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INTRODUCTION.,

Tux following Compilation was drawn up at a time when the
difficulties, which usually present themselves on a first perusal
of the Principia, were fresh in the recollection of its Author.
Upon a late accidental revision of it he was induced to think
that it might, if printed in a convenient form, prove an useful
euide to those, who not enjoying the benefits of Academical
or other instruction, are yet desirous of becoming acquainted
with so much at least of the Principia, as is necessary to a clear
comprehension of the more prominent and obvious laws of the
Planetary System. Perhaps even to the regularly educated
Student it may not be wholly unacceptable as a book of occa-
sional reference; inasmuch as besides the Commentary properly
so called, it will be found to contain, carefully arranged under
proper heads, all or most of those Problems and Deductions
from the Text, which, after having been collected by the Stu-
dent at the expence of much time and trouble, are usually en-
tered, without any great regard to order or connexion, in the
pages of his Manuscript.

The following is the plan and arrangement of this Treatise.

I. Newton’s text entire, with the exception of Props. 3, 5,
and 17; Lemmas 12, 15, and 14, relatine to well-known pro-
perties of the Conic Sections; a few of the Scholia; and the
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aliter proofs in the 2d and 5d Sections; all of which, as being
of less general use and application, might, it was conceived, be
omitted without injury to the work.

II. A general Introduction to the three Sections, comprising
a concise account, with Examples, of the Methods of Exhaus-
tions and Indivisibles, and the doctrine of Limits.

III. Notes explanatory of Newton’s text. In this part, which
forms the main body of the Treatise, the following method has
been invariably adhered to. (j) Each Lemma and Proposition
is prefaced, wherever the subject- appeared to require it, with
such introductory remarks as were thought necessary to prepare
the reader for Newton’s demonstration. (j;) The Lemma or
Proposition itself, where any difficulty occurs, is esplained in as
distinet and familiar a way as the subject would admit of.
(7i7) At the end of each will be found subjoined, under the ap-
pellation of Notes, such further remarks, deductions, and prob-
leins as the Proposition under consideration seemed naturally to
suggest,

IV. A collection of Miscellaneous Problems, with their solu-
tions.

The reader will observe that the short account given of the
dactrine of Exhaustions and Indivisibles, and also Arts. 50, 51,
and 52, on curvature, have been extracted almost wholly from
Maclaurin ; and as utility has been his sole object, the Compiler
ol the following sheets has throughout unreservedly borrowed
from every valuable source within his reach,



MATHEMATICAL PRINCIPLES

Natural PhHilosophy.

SECTION 1.

OF THE METHOD OF PRIME AND ULTIMATE RA-
TIOS, BY THE HELP OF WHICH THE FOLLOWING
PROPOSITIONS ARE DEMONSTRATED.

il ——

LEMMA L

Quantities, and the ratios of quantities, which, in any finite
time, tend continvally to equality ; and, before the end of
that time, approach nearer to each other than by any given
difference, become ultimately equal.

Ir you deny it, let them be ultimately unequal ; and
let their ultimate difference be D. Therefore they
cannot approach nearer to equality than by that given
difference 1. 'Which is against the supposition.

LEMMA II.

If in any figure A a c B, terminated by the right lines A a,
A E, and the eurve a ¢ E, there are inscribed any nui-
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ber of parallelograms A b, B e, C d, &e. econtained un-
der equal bases A B, B C, C D, &e., and the sides B b,
Cc, D d, &e. parallel to A a, the side of the figure ; and
the paralldlograms a K bl, bL em, ¢ M d n, &e. are
completed.  Then, if the breadth of those parallelograms
25 diminished, and their number is augmented continually ;
I say, that the wltimate ratios, which the inscribed figure
AKbLecMdD, the circumseribed figure A alb m
cndo E, and the curvilinear figure A a b ¢ d E, have
to each other, are ratios of equality—( Tig. 1.)

For the difference of the inscribed and circumseri-
bed figure is the sum of the parallelograms K Lm
M », D o, that is (because of the equality of all their
bases,) the rectangle under one of their bases K 2,
and the sum of their altitudes A « ; that is, the rec-
tangle A B /a. DBut this rectangle, because its breadth
A B is diminished indefinitely, becomes less than any
given rectangle. Therefore (by Lem. I.) the inscri-
bed and circumscribed, and much more the inter-
mediate curvilinear figure become ultimately equal.
‘Which was to be demonstrated.

