.249
2	0.010	40	0.123	77	0.286	115	0.247
3	0.012			78	0.288	116	0.246
4	0.015	41	0.128	79	0.289	117	0.245
5	0.017	42	0.133	80	0.290	118	0.244
6	0.018	43	0.139			119	0.243
7	0.020	44	0.144	81	0.290	120	0.242
8	0.021	45	0.149	82	0.291		
9	0.022	46	0.154	83	0.291	121	0.241
10	0.024	47	0.160	84	0.290	122	0.240
		48	0.165	85	0.290	123	0.239
11	0.026	49	0.171	86	0.289	124	0.238
12	0.028	50	0.176	87	0.288	125	0.237
13	0.029	100		88	0.287	126	0.236
14	0.031	51	0.181	89	0.285	127	0.234
15	0.034	52	0.187	90	0.283	128	0.233
16	0.036	53	0.192			129	0.232
17	0.038	54	0.198	91	0.281	130	0.231
18	0.040	55	0.203	92	0.278		0.201
19	0.043	56	0.208	93	0.276	131	0.230
20	0.046	57	0.213	94	0.273	132	0.229
20	0,020	58	0.218	95	0.270	133	0.228
21	0.048	59	0.224	96	0.269	134	0.227
22	0.051	60	0.229	97	0.268	135	0.226
23	0.054			98	0.266	136	0.225
24	0.057	61	0.233	99	0.265	137	0.224
25	0.061	62	0.238	100	0.264	138	0.223
26	0.064	63	0.243	101	0.000	139	0.222
27	0.067	64	0.247	101	0.263	140	0.221
28	0.071	65	0.251	102	0.262	110	0.221
29	0.075	66	0.255	103	0.261	141	0.220
30	0.079	67	0.259	104	0.260	142	0.219
00	0.070	68	0.263	105	0.259	143	0.218
31	0.083	69	0.267	106	0.257	144	0.217
32	0.087	70	0.270	107	0.256	145	0.216
33	0.001	10	0.210	108	0.255	146	0.215
34	0.095	71	0.273	109	0.254	147	0.214
35	0.100	72	0.276	110	0.253	148	0.213
36	0.104	73	0.278	111	0.252	149	0.213
37	0.104	74	0.281	112	0.252	150	0.212
91	0.109	1.1	0.201	112	0.201	150	0.21

TABLE 72—Continued

AGE IN DAYS	WEIGHT OF THYMUS	AGE IN DAYS	WEIGHT OF THYMUS	AGE IN DAYS	WEIGHT OF THYMUS	AGE IN DAYS	WEIGHT II
151	0.210	191	0.172	231	0.138	271	0.108
152	0.209	192	0.171	232	0.137	272	0.107
153	0.208	193	0.170	233	0.136	273	0.106
154	0.207	194	0.169	234	0.135	274	0.106
155	0.206	195	0.168	235	0.134	275	0.105
156	0.205	196	0.167	236	0.134	276	0.104
157	0.204	197	0.166	237	0.133	277	0.104
158	0.203	198	0.165	238	0.132	278	0.103
159	0.202	199	0.164	239	0.131	279	0.102
160	0.201	200	0.164	240	0.130	280	0.102
161	0.200	201	0.163	241	0.130	281	0.101
162	0.199	202	0.162	242	0.129	282	0.100
163	0.198	203	0.161	243	0.128	283	0.099
164	0.197	204	0.160	244	0.127	284	0.099
165	0.196	205	0.159	245	0.127	285	0.098
166	0.195	206	0.158	246	0.126	286	0.098
167	0.194	207	0.157	247	0.125	287	0.097
168	0.193	208	0.157	248	0.124	288	0.096
169	0.192	209	0.156	249	0.124	289	0.096
170	0.191	210	0.155	250	0.123	290	0.095
171	0.190	211	0.154	251	0.122	291	0.094
172	0.189	212	0.153	252	0.121	292	0.094
173	0.188	213	0.152	253	0.121	293	0.093
174	0.187	214	0.152	254	0.120	294	0.092
175	0.186	215	0.151	255	0.119	295	0.092
176	0.185	216	0.150	256	0.118	296	0.091
177	0.184	217	0.149	257	0.118	297	0.090
178	0.183	218	0.148	258	0.117	298	0.090
179	0.183	219	0.147	259	0.116	299	0.089
180	0.182	220	0.147	260	0.115	300	0.089
181	0.181	221	0.146	261	0.115	301	0.088
182	0.180	222	0.145	262	0.114	302	0.087
183	0.179	223	0.144	263	0.113	303	0.087
184	0.178	224	0.143	264	0.113	304	0.086
185	0.177	225	0.142	265	0.112	305	0.085
186	0.176	226	0.142	266	0.111	306	0.085
187	0.175	227	0.141	267	0.110	307	0.084
188	0.174	228	0.140	268	0.110	308	0.084
189	0.173	229	0.139	269	0.109	309	0.083
190	0.172	230	0.138	270	0.108	310	0.082

TABLE 72—Concluded

AGE IN DAYS	WEIGHT OF THYMUS						
311	0.082	334	0.069	357	0.057	379	0.047
312	0.081	335	0.068	358	0.057	380	0.047
313	0.081	336	0.068	359	0.056		
314	0.080	337	0.067	360	0.056	381	0.047
315	0.080	338	0.067			382	0.046
316	0.079	339	0.066	361	0.055	383	0.046
317	0.078	340	0.066	362	0.055	384	0.045
318	0.078			363	0.054	385	0.045
319	0.077	341	0.065	364	0.054	386	0.045
320	0.077	342	0.065	365	0.054	387	0.044
		343	0.064	366	0.053	388	0.044
321	0.076	344	0.064	367	0.053	389	0.043
322	0.075	345	0.063	368	0.052	390	0.043
323	0.075	346	0.063	369	0.052		
324	0.074	347	0.062	370	0.051	391	0.043
325	0.074	348	0.062			392	0.042
326	0.073	349	0.061	371	0.051	393	0.042
327	0.073	350	0.061	372	0.050	394	0.041
328	0.072			373	0.050	395	0.041
329	0.072	351	0.060	374	0.050	396	0.041
330	0.071	352	0.060	375	0.049	397	0.040
		353	0.059	376	0.049	398	0.040
331	0.071	354	0.059	377	0.048	399	0.040
332	0.070	355	0.058	378	0.048	400	0.039
333	0.069	356	0.058				

TABLE 73

Weights of viscera combined plus that of thymus for each sex and at each millimeter of body length. Not charted. The percentage of the body weight represented by the weight of the viscera is however given under 'viscera' in table 50, and chart 5.

		MALES		FEMALES		
Body	Body weight	Weight of viscera	Weight of thymus	Body weight	Weight of viscera	Weight of thymus
n:m.	gms.	gms.	gms.	gms.	gms.	gms.
47	4.9	0.806	0.007	4.7	0.775	0.007
48	4.9	0.808	0.007	4.7	0.779	0.007
49	5.0	0.839	0.007	4.9	0.810	0.007
50	5.1	0.853	0.007	5.0	0.834	0.008
51	5.2	0.873	0.008	5.1	0.854	0.008
52	5.3	0.916	0.008	5.3	0.901	0.008
53	5.4	0.938	0.008	5.5	0.955	0.008
54	5.6	0.991	0.008	5.8	1.046	0.010
55	5.8	1.047	0.010	6.2	1.141	0.012
56	6.1	1.130	0.011	6.5	1.218	0.015
57	6.4	1.218	0.012	6.9	1.318	0.015
58	6.8	1.301	0.015	7.2	1.401	0.016
59	7.1	1.387	0.015	7.6	1.487	0.017
60	7.5	1.486	0.016	8.0	1.573	0.017
61	7.9	1.573	0.016	8.4	1.665	0.018
62	8.2	1.656	0.017	8.7	1.735	0.020
63	8.6	1.751	0.017	9.1	1.825	0.020
64	9.0	1.837	0.018	9.5	1.914	0.020
65	9.4	1.931	0.020	9.9	1.998	0.021
66	9.8	2.026	0.020	10.3	2.114	0.021
67	10.1	2.091	0.021	10.8	2.300	0.021
68	10.6	2.272	0.021	11.2	2.467	0.022
69	11.0	2.441	0.022	11.6	2.622	0.023
70	11.4	2.614	0.022	12.0	2.787	0.024
71	11.8	2.770	0.023	12.5	2.958	0.025
72	12.2	2.911	0.024	12.9	3.093	0.026
73	12.7	3.093	0.025	13.4	3.270	0.026
74	13.1	3.226	0.026	13.9	3.424	0.027
75	13.6	3.396	0.027	14.3	3.554	0.027
76	14.0	3.524	0.028	14.8	3.704	0.028
77	14.5	3.679	0.028	15.3	3.864	0.028
78	15.0	3.842	0.029	15.8	4.001	0.031
79	15.4	3.967	0.031	16.3	4.147	0.032
80	15.9	4.107	0.032	16.8	4.294	0.033

TABLE 73—Continued

		MALES			FEMALES	
Body length	Body weight	Weight of viscera	Weight of thymus	Body weight	Weight of viscera	Weight of thymus
mm.	gms.	gms.	gms.	gms.	gms.	gms.
81	16.4	4.255	0.034	17.3	4.419	0.034
82	16.9	4.393	0.036	17.9	4.584	0.034
83	17.4	4.529	0.038	18.4	4.717	0.035
84	18.0	4.698	0.037	19.0	4.864	0.037
85	18.5	4.834	0.040	19.5	4.996	0.038
86	19.0	4.958	0.041	20.1	5.138	0.040
87	19.6	5.115	0.043	20.7	5.283	0.043
88	20.1	5.239	0.044	21.2	5.413	0.044
89	20.7	5.385	0.046	21.8	5.555	0.046
90	21.3	5.531	0.048	22.4	5.697	0.048
91	21.9	5.679	0.050	23.1	5.840	0.050
92	22.4	5.809	0.052	23.7	5.983	0.052
93	23.0	5.943	0.054	24.3	6.112	0.054
94	23.7	6.102	0.056	25.0	6.266	0.055
95	24.3	6.236	0.057	25.6	6.396	0.057
96	24.9	6.381	0.059	26.3	6.547	0.059
97	25.6	6.528	0.061	27.0	6.687	0.060
98	26.2	6.672	0.063	27.7	6.831	0.061
99	26.9	6.810	0.065	28.4	6.972	0.063
100	27.5	6.942	0.067	29.1	7.112	0.065
101	28.2	7.088	0.070	29.8	7.254	0.067
102	28.9	7.237	0.073	30.5	7.384	0.067
103	29.6	7.372	0.075	31.3	7.537	0.075
104	30.3	7.517	0.078	32.0	7.666	0.079
105	31.1	7.678	0.081	32.8	7.820	0.083
106	31.8	7.824	0.083	33.6	7.960	0.087
107	32.5	7.959	0.086	34.4	8.112	0.091
108	33.3	8.110	0.089	35.2	8.254	0.095
109	34.1	8.268	0.092	36.0	8.395	0.097
110	34.9	8.418	0.095	36.9	8.546	0.099
111	. 35.7	8.566	0.099	37.7	8.690	0.101
112	36.5	8.727	0.104	38.6	8.841	0.105
113	37.3	8.866	0.109	39.5	9.005	0.109
114	38.2	9.037	0.111	40.3	9.134	0.113
115	39.0	9.177	0.113	41.3	9.300	0.117
116	39.9	9.330	0.116	42.2	9.451	0.120
117	40.8	9.493	0.118	43.1	9.595	0.123

TABLE 73—Continued

		MALES			FEMALES	
Body length	Body weight	Weight of viscera	Weight of thymus	Body weight	Weight of viscera	Weight of thymus
mm.	gms.	gms.	gnis.	gms.	gms.	gms.
118	41.6	9.644	0.120	44.1	9.746	0.126
119	42.6	9.810	0.123	45.0	9.888	0.130
120	43.5	9.964	0.127	46.0	10.043	0.133
121	44.4	10.127	0.131	47.0	10.207	0.136
122	45.4	10.294	0.135	48.0	10.360	0.139
123	46.3	10.448	0.139	49.1	10:525	0.144
124	47.3	10.616	0.140	50.1	10.679	0.147
125	48.3	10.794	0.141	51.2	10.832	0.151
126	49.3	10.950	0.142	52.3	10.999	0.154
127	50.4	11.134	0.144	53.4	11.156	0.159
128	51.4	11.290	0.149	54.5	11.320	0.164
129	52.5	11.474	0.154	55.6	11.474	0.167
130	53.6	11.644	0.159	56.8	11.640	0.171
131	54.7	11.827	0.164	58.0	11.808	0.174
132	55.8	12.002	0.167	59.2	11.984	0.178
133	56.9	12.174	0.171	60.4	12.150	0.181
134	58.1	12.373	0.175	61.6	12.306	0.184
135	59.3	12.560	0.178	62.9	12.485	0.187
136	60.5	12.740	0.181	64.2	12.663	0.190
137	61.7	12.936	0.184	65.5	12.829	0.193
138	62.9	13.116	0.187	66.8	13.007	0.196
139	64.1	13.305	0.192	68.1	13.176	0.199
140	65.4	13.509	0.196	69.5	13.356	0.203
141	66.7	13.703	0.200	70.9	13.536	0.206
142	68.0	13.898	0.203	72.3	13.715	0.210
143	69.3	14.093	0.208	73.7	13.898	0.214
144	70.7	14.303	0.211	75.2	14.089	0.218
145	72.1	14.513	0.214	76.7	14.281	0.225
146	73.5	14.723	0.218	78.2	14.464	0.233
147	74.9	14.934	0.220	79.7	14.654	0.236
148	76.3	15.147	0.223	81.3	14.848	0.239
149	77.8	15.374	0.226	82.8	15.038	0.243
150	79.3	15.600	0.229	84.4	15.222	0.247
151	80.8	15.811	0.231	86.1	15.427	0.249
152	82.4	16.039	0.233	87.7	15.612	0.251
153	83.9	16.241	0.236	89.4	15.819	0.252

TABLE 73-Continued

		MALES			FEMALES	
Body length	Body weight	Weight of viscera	Weight of thymus	Body weight	Weight of viscera	Weight of thymus
mm.	gms.	gms.	gms.	gms.	gms.	gms.
154	85.5	16.456	0.239	91.1	16.023	0.253
155	87.1	16.672	0.241	92.9	16.230	0.254
156	88.7	16.877	0.244	94.6	16.435	0.256
157	90.4	17.104	0.247	96.4	16.645	0.262
158	92.1	17.321	0.249	98.3	16.854	0.269
159	93.8	17.537	0.251	100.1	17.062	0.270
160	95.6	17.770	0.253	102.0	17.270	0.273
161	97.3	17.995	0.256	103.9	17.489	0.276
162	99.2	18.227	0.259	105.9	17.710	0.278
163	101.0	18.456	0.262	107.9	17.943	0.280
164	102.8	18.682	0.264	109.9	18.165	0.283
165	104.7	18.912	0.267	111.9	18.376	0.285
166	106.7	19.155	0.270	114.0	18.607	0.286
167	108.6	19.391	0.272	116.1	18.840	0.288
168	110.6	19.638	0.274	118.3	19.073	0.289
169	112.6	19.868	0.276	120.5	19.318	0.290
170	114.7	20.121	0.278	122.7	19.549	0.291
171	116.7	20.363	0.280	125.0	19.784	0.290
172	118.9	20.620	0.282	127.3	20.030	0.289
173	121.0	20.870	0.285	129.6	20.266	0.288
174	123.2	21.127	0.286	132.0	20.522	0.288
175	125.4	21.368	0.288	134.4	20.767	0.287
176	127.7	21.647	0.289	136.8	21.015	0.284
177	130.0	21.905	0.290	139.3	21.273	0.278
178	132.3	22.160	0.291	141.9	21.532	0.273
179	134.6	22.425	0.291	144.4	21.781	0.268
180	137.0	22.693	0.291	147.1	22.062	0.266
181	139.5	22.972	0.290	149.7	22.322	0.264
182	142.0	23.244	0.290	152.4	22.594	0.262
183	144.5	23.521	0.290	155.2	22.867	0.256
184	147.0	23.791	0.287	158.0	23.142	0.251
185	149.6	24.073	0.285	160.8	23.424	0.248
186	152.3	24.367	0.278	163.7	23.700	0.247
187	155.0	24.648	0.274	166.6	23.995	0.245
188	157.7	24.943	0.271	169.6	24.282	0.238
189	160.5	25.246	0.268	172.6	24.579	
190	163.3	25.541	0.266	175.7	24.876	0.232

TABLE 73—Continued

		MALES			FEMALES	
		MALES			FEMALES	
Body length	Body weight	Weight of viscera	Weight of thymus	Body weight	Weight of viscera	Weight of thymu
mm.	gms.	gms.	gms.	gms.	gms.	gms.
191	166.2	25.838	0.264	178.8	25.166	0.230
192	169.1	26.144	0.262	182.0	25.475	0.223
193	172.0	26.450	0.259	185.2	25.778	0.211
194	175.0	26.756	0.256	188.5	26.089	0.190
195	178.1	27.077	0.253	191.9	26.414	0.183
196	181.2	27.396	0.251	195.3	26.736	0.171
197	184.3	27.716	0.249	198.7	27.051	
198	187.5	28.036	0.247	202.2	27.378	
199	190.8	28.370	0.245	205.8	27.716	
200	194.1	28.692	0.241	209.4	28.051	
201	197.4	29.035	0.238	213.1	28.380	
202	200.8	29.379	0.230	216.8	28.731	
203	204.3	29.726	0.226	220.7	29.083	
204	207.8	30.071	0.224	224.5	29.433	
205	211.4	30.418	0.222	228.4	29.795	
206	215.0	30.767	0.220	232.4	30.150	
207	218.7	31.127	0.218	236.5	30.526	
208	222.5	31.499	0.210	240.6	30.893	
209	226.3	31.871	0.205	244.8	31.272	
210	230.2	32.244	0.197	249.1	31.661	
211	234.1	32.616	0.190	253.4	32.042	
212	238.1	33.002	0.183	257.8	32.432	
213	242.2	33.389	0.177	262.3	32.825	
214	246.3	33.784	0.169	266.9	33.230	
215	250.5	34.172	0.150	271.5	33.645	
216	254.7	34.570	0.140	276.2	34.053	
217	259.1	34.982	0.130	281.0	34.470	
218	263.5	35.384	0.124	285.8	34.888	
219	267.9	35.785	0.118	290.8	35.331	
220	272.5	36.219		295.8	35.774	
221	277.1	36.654		300.9	36.198	
222	281.8	37.082		306.1	36.670	
223	286.5	37.507		311.3	37.109	
224	291.4	37.958		316.7	37.568	
225	296.3	38.339		322.1	38.028	
226	301.3	38.861		327.7	38.510	
227	306.4	39.325		333.3	38.982	

WEIGHT OF VISCERA

TABLE 73—Concluded

		1	ADLE 73-Conci	li					
		MALES			FEMALES				
Body length	Body weight	Weight of viscera	Weight of thymus	Body weight	Weight of viscera	Weight of thymus			
mm.	gms.	gms.	gms.	gms.	gms.	gms.			
228	311.5	39.828		339.0	39.476				
229	316.8	40.255		344.8	39.963				
230	322.1	40.723		350.7	40.462				
231	327.5	41.210		356.7	40.972				
232	333.0	41.692		362.8	41.492				
233	338.6	42.194		369.0	42.006				
234	344.3	42.678		375.3	42.531				
235	350.0	43.201		381.7	43.068				
236	355.9	43.718		388.2	43.605				
237	361.9	44.250		394.9	44.168				
238	367.9	44.769		401.6	44.731				
239	374.1	45.301		408.4	45.295				
240	380.3	45.854		415.4	45.882				
241	386.6	46.398		422.4	46.451				
242	393.1	46.957		429.6	47.041				
243	399.6	47.514		436.9	47.655				
244	406.3	48.097		444.3	48.258				
245	413.1	48.678		451.9	48.876				
246	419.9	49.262		459.5	49.506				
247	426.9	49.838		467.3	50.147				
248	434.0	50.456		475.2	50.780				
249	441.2	51.066		483.3	51.446				
250	448.5	51.689		491.5	52.105				

TABLE 74

Giving the percentage of water in the brain and in the spinal cord for each sex, on age.

See Chart 26.

			MALES			FEMALES					
AGE IN DAYS	Body weight gms.	Brain weight gms.	Per cent of water brain	Cord weight gms.	Per cent of water cord	Body weight gms.	Brain weight gms.	Per cent of water brain	Cord weight gms.	Per cent c water cord	
В	4.7	0.217	88.00	0.033	86.75	4.6	0.213	88.00	0.033	86.7	
1	5.5	0.290	87.95	0.038	86.42	5.4	0.269	87.95	0.037	86.4	
2	5.9	0.333	87.90	0.041	86.08	5.8	0.323	87.90	0.041	86.0	
3	6.4	0.395	87.85	0.046	85.74	6.3	0.373	87.85	0.045	85.7	
4	6.9	0.442	87.83	0.050	85.41	6.8	0.421	87.83	0.050	85.4	
5	7.6	0.509	87.79	0.056	85.07	7.5	0.492	87.79	0.056	85.0	
6	8.5	0.581	87.70	0.064	84.73	8.4	0.564	87.70	0.064	84.7	
7	9.5	0.657	87.50	0.072	84.40	9.4	0.645	87.50	0.073	84.4	
8	10.5	0.708	87.30	0.081	84.06	10.4	0.697	87.30	0.082	84.0	
9	11.8	0.840	87.05	0.091	83.73	11.6	0.811	87.05	0.091	83.7	
10	13.5	0.947	86.72	0.104	83.40	13.0	0.909	86.72	0.102	83.4	
11	13.9	0.969	86.26	0.106	82.98	13.7	0.940	86.26	0.107	82.9	
12	14.4	0.991	85.82	0.110	82.57	14.4	0.979	85.82	0.112	82.5	
13	14.9	1.011	85.39	0.114	82.17	15.1	1.003	85.40	0.117	82.1	
14	15.5	1.037	84.97	0.118	81.77	15.8	1.031	84.98	0.122	81.6	
15	16.1	1.057	84.58	0.122	81.39	16.5	1.048	84.59	0.127	81.2	
16	16.7	1.077	84.19	0.126	81.00	17.3	1.079	84.20	0.133	80.8	
17	17.3	1.095	83.82	0.131	80.63	18.1	1.099	83.82	0.138	80.4	
18	18.0	1.112	83.46	0.135	80.26	18.9	1.118	83.47	0.142	80.1	
19	18.7	1.131	83.12	0.139	79.90	19.8	1.140	83.13	0.148	79.7	
20	19.5	1.150	82.80	0.144	79.55	20.7	1.159	82.82	0.154	79.4	
21	20.3	1.169	82.49	0.149	79.21	21.6	1.177	82.51	0.160	79.0	
22	21.1	1.184	82.19	0.154	78.87	22.5	1.195	82.21	0.165	78.6	
23	22.0	1.202	81.91	0.159	78.54	23.4	1.208	81.93	0.170	78.3	
24	22.9	1.219	81.64	0.165	78.22	24.4	1.226	81.66	0.176	78.0	
25	23.9	1.237	81.39	0.169	77.90	25.4	1.241	81.41	0.182	77.6	
26	24.9	1.252	81.15	0.175	77.59	26.5	1.251	81.17	0.187	77.3	
27					77.29						
28		1.282			77.00						
29		1.297	80.53	0.193	76.71		1.297		0.204	76.4	
30	29.2	1.311	80.35	0.198	76.43	30.9	1.310	80.37	0.210	76.1	
31	30.4		80.19		76.16	32.0	1.322	80.21	0.216	75.9	
32	31.6	1.338	80.04		75.90		1.334	80.07	0.221	75.6	
33	32.8	1.351		0.215	75.64		1.346	79.94	0.227	75.4	
34	34.1			0.221	75.39		1.358		0.233	75.1	
35					75.15		1.369		0.239		
36	36.8	1.389	79.60	0.233	74.91	38.3	1.380	79.63	0.245	74.6	

TABLE 74—Continued

				TABL	E 74—Con	-Continued					
			MALES				1	EMALES			
IN DAYS	Body weight gms.	Brain weight gms.	Per cent of water brain	Cord weight gms.	Per cent of water cord	Body weight gms.	Brain weight gms.	Per cent of water Brain	Cord weignt gms.	Per cent of water cord	
37	38.1	1.399	79.52	0.239	74.68	39.6	1.391	79.55	0.250	74.47	
38	39.6	1.411	79.46	0.245	74.46	40.9	1.400	79.49	0.255	74.26	
39	41.0	1.423	79.42	0.251	74.25	42.3	1.411	79.45	0.261	74.06	
40	42.5	1.434	79.39	0.257	74.04	43.7	1.422	79.42	0.267	73.86	
41	44.1	1.446	79.36	0.264	73.95	45.1	1.432	79.39	0.272	73.78	
42	45.7	1.457	79.34	0.269	73.87	46.6	1.441	79.37	0.278	73.72	
43	47.3	1.468	79.32	0.276	73.74	48.1	1.451	79.35	0.284	73.60	
44	48.9	1.478	79.30	0.281	73.62	49.6	1.460	79.33	0.289	73.50	
45	50.6	1.488	79.28	0.288	73.50	51.1	1.468	79.31	0.294	73.39	
46	52.3	1.498	79.26	0.293	73.39	52.7	1.478	79.29	0.300	73.30	
47	54.1	1.507	79.24	0.299	73.28	54.3	1.487	79.27	0.306	73.21	
48	55.9	1.518	79.22	0.305	73.17	55.9	1.495	79.25	0.311	73.12	
49	57.7	1.527	79.21	0.311	73.07	57.5	1.503	79.24	0.316	72.05	
50	59.6	1.537	79.19	0.317	72.97	59.2	1.512	79.23	0.322	72.97	
51	61.5	1.546	79.17	0.323	72.88	60.9	1.520	79.21	0.327	72.88	
52	63.4	1.555	79.15	0.329	72.79	62.6	1.528	79.19	0.332	72.79	
53	65.4	1.563	79.14	0.334	72.69	64.3	1.535	79.18	0.338	72.69	
54	67.4	1.572	79.12	0.340	72.60	66.1	1.543	79.16	0.343	72.60	
55	69.5	1.581	79.10	0.346	72.51	67.9	1.551	79.14	0.348	72.51	
56	71.6	1.589	79.08	0.352	72.43	69.7	1.558	79.12	0.353	72.43	
57	73.7	1.597	79.07	0.358	72.35	71.6	1.565	79.11	0.359	72.35	
58	75.9	1.606	79.05	0.363	72.27	73.4	1.573	79.09	0.364	72.27	
59	78.1	1.614	79.04	0.369	72.19	75.3	1.580	79.08	0.370	72.19	
60	80.3	1.622	79.02	0.375	72.11	77.3	1.587	79.06	0.375	72.11	
61	82.5	1.629	79.00	0.380	72.04	79.2	1.594	79.04	0.380	72.04	
62	84.9	1.637	78.99	0.386	71.97	81.2	1.601	79.02	0.385	71.97	
63	87.2	1.644	78.97	0.391	71.91	83.2	1.607	79.01	0.389	71.91	
64	89.6	1.652	78.96	0.397	71.84	85.2	1.614	78.99	0.394	71.84	
65	92.0	1.659	78.94	0.402	71.77	87.3	1.621	78.98	0.399	71.77	
66	94.5	1.666	78.93	0.407	71.71	89.4	1.627	78.97	0.404	71.72	
67	97.0	1.673	78.92	0.413	71.65	91.5	1.633	78.96	0.409	71.66	
68	99.5	1.681	78.90	0.418	71.60	93.6	1.639	78.94	0.414	71.61	
69	102.1	1.688	78.89	0.424	71.54	95.8	1.645	78.93	0.419	71.54	
70	104.7	1.695	78.88	0.429	71.48	98.0	1.651	78.92	0.424	71.50	
71	107.3	1.702	78.87	0.434	71.43	100.2	1.657	78.91	0.429	71.45	
72	110.0	1.709	78.85	0.439	71.38	102.4	1.663	78.89	0.433	71.41	
73	112.7	1.715	78.84	0.445	71.32	104.7	1.669	78.88	0.438	71.36	
74	115.5	1.722	78.82	0.450	71.27	107.0	1.675	78.86	0.442	71.32	

TABLE 74—Continued

-			MALES	17101.		unaca	F	EMALES		-
AGE			1		_					Per
IN DAYS	Body weight gms.	Brain weight gms.	Per cent of water brain	Cord weight gms.	Per cent of water cord	Body weight gmsr	Brain weight gms.	Per cent of water Brain	Cord weight gms.	cent of water cord
75	118.3	1.729	78.81	0.455	71.22	109.3	1.681	78.85	0.447	71.27
76	121.1	1.735	78.80	0.460	71.18	111.6	1.687	78.84	0.451	71.23
77	124.0	1.741	78.79	0.465	71.13	114.0	1.692	78.83	0.456	71.19
78	126.8	1.746	78.77	0.470	71.09	116.4	1.698	78.82	0.460	71.15
79	129.8	1.752	78.76	0.475	71.04	118.8	1.703	78.81	0.465	71.11
80	132.8	1.758	78.75	0.480	71.00	121.3	1.709	78.80	0.469	71.07
81	134.7	1.762	78.74	0.483	70.96	122.6	1.712	78.79	0.471	71.03
82	136.5	1.765	78.73	0.486	70.92	124.0	1.715	78.78	0.474	71.00
83	138.4	1.769	78.72	0.488	70.89	125.4	1.717	78.77	0.476	70.96
84	140.2	1.772	78.71	0.491	70.85	126.8	1.720	78.76	0.479	70.93
85	142.0	1.776	78.70	0.494	70.81	128.1	1.723	78.75	0.481	70.89
86	143.7	1.779	78.69	0.497	70.78	129.5	1.726	78.74	0.483	70.86
87	145.5	1.782	78.68	0.499	70.74	130.8	1.728	78.73	0.485	70.83
88	147.2	1.785	78.67	0.502	70.71	132.1	1.731	78.72	0.488	70.80
89	148.9	1.788	78.66	0.504	70.67	133.4	1.733	78.71	0.490	70.77
90	150.5	1.791	78.65	0.507	70.64	134.6	1.736	78.70	0.492	70.74
91	152.1	1.794	78.64	0.509	70.61	135.8	1.738	78.69	0.494	70.72
92	153.7	1.797	78.63	0.511	70.58	137.1	1.740	78.68	0.496	70.69
93	155.3	1.799	78.62	0.514	70.56	138.3	1.743	78.67	0.497	70.67
94	156.9	1.802	78.61	0.516	70.53	139.4	1.745	78.66	0.499	70.64
95	158.4	1.805	78.60	0.518	70.50	140.6	1.747	78.65	0.501	70.62
96	160.0	1.807	78.59	0.520	70.48	141.8	1.749	78.64	0.503	70.60
97	161.4	1.810	78.58	0.522	70.45	142.9	1.751	78.63	0.505	70.58
98	162.9	1.812	78.57	0.525	70.43	144.0	1.752	78.62	0.506	70.55
99	164.3	1.815	78.56	0.527	70.40	145.1	1.754	78.61	0.508	70.53
100	165.8	1.817	78.55	0.529	70.38	146.2	1.756	78.60	0.510	70.51
101	167.2	1.819	78.54	0.531	70.36	147.3	1.758	78.59	0.512	70.49
102	168.6	1.821	78.53	0.533	70.34	148.3	1.760	78.58	0.514	
103	170.0	1.824	78.53	0.534	70.32	149.4	1.762	78.58	0.515	70.46
104	171.3	1.826	78.52	0.536	70.30	150.4	1.764	78.57	0.517	70.44
105	172.7	1.828	78.51	0.538	70.28	151.4	1.766	78.56	0.519	
106	174.0	1.830	78.50	0.540	70.26	152.4	1.768	78.55	0.520	
107	175.3	1.832	78.49	0.541	70.25	153.4	1.770		0.522	
108	176.6	1.833	78.48	0.543	70.23	154.4	1.772	78.53	0.523	
109	177.9	1.835	78.47	0.544	70.22	155.3	1.774		0.525	
110	179.1	1.837	78.46	0.546	70.20	156.3	1.775	78.51	0.526	70.36
111	180.4	1.839	78.45	0.547	70.19	157.2	1.776	78.50	0.527	70.35
112		1.841				158.2			0.528	70.34
	2000									

TABLE 74—Continued

			MALES				ъ	EMALES		
IN DAYS	Body weight gms.	Brain weight gms.	Per cent of water brain	Cord weight gms.	Per cent of water cord	Body weight gms.	Brain weight gms.	Per cent of water Brain		Per cent of water cord
113	182.8	1.842	78.44	0.550	70.15	159.1	1.779	78.49	0.530	70.32
114	184.0	1.844	78.43	0.552	70.14	160.0	1.781	78.48	0.531	70.31
115	185.2	1.846	78.42	0.553	70.13	160.9	1.782	78.47	0.532	70.30
116	186.4	1.848	78.41	0.555	70.12	161.8	1.783	78.46	0.533	70.29
117	187.5	1.849	78.40	0.556	70.11	162.6	1.785	78.46	0.535	70.28
118	188.7	1.851	78.40	0.558	70.09	163.5	1.786	78.45	0.536	70.27
119	189.7	1.852	78.39	0.559	70.08	164.3	1.788	78.45	0.538	70.26
120	190.9	1.854	78.38	0.561	70.07	165.2	1.789	78.44	0.539	70.25
121	192.0	1.855	78.37	0.562	70.06	166.0	1.790	78.43	0.540	70.25
122	193.1	1.857	78.37	0.563	70.06	166.8	1.791	78.43	0.541	70.24
123	194.1	1.858	78.36	0.564	70.05	167.6	1.793	78.42	0.542	70.24
124	195.2	1.860	78.36	0.565	70.05	168.4	1.794	78.42	0.543	70.23
125	196.2	1.861	78.35	0.566	70.04	169.2	1.795	78.41	0.544	70.23
126	197.3	1.862	78.34	0.567	70.03	170.0	1.796	78.40	0.545	70.23
127	198.3	1.863	78.33	0.569	70.03	170.7	1.798	78.39	0.546	70.23
128	199.3	1.865	78.33	0.570	70.02	171.5	1.799	78.39	0.546	70.22
129	200.3	1.866	78.32	0.572	70.02	172.3	1.801	78.38	0.547	70.22
130	201.2	1.867	78.31	0.573	70.01	173.0	1.802	78.37	0.548	70.22
131	202.2	1.868	78.30	0.574	70.01	173.7	1.803	78.36	0.549	70.22
132	203.2	1.870	78.30	0.575	70.01	174.5	1.804	78.36	0.550	70.22
133	204.1	1.871	78.29	0.576	70.00	175.2	1.804	78.35	0.551	70.22
134	205.1	1.873	78.29	0.577	70.00	175.9	1.805	78.35	0.552	70.22
135	206.0	1.874	78.28	0.578	70.00	176.2	1.806	78.34	0.553	70.22
136	206.9	1.875	78.27	0.579	70.00	176.5	1.807	78.33	0.554	70.22
137	207.8	1.876	78.26	0.580	70.00	176.9	1.808	78.32	0.555	70.22
138	208.7	1.877	78.26	0.580	70.00	177.6	1.809	78.32	0.555	70.22
139	209.6	1.878	78.25	0.581	70.00	178.3	1.810	78.31	0.556	70.22
140	210.5	1.879	78.24	0.582	70.00	179.9	1.811	78.30	0.557	70.22
141	211.3	1.880	78.24	0.583	70.00	180.6	1.812	78.30	0.558	70.22
142	212.2	1.881	78.23	0.584	70.00	181.2	1.813	78.29	0.559	70.22
143	213.0	1.882	78.23	0.584	70.00	181.8	1.813	78.29	0.559	70.22
144	213.9	1.883	78.22	0.585	70.00	182.5	1.814	78.28	0.560	70.22
145	214.7	1.884	78.22	0.586	70.00	183.1	1.815	78.28	0.561	70.22
146	215.5	1.885	78.21	0.587	70.00	183.7	1.816	78.27	0.562	70.22
147	216.3	1.886	78.21	0.588	70.00	184.3	1.817	78.27	0.562	70.22
148	217.1	1.887	78.20	0.588	70.00	184.9	1.817	78.26	0.563	70.22
149	217.9	1.887		0.589	70.00	185.5	1.818	78.26	0.564	70.22
150	218.7	1.888	78.19	0.590	70.00	186.1	1.819	78.25	0.565	70.22

TABLE 74—Continued

			MALES	11101	11 00	FEMALES					
AGE IN DAYS	Body weight gms.	Brain weight gms .	Per cent of water brain	Cord weight gms.	Per cent of water cord	Body weight gms.	Brain weight gms.	Per cent of water Brain	Cord weight gms.	Per cent of water cord	
151	219.5	1.889	78.19	0.591	70.00	186.7	1.820	78.25	0.565	70.22	
152	220.2	1.890	78.18	0.592	70.00	187.2	1.821	78.24	0.566	70.22	
153	221.0	1.891	78.18	0.592	70.00	187.8	1.821	78.24	0.567	70.22	
154	221.7	1.892	78.17	0.593	70.00	188.4	1.822	78.23	0.568	70.22	
155	222.5	1.893	78.17	0.594	70.00	188.9	1.823	78.23	0.568	70.22	
156	223.2	1.894	78.16	0.595	70.70	189.5	1.824	78.22	0.569	70.22	
157	223.9	1.895	78.16	0.586	70.00	190.0	1.825	78.22	0.570	70.22	
158	224.7	1.896	78.15	0.596	70.00	190.6	1.825	78.21	0.571	70.22	
159	225.3	1.897	78.15	0.597	70.00	191.1	1.826	78.21	0.571	70.22	
160	226.0	1.898	78.14	0.598	70.00	191.6	1.827	78.20	0.572	70.22	
161	226.7	1.899	78.14	0.599	70.00	192.1	1.828	78.20	0.573	70.22	
162	227.4	1.900	78.13	0.600	70.00	192.6	1.829	78.19	0.574	70.22	
163	228.1	1.901	78.13	0.600	70.00	193.2	1.829	78.19	0.574	70.22	
164	228.8	1.902	78.12	0.601	70.00	193.6	1.830	78.18	0.575	70.22	
165	229.4	1.902	78.12	0.602	70.00	194.2	1.831	78.18	0.576	70.22	
166	230.1	1.903	78.12	0.603	70.00	194.6	1.832	78.18	0.576	70.22	
167	230.7	1.903	78.12	0.603	70.00	195.1	1.832	78.18	0.577	70.22	
168	231.4	1.904	78.12	0.604	70.00	195.6	1.833	78.18	0.577	70.22	
169	232.0	1.904	78.12	0.604	70.00	196.1	1.833	78.18	0.578	70.22	
170	232.6	1.905	78.12	0.605	70.00	196.5	1.834	78.18	0.578	70.22	
171	233.3	1.906	78.12	0.605	70.00	197.0	1.834	78.18	0.579	70.22	
172	233.9	1.906	78.12	0.606	70.00	197.5	1.835	78.18	0.579	70.22	
173	234.5	1.907	78.12	0.606	70.00	197.9	1.835	78.18	0.580	70.22	
174	235.1	1.907	78.12	0.607	70.00	198.4	1.836	78.18	0.580	70.22	
175	235.7	1.908	78.12	0.608	70.00	198.8	1.837	78.18	0.581	70.22	
176	236.3	1.909	78.12	0.608	70.00	199.3	1.837	78.18	0.581	70.22	
177	236.9	1.909	78.12	0.609	70.00	199.7	1.838	78.18	0.582	70.22	
178			78.11	0.609				78.17	0.582	70.22	
179			78.11			200.6			0.583	70.22	
180	238.6	1.911	78.11	0.610	69.99	201.0	1.839	78.17	0.583	70.22	
181	239.1	1.912	78.11	0.611	69.99	201.4	1.840	78.17	0.584	70.22	
182	239.7	1.912	78.11	0.612	69.99	201.8		78.17	0.584	70.22	
183	240.2	1.913	78.11	0.612	69.99	202.2	1.841	78.17	0.585	70.22	
184	240.8	1.913	78.11	0.613	69.99	202.6	1.842	78.17	0.585	70.22	
185	241.3	1.914		0.613	69.99	203.0	1.842	78.17	0.586	70.22	
186	241.8	1.915	78.11		69.99	203.4	1.843	78.17	0.586	70.22	
187	242.3		78.11		69.99	203.8	1.843	78.17	0.587	70.22	
188	242.9	1.916	78.11	0.615	69.99	204.2	1.844	78.17	0.587	70.22	

TABLE 74—Continued

8838			MALES				3	EMALES		
IN DAYS	Body weight gms.	Brain weight gms.	Per cent of water brain	Cord weight gms.	Per cent of water cord	Body weight gms.	Brain weight gms.	Per cent of water Brain	Cord weight gms.	Per cent o water cord
189	243.4	1.916	78.11	0.615	69.99	204.6	1.844	78.17	0.588	70.22
190	243.9	1.917	78.11	0.616	69.99	204.9	1.845	78.17	0.588	70.22
191	244.4	1.917	78.11	0.616	69.99	205.3	1.845	78.17	0.588	70.22
192	244.9	1.918	78.11	0.617	69.99	205.7	1.846	78.17	0.589	70.22
193	245.4	1.918	78.11	0.617	69.98	206.0	1.846	78.17	0.589	70.22
194	245.9	1.919	78.11	0.618	69.98	206.4	1.847	78.17	0.589	70.22
195	246.3	1.919	78.11	0.618	69.98	206.7	1.847	78.17	0.590	70.21
196	246.8	1.920	78.11	0.618	69.98	207.1	1.847	78.17	0.590	70.21
197	247.3	1.920	78.10	0.619	69.97	207.4	1.848	78.17	0.591	70.21
198	247.8	1.921	78.10	0.619	69.97	207.8	1.848	78.17	0.591	70.21
199	248.2	1.921	78.10	0.620	69.97	208.1	1.849	78.17	0.591	70.21
200	248.6	1.922	78.10	0.620	69.97	208.4	1.849	78.17	0.592	70.20
201	249.1	1.922	78.10	0.620	69.96	208.8	1.849	78.17	0.592	70.20
202	249.6	1.923	78.10	0.621	69.96	209.1	1.850	78.17	0.592	70.20
203	250.0	1.923	78.10	0.621	69.96	209.4	1.850	78.16	0.593	70.20
204	250.4	1.924	78.10	0.622	69.96	209.8	1.851	78.16	0.593	70.20
205	250.9	1.924	78.10	0.622	69.95	210.1	1.851	78.16	0.593	70.20
206	251.3	1.925	78.10	0.622	69.95	210.4	1.851	78.16	0.594	70.19
207	251.7	1.925	78.10	0.623	69.95	210.7	1.852	78.16	0.594	70.19
208	252.1	1.926	78.10	0.623	69.95	211.0	1.852	78.16	0.594	70.19
209	252.5	1.926	78.09	0.624	69.94	211.3	1.853	78.16	0.595	70.19
210	252.9	1.927	78.09	0.624	69.94	211.6	1.853	78.16	0.595	70.19
211	253.4	1.927	78.09	0.624	69.94	211.9	1.853	78.16	0.596	70.19
212	253.7	1.928	78.09	0.625	69.94	212.2	1.854	78.16	0.596	70.18
213	254.2	1.928	78.09	0.625	69.93	212.5	1.854	78.16	0.596	70.18
214	254.5	1.929	78.09	0.626	69.93	212.8	1.855	78.16	0.597	70.18
215	254.9	1.929	78.09		69.93			78.16		70.18
216	255.3	1.929	78.09	0.626	69.93	213.4	1.855	78.16	0.597	70.18
217	255.7	1.930	78.09	0.627	69.92	213.7	1.856		0.597	70.17
218	256.1	1.930	78.08	0.627	69.92	213.9	1.856	78.15	0.598	70.17
219	256.4	1.930	78.08	0.627	69.92	214.2	1.856		0.598	70.17
220	256.8	1.931	78.08	0.628	69.91	214.4	1.857	78.15	0.598	70.16
221	257.2	1.931	78.08	0.628	69.91	214.7	1.857	78.15	0.598	70.16
222	257.5	1.931	78.08	0.628	69.90	215.0	1.857		0.599	70.16
223	257.9	1.932	78.07	0.629	69.90	215.2	1.858		0.599	70.13
224	258.2	1.932	78.07	0.629	69.90	215.5	1.858		0.599	70.13
225	258.6	1.932	78.07	0.629	69.89	215.8	1.858	78.14	0.599	70.15
226	258.9	1.933	78.07	0.630	69.89	216.0	1.859		0.600	70.14