LEMMA III.

The same ultimate ratios are also ratios of equalily, when
the breadths A B, B C, C D, &c. of the parallelograms
are unequal, and are all diminished indefinitely.

For let A F be equal to the greatest breadth ; and
let the parallelogram I" A @ f'be completed. This
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will be greater than the difference of the inscribed
and circumscribed figures; but, because its breadth
A T is diminished indefinitely, it will become less
than any given rectangle. Which was to be demon-
strated.

Cor. 1. Hence the ultimate sum of the evanescent
parallelograms coincides in every part with the cur-
vilinear figure.

Cor. 2. Much more does the rectilinear figure,
which is comprehended under the chords of the
evanescent arcs a b, & ¢, ¢ d, &c. ultimately coincide
with the curvilinear figure.

Cor. 3. As also the circumscribed rectilinear figure,
which is comprehended under the tangents of the
same arcs,

Cor. 4. And, therefore, these ultimate figures (as
to their perimeters a ¢ E,) are not rectilinear, but
curvilinear limits of rectilinear figures,

LEMMA 1V.

If in two figures A a ¢ B, P pr'Tl, there are inscribed (as
before ) two series of parallelograms, an equal number in
cach ; and, their breadths being diminished indefinitely,
if the ultimate ratios of the parallelograms in one figure
to those in the other, each to each respectively, ave the
same ; I say, that those two figures AackE, Ppr T,
are to each other in that same ratio—(¥ig. 2.)

For, as the parallelograms in one are severally to
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the parallelograms in the other; so, by composition,
is the sum of all in one to the sum of all in the other ;
and so is one figure to the other; because (by Lem.
II1.) the former figure is to the former sum, and the
latter figure to the latter sum, in the ratio of equality.
Which was to be demonstrated.

Cor. Hence, if two quantities of any kind are any
how divided into an equal number of parts : and those
parts, when their number is augmented, and their
magnitude diminished indefinitely, have a given ratio
to each other, the first to the first, the second to the
second, and so on in order ; the whole quantities will
be, one to the other, in that same given ratio. For,
if in the figures of this Lemma, the parallelograms
are taken to each other in the ratio of the parts, the
sum of the parts will always be, as the sum of the
parallelograms; and, therefore, the number of the
parallelograms and parts being augmented, and their
magnitudes diminished indefinitely, those sums will
be in the ultimate ratio of the parallelogram in one
figure to the correspondent parallelogram in the
other; thatis, (by the supposition) in the ultimate
ratio of any part of the one quantity to the corres-
ponding part of the other.

LEMMA V.

All homologous sides of similar figures, whether curvilinear
or rectilinear, are proportional ; and the areas are in the
duplicate ratio of the homologous sides.
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LEMMA VL

If any are A C B, given in position, is subtended by its
chord A B, and in any point A, in the middle of a con-
tinwed curvature, is touched by a right line A D, produced
both ways ; then, if the points A and B approach one ano-
ther and meet ; I say that the angle B A D, contained be-
tween the chord and the tangent, will be diminished in-
definitely, and will wltimately vanish—(Fig. 3.)

For, if that angle does not vanish, the arc A C B
will contain with the tangent A D an angle equal to
a rectilinear angle ; and, therefore, the curvature at

the point A will not be continued. Which is against
the supposition,

LEMMA VIL

The same things being supposed, I say, that the wltimate ra-

tio of the are, the chord, and the tangent, to each other, is
the ratio of equality.

For, while the point B approaches towards the
point A, let A B and A D be cénsidered as produ-
ced to the remote points & and d, and let & d be drawn
parallel to the secant B D. Let the arc A ¢ 6 be al-
ways similar to the arc A C B. Then, supposing the
points A and B to coincide, the angle d A & will van-
ish, by the preceding Lemma; and, therefore, the
right lines A 4, A d, which are always finite, and the
intermediate arc A ¢ & will coincide, and become

B
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equal among themselves. Wherefore, the right lines
A B, A D, and the intermediate arc A C B, which
are always proportional to the former, will vanish
and will ultimately acquire the ratio of equality.
Which was to be demonstrated.

Cor.. 1.—(Fig. 4.) Whenee, if through B be drawn
B F parallel to the tangent, always cutting any right
line A T, passing through A, in I ; this line B I' will
ultimately have the ratio of equality to the evanescent
arc A C B; because, completing the parallelogram
A T BD, it always has the ratio of equality to A D.

Cor. 2. And, if through B and A more right lines
are drawn, as BE, BD, AT, A G, cutting the tan-
gent A D, and its parallel B F; the ultimate ratio of
all the abscissee A D, AE, BF, B G, and of the
chord, and are A B, to each other, will be the ratio
of equality.

Cor. 3. And, therefore, in all our reasonings about
ultimate ratios, we may freely use any one of these
lines for any other.

LEMMA VIIL

If the vight lines A R, B R, with the are A C B, the chord
A B, and the tangent A D), constitute three triangles R A B,
RACB, RAD, and then the points A and B approach
to each other ; T say, that the ultimate form of the evanes-
cent triangles is that of similitude, and the ultimate ratio

that of equality.—( ¥ig. 3.)

For, while the point B approaches towards the
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point A, consider always A B, A D, A R, as produ-
ced to the remote points &, d, and »; and r b d, as
drawn pﬂraﬁel to R D; and let the arc A ¢ b be al-
ways similar to the arc A CB. And, supposing the
points A and B to coincide, the angle & A d will van-
ish ; and, therefore, the three triangles » A b, » A ¢ b,
r A d, which are always finite, will coincide ; and, on
that account, become both similar and equal. There-
fore the triangles R A B, R A CB, R A D, which
are always similar and proportional to these, will ul-
timately become both similar and equal among them-
selves.  Which was to be demonstrated.

Cor. And hence, in all our reasonings about ulti-
mate ratios, we may indifferently uge any one of these
triangles for any other.

LEMMA 1X.

If a right line A E, and a curve line A B C, given in posi-
tion, cut each other in a given angle A ; and to that right
line, in another given angle, BD, C E are ordinately ap-
plied, meeting the curve in B, C; and the points B and C
together approach towards the point A: I say, that the
areas of the triangles ABD, A CE, will ultimately be,
one to the other, in the duplicate ratio of the sides—(Tig.
5.)

For, while the points B, C approach towards the
point A, suppose always A D to be produced to the
remote points d and ¢, so that A &, A ¢, may be pro-
portional to A D, A E; and let the ordinates d b, ¢c.
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be erected parallel to the ordinates I) B, E C, and
meeting A B, A C produced in & and ¢. Let the
curve A b ¢ be drawn similar to the curve A BC;
and also the right line A g, which may touch beth
curves in A, and cut the ordinates D B, E C, d b, ee,
in I, G, /. g. Then, supposing the length A ¢ to re-
main the same, let the points B and C meet in the point
A; and, the angle ¢ A g vanishing, the curvilinear
areas A bd, A c e, will coincide with the rectilinear
areas A fd, A g e; and, therefore, (by Lem, V,) will
be in the duplicate ratio of the sides A d, A e. But
the areas A B D, A CE, are always proportional to
these areas; and the sides A D, A E to these sides.
Therefore also, the areas A B D, A C E are ulti-
mately in the duplicate ratio of the sides A D, A E.
Which was to be demonstrated.

LEMMA X.
The spaces, whick a body describes by any finite force urging
it, whether that forece is determined and immutable, or is
continually augmented or continually diminished, are, in

the very beginning of the motion, in the duplicate ratio of
the times.

Let the times be represented by the lines A D, A E;
and the velocities generated in those times by the
ordinates D B, E C: and the spaces, described with
these velocities, will be as the areas ABD, A CE,
described by these ordinates ; that is, at the very be-
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ginning of the motion (by Lem. TX.) in the duplicate
ratio of the times A D, AE. Which was to be de-
monstrated.