TABLE 74—Continued

			MALES			FEMALES					
AGE IN DAYS	Body weight gms.	Brain weight gms.	Per cent of water brain	Cord weight gms.	Per cent of water cord	Body weight gms.	Brain weight gms.	Per cent of water Brain	Cord weight gms.	Per cent of water cord	
227	259.2	1.933	78.07	0.630	69.89	216.2	1.859	78.14	0.600	70.14	
228	259.6	1.933	78.06	0.630	69.88	216.5	1.859	78.13	0.600	70.14	
229	259.9	1.933	78.06	0.630	69.88	216.7	1.859	78.13	0.600	70.14	
230	260.2	1.934	78.06	0.631	69.88	217.0	1.860	78.13	0.601	70.13	
231	260.6	1.934	78.06	0.631	69.87	217.2	1.860	78.13	0.601	70.13	
232	260.9	1.934	78.06	0.631	69.87	217.5	1.860	78.13	0.601	70.13	
233	261.2	1.935	78.05	0.632	69.87	217.7	1.861	78.12	0.601	70.12	
234	261.5	1.935	78.05	0.632	69.86	217.9	1.861	78.12	0.602	70.12	
235	261.9	1.935	78.05	0.632	69.86	218.1	1.861	78.12	0.602	70.12	
236	262.1	1.936	78.05	0.633	69.85	218.3	1.862	78.12	0.602	70.11	
237	262.4	1.936	78.05	0.633	69.85	218.6	1.862	78.12	0.602	70.11	
238	262.8	1.936	78.04	0.633	69.85	218.8	1.862	78.11	0.603	70.11	
239	263.0	1.937	78.04	0.634	69.84	219.0	1.863	78.11	0.603	70.10	
240	263.3	1.937	78.04	0.634	69.84	219.2	1.863	78.11	0.603	70.10	
241	263.6	1.937	78.04	0.634	69.84	219.4	1.863	78.11	0.603	70.10	
242	263.9	1.938	78.03	0.634	69.83	219.6	1.863	78.10	0.603	70.09	
243	264.2	1.938	78.03	0.635	69.83	219.8	1.863	78.10	0.604	70.09	
244	264.5	1.938	78.03	0.635	69.82	220.0	1.864	78.10	0.604	70.08	
245	264.8	1.938	78.03	0.635	69.82	220.3	1.864	78.10	0.604	70.08	
246	265.0	1.939	78.02	0.635	69.81	220.4	1.864	78.09	0.604	70.07	
247	265.3	1.939	78.02	0.636	69.81	220.6	1.864	78.09	0.604	70.07	
248	265.6	1.939	78.02	0.636	69.80	220.8	1.864	78.09	0.605	70.06	
249	265.8	1.940	78.01	0.636	69.80	221.0	1.864	78.08	0.605	70.06	
250	266.1	1.940	78.01	0.636	69.79	221.2	1.865	78.08	0.605	70.05	
251	266.3	1.940	78.01	0.637	69.79	221.4	1.865	78.08	0.605	70.05	
252	266.6	1.940	78.01	0.637	69.78	221.6	1.865	78.08	0.605	70.04	
253	266.8	1.941	78.00	0.637	69.78	221.7	1.865	78.07	0.606	70.04	
254	267.1	1.941	78.00	0.637	69.77	221.9	1.865	78.07	0.606	70.03	
255	267.3	1.941	78.00	0.638	69.77	222.1	1.865	78.07	0.606	70.03	
256	267.6	1.941	78.00	0.638	69.76	222.3	1.866	78.07	0.606	70.02	
257	267.8	1.942	77.99	0.638	69.76	222.4	1.866	78.06	0.606	70.02	
258	268.0	1.942	77.99	0.638	69.75	222.6	1.866	78.06	0.607	70.01	
259	268.3	1.942	77.99	0.639	69.75	222.8	1.866		0.607	70.01	
260	268.5	1.943	77.98	0.639	69.74	223.0	1.866	78.05	0.607	70.00	
261	268.7	1.943	77.98	0.639	69.74	223.1	1.866	78.05	0.607	70.00	
262	269.0	1.943	77.98	0.639	69.73	223.3	1.867		0.607	69.99	
263	269.2	1.943	77.98	0.640	69.73	223.4	1.867	78.05	0.608	69.99	
264	269.4	1.944	77.97	0.640	69.72	223.6	1.867	78.04	0.608	69.98	

TABLE 74—Continued

			MALES			FEMALES					
AGE IN DAYS	Body weight gms.	Brain weight gms.	Per cent of water brain	Cord weight gms.	Per cent of water cord	Body weight gms.	Brain weight gms.	Per cent of water Brain	Cord weight gms.	Per cent of water cord	
265	269.6	1.944	77.97	0.640	69.72	223.7	1.867	78.04	0.608	69.98	
266	269.8	1.944	77.97	0.640	69.72	223.9	1.867	78.04	0.608	69.98	
267	270.0	1.944	77.96	0.640	69.71	224.0	1.867	78.03	0.608	69.97	
268	270.2	1.944	77.96	0.640	69.71	224.2	1.867	78.03	0.608	69.97	
269	270.5	1.945	77.96	0.640	69.70	224.3	1.867	78.03	0.608	69.96	
270	270.7	1.945	77.95	0.641	69.70	224.5	1.868	78.02	0.609	69.96	
271	270.9	1.945	77.95	0.641	69.69	224.6	1.868	78.02	0.609	69.95	
272	271.1	1.945	77.94	0.641	69.69	224.8	1.868	78.02	0.609	69.95	
273	271.3	1.945	77.94	0.641	69.68	224.9	1.868	78.01	0.609	69.94	
274	271.5	1.945	77.94	0.641	69.68	225.0	1.868	78.01	0.609	69.94	
275	271.6	1.946	77.93	0.641	69.67	225.1	1.868	78.01	0.609	69.94	
276	271.8	1.946	77.93	0.641	69.67	225.3	1.868	78.00	0.609	69.93	
277	272.0	1.946	77.93	0.641	69.66	225.4	1.868	78.00	0.609	69.93	
278	272.2	1.946	77.92	0.642	69.66	225.5	1.869	78.00	0.610	69.92	
279	272.3	1.946	77.92	0.642	69.65	225.7	1.869	78.00	0.610	69.92	
280	272.5	1.946	77.92	0.642	69.65	225.8	1.869	77.99	0.610	69.91	
281	272.7	1.947	77.91	0.642	69.64	225.9	1.869	77.99	0.610	69.91	
282	272.8	1.947	77.91	0.642	69.64	226.0	1.869	77.99	0.610	69.91	
283	273.0	1.947	77.91	0.642	69.63	226.1	1.869	77.98	0.610	69.90	
284	273.2	1.947	77.90	0.642	69.63	226.2	1.869	77.98	0.610	69.90	
285	273.4	1.947	77.90	0.642	69.62	226.4	1.869	77.98	0.610	69.89	
286	273.5	1.947	77.89	0.643	69.62	226.5	1.870	77.97	0.611	69.89	
287	273.7	1.948	77.89	0.643	69.61	226.6	1.870	77.97	0.611	69.88	
288	273.9	1.948	77.89	0.643	69.61	226.7	1.870	77.97	0.611	69.88	
289	274.0	1.948	77.88	0.643	69.60	226.8	1.870	77.96	0.611	69.87	
290	274.2	1.948	77.88	0.643	69.60	226.9	1.870	77.96	0.611	69.87	
291	274.3	1.948	77.88	0.643	69.59			77.96	0.611	69.86	
292	274.5	1.948	77.87	0.643	69.59	227.1	1.870	77.95	0.611	69.86	
293	274.6	1.948	77.87	0.643	69.58	227.2	1.870	77.95	0.611	69.85	
294	274.7	1.948	77.86	0.643	69.58	227.3	1.870	77.94	0.611	69.85	
295	274.9	1.948	77.86	0.644	69.57	227.4	1.870	77.94	0.611	69.84	
296	275.0	1.948	77.86	0.644	69.56	227.5	1.870	77.94	0.611	69.84	
297	275.2	1.949	77.85	0.644		227.6	1.871	77.93	0.612	69.83	
298	275.3	1.949			.69.55	227.7	1.871	77.93	0.612	69.83	
299	275.4	1.949	77.84	0.644	69.55	227.8	1.871	77.92	0.612	69.82	
300	275.5	1.949	77.84	0.644	69.54	227.9	1.871	77.92	0.612	69.82	
301	275.7	1.949	77.84	0.644	69.53	228.0	1.871	77.92	0.612	69.81	
302	275.8	1.949	77.83	0.644	69.53	228.0	1.871	77.91	0.612	68.81	

TABLE 74—Continued

7020			MALES			FEMALES				
IN DAYS	Body weight gms.	Brain weight gms.	Per cent of water brain	Cord weight gms.	Per cent of water cord	Body weight gms.	Brain weight gms.	Per cent of water Brain		Per cent o water cord
303	275.9	1.949	77.83	0.645	69.52	228.1	1.871	77.91	0.612	69.80
304	276.1	1.949	77.82	0.645	69.52	228.2	1.871	77.90	0.612	69.80
305	276.2	1.949	77.82	0.645	69.51	228.3	1.871	77.90	0.612	69.79
306	276.3	1.949	77.82	0.645	69.50	228.3	1.871	77.90	0.612	69.79
307	276.4	1.949	77.81	0.645	69.50	228.4	1.871	77.89	0.612	69.78
308	276.5	1.949	77.81	0.645	69.49	228.5	1.871	77.89	0.612	69.78
309	276.6	1.950	77.80	0.645	69.49	228.6	1.872	77.88	0.613	69.77
310	276.7	1.950	77.80	0.645	69.48	228.7	1.872	77.88	0.613	69.77
311	276.9	1.950	77.80	0.646	69.47	228.7	1.872	77.88	0.613	69.76
312	277.0	1.950	77.79	0.646	69.47	228.8	1.872	77.87	0.613	69.76
313	277.0	1.950	77.79	0.646	69.46	228.8	1.872	77.87	0.613	69.75
314	277.1	1.950	77.78	0.646	69.46	228.9	1.872	77.86	0.613	69.75
315	277.2	1.950	77.78	0.646	69.45	229.0	1.872	77.86	0.613	69.74
316	277.3	1.950	77.77	0.646	69.44	229.0	1.872	77.85	0.613	69.73
317	277.5	1.950	77.77	0.646	69.44	229.1	1.872	77.85	0.613	69.73
318	277.5	1.950	77.76	0.646	69.43	229.1	1.872	77.84	0.613	69.72
319	277.6	1.950	77.76	0.646	69.43	229.2	1.872	77.84	0.613	69.72
320	277.7	1.950	77.75	0.646	69.42	229.3	1.872	77.83	0.613	69.71
321	277.8	1.950	77.75	0.646	69.41	229.3	1.872	77.83	0.613	69.71
322	277.9	1.951	77.74	0.647	69.41	229.4	1.873	77.82	0.614	69.70
323	278.0	1.951	77.74	0.647	69.40	229.4	1.873	77.82	0.614	69.70
324	278.0	1.951	77.73	0.647	69.40	229.5	1.873	77.81	0.614	69.69
325	278.1	1.951	77.73	0.647	69.39	229.5	1.873	77.81	0.614	69.68
326	278.2	1.951	77.72	0.647	69.38	229.6	1.873	77.80	0.614	69.68
327	278.3	1.951	77.72	0.647	69.38	229.6	1.873	77.80	0.614	69.67
328	278.4	1.951	77.71	0.647	69.37	229.7	1.873	77.79	0.614	69.67
329	278.4	1.951	77.71	0.647	69.37	229.7	1.873	77.79	0.614	69.66
330	278.5	1.951	77.70	0.647	69.36	229.8	1.873	77.78	0.614	69.66
331	278.6	1.951		0.647	69.35	229.8	1.873	77.78	0.614	69.65
332	278.6	1.951		0.647	69.35	229.8	1.873	77.77	0.614	69.64
333	278.7	1.951	77.69	0.647	69.34	229.9	1.873	77.77	0.614	69.64
334	278.7	1.952	77.68	0.648	69.34	229.9	1.874	77.76	0.615	69.63
335	278.8	1.952	77.68	0.648	69.33	229.9	1.874	77.76	0.615	69.63
336	278.9	1.952	77.67	0.648	69.32	230.0	1.874	77.75	0.615	69.62
337	278.9	1.952	77.67	0.648	69.32	230.0	1.874	77.75	0.615	69.62
338	279.0	1.952	77.66	0.648	69.31	230.0	1.874	77.74	0.615	69.61
339	279.0	1.952	77.66	0.648	69.31		1.874		0.615	69.61
340	279.1	1.952	77.65	0.648			1.874		0.615	69.60

TABLE 74—Concluded

			MALES				P	PEMALES		
AGE IN DAYS	Body weight gms.	Brain weight gms.	Per cent of water brain	Cord weight gms.	Per cent of water cord	Body weight gms.	Brain weight gms.	Per cent of water brain	Cord weight gms.	Per cent o water cord
341	279.2	1.952	77.64	0.648	69.29	230.1	1.874	77.72	0.615	69.59
342	279.2	1.952	77.64	0.648	69.29	230.1	1.874	77.72	0.615	69.59
343	279.3	1.952	77.63	0.648	69.28	230.2	1.874	77.71	0.615	69.58
344	279.3	1.952	77.63	0.648	69.27	230.2	1.874	77.71	0.615	69.57
345	279.3	1.952	77.62	0.648	69.27	230.2	1.874	77.70	0.615	69.57
346	279.4	1.952	77.61	0.648	69.26	230.3	1.874	77.69	0.615	69.56
347	279.4	1.953	77.61	0.648	69.25	230.3	1.874	77.69	0.615	69.56
348	279.5	1.953	77.60	0.648	69.25	230.3	1.874	77.68	0.615	69.53
349	279.5	1.953	77.60	0.648	69.24	230.3	1.874	77.68	0.615	69.54
350	279.6	1.953	77.59	0.648	69.23	230.3	1.874	77.67	0.615	69.5
351	279.6	1.953	67.58	0.648	69.23	230.3	1.874	77.66	0.615	69.53
352	279.6	1.953	77.58	0.648	69.22	230.3	1.874	77.66	0.615	69.52
353	279.7	1.953	77.57	0.649	69.21	230.4	1.875	77.65	0.616	69.52
354	279.7	1.953	77.57	0.649	69.20	230.4	1.875	77.65	0.616	69.51
355	279.7	1.953	77.56	0.649	69.20	230.4	1.875	77.64	0.616	69.50
356	279.8	1.953	77.55	0.649	69.19	230.4	1.875	77.63	0.616	69.50
357	279.8	1.953	77.55	0.649	69.18	230.4	1.875	77.63	0.616	69.49
358	279.8	1.953	77.54	0.649	69.18	230.4	1.875	77.62	0.616	69.48
359	279.8	1.954	77.54	0.649	69.17	230.4	1.875	77.62	0.616	69.48
360	279.8	1.954	77.53	0.649	69.16	230.4	1.875	77.61	0.616	69.47
361	279.8	1.954	77.52	0.649	69.16	230.4	1.875	77.60	0.616	69.47
362	279.9	1.954	77.52	0.649	69.15	230.4	1.875	77.60	0.616	69.46
363	279.9	1.954	77.51	0.649	69.14	230.4	1.875	77.59	0.616	69.43
364	279.9	1.954	77.51	0.649	69.14	230.4	1.875	77.59	0.616	69.43
365	279.9	1.954	77.50	0.649	69.13	230.4	1.875	77.58	0.616	69.4

12. Formulas. Formulas for computing the length or weight of the body and of its several parts, systems or organs, also for expressing the values of other characters.

The formulas for the Albino—Group I— are given first, then those for the Norway—Group II. In Group I there are two divisions. The first division comprises the formulas based on size (body length and body weight). The second division comprises the formulas based on age. These formulas have been kept simple in order to facilitate their use. This condition has made it sometimes necessary to have different formulas for the different parts of the same series of data, but this was deemed more desirable than a reduction in the number of the formulas at the price of greater complexity.

After the formula there follows in parenthesis the number by which it is designated in the text, and every formula, whether it be general or subsidiary, is thus numbered, each subsidiary formula carrying the number of the general formula to which it is related, followed by a distinguishing letter. A catalog of the formulas, given in detail later, is here presented.

CATALOG OF FORMULAS

GROUP I. ALBINOS

First division: Formulas based on size

Body length on body weight (1). Body weight on body length (2), (2 a), (2 b).

Body weight on brain weight (3).

Tail length on body length (4), (5). Brain weight on body weight (6), (7).

Cranial capacity on body weight (8), (9), (10).

Spinal cord weight on body weight (11).

Diameters of ganglion cell and nucleus (12), (12 a).

Weight of both eyeballs on body weight (13).

Weight of heart on body weight (14).

Weight of both kidneys on body weight (15).

Weight of liver on body weight (16).

Weight of spleen on body weight (17).

Weight of both lungs on body weight (18).

Volume of blood on body weight (19), (19 a), (19 b).

Weight of blood on body weight (20), (20 a), (20 b).

Weight of alimentary tract on body weight (21).

Weight of both testes on body weight (22), (23), (24). Weight of both ovaries on body weight (25), (26), (27). Weight of hypophysis on body weight (28), (29). Weight of both suprarenals on body weight (30), (31). Weight of thyroid on body weight (32). Weight of nitrogen on body weight (33).

Second division: Formulas based on age in days

Body weight on age (34), (35), (36), (37).

Weight of thymus on age (38), (39).

Percentage of water in brain—on age (40), (41), (42), (42 a).

Percentage of water in spinal cord—on age (43), (44), (45), (45 a), (45 b), (45 c), (45 d).

GROUP II. NORWAYS

First division: Formulas based on size

Body length on body weight (46).
Body weight on body length (47), (48).
Body weight Norway on body weight Albino (49).
Tail length on body length (50), (51).
Brain weight on body weight (52).
Cranial capacity on body weight (53).
Spinal cord weight on body weight (54).
Spinal cord weight on brain weight (55).

GROUP I. ALBINOS

FIRST DIVISION: FORMULAS BASED ON SIZE

BODY LENGTH ON BODY WEIGHT, (DONALDSON, '09)

 $Body\ length\ (sexes\ combined) = 143\ log\ (Bd.wt. + 15) - 134\ \ (1)$

A study of tables 1 and 2 in the investigations by Donaldson '09 shows that for a given body weight the body length of the male is about 2.2 per cent greater than that of the female. If then the value found by this formula for any body weight is increased by 1.1 per cent of itself the sum obtained represents the body length for the male. If on the contrary, the value found is decreased by 1.1 per cent of itself, the difference obtained represents the body length for the corresponding female.

BODY WEIGHT ON BODY LENGTH (DONALDSON, '09)

By transposing formula (1) we obtain

Body weight (sexes combined) =
$$10^{\frac{Bd.l.+134}{143}} - 15$$
 (2)

As the body length for a given body weight is for the male 1.1 per cent above the value in (2) and for the female 1.1 per cent below the value in (2), two new formulas have been made for the male and female respectively—thus

$$Body\ weight: -male = 10^{\frac{(100\ Bd.\ l.-1.1\ Bd.\ l.)+13400}{14300}} - 15$$
 (2a)

$$Body\ weight:-female=10^{\frac{(100\ Bd.\ l.+1.1\ Bd.\ l.)+13400}{14300}}-15 \hspace{1.5cm} (2b)$$

By use of formulas (2a) and (2b) the body weights corresponding to body lengths from 50–250 mm have been computed for each sex and the values obtained are those entered in the accompanying tables.

To illustrate the procedure with a formula of this sort the following example is given.

To compute the body weight for a body length of 150 mm. (male) by the following formula (2a).

Body weight (male) =
$$10^{\frac{(100 \, Bd. \, l. - 1.1 \, Bd. \, l.) + 13400}{14300}} - 15$$

Transpose 15 from right hand side to the left and take the logarithm of both sides. We have

$$log (Bd. wt. +15) = log 10 \times \frac{(100 \times 150 - 1.1 \times 150) + 13400}{14300}$$
$$1 \times \frac{15000 - 165 + 13400}{14300} = 1.9745$$

Thus 1.9745 is equivalent to the logarithm of body weight plus 15. Therefore body weight + 15 = 94.3 (anti-logarithm of 1.9745). Finally, body weight = 94.3 - 15 = 79.3 grams.

The above procedure is that to be followed with other formulas of the same type.

BODY WEIGHT ON BRAIN WEIGHT (DONALDSON, '08)

Body weight (sexes combined) =
$$8.7 + 10^{\frac{Br. wt. -0.554}{0.569}}$$
 (3)

Tail Length on Body Length. (Hatai, ms '14.)

$$Tail\ length:\ male = 0.852\ Bd.\ l. + 38.8\ (log\ Bd.\ l.) - 90.5$$
 (4)

$$Tail\ length:-female = 0.874\ Bd.\ l. + 43.2\ (log\ Bd.\ l) - 98.1\ (5)$$

Formulas (4) and (5) were used for table 68.

BRAIN WEIGHT ON BODY WEIGHT. (HATAI, '09, p. 172)

For the brain weight of sexes combined, the following formulas have been obtained:—

Brain weight (sexes combined) =
$$1.56 \log (Bd. wt.) - 0.87$$
 (6)
 $[5 < Bd. wt. < 10 gms.]$

Brain weight (sexes combined) =

$$0.569 log (Bd. wt. - 8.7) + .554$$
 (7)

[Bd. $wt. > 10 \ gms.$]

For a given body weight the average brain weight in the male was found to be 1.5 per cent more than in the female, hence the determinations of brain weight on body weight by formulas (6) and (7) give final values which must be increased by 0.75 per cent to represent the male brain and decreased by 0.75 per cent to represent the female brain weight. By using this procedure the data on brain weight given in table 68 were obtained.

CRANIAL CAPACITY ON BODY WEIGHT. (HATAI, '07 c)

Cranial capacity represented by the weight of the shot contained is given by

Cranial capacity (shot wt.) =
$$0.0072 \times (Bd. wt. male) + 9.349$$
 (8)

To reduce the shot weight to brain weight in the male, the value obtained is to be divided by 5.98.

The corresponding formula for the female is

 $Cranial\ capacity\ (shot\ wt.) =$

$$0.0251 \times (Bd. \ wt. \ female) + 6.168$$
 (9)

To reduce the shot weight to brain weight in the female, the value obtained is to be divided by 6.009.

For the cranial capacity expressed in cc. Donaldson ('12), the formula for sexes combined is

Cranial capacity in cc. =

$$1.02 \log Bd. wt. -0.00027 Bd. wt. -0.596$$
 (10) $[80 < Bd. wt. < 300]$

SPINAL CORD WEIGHT ON BODY WEIGHT (DONALDSON, '09)

Spinal cord wt. (sexes combined) =

$$0.585 \log (Bd. wt. + 21) - 0.795$$
 (11)

In the female the spinal cord is about 2 per cent heavier than in the male, therefore when using formula (11) the values obtained require to be increased by 1 per cent to represent the weight of the spinal cord in the female and to be diminished by 1 per cent to represent its weight in the male. By using this procedure, the data on the weights of the spinal cord in table 68 have been obtained.

DIAMETER OF SECOND CERVICAL SPINAL GANGLION CELL NUCLEUS ON DIAMETER OF CELL BODY (HATAI, '07b)

Correlation between diameter of cell body and diameter of nucleus in μ – in spinal ganglion cells of second cervical nerve.

Diameter of nucleus in $\mu =$

$$12.2939 \left\{ 1.0252 + 0.3564 \left(\frac{x}{l} \right) - 0.0758 \left(\frac{x}{l} \right)^2 \right\}$$
 (12)

where x is the diameter of the cell in μ and l is a half range of the variates.

As the value of 1 is 10, the formula (12) may be transformed by a series of steps here omitted, to read

$$D \ n = 12.6 + 4.3 \left\{ \frac{D \ c \ b - 29}{20} \right\} - 0.9 \left\{ \frac{D \ c \ b - 29}{20} \right\}^{2} \ (12a)$$

Where D n = Diameter of nucleus in μ and D c b = Diameter of cell body in μ . See table 31.

Weight of Both Eyeballs on Body Weight. (Hatai, '13, p. 112)

Weight of both eyeballs (sexes combined) = $0.000428 \ Bd. \ wt. + 0.098 \ log \ Bd. \ wt. - 0.041 \tag{13}$

Formula (13) was used for table 68.

Weight of Heart on Body Weight (Hatai, '13)

Weight of heart (sexes combined) =

$$0.0026 (Bd. wt. + 14) + 0.249 log (Bd. wt. + 14) - 0.336$$
 (14)

Formula (14) was used for table 69.

WEIGHT OF BOTH KIDNEYS ON BODY WEIGHT (HATAI, '13)

Weight of both kidneys (sexes combined) =

$$0.00718 (Bd. wt. - 3) + 0.132 log (Bd. wt. - 3) - 0.009$$
 (15)

Formula (15) was used for table 69.

Weight of Liver on Body Weight (Hatai, '13)

Weight of liver (sexes combined) =

$$0.0303 (Bd. wt. + 5) + 3.340 log (Bd. wt. + 5) - 3.896$$
 (16)
 $[Bd. wt. > 10]$

Formula (16) was used for obtaining the values given in table 69 for body weights of 10 grams or above. For body weights below 10 grams the weights have been determined by graphic interpolation—using the crude records as a basis.

Weight of Spleen on Body Weight (Hatai, '13)

Weight of spleen (sexes combined) =

$$0.00245 \, Bd. \, wt. + 0.0301 \, log \, (Bd. \, wt.) - 0.025$$
 (17)

Formula (17) was used for table 69.

Weight of Both Lungs on Body Weight (Hatai, '13)

Weight of both lungs (sexes combined) =

$$0.00471 (Bd. wt. + 2) + 0.122 log (Bd. wt. + 2) - 0.056 (18)$$

Formula (18) was used for table 70.

VOLUME OF THE BLOOD ON BODY WEIGHT (CHISOLM, '11) AND HATAI (MS '14)

Blood volume (sexes combined) =
$$\frac{Bd.\ wt.^{0.9}}{10.1}$$
 = 0.099 Bd. wt.^{0.9} (19)

 $[5 < Bd. \ wt. < 150]$

 $Blood\ volume\ (males) =$

$$0.099 \ Bd. \ wt.^{0.9} - .03 \ (.099 \ Bd. \ wt.)^{0.9}$$
 (19a)
= $0.09603 \ Bd. \ wt.^{0.9}$
[150 < $Bd. \ wt.$ < 350]

Blood volumes (females) =

$$0.099 Bd. wt.^{0.9} + .06 (.099 Bd. wt.)^{0.9}$$
 (19b)
= $0.10494 Bd. wt.^{0.9}$
[$150 \le Bd. wt. \le 350$]

By using the factor 1.056 for the specific gravity of the blood corresponding formulas for the blood weight on body weight have been obtained as follows: Hatai (MS '14).

Blood weight (sexes combined) =

$$0.099 \, Bd. \, wt.^{0.9} \times 1.056 \, or = 0.1045 \, Bd. \, wt.^{0.9}$$
 (20)
 $[5 < Bd. \, wt. < 150]$

 $Blood\ weight\ (males) =$

$$0.1045 \, Bd. \, wt.^{0.9} - .03 \, (0.1045 \, Bd. \, wt.)^{0.9}$$
 (20a)
= $0.101365 \, Bd. \, wt.^{0.9}$
[$150 < Bd. \, wt. < 350$]

 $Blood\ weight\ (females) =$

$$0.1045 \, Bd. \, wt.^{0.9} + 0.06 \, (0.1045 \, Bd. \, wt.^{0.9})$$
 (20b)
= $0.11077 \, Bd. \, wt.^{0.9}$
(150 < $Bd. \, wt. < 350$)

These formulas (20), (20 a) and (20 b) for blood weight have been used for table 70.

WEIGHT OF ALIMENTARY TRACT ON BODY WEIGHT (HATAI, '13)

Weight of alimentary tract (sexes combined) =

$$0.0245 \, Bd. \, wt. + 4.720 \, log \, (Bd. \, wt. + 7) - 5.753$$
 (21)

Formula (21) was used for table 70.

WEIGHT OF BOTH TESTES ON BODY WEIGHT (HATAI, '13)

$$Wt. of testes = 0.022 - 0.00992 \ Bd. wt. + 0.00127 \ Bd. wt.^2$$
 (22)
 $[4 < Bd. wt. < 10]$

$$= 0.043 - 0.000966 Bd. wt. + 0.000163 Bd. wt.^{2}$$

$$[10 < Bd. wt. < 80]$$
(23)

$$= 2.910 \log Bd. wt. - 4.520$$

$$[Bd. wt. > 80]$$
(24)

For the weight of the testes for body weights of 4–10 grams, the values were obtained by formula (22), while formulas (23) and (24) were used for obtaining the values for body weights of 10 grams or over. Formulas (22) (23) and (24) were used for table 70.

WEIGHT OF BOTH OVARIES ON BODY WEIGHT (HATAI, '13)

Weight of both ovaries =

$$= 0.00781 \ log. \ Bd. \ wt. -0.0047$$
 (25)

(Phase 1) [Bd. wt. < 65]

$$= 0.0425 - 0.00121 Bd. wt. + 0.0000108 Bd. wt.^{2}$$
 (26)

(Phase 2) [65 < Bd. wt. < 110]

$$= 0.007 \log. (Bd. wt. - 105) + 0.0352$$
 (27)

 $(Phase \ 3)$ [Bd. wt. > 110]

Formulas (25) (26) (27) were used for table 70.

Weight of Hypophysis on Body Weight (Hatai, '13)

In the case of the hypophysis a separate formula for each sex is required.

Weight of hypophysis (male) =

$$0.0000257\ (Bd.\ wt.+\ 3) + 0.0014\ log\ (Bd.\ wt.+\ 3) - 0.00097\ (28)$$

Formula (28) is also used for the female up to 50 gms. in body weight then

Weight of hypophysis (female) =

$$0.00205 + 0.000081 \, Bd. \, wt. - 0.00196 \, log \, (Bd. \, wt.)$$
 (29)
 $[Bd. \, wt. > 50]$

Formulas (28) and (29) were used for table 71 in accordance with the restrictions indicated.

Weight of Both Suprarenals on Body Weight (Hatai, '13)

In the case of the suprarenals a separate formula for each sex is required.

Weight of both suprarenals (male) =

$$0.0000855\ (Bd.\ wt.+3) + 0.0113\ log\ (Bd.\ wt.+3) - 0.0093\ (30)$$

Formula (30) is also used for the female up to 30 gms. in body weight, then

Weight of both suprarenals (female) =

$$0.00023 \, Bd. \, wt. + 0.00388 \, log \, (Bd. \, wt.) - 0.002$$
 (31)
 $[Bd. \, wt. > 30]$

Formulas (30) and (31) were used for table 71 in accordance with the restrictions indicated.

Weight of Thyroid on Body Weight (Hatai, '13)

Weight of thyroid (sexes combined) =

$$0.0000973 (Bd. wt. + 27) + 0.0139 log (Bd. wt. + 27) - 0.0226 (32)$$

Formula (32) was used for table 71.

Weight of Nitrogen on Body Weight (Hatai, '05)

To determine the amount of nitrogen eliminated by the rat during twenty-four hours at different body weights. Ration: Uneeda biscuit and water only—Chicago colony.

$$N = 10^{\frac{233 + (3 \times \log Bd. \ wt.)}{4}} \text{ or log } N = \frac{233 + (3 \times \log Bd. \ wt.)}{4}$$
(33)

where N = total nitrogen in milligrams and Bd. wt. = body weight in grams.

Formula 33 is based on the data in table 42.

GROUP I. ALBINOS

SECOND DIVISION: FORMULAS BASED ON AGE

BODY WEIGHT ON AGE FROM 10-365 DAYS, HATAI (MS '14)

The formulas (34) (35) (36) (37) apply only to the series of data published by Donaldson, Dunn and Watson, ('06.)

Body weight on age in days—males =

$$11.199 + 0.0475 Age + 0.0184 Age^2$$
 (34)
 $[10 < Age < 80]$

$$= 448 \log A ge - 0.52 A ge - 678.2$$

$$[80 < A ge < 365]$$
(35)

Body weight on age in days—mated females =

$$8.071 + 0.367 \ age + 0.0131 \ Age^2$$
 (36)
 $[10 \le Age \le 80]$

$$= 343 \log Age - 0.41 Age - 498.8$$

$$[80 < Age < 365]$$
(37)

Formulas (34) (35) (36) (37) were used for table 62.

Weight of Thymus on Age (Hatai, '14)

Weight of thymus—sexes combined =

$$0.01 \times 10^{1.1 \left\{ 1.1884 + 0.5865 \left(\frac{\text{age}}{55} - 1 \right) - 0.5651 \left(\frac{\text{age}}{55} - 1 \right)^2 \right\}}$$
 (38)
[Age < 95]

Weight of thymus =

$$0.3903 - 0.00139 (age) + 0.00000128 (age)^{2}$$
 (39)
 $[Age > 95]$

Formulas (38) (39) were used for table 72.

PERCENTAGE OF WATER IN BRAIN. HATAI (MS '14)

The formulas do not apply to rats under ten days of age.

Percentage of water in brain-(male) =

$$92.122 - 0.614 \ Age + 0.00739 \ Age^2 \ (Phase \ 1)$$
 (40)
 $[10 < Age < 40]$

$$=82.756 - 2.103 log Age$$
 (Phase 2) (41) $[40 < Age < 160]$

$$=77.671 + 0.00537 \ Age - 0.000016 \ Age^2 \ (Phase 3)$$
 (42)
 $[160 < Age < 365]$

To transform any determination for the male into that for the female, the value for the male at a given age (see formulas (40) (41), (42)) is modified by a *plus* correction (Hatai).

Correction (plus) =
$$0.0555 \log (age + 3) - 0.0606$$
 (42a)
[$10 < Age < 365$]

The foregoing (40)-(42a) replace the formulas given in the paper by Donaldson ('10).

Formulas (40) (41) (42) (42a) were used for table 74.

PERCENTAGE OF WATER IN SPINAL CORD-(HATAI MS '14)

The formulas do not apply under 10 days of age. The data for the first ten days are from direct observations.

Percentage of water in spinal cord—male =

$$87.976 - 0.494 \ Age + 0.00364 \ Age^2 \ (Phase 1)$$
 (43) $[10 < Age < 40]$

$$=100.3 + 0.0548 \ Age - 17.7 \ log \ Age \ (Phase 2)$$
 (44)
 $[40 < Age < 150]$

$$= 62.186 - 0.0121 \ Age + 4.434 \ log \ Age \ (Phase \ 3)$$
 (45)
$$[150 < Age < 365]$$

To obtain from the values for the male at different ages the corresponding value for the female, several corrections are required and these differ according to age.

From ten to fifty days the following correction formula (45a) is used:

Correction
$$(minus) = 0.0006 Age^2 - 0.036 Age + 0.3$$
 (45a)

The values thus obtained are subtracted from the computed values for the male at the corresponding ages.

From fifty to sixty-five days no correction is made.

From sixty-five days to one hundred and thirty-five days, correction is made according to the formula (45b)

Correction (plus) =
$$0.823 \log (Age + 1) - 0.000542 (Age + 1) - 1.4616$$
(45b)

From one hundred and thirty-five to one hundred and sixtyfive days the correction is uniform thus:

$$Correction (plus) = 0.22$$
 (45c)

From one hundred and sixty-five to three hundred and sixtyfive days correction is made by the following formula:

$$Correction (plus) = 0.22 + 0.0005 (Age - 165)$$
 (45d)

The foregoing (43)-(45d) replace the formulas given in the paper by Donaldson, '10.

Formulas (43)-(45d) were used for table 74.

GROUP II. NORWAYS

FIRST DIVISION: FORMULAS BASED ON SIZE

BODY LENGTH ON BODY WEIGHT-NORWAY (DONALDSON AND HATAI, '11)

$$Body \ length \ (sexes \ combined) = 159 \ log \ (Bd. \ wt. + 18) - 165 \ \ (46)$$

The body length for the male is 0.4 per cent above the value given by formula (46) and that for the female 0.4 per cent below. Formula (46) with above corrections was used for graphs in chart 28.

BODY WEIGHT ON BODY LENGTH (DONALDSON AND HATAI, (11)

By transforming formula (46) and introducing the correction for sex we obtain

(1) For the male

Body weight=
$$10^{9.0000629} (Bd. l. \times 100 - [(Bd. l. \times 100) \times 9.004] + 16500) - 18$$
 (47)
= $10^{0.0000629} (Bd. l. \times 99.6 + 16500) - 18$

(2) For the female

Body weight =
$$10^{0.0000629} (Bd. l. \times 100 + [(Bd. l. \times 100) \times 0.004] + 16500) - 18$$
 (48)
= $10^{0.0000629} (Bd. l. \times 100.4 + 16500) - 18$

Formulas (47) (48) were used for table 85.

BODY WEIGHT OF NORWAY ON BODY WEIGHT OF ALBINO (MALES) (DONALD-SON AND HATAI, '11, P. 442)

 $Body\ weight\ (Norway) =$

$$137.1 - 0.636 \ Bd. \ wt. \ Albino + 0.00643 \ Bd. \ wt. \ Albino^2$$
 (49)
 $[160 < Bd. \ wt. \ Albino < 300]$

Tail Length on Body Length Norway (Hatai, ms '14)

(1) For the male

$$Tail\ length = 0.824\ Bd.\ l. + 39.1\ (log.\ Bd.\ l.) - 92.6$$
 (50)

(2) For the female

$$Tail\ length = 0.824\ Bd.\ l. + 43.1\ log\ (Bd.\ l.) - 98.4$$
 (51)

Formulas (50) (51) were used for table 85.

Brain Weight on Body Weight, Norway (Donaldson and Hatai, '11)

Brain weight (sexes combined) = $0.825 \log (Bd. wt. -4) + 0.233$ (52)

This formula applies only to rats 5 grams or more in body weight. To obtain the weights for the male the values given by the formula are increased by 1 per cent, and to obtain the weights for the female, they are decreased by 1 per cent.

Formula (52) with corrections mentioned above used for table 85.

CRANIAL CAPACITY ON BODY WEIGHT, NORWAY (DONALDSON, '12)

Cranial capacity in cc. (sexes combined) =

$$0.00105 \ Bd. \ wt. +0.548 \ log \ Bd. \ wt. +0.476$$
 (53) $[80 < Bd. \ wt. < 380]$

SPINAL CORD WEIGHT ON BODY WEIGHT, NORWAY (DONALDSON AND HATAI, '11)

Spinal cord weight (sexes combined) =

$$0.724 \log (Bd. wt. +30) -1.082$$
 (54)

To obtain the weights for the male the values given by the formula are increased by 0.15 per cent, and to obtain the weights for the female they are decreased by 0.15 per cent.

Formula (54) with corrections mentioned above was used for table 85.

SPINAL CORD WEIGHT ON BRAIN WEIGHT (SEXES COMBINED) NORWAY (DON-ALDSON AND HATAI, '11)

Spinal cord wt. =
$$0.724 \log \left(10^{\frac{Br. wt. - 0.233}{0.825}} + 34\right) - 1.082$$
 (55)

For the Norway we have no extensive data based on age hence there are no formulas based on age.

GROWTH OF PARTS AND ORGANS: REFERENCES

Chisolm, '11. Donaldson, '06, '08, '09, '11, '11 c, '12. Donaldson and Hatai, '11. Ferry, '13. Hatai, '03 a, '04 a, '07 a, '08, '13, '13 a, '14, '14 a. Jackson and Lowrey, '12. Jackson, '13. Jolly and Stini, '05. Watson, '05.

12. Formulas. Chisolm, '11. Donaldson, '08, '09, '12. Donaldson and Hatai, '11. Hatai, '05, '07 b, '07 c, '09 a, '10, '10 a, '11, '14.

CHAPTER 8

GROWTH IN TERMS OF WATER AND SOLIDS

1. In the body as a whole. 2. In the larger divisions of the body and the organs. 3. In the brain and spinal cord.

Water and solids 1) in the body as a whole and 2) in the larger divisions and the organs. Data on this head have been published by Lowrey ('13) and are here presented.

With the exception of one of the old rats the animals used for the following table 75 were reared at the University of Missouri. They were fed on chopped corn with a daily ration of bread soaked in whole milk and once a week a small quantity of fresh beef was given them. All were sound except some of the older animals which suffered from infected lungs—but not to such a degree as to affect their general nutrition or vigor. Table 75 is based on table 1, Lowrey ('13). The data for the two sexes are combined. In the original the range of the observations is given and also the number of animals used in each instance. In the present table the ranges are omitted and the number of animals is given for the body weight (net) only. The other determinations for the systems and organs were based on about the same number of animals as were used for the body weight, except in the case of the testes where the numbers are about half as large. The oldest animals were somewhat under one year of age. 3) Percentage of water in the brain and spinal cord. Using stock rats from the colony at The Wistar Institute, the percentage of water has been determined for the brain and spinal cord by Donaldson (MS '14). The values obtained by this study replace those previously published. (Donaldson '10.) The methods of removal are given on page 90. The rats were reared on a scrap diet. The fresh brain or cord was weighed in a closed bottle, then dried at 90°-95°C. until the dried weight was constant—and the difference taken as the amount of water.

TABLE 75

Percentages of dry substance in the entire body—in several of the systems and in some organs. Observations at seven ages. See chart 24

AGE IN		BODY (NET)	INTEG	UMENTS		ENTOUS	MUSCU	ATURE
DAYS	No. of animals	Av. fresh weight	Av. % of dry subs.	Av. fresh weight	Av. % of dry subs.	Av. fresh weight	Av. % of dry subs.	Av. fresh weight	Av. % of dry subs
		gms.		gms.		gms.		gms.	
0	15	4.200	11.7	0.880	12.3	0.660	18.1	1.100	10.7
7	10	9.100	20.1	2.180	23.4	1.710	22.1	2.020	16.2
20	9	24.500	29.9	5.020	41.1	4.090	33.3	6.400	22.6
42	10	61.300	29.5	11.040	37.1	8.610	39.2	18.730	23.5
70	7	126.700	33.0	20.020	43.0	14.840	45.9	51.500	25.2
50	10	182.400	32.2	32.200	44.2	20.020	50.4	76.920	24.3
865 (?)	2	267.500	31.5	37.780	45.5	23.180	52.6	125.000	23.8
		ALL V	SCERA	EYEI	IALLS	не	ART	LU	¢G8
0		0.780	15.2	0.023	7.4	0.025	13.8	0.077	15.9
7		1.760	14.2	0.066	10.4	0.061	14.4	0.169	15.8
20		5.090	19.1	0.110	14.4	0.135	18.0	0.236	18.9
42		12,170	20.7	0.162	15.3	0.412	21.0	0.404	19.1
70		20.900	24.4	0.207	17.0	0.625	21.6	0.791	19:2
50		26.570	25.6	0.279	19.0	0.714	21.2	1.354	19.0
65 (?)		31,750	25.1	0.340	20.2	0.934	22.4	2.806	18.4
		LIV	ER	SPL	EEN	KID:	KEYS	TES	TES
0		0.234	19.4			0.038	13.3	- +	3.
7		0.307	20.6	0.041	14.3	0.123	14.5	1 1	147
20		1.200	24.3	0.076	17.2	0.322	17.2	0.106	12.9
42		3.541	24.2	0.273	19.8	0.832	20.3	0.568	13.3
70		6.617	25.5	0.588	20.1	1.320	20.8	1.653	12.4
50		9.236	25.7	0.666	20.6	1.728	21.0	2.425	12.2
65 (?)		9.959	26.0	0.722	22.6	2.294	22.9	2.044	13.0

By the use of formulas (40)-(42a) for the brain and formulas (43)-(45d) for the spinal cord, the values for table 74 after 10 days of age were obtained and also those for the respective graphs in chart 26. The data for the first 10 days are from direct observations. The percentage of water in the brain and spinal cord is linked with age and is not readily modified.

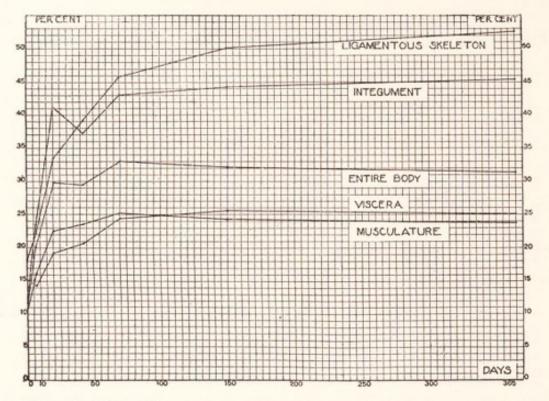


Chart 24 Giving the percentage of dry substance in the body as a whole and in the several systems at different ages. Table 75, Lowrey ('13).

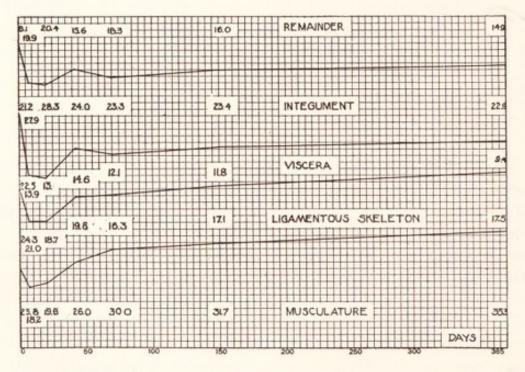


Chart 25 Giving in terms of the dry substance of the entire body the percentage values of the several systems, sexes combined. Plotted on age in days. Table 76, Lowrey ('13).

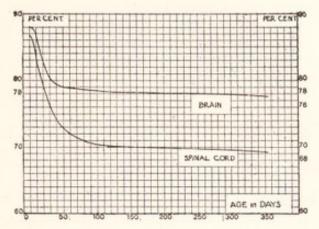


Chart 26 Giving percentage of water in the brain at different ages. Males only. Formulas (40)-(42a), table 74, and percentage of water in the spinal cord. Males only. Formulas (43)-(45d), table 74.

TABLE 76

Giving the percentage weight of the dry substance in the integument, skeleton (ligamentous), musculature, viscera and remainder in terms of the dry substance of the entire body, Lowrey'13. See chart 25

AGE IN	NUMBER	ABSOLUTE WEIGHT OF	PERCENT	AGE WEIGHT (OF DRY SUBST		TIRE BODY
DAYS	OF ANIMALS	DRY SUB- STANCE ENTIRE BODY	Skin	Skeleton (ligamen- tous)	Muscula- ture	Viscera	Remain- der
0	7	0.494	21.2	24.3	23.8	22.5	8.1
7	10 ¹	1.830	27.9	20.1	18.2	13.9	19.9
20	9	7.320	28.3	18.7	19.6	13.0	20.4
42	10	17.300	24.0	19.8	26.0	14.6	15.6
70	71	42.400	23.3	16.3	30.0	12.1	18.3
150	10	60.600	23.4	17.1	31.7	11.8	16.0
365 (?)	2	84.300	22.9	17.5	35.3	9.4	14.9

¹ Skeleton and musculature not separately determined in one instance.

GROWTH IN TERMS OF WATER AND SOLIDS: REFERENCES

Cavazzani and Muzzioli, '12. Donaldson. '10, '11 a, '11 b. King, '11. Low-rey, '13. Weisbach, 1868.

CHAPTER 9

GROWTH OF CHEMICAL CONSTITUENTS

- 1. In the body as a whole. 2. In the nervous system.
- 1. In the body as a whole. For the body as a whole Hatai (MS '15) has made a determination of its composition in terms of proteins, fat, organic extract and salts, at eight ages. The results are given in table 77.

TABLE 77.

Giving the chemical composition of albino rat. Hatai (MS '15)

Age, days	Birth	7	15	22	28	35	42	294
Body gms	4.3	10.2	13.5	24.9	47.3	52.5	65.8	277.5
Water, per cent	87.2	79.8	72.9	70.6	69.6	70.6	69.4	65.3
Solids, gms	0.6	2.1	3.7	7.3	14.4	15.5	20.1	96.4
Percentages of								
Residue	56.9	42.0	39.9	38.8	38.6	44.9	44.4	44.5
Fat	14.2	35.4	39.2	36.6	37.7	25.9	27.1	16.5
Organic extr	16.4	12.8	12.8	14.8	13.8	18.6	16.9	28.2
Soluble salts		4.6	3.0	3.2	3.3	1.5	2.7	2.5
Fixed salts	100000	5.2	5.2	6.7	6.5	9.2	8.9	8.3

The following paragraphs define the terms used in table 77.

Residue. The residue is represented by the solids from which all the organic substances soluble in both boiling alcohol and in water, as well as the salts have been removed. Thus the residue as here defined represents practically all the protein substances.

Fat. Fat is represented by the substances soluble in boiling alcohol from which the water soluble organic extractives and salts have been removed.

Organic extractives. All water soluble substances from which the salts were removed are called the organic extractives.

Soluble salts. The salts here designated were obtained from all the extractives with both water and alcohol.

Fixed salts. The solids from which fat, organic extractives and soluble salts had been removed were incinerated and the ash thus obtained is here called the fixed salts. Thus these fixed salts present practically all salts present in the osseous system.

Using a different plan of analysis McCollum ('09) has given data on the composition of the rat. The results appear in table 78. To obtain the skeleton he boiled the entire animal and then separated the skeleton from the boiled tissues.

TABLE 78.

Giving the composition of rats used in experiments with various rations.

(McCollum '09)

RATION	NUMBER OF RAT	BODY WEIGHT	SKELE- TON	DRY TIS- SUE LESS SKELE- TON	ETHER EXTRACT	ASH OF SKELE- TON	8KELE- TON PER CENT OF LIVE WEIGHT	FAT AND WATER- FREE TIS- SUES PER CENT OF LIVE WEIGHT
		grams	grams	grams	grams	grams		
Normal	1	147	6.67	38.0	8.89	3.79	4.54	19.80
Normal	2	157	6.50	45.0	10.80	3.85	4.14	21.79
Normal	10	34	1.33	9.5	3.25	0.68	3.91	18.39

In connection with a study of the phosphorus compounds in the Albino after ovariotomy Heymann ('04) has recorded the P₂ O₅ distribution in the normal rat (see Keith and Forbes, '14). His data for the normal appear in table 79.

TABLE 79.

Giving the phosphorus compounds of rats as affected by ovariotomy (Heymann, '04)

	TISSUI	es, per cent	OF DRY SUBS	TANCE		PER CENT L P ₂ O ₅	BONES AND TISSUES TOTAL P2O6
	Lecithin P ₂ O ₅	Nuclein P ₂ O ₅	Phosphate P ₂ O ₅	Total P ₂ O ₅	Fresh substance	Dry substance	Per cent of total body weight
Normal	0.4760	0.0559	2.4479	2.9798	21.2690 18.1665	24.0556 22.8105	1.9819 1.2980
Normal	0.3242	0.0649	1.6490	1.9830	17.0315	19.2083	?
Normal	0.3608	0.0979	1.5430	2.0018	17.5724	19.9277	1.3795

Apparently erroneous since the sum of the figures for nuclein, lecithin and phosphate phosphorus is 2.0381 per cent.

2. In the nervous system. With the purpose of following the changes in the chemical constituents of the brain with advancing age, Koch, W. and M. L. ('13 a) have made a series of observations and to these have been added also observations on one spinal cord at 120 days. The results are given in tables 80 and 81.

0	- 0
	90
	0
	0
	13
	-
	40
	22
	0
	5-
	.00
	1
	200
	0
	94
	25
	-
	40
	- 23
	3-
	100
	0
	22
	100
	2
	~
	-
	e.
	1
-	-
~	-
-	2
50	~
-	00
300	-
m	. 00
-	9
	-
-	2
	0
	1
	-
	-
	0
	-
	20
	- 6
	.2
	900
	494
	99
	0
	2
	di
	du
	dmo
	dmoo
	comp
	d comp
	al comp
	cal comp
	ical comp
	nical comp
	mical comp
	semical comp
	hemical comp
	Chemical comp
	Chemical comp
	Chemical comp
	Chemical comp

CASE ALL MANY D	1		10	1 10 20 40	_	40	120		210	120
Body weight in grams	5.5		12	20	1	43	112.3	65	182	112.3
Moist weight of one brain in grams 0.250 0.250 0.860 Solids in per cent 10.420 10.420 14.700 Dry weight of one brain in grams 0.026 0.026 0.127 Number of brains in sample 100 40 40	0.250 0.250 10.420 10.420 0.026 0.026 100 100	0.860 14.700 0.127 40	0.860 12.500 0.107 40	1.228 17.500 0.215 48	1.329 1.397 1.368 17.500 20.100 20.580 0.233 0.281 0.282 59 37 34	1.368 1 20.580 21 0.282 0 34	1.659 21.600 0.358 30	1.551 1.667 21.700 21.900 0.336 0.365 31 31	1.667 21.900 0.365 31	0.365 27.100 0.099 90
		Constitu	uents in p	Constituents in per cent of solids	lids					
Proteins. 58.200 58.300 56.400	58.200 58.300	56.400	56.500	56.500 53.900 52.700 48.700 48.100 47.200	00 48.700	48.100 47	7.200	48.000 48.500	48.500	32.800
Phosphatides	14.800 15.600	10.600 (?) 12.300	21.100 21.7	00 20 000	23.200 21	006.1	2.4	22.000	25.300
Cerebrosides	1.500 1.400 0.730(?)	0.730 (2.600	3.100	2.900 6.300		6.600 (7) 3.500	3.600	8.407	7.000
ves	16.500 19.300 19.300	19.300			00 13.800		9.700	9.800	6	7.600
Inorganic constituents	9.000	5.40013.000	13.500	5.700 4.800	000 8 000	4.900 11.100	1.100	8.900	6.800	14.800
Total sulphur	0.960	0.720	0.830	0.690		0.520	0.550	0.570	0.580	0.450
Total phosphorus	1.820		1.480	1.660	020 1.550	1.500	1.400	1.440	1.390	1.440
	Distr	ibution	of sulphur	Distribution of sulphur in per cent of total S	of total S	**				
Protein S	31,100 30,000	48.600	44.200	44.200 57.500 55.300 65.100 62.400 61.200	00 65.100	62.400 61	1.200	62.400 63.800	63.800	53.600
Lipoid S.	3.200 2.800 2.200	2.200	6.100	6.100 6.700 7.500 9.20010.10012.800	00 9.200	10.10012	008.3	12.500 15.600	15.600	30.900
Inorganic S	16.600 19.900	4.100	4.300	300 6.100 9.700 8.700 8.200 6.	00 8.700	8.200 6	9.800	6.800	6.100	5.100
	Distribu	tion of t	hosphoru	Distribution of phosphorus in per cent of total P	it of total	P				
Protein P	13.300	13.000	13.900	13.900 6.000 5.800 9.900 7.500 7.400	006.6 00	7.500 7	.400	7.300	7.300 6.800	5.600
Lipoid P	33.200 33.000 33.800	33.800	36.100	36.100 52.200 53.500 56.100 58.500 65.800	00 56.100	58.500 65	008.9	62.300 67.600	009.79	77.400
THE POOL OF 1 TH										

* Cerebrosides not determined in brains at birth and 10 days. Probably none present at this age. † By difference. ? Indicates doubtful result. † Taken from W. 8.

TABLE 81.

Absolute weights, in milligrams, of the constituents of a single brain of the albino rat at different ages (prepared from Table 80)

			AGE IN	DAYS		
	1	10	20	40	120	210
Moist weight of one						
brain in grams	0.250	0.860	1.280	1.380	1.600	1.670
Solids in per cent Dry weight of one	10.420	12.500	17.500	20.340	21.650	21.900
brain in grams	0.026	0.107	0.224	0.281	0.347	0.365
	Absolu	te weights	in milligr	ams		
Proteins (1)‡	15.140*	60.450†	119.400*	136.000*	165.200*	177.000
Phosphatides (2)	3.950	13.160	47.900	61.300	74.950	80.300
Cerebrosides (3)	200000		6.700	16.600	29.150	30.660
Sulphatides (4)	0.380	2.780	5.600	7.200	12.300	16.400
Organic extrac-						
tives	4.650	16.160	32.600	41.700	33.800	35.800
Cholesterol unde- termined (5)	1.870	(14.45)	11.700	18.200	31.600	24.800
Total sulphur	0.260	0.900	1.5700	1.540	1.940	2.120
Total phosphorus	0.480	1.600	3.7200	4.300	4.930	5.070
In	absolute w	eight in m	nilligrams .	of sulphur		
Protein S (1S)§	0.079	0.398	0.885	0.982	1.199	1.352
Lipoid S (4)	0.008	0.054	0.111	0.149	0.246	0.330
Neutral S (6)	0.125	0.409	0.449	0.279	0.363	0.307
Inorganic S (7)	0.047	0.039	0.122	0.130	0.132	0.129
In ab	solute wei	ght in mil	ligrams of	phosphor	us	
Protein P (1P)	0.064	0.215*	0.220	0.374	0.360	0.345
T: :1 T (0)	0.001	0.210	1.004	0.404	0.000	0.020

^{*} Record from average duplicate analyses.

0.161

0.260

Lipoid P (2).....

Water sol. P (8).....

0.558

0.826

1.964

1.532

2.464

1.462

3.160

1.410

3.427

1.298

[†] Record from one analysis.

[‡] Figures in parentheses in this section refer to Chart III. See original.

[§] Figures in parentheses in this and the following sections refer to Chart IV. See original.

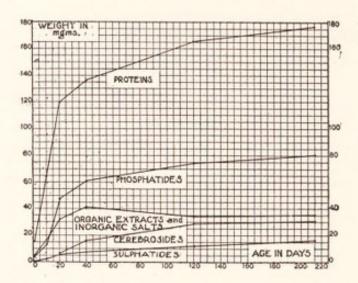


Chart 27. Giving in milligrams the absolute weight of the more important chemical constituents of the brain. Plotted on age. Table 81.

In chart 27 are given the graphs for the absolute weights of the more important chemical constituents of the brain plotted on age (see table 81).

GROWTH IN CHEMICAL CONSTITUENTS: REFERENCES

1. Entire body. Mendel and Daniels, '12. Pembrey and Spriggs, '04.

2. Nervous system. Bibra, 1854. Hatai, '09, '10. Koch, M., '13. Koch and Mann, '09. Koch and Koch, '13, '13 a.

CHAPTER 10

PATHOLOGY

Tumors. 2. Parasites and infections (except leprosy and plague).
 Leprosy. 4. Plague.
 Public hygiene.
 Descriptive and experimental pathology.
 Economic relations.

In the various studies on the pathology of the rat there are, of course, some data, which might be tabulated or charted. It has been thought best however to adhere to our general plan of treating in detail the data for the normal animal only and the presentation in this chapter is limited therefore to a series of references classified according to the subheads given above.

PATHOLOGY: REFERENCES

- 1. Tumors. Bashford and Murray, 1900. Bennett, '14. Bullock, W. E., '13. Cramer and Pringle, '10. Eiselsberg, 1890. Flexner and Jobling, '07. Freund, '11. Gay, '09. Gaylord, '06. Jensen, '08. Joannovics, '12. Lambert, '11. Levin, '08, '10, '10a, '11. Loeb, '01, '02, '02a, '03, '03a, '04, '07. McCoy, '10 a. Moreschi, '09. Ordway and Morris, '13. Robertson and Burnett, '13. Rous, '11, '14 Sweet, Corson-White and Saxon, '13. Taylor, '15. Uhlenhuth and Weidanz, '09. Van Alstyne, '13. Weil, '13.
- 2. Parasites and infections (except plague and leprosy). Bacot, '14. Bahr, '06. Bancroft, 1893-1894. Bayon, '12 a. Bullock and Rohdenburg, '13. Campana, '11. Chick and Martin, '11. Currie, '10. Dean, '03. Fantham, '06. Giglio-Tos, 1900. Hurler, '12. Jungano, '09. Jurgens, '03. Laveran and Mesnil, 1900, 1900 a, 1900 b. Loghem, '08. Mallory and Ordway, '09. Mitchell, '12. Morpurgo, '01, '02. Ori, '12. Poppe, '13. Pound, '05. Rabinowitsch and Kempner, 1899. Robinson, '13. Rosenau, '01. Sabrazès and Muratet, '05. Shipley, '08. Stiles and Crane, '10. Stiles and Hassall, '10. Terry, '05. Trautmann, A., '12. Trautmann, H., '12. Wasielewski and Senn, 1900. Webel, '13-'14. Wiener, '02, '03.
- 3. Leprosy. Bayon, '11, '12, '12 b, '12 c, Chapin, '12. Dean, '05. Duval, '10, '11. Duval and Gurd, '11, '11 a. Duval and Wellman, '12. Duval and Harris, '13. Hollmann, '12. Jadassohn, '13. Leboeuf, '12. Marchoux, '10, '11, '11-'12, '12. Marchoux and Sorel, '12, '12 a, '12 b, '12 c. McCoy, '08. Tidswell and Cleland, '12. Wherry, '08. Wolbach and Honeij, '14. Zinsser and Carey, '12.
- Plague. Advisory Committee, '12 b. Bacot and Martin, '14. Bannerman, '06. Blue, '08, '10. Brinckerhoff,'10. Chick and Martin,'11. Edington,'01.

'01. Galli-Valerio, '02. Gauthier and Raybaud, '03. Herzog, '05. Hossack, '07 a. India Plague Commission, '08. Liston, '05, '05 a. Loghem and Swellengrebel, '14. Martini, '01. McCoy, '10. Petrie, '10. Reports on Plague Investigations in India, '06. Thompson, '06. Tiraboschi, '02, '04, '04 a.

 Public hygiene. Advisory Committee, '12 a. Bahr, '09, '09 a, '10. Bergmann, '08. Boelter, '09. Buchanan, '10. Calmette, '10, '11. Converse, '10. Cook, 1885-1886. Creel, '10. DuPuy, and Brewster, '10. Foster, '09. Fox, '12. Foy, '13. Grubbs and Holsendorf, '13. Heiser, '10, '13. Hobdy, '10. Kerr, '10. Konstansoff, '10. Kunhardt and Taylor, '15. Lagarrique, '11. Lantz, '07, '10 a. Lavrinovich, '10. Mandoul, '08-'09. Munson, '10. Neumark, '13. Pottevin, '10. Ramachandrier, '08. Reaney and Malcolmson, '08. Ringeling, '12. Rosenau, '10. Rucker, '10, '12, '13. Schern, '12. Simpson,

'13. Suffolk, '10. Symposium, '11. Tailby, '11. Zuschlag, '03.

 Descriptive and experimental pathology. Ascher, '10. Aumann, '12. Aunett, '08. Bainbridge, '08-'09. Bircher, '11, '11 a. Boinet, 1897, 1897 a. Bullock and Rohdenburg, '15. Cramer, '08. Czerny, 1890. Fibiger, '13, '13 a, '13 b, '14. Flexner and Noguchi, '06. Graham and Hutchison, '14. Horton, '05. Kolmer and Yui and Tyau, '13. Lewin, '12, '12 a. Loeb, '13. Mallory and Ordway, '09. Martin, 1895. Mavrojannis, '03. Mereshkowsky and Sarin, '09. Mereshkowsky, '12, '12 a. Metschnikoff and Roux, 1891. Murphy, '14. Nerking, '09. Olds, '10. Ophüls, '11. Plimmer and Thomson, '08. Remlinger, '04. Rowland, '11. Schern, '09. Schürmann, '08. Sittenfield, '12. Steffenhagen, '10.

 Economic relations. Bruneau, 1886. Galli-Valerio, '08. Klunzinger, '08. Landois, 1886. Lantz, '10 b. Lersch, 1871. Loir, '03.

PART II

NORWAY RAT

CHAPTER 11

LIFE HISTORY AND DISTINGUISHING CHARACTERS

- Introduction.
 Life history.
 Span of life.
 Gestation period.
 Number of litters.
 Number in litter.
 Proportion of sexes.
 Opening of eyes.
 Age of sexual maturity.
 Comparison of Norway with Albino.
 Similarities of Norways and Albinos in western Europe to those of the United States.
- 1. Introduction. To obtain more complete information concerning the rat it is important to note differences which may appear between the domesticated Albino and the wild Norway. Since the wild Norway represents the parent stock it might seem proper to use that form as the standard and to record the deviations of the Albino from it. As a matter of fact however our information with regard to the Albino is so much the more complete that the best results will follow from using it as the standard, despite the fact that zoölogically it is but a variety of the Norway.
- 2. Life history of the Norway rat. As regards behavior, the Norway rat is very responsive to sounds, gnaws its cage, burrows when opportunity offers, is hard to handle and appears fierce because usually in a state of terror, yet after some days in a cage, it often becomes quite docile.

Mus norvegicus when mature weighs 300–500 grams. (550 grams = 1½ pounds avd., has been reported but is very unusual). We have recorded one male with a body weight of 523 gms. The color above ranges from light gray or orange to brown and dark gray, usually with more or less white or light gray on the ventral surfaces. Melanic sports occasionally occur (see p. 14, note 5). Mus norvegicus is distinguished from Mus rattus, the house rat, by the following superficial characters: larger size; blunter head; smaller ears which are thicker and more covered with hair; tail shorter than body; claws usually relatively dull. Its movements are less rapid. Commonly the female Norway has twelve, sometimes fourteen nipples, while the house rat has very constantly ten.

- a.) Span of life. The span of life of the Norway rat is not known. It seems probable that it is between three and four years, though here and there individuals may live somewhat longer.
- b.) Period of gestation: 21 days Lantz ('09); 23.5–25.5 days Miller ('11). The latter periods are possibly due to the effect of nursing on gestation. See p. 22.
- c.) Number of litters. Miller ('11) reports seven litters in seven months from a single pair, and estimates that, in general, five to six litters may be easily reared by a single pair in a year.
- d.) Number of young in a litter. Climate and station appear as general modifying influences. Larger litters are reported from northern Europe than from India (Lantz, '09).

Crampe ('84) obtained an average of 10.4 in fourteen litters.

Zuschlag ('03) states that among the rats examined at Copenhagen in 1899, fetuses to the number of 14 were found four times and he himself in 1902 examined one female bearing 16. Donaldson (MS, '09) also noted in a rat taken in Paris, 16 fetuses.

The India Plague Commission reports ('08) that the average number of fetuses found in females was 8.1 from a total of 12,000 Norway rats.

According to Lantz ('09) the maximum size of litters recorded in England (Field) are 17, 19, 22 and 23; in India however 14.

The maximum numbers just given as recorded in England are not trustworthy as they represent merely the number of young found in a single nest. Since two different litters are sometimes reared in the same nest the inference from the number in the nest to the number in the litter is not convincing. Lantz ('09) assumes the average litter (in north temperate latitude) to be about 10. This is what Miller ('11) (vide infra) and Crampe ('84) (vide supra) found.

Miller ('11) observed in a group of eight litters 7–12 young in a litter, with an average of 10.5.

e.) Proportion of the sexes. Lantz ('09) and others state that the males are in excess. Donaldson ('12) found the same in trapped series taken in Paris and London. In a small series

trapped in Vienna however, the females were in excess. There are no observations on the proportions of the sexes at birth in general population, but in a special study of "extracted" Norways made by King (MS., '15) 56 litters from females—themselves taken from litters in which the two sexes were equally or nearly equally represented—gave 212 males and 213 females.

- f.) Opening of eyes. Miller ('11) found the eyes to open at 16 or 17 days and also states that the young are weaned during the sixth week.
- g.) Age of sexual maturity. Miller ('11) gives one instance of a female conceiving at the age of 120 days.

Owing to the difficulty of keeping M. norvegicus happy and contented in captivity, it has not yet been possible to get a trust-worthy record for increase in body weight with age in the case of this form. Neither our own data (Donaldson and Hatai, '11) nor those of Miller ('11) show what must be the normal rate of increase in body weight.

3. Comparison of the Norway with the Albino. To determine whether the wild Norway form, as trapped in Philadelphia, differs in any way from the albino rats in the colony at The Wistar Institute, a comparison has been made between the two forms in respect to body length, body weight, brain weight, spinal cord weight and the percentage of water in both the brain andthe spinal cord (Donaldson and Hatai, '11) as well as the weights of several of the parts and viscera. (Jackson and Lowrey, '12; Hatai, '14 a.)

In addition to the familiar facts that the Norway rat is more wild and difficult to handle, more successful in escaping from cages and much more given to gnawing than is the Albino, that it grows bigger, breeds later, has larger litters and a longer sexual life (Crampe, '84) it is now possible to make several further statements.

At birth the Norway is somewhat heavier than the stock Albino (King, '15, table 1) but in their relative body length and the relative weights of the brain and spinal cord, as well as in the percentage of water in these two divisions of the central nervous system, they are approximately alike.

The marked differences between the two forms appear later, during the period of rapid growth. Grouping together the general differences subsequently found, we may say that the Norway rat is absolutely much heavier, relatively slightly longer, has a relatively heavier brain and a heavier spinal cord, and since for the same body weight as a given Albino it is younger, it has when so compared a higher percentage of water in the central nervous system.

For the same age however, the percentages of water are nearly alike; the percentage in the Norway rat being a trifle higher (Donaldson and Hatai, '11). The relative weights of the ovaries, testes and suprarenals are also greater (C. Watson, '07; Hatai, '14). These plus characters of the Norway tend to disappear when the Norway is subjected to domestication.

The deviations of the Norway may be expressed in another way. When the body weights of Norway and Albino are the same:

The Norway rat has a greater body length; a greater brain weight; a greater spinal cord weight; a higher percentage of water in the central nervous system; heavier ovaries, testes and suprarenals.

When body lengths are the same:

The Norway rat has a smaller body weight; a greater brain weight; a greater spinal cord weight; a higher percentage of water in the central nervous system; heavier ovaries, testes and suprarenals.

When brain weights are the same:

The Norway rat has a smaller body weight; a smaller body length; a smaller spinal cord weight; a higher percentage of water in the central nervous system.

When the spinal cord weights are the same:

The Norway rat has a smaller body weight; a smaller body length; a greater brain weight; a higher percentage of water in the central nervous system.

Speaking generally therefore we may say that when compared with the domesticated Albino, the wild Norway rat weighs more, is longer and possesses a nervous system in which both the brain and spinal cord are relatively larger. These differences taken together indicate that the albino rat has grown less well, and it seems most natural to attribute the lack of growth to the whole set of conditions summed up in the word 'domestication.'

The most marked difference in structure thus far described between the two forms is in the relative weight of the central nervous system. That this is due to the effects of domestication seems highly probable, in view of the observations of Darwin ('83) and Lapicque and Girard ('07).

There are still other observations which belong here. In a study on the weight of some of the ductless glands of the Norway and of the albino rat according to sex and variety Hatai, ('14 a) an examination was made of the suprarenals, hypophysis, thyroid and gonads in both forms. The conclusions reached are here given.

In both the Norway and albino rats the suprarenal glands of the males are considerably smaller than those of the females. When, however, these two forms of rats are compared, both sexes of the Norway rats have suprarenals considerably heavier than those of the like sexes of the Albino.

A sex difference is noted in the weight of the hypophysis in both the Norway and albino rats. The male hypophysis is lighter than that of the female. However, when these two forms of rats are compared, the hypophysis of the Norway is found to be smaller than that of the albino rat; the greater difference being in the case of the female.

Neither in the Norway nor the albino rat is a sex difference found in the weight of the thyroid. Moreover, there is no weight difference in the thyroid according to variety in the case of these two forms of rats.

The sex glands (testes and ovaries) of the Norway rats are heavier than those of the albino rats.

Hatai is also of the opinion that the differences noted are again the result of a response to domestication.

4. Similarity of the Norways and Albinos of western Europe to those of the United States. It is to be noted in this connection that so far as tests have been made, the albino rats found in Europe are similar to those found in America. For the Albinos from Vienna, Paris and London, the determinations were made by Donaldson ('12) and Chisolm ('11) has reported on the relation of body length to body weight in albino and pied rats in London. Chisolm compares his determinations of length with those by Donaldson ('09) and when correction is made for the slight difference in the methods of measurements, the two sets of results agree nicely.

It is also true that the wild Norways of Europe seem to be similar to those of the United States (Donaldson, '12) so that the differences above noted probably will be found at whatever stations the two forms are compared.

LIFE HISTORY-NORWAY RAT: REFERENCES

Chisolm, '11. Crampe, 1884. Darwin, 1883. Donaldson, '09, '11, '12. Donaldson and Hatai, '11. Hatai, '14 a. India Plague Commission, '08. Jackson and Lowrey, '12. Lantz, '09. Lapicque and Girard, '07. Miller, '11. Watson, C., '07. Zuschlag, '03.

CHAPTER 12

GROWTH IN WEIGHT OF PARTS AND SYSTEMS OF THE BODY

- 1. Growth of parts. 2. Growth of systems. 3. Weight of cranium.
- 1. Growth of parts of the body. For the general conditions under which these observations were made by Jackson and Lowrey ('12), see pp. 73–74.

Five Norways only were examined, these having been trapped in barns at the University of Missouri. They were probably living on grain. As will be seen by reference to table 82 the smallest of these, a male, weighed 65 grams and was therefore probably from three to five weeks old. The percentage relations of the several parts of the body are given in table 82.

TABLE 82

Norway rat—Percentage weights of head, trunk and extremities. Sexes combined (Jackson and Lowrey, '12)

SEX	NET BODY WEIGHT	HEAD	FORE LIMBS	HIND LIMBS	TRUNK
	grams	per cent	per cent	per cent	per cent
M	65.0	14.66	5.95	13.88	65.51
M	95.4	12.17	5.83	15.34	66.66
F	107.5	10.18	5.58	15.81	68.43
M	164.0	9.27	5.24	14.94	70.55
F	254.0 ^j	7.85	5.02	13.68	73.45

¹ Including gravid uterus, which weighed 13.76 grams.

On comparing the relative values here given with those for the albino rat (see p. 74) it appears that for corresponding body weights the average values for the fore limbs and hind limbs are low, while those for the trunk are high—a relation which might be expected in view of the greater body length of the Norway—see tables 49 and 82.

TABLE 83

Norway rat—Percentage of total body weight represented by the weight of integument, ligamentous skeleton, musculature, viscera and remainder. (Jackson and Lowrey, '12)

SEX	NET BODY WEIGHT	INTEGUMENT	LIGAMENTOUS SKELETON	MUSCULATURE	VISCERA	REMAINDED
	grams	per cent	per cent	per cent	per cent	per cent
M	65.0	18.42	13.15	35.39	23.40	9.64
M	95.4	19.29	13.85	38.57	23.21	5.08
F	107.5	20.37	13.86	42.14	17.51	6.12
M	164.0	17.35	13.29	41.66	20.95	6.75
F	254.01	19.41	10.16	44.21	16.22	10.00

¹ Including gravid uterus, which weighed 13.76 grams.

- 2.) Growth of systems. When the values for the five entries in table 83 are compared with the last four in table 50 for the albino rat, it is noted that in the Norway the values for the musculature and viscera are high, while that for the 'remainder' is low. This last difference is due in part to the smaller amount of fat in the Norway. At the same time there is other evidence to show that for the same body weight as the Albino, both the trunk and the viscera of the Norway are heavier, as here found.
- 3.) Weight of cranium. (Donaldson, '12.) Determinations of the weight of the cranium dried at room temperature have

TABLE 84

The mean weight in grams of the crania in each body weight group of the four series of wild Norway rats from Paris, London, Philadelphia, Vienna (based on table 1 Donaldson, '12 a.) Each weight group is based on six cases; 3 males and 3 females

BODY WEIGHT		WEIGHT OF THE	CRANIA IN GRAMS	
GROUP	LONDON	PARIS	PHILADELPHIA	VIENNA
grams				
125	1.17	1.27	1.13	1.10
175	1.58	1.58	1.34	1.37
225	1.84	1.91	1.71	1.70
275	2.25	2.17	2.14	1.90
325	2.69	2.60	2.40	2.27
375	3.13	2.98	2.86	2.48

For the corresponding weights of the albino crania see table 55.

been made. By the cranium is meant the skull with upper teeth, minus the mandible with lower teeth and the ear bones. The mean weights are given in table 84.

GROWTH IN WEIGHT OF PARTS AND SYSTEMS OF THE BODY: REFERENCES

Donaldson, '12 a. Jackson and Lowrey, '12.

CHAPTER 13

GROWTH OF ORGANS IN RELATION TO BODY LENGTH—NORWAY

- 1. Length of tail and weights of body, brain and spinal cord in relation to body length. 2. Weight—length ratios.
- 1) Length of tail, body weight, brain weight and spinal cord weight in relation to body length. Before passing to the tables on the Norway rat, it should be pointed out that the observations used for them have been made on the Norway rat as found in Philadelphia. At the same time it has been shown that the Norway rat taken in Vienna, Paris and London is similar in its general form to that found in the United States, so that the determinations in the tables may be applied to the Norway rat in Europe also (Donaldson, '12).

Table 85 contains values for the several characters named above, computed by the formulas devised by Hatai; these formulas being in turn based on series of observations, the number of which is given in each case.

Body length on body weight. From the study of 282 male and 318 female Norway rats, trapped in Philadelphia, measurements have been taken for body weight and body length (Donaldson and Hatai, '11).

The values for body length—sexes combined—on body weight are given by formula (46). In chart 28 the corresponding graph is given and for comparison the graph for the body length of the Albino is also drawn (see formula (1)).

It has been found that for a given body weight, the body length is in the male Norway 0.4 per cent above the mean, and in the female 0.4 per cent below (Donaldson and Hatai, '11, p. 425).

Body weight on body length. When the formula (46) is transformed so as to give the body weight for a given body length and the correction for sex is included, we have for the males formula (47) and for the females formula (48). In chart (29) are given the graphs for both sexes.

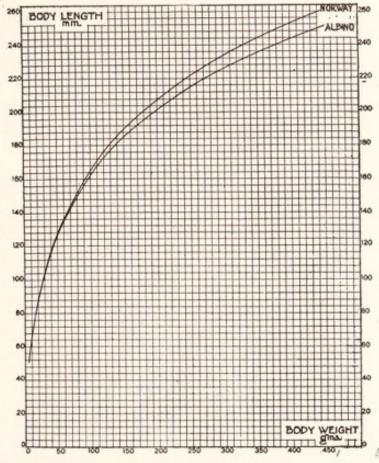


Chart 28 Norway rat—Giving body length on the body weight. Males only. Formula (46), table 85. Inserted for comparison is the corresponding graph for the male Albino (see formula (1).

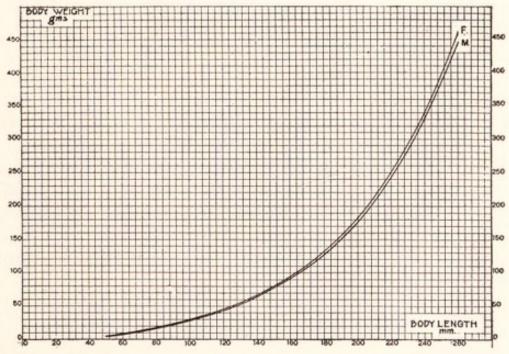


Chart 29 Norway rat—Giving the body weight on the body length. Males, females. Formulas (47), (48), table 85.

Body weight of the Norway on the body weight of the Albino. Formula (49) gives the body weight of the Norway on the body weight of the Albino for a limited range of Albino body weights.

Tail length on body length. The tail length on the body length has been determined by Hatai (MS '14) and is represented by formulas (50) and (51) for the male and female re-

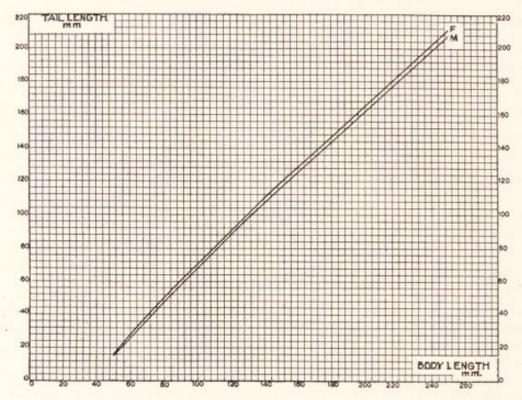


Chart 30 Norway rat—giving the tail length on the body length. Males, females. Formulas (50), (51), table 85.

spectively. As can be seen by consulting table 85 the males have the shorter tails—a relation which agrees with that found for the Albino. In chart 30 are given the corresponding graphs.

Brain weight on body weight. The direct determinations of the weight of the brain have been made on 232 males and 278 females. The general formula (52) expresses the relation of brain weight on body weight for the sexes combined.

It applies however only to rats with a body weight above five grams.

Using this formula the brain weights have been computed for each of the series of body weights as determined by formulas (47) and (48).

It has been found however (Donaldson and Hatai, '11, p. 428) that the weight of the male brain is one per cent above the mean for the two sexes, and that of the female, one per cent below.

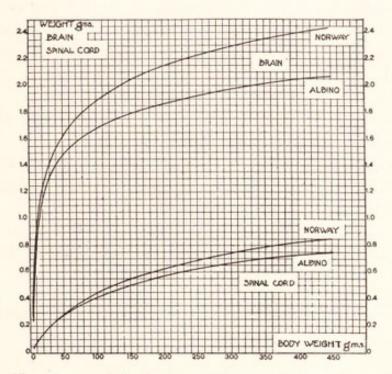


Chart 31 Norway rat, giving brain weight on the body weight. Males only. With the corresponding graph for the Albino inserted for comparison. Formula 52, table 85. Also the spinal cord weight on the body weight. Males only. With the corresponding graph for the Albino inserted for comparison. Formula 54, table 85.

As a consequence, each value gotten by the foregoing computations has been corrected by adding one per cent to the value found to give the weight for the male brain and by subtracting one per cent to obtain the weight for the female brain.

Chart 31 gives the graph for the male brain weight on the body weight and the corresponding graph (male) for the Albino (see chart 9) is also drawn for comparison. The marked difference in the brain weight of the two forms is clearly shown.

Formula (53) gives the cranial capacity for the body weight—a useful datum in many instances.

Spinal cord weight on body weight. In the case of the spinal cord, the computation was made for the sexes combined by the aid of formula (54). Here again there is a difference according to sex, the male spinal cord exceeding the female by 0.2 per cent, and the value for both sexes combined, by 0.1 per cent. Corrections similar to those applied to the brain have been made in this case also. Chart (31) gives the graph for the male spinal cord on body weight and the corresponding graph (male) for the Albino (see chart 9) is also drawn for comparison.

Formula (55) gives the spinal cord weight (sexes combined)

on the brain weight-sexes combined, table 85.

2. Weight-length ratios. In table 86 are given the values for the Norway obtained by dividing the body weight by the body length, as these appear in table 85.

The explanation of the use of this table has been given on p. 72 in connection with the corresponding table 48 for the Albino.

GROWTH OF ORGANS IN RELATION TO BODY LENGTH: REFERENCES

Donaldson, '12, '12 a. Donaldson and Hatai, '11.

TABLE 85

Gives the tail length, body weight, brain weight and spinal cord weight for each millimeter of body length of the male and female Norway rat respectively.

See Charts 28, 29, 30, 31.

		MALES				FEM.	LLES	
Body	Tail	Body	Weig	ght of		Body	Weig	ht of
length	length	weight	Brain	Spinal cord	Tail length	weight	Brain	Spinal cord
mm.	mm.	gms.	gms.	gms.	mm.	gms.	gms.	gms.
50	15.0	4.4	92	0.031	16.0	4.6		0.032
51	16.2	4.8		0.034	17.2	4.9		0.035
52	17.3	5.1	0.270	0.037	18.4	5.2	0.307	0.038
53	18.5	5.4	0.367	0.040	19.6	5.6	0.393	0.041
54	19.6	5.8	0.443	0.043	20.8	5.9	0.462	0.044
55	20.8	6.1	0.508	0.046	21.9	6.3	0.522	0.047
56	21.9	6.5	0.563	0.049	23.1	6.6	0.574	0.050
57	23.0	6.8	0.611	0.052	24.3	7.0	0.620	0.053
58	24.1	7.2	0.655	0.055	25.4	7.4	0.661	0.056
59	25.3	7.6	0.694	0.058	26.5	7.7	0.698	0.059
60	26.4	7.9	0.730	0.061	27.7	8.1	0.732	0.063
61	27.5	8.3	0.763	0.064	28.8	8.5	0.763	0.066
62	28.6	8.7	0.794	0.067	29.9	8.9	0.793	0.069
63	29.7	9.1	0.823	0.070	31.1	9.3	0.820	0.072
64	30.8	9.5	0.850	0.074	32.2	9.7	0.846	0.075
65	31.9	9.9	0.875	0.077	33.3	10.1	0.871	0.078
66	32.9	10.3	0.900	0.080	34.4	10.5	0.894	0.082
67	34.0	10.7	0.923	0.083	35.5	10.9	0.916	0.085
68	35.1	11.1	0.944	0.086	36.6	11.3	0.937	0.088
69	36.2	11.5	0.965	0.090	37.7	11.8	0.957	0.091
70	37.2	11.9	0.985	0.093	38.8	12.2	0.977	0.095
71	38.3	12.4	1.005	0.096	39.9	12.6	0.995	0.098
72	39.4	12.8	1.023	0.099	41.0	13.1	1.013	0.101
73	40.4	13.3	1.041	0.103	42.1	13.5	1.031	0.104
74	41.5	13.7	1.059	0.106	43.1	14.0	1.048	0.108
75	42.5	14.2	1.075	0.109	44.2	14.5	1.064	0.111
76	43.6	14.7	1.092	0.113	45.3	14.9	1.080	0.114
77	44.6	15.1	1.107	0.116	46.4	15.4	1.095	0.118
78	45.7	15.6	1.123	0.119	47.4	15.9	1.110	0.121
79	46.7	16.1	1.138	0.123	48.5	16.4	1.124	0.125
80	47.7	16.6	1.152	0.126	49.5	16.9	1.138	0.128
81	48.8	17.1	1.166	0.129	50.6	17.4	1.152	0.131
82	49.8	17.6	1.180	0.133	51.7	17.9	1.166	0.135

TABLE 85—Continued

		MALES	3	FEMALES				
Body length	Tail length	Body weight	Weight of			Body	Weight of	
			Brain	Spinal cord	Tail length	weight	Brain	Spinal cord
mm.	mm.	gms.	gms.	gms.	mm.	gms.	gms.	gms.
83	50.8	18.1	1.194	0.136	52.7	18.5	1.179	0.138
84	51.9	18.7	1.207	0.140	53.8	19.0	1.192	0.142
85	52.9	19.2	1.220	0.143	54.8	19.6	1.204	0.145
86	53.9	19.7	1.232	0.146	55.8	20.1	1.216	0.149
87	54.9	20.3	1.245	0.150	56.9	20.7	1.229	0.152
88	55.9	20.8	1.257	0.153	57.9	21.2	1.240	0.156
89	57.0	21.4	1.269	0.157	59.0	21.8	1.252	0.159
90	58.0	22.0	1.281	0.160	60.0	22.4	1.264	0.163
91	59.0	22.5	1.292	0.164	61.0	23.0	1.275	0.166
92	60.0	23.1	1.303	0.167	62.1	23.6	1.286	0.170
93	61.0	23.7	1.315	0.171	63.1	24.2	1.297	0.173
94	62.0	24.3	1.325	0.174	64.1	24.8	1.307	0.177
95	63.0	25.0	1.336	0.178	65.1	25.4	1.318	0.180
96	64.0	25.6	1.347	0.181	66.1	26.1	1.328	0.184
97	65.0	26.2	1.357	0.185	67.2	26.7	1.338	0.188
98	66.0	26.9	1.368	0.189	68.2	27.4	1.348	0.191
99	67.0	27.5	1.378	0.192	69.2	28.0	1.358	0.195
100	68.0	28.2	1.388	0.196	70.2	28.7	1.368	0.198
101	69.0	28.8	1.398	0.199	71.2	29.4	1.378	0.202
102	70.0	29.5	1.408	0.203	72.2	30.1	1.388	0.206
103	71.0	30.2	1.417	0.207	73.2	30.8	1.397	0.209
104	72.0	30.9	1.427	0.210	74.2	31.5	1.406	0.213
105	73.0	31.6	1.436	0.214	75.2	32.2	1.416	0.217
106	73.9	32.3	1.446	0.218	76.2	33.0	1.425	0.220
107	74.9	33.1	1.455	0.221	77.2	33.7	1.434	0.224
108	75.9	33.8	1.464	0.225	78.2	34.5	1.443	0.228
109	76.9	34.6	1.473	0.229	79.2	35.2	1.452	0.232
110	77.9	35.3	1.482	0.232	80.2	36.0	1.460	0.235
111	78.8	36.1	1.491	0.236	81.2	36.8	1.469	0.239
112	79.8	36.9	1.499	0.240	82.2	37.6	1.477	0.243
113	80.8	37.7	1.508	0.244	83.2	38.4	1.486	0.247
114	81.8	38.5	1.517	0.247	84.2	39.3	1.494	0.250
115	82.7	39.3	1.525	0.251	85.2	40.1	1.503	0.254
116	83.7	40.2	1.534	0.255	86.2	40.9	1.511	0.258
117	84.7	41.0	1.542	0.259	87.2	41.8	1.519	0.262
118	85.6	41.9	1.550	0.262	88.1	42.7	1.527	0.266