Cor. 1. And hence it is easily inferred, that the
errors of bodies, describing similar parts of similar
figures in proportional times, which are generated by
any equal forces, similarly applied to the bodies, and
are measured by the distances of the bodies from
those places of the similar figures, at which, without
the action of those forces, the bodies would have ar-
rived in those proportional times, are nearly in the
duplicate ratio of the times in which they are gene-
rated.

Cor. 2. But the errors, which are generated by
proportional forces, similarly applied, at similar parts
of similar figures, are as the forces and the squares
of the times jointly.

Cor. 8. The same thing is to be understood of any
spaces whatsoever, described by bodies which are
urged with different forces. These are, in the very
beginning of the motion, as the forces and the squares
of the times jointly.

Cor. 4, And, therefore, the forces are as the spaces
described in the very beginning of the motion direct-
ly, and the squares of the times inversely.

Cor, 5. And the squares of the times are as the
spaces described directly, and the forces inversely.
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LEMMA XIL
The evanescent subtense of the angle of eontact, in all curves,
which at the point of contact have a finite curvature, is
wltimately in the duplicate ratio of the subtense of the con-
terminous are—(Yig. 6.)

Case 1. Let A B be that arc, A D its tangent,
B D the subtense of the angle of contact perpendicu-
lar to the tangent, A B the subtense of the are. Let
A G, B G be erected perpendicular to the subtense
A B and the tangent A D, meeting in G; then let
the points 1), B, G, approach to the points d, b, g ;
and let I be the ultimate intersection of the lines B G,
A G, supposing the points D, B, to approach conti-
nually to A. It is evident, that the distance G I may
be less than any assignable. But, (from the nature
of circles passing through the points A BG, Adyg)
AB =AG X BD,and A% = Ag %X bd; and
therefore, the ratio of A B* to A /* is compounded
of theratiosof AG to Ag, and of BD to bd. But,
because G I may be assumed less than any assignable
length, the ratio of A G to A g may differ from the
ratio of equality, less than by any assignable differ-
ence ; and, therefore, the ratio of A B* to A #* may
differ from the ratio of BD to & d, less than by any
assignable difference. Therefore, by Lem. 1. the ul-
timate ratio of A B* to A & is the same with the
ultimate ratio of B D to 6d. Which was to be de-
monstrated.

Case 2, Let BD be inclined to A D in any given
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angle, and the ultimate ratio of B D to 4 d will always
be the same as before; and, therefore, the same as
the ratio of A B* to A #*. Which was to be demon-
strated.

Case 3. And, although the angle D is not given,
but the right line B D converges to a given point, or
is determined by any other condition whatever; yet
the angles D, d, being determined by the same law,
will always converge to equality, and approach nearer
to each. other than by any assigned difference; and
by Lem. I. will be ultimately equal; and, therefore,
the lines I3 1D, & d are in the same ratio to each other
as before. 'Which was to be demonstrated.

Cor. 1. Therefore, since the tangents A D, A d,
the ares A B, A 4, and their sines B C, & ¢, become
ultimately equal to the chords A B, A 4; their
squares also will ultimately be as the subtenses B D,
bd.

Cor. 2. The same squares are also ultimately as
the versed sines of the ares, which bisect the chords,
and converge to a given point. For those versed
sines are as the subtenses B D, b d.

Cor. 3. And, therefore, the versed sine is in the
duplicate ratio of the time, in which a bﬂd}r-describe.s
the arc with a given velocity. >

Cor. 4. 'The rectilinear triangles A D B, A d & are
ultimately in the triplicate ratio of the sides A D,
A d; and in the sesquiplicate ratio of the sides D B,
d b; as being in the compound ratio of the sides A 1)
and DB, Adand d . So also the triangles A B C,
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A b ¢ are ultimately in the triplicate ratio of the sides
BC, bec. What I call the sesquiplicate ratio is the
subduplicate of the triplicate, which is compounded
of the simple and subduplicate ratio,

Cor. 5. And, because D B, d b, are ultimately
parallel, and in the duplicate ratio of A D, A d, the
ultimate curvilinear areas A D B, A d 6 will be (by
the nature of the parabola) two-thirds of the recti-
linear triangles A D B, A d 4; and the segments A B,
A b will be one-third of the same triangles. And
hence these areas, and these segments, will be in the
triplicate ratio, as well of the tangents A D, A d, as
of the chords and arcs A B, A .