TABLE 85—Continued

MALES					FEMALES			
Body length	Tail length	Body weight	Weight of			Body	Weight of	
			Brain	Spinal cord	Tail length	weight	Brain	Spinal cord
mm.	mm.	gms.	gms.	gms.	mm.	gms.	gms.	gms.
119	86.6	42.7	1.558	0.266	89.1	43.6	1.535	0.269
120	87.6	43.6	1.567	0.270	90.1	44.5	1.543	0.273
121	88.5	44.5	1.575	0.274	91.1	45.4	1.551	0.277
122	89.5	45.4	1.583	0.278	92.1	46.3	1.559	0.281
123	90.5	46.3	1.591	0.281	93.0	47.3	1.567	0.285
124	91.4	47.3	1.599	0.285	94.0	48.2	1.575	0.289
125	92.4	48.2	1.606	0.289	95.0	49.2	1.582	0.292
126	93.4	49.2	1.614	0.293	96.0	50.2	1.590	0.296
127	94.3	50.2	1.622	0.297	96.9	51.2	1.598	0.300
128	95.3	51.1	1.630	0.301	97.9	52.2	1.605	0.304
129	96.2	52.1	1.637	0.305	98.9	53.2	1.613	0.308
130	97.2	53.2	1.645	0.308	99.8	54.2	1.620	0.312
131	98.1	54.2	1.652	0.312	100.8	55.3	1.627	0.316
132	99.1	55.3	1.660	0.316	101.8	56.4	1.635	0.320
133	100.0	56.3	1.667	0.320	102.7	57.5	1.642	0.324
134	101.0	57.4	1.675	0.324	103.7	58.6	1.649	0.328
135	101.9	58.5	1.682	0.328	104.7	59.7	1.657	0.332
136	102.9	59.6	1.689	0.332	105.6	60.9	1.664	0.336
137	103.8	60.7	1.697	0.336	106.6	62.0	1.671	0.339
138	104.8	61.9	1.704	0.340	107.5	63.2	1.678	0.343
139	105.7	63.0	1.711	0.344	108.5	64.3	1.685	0.347
140	106.7	64.2	1.718	0.348	109.5	65.6	1.692	0.351
141	107.6	65.4	1.725	0.352	110.4	66.8	1.699	0.355
142	108.6	66.6	1.732	0.356	111.4	68.0	1.706	0.359
143	109.5	67.8	1.739	0.360	112.3	69.3	1.713	0.363
144	110.5	69.1	1.746	0.363	113.3	70.6	1.720	0.368
145	111.4	70.4	1.753	0.367	114.2	71.9	1.727	0.372
146	112.3	71.6	1.760	0.371	115.2	73.2	1.733	0.376
147	113.3	72.9	1.767	0.375	116.1	74.5	1.740	0.380
148	114.2	74.3	1.774	0.379	117.1	75.9	1.747	0.384
149	115.2	75.6	1.781	0.384	118.0	77.2	1 754	0.388
150	116.1	77.0	1.788	0.388	119.0	78.6	1.760	0.392
151	117.0	78.3	1.794	0.392	119.9	80.0	1.767	0.396
152	118.0	79.7	1.801	0.396	120.9	81.5	1.774	0.400
153	118.9	81.2	1.808	0.400	121.8	82.9	1.780	0.404

TABLE 85—Coutinued

		MALE	s			FEM	ALE8	
Body	Tail	Body	We	ight of		Body	Weight of	
length	length	weight	Brain	Spinal cord	Tail length	weight	Brain	Spinal
mm.	mm.	gms.	gms.	gms.	mm.	gms.	gms.	gms.
154	119.8	82.6	1.815	0.404	122.8	84.4	1.787	0.408
155	120.8	84.1	1.821	0.408	123.7	85.9	1.793	0.412
156	121.7	85.6	1.828	0.412	124.7	87.4	1.800	0.416
157	122.6	87.1	1.835	0.416	125.6	89.0	1.807	0.420
158	123.6	88.6	1.841	0.420	126.6	90.6	1.813	0.424
159	124.5	90.1	1.848	0.424	127.5	92.1	1.819	0.429
160	125.4	91.7	1.854	0.428	128.4	93.8	1.826	0.433
161	126.4	93.3	1.861	0.432	129.4	95.4	1.832	0.437
162	127.3	94.9	1.867	0.436	130.3	97.1	1.839	0.441
163	128.2	96.6	1.874	0.441	131.3	98.7	1.845	0.445
164	129.1	98.2	1.880	0.445	132.2	100.5	1.851	0.449
165	130.1	99.9	1.887	0.449	133.1	102.2	1.858	0.453
166	131.0	101.6	1.893	0.453	134.1	104.1	1.864	0.458
167	131.9	103.4	1.899	0.457	135.0	105.7	1 870	0.462
168	132.8	105.1	1.906	0.461	135.9	107.5	1 877	0.466
169	133.8	106.9	1.912	0.465	136.9	109.4	1.883	0.470
170	134.7	108.7	1.918	0.469	137.8	111.3	1.889	0.474
171	135.6	110.6	1.925	0.474	138.8	113.1	1.895	0.478
172	136.5	112.4	1.931	0.478	139.7	115.1	1.901	0.483
173	137.5	114.3	1.937	0.482	140.6	117.0	1.908	0.487
174	138.4	116.3	1.944	0.486	141.5	119.0	1.914	0.491
175	139.3	118.2	1.950	0.490	142.5	121.0	1.920	0.495
176	140.2	120.2	1.956	0.494	143.4	123.0	1.926	0.499
177	141.1	122.2	1.962	0.499	144.3	125.1	1.932	0.504
178	142.1	124.2	1.968	0.503	145.3	127.2	1.938	0.508
179	143.0	126.3	1.975	0.507	146.2	129.3	1.9.4	0.512
180	143.9	128.4	1.981	0.511	147.1	131.5	1.949	0.516
181	144.8	130.5	1.987	0.515	148.1	133.7	1.955	0.520
182	145.7	132.7	1.993	0.520	149.0	135.9	1.962	0.525
83	146.7	134.9	1.999	0.524	149.9	138.1	1.968	0.529
84	147.6	137.1	2.005	0.528	150.8	140.4	1.974	0.533
85	148.5	139.3	2.011	0.532	151.8	142.8	1.980	0.537
186	149.4	141.6	2.017	0.536	152.7	145.1	1.986	0.542
187	150.3	144.0	2.023	0.541	153.6	147.5	1.992	0.546
.88	151.2	146.3	2.029	0.545	154.5	149.9	1.998	0.550
189	152.2	148.7	2.035	0.549	155.5	152.4	2.004	0.554
190	153.1	151.1	2.042	0.553	156.4	154.9	2.010	0.559

TABLE 85-Continued

		MALE	8			FEM/	LES	
Body	Tail	Body	Wei	ght of		Body	Weight of	
length	length	weight	Brain	Spinal cord	Tail length	weight	Brain	Spinal cord
mm.	mm.	gms.	gms.	gms.	mm.	gms.	gms.	gms.
191	154.0	153.6	2.047	0.557	157.3	157.4	2.016	0.563
192	154.9	156.1	2.053	0.562	158.2	160.0	2.022	0.567
193	155.8	158.6	2.059	0.566	159.1	162.6	2.028	0.572
194	156.7	161.2	2.065	0.570	160.1	165.2	2.034	0.576
195	157.6	163.8	2.071	0.575	161.0	167.9	2.039	0.580
196	158.5	166.4	2.077	0.579	161.9	170.6	2.045	0.584
197	159.4	169.1	2.083	0.583	162.8	173.4	2.051	0.589
198	160.4	171.8	2.089	0.587	163.7	176.2	2.057	0.593
199	161.3	174.6	2.095	0.592	164.7	179.1	2.063	0.597
200	162.2	177.4	2.101	0.596	165.6	181.9	2.069	0.602
201	163.1	180.2	2.107	0.600	166.5	184.9	2.074	0.606
202	164.0	183.1	2.112	0.694	167.4	187.8	2.080	0.610
203	164.9	186.0	2.118	0.609	168.3	190.9	2.086	0.615
204	165.8	189.0	2.124	0.613	169.2	193.9	2.092	0.619
205	166.7	192.0	2.130	0.617	170.2	197.0	2.098	0.623
206	167.6	195.0	2.136	0.622	171.1	200.2	2.103	0.628
207	168.5	198.1	2.142	0.626	172.0	203.4	2.109	0.632
208	169.4	201.3	2.148	0.630	172.9	206.6	2.115	0.636
209	170.3	204.4	2.153	0.635	173.8	209.9	2.120	0.641
210	171.2	207.7	2.159	0.639	174.7	213.2	2.126	0.645
211	172.1	210.9	2.165	0.643	175.6	216.6	2.132	0.649
212	173.1	214.3	2.171	0.647	176.6	220.1	2.138	0.654
213	174.0	217.7	2.177	0.652	177.5	223.5	2.143	0.658
214	174.9	221.1	2.182	0.656	178.4	227.1	2.149	0.662
215	175.8	224.5	2.188	0.660	179.3	230.7	2.155	0.667
216	176.7	228.1	2.194	0.665	180.2	234.3	2.160	0.671
217	177.6	231.6	2.199	0.669	181.1	238.0	2.166	0.675
218	178.5	235.3	2.205	0.673	182.0	241.8	2.171	0.680
219	179.4	239.0	2.211	0.678	182.9	245.6	2.177	0.684
220	180.3	242.7	2.217	0.682	183.8	249.4	2.183	0.689
221	181.2	246.5	2.222	0.686	184.8	253.3	2.188	0.693
222	182.1	250.3	2.228	0.691	185.7	257.3	2.194	0.697
223	183.0	254.2	2.234	0.695	186.6	261.3	2.199	0.702
224	183.9	258.2	2.239	0.699	187.5	265.4	2.205	0.706
225	184.8	262.2	2.245	0.704	188.4	269.6	2.211	0.710
226	185.7	266.3	2.251	0.708	189.3	273.8	2.216	0.715
227	186.6	270.4	2.256	0.713	190.2	278.1	2.222	0.719

TABLE 85—Concluded

		MALE	8			FEM	ALES	
Body	Tail	Body	Wei	ight of		Body	Weight of	
length	length	weight	Brain	Spinal cord	Tail length	weight	Brain	Spinal
mm.	mm.	gms.	gms.	gms.	mm.	gms.	gms.	gms.
228	187.5	274.6	2.262	0.717	191.1	282.4	2.227	0.724
229	188.4	278.8	2.268	0.721	192.0	286.8	2.233	0.728
230	189.3	283.1	2.273	0.726	192.9	291.3	2.238	0.732
231	190.2	287.5	2.279	0.730	193.8	295.8	2.244	0.737
232	191.1	292.0	2.285	0.734	194.7	300.4	2.250	0.741
233	192.0	296.5	2.290	0.739	195.6	305.1	2.255	0.746
234	192.9	301.0	2.296	0.743	196.5	309.8	2.261	0.750
235	193.8	305.7	2.301	0.748	197.4	314.6	2.266	0.754
236	194.7	310.4	2.307	0.752	198.3	319.5	2.272	0.759
237	195.5	315.1	2.312	0.756	199.2	324.4	2.277	0.763
238	196.4	320.0	2.318	0.761	200.1	329.4	2.283	0.768
239	197.3	324.9	2.324	0.765	201.1	334.5	2.288	0.772
240	198.2	329.9	2.329	0.769	202.0	339.7	2.294	0.776
241	199.1	334.9	2.335	0.774	202.9	344.9	2.299	0.781
242	200.0	340.1	2.340	0.778	203.8	350.2	2.305	0.785
243	200.9	345.3	2.346	0.783	204.7	255.6	2.310	0.790
244	201.8	350.5	2.351	0.787	205.6	361.1	2.316	0.794
245	202.7	355.9	2.357	0.791	206.5	366.7	2.321	0.799
246	203.6	361.3	2.363	0.796	207.4	372.3	2.327	0.803
247	204.5	366.8	2.368	0.800	208.3	378.0	2.332	0.807
248	205.4	372.4	2.374	0.805	209.2	383.8	2.337	0.812
249	206.3	378.1	2.379	0.809	210.1	389.7	2.343	0.816
250	207.2	383.9	2.385	0.813	211.0	395.7	2.349	0.821
251		389.7	2.390	0.818		401.7	2.354	0.825
252		395.6	2.396	0.822		407.9	2.359	0.830
253		401.6	2.401	0.827		414.1	2.365	0.834
254		407.7	2.407	0.831		420.4	2.370	0.838
255		413.9	2.412	0.835		426.9	2.376	0.843
256		420.2	2.418	0.840		433.4	2.381	0.847
257		426.5	2.423	0.844		440.0	2.386	0.852
258		433.0	2.429	0.849		446.7	2.392	0.856
259		439.6	2.434	0.853		453.5	2.397	0.861
260		446.2	2.440	0.858		460.4	2.403	0.865

TABLE 86

Giving in grams the values obtained by dividing the body weight by the body length in millimeters. Based on data in table 85

BODY	RATIO		BODY	RA	.T10	BODY	RATIO	
LENGTH	Male	Female	LENGTH	Male	Female	LENGTH	Male	Female
50	0.09	0.09	87	0.23	0.24	124	0.38	0.39
51	0.09	0.10	88	0.24	0.24	125	0.39	0.39
52	0.10	0.10	89	0.24	0.24	126	0.39	0.40
53	0.10	0.11	90	0.24	0.25	127	0.40	0.40
54	0.11	0.11				128	0.40	0.41
55	0.11	0.11	91	0.25	0.25	129	0.40	0.41
56	0.12	0.12	92	0.25	0.26	130	0.41	0.42
57	0.12	0.12	93	0.25	0.26			
58	0.12	0.13	94	0.26	0.26	131	0.41	0.42
59	0.13	0.13	95	0.26	0.27	132	0.42	0.43
60	0.13	0.14	96	0.27	0.27	133	0.42	0.43
	17.5		97	0.27	0.28	134	0.43	0.44
61	0.14	0.14	98	0.27	0.28	135	0.43	0.44
62	0.14	0.14	99	0.28	0.28	136	0.44	0.45
63	0.14	0.15	100	0.28	0.29	137	0.44	0.45
64	0.15	0.15				138	0.45	0.46
65	0.15	0.16	101	0.29	0.29	139	0.45	0.46
66	0.16	0.16	102	0.29	0.30	140	0.46	0.47
67	0.16	0.16	103	0.29	0.30	277		
68	0.16	0.17	104	0.30	0.30	141	0.46	0.47
69	0.17	0.17	105	0.30	0.31	142	0.47	0.48
70	0.17	0.17	106	0.30	0.31	143	0.47	0.48
	0.21		107	0.31	0.31	144	0.48	0.49
71	0.17	0.18	108	0.31	0.32	145	0.49	0.50
72	0.18	0.18	109	0.32	0.32	146	0.49	0.50
73	0.18	0.18	110	0.32	0.33	147	0.50	0.51
74	0.19	0.19	111	0.22	0 99	148	0.50	0.51
75	0.19	0.19	111	0.33	0.33	149	0.51	0.52
76	0.19	0.20	112	0.33	0.34	150	0.51	0.52
77	0.20	0.20	113	0.33	0.34			
78	0.20	0.20	114	0.34	0.34	151	0.52	0.53
79	0.20	0.21	115	0.34	0.35	152	0.52	0.54
80	0.21	0.21	116	0.35	0.35	153	0.53	0.54
-			117	0.35	0.36	154	0.54	0.55
81	0.21	0.21	118	0.36	0.36	155	0.54	0.55
82	0.21	0.22	119	0.36	0.37	156	0.55	0.56
83	0.22	0.22	120	0.36	0.37	157	0.55	0.57
84	0.22	0.23	121	0.37	0.38	158	0.56	0.57
85	0.23	0.23	122	0.37	0.38	159	0.57	0.58
86	0.23	0.23	123	0.38	0.38	160	0.57	0.59

TABLE 86—Concluded .

BODY	R.	TIO	BODY	RA	TIO	BODY	RATIO	
LENGTH	Male	Female	LENGTH	Male	Female	LENGTH	Male	Female
161	0.58	0.59	195	0.84	0.86	228	1.20	1.24
162	0.59	0.60	196	0.85	0.87	229	1.22	1.25
163	0.59	0.61	197	0.86	0.88	230	1.23	1.27
164	0.60	0.61	198	0.87	0.89			
165	0.61	0.62	199	0.88	0.90	231	1.24	1.28
166	0.61	0.63	200	0.89	0.91	232	1.26	1.29
167	0.62	0.63				233	1.27	1.31
168	0.63	0.64	201	0.90	0.92	234	1.29	1.32
169	0.63	0.65	202	0.91	0.93	235	1.30	1.34
170	0.64	0.65	203	0.92	0.94	236	1.32	1.35
		34.50.0	204	0.93	0.95	237	1.33	1.37
171	0.65	0.66	205	0.94	0.96	238	1.34	1.38
172	0.65	0.67	206	0.95	0.97	239	1.36	1.40
173	0.66	0.68	207	0.96	0.98	240	1.37	1.41
174	0.67	0.68	208	0.97	0.99			
175	0.68	0.69	209	0.98	1.00	241	1.39	1.43
176	0.68	0.70	210	0.99	1.02	242	1.41	1.45
177	0.69	0.71				243	1.42	1.46
178	0.70	0.71	211	1.00	1.03	244	1.44	1.48
179	0.71	0.72	212	1.01	1.04	245	1.45	1.50
180	0.71	0.73	213	1.02	1.05	246	1.47	1.51
181	0.72	0.74	214	1.03	1.06	247	1.49	1.53
182	0.72	0.74	215	1.04	1.07	248	1.50	1.55
183	0.73	0.75	216	1.06	1.08	249	1.52	1.57
184	0.75	0.76	217	1.07	1.10	250	1.54	1.58
185	0.75	700000000000000000000000000000000000000	218	1.08	1.11			-
186	0.76	0.77	219	1.09	1.12	251	1.55	1.60
187	0.77	0.79	220	1.10	1.13	252	1.57	1.62
188	0.78	0.79		200,000		253	1.59	1.64
189	0.79	0.81	221	1.12	1.15	254	1.61	1.66
190	0.79	500 TO 500 H	222	1.13	1.16	255	1.62	1.67
100	0.00	0.82	223	1.14	1.17	256	1.64	1.69
191	0.80	0.82	224	1.15	1.18	257	1.66	1.71
192	0.81	0.83	225	1.17	1.20	258	1.68	1.73
193	0.82	0.84	226	1.18	1.21	259	1.70	1.75
194	0.83	0.85	227	1.19	1.23	260	1.72	1.77

CHAPTER 14

GROWTH IN TERMS OF WATER AND SOLIDS

- Percentage of water in blood.
 Percentage of water in brain and spinal cord.
- (1) Percentage of water in the blood. Hatai (MS '15) has determined the percentage of water in the blood of a small series of Norways.

The Norways were recently caught and examined before the day's feeding. The rat was chloroformed, but before the heart ceased beating it was exposed in situ, the tip clipped away and the blood from it caught in a small glass weighing bottle. The fresh weight was immediately taken and after drying at 95°C. for a week the weight of the residue was obtained. The results are given in table 87.

TABLE 87

Giving the percentage of water in the blood of the Norway rat, Hatai (MS., '15)

	NUMBER OF	BODYWEIGH	T, GRAMS	PERCENTAGE OF WATER IN BLOOD		
SEX	CASES	Range	Mean	Range	Mean	
M	5	114-169	144	79.02-82.05	80.34	
M	6	173-440	243	79.92-81.53	80.52	
F	4	103-190	148	79.82-80.35	80.05	
F	5	199-304	271	79.52-81.77	80.82	

(2) Percentage of water in the brain and spinal cord. Since the percentage of water in the nervous system is most closely linked with age, a precise determination in the case of the Norway rat is wanting, by reason of the difficulty of rearing the Norway in captivity. A few data are however at hand.

From Norways born in captivity from trapped females we obtain the percentages according to age, given in table 88. It

TABLE 88.

Showing the percentage of water in the brain and spinal cord of the Norway rat at different ages (sexes combined), (Donaldson and Hatai, '11)

NUMBER OF CASES	LORING		PERCENTAGE OF WATER		
NUMBER OF CASES	AGE IN DAYS	BODY WEIGHT	Brain	Spinal core	
		grams			
5	1	5.1	88.2	87.0	
3	10	12.2	86.9	83.3	
8	13	18.1	85.3	82.5	
6	15	17.7	84.5	81.0	
1	16	26.1	82.8	79.4	
0	19	25.5	81.5	77.8	
7	25	32.6	80.9	76.7	
4	40	35.8	79.2	74.3	
5	47	38.5	79.3	74.0	

is to be noted that for the most part the rats grew poorly, as shown by the body weights. (Donaldson and Hatai, '11.)

For Norways trapped in Philadelphia and killed shortly after capture, we obtain, according to body weight, sexes combined, the percentage values of water in brain and spinal cord which are given in table 89.

A comparison of the values for the Norways and Albinos shows that the percentage of water in the Norways tends to run above that in the Albinos—being + 0.37 per cent for the brain and + 0.73 per cent for the spinal cord.

TABLE 89

Giving the percentage of water in the brain and spinal cord of the Norway rataccording to body weight (sexes combined). Based on Donaldson and Hatai, '11, tables 11 and 14

	NUMBER OF CASES	PERCENTAGE OF WA	ATER (SEXES COMBINE	
BODY WEIGHT IN GRAMS	(SEXES COMBINED)	Brain	Spinal cord	
195	7	78.4	71.3	
205	8	78.4	71.7	
215	14	78.6	71.7	
225	13	78.6	70.8	
235	16	78.5	71.4	
245	14	78.7	71.5	
255	12	78.5	71.5	
265	14	78.3	70.1	
275	11	78.3	70.3	
285	15	78.3	70.4	
295	9	78.6	71.0	
305	11	78.6	70.1	
315	11	78.4	70.0	
325	12	78.0	69.3	
335	10	78.2	70.3	
345	9	78.2	69.7	
355	3	78.3	70.7	
865	8	78.1	68.0	
375	7	78.3	71.2	
885	5	78.0	69.6	
895	3	78.3	69.8	
105	2	78.0	69.0	
15	5	78.4	70.2	
25	2	78.0	69.0	
35				
45	6	78.5	69.6	
55	1	78.0	69.0	
165	1	78.0	67.0	

Growth in terms of Water and Solids: References Donaldson and Hatai '11.

CHAPTER 15

REFERENCES TO THE LITERATURE

Introduction. The list of references which follows does not claim to be complete and in several directions is intentionally selective. For example, many bacteriological investigations in which the rat has been used are omitted, as are also a large number of descriptive papers belonging to the earlier zoölogical literature. To this list of omissions belong about a dozen titles which do not appear to be accessible in any of the larger libraries of the United States; the printing of such titles was therefore regarded as superfluous.

On the other hand, it has been my intention to include the titles of all the papers which record anatomical investigations and physiological studies, so far as these were generally available.

At the outset of such a plan one meets with the difficulty that the rat has been used in many cases where the fact is not stated in the title of the paper, and moreover in other instances it is only one of several animals which have been examined or tested.

In the selection of the titles of this class the plan has been to include everything which gave information—no matter how restricted—that applied to the rat. Of course it is inevitable under these circumstances that some papers should have been overlooked.

In accordance with the general plan of the book we have included papers not only on the wild Norway and the domesticated Albino, but also on both forms of the house rat, Mus rattus rattus and Mus rattus alexandrinus.

The specific names and designations as given by the authors are quoted without comment but can be revised by reference to the foregoing section on nomenclature. Now and then I have permitted myself an annotation when this was pertinent.

Thus far the statements apply to the literature which follows and which is arranged alphabetically by authors' names and under authors by date.

It was desirable at the same time to get some sort of a subject classification, and this has been done in the following manner.

At the end of each chapter, references to the literature bearing on the subject of the chapter are given by author's name and date. The full reference appears in the list of the end of the volume. The chapter lists contain not only the citations in the text, but also other references which have not been cited there. The presentation is not uniform but dictated by the arrangement of the chapter. Where possible the references are given in alphabetical order without subdivisions, but where it will be of advantage to have the references grouped according to the sub-headings, this is done, although under this plan the same reference often appears under more than one sub-heading.

REFERENCES TO THE LITERATURE

ADDENDA: Pp. 265-266

ACKROYD, H. 1914, 1915 On the purine metabolism of rats. Biochem. J., vol. 8, pp. 434-437.

ADAMS, HENRY F. 1913 A set of blind white rats which could not learn the

maze. J. Animal Behavior, vol. 3, pp. 300-302.

3 Addison, W. H. F. 1911 The development of the Purkinje cells and of the cortical layers in the cerebellum of the albino rat. J. Comp. Neurol., vol. 21, pp. 459-481.

Addison, W. H. F. and Appleton, J. L. 1915 The structure and growth of the incisor teeth of the albino rat. J. of Morphol., vol. 26, pp. 43-96.

- 5 Adloff, Paul 1898 Zur Entwickelungsgeschichte des Nagetiergebisses. Inaug.-Diss. Universität Rostock, Gustav Fischer, Jena. Figs. 77-81 inclusive.
 - Advisory Committee see (Reports on Plague Investigations)
- Advisory Committee 1912 Observations on the breeding of Mus rattus in captivity. J. Hyg., Plague Suppl. 1, pp. 193-206.

1912 a The immunity of the wild rat in India. J. Hyg., Plague Suppl.

II, 7th Report on Plague Investigations in India, pp. 229–265.

1912 b Experimental plague epidemics among rats. J. Hyg., Plague Suppl. II, 7th Report on Plague Invest. in India, pp. 292-299.

7 Ahrend 1903 Beitrag zur Geschichte des sog. "Rattenkönigs." Natur. u. Haus., vol. 11, pp. 371-373.

AKAMATSU, KUNITARO 1905 On the brown rat. Zool. Mag. (In Japanese). Tokio, vol. 17, no. 203.

- Albertus, Magnus 1206-1280 B. Alberti Magni, Opera Omnia, edited by August Borgnet—38 vols., 1890-1899, Paris. See vol. 12, 1891, p. 420. Mus "quod nos ratum vocamus," in Lib. xxii De Animalibus, Tract II, n. 78.
- Aldrich, T. B. 1912 On feeding young white rats the posterior and the anterior parts of the pituitary gland. Am. J. Physiol., vol. 31, pp. 94-101.
- ALLEN, EZRA 1912 The cessation of mitosis in the central nervous system of the albino rat. J. Comp. Neurol., vol. 22, pp. 547-568.
- ALSTON, EDWARD R. 1879-1882 Biologia Centrali Americana. Mammals, p. 141.
- APOLANT, Hugo 1896 Ueber die sympathischen Ganglienzellen der Nager. Arch. f. mikr. Anat., vol. 47, pp. 461-471, p. 466, rats mentioned—mostly rabbits.
- Arnstein, C. 1877 Zur Kenntnis der quergestreiften Muskulatur in den Lungenvenen. Med. Centralbl., 15 Jahrg., pp. 692-694. Extended to veins of small caliber in the rat.
- Aron, Hans 1912 Weitere Untersuchungen über die Beeinflussung des Wachstums durch die Ernährung. Verhandl. der 29th Versamml. der Gesellsch. f. Kinderheilk. in der Abt. für Kinderheilkunde der 84 Versamml. der Gesellsch. deut. Naturforcher und Aerzte in Münster. Bergmann. Wiesbaden.
- Aron, Hans 1913 Biochemie des Wachstums des Menschen und der höheren Tiere. (In Oppenheimer, Carl, Handbuch der Biochemie des Menschen und der Tiere—Engänzungsband, pp. 610-674. Fischer, Jena.)
- Asai, K. 1908 Die Blutgefässe des häutigen Labyrinthes der Ratte. Beiträge zur vergleichenden Anatomie des inneren Ohres. Anat. Hefte, vol. 36, pp. 711-728.
- ASCHER, L. 1910 Beitrag zur Kenntnis der Rattenkrätze. Arch. f. Dermat. u. Syph., Wien u. Leipz., vol. 101, pp. 211-220. 2 pl.
- Asher, Leon and Erdely, A. 1903 Ueber die Beziehung zwischen Bau und Function des lymphatischen Apparates des Darmes. Centralbl. f. Physiol., vol. 16, pp. 705-709.
- 20 Asher, Leon 1908 Des Verhalten des Darmepithels bei verschiedenen funktionellen Zuständen. Ztschr. f. Biol., vol. 51, pp. 115-126.
- Askanazy, M. 1908 Die Teratome nach ihrem Bau, ihrem Verlauf, ihrer Genese und im Vergleich zum experimentellen Teratoid. Verh. deutsch. path. Ges., vol. 11, pp. 39-82.
- Asp, Georg A. 1873 Bidrag till spottkörtlarnes mikroskopiska anatomi. pp. 128, 1 pl. J. C. Frenckell & Son, Helsingfors.

 1873 a Om nervernas ändingsätt i spottkörtlana. (Ueber die Endigungsweise der Nerven in den Speicheldrüsen.) Nord. med. Ark., vol. 5, no. 5, pp. 1–9.
- 23 Astaschewsky, P. 1877 Ueber die diastatische Wirkung des Speichels bei verschiedenen Tieren. Centralbl. f. d. med. Wiss., pp. 531-534. p. 533, saliva of rat remarkably active.
- Aumann 1912 Vergleichende Untersuchungen über die Wirksamkeit bakterieller und chemischer Rattenvertilgungsmittel. Centralbl. f. Bakteriol., 1 Abt., vol. 63, pp. 212-221.

AUNETT, H. E. 1908 Virus for the destruction of rats and mice. Brit. M. J., Lond., vol. 2, p. 1524.

BACOT, A. 1914 A study of the bionomics of the common rat fleas and other species associated with human habitations, with special reference to the influence of temperature and humidity at various periods of the life history of the insect. J. Hyg., Plague Suppl. III, pp. 447-654.

Bacot, A. W. and Martin, C. J. 1914 Observations on the mechanism of the transmission of plague by fleas. J. Hyg., Plague Suppl. III, 8th Report

on Plague Invest. in India, pp. 423-440.

Bahr, L. 1906 Ueber das Vorkommen von Trichinen bei der Ratte. Zeitschr. Infektionskr. parasit. Krankh. Hyg. Haustiere, vol. 2, pp. 62-65.

1909 Die Resultate der Versuche zur rationellen Rattenvertilgung vermittelst Präparate des Laboratoriums. Centralbl. f. Bakteriol., 1
Abt. vol. 52, pp. 441-455.

1909 a The rational extirpation of rats by means of ratin prepara-

tions. Hälsovännen, Stockholm, vol. 24, pp. 329-333.

1910 Zur rationellen Vertilgung von Ratten mit Hilfe von Präparaten des Laboratoriums unter besonderer Berücksichtigung des Ratinsystems. Ztschr. f. Fleisch. u. Milchhyg., Berl., vol. 20, pp. 389-393.

29 BAINBRIDGE, F. A. 1909 On the bacterial nature and efficiency of certain rat viruses. J. Path. and Bacteriol., vol. 13, pp. 457-466.

Bancroft, T. L. 1894 On the whip-worm of the rat's liver. J. and Proc. Roy. Soc. N. South Wales, 1893, Sydney, 1894, xxvii, 86-90, 2 pl.

- 3. Bannerman, W. B. 1906 The spread of plague in India. J. Hyg., vol. 6, pp. 179-211.
- Bardeleben, Karl von 1899 Handbuch der Anatomie, vol. 4, Centralnervensystem, I Teil, von Prof. Dr. Th. Ziehen., p. 12. Spinal cord weight; rat (Ranke).
- 33 BARNABO, VALENTINO 1913 Ulteriori richerce sperimentali sulla secrezione interna testicolare. Policlin., vol. 20, pp. 165-192.
- 3 BARRETT-HAMILTON, G. E. H. 1892 Mus alexandrinus in Ireland. The Zoölogist, vol. 16, p. 75.
- 35- Barteneff, L. 1891 On the distribution of the nerves in the plexus of the small intestine. Inaug.-Diss. 32 pp. 1 pl. (in Russian).
- Basch, S. von 1870 Die ersten Chyluswege und die Fettresorption. Sitz. d. k. Akad. d. Wiss. math.-naturw. Cl. Wien, vol. 62, Abt. 2, pp. 617-634. 1 pl.
- Bashford, E. T. and Murray, J. A., etc. 1900 General results of propagation of malignant new growths. The Imp. Cancer Research Fund, 3rd Scien. Report, pp. 262-283.
- BASLER, A. 1909 Beiträge zur Kenntnis der Bewegungsvorgänge des Blinddarminhaltes. Arch. f. d. ges. Physiol., vol. 128, pp. 251-276, 9 text figures.
- 39 Basset, Gardner C. 1914 Habit formation in a strain of albino rats of less than normal brain weight. Behavior monographs, vol 2, no. 4, serial number 9.
- Bate, Dorothea M. A. 1912 On a new species of mouse and other rodent remains from Crete. Geol. Mag. Dec., V. vol. ix, no. 571, pp. 4-6. Epimys (Mus) rattus from the pleistocene cave deposits of Crete.

- 4/ Bateson, W. 1903 The present state of knowledge of color heredity in mice and rats. Proc. Zoöl. Soc., London, vol. 2, p. 71.
- 42 Baumgart, Martin 1904 Vergleichende Untersuchungen über Mus rattus und Mus decumanus und über die Ursachen der Verdrängung der Hausratte durch die Wanderratte. Inaug.-Diss. Philos. Fak. Zürich.
- 43 BAYON, H. 1911 Demonstration of specimens relating to the culture of the leprosy bacillus. Brit. M. J. part 2, pp. 1269-1272.
 - 1912 Demonstration of acid-fast germs cultivated from cases of leprosy. Tr. Soc. Trop. M. and Hyg., vol. 5, pp. 103-105. Authors mentioned in text; no tables—rats.
 - 1912 a The experimental transmission of the spirochaete of European relapsing fever to rats and mice. Parasitology (Suppl. to the J. Hyg.) vol. 5, pp. 135–149 3 figs.; experiments on white rats, pp. 142–145; results summarized, not tabulated.
 - 1912 b The culture and identification of the germ of leprosy and the relationship of the human disease to rat leprosy. Tr. Soc. Trop. M. and Hyg., vol. 5, pp. 158-167.
 - 1912 c On the transmission of leprosy to animals by direct inoculation. Brit. M. J., part 1, pp. 424-426.
- 44 BECHSTEIN, J. M. 1801 Gemeinnützige Naturgeschichte Deutschlands nach allen drey Reichen. Zweite Ausgabe, vol 1, Säugethiere, pp. 931-952. Leipzig.
- 45. Bechterew, W. von 1890 Ueber die verschiedenen Lagen und Dimensionen der Pyramidenbahnen beim Menschen und den Thieren und über das Vorkommen von Fasern in denselben welche sich durch eine frühere Entwickelung auszeichnen. Neurol. Centralbl., pp. 738-741.
- 46 Beck, Wilhelm 1896 Über den Austritt des N. Hypoglossus und N. Cervicalis Primus aus dem Centralorgan beim Menschen und in der Reihe der Säugetiere unter besonderer Berücksichtigung der dorsalen Wurzeln. Anat Hefte, vol. 6, pp. 251-344. Mus rattus, p. 312.
- Beiling, Karl 1906 Beiträge zur makroskopischen und mikroskopischen Anatomie der Vagina und des Uterus der Säugetiere. Archiv. f. mikr. Anat., vol. 67, pp. 573-637. Mus decumanus, p. 588.
- 46 Bell, E. T. 1911 The interstitial granules of striated muscle and their relation to nutrition. Internat. Monat. f. Anat. u. Physiol., vol. 28, pp. 297-347
- 49 Bell, Thomas 1837-1874 British quadrupeds including the cetacea. John van Voorst, London; 2nd ed., pp. 310-320. Both rattus and decumanus: excellent pictures of each.
- 5°0 Bellonci, G. 1885 Del fuso direzionale e della formazione di un globulo polare nell'ovulo ovarico di alcuni mammiferi. Atti della R. Accad. dei Lincei, Ser 4. Rendiconti, pp. 285–286.
- 5'/ Belloy, G. 1899 Recherches sur l'origine des corps jaunes de l'ovaire chez le rat et le cochon d'Inde. Compt. rend. de l'Ass. d. Anat. Première session, Paris, pp. 47-52.
- Benda, Carl 1887 Untersuchungen über den Bau des funktionirenden Samenkanälchens einiger Säugethiere und Folgerungen für die Spermatogenese dieser Wirbelthierklasse. Archiv f. mikr. Anat., vol. 30, pp. 49– 110. Rat, pp. 58 and 66.

53 Benedicenti, A. 1892 Recherches sur les terminaisons nerveuses dans la muqueuse de la trachée. Résumé de l'Auteur. Arch. ital. de biol., vol. 17, pp. 46-48.

54 Bennett, Charles B. 1914 The cholesterol content of cancers in rats. J.

Biol. Chem., vol. 17. pp. 13-14.

Beretta, Artur 1913 La normala dentatura dei Roditori in rapporto alle anomalie dentali in questi osservate. Stomatol., vol. 10, no. 2 and 3.

Bergmann, A. M. 1908 Two methods for the extermination of rats, by the culture of Danysz' rat bacillus and ratin. Svensk Veterinärtidskr., Stockholm, vol. 13, pp. 377-387.

Berkley, H. J. 1893 The intrinsic pulmonary nerves by the silver method. J. Comp. Neur., vol. 3, pp. 107-111, 1 pl. Mus decumanus. 1895 The intrinsic pulmonary nerves in mammalia. Johns Hopkins

Hosp. Rep. (Baltimore), vol. 4, pp. 72-78 (240-246), 1 pl.

Berry, C. S. 1906 The imitative tendency of white rats. J. Comp. Neur. and Psychol., vol. 16, pp. 333-361.

Bert, Paul 1878 La pression barométrique; rescherches de physiologie expérimentale. G. Masson, Paris. Some observations on rats.

Bibra, Ernst von 1854 Vergleichende Untersuchungen über das Gehirn des Menschen und der Wirbelthiere. Basssermann and Mathy, Mannheim. Hausratte—Mus rattus, p. 22.

BIEDL, ARTUR 1913 Innere Sekretion. 2 vols. Urban and Schwarzenberg,

Berlin.

Bignotti, G. 1900 Sul tarso del Mus decumanus. Monit. zoöl. ital., vol. 11,

suppl. pp. 17-19.

Bircher, Eugen 1911 Die kretinische Degeneration (Kropf, endemischer 63 Kretinismus und Taubstummheit) in ihrer Beziehung zu anderen Wissensgebieten. Fortschr. d. Naturwissen. Forschung, vol. 2, pp. 273-338, p. 289, figures of the normal and abnormal thyroid of the rat. All references by name only. 1911 a Weitere Beiträge zur experimentellen Erzeugung des Kropfes. Die Kropfätiologie ein colloid-chemisches Problem. Ztschr. f. exper.

Path. u. Therap., vol. 9. Bischoff, T. L. W. 1832 Nervii accessorii Willisii anatomia et physiologia.

104 pp., 6 pl. 4°. Heidelbergae, typ. Reichardianis.

Blanc, Louis 1892 Sur un ovule à deux noyaux observé dans l'ovaire de Mus decumanus. Ann. de la société Linneenne de Lyon Nouv. Sér., vol. 39, pp. 73-80.

Blasius, J. H. 1857 Fauna der Wirbelthiere Deutschlands und der angrenzenden Länder von Mitteleuropa. Vol. 1, Säugethiere. Braunschweig.

Viehweg. Descriptions of the several species of rats.

67 Blue, Rupert 1908 The underlying principles of anti-plague measures. Calif. State J. Med., vol. 6, pp. 271-277. 1910 Rodents in relation to the transmission of bubonic plague. Found in "The rat and its relation to the public health," pp. 145-152. Treasury Dept. Pub. Health and Mar. Hosp. Service of U. S.

ernment Printing Office, Wash., D. C. F BOELTER, W. R. 1909 The rat problem. John Bale, Sons and Danielsson, Lon-

don, pp. 165.

- 6 P Bogardus, E. S. and Henke, F. G. 1911 Experiments on tactual sensations in the white rat. J. Animal Behavior, vol. 1, pp. 125-137.
- Bohlen, F. 1894 Ueber die elektromotorischen Wirkungen der Magenschleimhaut. Arch. f. d. ges. Physiol., vol. 57, pp. 97-122.
 - Boinet, Ed. 1895 Résistance à la fatigue de 11 rats décapsulés depuis cinq et six mois. Compt. rend. Soc. de biol., Paris, vol. 47, pp. 273-274.

 1895 a Ablation des capsules vraies et accessoires chez le rat d'égout. Compt. Rend. Soc. de Biol., vol. 47, pp. 498-500.

 1897 Diminution de résistance des rats doublement décapsulés à l'action toxique de diverses substances. C. R. Soc. de Biol., p. 466.

 1897 a Dix nouveaux cas de maladie d'Addison expérimentale chez le rat d'égout. C. R. Soc. de Biol., 8th and 15th of May, pp. 439 and
- 72 Borcherding, Fr. 1889 Über das Vorkommen der Hausratte, Mus rattus L., im nordwestlichen Deutschland. Zoölog. Garten, 30 Jahrg., pp. 92-93.
- 73 Borgnet, August See Albertus Magnus.
- 74 Boughton, T. H. 1906 The increase in the number and size of the medullated fibers in the oculomotor nerve of the white rat and of the cat at different ages. J. comp. Neur. and Psychol., vol. 16, pp. 153-165.
- POYCOTT, A. E. AND DAMANT, G. C. C. 1908 Experiments on the influence of fatness on susceptibility to caisson disease. J. Hyg. Cambr., vol. 8, pp. 445-456. Pp. 447-450, tables and notes on experiments with rats giving sex, body weight and fatty acids.
 1908 a A note on the total fat of rats, guinea-pigs and mice. J. Physiol., vol. 37, pp. 25-26.
- BOYCOTT, A. E., DAMANT, G. C. C. AND HALDANE, J. S. 1908 The prevention of compressed air illness. J. Hyg. Cambr., vol. 8, pp. 342-443.
- PRADLEY, O. Charnock 1903 On the development and homology of the mammalian cerebellar fissures. J. Anat. and Physiol., vol. 37, pp. 112-130. Cerebellum: Mus decumanus figs. 38, 39, 40 and 41.
- BRAUN, M. 1882 Entwicklungsvorgänge am Schwanzende bei einigen Säugethieren mit Berücksichtigung beim Menschen. Arch. f. Anat. u. Physiol., Anat. Abt., pp. 207-241. Taf. XII, XIII. Rat among animals used.
- 79 BRINCKERHOFF, WALTER R. 1910 Rat leprosy. Found in "The rat and its relation to the public health." Pp. 49-53. Treasury Dept. Pub. Health and Mar. Hospt. Service of the U. S. Government Printing Office, Wash., D. C.
- Brisson, A. D. 1756 Le régne animal divisé en IX classes, etc. 4° Paris. P. 168, description of Mus rattus—many references.
- Brown, Herbert H. 1885 On spermatogenesis in the rat. Quart. J. Micr. Sc., London, vol. 25, pp. 343-369.
- BROWN-SÉQUARD, E. 1856 Recherches expérimentales sur la physiologie et la pathologie des capsules surrénales. Arch. gén. de méd. vol. 2 (ser. 5, vol. 8) pp. 385-401; 572-598 (Oct. and Nov). Experiments chiefly on rabbits; but mentions another physiologist's observations on rats, p. 595.

Brümmer, Johannes 1876 Anatomische und histologische Untersuchungen 83 über den zusammengesetzten Magen verschiedener Saugethiere. Tafeln I-V. Deutsche Ztschr. f. Thiermed., vol. 2, pp. 158-298 and 299-319.

Bruneau 1886 Un tuyau à gaz en plomb coupé par les rats. Ann. d'hyg.,

Par., 3s., xv, 530.

Brüning, Hermann 1914 Experimentelle Studien über die Entwicklung neugeborener Tiere bei langerdauernder Trennung von der Säugenden Mutter und nachheriger verschiedenartiger künstlicher Ernährung (Rats). Jahrb. f. Kinderheilk., vol. 80, pp. 65-85. 6 fig. in text (tables and graphs important). 1914 a Untersuchungen über das Wachstum von Tieren jenseits der

Säuglingsperiode bei verschiedenartiger künstlicher Ernährung (Rat). Jahrb. Kinderheilk., vol. 79, pp. 305-319. 2 text figs., tables (impor-

tant).

Brunn, A. von 1880 Notiz über unvollkommene Schmelzentwicklung auf den 66 Mahlzähnen der Ratte-M. decumanus. Arch. f. mikr. Anat., vol. 17. pp. 241-242. 1887 Ueber die Ausdehnung des Schmelzorganes und seine Bedeutung

für die Zahnbildung Arch. f. mikr. Anat., vol. 29, pp. 367-383. Buchanan, A. 1910 The destruction of rats. Brit. M. J., Lond., vol. 2, p.

89

Buckland, Francis T. 1859 Curiosities of natural history. Rudd and Carle-

ton, N. Y. Rats, pp. 87-205. Buffon, George Louis le Clerc, Comte de 1749-1789 Histoire naturelle, générale et particulière. Paris, vol. 7, 1758, pp. 278-308; vol. 8, 1760,

pp. 206-218.

Bujard, Eug. 1905 Sur les villosités intestinales. Bibl. anat., vol. 14, p. 236. 90 1909 Etude des types appendiciels de la muqueuse intestinale, en rapport avec les régimes alimentaires. Morphologie comparée. Sitiomorphoses naturelles et expérimentales. Internat. Monatschr. f. Anat. u. Physiol., vol. 26, pp. 101-192. Plates VI-X, Rats, pp. 123-

Bulle, Hermann 1887 Beiträge zur Anatomie des Ohres. Archiv f. mikr. 91 Anat., vol. 29. pp. 237-264. Rat, p. 245.

Bullock, F. D. and Rohdenburg, G. L. 1913 Primary sarcoma of the liver of the rat originating in the wall of a parasitic cyst. J. Med. Research, vol. 28 (n. s. vol. 23) pp. 477-481. 1915 Tumor-like growths in the rat stomach following irritation. Proc. of the Soc. for Exper. Biol. and Med., vol. 12, pp. 161-162.

Bullock, W. E 1913 Contributions to the biochemistry of growth. On the lipoids of transplantable tumors of the mouse and the rat. Proc. R. Soc., London, vol. 87 B, pp. 236-239.

Cabibbe, Giacomo 1904 Histologische Untersuchungen über die Nervenendigungen in den Sehnen und im Perimysium der Ratte und des Meerschweinchens. Monatschr. f. Psychiat. u. Neurol., vol. 15, pp. 81-89. 3 figs.