SCHOLIUM.

But, we have all along supposed the angle of con-
tact to be neither indefinitely greater, nor indefinitely
less, than the angles of contact, which circles contain
with their tangents; that is, that the curvature at the
point A is neither indefinitely small, nor indefinitely
great; or, that the interval A I is of a finite magni-
tude. For D B may be taken as A D3: in which
case, no circle can be drawn through the point A,
between the tangent A D, and the curve A B, and
therefore the angle of contact will be indefinitely less
than circular angles. And, by a like reasoning, if
D B be made successively as A D+, A D5 A D¢,
A D7, &ec. we shall have a series of angles of contact
proceeding continnally, whereof every succeeding se-
ries is indefinitely less than the preceding. And if
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D B be made successively as A D*, A Di, AD%‘,

A Dé, A D%, A D%, &c. we shall have another se-
ries of angles of contact, the first of which is of the
same kind with those of circles, the second indefi-
nitely greater, and every succeeding one indefinitely
greater than the preceding. DBut, between any two
of these angles, another series of intermediate angles
of contact may be interposed, proceeding both ways
indefinitely, whereof every succeeding angle shall be
indefinitely gl‘é&t&r, or indefinitely less than the pre-
ceding. As if, between the terms A D*, and A D3,

T3 I
there was interposed the series AD ¢, AD 5, A D3,
7 5 g 1T 23 17
ADY AL ADY AT, ADT, ADE

&e.  And again, between any two angles of this se-
ries, a new series of intermediate angles may be inter-
posed, difﬂariug from one another by intervals inde-
finitely great. Nor is nature confined to any limit.
Those things, which have been demonstrated of
curve lines, and the surfaces which they comprehend,
are easily applied to the curve surfaces and contents
of solids. But I premised these Lemmas to avoid
the tediousness of deducing long demonstrations to
an absurdity, according to the method of the ancient
geometers. For demonstrations are rendered more
concise by the method of indivisibles. But, because
the hypothesis of indivisibles is somewhat harsh, and
therefore that method is esteemed less geometrical, 1
chose rather to reduce the demonstrations of the fol-
lowing propositions to the prime and ultimate sums
3
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and ratios of nascent and evanescent quantities; that
is, to the limits of those sums and ratios: and so to
premise the demonstrations of those limits, as briefly
as I could. For hereby the same thing is performed,
as by the method of indivisibles ; and those principles
being demonstrated, we may now use them with more
safety. Therefore, if hereafter I shall happen to con-
sider quantities, as made up of particles, or shall use
little curve lines for right ones, I would not be un-
derstood to mean indivisible, but evanescent divisible
quantities ; not the sums and ratios of determinate
parts, but always the limits of sums and ratios : and,
that the force of such demonstrations always depends.
on the method laid down in the preceding Lemmas.



SECTION 11.

OF THE INVENTION OF CENTRIPETAL FORCES.

PROPOSITION I.—THEOREM 1.

That the areas, which revolving bodies deseribe by radi,
drawn to an immoveable centre of force, do both lic in the
sene immoveable planes, and are proportional to the times
in which they are deseribed—(Fig. 7.)