Cajal, S. Ramon 1889 Neuvas aplicaziones de metodo de colaración de Golgi.

Gac. med. Catal., vol. 12, pp. 6-8.

Cajal, S. Ramon 1893 Sur les ganglions et plexus nerveux de l'intestin. Compt. rend. soc. de biol., ser. 9, vol. 5, pp. 217-223, Paris. 3 figs. 1897 Leyes de la morfologia y dinamismo de las células nerviosas. Rev. trimestr. Microgr., vol. 2, pp. 1-28.

1903 Un sencillo método de coloración del reticulo protoplasmico y sus efectos en los diversos centros nerviosos de vertebrados é invertebrados. Rev. trimestr Microgr., vol. 7, pp. 129-221, fig. 33.

1909, 1911 Histologie du système nerveux de l'homme et des vertébrés. 2 vols. A. Maloine. Paris For rat (vol. 1) figs. 19, 113, 123, 189, 190; (vol. 2) figs. 20, 21, 46, 246.

Calef, A. 1900 Studio istologico e morfologico di un'appendice epiteliale del pelo nella pelle del Mus decumanus var. albino e del Sus scrofa. Anat.

Anz., vol. 17, pp. 509-517.

Calmette, A. 1910 La lutte internationale contre les rats. L'Hygiène, Par., no. 9, 5-7..

1911 La lutte internationale contre les rats. J. de méd. de Par., 2s. vol. 23, pp. 588-591.

CAMPANA, ROBERTO 1911 I bacilli acidi nei topi in Mancuiria; ed altri studi.

Clin. dermosifilopat d. r. Univ. di Roma, vol. 29, pp. 47-50.

Campbell, J. MacNaught 1892 On the appearance of the brown rat (Mus decumanus Pallas) on Ailsa Craig. Ann. of Scott. Nat. Hist. I. no. 2, pp. 132-134.

CANNIEU, ANDRÉ 1893 Récherches sur le nerf auditif, ses rameaux et ses ganglions. Revue biol. du Nord de la France, Année VI, pp.87-153. Rat among animals used.

CARMICHAEL, E. S. and MARSHALL, F. H. A. 1907 The correlation of the ovarian and uterine functions. Proc. Roy. Soc. S. B. vol. 79, pp. 387-394. Rats

—4 experiments.

CARPENTER, F. W. AND CONEL, J. L. 1914 A study of ganglion cells in the sympathetic nervous system, with special reference to intrinsic sensory neurones. J. Comp. Neur., vol. 24, pp. 269-281.

CARR, HARVEY AND WATSON, J. B. 1908 Orientation in the white rat. J. Comp.

Neur. and Psychol., vol. 18, pp. 27-44.

Castle, W. E. 1911 Heredity. Chapter 6. D. Appleton & Co., N. Y.
1912 Some biological principles of animal breeding. Am. Breeders
Mag., vol. 3, pp. 270-282.
1912 a The inconstancy of unit characters. Am. Naturalist, vol. 46,
pp. 352-362.

CASTLE, W. E. AND PHILLIPS, J. C. 1914 Piebald rats and selection. An experimental test of the effectiveness of selection and of the theory of gametic purity in Mendelian crosses. Carnegie Inst. Wash., no. 195.

Castle, W. E. 1914 Some new varieties of rats and guinea pigs and their relation to problems of color inheritance. Am, Naturalist, vol. 48, pp. 65-73.

1914 a Yellow varieties of rats. Am. Naturalist, vol. 48, p. 254.

(OS CAVAZZANI, E. AND MUZZIOLI, M. 1912 Contribution à l'étude de l'eau dans les organismes. Arch. ital. Biol., vol. 57, pp. 473-480.

Cesana, G. 1910 Lo sviluppo ontogenico degli atti riflesi (Rat) Arch. di Fisiol., vol. 9, pp. 1–120, 43 figs.—full tables.

Chapin, C. W. 1912 An acid-fast organism resembling the bacillus of human 110 leprosy cultivated from the tissues of a leprous rat. Pub. health rep. U. S. Mar. Hosp. Serv., vol. 27, part 1, p. 161.

CHICK, HARRIETTE AND MARTIN, C. J. 1911 The fleas common on rats in different parts of the world and the readiness with which they bite man. J.

Hyg., vol. 11, pp. 122-136.

Chidester, F. E. 1912 Experiments with desiccated thyroid, thymus and su-112 prarenals. Science, vol. 36, no. 932, November 8th.

Chievitz, J. H. 1885 Beiträge zur Entwicklungsgeschichte der Speicheldrüsen. 1/3 Arch. f. Anat. u. Entweklngsgesch., pp. 401-436, 1 pl.

Chisolm, R. A. 1911 On the size and growth of the blood in tame rats. Quart. J. Exper. Physiol., vol. 4, pp. 207–229.

116. CLARKE, W. E. 1891 Black and Alexandrine rats at Leith (M. rattus and alexandrinus) Ann. of Scott. Nat. Hist., vol. 3, p. 36.

1/6 Coe, W. R. 1908 The maturation of the egg of the rat. Science, vol. 27, no.

690, March 20th, p. 444.

17 Congdon, E. D. 1912 The surroundings of the germ plasm. III. The internal temperature of warm-blooded animals (Mus decumanus, M. musculus, Myoxus glis) in artificial climates. Archiv f. Entwcklngsmechn. d. Organ., vol. 33, pp. 703–715.

1/8 Converse, G. M. 1910 Rat suppression in San Francisco, California. Pub. Health Rep., U. S. Mar. Hosp. Serv. Wash., vol. 25, pp. 1003-1005.

1/9 Соок, С. 1886 Poisoning from a rat bite. Indiana M. J., vol. 9, p. 77.

/20 Соок, F. C. 1913 The importance of food accessories as shown by rat-feeding experiments. Science, p. 675. November 7.

CORNALIA, EMILE 1858-1871 Mammifères fossiles de Lombardie, Milan—being 2nd Series in Paléonotologie Lombarde par l'Abbie Antoine Stoppani. 4°. pp. 38–40. Mus rattus.

/22 Cornish, Thom. 1890 Black rat in Cornwall. Zoölogist, vol. 13, p. 450.

CRAMER, W. 1908 The gaseous metabolism in rats inoculated with malignant new growths. Third Scien. Report Imp. Cancer Research Fund, pp. 427-433.

124 CRAMER, W. AND PRINGLE, HAROLD 1910 Contributions to the biochemistry of growth. The total nitrogen metabolism of rats bearing malignant new growths. Proc. R. Soc., London, vol. 82 B, pp. 307-315.

/2 5 CRAMPE, Hugo 1877 Kreuzungen zwischen Wanderatten verschiedener Farbe. Landwirths. Jahrb., vol. 6, p. 384. 1883 Zucht-Versuche mit zahmen Wanderratten. I. Resultate der Zucht in Verwandtschaft. Landwirths. Jahrb., vol. 12. 1884 Zucht-Versuche mit zahmen Wanderratten. II. Resultate der Kreuzung der zahmen Ratten mit wilden. Landwirths. Jahrb.,

/26 CREEL, RICHARD H. 1910 Rat proofing as an antiplague measure. Found in "The rat and its relation to the public health," pp. 171-178. Treasury Dept. Pub. Health and Mar. Hosp. Service of the U. S. Government

Printing Office, Wash., D. C.

129 Cristiani, H. 1892 L'inversion des feuillets blastodermiques chez le rat albinos. Arch. de Phys. norm. et pathol., vol. 24 (S. 5, T. 4). 1893 De la thyroïdectomie chez le rat pour servir à la physiologie de la glande thyroïde. Arch. de physiol. norm. et path., 5th series, vol. 5, pp. 39-46. 128 1893 a Remarques sur l'anatomie et la physiologie des glandes et glandules thyroïdiennes chez le rat. Arch. de physiol. norm. et path., 5th series, vol. 5, pp. 164-168. 129 1893 b Des glandules thyroidiennes accessoires chez la souris e le campagnol. Arch. de physiol. norm. et path., 5th series, vol. 5, pp. 279-283. 130 1895 De la greffe thyroïdienne in général et de son évolution histologique en particulier. Arch. de physiol. norm. et path., 5th series, vol. 7 (vol. 27), pp. 65-76. 131 1900 Développement des greffes thyroïdienne; analogie avec le développement embryonnaire du corps thyroïde et avec la formation du goitre hyperplasique. Compt. rend. Soc. de Biol., Paris, vol. 52, pp. 967-969. 132 Cristiani, H. and Cristiani, A. 1902 Recherches sur les capsules surrénales (Planche I.) J. de physiol. et de path. gen., vol. 4, pp. 837-844. 1 902 a De la greffe des capsules surrénales (Planche II). J. de physiol., vol. 4, pp. 982-997. 133 1902 b Rôle prépondérant de la substance médullaire des capsules surrénales dans la fonction de ces glandes. Compt. rend. Soc. de Biol., vol. 54, pp. 710-711. 1902 c Histologie pathologique des greffes de capsules surrénales. Compt. rend. Soc. de Biol., vol. 54, pp. 811-814. 1350 1902 d De l'insuffisance fonctionelle des greffes de capsules surrénales. Compt. rend. Soc. de Biol., vol. 54, pp. 1124-1126. 136 Cuénot, L. 1899 Sur la determination du sexe chez les animaux. Bull. sci. de la France et de la Belgique, vol. 32. 137 Currie, Donald H. 1910 Bacterial diseases of the rat other than plague. Found in "The rat and its relation to the public health," pp. 55-57. Treasury Dept. Pub. Health and Mar. Hosp. Service of the U. S. Government Printing Office, Wash., D. C. 138 Custor, J. 1873 Ueber die relative Grösse des Darmcanals und der hauptsächlichsten Körpersysteme beim Menschen und bei Wirbelthieren. Diss. Berlin. CUVIER, G. 1805 Lécons d'Anatomie comparée. Paris. T. iii, p. 383. In the rat family the stomach presents two divisions. CZERMAK, NICOLAY 1895 Ernährungswege einer epithelialen Zelle. Anat. Anz., vol. 11, pp. 547-550, 1 Abb. Czerny, Adalbert 1890 Ueber Rückbildungsvorgänge an der Leber. Archiv f. mikr. Anat., vol. 35, pp. 87–103. Rat, p. 88 and 101. Darwin, Charles 1883 Animals and plants under domestication. Vol. 2, p. 65. Varieties of cross-bred rats. Dean, George 1903 A disease of the rat caused by an acid-fast bacillus. Centralbl. f. Bakteriol. u. Parasitenk., vol. 34, part 1, pp. 222-224.

144 Dean, George 1905 Further observations on a leprosy-like disease of the rat. J. Hyg., vol. 5, pp. 99-112.

746 Dehne, A. 1855 Mus decumanus, Pallas: Die Wanderratte u. ihre Varietäten. Allg. deutsche Naturhist. Zeit. n. f., vol. 1, pp. 169-174.

146 Demaison, L. 1906 Sur les rois de rats. Feuille jeun. Natural (4) Ann. 37, p. 38.

Janenko, K. 1909 Das Verhalten des Darmepithels bei verschiedenen funktionellen Zuständen. Ztschr. f. Biol., vol. 52, pp. 153-188.
(Zweite Mitt. nebst Bemerkung von Leon Asher.)

148 DIMOCK, JAMES F. See Giraldus Cambrensis.

Disselhorst, Rudolf 1897 Die accessorischen Geschlechtsdrüsen der Wirbeltiere. Eine vergleichend-anatomische Untersuchung. Arch. f. wissensch. u. prakt. Thierh., vol. 23.

1897 a Die accessorischen Geschlechtsdrüsen der Wirbeltiere, mit besonderer Berücksichtigung des Menschen. viii, pp. 279, 16 pl. 8°. J. F. Bergmann, Wiesbaden.

1904 Ausführapparat und Anhangsdrüsen der Männlichen Geschlechtsorgane. In Oppel, A, "Lehrbuch der Vergleichenden Mikroskopischen Anatomie der Wirbeltiere." Vierter Teil. Gustav Fischer. Jena. Rodentia—Mus decumanus, pp. 263-282.

752 DOLLFUS, ADRIEN 1906 Les rois de rats. Feuille jeun. Natural (4) Ann. 36, pp. 174-175, 185-188.

Donaldson, H. H. 1900 The functional significance of the size and shape of the neurone. J. Nerv. and Ment. Dis., vol. 27, no. 10.

Donaldson, H. H. and Hoke, G. W. 1905 On the areas of the axis cylinder and medullary sheath as seen in cross sections of the spinal nerves of vertebrates. J. Comp. Neur. and Psychol., vol. 15, pp. 1–16.

Donaldson, H. H. 1906 A comparison of the white rat with man in respect to the growth of the entire body. Boas Anniversary Volume, pp. 5-26. G. E. Stechert & Co., N. Y.

1908 A comparison of the albino rat with man in respect to the growth of the brain and of the spinal cord. J. Comp. Neur. and Psychol., vol. 18, pp. 345-392.

1909 On the relation of the body length to the body weight and to the weight of the brain and of the spinal cord in the albino rat (Mus norvegicus var. albus). J. Comp. Neur. and Psychol., vol. 19, pp. 155–167.

1910 On the percentage of water in the brain and in the spinal cord of the albino rat. J. Comp. Neur. and Psychol., vol. 20, pp. 119-144.

1911 On the influence of exercise on the weight of the central nervous system of the albino rat. J. Comp. Neur., vol. 21, pp. 129-137.

1911 a The effect of underfeeding on the percentage of water, on the ether-alcohol extract, and on medullation in the central nervous system of the albino rat. J. Comp. Neur., vol. 21, pp. 139-145.

1911 b An interpretation of some differences in the percentage of water found in the central nervous system of the albino rat and due to conditions other than age. J. Comp. Neur., vol. 21, pp. 161-176.

1911 c Studies on the growth of the mammalian nervous system. J. Nerv. and Ment. Dis., vol. 38, pp. 257-266.

- Donaldson, H. H. and Hatai, S. 1911. A comparison of the Norway rat with the albino rat in respect to body length, brain weight, spinal cord weight and the percentage of water in both the brain and the spinal cord. J. Comp. Neur. vol. 21, pp. 417-458.
 - 1911 a Note on the influence of castration on the weight of the brain and spinal cord in the albino rat and on the percentage of water in them. J. Comp. Neur., vol. 21, pp. 155-160.
- Donaldson, H. H. 1912 A comparison of the European Norway and albino rats (Mus norvegicus and Mus norvegicus albinus) with those of North America in respect to the weight of the central nervous system and to cranial capacity. J. Comp. Neur., vol. 22, pp. 71-97.
- 1912 a On the weight of the crania of Norway and albino rats from three stations in western Europe and one station in the United States.
- Anat. Record, vol. 6, pp. 53-63.

 1912 b The history and zoölogical position of the albino rat. J. Acad.
- Nat. Sc. Phila., vol. 15, 2nd series, pp. 365-369.

 1912 c An anatomical analysis of growth. Trans. 15th Internat.

 Cong. Hyg. and Demography, Wash., D. C., Sept. 23-28.
- DONCASTER, L. 1906 On the inheritance of coat color in rats. Proc. Cambridge Philos. Soc., vol. 13, pp. 215-228.
- Donndorff, J. A. 1792 Zoölogische Beiträge zur XIII Ausgabe des Linneschen Natursystem. 2 vols. Leipzig. Vol. 1, Die Säugethiere, p. 427.
- Dostoiewsky, A. 1886 Ueber den Bau der Vorderlappen des Hirnanhanges.
 Arch. f. mikr. Anat., vol. 26, pp. 592-598.
- 1886 a Ein Beitrag zur mikroskopischen Anatomie der Nebennieren bei Säugethieren. Archiv f. mikr. Anat., vol. 27, pp. 272-296. Rat, p. 279 and 287.
- Drasch, O. 1886 Zur Frage der Regeneration und der Aus—und Rückbildung der Epithelzellen. Sitz. d. k. Akad. d. Wiss. math.-naturw. Cl. Wien. Vol. 93, Abt III, pp. 200-213, 1 pl.
- 176 Duesberg, J. 1907 Die Mitochondrial-Apparat in den Zellen der Wirbeltiere und Wirbellosen. Arch. f. mikr. Anat., vol. 71, pp. 284-296.
- 1908 Les divisions des spermatocytes chez le rat (Mus decumanus Pall., variété albinos). Arch. f. Zellforsch., vol. 1.
- 1908 a La Spermatogénèse chez le rat (Mus decumanus Pall., Variété albinos) Mémoire présenté pour l'obtention du titre de docteur spécial en sciences anatomiques, Université de Liège. Wilhelm Engelmann. Leipzig. Also (b) Arch. f. Zellforsch., vol. 2, pp. 137-180. 1909 Note complémentaire sur la spermatogenèse du rat. Arch. f. Zellforsch., vol. 3, pp. 553-562.
- Dunn, Elizabeth H. 1908 A study in the gain in weight for the light and heavy individuals of a single group of albino rats. Proc. Assoc. Am. Anat. in Anat. Record, vol. 2, pp. 109-110.
- 1912 The influence of age, sex, weight and relationship upon the number of medullated nerve fibers and on the size of the largest fibers in the ventral root of the second cervical nerve of the albino rat. J. Comp. Neur., vol. 22, pp. 131-157.

DuPuy, W. A. and Brewster, E. T. 1910 Our duel with the rat. McClure's 182 Mag., vol. 35, pp. 69-79.

Durham, Florence M. 1904 On the presence of tyrosinases in the skins of 83 some pigmented vertebrates. Proc. Roy. Soc., vol. 74, pp. 310-313.

DUVAL, C. W. 1910 The cultivation of the leprosy bacillus and the experimental production of leprosy in the Japanese dancing mouse. J. Exper. M., vol. 12, pp. 649-665. 185

1911 Notes on the biology of B. leprae. N. Orl. M. and S. J., vol. 63,

pp. 549-559.

187

DUVAL, C. W. AND GURD, F. B. 1911 Experimental immunity with reference 186 to the bacillus of leprosy. Part 1. A study of the factors determining infection in animals. J. Exper. Med., vol. 14, pp. 181-195.

1911 a Studies on the biology of and immunity against the bacillus of leprosy: with a consideration of the possibility of specific treatment

and prophylaxis. Arch. Int. Med., vol. 7, pp. 230-245.

DUVAL, C. W. AND WELLMAN, CREIGHTON 1912 A new and efficient method of cultivating bacillus leprae from the tissues; with observations on the different strains of acid-fast bacilli found in leprous lesions. J. Am. M. Ass., vol. 58, p. 1427.

18 7 DUVAL, C. W. AND HARRIS, W. H. 1913 Further studies upon the leprosy bacillus: its cultivation and differentiation from other acid-fast species.

J. Med. Research, vol. 26 (n.s. 21), pp. 165–198.

EBNER, V. von 1873 Die acinösen Drüsen der Zunge und ihre Beziehungen zu den Geschmacksorganen. Leuschner und Lubensky, Graz., 66 pp., 2 pl. 1888 Zur Spermatogenese bei den Säugethieren. Archiv f. mikr. Anat., 191 vol. 31, pp. 236-292. Tafel XV, XVI, XVII (Rat).

EDELMANN, RICHARD 1889 Vergleichend anatomische und physiologische 192 Untersuchungen über eine besondere Region der Magenschleimhaut (Cardiadrüsen-region) bei den Säugethieren. Deutsche Ztschr. f.

Thiermed., vol. 15, pp. 165-214.

Edington, A 1901 Rattenpest. Centralbl. f. Bacter., vol. 29, p. 889. 193

EDWARDS, A. MILNE 1871 Melanism in Mus decumanus. Ann. Soc. Nat. Hist., 194 vol. 15, art. 7.

1872 Note sur la variété mélanienne du surmulot (Mus decumanus). 195. Ann. des. Sc. Nat. Zool., 5th ser., vol. 15.

Eimer, G. H. Th. 1869 Die Wege des Fettes in der Darmschleimhaut bei seiner 196 Resorption. Arch. f. pathol. Anat., vol. 48, pp. 119-177, pl. 4 and 5.

Eiselsberg, von 1890 Ueber einen Fall von erfolgreicher Transplantation eines Fibrosarkoms bei Ratten. Wiener klin. Wochenschr., no. 48.

Ellenberger, W. 1906 Zum Mechanismus der Magenverdauung. Arch. f. d. 198 ges. Physiol., vol. 114, pp. 93-107. Critique of A. Scheunert, ibid., p.

Ellenberger, Wilhelm and Guenther, G. 1908 Grundriss der vergleichen-199 den Histologie der Haussäugetiere. Berl. Parey., 3rd ed. rev. and

enlarged.

Elliott, T. R. and Barclay-Smith, E. 1904 Antiperistalsis and other muscu-200 lar activities of the colon. J. Physiol., vol. 31, pp. 272-304. Rat: pp. 283-287. Fig. 3.

- 20 / Elliott, T. R. and Tuckett, J. 1906 Cortex and medulla in the suprarenal glands. J. Physiol., vol. 34, pp. 332-369.
- Zo 2 ENGELMANN, TH. W. 1877 Vergleichende Untersuchungen zur Lehre von der Muskel- und Nervenelektrizität. Arch. f. d. ges. Physiol., vol. 15, pp. 116-148.
- Zo 3 Erdély, A. 1905 Untersuchungen über die Eigenschaften und die Entstehung der Lymphe. Fünfte Mitt. Über die Beziehungen zwischen Bau und Funktion des lymphatischen Apparates des Darmes. Taf. III. Ztschr. f. Biol., vol. 46, pp. 119-152. Tabulation of numbers of lymphocytes.
- 2 0 9 ERDHEIM, JAKOB 1906 Zur Anatomie der Kiemenderivate bei Ratte, Kaninchen und Igel. Anat. Anz., vol. 29, pp. 609-623. Rats, pp. 610-616, Fig., p. 621.
- 205° 1906 a Tetania parathyreopriva. Mitt. a. d. Grenzgeb. d. Med. u. Chir., vol. 16, pp. 632-744.
 - 206 1907 Tetania parathyreopriva. Med. Press and Circ., vol. 83, pp. 91-93.
 - 207
 1911 Ueber den Kalkgehalt des wachsenden Knochens und des Callus nach der Epithelkörperchenexstirpation. Frankfurt. Ztschr. f. Path., vol. 7, pp. 175-230.
 - 1911 a Zur Kenntnis der parathyreopriven Dentinveränderung. Frankfurt Ztschr. f. Path., vol. 7, pp. 238-248. Figs. Rats. No tables.
 - 209
 1911 b Ueber die Dentinverkalkung im Nagezahn bei der Epithel-körperchentransplantation. Frankfurt. Ztschr. f. Path., vol. 7, pp. 295-342.
- 2:0 Erxleben, Jo. Christ P. 1777 Systema regni animalis. Classis I. Mammalia. Lipsiae. p. 381. Mus norvegicus: original description.
- 2 11 FALCONE, CESARE 1898 Contribution a l'histogénèse et à la structure des glandes salivaires. Monitore zool. ital., vol. 9, pp. 11-27. 1 plate.
- 2 / z Falta, W. and Noeggerath, C. T. 1905 Fütterungsversuche mit künstlicher Nahrung. Beiträge z. chem. Physiol. u. Pathol., vol. 7, pp. 313-322.
- 2/3 FANTHAM, H. B. 1906 Piroplasma muris Fant., from the blood of the white rat, with remarks on the genus Piroplasma. Quart. J. micr. Sc., vol. 50, pp. 493-516.
- 2/4 Ferrier, David 1886 The functions of the brain. 2nd ed. Smith, Elder & Co., London. Rat, pp. 261-262.
- 2 /6. Ferry, Edna L. 1913 The rate of growth of the albino rat. Anat. Record, vol. 7, pp. 433-441.
- FIBIGER, J. 1913 Ueber eine durch Nematoden (Spiroptera sp.n.) hervorgerufene papillomatöse und carcinomatöse Geschwulstbildung im Magen der Ratte. Berl. Klin. Wochenschr., L, pp. 289–298.
- 1913 a The nematode (Spiroptera sp. n.) and its capacity to develop papillomatous and carcinomatous tumors in the ventricle of the rat. Hosp.-Tid. Kobenh., 5 R., 6, 417; 449, 6 pl., 473. Discussion, pp. 441-448.
- 1913 b Untersuchung über eine Nematode (Spiroptera sp.n.) und deren Fähigkeit, papillomatöse und carcinamatöse Geschwulstbildungen im Magen der Ratte hervorzurufen. Zeitschr. f. Krebsforsch., Berl., vol. 13, pp. 217–280, 14 pl.

Fibiger, J. 1914 Further investigations on Spiroptera cancer in rats. Hosp.-219

Tid., Kobenh., 5 R., 7, 1049; 1081, 3 pl.

221

FISCHEL, ALFRED 1914 Zur normalen Anatomie und Physiologie der weib-220 lichen Geschlechtsorgane von Mus decumanus sowie über die experimentelle Erzeugung von Hydro- und Pyosalpinx. Arch. f. Entwcklngsmechn. d. Organ., vol. 39, pp. 578-616.

Fischer, F. von 1872 Calculation of possible progeny of one pair of rats in ten years. Zool. Garten, pp. 125-126. (48, 319, 698, 843, 030, 344, 720.)

Fischer, J. von 1869 Die Säugethiere des St. Petersburg Governments. Zool. Garten, vol. 10.

1874 Beobachtungen über Kreuzungen verschiedener Farbenspiel-223 artan innerhalb einer Species. Zool. Garten, vol. 15.

FLEXNER, SIMON AND NOGUCHI, H. 1906 The effect of eosin upon tetanus toxin 224 and upon tetanus in rats and guinea-pigs. J. Exp. Med., vol. 8, pp.

FLEXNER, SIMON AND JOBLING, J. W. 1907 Metaplasia and metastasis of a rat 225tumor. Proc. Soc. Exp. Biol. and Med., vol. 5, pp. 52-53.

FLOWER, W. H. 1872 Lectures on the comparative anatomy of the Mammalia. Med. Times and Gaz., vol. 1 and vol. 2. For rat, see vol. 2, p. 115.

FOLIN, OTTO AND MORRIS, J. LUCIEN 1913 The normal protein metabolism of 227 the rat. J. Biol. Chem., vol. 14, pp. 509-515. Metabolism like that of

Forbes, E. B. and Keith, M. Helen 1914 A review of the literature of phosphorous compounds in animal metabolism. Ohio Agr. Exp. Station, Technical series, bull. no. 5. See p. 332 and p. 506-valuable bibliography with abstracts.

FORTUYN, A. B. DROOGLEEVER 1914 Cortical cell-lamination of the hemispheres of some rodents. Arch. Neurol., Path. Lab. London County 229 Asyl., vol. 6, pp. 221-354. Mus decumanus (Pall), p. 260, figures 18-22.

FOSTER, N. K. 1909 The rat as a factor in disease (Abstr.) Am. J. Pub. Hyg., vol. 19, pp. 58-61.

Fox, C. 1912 The rat guard used in the Philippine Islands. Pub. Health Rep. U. S. Mar. Hosp. Serv., Wash., xxvii, 907.

Foy, F. A. 1913 Destruction of rats in the port of Rangoon. Brit. M. J., Lond., 2 3 2 vol. 2, pp. 439-441.

Frank, Franz and Schittenheim, A. 1912 Ueber die Brauchbarkeit tief abgebauter Eiweisspräparate für die Ernährung. Therap. Monatsh., 233 vol. 26, pp. 112-117.

Frankenhaeuser, Constantin 1879 Untersuchungen über den Bau der 234 Tracheo-bronchialschleimhaut. Diss. von Dorpat, 120 pp., 1 plate. St. Petersburg.

Fraser, A. 1883 On the inversion of the blastodermic layers in the rat and mouse. Proc. Roy. Soc., no. 223.

Frédéric, J. 1907 Beiträge zur Frage des Albinismus. Ztschr. f. Morphol. u. Anthrop., vol. 10, no. 2.

Frenkel, Moïse 1892 Du tissu conjontif dans le lobule hépatique de certains 237 mammifères. Compt. rend. soc. de biol. Année 44 (ser. 9, v. 4), pp. 38-39.

238 Freund, Paula 1892 Beiträge zur Entwicklungsgeschichte der Zahnanlagen bei Nagethieren. Arch. f. mikr. Anat., vol. 39, pp. 525-556. 1911 Über experimentelle Erzeugung teratoider Tumoren bei der weissen Ratte. Inaug.-Diss. Munchen. 239 Fuchs-Wolfring, Sofhie 1898 Ueber den feineren Bau der Drüsen des Kehlkopfes und der Luftröhre. Arch. f. mikr. Anat., vol. 52, pp. 735-762. Rat, pp. 755-756, 1 plate. 2 40 Fusari, R. and Panasci, A. 1891 Les terminasions des nerfs dans la muqueuse et dans les glandes sereuses de la langue des mammifères. Résumé originel des auteurs. Arch. ital. de biol., vol. 14, pp. 240-246, pl. 1. Fusari, Romeo 1894 Terminaisons nerveuses dans divers épithéliums. (Note lué à l'Académie des sciences naturelles et médicales de Ferrare dans la séance du 28 Mai 1893). Arch. ital. de biol., vol. 20, pp. 279-287. Observations mainly on the white rat. 243 Galli-Valerio, Bruno 1902 The part played by the fleas of rats and mice in the transmission of bubonic plague. Journ. trop. Med., vol. 5, pp. 33-36. 1908 Dangers et destruction des rats noirs (Mus rattus) et gris (Mus decumanus). Chronique Agric. Vaud Ann. 21, pp. 142-147. Gamgee, Arthur 1898 Article "Haemoglobin" in E. A. Schäfer's Textbook 2450 of Physiology, vol. I, pp. 193-194. Small haemoglobin content and rapid crystalization in rat's blood, p. 206. Oxyhaemoglobin in rat's blood highly insoluble. Garnier, Charles 1897 Les filaments basaux des cellules glandulaires. Note préliminaire. Bibliog. Anat., vol. 5, pp. 278-289, 13 fig. Gauthier, J. C. and Raybaud, A. 1903 Sur le rôle des parasites du rat dans 247 la transmission de la peste. C. R. Soc. de Biol., vol. 54, p. 1497. GAY, F. P. 1909 A transmissible cancer of the rat considered from the standpoint of immunity. J. Med. Research, vol. 20, p. 175. Gaylord, H. R. 1906 Endemisches Vorkommen von Sarkomen in Ratten. 249 Zeitschr. f. Krebsforschung, vol. 4, p. 679. Gegenbaur, Carl 1892 Die epiglottis. Vergleichend anatomische Studie-2 4-0 fol. 69 pp., 2 plates and 15 cuts in text. In Festschr. Albert von Koelliker. W. Engelmann, Leipzig. 2 50/ Geisenheymer, L. 1892 Zum Vorkommen der Hausratte, Mus rattus L. Naturwiss. Wochenschr., vol. 7, pp. 96-97. Gemelli, Edoardo 1903 Nuove richerche sull'anatomia e sull'embriologia 2502 dell' ipofisi. Boll. della soc. medico-chir. di Pavia. Anno 1903, pp. 177-222, 5 pl. 253 Gemelli, Edoardo after 1904 = Gemelli, (Fra) Agostino Gemelli, Agostino 1905 Nuovo contributo alla conoscenza della struttura 254 dell'ipofisi dei mammiferi. Rivista di Fisicae Matematica, vol. 12, pp. 136-145; pp. 235-247; pp. 338-346; pp. 419-431. 1906 Contributo alla fisiologia dell'ipofisi. Arch. di fisiol., vol. 3, 1906 a Ulteriori osservazioni sulla struttura dell'ipofisi. Anat. Anz., vol. 28, pp. 613-628, 14 figures.

Gentes, L. 1903 Note sur la structure du lobe nerveux de l'hypophyse. Compt. rend. Soc. de Biol., vol. 55, pp. 1559-1561. Rat among other animals.

Geoffroy Saint-Hilaire, Étienne 1812 Mus alexandrinus. Descr. Égypt.

II, p. 733, 1812 (1829). Atlas, p. V, fig. 1, 1809.

Gesner, C. von 1551 Conradi Gesneri medici Tigurini Historiae Animalium Lib I de Quadrupedibus Viviparis. Tiduri Christ Froschoverum Anno 1551, p. 829. De majore domestico mure quem vulgo rattum vocant.

Gevaerts, Jacques 1901 Diète sous phosphore. La Cellule, vol. 18, pp. 7-33. Giglio-Tos, E. 1900 Un parasite intranucléaire dans les reins du rat des

égouts. Arch. ital. de Biol., vol. 34, p. 36.

GILLETTE 1872 Description et structure de la tunique musculaire de l'oesophage chez l'homme et chez les animaux. J. de l'anat. et physiol., vol. 8, pp. 617-644.

Giraldus Cambrensis (1146?-1220) 1861-1891 Opera (8 vols.) Vol. 5, 1867, vol. 6, 1868, edited by James F. Dimmock, M.A. Published under the direction of the Master of the Rolls. Longmans, Green, London.

GLAS, EMIL 1904 Über die Entwickelung und Morphologie der inneren Nase der Ratte. Anat. Hefte, vol. 25, pp. 275-341.

GMELIN 1892 Zur Morphologie der Papilla vallata und foliata. Archiv f. mikr. Anat., vol. 40, pp. 1-28.

Godman, John D. 1826-1828 American natural history. 3 v., 8°. H. C. Carey and I. Lea, Phila. Pt. 1. Mastology.

GOETSCH, EMIL AND CUSHING, HARVEY 1913 The pars anterior and its relation to the reproductive glands. Proc. Soc. Exper. Biol. and Med., vol. 11, pp. 26-27.

Goldmann, E. E. 1909 Die äussere und innere Secretion des gesunden und kranken Organismus im Lichte der vitalen Färbung. Beitr. z. klin. Chir., vol. 64, p. 192. 1912 Die äussere und innere Sekretion des gesunden und kranken Organismus im Lichte der vitalen Färbung. Beitr. z. klin. Chir., vol.

78, pp. 1-108.

Goldstein, K. 1904 Zur vergleichenden Anatomie der Pyramidenbahn. Anat. Anz., vol. 24, p. 451.

Goto, Seitaro 1906 A laboratory guide of zoölogy (In Japanese). 2 vols. Kinkodo, Japan. See vol. 2, pp. 297-373—white rat (Mus rattus, X Mus decumanus).

Gottschau, M. 1883 Structure und embryonale Entwickelung der Nebennieren bei Säugethieren. Arch. f. Anat. u. Physiol., Anat. Abthlg., fig. 12.

Gourlay, C. A. 1907 Notes on the rats of Dacca, Eastern Bengal. Records of the Indian Museum, Calcutta, vol. 1, pp. 263-266. Relative numbers of Mus rattus and Nesokia bengalensis. Measurements on both good.

GRAHAM, L. W. AND HUTCHISON, R. H. 1914 The influence of experimental trypanosomiasis upon the body temperature of white rats. Am. J. of

Trop. Dis and Prev. Med., vol. 1, pp. 760-775.

Greenman, M. J. 1913 Studies on the regeneration of the peroneal nerve of the albino rat: number and sectional areas of fibers: area relation of axis to sheath. J. Comp. Neur., vol. 23, pp. 479-513.

Gregersen, J. P. 1911 Untersuchungen über den Phosphorstoffwechsel.

Zeit. physiol. Chem., vol. 71, pp. 49-99.

GRUBBS, S. B. AND HOLSENDORF, B. E. 1913 Fumigation of vessels for the destruction of rats. Pub. Health Rep., Wash., vol. 28, pp. 1166-1274.

Grützner, P. 1875 Neue Untersuchungen über die Bildung u. Ausscheidung des Pepsins. Breslau.

1878 Ueber Bildung und Ausscheidung von Fermenten. Arch. f. d. ges. Physiol., vol. 16, pp. 105-123.

1894 Zur Physiologie der Darmbewegung. Deutsche med. Wchnschr., vol. 20, pp. 897–898.

1898 Ueber die Bewegung des Darminhaltes. Arch. f. d. ges. Physiol., vol. 71, pp. 492–522.

1905 Ein Beitrag zum Mechanismus der Magenverdauung. Arch. f. d. ges. Physiol., vol. 106, pp. 463–522. (13 text figures.)

GUDERNATSCH, J. F. 1915 Feeding experiments on rats. Anat. Record, vol. 9, pp. 78-80. In full in Am. J. Physiol., vol. 36, pp. 370-379.

Guieysse, A. 1898 Sur quelques points d'anatomie des muscles des appareil respiratoire. J. de l'anat. et physiol., vol. 34, pp. 419-432. 5 figs. Rat p. 423.

Gulliver, George 1839 Observations on the muscular fibers of the oesophagus and heart in some of the Mammalia. Part 1. Proc. Zool. Soc., vol. 7, pp. 124-129. Mus decumanus, p. 126.

1842 Observations on the muscular fibers of the oesophagus and heart in some of the Mammalia. Part 2. Proc. Zool. Soc., vol. 10, pp. 63–72. Mus decumanus, p. 70.

1875 Observations on the sizes and shapes of the red corpuscles of the blood of vertebrates, with drawings of them to a uniform scale, and extended and revised tables of measurements. Proc. Zool. Soc., London, pp. 474–494.

HAACKE, V. W. 1895 Ueber Wesen, Ursachen, und Vererbung von Albinismus, etc. Biol. Centralbl., vol. 15.

HAGEDOORN, A. L. 1911 The interrelation of genetic and non-genetic factors in development. Verh. d. naturf. Verein Brünn, vol. 49, pp. 1-18.
 1914 Studies on variation and selection. Ztschr. f. indukt. Abstammungs u. Vererbungsl., vol. 11, pp. 145-183.

Haller, B. 1910 Zur Ontogenie der Grosshirnrinde der Säugetiere. Anat. Anz., vol. 37, pp. 282–293. 4 figures. Rat, p. 285.

Halliburton, W. D. 1888 On the haemoglobin crystals of rodents' blood. Quart. J. Microscop. Science, vol. 28, pp. 181–199. Rat, pp. 192, 193, 194.

Hamilton, Alice 1901 The division of differentiated cells in the central nervous system of the white rat. J. Comp. Neur., vol. 11, pp. 297-320.

Hamy, E. T. 1906 Sur la variété nègre du Mus decumanus observée au Muséum de Paris. Bull. du Mus. d'hist. nat., vol. 12, pp. 87-89. Hansemann, David 1895 Ueber die Poren der normalen Lungenalveolen. Sitz. d. Preuss. Akad. d. Wiss., pp. 999-1001 1 plate. Also Math. u. naturw. Mitt. d. k. Preuss. Akad. d. Wiss., vol. 9, pp. 451-454.

Hansemann, von 1904 Ueber abnorme Rattenschädel. Arch. Anat. Physiol.

physiol. Abt.

HARLAN, RICHARD 1825 Fauna Americana. Being a description of the mammiferous animals inhabiting North America—Philadelphia. p. 148——M. Rattus—description.

Harley, George 1857 Report on meeting of the Pathological Society, November 28, 1857, giving report of Dr. Harley on "Rats from which the suprarenal capsules had been removed." Med. Times and Gaz., N. S., vol. 15 (O. S., vol. 36), pp. 564-565.

1858 Living specimen of a rat from which both the suprarenal capsules and the spleen had been removed. Tr. Path. Soc. Lond., vol. 9,

p. 401.

1858 a An experimental inquiry into the function of the suprarenal capsules, and their supposed connection with bronzed skin (in 2 parts). Brit. and For. M.-Chir. Rev., vol. 21, pp. 204-221; 498-510.

1858 b Diseased suprarenal capsule, removal by operation from an apparently healthy animal. Tr. Path. Soc., Lond., vol. 9, pp. 401-402.

(This volume is a report of the season of 1857-58.)

HART, E. B. AND McCollum, E. V. 1913 The influence of restricted rations on growth. Proc. Soc. Biol. Chemists, vol. 3, pp. 38-39.

Hartley, Percival 1907 On the nature of the fat contained in the liver, kidney and heart. J. of Physiol., vol. 36, pp. 17-26.

HARZ, W. 1883 Beiträge zur Histologie des Ovariums der Säugetiere. Arch. f. mikr. Anat., vol. 22, pp. 374-407.

Hatai, S. 1901 The finer structure of the spinal ganglion cells in the white rat. J. Comp. Neur., vol. 11, pp. 1-24.

1901 a On the presence of the centrosome in certain nerve cells of the

white rat. J. Comp. Neur., vol. 11, pp. 25-39.

1902 Number and size of the spinal ganglion cells and dorsal root fibers in the white rat at different ages. J. Comp. Neur., vol. 12, pp. 107–124. 1902 a Preliminary note on the presence of a new group of neurones in the dorsal roots of the spinal nerves of the white rat. Biol. Bull., vol. 3, pp. 140–142.

1902 b On the origin of neuroglia tissue from the mesoblast. J.

Comp. Neur., vol. 12, pp. 291-296.

1903 The finer structure of the neurones in the nervous system of the white rat. Decennial Pub., Univ. of Chicago, vol. 10, pp. 3-14.

1903 a The effect of lecithin on the growth of the white rat. Am. J.

Physiol., vol. 10, pp. 57-66.

1903 b On the increase in the number of medullated nerve fibers in the ventral roots of the spinal nerves of the growing white rat. J. Comp. Neur., vol. 13, pp. 177-183.

1903 c On the nature of the pericellular network of nerve cells. J.

Comp. Neurol., vol. 13, pp. 139-147.

Hatai, S. 1903 d The neurokeratin in the medullary sheaths of the peripheral nerves of mammals. J. Comp. Neurol., vol. 13, pp. 149-156.

1904 A note on the significance of the form and contents of the nucleus in the spinal ganglion cells of the foetal rat. J. Comp. Neur. and Psychol., vol. 14, pp. 27-48.

1904 a The effect of partial starvation on the brain of the white rat. Am. J. Physiol., vol. 12, pp. 116-127.

1905 The excretion of nitrogen by the white rat as affected by age and body weight. Am. J. Physiol., vol. 14, pp. 120-132.

1907 On the zoölogical position of the albino rat. Biol. Bull., vol. 12, pp. 266-273.

1907 a Effect of partial starvation followed by a return to normal diet, on the growth of the body and central nervous system of albino rats. Am. J. Physiol., vol. 18, pp. 309–320.

1907 b A study of the diameters of the cells and nuclei in the second cervical spinal ganglion of the adult albino rat. J. Comp. Neur. and Psychol., vol. 17, pp. 469-491.

1907 c Studies on the variation and correlation of skull measurements in both sexes of mature albino rats (Mus norvegicus var. albus). Am. J. Anat., vol. 7, pp. 423-441.

1908 Preliminary note on the size and condition of the central nervous system in albino rats experimentally stunted. J. Comp. Neur. and Psychol., vol. 18, pp. 151-155.

1909 A comparison of the albino with the gray rats in respect to the weight of the brain and spinal cord. Proc. of Assoc. of Am. Anat. in Anat. Record, vol. 3, p. 245.

1909 a Note on the formulas used for calculating the weight of the brain in the albino rats. J. Comp. Neur. and Psychol., vol. 19, pp. 169–173.

1910 A mathematical treatment of some biological problems. Biol. Bull., vol. 18, pp. 126-130.

1910 a DeForest's formula for "An unsymmetrical probability curve." Anat. Record, vol. 4, pp. 281-290.

1911 An interpretation of growth curves from a dynamical standpoint. Anat. Record, vol. 5, pp. 373-382.

1911 a The Mendelian ratio and blended inheritance. Am. Naturalist, vol. 45, pp. 99–106.

1912 On the appearance of albino mutants in litters of the common Norway rat, Mus norvegicus. Science, n.s. vol. 35, no. 909, pp. 875–876, May 31.

1913 On the weights of the abdominal and the thoracic viscera, the sex glands, duetless glands and the eyeballs of the albino rat (Mus norvegicus albinus) according to body weight. Am. J. Anat., vol. 15, pp. 87–119.

1913 a The effect of castration, spaying or semi-spaying on the weight of the central nervous system and of the hypophysis of the albino rat; also the effect of semi-spaying on the remaining ovary. J. Exper. Zool., vol. 15, pp. 297–314.

Hatai, S. 1914 On the weight of the thymus gland of the albino rat (Mus norvegicus albinus) according to age. Am. J. Anat., vol. 16, pp. 251-257. 1914 a On the weight of some of the ductless glands of the Norway and of the albino rat according to sex and variety. Anat. Record, vol. 8, pp. 511-523.

1915 The growth of organs in the albino rat as affected by gonadec-

tomy. J. Exper. Zoöl., vol. 18, pp. 1-67.

1915 a Growth of the body and organs in albino rats fed with a lipoid-

free ration. Anat. Record, vol. 9, pp. 1-20.

Hehn, Viktor 1911 Kulturpflanzen und Hausthiere in ihrem Uebergang aus Asien nach Griechenland und Italien sowie in das übrige Europa. Achte auflage. Historisch-linguistische Skizzen, Berlin, Gebrüder

Borntraeger.

Heiser, Victor G. 1910 Plague eradication in cities by sectional extermination of rats and general rat proofing. Found in "The rat and its relation to public health," pp. 205-206. Treasury Dept. Pub. Health and Mar.-Hosp. Service of the U. S. Government Printing Office, Wash., D. C.