Let the time be divided into equal parts, and in
the first part of time, let the body, by its power of
persevering in its state of uniform motion in a right
line, describe the right line A B. In the second
part of time, the same would, if not hindered, pro-
ceed directly to ¢, describing the line B ¢ equal to
A B; so that by the radii A S;'B.S, ¢ 8, drawn to
the centre, the equal areas AS B, B S ¢, would be
described. But when the body is arrived at B, let
a centripetal force act at once, with a strong impulse,
and make the body turn aside from the right line
Be, and afterwards continue its motion along the
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right line B C. Draw ¢ C parallel to B S, meeting
B C in C; and, at the end of the second part of time,
the body will be found in C, in the same plane with
the triangle ASB. Join S C; and, because S B
and C ¢ are parallel, the triangle S B C will be equal
to the triangle S B ¢, and therefore also to the triangle
S A B. By a like argument, if the centripetal force
acts successively in C, D, E, &c. making the body
in each single particle of time, to deseribe the several
right lines C D, DE, EF, &c. they will lie in the
same plane; and the triangle S C D will be equal to
the triangle SBC,and SDE to SCD, and SEF
to SD E. Therefore, in equal times, equal areas are
described in one immoveable plane; and, by compo~
sition, any sums SADS, SAF S, of those areas
are to each other, as the times in which they are de-
scribed.  Let the number of those triangles be ang.
mented, and their breadth diminished indefinitely ;
and (by Cor. 4. Lem. IIL.) their ultimate perimeter
A D F will be a curve line : and therefore the centri-
petal force, by which the ‘body is perpetually drawn
back from the tangent of the curve, will act continu-
ally; and any areas described SAD S, SA F S,
which are always proportional to the times of descrip-
tion, will, in this also, be proportional to those
times. Which was to be demonstrated.

Cor. 1. The velocity of a body, attracted towards
an immoveable centre in spaces void of resistance, is
reciprocally as the perpendicular let fall from that
centre on the right line that touches the orbit. For
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the velocities in those places A, B, C, D, E, are as
the bases AB, BC, CD, DE, EF, of equal triangles ;
and these bases are reciprocally as the perpendiculars
let fall upon them.

Cor. 2. If the chords A B, B C, of two arcs, suc-
cessively described in equal times by the same body
in spaces void of resistance, are completed intoa par-
allelogram A B C V, and the diagonal B V of this
parallelogram, in the position which it ultimately ac-
quires, when those ares are diminished indefinitely, is
produced both ways, it will pass through the centre
of force. :

Cor. 8. 1f the chords A B, BC, and D E, E F, of
arcs, described in equal times in spaces void of resis-
tance, are completed into the parallelograms A B C V,
DEFZ; the forces in B and E are to each other
in the ultimate ratio of the diagonals B'V and E Z,
when those arcs are diminished indefinitely. For the
motions B C, and E F of the body are compounded
of the mottons Be, BV, and E £; EZ: but B V and
E Z, equal to C ¢ and F f, in the demonstration of
this proposition, were generated by the impulses of
the centripetal force in B and E, and are therefore
proportional to those impulses,

Cor. 4. The forces, by whicTedics in spaces void
of resistance are drawn back from their rectilinear
motions, and turned into curvilinear orbits, are to
each other, as those versed sines of arcs described in
equal times, which converge to the centre of force,
and bisect the chords, when those arcs are diminished
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mdefinitely. For such versed sines are half the dia-
gonals mentioned in Cor. 8.

Cor. 5. And, therefore, those forces are to the
force of gravity, as the said versed sines, to the versed
sines perpendicular to the horizon of the parabolic
arcs, which projectiles describe in the same time.

Cor. 6. The same things hold good when the
planes in which the bodies are moved, together with
the centres of force, which are placed in those planes,
are not at rest, but move uniformly in a right line.

PROPOSITION II.-.THEOREM II.

Every body that moves in any curve line described in a plane,
and by « radius drawn to a point, either immoveable, or
mmoving forward with an uniform rectilinear motion, de-
seribes about that point areas proportional to the times, is
urged by a centripetal foree tending to that point.

Case 1. TFor every body, that moves in a curve
line, is turned aside from its rectilinear course by the
action of some force that impels it. And that force
by which the body is turned off from its rectilinear
course, and is made to describe, in equal times, the
very small equal trigfigles SAB, SBC, SCD, &e.
about the immoveable point S, acts, in the place B,
in the direction of a line parallel to ¢ C; that is, in
the direction of the line B S; and in the place C, in
the direction of a line parallel to d D, that is, in the
direction of the line C S, &c. It acts, therefore, al-
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ways in the direction of lines tending to that immove-
able point S.  Which was to be demonstrated.

Case 2. And it is indifferent, whether the surface
in which a body describes a curvilinear figure is
quiescent; or moves, together with the body, with
the figure deseribed, and its point S, uniformly in a
right line,

Cor. 1. In spaces or mediums void of resistance,
if the areas are not proportional to the times, the
forces do not tend to the point in which the radii
meet; but deviate therefrom in econsequentia, or to-
wards the part to which the motion is directed, if the
description of areas is accelerated ; but in antecedentia,
if retarded.