1913 The rats of our cities; what becomes of the carcasses of rats dying

natural deaths? Pub. Health Rep., Wash., vol. 28, p. 1553.

Henneberg, B. 1899 Die erste Entwickelung der Mammarorgane bei der Ratte. Anat. Hefte, Wiesb., vol. 13, pp. 1-68. 1900 Verhalten der Umbilicalarterien bei den Embryonen von Ratte und Maus. Anat. Anz., vol. 17, pp. 321-324.

Herzog, Maximilian 1905 Zur Frage der Pestverbreitung durch Insecten. Eine neue Species von Rattenfloh. Zeitschr. Hyg. Infektionskrankh.,

vol. 51, pp. 268-282.

Heuser, Chester H. 1914 The form of the stomach in mammalian embryos. Proc. Am. Assoc. of Anatomists in Anat. Record, vol. 8, no. 2.

Hewer, Evelyn E. 1914 The effect of thymus feeding on the activity of the reproductive organs in the rat. J. Physiol., vol. 47, pp. 479-490.

HEWETT, G. M. A. 1904 The rat. Adam and Charles Black. London.

Heymann, Felix 1904 Zur Einwirkung der Castration auf den Phosphorgehalt des weiblichen Organismus. Arch. Gynäkol., vol. 73, pp. 366-405. Also Zeit. physiol. Chem., vol. 41, pp. 246-258.

Hill, A. M. 1913 The effects of high external temperatures on the metabolism

of rats. J. Physiol., vol. 46, pp. xxxi-xxxii.

HILL, LEONARD AND MACLEOD, J. J. R. 1903 The influence of compressed air on the respiratory exchange. J. Physiol., vol. 29, pp. 492-510.

Hobdy, William C. 1910 The rat in relation to shipping. Found in "The rat and its relation to the public health," pp. 207-213. Treasury Dept. Pub. Health and Mar.-Hospt. Service of the U.S. Government Printing Office, Wash., D. C.

Höber, Rudolf 1911 Physikalische Chemie der Zelle und der Gewebe. Wilhelm Engelmann. Leipzig. 3rd Ed., p. 254. Analysen der Plasma-

hautstruktur bei den Blutkörperchen.

Hohlbaum, Jos. 1912 Beiträge zur Kenntnis der Epithelkörperchenfunktionen. Beitr. z. path. Anat. u. z. allg. Path., vol. 53, pp. 91-104.

- Hohmeier, F. 1901 Ueber Aenderungen der Fermentmengen im Mageninhalt. Inaug.-Diss. Tübingen.
- Hollmann, Harry T. 1912 The cultivation of an acid-fast bacillus from a rat suffering with rat leprosy (a preliminary report) Pub. health rep. U. S. Mar. Hosp. Serv., vol. 27, part 1, pp. 69-70.
- Home, Sir Evered 1807 Observations on the structure of the stomach of different animals. Phil. Trans. Roy. Soc., part 1, Plates V-XIII, p. 150. The common rat.
- Hönigschmied, Joh. 1873 Beiträge zur mikroskopischen Anatomie über die Geschmacksorgane der Säugethiere. Zeitschr. f. wissen. Zool., vol. 23, pp. 414-434.
- HOPKINS, F. G. 1912 Feeding experiments illustrating the importance of accessory factors in normal dietaries. J. Physiol., vol. 44, pp. 425-460.
- HOPKINS, F. G. AND NEVILLE, ALLEN 1912 A note concerning the influence of diets upon growth. Biochem. J., vol. 7, pp. 97-99.
- Horton, Jessie M. 1905 The anthracidal substance in the serum of white rats. J. of Infect. Dis., vol. 3, pp. 110-115.
- Hossack, W. C. 1906 Preliminary note on the rats of Calcutta. Journ. Proc. Asiat. Soc., Bengal, vol. 2, pp. 183-186.
 - 1907 An account of the rats of Calcutta. Mem. Ind. Museum, vol. 1, no. 1. Pl. I-VIII. Elaborate tables of measurements—very complete. Several colored plates.
 - 1907 a Aids to the identification of rats connected with plague in India. Allahabad, Pioneer Press, 10 pp.
 - 1907 b The original home of Mus decumanus. Records of the Indian Museum, Calcutta, vol. 1, pp. 275-276. Discussion of wild coloration.
- HOYER, H. 1890 Ueber den Nachweis des Mucins in Geweben mittelst der Färbemethode. Arch. f. mikr. Anat., vol. 36, pp. 310-374. Rat included among mammals examined.
- Hubbert, Helen B. 1914 Time versus distance in learning. J. Animal Behavior, vol. 4, pp. 60-69.

 1915 Elimination of errors in the maze. J. Animal Behavior, vol. 5,

pp. 66-72.

- HUBER, G. CARL 1915 The development of the albino rat from the end of the first to the tenth day after insemination. Anat. Record, vol. 9, pp. 84-88.
 - 1915 a The development of the albino rat (Mus norvegicus albinus). Part 1. From the pronuclear stage to the stage of mesoderm anlage; end of the first to the end of the ninth day. J. of Morphology, vol. 26, pp. 247–358.
 - 1915 b The development of the albino rat (Mus norvegicus albinus). Part II. Abnormal ova. End of the first to the end of the ninth day. J. of Morphology, vol. 26, pp. 359-386.
- Hunt, Reid, and Seidell, A. 1909 Studies on thyroid. I. The relation of iodine to the physiological activity of thyroid preparations. Bull. no. 47 Hyg. Lab. U. S. Pub. Health and Mar. Hosp. Serv.; Wash.

Hunt, Reid 1910 The effects of a restricted diet and of various diets upon the resistance of animals to certain poisons. Bull. no. 69, Hyg. Lab. U.

S. Pub. Health and Mar. Hosp. Serv., Wash., pp. 3-93.

HUNTER, A., GIVENS, M. H. AND GUION, C. M. 1914 Studies in the comparative biochemistry of purine metabolism. I. The excretion of purine catabolites in the urine of marsupials, rodents and carnivora. J. Biol. Chem., vol. 18, p. 387.

HUNTER, WALTER S. 1912 A note on the behavior of the white rat. J. Animal Behavior, vol. 2, pp. 137-141. 1913 The delayed reaction in animals and children. Behavior Mono-

graphs, vol. 2, no. 1, serial number 6, pp. 1-86. 1914 The auditory sensitivity of the white rat. J. Animal Behavior,

vol. 4, pp. 215-222.

Hurler, K. 1912 Vergleichende Untersuchungen über den Bacillus paratyphosus B, den Bacillus enteritidis Gärtner und die Rattenbacillen: Ratinbacillus, Bacillus ratti Danysz, Bacillus ratti Dunbar und Bacillus ratti Issatschenko. Centralbl. f. Bakteriol., 1 Abt., Jena, vol. 63, pp. 341-372.

Hyrtl, Joseph 1845 Vergleichend-anatomische Untersuchungen über das innere Gehörorgan des Menschen und der Säugethiere. Pp. 1-139, 9 plates. Friedrich Ehrlich. Prag. Diameters of the several semi-circular canals with their greatest distance from the vestibule for M. decu-

manus.

India Plague Commission 1908 Etiology and epidemiology of plague, p. 9. Calcutta.

Iselin, Hans 1908 Wachstumshemmung infolge von Parathyreoidektomie bei Ratten: ein Beitrag zur Kenntnis der Epithelkörperchen-Funktion bei jungen Ratten. Deutsche Ztschr. f. Chir., vol. 93, pp. 494-500.

L'ISLE, A. DE, 1865 De l'existence d'une race nègre chez le Rat ou de l'identite spécifique du Mus rattus et du Mus alexandrinus. Ann. d. sc. nat.

Zoöl., 5th series, vol. 4, pp. 173-222.

Jackson, C. M. and Lowrey, L. G. 1912 On the relative growth of the component parts (head, trunk and extremities) and systems (skin, skeleton, musculature and viscera) of the albino rat. Anat. Record, vol. 6, pp. 449-474.

Jackson, C. M. 1912 On the recognition of sex through external characters in the young rat. Biol. Bull., vol. 23, pp. 171-174. 1913 Postnatal growth and variability of the body and of the various organs in the albino rat. Am. J. Anat., vol. 15, pp. 1-68. 1915 Effects of acute and chronic inanition upon the relative weights of the various organs and systems of adult albino rats. Anat. Record, vol. 9, pp. 90-91. Full paper: Am. J. Anatomy, vol. 18, pp. 75-116. 1915 a Changes in young albino rats held at constant body weight by underfeeding for various periods. Anat. Record, vol. 9, pp. 91-92. 1915 b Changes in the relative weights of the various parts, systems and organs of young albino rats held at constant body weight by underfeeding for various periods. J. Exper. Zoöl., vol. 19, pp. 99-156.

Jacob, Ludwig 1906 Fütterungsversuche mit einer aus den einfachen Nahrungsstoffen zusammengesetzten Nahrung an Tauben und Ratten. Zeit. Biol., vol. 48 (N. F. 30) pp. 19-62.

Jadassohn, J. 1913. Lepra. in (Kolle, Wilhelm und Wassermann, A. von, (eds.) Handbuch der pathogenen Mikroorganismen. vol. 5, part 2, pp. 791-

930). Page 821, Rattenleprabacillus.

JENSEN, C. O. 1908 Uebertragbare Rattensarkome. Ztschr. f. Krebsforschung, vol. 7, p. 45.

JENSEN, O. S. 1887 Untersuchungen über die Samenkörper der Säugethiere, Vögel und Amphibien. Arch. f. mikr. Anat., vol. 30.

JOANNOVICS, GEORG 1912 Ueber das Verhalten transplantierter Karzinome in künstlich anämischen Mäusen. Wiener Klin. Wochenschr., vol. 25, pp. 37-39.

Job, Thesle T. 1915 The adult anatomy of the lymphatic system in the common rat (Epimys norvegicus). Anat. Record, vol. 9, pp. 447-458.

Jolly, J. et Stini, J. 1905 Masse totale du sang chez le rat blanc. Compt. rend. Soc. de biol., Paris, vol. 58, pp. 835-837.

JOLYET ET CHAKER 1875 De l'acte de ronger étudie chez les rats. C. R. et Mem. Soc. Biol., Paris, Ann. 1875, pp. 73-74. Lateral motion of inferior incisors.

JUNGANO 1909 Sur la flore anaérobie du rat. Comp. rend. Soc. de biol., vol. 66, p. 112.

JÜRGENS, G. 1903 Beitrag zur Biologie der Rattentrypanosomen. Arch. f. Hyg., vol. 42, p. 265.

Kanthack, A. A. and Hardy, W. B. 1894 The morphology and distribution of the wandering cells of mammalia. J. Physiol., vol. 17, pp. 81-119.

Katzenstein, J. 1903 Ueber die elastischen Fasern im Kehlkopfe mit besonderer Berücksichtigung der funktionellen Struktur und der Function der wahren und falschen Stimmlippe. Arch. f. Laryngol. u. Rhinol., vol. 13, pp. 329-352, pl. XVIII-XIX.

Keller, Otto 1909 Die Antike Tierwelt. I. Säugetiere. pp. 203-205. Engelmann, Leipzig.

Keller-Zschokke, J. 1892 Mus rattus noch in der Schweiz. Zool. Garten, 33 Jhg. no. 2, p. 60.

KERR, JOHN W. 1910 The rat in relation to international sanitation. Found in "The rat and its relation to the public health," pp. 227-254. Treasury Dept. Pub. Health and Mar.-Hospt. Service of the U. S. Government Printing Office, Wash., D. C.

King, Helen D. 1910 The effects of various fixatives on the brain of the albino rat, with an account of a method of preparing this material for a study of the cells in the cortex. Anat. Record, vol. 4, pp. 214-244.

1911 The effects of pneumonia and of post-mortem changes on the percentage of water in the brain of the albino rat. J. Comp. Neur., vol. 21, pp. 147-154.

1911 a The effects of semi-spaying and of semi-castration on the sex ratio of the albino rat (Mus norvegicus albinus). J. Exper. Zoöl., vol. 10, pp. 381-392.

King, Helen D. 1911 b The sex ratio in hybrid rats. Biol. Bull., vol. 21, pp. 104-112.

1913 Some anomalies in the gestation of the albino rat (Mus nor-

vegicus albinus). Biol. Bull., vol. 24, pp. 377-391.

1913 a The effects of formaldehyde on the brain of the albino rat. J. Comp. Neur., vol. 23, pp. 283-314.

1915 On the weight of the albino rat at birth and the factors that in-

fluence it. Anatomical Record, vol. 9, pp. 213-231.

KING, HELEN D. AND STOTSENBURG, J. M. 1915 On the normal sex ratio and the size of the litter in the albino rat (Mus norvegicus albinus). Anatomical Record, vol. 9, pp. 403-420.

King, Jessie L. 1910 The cortico-spinal tract of the rat. Anat. Rec., vol. 4,

pp. 245-252.

Kirkham, William B. 1910 Ovulation in mammals, with special reference to the mouse and rat. Biol. Bull., vol. 18, pp. 245-251.

Kirkham, William B. and Burr, H. S. 1913 The breeding habits, maturation of eggs and ovulation of the albino rat. Am. J. Anat., vol. 15, pp. 291-317. Six excellent plates illustrating the egg in various phases.

Klebs, E. 1891 Zur vergleichenden Anatomie der Placenta. Archiv. f. mikr.

Anat., vol. 37, pp. 335-356.

KLEIN, EDWARD UND VERSON, E. 1871 Der Darmkanal. In Stricker's Handbuch der Lehre von den Geweben des Menschen und der Tiere. See "Magen," p. 395.

Klein, E. 1875 The anatomy of the lymphatic system. II. The lung. Smith, Elder & Co., London, 88 pages, 6 plates. Observations mainly on

guinea pig. Rat among other animals used.

Klunzinger, C. B. 1908 Ueber unsere Ratten und Mäuse, deren Schaden und Bekämpfung. Jahresh. Ver. vaterl. Naturk. Württemberg Jahrg., 64 p. xxxi-xxxviii.

KNAPP, PAUL 1908 Experimenteller Beitrag zur Ernährung von Ratten mit künstlicher Nahrung und zum Zusammenhang von Ernährungsstörungen mit Erkrankungen der Conjunctiva. Zeit. exp. Path. u. Ther., vol. 5, pp. 147-169.

Koch, Mathilde L. 1913 Contributions to the chemical differentiation of the central nervous system. I. A comparison of the brain of the albino rat at birth with that of the fetal pig. J. Biol. Chem., vol. 14, pp. 267-279.

Koch, W. and Mann, S. A. 1909 A chemical study of the brain in healthy and diseased conditions, with especial reference to dementia praecox. Archives of Neurol. and Psychiatry (Mott), vol. 4, pp. 201-204.

KOCH, WALDEMAR AND KOCH, MATHILDE L. 1913 Contributions to the chemical differentiation of the central nervous system. II. A comparison of two methods of preserving nerve tissue for subsequent chemical examination. J. Biol. Chem., vol. 14, pp. 281-282. 1913 a Contributions to the chemical differentiation of the central nervous system. III. The chemical differentiation of the brain of the albino rat during growth. J. Biol. Chem., vol. 15, pp. 423-448.

- Koepert, Otto 1904 Nochmals der Rattenkönig. Natur u. Haus., vol. 12, pp. 118-119.
- KOGANEI, J. 1885 Untersuchungen über den Bau der Iris des Menschen und der Wirbelthiere. Archiv. f. mikr. Anat., vol. 25, pp. 1-48. Rat, p. 16
- KOHLMEYER, O. 1906 Topographie des elastischen Gewebes in der Gaumenschleimhaut der Wanderratte, Mus decumanus. Zeitschr. wiss. Zool., vol. 81, pp. 145–190.
- Kolazy, Josef 1871 Ueber die Lebensweise von Mus rattus, varietas, alba. Verhandl. Zool. Bot. Gesellsch. Wien, pp. 731-734. Unusually good account.
- KOLMER, J. A. AND YUI, C. V. AND TYAU, E. S. 1913 Concerning the activity and fixability of the complement in rat serum. J. Med. Research, vol. 28 (n.s. vol. 23), pp. 483-495.
- Kolster, Rud. 1901 Vergleichend anatomische Studien über den M. pronator teres der Säugetiere. Anat. Hefte, vol. 17, pp. 673-834. Mus. rattus, p. 714.
- Konstansoff, S. V. 1910 Organized extermination of rats in general and on the territory of the port of Feodossiyz in particular. Vestnik obsh. hig., sudeb. i prakt. med., St. Petersb., vol. 46, pp. 777-783.
- Korolkow, P. 1892 Die Nervenendigungen in den Speicheldrüsen. Rev. d. sc. nat. de St. Petersbourg, Ann. 3, pp. 109-112 (Russian). In German in Anat. Anz., vol. 7, pp. 580-582, 1 fig., white rat.
- Krause, Wilhelm 1870 Die Nervenendigung in der Zunge des Menschen, Göttinger Nachr., pp. 423-426. 1876 Allgemeine und mikroskopische Anatomie. Handbuch der menschlichen Anatomie, Bd. 1. Hannover, 1876. (Vol. 1 of Krause, Carl F. T. Handbuch der menschlichen Anatomie, 3 Aufl.).
- Kreidl, A. und Neumann, A. 1908 Zur Frage der Labgerinnung im Säuglingsmagen. Zentralbl. f. Physiol., vol. 22, pp. 133-136. (See p. 136).
- Kunhardt, J. C., Taylor, J. and Others 1915 Epidemiological observations in Madras Presidency. VI. Rat and flea prevalence, p. 725. J. of Hyg., Plague Suppl. IV, 9th Report on Plague Investigations in India.
- Kupffer, C. W. von 1876 Ueber Sternzellen in der Leber. Arch. f. mikr. Anat., vol. 12, part 2, pp. 352-358. Results verified on rat.
- LAGARRIQUE, MAURICE 1911 La lutte contre le rat. Paris, Jouve & Cie. 102 pp. 8°.
- LAMBERT, R. A. 1910 A note on parabiosis between mice and rats. Proc. Soc.
 Exper. Biol. and Med., 38th meeting, April 20.
 1911 The influence of mouse-rat parabiosis on the growth in rats of a transplantable mouse sarcoma. J. Exp. Med., vol. 13, pp. 257-262.
- LANDOIS, H. 1886 Über Bleirohre von Ratten zernagt. 15 Jahresber. Westfäl. Prov.-Ver., pp. 12-13.
- Lane-Claypon, Janet E. 1909 Observations on the influence of heating upon the nutrient value of milk as an exclusive diet for young animals. J. Hyg., vol. 9, pp. 233-238.
- Langley, J. N. 1879 On the structure of serous glands in rest and activity. Proc. Roy. Soc., London, vol. 29, pp. 377-382.

LANGLEY, J. N. AND SEWALL, H. 1879 On the changes in pepsin-forming glands during secretion. J. Physiol., vol. 2, pp. 281-301; Proc. Roy. Soc., London, vol. 29, p. 383.

Langley, J. N. 1882 On the histology of the mammalian gastric glands, and the relation of pepsin to the granules of the chief cells. J. Physiol.,

vol. 3, pp. 269-291.

Langlois, J. P. and Loir, A. 1902 La résistance des rats et des insectes à l'acide carbonique et à l'acide sulfureux. Compt. rend. Soc. de biol.,

vol. 54, pp. 414-415.

Lantz, David E. 1907 Methods of destroying rats. U. S. Dept. of Agr. Farmers' Bull. no. 297. Government Printing Office, Washington, D. C. 1909 The brown rat in the United States. U. S. Dept. of Agr., Biol. survey, Bull. no. 33, Washington, D. C., pp. 12-13.

1910 Natural history of the rat. Found in "The rat and its relation to the public health," pp. 15-27. Treasury Dept. Pub. Health and Mar.-Hospt. Service of the U. S., Washington, D. C. Government

Printing Office.

1910 a Natural enemies of the rat. Found in "The rat and its relation to the public health," pp. 163-169. Treasury Dept. Pub. Health and Mar.-Hospt. Service of the U.S. Government Printing Office.

Washington, D. C.

1910 b The rat as an economic factor. Found in "The rat and its relation to the public health," pp. 215-226. Treasury Dept. Pub. Health and Mar.-Hospt. Service of the U. S. Government Printing Office, Washington, D. C.

Lapicque, Louis 1907 Différence sexuelle dans le poids de l'encéphale chez les animaux. Rat et moineau. C. R. Soc. Biol., Paris, vol. 63, pp.

746-748.

Lapicque, Louis and Girard, P. 1907 Sur le poids de l'encéphale chez les animaux domestiques. Societé de Biol., vol., 62, p. 1015.

Lapicque, Louis and Legendre, R. 1911 Sur les rats noirs du Jardin des Plantes. Bull. du Muséum d'histoire naturelle, no. 6, pp. 1-5.

Lashley, K. S. 1912 Visual discrimination of size and form in the albino rat. J. Animal Behavior, vol. 2, pp. 310-331.

Lauber, Hans 1901 Beiträge zur Anatomie des vorderen Augenabschnittes der Wirbeltiere. Anat. Hefte, vol. 18, pp. 371-453. Mus rattus, p. 427.

Laveran, A. and Mesnil, F. 1900 Sur l'agglutination des trypanosomes du rat par divers sérums. C. R. Soc. de Biol., Nov. 10, p. 939. 1900 a De la longue conservation à la glacière des trypanosomes du rat et de l'agglomération de ces parasites. C. R. Soc. de Biol., Oct. 6, p. 816.

1900 b Sur le mode de multiplication du trypanosome du rat. C. R.

Soc. de Biol., Nov. 17, p. 976.

LAVRINOVICH, M. O. 1910 Extermination of rats in St. Petersburg by cultures of Danich's bacilli. Vestnik. Obsh. vet., St. Petersb., vol. 22, p. 885. (Russian.)

Leboeuf, A. 1912 Existence de lepra murium (lèpre des rats) en Nouvelle Calédonie. Bull. Soc. path. exot., vol. 5, pp. 463-465.

- LEE, FREDERIC S. 1910 The nature of fatigue. Popular Science Monthly, February, pp. 182-195. See fig. 4.
- LEEUWENHOECK, Ant. 1693 On the testicles of a rat and the animalcules therein contained; with some observations of small animals found in oysters and in the sap of vines. Phil. Trans., vol. 17, pp. 593-594.
- Lefroy, Sir John Henry 1882 The Historye of the Bermudaes or Summer Islands, 1609— By Capt. John Smith (?) Pub. of the Hakluyt Soc., London.
- Leischner, H. 1907 Ueber Epithelkörperchen-Transplantationen und deren praktische Bedeutung in der Chirurgie. Arch. f. klin. Chir., vol. 84, pp. 208-222.
- Leischner, H. and Köhler, R. 1911 Ueber homioplastische Epithelkörperchen und Schilddrüsenverpflanzung. Arch. f. klin. Chir., vol. 94, pp. 169-185.
- Lenhossék, M. von 1889 Ueber die Pyramidenbahnen im Rückenmarke einiger Säugetiere. Anat. Anz., vol. 4, pp. 208-219. 1898 Untersuchungen über Spermatogenese. Arch. f. mikr. Anat., vol. 51, pp. 215-318.
- Leopold, Jerome S. and Reuss, A. von 1908 Ueber die Beziehungen der Epithelkörperchen zum Kalkebestand des Organismus. Wien klin. Wchnschr., pp. 1243–1246.
- Lersch, B. M. 1871 Zur Geschichte der Rattophagie. Deutsche Klinik, Berl., vol. 23, p. 42.
- Levin, Isaac 1908 The reactive power of the white rat to tissue implantation (Second communication.) Proc. Soc. Exper. Biol. and Med., vol. 5. pp. 41-43.
 - 1910 Immunity to the growth of cancer induced in rats by treatment with mouse tissue. Proc. Soc. Exper. Biol. and Med., 38th meeting, April 20.
 - 1910 a Resistance to the growth of cancer induced in rats by injection of autolyzed rat tissue. Proc. Soc. Exper. Biol. and Med., February 16.
 - 1911 The relation of the reactive stroma formation to the transplantability of the cancers of the white rat. J. Exp. Med., vol. 13, pp. 604-615.
- LEWIN, C. 1912 Ueber Immunisierung mit Blutserum von spontan geheilten Tumorratten. Zeitschr. f. Krebsforsch., vol. 11, p. 334. 1912 a Immunisierungs und Heilversuche mit Autolysaten bei Rattentumoren. Zeitschr. f. Krebsforsch., vol. 11, p. 317.
- Lewis, Frederic T. 1915 The comparative embryology of the mammalian stomach. Proc. of Am. Assoc. of Anatomists in Anat. Record, vol. 9, pp. 102-103.
- Lewis, W. Bevan 1881 On the comparative structure of the brain in rodents. Phil. Trans., 1882, pp. 699-749.
- Leydig, F. 1850 Zur Anatomie der männlichen Geschlechtsorgane und Analdrüsen der Säugetiere. Ztschr. f. wiss. Zool., vol. 2, pp. 1-57, Taf. I-IV.

Leydig, F. 1854 Kleinere Mitteilungen zur tierischen Gewebelehre. Arch. f. Anat. u. Entweklngsgesch., pp. 296-348, pl. XII and XIII. Mus decumanus, pp. 341-345. 1857 Lehrbuch der Histologie des Menschen und der Tiere. Frank-

furt a.M. 551 pp. See p. 374.

Liebe, K. Th. 1891 Zu dem Vorkommen der Hausratte (Mus rattus). Zoolog. Garten, 31 Jhg., pp. 156-157.

LINDNER, Fr. 1891 Notiz über das Vorkommen der Hausratte (Mus rattus). Zoolog. Garten 31 Jhg., pp. 155-156.

LINNAEUS, C. 1746 Fauna Suecica. Stockholm. 1758 Systema naturae, etc. Tome 1, Editio 10. p. 61, M. rattus-5 references.

1766 Systema naturae, etc. Tome 1, Editio 12 (Mus rattus only).

LINSER, PAUL 1900 Ueber den Bau und die Entwicklung des elastischen Gewebes in der Lunge. Anat. Hefte, H. 42/43 (Bd. 13, H. 2/3) pp. 307-335.

Liston, W. G. 1905 Plague, rats and fleas. J. Bombay Nat. Hist. Soc., vol. 16, p. 253. 1905 a The rats of India. Indian M. Gaz., Calcutta, vol. 40, pp. 130-

LIVINI, FERD. 1896 Intorno alla struttura della trachea. Monitore zool. ital. Anno 7. Mus decumanus, p. 103.

LLOYD, R. E. 1908 Remarkable cases of variation, I. Records Indian Museum, vol. 2, p. 29.

1909 The races of Indian rats. Records of Indian Museum, vol. 3,

pp. 1-100.

1909 a The relation between fertility and normality in rats. Records Indian Museum, vol. 3, pp. 261-265.

1910 Further observations on the races of Indian rats. Records of the Indian Museum, Calcutta, vol. 5, pt. II, pp. 105-115. Peculiar large groups.

1911 The inheritance of fertility. Biometrika, vol. 8, pp. 244-247. 1912 The growth of groups in the animal kingdom. London. 1 colored plate of three color varieties of Mus rattus.

Loeb, Leo 1901 On transplantation of tumors. J. Med. Research, vol. 6 (n.s. vol. 1-continuation of the Journ. of the Boston Soc. of Med. Sciences, pp. 28-38.

1902 Further investigations in transplantations of tumors. J. Med.

Research, n.s. vol. 3, pp. 44-73.

1902 a Ueber Transplantationen eines Sarcoms der Thyreoidea bei einer weissen Ratte. Arch. f. path. Anat., vol. 167, pp. 175-191.

1903 Mixed tumors of the thyroid gland. Am. J. Med. Sc., vol. 125, pp. 243-256.

1903 a Über Transplantation von Tumoren. Arch. f. path. Anat., vol. 172, pp. 345-368.

1904 Ueber das endemische Vorkommen des Krebses beim Tiere Centralbl. f. Baktériol. u. Parasitenk., vol. 37, pp. 235-245.

LOEB, LEO. 1907 Observations on the inoculability of tumors and on the endemic occurrence of cancer. Internat. Clin., vol. 3, series 17, pp. 114-130.

1913 Venom of heloderma. Carnegie Inst., Wash., D. C. Pub. no. 177, pp. 250.

LOEWENTHAL, N. 1894 Zur Kenntnis der Glandula infraorbitalis einiger Säugetiere. Anat. Anz., vol. 10, pp. 123-130.

1894 a Zur Kenntnis der Glandula submaxillaris einiger Säugetiere. Anat. Anz., vol. 9, pp. 223-229. White rat, pp. 224-225.

1897 Note sur le structure fine des glandes de Cowper du rat blanc. Bibliogr. Anat., vol. 4, pp. 168-170. (1 text fig.)

1900 Drüsenstudien. II. Die Gl. infraorbitalis und eine besondere der Parotis anliegende Drüse bei der weissen Ratte. Arch. f. mikr. Anat., vol. 56, p. 535.

1908 Drüsenstudien. III. Die Unterkieferdrüse des Igels und der weissen Ratte. Arch. mikr. Anat., vol. 71, pp. 588-666.

LOGHEM, J. J. VAN 1908 Some notes on the morphology of Spirochaeta duttoni in the organs of rats. Ann. trop. Med. Parasit., vol. 1, pp. 521-525.

LOGHEM, J. J. VAN AND SWELLENGREBEL, N. H. 1914 Kontinuierliche und metostatische Pest verbreitung. Ztschr. f. Hyg. u. Infectionskrankh., vol. 77, p. 460.

Loir, I. M. 1903 Dégâts causés par les rats. Caducée Par., vol. 3, p. 89.

Löns, H. 1908 Mus rattus in Celle. Jahresber. nat. Ges., Hannover, pp. 41-42.

Lovén, C. 1868 Bidrag till kännedomen om tungans smakpapiller. Med. Arch. Stockholm, vol. 3, 1866–1867. Trans. Beiträge zur Kenntnis vom Bau der Geschmackswärzchen der Zunge. Arch. f. mikr. Anat., vol. 4, pp. 96–110.

LOWREY, LAWSON G. 1913 The growth of the dry substance in the albino rat. Anat. Record, vol. 7, pp. 143-168.

McCollum, E. V. 1909 Nuclein synthesis in the animal body. Am. J. Physiol., vol. 25, pp. 120-141. Also in Research Bull. no. 8, Univ. of Wis. Agr. Exper. Station, May, 1910.

McCollum, E. V. and Davis, Marguerite 1913 The influence of the composition and amount of the mineral content of the ration on growth. J. Biol. Chem., vol. 14, no. 2.

1913 a The necessity of certain lipins in the diet during growth. J. Biol. Chem., vol. 15, pp. 167-175.

1914 Further observations on the physiological properties of the lipins of the egg yolk. Proc. Soc. Exper. Biol. and Med., vol. 11, p. 101.

McCoy, George W. 1908 Distribution of the leprosy-like disease of rats in San Francisco, Cal. Pub. Health Rep. U. S. Mar. Hosp. Serv., Wash., vol. 23, p. 1601.

1909 The keeping and handling of rats for laboratory purposes. N. Y. Med. J., vol. 89, p. 275.

1910 Plague infection in rats. Found in "The rat and its relation to the public health," pp. 29-48. Treasury Dept. Pub. Health and Mar. Hospt. Service of the U.S. Government Printing Office, Wash., D.C.

McCoy, George W. 1910 a Organic diseases of the rat, including tumors.

Found in "The rat and its relation to the public health," pp. 59-68.

Treasury Dept. Pub. Health and Mar. Hospt. Service of the U. S.,

Government Printing Office, Wash., D. C.

McMunn, Charles A. 1884 On myohaematin, an intrinsic muscle-pigment of vertebrates and invertebrates, on histohaematin and on the spectrum of the suprarenal bodies. Proc. of Physiol. Soc. in J. of Physiol., vol.

5, pp. xxiv-xxvi.

MacCurdy, Hansford and Castle, W. E. 1907 Selection and cross-breeding in relation to the inheritance of coat pigments and coat-patterns in rats and guinea-pigs. Carnegie Inst., Wash., Pub. no. 70.

MacGillavry, T. H. 1875 Les dents incisives du Mus decumanus. Arch. Néerl. Sc. exact. et nat., Haarlem., vol. 10, 1 pl. Same as paper in Dutch, 1876.

1876 De snitjanden von M. decumanus. Vers. en mededed. der Kon.

Akad. v. Wetensch., II. R. 9. Amsterdam. 1 pl.

Macleon, J. J. R. 1907 Observations on the excretion of carbon dioxide gas and the rectal temperature of rats kept in a warm atmosphere which was either very moist or very dry. Am. J. Physiol., vol. 18, pp. 1-13.

Major, C. J. Forsyth Mus rattus remains at Molina di Anosa-near Pisa.

Quoted at length by Baumgart, 1904, p. 8.

Mallory, F. B. and Ordway, Thomas 1909 Lesions produced in the rat by a typhoid-like organism—Danysz virus. J. Am. Med. Assoc., vol. 52, p. 145.

Mandoul, H. 1909 Rats et pétrole. Arch. de parasitol., vol. 12, pp. 451-455.

Mandourrier, L. 1905 Un rapt de progéniture entre femelles de rat blanc.

Bull. de l'Inst. gén. psychol., vol. 5, pp. 165-169.

Marchoux, E. 1910 Les migrations du bacille de la lèpre. Lepra, vol. 11, pp-57-60. (II. Internationale wissenschaftliche Lepra-Konferenz abgehalten vom 16 bis 19 August, 1909, in Bergen. III. Band. Leipzig.)
1911 Culture d'un bacille acido-résistant provenant du mucus nasal des lépreux. (Note préliminaire.) Bull. Soc. path. exot., vol. 4, pp. 89-91.

1911 and 1912 Human leprosy and rat leprosy; a discussion of their respective problems. Tr. Soc. Trop. M. and Hyg., vol. 5, pp. 184-189.
1912 Rôle des infections secondaires dans le développement de la lèpre

du rat. Bull. Soc. path. exot., vol. 5, pp. 466-468.

Marchoux, E. and Sorel, F. 1912 Lepra murium; infection et maladie ne sont pas synonymes. Compt. rend. Soc. de Biol., vol. 72, pp. 169-171. 1912 a Lèpre des rats; comparaison avec la lèpre humaine. Compt. rend. Soc. de biol., vol. 72, pp. 214-217. 1912 b Lèpre des rats; inoculation expérimentale. Compt. rend. Soc. de biol., vol. 72, pp. 269-272. 1912 c Recherches sur la lèpre. 1er memoire: La lèpre des rats (lepra

murium). Ann. de l'Inst. Pasteur, vol. 26, pp. 675-700.

Mark, E. L. and Long, J. A. 1912 Studies on early stages of development in rats and mice. No. 3. The living eggs of rats and mice with a description of apparatus for obtaining and observing them. Univ. Cal. Pub. Zool., vol. 9, pp. 105-136.

Marshall, F. H. A. and Jolly, W. A. 1907 Results of removal and transplantation of ovaries. Tr. Roy. Soc. Edinb., vol. 45, pp. 589-597.

1908 On the results of heteroplastic ovarian transplantation as compared with those produced by transplantation in the same individual. Quart. J. Exper. Physiol., vol. 1, pp. 115-120.

Martin, Charles J. 1895 On the physiological action of the venom of the Australian black snake (Pseudechis porphysiacus). J. and Proc. Roy. Soc. of New South Wales, Sydney, vol. 29, pp. 146-277. Rat among

test animals.

Martin, H. N. and Moale, W. A. 1884 Handbook of vertebrate dissection. Part III. How to dissect a rodent. Macmillan & Co., N. Y. Mus decumanus the rodent used.

Martini, E. 1901 Ueber Inhalationspest der Ratten. Ztschr. f. Hyg., vol. 38, p. 332.

Martinotti, Giovanni 1889 Le reti nervose del fegato e della milza scoperte dal Prof. G. Rattone. Gior. d. r. Accad. di med. di Torino, Anno 52, vol. 37, pp. 15-30.

Matthes, M. and Marquardsen, E. 1898 Uber die Reaktion des Dünndarminhaltes. Verhaldl. des Congresses für innere Med. XVI. Wies-

baden, pp. 358-365.

Mavrojannis 1903 L'action cataleptique de la morphine chez les rats. Contribution à la théorie toxique de la catalepsie. Compt. rend. Soc. de Biol., vol. 55, p. 1092.

MAYER, F. J. C. 1843 Ueber die Zungeals Geschmacksorgan. Nov. Act. Acad. C. L.-C. nat. cur., vol. 20, pp. 721-748. 4 pl. Mentions Mus rattus among other forms.

MAYER, S. 1894 Adenologische Mitteilungen. Anat. Anz., vol. 10, pp. 177-191. Rat, p. 179.

Mazzarelli, G. F. 1890 Sulla structura dello stomaco del Mus decumanus Pall, var. alba, e del Mus musculus L. Internat. Monatsschr. Anat. Phys., vol. 7, pp. 91–96, T. 8 (1) pl. VIII, figs. 1, 3 and 4. M. decumanus var. alba.

Meek, Alexander 1899 On the post-embryonal history of voluntary muscles in mammals. J. Anat. and Physiol., vol. 33, p. 601.

Meek, Walter J. 1907 A study of the choroid plexus. J. Comp. Neur. and Psychol., vol. 17, no. 3, pp. 286-306.

Melissinos, Konst. 1907 Die Entwicklung des Eies der Mäuse (Mus musculus var. alba u. Mus rattus albus) von den ersten Furchungs-Phänomenen bis zur Festsetzung der Allantois an der Ectoplacentarplatte. Arch. f. mikr. Anat., vol. 70, pp. 577-628.

Mellanby, Edward 1908 Creatin and creatinin. J. Physiol., vol. 36, pp. 447-487. Rat, p. 472.

Mendel, L. B. and Daniels, Amy L. 1912 The behavior of fat-soluble dyes and stained fat in the animal organism. J. Biol. Chem., vol. 13, p. 71.

Mendel, L. B. 1913 The role of proteins in growth. Trans. XV Internat. Congress on Hyg. and Demography.

Mereshkowsky, S. S. and Sarin, E. 1909 Ueber das Ratin II. Centralbl. f. Bakteriol., 1 Abt., Jena, vol. 51, pp. 6210.

Mereshkowsky, S. S. 1912 Der Einfluss der Passagen durch graue Ratten (Mus decumanus) auf die Virulenz des Bacillus Danysz. Centralbl. f. Bakteriol., vol. 62, pp. 3-68.

1912 a Die Wirkung der 186.-515. in 10 proz. Hühnereiweissdekokt erwachsenen Generationen des Bacillus Danysz auf graue Ratten (Mus decumanus). Centralbl. f. Bakteriol., 1 Abt., vol. 65, pp. 482-488.

1889 Das Vorkommen der Hausratte, Mus rattus, in Bremen. Zoolog. MESSER Garten, 30 Jahrg., pp. 26-27.

Metschnikoff and Roux 1891 Sur la propriété bactéricide du sang de rat. Ann. de l'Inst. Pasteur, no. 8, p. 479. Also Centralbl. f. Bacteriol., vol. 10, p. 756.

Meyes, F. 1898 Ueber das Verhalten der Centralkörper bei der Histogenese der Samenfäden von Mensch und Ratte. Verhandl.d. anat. Gesellsch.

12 Vers., pp. 91-98. Diss. p. 98-100.

Meyer, Nicholaus 1800 Prodromus Anatomiae Murium. Inaug.-Diss. Jena, 40 pp., 2 pl. (50 figs.). Copper plates based on mouse-figures enlarged by 3. Gives teeth and ear bones. Dedicated to Goethe.

MEYERHEIM, MARTIN 1898 Beiträge zur Kenntnis der Entwicklung der Schneidezähne bei Mus decumanus. Inaug.-Diss. Universität Leipzig, Pöschel & Trepte, Leipzig.

Middendorff, A. v. 1875 Reise in den äussersten Norden und Osten Sibiriens. Bd. 4 Uebersicht der Natur Nord und Ost-sibiriens. Teil 2. St. Petêrsburg, Kommission d. Akademie.

MILLAIS, J. G. 1904 Mammals of Great Britain and Ireland. 4°. Pp. 203-232. Excellent colored plates for Mus norvegicus and Mus rattus. 1905 The true position of Mus rattus and its allies. 1 pl., 2 figs. The Zoologist, ser. 4, vol. 9, pp. 201-207. Figures of Mus rattus ater.

MILLER, GERRIT S. JR. 1910 The generic name of the house rat. Proc. Biol.

Soc. Wash., vol. 23, pp. 57-60.

MILLER, NEWTON 1911 Reproduction in the brown rat (Mus norvegicus). Am. Naturalist, vol. 45, pp. 623-635.

Miller, W. S. 1893 The structure of the lung. J. Morphol., vol. 8, pp. 165-188. 3 plates and other illustrations in text. Rat used with other mammals.

Mills, Wesley 1897 The functional development of the cerebral cortex in different groups of animals. Trans. R. Soc. Canada, vol. 2, Sect. IV, pp. 3-18.

MILNE-EDWARDS See EDWARDS, MILNE.

MINOT, C. S. 1900 On a hitherto unrecognized form of blood circulation without capillaries in the organs of vertebrata. Proc. of Boston Soc. of Nat. Hist., vol. 29, pp. 185-215. p. 207, Suprarenal capsule—rat.

MITCHELL, O. W. H. 1912 Bacillus muris as the etiological agent of pneumonitis in white rats and its pathogenicity for laboratory animals. J. Infect. Dis., vol. 10, pp. 17-23.

MITCHELL, P. C. 1911 Longevity. (Rat, 5-6 years.) Encyc. Britannica, 11th

ed., vol. 16, p. 976 (middle of first column).

Mojsisovics, von Mojsvár 1897 Das Tierleben der österr.-ungar. Tiefebenen. Wien, Hölder, 1897.

Montane, M. 1889 De la cytodierèse dans le testicule du rat. Compt. rend. Soc. de biol., Paris, vol. 1, 9th series.

Moreschi, C. 1909 Beziehungen zwischen Ernährung und Tumorwachstum. Zeitschr. f. Immunitätsforschung, vol. 2, pp. 651-685.

Morgan, T. H. 1909 Breeding experiments with rats. Am. Naturalist, vol. 43, pp. 182-185.

Morgulis, Sergius 1911 Studies of inanition in its bearing upon the problem of growth. I. Arch. f. Ent. d. Organ., vol. 32, pp. 169-268.

Morpurgo, B. 1898 Uber die postembryonale entwickelung der quergestreiften Muskeln von weissen ratten. Anat. Anz., vol. 15, pp. 200-206.

1899 Ueber die Verhältnisse der Kernwucherung zum Längenwachstum an den quergestreiften Muskelfasern der weissen Ratten. Anat. Anz., vol. 16, pp. 88-91.

1899 a Ueber die Regeneration des quergestreiften Muskelgewebes bei neugeborenen weissen Ratten. Anat. Anz., vol. 16, pp. 152-156. 1901 Ueber eine infectiöse Form von Knochenerweichung bei weissen Ratten. Verhandl. d. Versamml. d. Gesellsch. f. Kinderh. deutsch. Naturf. u. Aerzte, vol. 72.

1902 Durch Infection hervorgerufene malacische und rachitische Skelet-veränderungen an jungen weissen Ratten. Centralbl. f. allg. Path. u. path. Anat., vol. 13, pp. 113-119.

Morrell, G. Herbert 1872 Supplement to the anatomy of the mammalia, containing dissections of the sheep's heart and brain, rat, sheep's head and ox's eye. Longman & Co., London, pp. 153-269.

Moss, Samuel 1836 Notes on the habits of a domesticated white rat and a terrier dog (Flora) that lived in harmony together. London Mag. Nat. Hist., vol. 9.

Mouret, J. 1895 Contribution à l'étude des cellules glandulaires (pancréas). J. de l'anat. et physiol. Ann. 31, pp. 221-236, 1 pl. Mainly on frog and salamander. Rat among the mammals examined.

Mudge, G. P. 1908 On some features in the hereditary transmission of the self black and the Irish coat characters in rats. Proc. R. Soc. London, vol. 80 B, pp. 97-121.

1908 a On some features in the hereditary transmission of the albino character and the black piebald coat in rats. Proc. R. Soc. London, vol. 80 B, pp. 388-393.

1909 Note on the chemical nature of albinism. J. Physiol., vol. 38, p. lxvii.

1910 Article "Albino." Encyc. Brit., vol 1, p. 510 at the bottom, 11th ed. Recognizes 13 gametic types of the albino rat.

MUELLER, CLAUS 1902 Über die Tyson'schen Drüsen beim Menschen und einigen Säugetieren. Inaug.-Diss. Friedrichs-Universität, Halle-Wittenberg.

MÜLLER, JOHANNES 1830 De glandularum secernentium structura penitiori earumque prima formatione in homine atque animalibus. Leipzig, 131 pp., 17 pl.

Münch, Francis 1896 Die Topographie der Papillen der Zunge des Menschen und der Säugethiere. Morphol. Arb., vol. 6, pp. 605-690, 2 pl., 53 text figs. Rat, pp. 615, 616. Munson, T. M. 1910 An efficient rat killing device for use on board ship. U. S. Nav. M. Bull., Wash., vol. 4, p. 514.

Murphy, James B. 1914 Heteroplastic tissue grafting effected through Roentgen-ray lymphoid destruction. Journ. Am. Med. Assoc., vol. 62, p. 1459.

Murray, Andrew 1866 Geographical distribution of mammals. London, Day and Son. 4°.

Nerking, Joseph 1909 Narkose und Lezithin. Münch. med. Wochenschr. 56, II, pp. 1475-1478.

Neumark, E. 1913 Ueber die Bedeutung von Bakterienpräparaten als Rattenvertilgungsmittel. Gesundh.-Ingenieur, München, vol. 36, pp. 589

NICOLAS, A. 1890 Sur les cellules à grains du fond des glandes de Lieberkühn. Bull. des séances de la Soc. des Sciences de Nancy, An. 2, pp. 45-49.

Ohlmacher, A. P. 1897 A modified fixing fluid for general histological and. neuro-histological purposes. J. Exper. Med., vol. 11.

OLDS, W. H. 1910 The effects of thyroidectomy on the resistance of rats to morphine poisoning. Am. J. Physiol., vol. 26, pp. 354-360.

Ophüls, W. 1911 Spontaneous nephritis in wild rats. Proc. Soc. Exper. Biol. and Med., 42nd meeting, February 15.

Ordway, Thomas and Morris, J. Lucien 1913 The protein metabolism in certain tumor-bearing rats. J. Med. Research, vol. 28, (N. S. vol. 23), pp. 301-308.

Ori, A. 1912 Pseudotubercolosi nei topi (M. decumanus) catturati nel porto di Venezia. Igiene mod., Genova, v. pp. 233-242.

OSBORNE, T. B. AND MENDEL, L. B. 1911 Feeding experiments with mixtures of isolated food substances. Am. J. Physiol., vol. 27, p. xxvi.

1911 a Feeding experiments with isolated food substances. Carnegie Inst. Wash., Pub. 156, parts I and II.

1911 b The rôle of different proteins in nutrition and growth. Science vol. 34, pp. 722-732.

1912 The rôle of proteins in growth. Proc. Am. Soc. Biol. Chem. J. Biol. Chem., vol. 11, p. xxii.

1912 a Maintenance and growth. Proc. Am. Soc. Biol. Chem., J.

Biol. Chem., vol. 11, p. xxxvii.

1912 b Feeding experiments with fat-free food mixtures. Proc. Soc. Exper. Biol. and Med., vol. 9, p. 73. Also J. Biol. Chem., vol. 12, pp.

1912 c Growth and maintenance on purely artificial diets. Proc. Soc. Exper. Biol. and Med., vol. 9, p. 72.

1912 d Ein Stoffwechselkäfig und Fütterungsvorrichtungen für Ratten. Ztschr. biol. Techn. u. Methodik, vol. 2, pp. 313-318.

1912 e Beobachtungen über Wachstum bei Fütterungsversuchen mit isolierten Nahrungs-substanzen. Ztschr. f. physiol. Chem., vol. 80, pp. 307-370.

1912 f The rôle of gliadin in nutrition. J. Biol Chem., vol. 12, pp.

1912 g Maintenance experiments with isolated proteins. J. Biol. Chem., vol. 13, pp. 233-276.

Osborne, T. B. 1913 The nutritive value of the proteins of maize. Science, N. S., vol. 37, pp. 185-191.

OSBORNE, T. B. AND MENDEL, L. B. 1913 Feeding experiments relating to the nutritive value of the proteins of maize. Proc. Am. Soc. Biol. Chem. in J. Biol. Chem., vol. 14, p. xxxi.

1913 a The relation of growth to the chemical constituents of the

diet. J. Biol. Chem., vol. 15, pp. 311-326.

1913 b The influence of butter-fat on growth. J. Biol. Chem., vol. 16, pp. 423-437. Also in Proc. Soc. Exper. Biol. and Med., vol. 11, pp. 14-15.

1914 Some problems of growth. Am. J. Physiol. vol. 33, p. xxviii.

1914 a Amino acids in nutrition and growth. J. Biol. Chem., vol. 17, p. 325.

1914 b Influence of cod liver oil and some other fats on growth. J. Biol. Chem., vol. 17, p. 401.

1914 c Nutritive properties of proteins of the maize kernel. J. Biol. Chem., vol. 18, pp. 1-16.

1914 d The suppression of growth and the capacity to grow. J. Biol. Chem., vol. 18, pp. 95-106.

1914 e The contribution of bacteria to the feces after feeding diets free from indigestible components. J. Biol. Chem., vol. 18, pp. 177-182.

1915 The influence of beef-fat on growth. Given at Soc. for Exper. Biol. and Med., 64th Meeting, Jan. 20, 1915.

Oudemans, J. Th. 1892 Die accessorischen Geschlechtsdrüsen der Säugetiere. Haarlem, 96 pp. 16 pl. 4°.

OVALLE, ALONSO DE 1646 An historical relation of the Kingdom of Chili, 1646.

Translated from Spanish into English, London, 1703, in A. & J. Churchill's "A collection of voyages and travels." vol.3, London, 1704. p. 44 rat or pericote.

Owen, Richard 1840-1845 Odontography; or a treatise on the comparative anatomy of the teeth; their physiological relations, mode of development, and microscopic structure in the vertebrate animals. 2 v., xix, 74, 655 pp; atlas, 37 pp. 150 pl. roy. 8°. London, H. Baillière. 1868 On the anatomy of vertebrates. London, 1866-1868. Vol. 3, Mammals, 1868. Mus decumanus, alimentary canal, p. 421 and fig. 317; No gall bladder, p. 485; Low type of pancreas, p. 493 and fig. 380 (Hyde Salter).

Pallas, Pietro 1778 Novae species Quadrupedum e Glirium mordine. Erlangen. 1831 Zoographica Rosso-Asiatica. Sistens omnium animalium in extenso imperio rossico et adjacentibus maribus observatorium recensionem domicilia, mores et descriptiones, anatomen atque icones plurimorum. Petropoli, vol. 1, p. 164.

Paneth, J. 1888 Ueber die secernierenden Zellen des Dünndarm-Epithels. Arch. f. mikr. Anat., vol. 31, pp. 113-191., 3 pl. Mainly Triton and mouse. Rat: see figs. 30, 31, pl. X.

1888 a Ein Beitrag zur Kenntniss der Lieberkühn'schen Krypten.

Centralbl. f. Physiol., vol. 1, pp. 255-256.

PAUL, C. B. 1906 On the influence of an excessive meat diet on the male repro-

ductive organs. J. Physiol, vol. 34, pp. xiv-xv.

Pearson, Karl 1910 Darwinism, biometry and some recent Biology I. Biometrika, vol. 7, part 3, pp. 368-385. 1911 Remarks on Professor Lloyd's note on inheritance of fertility. Biometrika, vol. 8, pp. 247-249.

Pembrey, M. S. 1895 The effect of variations in external temperature upon the output of carbonic acid and the temperature of young animals. J.

Physiol., vol. 18. pp. 363-379.

Pembrey, M. S. and Spriggs, E. I. 1904 The influence of fasting and feeding upon the respiratory and nitrogenous exchange. J. Physiol., vol. 31, pp. 320-345.

Pennant, Thos. 1781 History of quadrupeds. 2 vols. London. Vol. II. Rats. M. rattus introduced into South America in 1544—time of Vice-

roy Blasco Minez. (Minez—a misprint for Núñez.)

Peters, Albert 1890 Beitrag zur Kenntniss der Harder'schen Drüse. Arch. f. mikr. Anat., vol. 36, pp. 192-203.

Petrie, G. F. 1910 Rats and plague. Nature, vol. 85, pp. 15-16. Historical: Late association circa 1800 of rat with plague.

Pitts 1898 Article "Animal heat" in Schäfer's Text Book of Physiol., vol. 1,

PLIMMER, H. G. AND THOMSON, J. D. 1908 Further results of the experimental treatment of trypanosomiasis in rats; being a progress report of a Committee of the Royal Society. Proc. R. Soc. London, vol. 80 B, pp. 1-12.

PLOSCHKO, ADAM AND V. ARNSTEIN 1897 Die Nervenendigungen und Ganglien der Respirationsorgane. Anat. Anz., vol. 13, pp. 12-22. 1 fig. Rat.

Podwisotzky, Valerian 1878 Anatomische Untersuchungen über die Zungendrüsen des Menschen und der Säugethiere (both M. decumanus and M. rattus). Inaug.-Diss. Dorpat., 144 pp., 2 pl.

Podwyssotzki, W. 1882 Beiträge zur Kenntnis des feineren Baues der Bauchspeicheldrüse. Arch. f. mikr. Anat., vol. 21, pp. 765-768. Rat exam-

ined. Results apply especially to the dog.

Poljakoff, P. 1888 Ueber eine neue Art von fettbildenden Organen im lockern Bindegewebe. Arch. f. mikr. Anat., vol. 32, pp. 123-182.

Poll, Heinrich 1898 Ueber das Schicksal der verpflanzten Nebenniere. Centralbl. f. Physiol., yol. 12, pp. 321-326. 1899 Veränderungen der Nebenniere bei Transplantation. Arch. f. mikr. Anat., vol. 54, pp. 440-481.

PONTIER AND GÉRARD, G. 1900 De l'entre-croisement des pyramides chez le rat. Leur passage dans le faisceau de Burdach (note préliminaire). Bibliogr. anat. Nancy, vol. 8, pp. 186-190, Ten figures-sections of the

Poppe, K. 1913 Pseudotuberkulose. in (Kolle, Wilhelm and Wassermann, A. v (eds). Handbuch der pathogenen Mikro-organismen, 2nd ed. enl.

vol. 5, part 2, pp. 779-781.

Pottevin, H. 1910 La dératisation rapport sur l'état actuel des méthodes applicables à la déstruction des rongeurs et de leurs parasites. Bull. de l'Office internat. d'hyg. pub. Par., vol. 2, pp. 542-613.

Pound, C. J. 1905 On trypanosoma and their presence in the blood of Brisbane rats. Proc. R. Soc. Queensland, vol. 19, pp. 33-38.

Preyer, W. 1866 Quantitative Bestimmung des Farbstoffs im Blute durch das Spectrum. Annalen der Chemie u. Pharmacie, vol. 140, pp. 187– 200. Rat, p. 198.

1871 Die Blutkrystalle. Mauke's Verlag, Jena. Rat: pp. 3, 13, 16, 38, 127.

PRODROMUS, THEODORUS See KELLER, OTTO '09.

Przibram, Hans 1907 Demonstrationen über Vererbung bei Säugetieren. Zentralbl. f. Physiol., vol. 21, p. 257.

1910 Uebertragungen erworbener Eigenschaften bei Säugetieren. Versuche mit Hitze-Ratten. Verh. Ges. deutsch. Nat. Aertze Vers. 81, Tl, 2, Hälfte 1, pp. 179–180.

1911 Albinismus bei Inzucht. Verhandl. d. naturf. Ver. in Brünn, vol. 49 (Festband für Mendel).

1912 Ueber das Vorkommen der Hausratte (Mus rattus L.) in Oesterreich. Wochenschr. Das österreichische Sanitätswesen, no. 16, pp. 297-299.

QUINQUAUD 1873 Sur les variations de l'hemoglobine dans la serie zoölogique. Compt. rend. de l'Acad. de Science, Paris, vol. 77, pp. 487-489.

Rabinowitsch, L. and Kempner, W. 1899 Beitrag zur Kenntnis der Blutparasiten, speciell der Ratten-trypanosomen. Zeitschr. f. Hyg., vol. 30, p. 251.

RAMACHANDRIER, P. S. 1908 Rat destruction in India (Abstr.). Med. Times, Lond., vol. 36, p. 319.

RAMÓN Y CAJAL, S. See CAJAL, S. RAMÓN.

Ramström, M. 1905 Untersuchungen und Studien über die Innervation des Peritoneum der vorderen Bauchwand. Anat. Hefte, vol. 29, pp. 351– 443. Mus decumanus, p. 372.

RANSON, S. W. 1903 On the medullated fibers crossing the site of lesions in the brain of the white rat. J. Comp. Neur., vol. 13, pp. 185-207.

> 1904 Retrograde degeneration in the corpus callosum of the white rat. J. Comp. Neur. and Psychol., vol. 14, pp. 381-389.

> 1906 Retrograde degeneration in the spinal nerves. J. Comp. Neur. and Psychol., vol. 16, pp. 3-31.

1913 The fasciculus cerebrospinalis in the albino rat. Am. J. Anat., vol. 14, p. 411.

1914 A note on the degeneration of the fasciculus cerebro-spinalis in the albino rat. J. Comp. Neur., vol. 24, pp. 503-507.

1914 a The tract of Lissauer and the substantia gelatinosa rolandi. Am. J. Anat., vol. 16, pp. 97-126.

RANVIER, L. A. 1883 De l'éxistence et de la distribution de l'éléidine dans la muquese bucco-oesophagienne des Mammifères. C. R. de l'Acad. des Sc. Paris, vol. 97, pp. 1377-1379.

1884 Les membranes muqueuses et le système glandulaire. J. de microg., vol. 8, pp. 29-38; 77-86; 142-150; 194-200; 310-317; 419-422.

1885 Les membranes muqueuses et le système glandulaire. Le foie (Rat). J. de microg., vol. 9, pp. 6-14;55-63;103-109;155-163; 194-201; 240-247; 287-295; 334-343; 389-396; 438-445; 480-482.

Ranvier, L. A. 1886 Les membranes muqueuses et le système glandulaire. Le foie. J. de microg., vol. 10, pp. 5-10; 55-58; 160-166; 211-214; 355-362; 443-447.

> 1886 a Étude anatomique des glandes connues sous les noms de sousmaxillaire et sublinguale, chez, les mammifères. Arch. de physiol. norm. et path., ser. 3, vol. 8, pp. 223-256. M. decumanus, p. 224, fig. 1. 1887 Le mécanisme de la sécrétion. M. decumanus, see p. 530. J. de microg., vol. 11, pp. 527-534.

> 1888 Le mécanisme de la sécrétion. J. de microg., vol. 12, pp. 3–11; 33 –41; 65–73; 104–111; 165–173; 212–218; 243–250; 298–303; 329–335; 364–

368; 389-393.

1894 Des chyliferes du rat et de l'absorption intestinale. Compt. rend. acad. d. sc. Paris, vol. 118, pp. 621-626.

RAPP, W. v. 1839 Ueber die Tonsillen. Arch. f. Anat., Physiol., u. wiss. Med., pp. 189-199. Pl. VII and VIII. Absence of tonsils.

RATTONE, G. AND MONDINO, C. 1888 Sulla circolazione del sangue nel fegato. Giorn. di sc. nat. ed econ., vol. 19, pp. 125-136., 2 pl.

1888 a Sur la circulation du sang dans le foie. Arch. ital. de biol.,

vol. 9, fasc. 1, pp. 13-15.

1889 Sur la circulation du sang dans le foie. Arch. ital. de biol.,vol. 12, pp. 156-177, 2 pl. (Abrégé d'un travail duquel la 1° partie a été publiée à Palerme, la 2° dans l'Arch. per le sc. med., Torino, vol. 13, no. 3.) Rat among animals used.

1889 a Sulla circolazione del sangue nel fegato, pt. 2. Arch. per le

sc. med., vol. 13, pp. 45-72, 1 pl.

RAUTHER, MAX 1903 Ueber den Genitalapparat einiger Nager u. Insektivoren, insbesondere die accessorischen Genitaldrüsen derselben. Jenaische Ztschr. f. Naturw., vol. 38, pp. 377-472. 3 pl.

REANEY, M. F. AND MALCOLMSON, G. E. 1908 Rat destruction in Kamptree.

Indian M. Gaz., Calcutta, vol. 43, p. 338.

Regaud, Cl. 1900 Note sur le tissu conjonctif du testicule chez le rat. Compt. rend Soc. de Biol., vol. 52, pp. 26-27.

1900 a Dégénérescence des cellules séminales chez les mammifères en l'absence de tout état pathologique. Compt. rend. Soc. de Biol., Paris, vol. 52, pp. 268-270.

1900 b Note sur certaines différenciations chromatique observées dans le noyau des spermatocytes du rat. Compt. rend. Soc. de biol., Paris, vol. 52, pp. 698-700.

1900 c La sécrétion liquide de l'epithélium séminal; son processus his-

tologique. Compt. rend. Soc. de Biol., vol. 52, pp. 912-914.

1900 d Les phases et les stades de l'onde spermatogénetique chez les mammifères (rat). Classification rationnelle des figures de la spermatogenèse. Compt. rend. Soc. de biol., Paris, vol. 52, pp. 1039-1042.

1900 e Diréction hélicoïdale du mouvement spermatogénétique dans les tubes séminifères du rat. Compt. rend. Soc. de biol., Paris, vol. 52, pp. 1042-1044.

1900 f Les phénomènes sécrétoires du testicule et la nutrition de l'epithélium séminal. Compt. rend. Soc. de viol., Paris, vol. 52, pp. 1102-1104.

REGAUD, Cl. 1901 Pluralité des karyokinèses des spermatogonies chez les mammifères (rat). Compt. rend. Soc. de biol., Paris, vol. 53, pp. 56-58.

1901 a Division directe ou bourgeonnement du noyau des spermatogonies, chez le rat. Compt. rend. Soc. de biol., Paris, vol. 53, pp. 74-76.

1901 b Variations de la chromatine nucléaire au cours de la spermatogenèse. Compt. rend. Soc. de biol., Paris, vol. 53, pp. 224-226.

1901 c Sur le mode de formation des chromosomes pendant les karyokinèses des spermatogonies, chez le rat. Compt. rend. Soc. de biol., Paris, vol. 53, pp. 406-407.

1901 d Note sur les cellules glandulaires de l'épididyme du rat. Compt. rend. Soc. de biol., Paris, vol. 53, pp. 616-618.

1902 Sur l'existence de cellules séminales dans le tissu conjonctif du testicule, et sur la signification de ce fait. Compt. rend. Soc. de biol., Paris, vol. 54, pp. 745-747.

1902 a Note histologique sur la sécrétion séminale du moineau domestique. Compt. rend. Soc. de biol., Paris, vol. 54, pp. 583-585.

1903 Quelques faits nouveaux relatifs aux phénomènes de sécrétion de l'épithélium séminal du rat. Compt. rend. de l'Ass. d. anat. Nancy, vol. 5, pp. 179-186. Bibliographie anatomique Suppl. 1903. 1904 Variations histochimiques du filament axile pendant le développement des goornies, cher le ret. G. P. Ass. Ass. S. 2003.

ment des spermies, chez le rat. C. R. Ass. Anat. Sess. 6, p. 202.

Rehn, James A. G. 1900 An older name for the Norway rat. Proc. Biol. Soc. Wash., vol. 13, p. 167. Mus decumanus (Pall) to Mus (Epimys) norvegicus (Erxleben). Merely a three line note.

Reichardt, Martin 1906 Ueber die Untersuchung des gesunden und kranken Gehirnes mittels der Wage. Arb. a. d. psychiat. Klin. zu Würzburg, part 1.

Reichert, E. T. and Brown, A. P. 1909 The differentiation and specificity of corresponding proteins and other vital substances in relation to biological classification and organic evolution: The crystallography of hemoglobins. Carnegie Inst. of Wash., Wash., D. C., pp. 229-237. The blood of the rat.

Remlinger, P. 1904 Rage expérimentale de la souris et du rat. Compt. rend. Soc. de biol., vol. 56, p. 42.

Renaut, J. 1904 Les cellules fixes des tendons de la queue du jeune rat sont toutes des cellules connectives rhagiocrines. C. R. Soc. Biol. Paris, vol. 56, pp. 1067-1069.

Renson, Geo. 1882 De la spermatogenèse chez les mammifères. Arch. de biol., vol. 3, pp. 291-334.

Reports on Plague Investigations in India 1906 Issued by the Advisory Committee appointed by the Secretary of State for India, the Royal Society and the Lister Institute. J. Hyg., vol. 6, pp. 421-536; vol. 7, pp. 324-476; pp. 694-986.

Retterer, Ed. 1905 Des ménisques interarticulaires du genou du Cobaye et du Rat. C. R. Soc. Biol. Paris, vol. 58, pp. 44-47. Retzius, A. 1841 Ueber den Bau des Magens bei den in Schweden vorkommenden Wühlmäusen (Lemmus Nilss., Hypudaeus Jllig.) (A. d.Schwed. von F. C. H. Creplin.) Taf. XIV. fig. 2-9. Archiv. für Anat. u. Physiol., pp. 403-420. Comparisons with Mus decumanus.

Retzius, Gustaf 1893 Biologische Untersuchungen, Neue Folge V. 2. Studien über Ependym und Neuroglia, pp. 9-15. Samson & Wallin. Stock-

holm.

1894 Biologische Untersuchungen. Neue Folge VI, 1. Die Neuroglia der Neurohypophyse der Säugetiere, pp. 1-28. Samson & Wallin, Stockholm.

1909 Biologische Untersuchungen, 14. Die Spermien der Nagetiere. Taf. XL-XLVIII, Taf. XLIX, fig. 13-20, pp. 133-162. p. 160, Mus norvegicus Erxl. (Mus decumanus Pall) Neue Folge, XIV. Gustav Fischer, Jena.

RICHARDSON, FLORENCE 1909 A study of sensory control in the rat. Psych.

Monographs, vol. 12, no. 1, pp. 1-124.

Ringeling, H. G. 1912 Naar aanleiding van een opvallende sterfte onder de ratten aan boord van een stoomschips te Amsterdam. Tijdschr. v. sociale hyg. Zwolle, xiv, 29-53.

Ritzema-Bos, J. 1894 Untersuchungen über die Folgen der Zucht in engster

Blutverwandtschaft. Biol. Centralbl., vol. 14, pp. 75-81.

ROBERTSON, T. B. 1908 On the normal rate of growth of an individual and its biochemical significance. Arch. f. Entwcklngs-mechn. d. Organ., vol.

25, pp. 571-614.

1912 Studies in the blood relationship of animals as displayed in the composition of the serum proteins. I. A comparison of the serum of the horse, rabbit, rat and ox with respect to their content of various proteins in the normal and in the fasting condition. J. Biol. Chem., vol. 13, p. 325.

ROBERTSON, T.B. AND BURNETT, T.C. 1913 The influence of lecithin and cholesterin upon the growth of tumors. J. exper. Med., vol. 17, pp. 344-

352.

ROBINSON, ARTHUR 1889 Observations on the early stages in the development of the lungs of rats and mice. J. of Anat. u Physiol., vol. 23, pp. 224-241.

1892 Some points in the early development of Mus musculus and Mus decumanus; the relation of the yolk-sac to the decidua and the placenta. Rep. Brit. Assoc. Adv. Sc., 61st Meeting, Cardiff, pp. 690-691.

1892 a Observations upon the development of the spinal cord in Mus musculus and Mus decumanus. Rep. Brit. Assoc. Adv. Sc., 61st meet-

ing, Cardiff, pp. 691-692.

1896 On the formation and structure of the optic nerve, and its relation to the optic stalk. J. Anat. and Physiol., vol. 30, pp. 319-333.

1904 Lectures on the early stages in the development of mammalian ova and on the differentiation of the placenta in different groups of mammals. J. Anat. and Physiol., vol. 38, pp. 186-204.

- ROBINSON, G. H. 1913 The rats of Providence and their parasites. Am. J. Pub. Health, vol. 3, pp. 773-776.
- Rodwell, James 1858 The rat: Its history and destructive character. G. Routledge & Co., London.
- Rohdé, Alice and Jones, Walter 1909 The purine ferments of the rat. J. Biol. Chem., vol. 7, p. 237.
- Römer, F. 1896 Studien über das Integument der Säugethiere. I. Entwickel. d. Schuppen u. Haare am Schwanze u. an d. Füssen v. Mus decumanus und einigen anderen Muriden. Jenaische Zeitschr. f. naturw., vol. 30, pp. 603-622. Two plates mainly from M. n. albinus.
- Rosenau, M. J. 1901 An investigation of a pathogenic microbe (B. typhi murium Danyz) applied to the destruction of rats. Bull. no. 5, Hyg. Lab., U. S. Mar. Hosp. Serv. Wash.

 1910 The inefficiency of bacterial viruses in the extermination of rats. Found in "The rat and its relation to the public health," pp. 179-204. Treasury Dept. Pub. Health and Mar. Hospt. Service of the U. S. Government Printing Office, Wash., D. C.
- Rosenfeld, Carl 1899 Zur vergleichenden Anatomie des Musculus tibialis posticus. Anat. Hefte, vol. 11, pp. 361-388. Mus rattus, p. 364.
- Roth, A. H. 1905 The relation between the occurrence of white rami fibers and the spinal accessory nerve. J. Comp. Neur. and Psychol., vol. 15, pp. 482-493.
- ROUS, PEYTON 1911 The rate of tumor growth in underfed hosts. Proc. of Soc. for Exper. Biol. and Med., vol. 8, pp. 128-130.
 1914 The influence of diet on transplantable and spontaneous mouse tumors. J. Exp. Med., vol. 20, p. 433.
- ROWLAND, SYDNEY 1911 Preliminary observations on the protective and curative value for rats of the serum of a horse immunised with a toxic nucleo-protein extracted from the plague bacillus. J. of Hyg., Plague Suppl. 1, 6th Report of Plague Investigations in India, pp. 11-19.
- Rubell, O. 1890 Ueber den Oesophagus des Menschen und der Hausthiere. Ztschr. f. wissensch. Mikr., vol. 7, pp. 224-225.
- Rucker, William C. 1910 Rodent extermination. Found in "The rat and its relation to the public health," pp. 153-162. Treasury Dept. Pub. Health and Mar. Hospt. Service of the U. S. Government Printing Office, Washington, D. C. 1912 How to poison rats. Pub. Health Rep., U. S. Mar. Hosp. Serv., Wash., vol. 27, p. 1267. 1913 Deratization of rat-proof buildings. Pub. Health Rep. Wash., vol. 28, p. 254.
- RYDER, J.A. 1888 A theory of the origin of placental types, and on certain vestigiary structures in the placentae of the mouse, rat and field mouse. Am. Naturalist, vol. 21, pp. 780-784.
- Rywosch, D. 1907 Vergleichende Untersuchungen über die Resistenz der Erythrocyten einiger Säugethiere gegen hämolytische Agentien. Arch. f. d. ges. Physiol., vol. 116, pp. 229–251.

- Sabrazès, J. and Muratet 1905 Fréquence des Trypanosomes chex Mus rattus. Rareté chez Mus decumanus et chez Mus musculus. Résistance du decumanus et du rat blanc à l'infestation naturelle. C. R. Soc. Biol. Paris, vol. 59, pp. 441-443.
- SALTER, H. H. 1859 Pancreas. (Article in R. B. Todd's "The Cyclopaedia of anatomy and physiology.") Vol. 5 (suppl. vol.), pp. 81-114, London-Several text figures for the rat.
- SANDRI, O. 1908 Contribution à l'anatomie et à la physiologie de l'hypophyse. Résumé de l'auteur. Riv. di pat. nerv. e ment., vol. 13, pp. 518-550. Arch. ital. de Biol., vol. 51, pp. 337-348. Growth of rats fed with hypophysis.
- SAVIOTTI, GIOVANNI 1869 Untersuchungen über den feineren Bau des Pancreas-Arch. f. mikr. Anat., vol. 5, pp. 404-414, pl. XXIII and XXIV.
- Schäfer, E. A. 1898 (see Gamgee, A.) Rat, haemoglobin of. Text-book of Physiol., vol. 1, pp. 193, 194 and 206.

 1900 Rat, motor area of. Text-book of Physiol., vol. 2, p. 732.

 1900 a Rat, muscle spindles of. Text-book of Physiol., vol. 2, p. 1008.

 1908 Present condition of our knowledge regarding the functions of the suprarenal capsules. Brit. M. J., May 30 and June 6, pp. 1-10.

 1912 The effects upon growth and metabolism of the addition of small
- of white rats. Quart. J. Exper. Physiol., vol. 5, pp. 203-228. Schäff, E. 1891 Schwärzliche Varietät von Mus decumanus. Sitzgsber. Ges. Naturf. fr. Berlin, no. 4, p. 61.

amounts of ovarian tissue, pituitary, and thyroid to the normal dietary

- Schern, K. 1909 Ueber eine durch den Bazillus enteritidis Gärtner hervorgerufene Rattenseuche. Arb. a. d. k. Gsndhtsamte, Berl., vol. 30, pp. pp. 575-583.

 1912 Ueber das Rattenvertilgungsmittel Virus sanitar A. Centralbl. f. Bakteriol., 1 Abt., vol. 62, pp. 468-471.
- Schiff, J. Moritz 1859 Untersuchungen über die Zuckerbildung in der Leber und den Einfluss des Nervensystems auf die Erzeugung des Diabetes. Würzburg.

 1884 Bericht über eine Versuchsreihe betreffend die Wirkungen der Exstirpation der Schilddrüse. Arch. f. exper. Path. u. Pharmakol.,

vol. 18, pp. 25-34.

1884 a Résumé d'une série d'expériences sur les effets de l'ablation des corps thyroïdes. Rev. méd. de la Suisse-Rom., vol. 4, pp. 65-75.

- SCHMIDT, F. TH. 1863 Das folliculäre Drüsengewebe der Schleimhaut der Mundhöhle und des Schlundes bei dem Menschen und den Säugetieren. Ztschr. f. wiss. Zool., vol. 13, pp. 221-302, pl. XIV-XVI.
- Schulze, F. E. 1871 Die Lungen. In Stricker's Handbuch der Lehre von den Geweben des Menschen und der Tiere. Leipzig. Pp. 464-477. P. 465, diameter of alveolar passages, 0.1 mm. in rat.
- Schürmann, W. 1908 Ueber eine durch Milben hervorgerufene Erkrankung von Ratten. Centralbl. Bakt. Parasit. Abt 1, Orig., vol. 48, pp. 167– 172.

- Schwalbe, G. 1872 Beiträge zur Kenntniss der Drüsen in den Darmwandungen in's Besondere der Brunner'schen Drüsen. Arch. f. mikr. Anat., vol. 8, pp. 92-140, pl. V.
- Selenka, Emil 1883 Studien über Entwickelungsgeschichte der Thiere., I. Keimblätter und Primitivorgane der Maus. C. W. Kreidel, Wiesbaden.

1884 Studien über Entwickelungsgeschichte der Thiere., 3. Die Blätterumkehrung im Ei der Nagethiere. C. W. Kreidel, Wiesbaden.

- SEVERIN, FRIEDRICH 1885 Untersuchungen über das Mundepithel bei Säugetieren mit Bezug auf Verhornung, Regeneration und Art der Nervenendigung. Arch. f. mikr. Anat., vol. 26, pp. 81-88, 1 pl. Rat included among mammals examined.
- Sherborn, C. Davies 1897 On the dates of the natural history portion of Savigny's "Description de l'Égypte." Proc. Zoöl. Soc. of London, 1897, pp. 285-288.
- Sherrington, C. S. and Copeman, S. M. 1893 Variations experimentally produced in the specific gravity of the blood. J. Physiol., vol. 14, p. 54.
- SHIPLEY, A. E. 1908 Rats and their animal parasites. J. Economic Biol., vol. 3, pp. 61-83.
- SIMPSON, F. 1913 Rat proofing; its practical application in the construction or repair of dwellings or other buildings. Pub. Health Rep., Wash., vol. 28, pp. 679-687, 10 pl.
- SITTENFIELD, M. J. 1912 Influence of anemia and hyperemia on the growth of sarcoma in the white rat. Proc. Soc. Exper. Biol. and Med., vol. 9, pp. 56-57.
- SLONAKER, J. R. 1907 The normal activity of the white rat at different ages. J. Comp. Neur. and Psychol., vol. 17, pp. 342-359.

1912 The normal activity of the albino rat from birth to natural death, its rate of growth and the duration of life. J. Animal Behavior, vol. 2, pp. 20-42.

1912 a The effect of a strictly vegetable diet on the spontaneous activity, the rate of growth, and the longevity of the albino rat. Leland Stanford Jr. Univ. Pub., Univ. Series.

- SMALL, W. S. 1899 Notes on the psychic development of the young white rat. Am. J. Psychol., vol. 11, pp. 80-100.
 - 1900 An experimental study of the mental processes of the rat. Am. J. Psychol., vol. 11, pp. 133-164.
 - 1901 Experimental study of the mental processes of the rat, II. Am. J. Psychol., vol. 12, pp. 206-239.
- SOBOTTA, J. AND BURCKHARD, G. 1910 Reifung und Befruchtung des Eies der weissen Ratte. Anat. Hefte, I Abt., 127 heft (42 band, heft 2), pp. 433-492.
- SOLGER, B. 1889 Säugethier-Mitosen im histologischen Kursus. Archiv f. mikr. Anat., vol. 33, pp. 517-518.
- Soulié, A. H. 1903 Recherches sur le développement des capsules surrénales chez les vertébrés supérieurs. J. de l'Anat. et Physiol., vol. 39, pp. 197-293; 390-525; 492-533; 634-664.

Spitzka, E. C. 1886 The comparative anatomy of the pyramid tract. J. Comp. M. and S., vol. 7, p. 46.

STAHR, HERMANN 1903 Ueber die Ausdehnung der Papilla foliata und die Frage einer einseitigen "kompensatorischen Hypertrophie" im Bereiche des Geschmacksorgans. Arch. f. Entwcklngsmechn. d. Organ., vol. 16, pp. 179-199.

Steffenhagen, K. 1910 Untersuchungen über das Rattenvertilgungsmittel Liverpoolvirus. Arb. a. d. k. Gsndhtsamte Berl., vol. 36, pp. 198-220.

Steinach, E. 1894 Untersuchungen zur vergleichenden Physiologie der männlichen Geschlechtsorgane, insbesondere der accessorischen Geschlechtsdrüsen. Arch. f. d. ges. Physiol., vol. 56, pp. 304-338.

1910 Geschlechsttrieb und echt sekundare Geschlechtsmerkmale als Folge der innersekretorischen Funktion der Keimdrüsen.

I. Präexistente und echt sekundäre Geschlechtsmerkmale.

II. Über die Entstehung des Umklammerungsreflexes bei Fröschen.

III. Entwicklung der vollen M\u00e4nnlichkeit in funktioneller und somatischer Beziehung bei S\u00e4ugern als Sonderwirkung des inneren Hodensekretes. Zentralbl. f. Physiol., vol. 24, pp. 551-566.

1911 Umstimmung des Geschlechtscharakter bei Säugetieren durch Austausch der Pubertätsdrüsen. Zentralbl. f. Physiol., vol. 25, pp. 723-725.

1912 Willkürliche Umwandlung von Säugetier-Männchen in Tiere mit ausgeprägt weiblichen Geschlechtscharakteren und weiblicher Psyche. Arch. f. d. ges. Physiol., vol. 144, pp. 71–108.

1913 Feminierung von Männchen und Maskulierung von Weibchen. Zentralbl. f. Physiol., vol. 27, pp. 717-723.

STENDELL, W. 1913 Zur vergleichenden Anatomie und Histologie der Hypophysis cerebri. Arch. f. mikr. Anat., vol. 82, pp. 289-332.

Sterzi, Giuseppe 1904 Die Blutgefasse des Rückenmarks. Anat. Hefte, vol. 24, pp. 5-364. Mus decumanus, p. 169.

Stewart, Colin C. 1898 Variations in daily activity produced by alcohol and by changes in barometric pressure and diet, with a description of recording methods. Am. J. Physiol., vol. 1, pp. 40-56.

STIEDA, L. 1869 Studien über das centrale Nervensystem der Vögel und Säugetheire. Ztschr. f. wissensch. Zoöl., vol. 19, p. 68.

STILES, CH. W. AND CRANE, C. G. 1910 The internal parasites of rats and mice in their relation to diseases of man. Found in "The rat and its relation to the public health," pp. 87-110. Treasury Dept. Pub. Health and Mar.-Hospt. Service of the U. S. Government Printing Office, Wash., D. C.

Stiles, Ch. W. and Hassall, Albert 1910 Compendium of animal parasites reported for rats and mice (Genus Mus). Found in 'The rat and its relation to the public health,' pp. 111-122. Treasury Dept. Pub. Health and Mar.-Hospt. Service of the U.S. Government Printing Office, Wash., D. C.

Stirling, W. 1883 A simple method of demonstrating the nerves of the epiglottis. J. Anat. and Physiol., vol. 17, p. 203. Rats included in mam-

mals observed.

Stirling, W. 1883 a The trachealis muscle of man and animals. J. Anat. and Physiol., vol. 17, pp. 204-206.

Stotsenburg, J. M. 1909 On the growth of the albino rat (Mus norvegicus var. albus) after castration. Proc. Assoc. Am. Anat. in Anat. Record, vol. 3, pp. 233-244.

1913 The effect of spaying and semi-spaying young albino rats (Mus norvegicus albinus) on the growth in body weight and body length. Anat. Record, vol. 7, pp. 183-194.

Strehl, Hans and Weiss, Otto 1901 Beiträge zur Physiologie der Nebenniere. Archiv f. d. ges. Physiol., vol. 86, pp. 107-121.

Stutzmann, J. 1898 Die accessorischen Geschlechtsdrüsen von Mus decumanus und ihre Entwicklung. Diss. Leipzig.

Suffolk 1910 The epizoötic of rat plague. Lancet, Lond., vol. 2, p. 1497.

SWEET, J. E., CORSON-WHITE, E. P. AND SAXON, G. J. 1913 The relation of diets and of castration to the transmissible tumors of rats and mice. J. Biol. Chem., vol. 15, p. 181.

Symposium 1911 Ueber die Vertilgung der Ratten. Im Sinne einer Abwehrmassregel gegen die Pest. Das österreichische Sanitätswesen, no. 17 and 18, 1911.

SZYMANSKI, J. S. 1914 Lernversuche bei weissen Ratten. Arch. f. d. ges. Physiol., vol. 185, pp. 386-418.

TAFANI, A. 1889 La fécondation et la segmentation. Etudieés dans les oeufs des rats. Arch. Ital. de Biol., vol. 11.
1889 a I primi momenti dello sviluppo dei mammiferi. Studi di morfologia normale ef patologica eseguiti sulle uova dei topi. Atti d. T. Accad. d. Lincei, Roma. Ser. 4, Rendiconti, vol. 5, semestre 1, pp. 119-125.

Tailby, T. M. J. 1911 A plea for the owl (the best of all rat killers). J. Roy. Inst. Pub. Health, Lond., pp. 108-113.

TANDLER, J. 1899 Zur vergl. Anat. der Kopfarterien bei den Mammalia. (1898.) Denkschr. der kais. Akad. der Wissensch. in Wien, vol. 67, p. 729; Mus rattus—albino among those examined. 1902 Zur Entwickelungsgeschichte der Kopfarterien bei den Mammalia. Morphol. Jahrb., vol. 30, pp. 275-373.

Taylor, Kenneth 1915 Observations upon a rat sarcoma treated with emulsions of embryonic tissues. Proc. of Soc. for Exper. Biol. and Med., vol. 12, pp. 216-218.

Tello, Francisco 1906 Terminaciones sensitivas en los pelos y otros organos. Rev. trimestr. Microgr., vol. 9, pp. 49-77, fig. 1.

Terra, Paul de 1911 Vergleichende Anatomie des menschlichen Gebisses und der Zähne der Vertebraten. Jena. Fischer, p. 301, fig. 125. Teeth of M. norvegicus.

Terry, Benjamin T. 1905 An epidemic of trypanosmiasis among white rats. Trans. Chicago Path. Soc., pp. 1-4.

Thompson, J. A. 1906 On the epidemiology of plague. J. Hyg., vol. 6, pp. 537-569.

Tidswell, F. and Cleland, J. B. 1912 Leprosy-like disease in rats. Rep. Gov. Bur. Microbiol., Syndey, vol. 2, pp. 49-51.

TILNEY, FREDERICK 1911 Contribution to the study of the hypophysis cerebri with especial reference to its comparative histology. Memoirs of The Wistar Institute of Anatomy and Biology, no. 2, p. 47. Mus decumanus (figs. 34 and 35).

1913 An analysis of the juxta-neural epithelial portion of the hypophysis cerebri, with an embryological and histological account of a hitherto undescribed part of the organ. Internat. Monatschr. f. Anat. u. Physiol., vol. 30, pp. 258–293, Pl. V–XIX and 3 fig. Rat among other animals studied.

Tiraboschi, Carlo 1902 Gli animali propagatori della peste bubbonica. 3 Nota. Caratteri distintivi del Mus decumanus Pall. e Mus rattus L. Diffusione del Mus rattus in Italia. Boll. Soc. zool. ital. Ann. 11, pp. 173-177.

1904 Gli animali propagatori della peste bubbonica. 4a Nota. I ratti e i loro ectoparassiti. Boll. Soc. zool. ital. Ann. 13, pp. 88-97. 1904 a Les rats, les souris et leurs parasites cutanés dans leurs rapports avec la propagation de la peste bubonique. Arch. Parasitol., vol. 8, pp. 161-349.

- Toepfer, Karl and Fleischmann, A. 1891 Die Morphologie des Magens der Rodentia. Morphol. Jahrb., vol. 17, pp. 380-416.
- Topsell, Edward 1658 History of four-footed beasts. No place. No publisher. Rat, p. 403.
- Tournade, A. 1913 Sur les délais de régénération du vague chez le rat blanc. C. R. Soc. Biol., Paris, vol. 74, pp. 956-957.
- Toyofuku, Тамакі 1911 Ueber die parathyreoprive Veränderung des Rattenzahnes. Frankfurt. Ztschr. f. Path., vol. 7, pp. 249-294.
- Trautmann, A. 1912 Ueber Massenausstreuung von Bacillus enteritidis Gärtner. Arch. f. Hyg., vol. 76, pp. 206-209.
- Trautmann, H. 1912 Zurückweisung der Versuche Mereschowsky's: Ueber die Anwendung des Trautmannschen Verfahrens zur Virulenzsteigerung des Bacillus Danysz. Centralbl. f. Bakteriol., 1 Abt., vol. 65, pp. 58-60.
- TROMMSDORF, R. 1909 Ueber biologische Eiweissdifferenzierung bei Ratten und Mäusen. Arb. a. d. k. Gsndhtsamte, Berl., vol. 32, pp. 560-567.
- TROUESSART, E. L. 1881 Epimys—subgenus—including Rattus and Norvegicus. Bull. Soc. d'Etudes Sci. d'Angers, vol. 10, p. 117.

 1897 Catalogus mammalium tam viventium quam fossillum. Nova Editio (Prima completa) Berolini. See Fasciculus III. Rodentia II,

p. 471 et seq.

1910 Faune des mammifères d'Europe. Berlin. Friedländer.

- Tuckerman, Frederick 1892 Further observations on the gustatory organs of the Mammalia. J. Morphol., vol. 7, pp. 69-94. Mus decumanus, pp. 73-75.
- Tullberg, Tycho 1900 Ueber das System der Nagethiere. Nova Acta Reg. Soc. Sc. Upsaliensis Ser. 3, vol. 18, pp. 1-514. Mus decumanus, pp. 254-257.

- Turner, John 1904 On the primary staining of the rat's brain by methylene blue. Brain, vol. 27, pp. 64-83.
- UHLENHUTH, PAUL AND WEIDANZ, O. 1909 Mitteilungen über einige experimentelle Krebsforschungen. Arb. a. d. k. Gsndhtsamte, vol. 30, pp. 434-444.
- ULRICH, JOHN L. 1913 The number and distribution of trials in learning in the white rat. Behavior Monographs, vol. 2, no. 5, serial number 10, pp. 1-51.
- Uskow, N. 1883 Ueber die Entwickelung des Zwerchfells, des Pericardiums und des Coeloms. Archiv. f. mikr. Anat., vol. 22, pp. 143-219. Rat, pp. 191 and 192.
- Van Alstyne, Eleanor and Beebe, S. P. 1913 Diet studies in transplantable tumors. I. The effect of non-carbohydrate diet upon the growth of transplantable sarcoma in rats. J. Med. Research, vol. 29 (n.s. vol. 24), pp. 217-232. White rats, 10 tables.
- Van Der Vloet 1906 Ueber den Verlauf der Pyramidenbahn bei niederen Säugetieren. Anat. Anz., vol. 29, p. 113.
- Vega, Garcilaso de la (1535-1616) 1688 The royal commentaries of Peru, 1609-1617. Rendered into English by Sir Paul Rycaut. Portrait of Rycaut and 10 plates. London.
- VINCENT, S. B. 1912 The function of the vibrissae in the behavior of the white rat. Behavior Monographs, vol. 1, no. 5, Johns Hopkins University.
- Vincent, S. B. 1913 The tactile hair of the white rat. J. Comp. Neurol., vol. 23, pp. 1-27.

 1915 The white rat and the maze problem. I. The introduction of a visual control. J. of Animal Behavior, vol. 5, pp. 1-24.

 1915 a The white rat and the maze problem. II. The introduction of an olfactory control. J. of Animal Behavior, vol. 5, pp. 140-157.