Cor. 2. And, even in resisting mediums, if the de-
scription of areas is accelerated, the directions of the
forces deviate from the concourse of the radii, to-
wards the part to which the motion tends.

SCHOLIUM.

A body may be urged by a centripetal force com-
pounded of several forces. In this case, the meaning
of the proposition is, that the force, which is com-
pounded of all, tends to the point S. But, if any
force acts perpetually in the direction of lines per-
pendicular to the deseribed surface, this foree will
make the body to deviate from the plane of its mo-
tion: but it will neither augment nor diminish the
quantity of the described surface, and is therefore to
be neglected in the composition of forces.
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PROPOSITION IV.—-THEOREM 1V,
That the centripetal forces of bodies, which by an equable
motion deseribe different civeles, tend to the centres of the
same cireles ; and are to each other, as the squares of the
arcs described in equal times, applied to the radii of the

cireles.

These forces tend to the centres of the circles,
(Prop. 1I. and Cor. 2. Prop. 1.) and are to each othex
as the versed sines of ares, described in equal times
indefinitely small (by Cor. 4. Prop. I.); that is, as
the squares of the same arcs, applied to the diameters
of the circles, (by Lem. VIL) and, therefore, since
these arcs are as the arcs described in any equal times,
and the diameters are as the radii; the forces will be
as the squares of any ares described in the same time,
applied to the radii of the circles. Which was to be
demonstrated.

Cor. 1. Since those arcs are as the velocities of the
bodies, the centripetal forces are in a ratio com-
pounded of the duplicate ratio of the velocities di-
rectly, and of the simple ratio of the radii inversely.

Cor. 2. And, since the periodical times are in a
ratio compounded of the ratio of the radii directly,
and the ratio of the velocities inversely; the centri-
petal forces are in a ratio compounded of the ratio of
the radii directly, and the duplicate ratio of the pe-
riodical times inveﬁ;ély?

Cor. 3. Whence it appears, that if the periodical
times are equal, and therefore the velocities are as
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the radii; the centripetal forces will be also as the
radii ; and the contrary.

Cor. 4. If the periodical times and the velocities
are both in the subduplicate ratio of the radii; the
centripetal forces will be equal among themselves :
and the contrary, N

Cor. 5. If the periodical times are as the radii, and
therefore the velocities equal ; the centripetal forces
will be reciprocally as the radii : and the contrary.

Cor. 6. If the periodical times are in the sesquipli-
cate ratio of th'e-r::l_dii, and therefore the velocities re-
ciprocally in the subduplicate ratio of the radii; the
centripetal forces will be inversely in the duplicate
ratio of the radii: and the contrary.

Cor. 7. And universally, if the periodical time is
as any power R™ of the radius R, and therefore the
velocity reciprocally as the power R"™" of the radius;
the centripetal force will be reciprocally as the power
of the radius R**™* : and the contrary.

Cor. 8. The same things all follow concerning the
times, the velocities, and forces, by which bodies
describe the similar parts of any similar figures, that
have their centres in a similar position within these
figures, by applying the demonstration of the pre-
ceding cases to those. And the application is made,
by substituting the equable description of areas for
equable motion, and using the distances of the bodies
from the centres for the radii.

Cor. 9. From the same demonstration it likewise
follows, that the are, which a body, uniformly re-

D
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volving in a circle with a given centripetal force, de-
scribes in any time, is a mean proportional between
the diameter of the circle, and the space, which the
same body, descending by the same given force,
would deseribe in the same given time.

SCHOLIUM.

The case of the sixth corollary is applicable to the
celestial bodies (as our countrymen Sir Christopher
Wren, Dr. Hooke, and Dr. Halley, have severally
observed); and, therefore, in what follows, I intend
to treat more at large of those things which relate to
a centripetal force decreasing in a duplicate ratio of
the distanees from the eentres.