 1915 b The white rat and the maze problem. III. The introduction
- Vincent, Swale 1897 The effects of subcutaneous injections of extracts of suprarenal capsules. J. Physiol., vol. 21, Proc. of Physiol. Soc., p. xxv.

of a tactual control. J. of Animal Behavior, vol 5, pp. 175-184.

1897 a On the general physiological effects of extracts of the suprarenal capsules. J. Physiol., vol. 22, pp. 111-120.

- Vincent, Swale and Jolly, W. A. 1905 Some observations upon the function of the thyroid and parathyroid glands. J. Physiol., vol. 32, pp. 65-86. 1906 Further observations upon the functions of the thyroid and parathyroid glands. J. Physiol., vol. 34, pp. 295-305.
- Vincent, Swale 1910 The chromaphil tissues and the adrenal medulla. Proc. Roy. Soc., Lond., S. B., vol. 82, pp. 502-515.

 1912 Internal secretion and the ductless glands. Edward Arnold, London.
- Wagner, Rudolph 1841 Icones zootomicae. Handatlas zur vergleichenden Anatomie nach fremden und eigenen Untersuchungen, xvi, 44 pp., 35 pl., fol. L. Voss, Leipzig. Achte Tafel, p. 9, fig. XI. Brain of M. decumanus.

Waller, R. 1693 Some observations in the dissection of a rat (with illustrations). Phil. Trans., vol. 17, pp. 594-596.

WARD, HENRY L. 1906 Observation on a pied rat. Bull. Wis. Nat. Hist. Soc., n. s. vol. 4, pp. 37-38.

Wasielewski, v. and Senn, G. 1900 Beiträge zur Kenntnis der Flagellaten des Rattenblutes. Zeitschr. f. Hyg., vol. 33, p. 444.

Watney, H. 1874 Note on the minute anatomy of the alimentary canal. Proc. Royal Soc., London, vol. 22, pp. 293-294. Rat included among animals studied.

Watson, B. P. 1907 The effect of a meat diet on fertility and lactation. Proc. Roy. Soc. Edinb., vol. 27, part 1, pp. 6-10.

Watson, Chalmers 1904 Stimulation of the thyroid and parathyroid glands by a proteid dietary (raw meat). J. Physiol., vol. 31, Proc. of the Physiol. Soc., p. v.

1906 The influence of a meat diet on the thyroid gland in the second generation of meat fed rats. J. Physiol., vol. 34, Proc. of the Physiol. Soc., p. xxix.

1906 a The influence of diet on growth and nutrition. J. Physiol., vol. 34, pp. 111-132.

1906 b Preliminary note regarding an experimental investigation into the effects of varying diets upon growth and nutrition. Proc. Roy. Soc., Edinb., vol. 26, part 1, pp. 87-94.

Watson, Chalmers, and Campbell, M. 1906 The minute structure of the uterus of the rat with a note on the influence of a meat diet on it. J. Physiol., vol. 34, Proc. of Physiol. Soc., p. xvi.

Watson, Chalmers, and Lyon, G. 1906 A preliminary note on the influence of a meat diet on the kidneys. J. Physiol., vol. 34, Proc. of the Physiol. Soc., p. xix-xxi.

Watson, Chalmers 1907 A note on the adrenal gland in the rat. J. Physiol., vol. 35, pp. 230-232.

1907 a The influence of a meat diet on the kidneys. Internat. Monatschr. f. Anat. u. Physiol., vol. 24, pp. 197-208.

1907 b The effects of captivity on the adrenal glands in wild rats. J. Physiol., vol. 35, Proc. of Physiol. Soc., pp. xlix-l.

1907 c The influence of an excessive meat diet on the osseous system. Proc. Roy. Soc. Edinb., vol. 27, part 1 (no. 1).

1907 d The influence of diet on the liver. Lancet, October 12. Weight of liver in Norway rat reduced by diet poor in nitrogen.

1909 A note on the minute structures of the thyroid gland in the rat. Quart. J. Exper. Physiol., vol. 2, pp. 383-387.

1910 The influence of diet on the structure of the tissues. Reprint of the Appendix from the new work on "Food and Feeding in Health and Disease" (Chalmers Watson, November, 1910). Oliver and Boyd, London.

1912 The influence of diet on the thyroid gland. Quart. J. Exper. Physiol., vol. 5, pp. 229-232.

WATSON, G. W. AND GIBBS, J. H. 1906 The influence of an excessive meat diet on the development and structure of the teeth. J. Physiol., vol. 34, Proc. of Physiol. Soc., pp. xvii-xviii. Watson, John B. 1903 Animal education. Con. from the Psychol. Lab. Univ. of Chicago, vol. 4, no. 2, pp. 5-122. Plates showing medullation of the nervous system at various ages.

1905 The effect of the bearing of young upon the body weight and the weight of the central nervous system of the female white rat. J. Comp. Neur. and Psychol., vol. 15, pp. 514-524.

1907 Kinaesthetic and organic sensations; their rôle in the reactions of the white rat to the maze. Monograph Suppl., Psychol. Review, vol. 8, pp. 1–100.

WATSON, JOHN B. AND WATSON, MARY I. 1913 A study of the responses of rodents to monochromatic light. J. Animal Behavior, vol. 3, pp. 1-14.

Watson, John B. 1914 Behavior. An introduction to comparative psychology. Henry Holt & Co., N. Y. Rat, pp. 129-131, 198, 210-219, 235, 237-238, 292, 348, 384-385, 423-425.

Webel, H. von 1914 A bacteriological study of a rat epidemic. Proc. N. Y. Pathol. Soc., vol. 13, pp. 97-103.

Webster, J. G. 1892 Melanic variety of the rat (Mus decumanus, Pallas).
Ann. of Scott. Nat. Hist., vol. 1, p. 134.

Weil, Richard 1913 The intravascular implantation of rat tumors. J. Med. Research, vol. 28 (n.s. vol. 23), pp. 497-508. 2 plates.

Weisbach, A. 1868 Der Wassergehalt des Gehirns nach Alter, Geschlecht und Krankheiten. Med. Jahrbücher, vol. 16, nos. 4 and 5, pp. 1-76.

Weiss, Armin 1900 Ein postoccipitaler Wirbelkörper bei Rattenembryonen. Centralbl. f. Physiol., vol. 14, pp. 93-96.
1901 Die Entwicklung der Wirbelsäule der weissen Ratte, besonders der vordersten Halswirbel. Ztschr. f. wissensch. Zool., vol. 69, pp. 492-532.

WHERRY, W. B. 1908 Further notes on rat leprosy and on the fate of human and rat lepra bacilli in flies. J. Infec. Dis., Chicago, vol. 5, pp. 507-518.

White, Moses C. 1901 Article "Blood stains" in reference Handbook of the Medical Sciences. Wm. Wood & Co., N. Y., vol. 2, pp. 84 and 86.

Widakowich, Victor 1909 Ueber die erste Bildung der Körperform bei Entypie des Keimes. Beiträge zur Entwicklungsgeschichte der Ratte. Ztschr. f. wissensch. Zool., vol. 94, pp. 240-298.

Wiedersheim, R. 1903 Ueber ein abnormes Rattengebiss. Anat. Anz., vol. 22, pp. 569-573.

Wiedersperg, Gustav von 1885 Beiträge zur Entwickelungsgeschichte der Samenkörper. Archiv f. mikr. Anat., vol. 25, pp. 113-136. Rat, pp. 117, 118, 119.

WIENER, E. 1902 Ueber den Bazillus Danyz. München. med. Wchnschr., vol. 49, pp. 401-402.
1903 Weitere Bemerkungen zur Enstehung von Rattenepizoötieen. Centralbl. f. Bakteriol., vol. 34, part 1, pp. 406-411.

Wiesel, Josef 1899 Ueber accessorische Nebennieren am Nebenhoden beim Menschen und über Kompensations-hypertrophie dieser Organe bei der Ratte. Sitz.-Ber. d. Akad. d. Wissen. in Wien. Math.-naturw. Kl., Bd. 108, Abt. 3, pp. 257-280. 1 plate. Wiesel Josef 1899 a Ueber Compensations-Hypertrophie der accessorischen Nebennieren bei der Ratte. Centrabl. f. Physiol., vol. 12, pp. 780-783.

WILLACH, PAUL 1888 Beiträge zur Entwicklung der Lunge bei Säugethieren. 23 pp, 8°. Osterwieck, Harz; A. W. Zickfeldt.

Williams, J. Leon 1896 On the formation and structure of dental enamel. The Dental Cosmos, vol. 38, pp. 101-127.

Wolbach, S. B. and Honeij, James A. 1914 A critical review of the bacteriology of human and rat leprosy. J. Med. Research, vol. 29 (n.s. vol. 24), pp. 367-423.

Woldfich, Joh. 1880-1884 Diluviale Fauna von Zudslawitz bei Winterberg in Böhmerwalde. Sitzber. d. k. Akad. d. Wiss. 3 parts, 1880-1881-1884.

Wormley, T. G. 1888 Microchemistry of poisons. 2d ed. Phila.

Wyss, Hans von 1870 Die becherförmigen Organe der Zunge. Arch. f. mikr. Anat., vol. 6, pp. 237-260. Rat, pp. 255-256.

Yerkes, Robert M. 1913 The heredity of savageness and wildness in rats. J. Animal Behavior, vol. 3, pp. 286-296.

Zawarykin, Th. 1883 Ueber die Fettresorption im Dünndarm. Arch. f. d. ges. Physiol., vol. 31, pp. 231-240.

ZILLINBERG-PAUL, OTTILIE 1909 Fortgesetzte Untersuchungen über das Verhalten des Darmepithels. III. Mitteil. (Rat.) Ztschr. f. Biol., vol. 52, pp. 327-354, pl. VI.

ZINSSER, HANS AND CAREY, EDWARD G. 1912 A contribution to the study of rat leprosy. J. Am. M. Ass., vol. 58, pp. 692-695.

Zuckerkandl, E. 1903 Die Entwickelung der Schilddrüse und der Thymus bei der Ratte. Anat. Hefte, vol. 21, pp. 3-28.

ZUMSTEIN, J. J. 1890 Ueber den Bronchialbaum des Menschen und einiger Säugetiere. Sitzungsb. d. Gesellsch. z. Beförd. d. ges. Natur. zu Marburg. Jahrg., 1889, pp. 25-29. (Sitz. vom 26 Marz, 1889.) Rat among mammals used. 1891 Ueber die Unterkieferdrüse einiger Säuger. 1 Anat. Teil.

Habilitationsschrift, Marburg, 32 pp.

Zuschlag, Emil 1903 Le rat migratoire et sa destruction rationnelle. Copenhagen.

ADDENDA

Titles of papers which appeared while this volume was in press or which had been overlooked.

BARBER, ALDA GRACE 1915 The localization of sound in the white rat. J. Animal Behavior, vol. 5, pp. 292-311.

Brumpt, E. 1907 Phénomènes de la parturition chez le rat blanc. Bull. Soc. Zool., France, vol. 32, pp. 50-52.

Conrow, Sara B. 1915 Taillessness in the rat. Anat. Record, vol. 9, pp. 777-783.

- Daels, F. 1908 On the relations between the ovaries and the uterus. Surg. Gynec. and Obst., vol. 6, pp. 153-159.
- Hatai, S. 1915 b On the influence of exercise on the growth of organs in the albino rat. Anat. Record, vol. 9, pp. 647-665.
- HEAPE, WALTER 1900 The "sexual season" of mammals and the relation of the "pro-oestrum" to menstruation. Quart. J. Micr. Science, vol. 44, pp. 1-70.
- Henneberg, B. 1905 Beitrag zur Kenntnis der lateralen Schilddrüsenanlage.
 Anat. Hefte, vol. 28, pp. 287-302.

1909 Über die Bedeutung der Ohrmuschel. Anat. Hefte, vol. 40, pp. 95-147.

1914 Beitrag zur Entwickelung der äusseren genitalorgane beim Säuger. Erster Teil. Anat. Hefte, vol. 50, pp. 425-498.

HUNTER, WALTER S. 1915 The auditory sensitivity of the white rat. J. Animal Behavior, vol. 5, pp. 312-329.

IVANOFF, ELIE 1900 La fonction des vésicules séminales et de la glande prostatique dans l'acte de la fécondation. J. de Phys. et de Path. gen., vol. 2, pp. 95-100.
1907 De la fécondation artificielle chez les mammifères. Arch. des Sc.

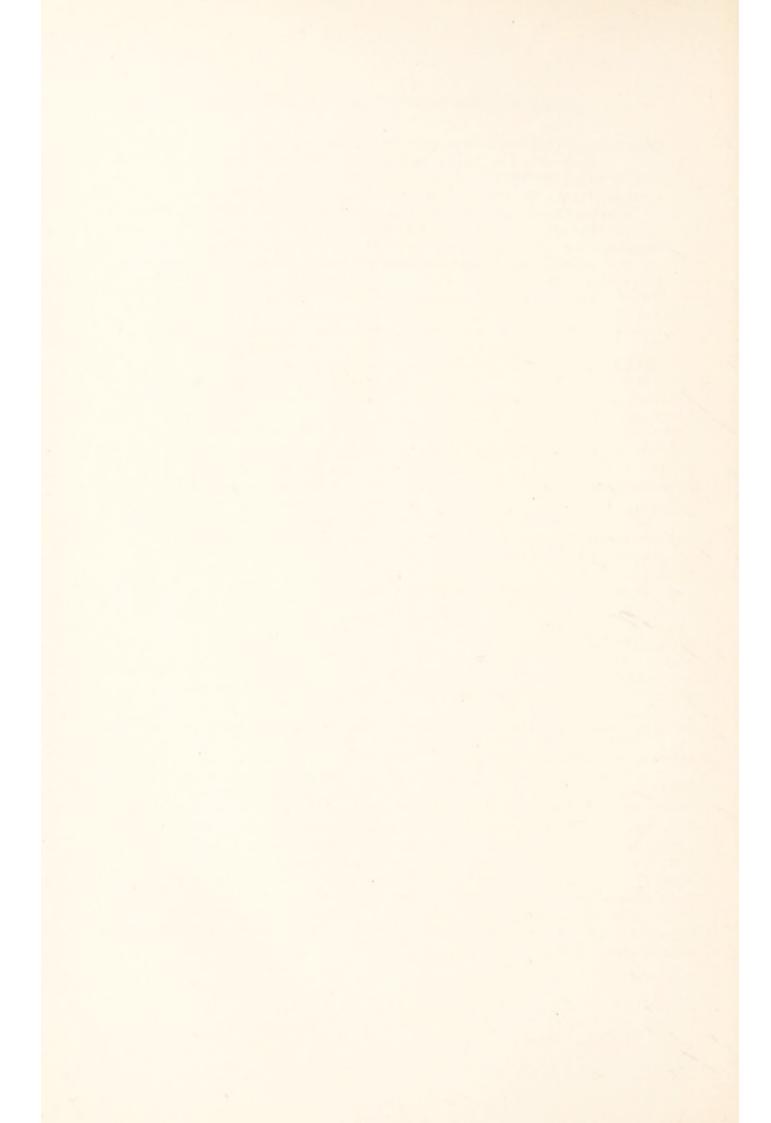
Biol., vol. 12, pp. 377-511.

King, Helen D. 1915 a Growth and variability in the body weight of the rat. Anat. Record, vol. 9, pp. 751-776.

- Косн, R. 1898 Reise-Berichte über Rinderpest, Bubonenpest in Indien und Afrika, Tsetse oder Surrakrankheit Texasfieber, tropische malaria u. Schwarzwasserfieber. J. Springer. Berlin. 136 pp. 8°. Trypanosomes—rat.
- Königstein, H. 1907 Die Veränderungen der Genitalschleimhaut während der Gravidität und Brunst bei einigen Nagern. Arch. f. d. ges. Physiol., vol. 119, pp. 553-570.
- LANE-CLAYPON, JANET E. 1907 On ovogenesis and the formation of the interstitial cells of the ovary. J. Obst. and Gynaec., vol. 11, pp. 205-214.
- LAVERAN, A., and MESNIL, F. 1901 Recherches morphologique et expérimentales sur le trypanosome des rats. Ann. de l'Institut Pasteur, vol. 15, pp. 673-713.
- Meinardus, Otto 1882 Der historische Kern der Hameler Rattenfängersage. Separat Abdruck aus der Ztschr. des Historischen Vereins für Niedersachsen, Jahrg. 1882, Hannover. Hahn'sche Buchhandlung.
- Osborne, Thomas B. and Mendel, L. B. 1915 a The comparative nutritive value of certain proteins in growth, and the problem of the protein minimum. J. Biol. Chemistry, vol. 20, pp. 351-378.

1915 b Further observations of the influence of natural fats upon growth. J. Biol. Chemistry, vol. 20, pp. 379-390.

1915 c Protein minima for maintenance. J. Biol. Chemistry, vol. 22, pp. 241-258.


OSBORNE, THOMAS B. AND WAKEMAN, ALFRED J. 1915 Does butter-fat contain nitrogen and phosphorus? J. Biol. Chemistry, vol. 21, pp. 91-94.

ROBINSON, ARTHUR 1892 b The nutritive importance of the yolk-sac. J. of Anat. and Phys., vol. 26, pp. 308-323. Stotsenburg, J. M. 1915 The growth of the fetus of the albino rat from the thirteenth to the twenty-second day of gestation. Anat. Record, vol. 9, pp. 667-682.

VINCENT, STELLA B. 1915 c The white rat and the maze problem. IV. The number and distribution of errors—a comparative study. J. Animal Behavior, vol. 5, pp. 367-374.

Warren, John 1915 On the early development of the inguinal region in mammalia. Anat. Record, vol. 9, pp. 131-133.

Wiedersheim, Robert 1897 Comparative anatomy of vertebrates. Parker's translation, 2d ed., London.

INDEX

Page numbers preceded by N refer to the Norway rat.

Activity

Miles run, 20.

Age

Characters which are functions of, 3. of opening eyes, 19, N 191. of independence, 19. of sexual maturity, 21, N 191. Span of life, 6, 20, 21, N 190. Body weight on, 31–33, 63–72, 105–113. Thymus on, 102. Percentage of water on, 114.

Albino Rat (See Rat)

Anatomy, 30-57.

General, 30.
Embryology, 30.
Bones, joints and connective tissues, 33.
Muscles, 38.
Vessels and lymphatics, 39.
Nervous system, 41.
Sense organs, 55.
Integument, 55.
Gastro-pulmonary systems, 55.
Uro-genital, 56.
Endocrine, 56.

Axis-of Nerve Fiber (See Nerves)

Behavior

under natural conditions, 28. under experimental conditions, 28.

Biology, 19-28, N 189-194.

Blood

Cell elements (number), 40-41. Erythrocytes (diameter), 39. Growth of, 83. Hemoglobin, percentage of, 84.

Blood (continued)

Oxygen capacity, 84.

Percentage of water in, 40, N 211.

Specific gravity, 39, 83.

Volume, 83.

Wandering cells in, 41.

Weight of, 83.

Body Weight (See Growth)

on age, 31–33, 63–72, 105–113.
on body length, 88, N 198.
at maturity—according to sex, 27.
Modified by external conditions, 69, 71.
Net, 74.
Variations in weight at birth, 103.

Bones (See Skeleton)

Brain (See Organs)

Composition, chemical, 180–184. Growth, 90, N 200–201. Methods for fixation, 49–55. Water—percentage of, 6, 176–179, N 211–213. Mitoses in, 41. 42. Specific gravity, 41.

Cell Division (See Mitosis)

Cells

Erythrocytes (diameter), 39.
Erythrocytes (number), 40.
Leucocytes, 40.
Wandering cells, 41.
of peritoneal fluid, 41.
of liver (diameters), 56.
of pancreas (diameters), 56.
of nervous sytem:
Purkinje cells (diameters), 43.
in ganglia (numbers and diameters), 44, 45, 46.

Charts 1-31

1. The growth of the fetus from the 13th to the 22d day of gestation				
2. Growth in body weight on age—males. To 365 days				
3. Growth in body weight on age—females. To 365 days				
4. Growth in body weight on age—males and females. To 485 days 6				
5. Percentage weights of systems on age. Muscalature, ligamentous skeleton, viscera and integument				
6. Body length on body weight—males and females.				
/ Rody moight on hade lassels				
8. Tail length on body length—males and females				
9. Brain weight on body weight—males only. Spinal cord weight on body weight—				
males only				
10. Weight of both eyeballs on body weight—males				
11. Weight of heart on body weight—males				
12. Weight of both kidneys on body weight—males				
13. Weight of liver on body weight—males				
14. Weight of spleen on body weight—males				
15. Weight of both lungs on body weight—males				
10. Weight of blood on body weight—males and females				
17. Weight of alimentary tract on body weight—males				
18. Weight of thyroid on body weight—males and females				
19. Weight of hypophysis on body weight—males and females 90				
20. Weight of both suprarenals on body weight—males and females				
21. Weight of both ovaries on body weight				
22. Weight of both testes on body weight				
25. Weight of thymus on age—to 400 days				
24. Percentage of dry substance in the body as a whole and in the several systems—liga-				
mentous skeleton, integument, viscera and musculature—on age. 178				
25. In terms of the dry substance of the entire body the percentage weight of the dry				
substance of the integument, viscera, ligamentous skeleton and musculature—on				
age				
26. Percentage of water in brain—on age—males. Percentage of water in spinal cord—				
on age—males				
27. Absolute weight of the more important chemical constituents of the brain—on age 184				
28. Norway rat Body length on body weight—males. (Graph for the Albino inserted				
for comparison)				
199 Dody weight on body length. Males and lemales				
30. Norway rat Tail length on body length. Males and females 200				
31. Norway rat Brain weight on body weight—males. (Graph for Albino inserted for				
comparison).				
Spinal cord weight on body weight—males. (Graph for Albino inserted for com-				
parison)				
Chromosomes, Number of, 31. of bones, 181.				
Classification and Nomenclature, 7-10. of brain, 181-182.				
Composition, Chemical (See Water, per- of spinal cord, 182.				
centage of)				
of entire body, 180-181. Correlation, Coefficients of, 103.				

271

Distribution (See Early Records and Migrations), 10–15.

Dry Substance (See Water, percentage of)

Early Records and Migrations, 10-15.

Embryology, 30-33.

Early stages, 31–33. Later stages, 33.

Volumes of ova and embryos, 32.

Eyes

Age of opening, 19, N 191.

Fat

Fatty acids, 84. according to size, 85. according to sex, 85. Total fat, 83.

Feces

Weight of, 59.

Fecundity, 22.

Influence of weight of mother, 23.
Influence of food conditions, 23.

Fetus

Crown-rump length, 64-65. Weight from 13th day of gestation, 64-65.

Fibers-Nerve

Number, 44–49. Diameter and area, 44, 45, 47, 48, 49.

Formulas

Catalogue of, 158–159. Use of, 3.

Fossil Remains

Mus rattus, 10.

Functions (See Physiology)

Circulation, 61.
Digestion, 61.
Endocrine glands, 61, 62.
Muscle, nerve, 61.
Nervous system, 61.
Nutrition, 58, 59, 60.

Functions (continued)

Body temperature, 60, 61. Reproduction, 61. Respiration, 61. Secretion, 61. Special senses, 61.

Ganglia (See Cells)

Gestation

Period of, 21, N 190. Lengthening of, 22.

Growth

of entire body in weight on length:
Birth to maturity, 65-69, N 198.
Weight-length ratio, 72, N 202.
Body length on body weight, 87, N 198.
Body weight (Norway) on body weight (Albino), N 200.

(Albino), N 200.
of entire body in weight on age:
before birth, 31-33, 63-64.
Birth to maturity, 65-72.
Body weight, net, 74.
under various external conditions, 63, 69.

of parts on body weight: Head, trunk, limbs, 73-75, N 195.

Method of dissection, 73–74.

Tail length on body length, 88, N 200.

of systems on body weight: Integument, 75, 76, N 196.

Musculature, 75, 76, N 196.

Skeleton (ligamentous), 75, 76, N 196.

Skeleton (cartilaginous), 78. Viscera, 75, 76, N 196.

Teeth, 37-39.

of organs on body length and weight:

Methods of examination and graphs, 87-102.

Alimentary tract, 97.
Blood (weight), 96.
Brain, 90, N 200–201.
Eyeballs, 91–92.
Heart, 92–93.
Hypophysis, 98–99.
Kidneys, 92–93.
Liver, 94.

Growth-Continued

Lungs, 95–96. Ovaries, 100–101.

Spinal cord, 90-91, N 202.

Spleen, 95.

Suprarenals, 99-100.

Testes, 101-102.

Thymus (on age), 102.

Thymus (on body weight), 114.

Thyroid, 97-98.

Viscera combined, 114.

Variations in organ weight, 103-104.

Heredity

in general, 29. Coat color, 29.

Independence

Attainment of, 19.

Impregnation

Time of, 21.

Length

of body, 87, N 198. of limb bones, 81–82. of tail, 88–89, N 200.

Life History, 19, N 189-191.

Litter

Average number in, 26, N 190. Second the best, 26. Unit for experimental work, 3.

Litters

Usual number of, 26, N 190.

Liver

Cells and nuclei—diameters, 55-56.

Menopause, 21.

Metabolism

Protein, 58-60.

Methods

Statistical, 2.

for fixation of brain

Various figuratives, 49-51.

Formaldehyde, 51-55.

Migrations, 11-13.

Mitosis

in brain, 41, 42. in spinal cord, 41-43.

Modification of Body Growth

Experimental, 69, 71. Method of measuring, 5.

Muscles

Number of fibers and nuclei, 39.

Myeline Sheath (See Nerves)

Nerve Fibers (See Nerves)

Nerves

Cerebral

Number of fibers:

N. cochlearis, 43.

N. oculomotorius, 44.

Spinal nerves and ganglia:

Number and size of fibers, 45-47.

Number of ganglion cells, 43-49.

Diameter of ganglion cells, 44, 48.

Peripheral, 48, 49.

Number of fibers

N. peronealis, 48.

Autonomic

Fibers less than 4μ , 49.

Nervous System, 41-49.

Fixation methods, 49-55. Physiology of, 61.

Nitrogen

Weight of, excreted, 58, 60.

Norway Rat (See Rat)

Number

of mitoses (nervous system), 41, 42.

of erythrocytes, 40.

of leucocytes, 40.

of nerve cells, 41-49.

of nerve fibers, 41-49.

of muscle fibers and nuclei, 39.

Nutrition (See Functions)

273 INDEX

Organs (See Growth of)

Alimentary tract, 97.

Blood (weight and volume), 96.

Brain, 90, N 200-201.

Eyeballs, 91-92.

Heart, 92-93.

Hypophysis, 98-99.

Kidneys, 92-93.

Liver, 94.

Lungs, 95-96.

Ovaries, 100-101.

Pancreas, 56.

Sense organs, 55.

Spinal cord, 90-91, N 202.

Spleen, 95.

Suprarenals, 99-100.

Testes, 101-102.

Thymus, 102, 114.

Thyroid, 97-98.

Ovulation, 21, 31.

Ova-distance from fimbria, 31.

Ova-diameter, 31.

Ova-volume, 32.

Ovum (See Ovulation)

Pancreas

Size of cells and nuclei, 56.

Parts (Larger Divisions of Body)

Fore-limbs, hind-limbs, head and trunk 73-75, N 195.

Peritoneal Fluid

Cells of, 41.

Physiology (See Functions) 58-62.

Puberty, 21.

Rat

Norway, 1.

= Mus norvegicus, 1, 7, 8.

= Mus decumanus, 7, 8.

= Epimys norvegicus, 7.

gray, brown, or sewer rat-Wanderratte

(G.).

Surmulot, rat d'égout, (Fr.).

compared with Albino, N 191-193.

similar to European form, N 193, 194.

melanic variety, 14.

Rat (continued)

Norway—Albino = white rat

Mus norvegicus albinus, 14.

Mus norvegicus albino, 7.

= Mus norvegicus var. albino, 7.

= Mus norvegicus var. albus, 7.

coat color, 9, 29.

compared with Norway, N 191-193.

extracted, 9.

Gametic purity, 9, 10.

Inbred, 9.

Laboratory animal, 1.

Observations mainly for the first year, 2.

Origin of variety, 14.

similar to European form, 14.

strains-local, 3.

House rat—black

Mus rattus rattus (old English black

rat), 7, 8. Ship rat (gray)

Mus rattus alexandrinus, 8.

Albino of M. rattus, 8, 9.

M. n. albinus wrongly identified with Albino

of M. rattus, 14.

Mus rattus × Mus norvegicus mutually infertile, 14.

Rattenkönig, 15.

Records, Early, and Migrations, 10-15.

Mus norvegicus, 12, 13.

Mus rattus, 11.

Reference Tables, 2, 3.

References to Literature—By Subject

Classification, 10.

Fossil remains, 10.

Melanic variety, 14.

Early records and migrations, 15.

Rattenkönig, 15.

Albino:

Biology, 28.

Heredity, 29.

Anatomy, 56-57.

Physiology, 61-62.

Growth:

in total body weight, 72.

of parts and systems, 85.

References to Literature—By Subject—	Skeleton (continued)				
	Phosphorus content, skeleton, 181.				
of parts and organs, 175. in terms of water and solids, 179.	Ash, 181.				
of chemical constituents, 184.	Percentage of water, 79.				
Pathology, 185–186.	Transformation of weights, 77. Cranium (skull), 82.				
Norway:	definition of, 82–83.				
Life history and characters, N 194.	Measurements of, 33–36.				
Growth:	Weight of, 83, N 196.				
of parts and systems, N 197.	Long bones				
of organs, N 202.	lengths, absolute and relative, 81-82.				
in terms of water and solids, N 213.	shrinkage on drying, 82.				
References to Literature—By Authors	Skull (See Skeleton; Cranium)				
Introduction to literature cited, 214. Titles by authors, 215–265.	Span of I if a go of 27 too				
Addenda, 265–267.	Span of Life, 6, 20–21, N 190.				
	Specific Gravity				
Sense Organs	Blood, 39, 83.				
Cochlea, 55.	Brain, 41.				
Sex	Spormatodonasta 20 01				
Body weight according to, 27.	Spermatogenesis, 30, 31.				
Sexual maturity, 21, N 191.	Spinal Cord				
Proportion of sexes, N 190-191.	Composition, chemical, 182.				
Sex ratio, 26-27.	Growth, 90–91, N 202.				
in first litters, 27.	Water, percentage of, 176-179, N 211-213.				
according to season, 27.	Mitosis in, 41–43.				
Recognition of, in young, 26–27. Ano-genital distance, 27.	Superfecundation, 22.				
Skeleton	Superfetation, 22.				
List of bones, 34.	Systems (weighed) (See Anatomy)				
Cartilaginous skeleton, 76-78.	Integumentary, muscular, skeletal, visceral,				
Weight of days held to 70.	75, 76.				
Weight of dry skeleton, 79–80. Ligamentous skeleton, 76–78.	Weight—absolute, 76.				
Growth of skeleton, 33, 76-81.	Weight—proportional, 75.				
575 Will of Skeleton, 55, 70-51.	Adult proportions, 78.				
Tables					
Revision of	2				
Reference tables, use of	99 #				
Reference tables, use of					
1. Percentage of water in encephalon of rat compared with that in man at correspond-					
ing ages					
2. Total number of miles run					
5. Induence of age of mother on birth weight.	24				
4. Influence of weight of mother on birth weight	ght 24				

Tal	bles—Continued	
5.	Influence of size of litter on the individual birth weight	25
6.		25
7.		26
8.		27
9	Maximum body weights	28
10.		31
11.		32
12	Measurements of cranium	35
13		36
14	Length of incisors	38
15	Measurements of enamel	38
16	Growth of incisors and of eranium	38
17	Number of fibers and of nuclei in Musc. radialis	39
18	Percentage of water in blood	40
19	Number of erythrocytes, leucocytes, etc., in blood	40
20	Wandering cells in blood	41
21.	Wandering cells in peritoneal fluid	41
99	Mitoses in brain and cord. Hamilton ('01)	42
23	Mitoses in brain and cord—special observations on cerebellum	42
94	Diameters of Purkinje cells and their nuclei	43
25	Number of myelinated fibers in the oculomotor nerve	44
26	Range of diameter in cells of cervical ganglion	44
27.	Number of spinal ganglion cells and number and size of myelinated root fibers of spinal	
	nerves from three levels and at five ages (body weights)	45
28.	Number of ganglion cells and of root fibers in the second cervical nerve	46
29.	Number of myelinated fibers in the ventral and dorsal roots of the second cervical	
	nerve—together with the distal excess of fibers in the nerve	46
30.	Number of ventral root fibers in the second cervical nerve at different ages—together	
	with the areas of the fibers and of their axes	47
31.	Diameters of cell body and of nucleus in second cervical spinal ganglion together	
	with standard deviation and coefficient of variation	48
32.	Number of myelinated fibers in the peroneal nerve	48
33.	Sectional areas of largest fibers and of their axes—in peroneal nerve	49
34.	Myelinated fibers less than 4µ in diameter in the ventral roots of the second to the	
	fifth cervical nerves	49
35.	Effects of various fixing solutions on the weight of the brain	-51
36.	Increase in the weight of rats' brains in a neutralized 4 per cent formaldehyde solu-	
	tion made five months before using	53
37.	Increase in the weight of rats' brains in a neutralized 4 per cent formaldehyde solu-	
	tion made at the time of using.	53
38.	Increase in the weight of rats' brains in a neutralized 4 per cent formaldehyde	
	solution—freshly made for each lot of animals	5
39.	Increase in the weight of rats' brains in a non-neutralized solution of 4 per cent for-	
	maldehyde freshly made for each lot of animals	5
40.	Percentage of solids in rats' brains after fixation in various 4 per cent formaldehyde	
	solutions	5

T	ables—Continued	
41	. Volumes of cell body and of nucleus: liver cells; volumes of cell body and of nucleus:	
	pancreas cells	-
42	. Excretion of urine, feces and nitrogen	5
43	. Protein metabolism—nitrogen distribution—female	
44	Protein metabolism—nitrogen distribution—male	6
45	. Body temperature under different external temperatures.	6
46	Moon woughts of fotuses at deily interest left and a second	6
47	Crown with a of fatures of deller interest to the state of the state o	6
48	. Ratios obtained by dividing the body weight in grams by the body length in milli-	65
	meters—for both males and females	71
49	Percentages of the entire body weight represented by the weights of head, trunk,	11
	fore-limbs and hind limbs	74
50.	Percentages of the entire body weight represented by the weights of the integument,	13
	ligomontous elsoloton museuleture and	75
51.	Absolute weights of integument, ligamentous skeleton, musculature and viscore in	"
	seven groups, of increasing body weight	76
52.	The percentage values for the weight of the cartilaginous skeleton—and by differ-	10
	ence the percentage values for the periosteum, ligaments, etc., combined	78
53.	Cartilaginous skeleton-moist weight and percentage value—also percentage value	* 0
	of dry skeleton	80
54.	Lengths of long bones—femur, tibia, humerus and ulna—absolute and relative	82
55.	Weights of crania—in series from London, Paris, Philadelphia and Vienna	83
56.	Growth of blood in volume and oxygen capacity with increasing age (body weight)	24
57.	Proportion of lat with increasing age (body weight)	95
99.	Coefficients of variation in body weights	U3
99.	Coefficients of variation in organ weights	0.4
00.	Coefficients of correlation of organ weights with body weight	04
61.	Mean weights of fetuses at daily intervals from the 13th day of gestation and also at	
	Dirth. (Duplicates in full table 46)	0.5
62.	Growth in body weight on age—based on the records of Donaldson, Dunn and	
	watson (06)	07
63.	Growth in body weight on age-males. Observations of Donaldson, Dunn and	
	Watson ('06)	08
64.	Growth in body weight on age—females. Observations of Donaldson, Dunn and	
	Watson ('06)	10
65.	Growth in body weight on age. New Haven Colony—Ferry ('13)	12
66.	The numbers of animals used in computing the values in the growth table 65	13
67.	Growth in body weight on age—King (MS '15). Mean of two series, with coefficients	
	of variation	13
68.	Increase in the length of the tail, and in the weights of the body, brain, spinal cord	
	and both eyeballs, on body length	20
69.	Increase in the weights of the body and of the heart, both kidneys, liver and spleen	
	on body length	26
70.	Increase in the weights of the body and of the lungs, blood, alimentary tract, testes	1
	and ovaries, on body length	2
71.	Increase in the weights of the body and of the hypophysis, suprarenals and thyroid	
	on body length	8

Tables—Continued				
72. Weight of the thymus on age in days				
73. Increase in the weight of all the viscera-				
separately—on body length				
74. Percentage of water in the brain and in the	spinal cord—with increasing age—up to			
365 days				
75. Percentage of dry substances in the entire				
organs. Observations at seven ages				
76. Giving in terms of the dry substance of the	e entire body the percentage represented			
	e skin, ligamentous skeleton, musculature			
and viscera—seven age groups	179			
77. Chemical composition of the entire rat, Ha	tai (MS '15)			
78. Chemical composition of the entire rat Mc	Collum ('09)			
79. The phosphorus compounds of the rat as affected by ovariotomy				
80. Chemical composition of the brain at differ	ent ages			
81. Absolute weights of constituents of one bra	www.ight represented by the weights of			
82. Norway rat Percentages of the entire body weight represented by the weights of				
head, trunk, fore-limbs and hind-limbs				
the integument, ligamentous skeleton, musculature and viscera				
84. Norway rat Weights of crania in series	from London, Paris, Philadelphia and			
Vienna				
85. Norway rat Increase in the length of the	tail and in the weights of the body, brain			
and spinal cord, on body length				
86. Norway rat Giving the ratios obtained by dividing the body weight in grams, by				
the body length in millimeters				
87. Norway rat The percentage of water in the blood				
88. Norway rat Percentage of water in the brain and in the spinal cord. Ages known 212				
89. Norway rat Percentage of water in the	brain and in the spinal cord of rats of			
increasing body weights. Ages not know	vn			
Technic	Ovaries, weight, 100.			
	Testes, weight, 102.			
Body, length, 87. Body, weight, 88.	Thymus, weight, 102.			
Tail, length, 87.	m			
Brain, weight, 90.	Teeth			
Spinal cord, weight, 90.	Eruption of, 37.			
Eyeballs, weight, 91.	Formula for, 37.			
Heart, weight, 92.	Incisors			
Kidneys, weight, 92.	Development—time relations, 37.			
Liver, weight, 94.	Growth of, 37–39, 83.			
Spleen, weight, 95.	Measurement in skull, 38.			
Lungs, weight, 95.	Enamel, 38.			
Blood, weight, 96.	Rate of growth before attrition, 38.			
Alimentary tract, weight, 97.	Rate of growth after attrition, 38.			
Thyroid, weight, 97.	Temperature of Body, 60, 61.			
Hypophysis, weight, 98.				
Suprarenals weight, 99.	Testes, descent of, 27.			

INDEX

Urine

Volume, 59. Weight of nitrogen in, 59, 60. similar to that of man 60.

Variations-Coefficients of

in body weight 103, 113. Cranial measurements, 33-35.

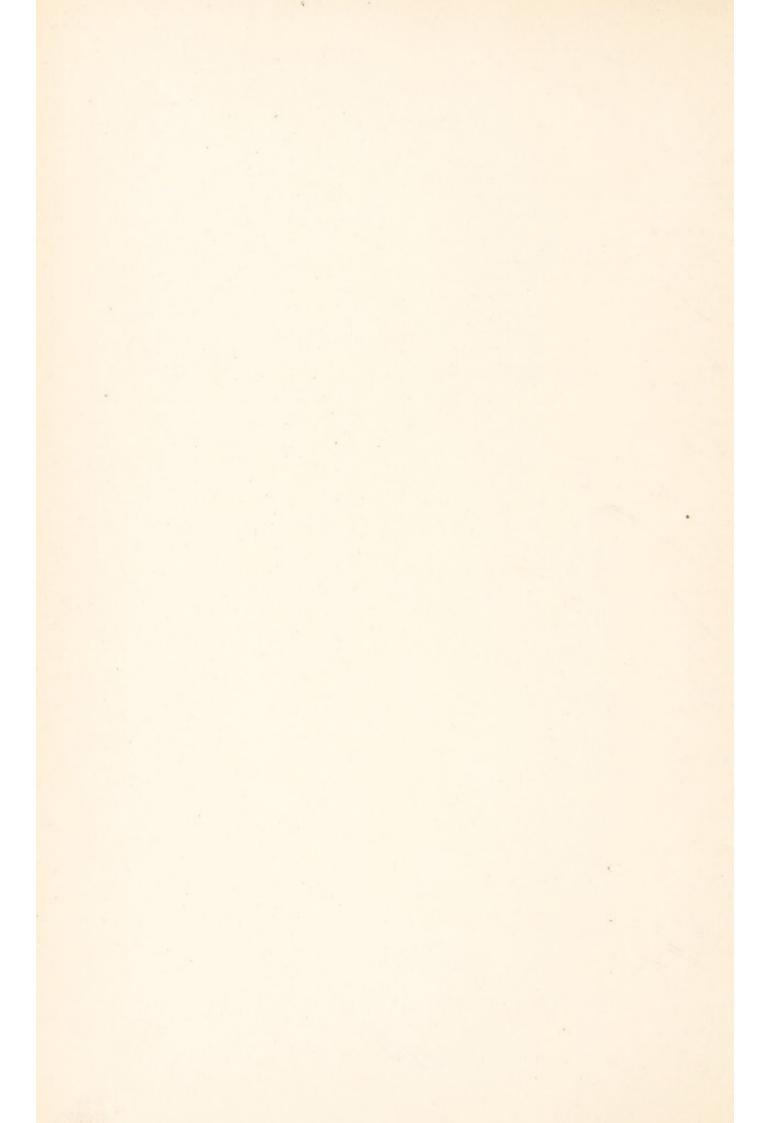
Water, Percentage of

in entire body (dry substance), 176–179, 180. in systems, 177, 179. in organs, 176, 177.

in blood, 40, N 211. in brain of rat and of man, 6. in brain and spinal cord, 176, 179, N 211-213. in skeleton, 78-81.

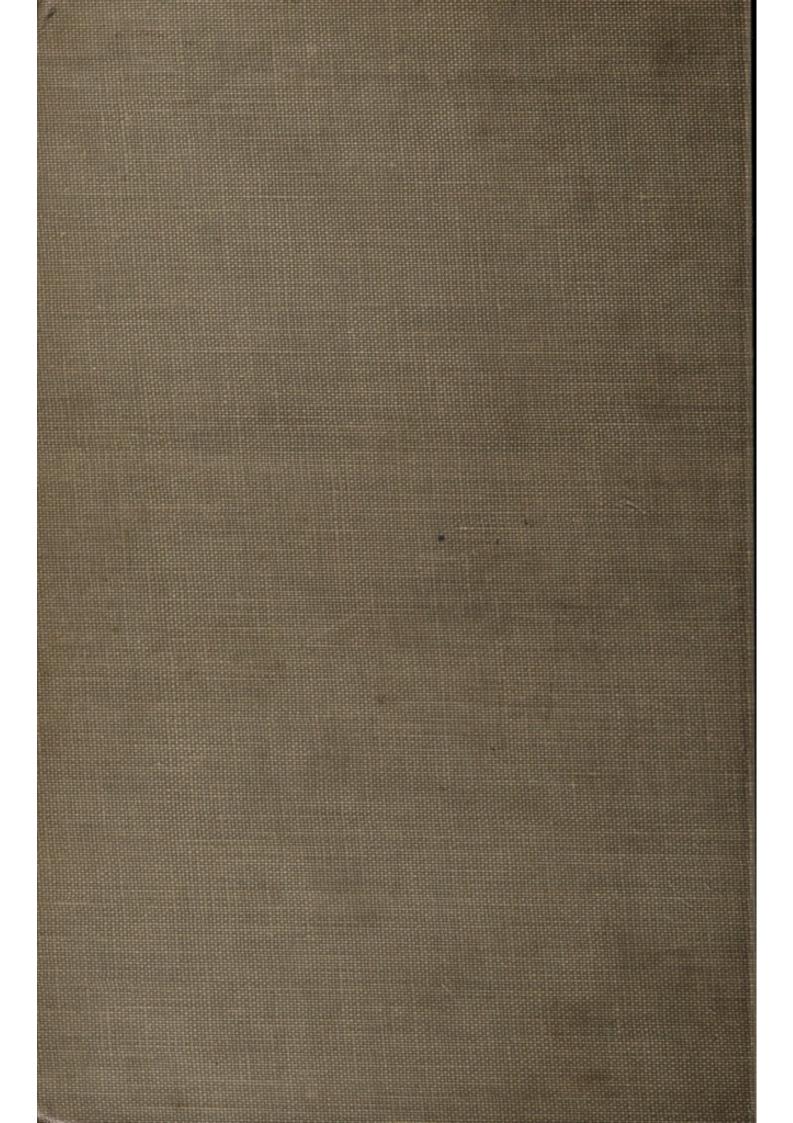
Weight at Birth, 22, 24-26.

According to size of litter, 25.
According to characters of mothers:


Age, 24. Weight, 24, 25. Undergrowth, 26. Disease, 26.

Weight-length Ratio, 72, N 202.

FINIS



actively and ancalin of life. 21 train weight and domestication 193.