Moreover, by means of the preceding proposition
and its corollaries, we may discover the proportion
of a centripetal force to any other known force, such
as that of gravity. For if a body, by means of its
gravity, revolves in a eircle eoncentric to the earth,
this gravity is its centripetal ferce. But, from the
descent of heavy bodies, the time of one entire revo-
lution, as well as the arc described in any given tine,
is given (by Cor. 9 of this Prop.) And by such
propositions, Mr. Huygens, in his excellent book
De Horologio Oscillatorio, has eompared the force
of gravity with the centrifugal forces of revolving
bodies.

i ——

PROPOSITION VIL-THEOREM V.

If a body, in a space void of resistance, revolves in any orbit
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about an wmmoveable centre, and in an indefinitely sniall
time describes any nascent arc; and the versed sine of
that arc is supposed to be drawn, whick may bisect the
chard, and being produced may pass through the centre of
foree ; the centripetal foree, in the middle of the are, will
be as the versed sine directly, and the square of the tume
inversely.

For the versed sine, in a given time, is as the force
(by Cor. 4. Prop. 1.) and increasing the time in any
ratio, because the arc will be increased in the same
ratio, the versed sine will be increased in the dupli-
cate of that ratio, @; Cor. 2 and 3, Lem, XI.); and
therefore is as the force, and the square of the time-
Subduct on both sides the duphc:lte ratio of the time,
and the force will be as the versed sine directly, and
the square of the time mversely. Which was to be
demonstrated.

And the same thing is also easily demonstrated by
Cor. 4. Lem. X.

Cor. 1.—(Fig. 8.) If a body P, revolving about
the centre S, describes a curve line: A P Q, and a
right line Z P R touches that curve in any point P;
and, from any other point Q of the curve, Q R is
drawn parallel to the distance S P, meeting the tan-
gent in R; and Q T is drawn perpendicular to the
distance S P; the centripetal force will be recipro-

BP* x CpT®
cally as the solid o RQ ; if the solid is taken

of that magnitude which it ultimately acquires, sup-
pesing the points P’ and Q continnally to approach
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to each other. Tor Q R is equal to the versed sine
of double the arc Q P, in whose middle is P: and
double the triangle SQ P, or SP x Q T is propor-
tional to the time, in which that double arc is de-
scribed ; and therefore may be used for the exponent
of the time.

Cor. 2. By a like reasoning the centripetal force is
St ) P
QR
perpendicular, let fall from the centre of force on
P R, the tangent of the orbit. For the rectangle

SY Xx QPand SP X QT are equal.

Cor. 3. If the orbit is either a circle, or touches or

reciprocally as the solid ; if 5 Y isa

cuts a citcle concentrically, that is, contains with a
circle an indefiuitely small angle of contact or sec-
tion, having the same curvature and the same radius
of curvature at the point P; and if PV is a chord of
this circle, drawn from the body through the centre
of force ; the centripetal force will be reciprocally as

thesolid. 8 Y2 . x P V. Hor PV = E}—Pj
QR

Cor. 4. The same things being supposed, the cen-
tripetal force is as the square of the velocity directly,
and that chord inversely. For the velocity is re-
ciprocally as the perpendicular S'Y, by Cor, 1,
Prop. L.

Cor. 5. Hence, if any curvilinear figure A P Q is
given ; and therein a point S is also given, to which
a centripetal force is perpetually directed ; the law of
centripetal force may be found, by which the body
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P, continually drawn back from a rectilinear course,
will be retained in the perimeter of that figure, and
will describe the same by a perpetual revolution.
That is, we are to find by computation, either the
SPw QT
QR

rocally proportional to this force.  Examples of this

solid , or the solid S Y* x PV, recip-

we shall give in the thllmving Problems,

PROPOSITION VII.—PROBLEM II

Let a body revolve in the cireumference of a cirele ; it is
required to find the law of centripetal force tending to
any given point—(Fig. 9.) )

Let VQ P A be the circumference of the circle;
S the given point, to which the force tends, as to a
centre; P the body moving in the circumference ; Q
the next place into which it is to move, and PR Z
the tangent of the circle at the preceding place.
Through the point S let the chord P V be drawn ;
and, the diameter V A of the circle being drawn, let
A P be joined ; and let fall Q T perpendicular to
S P, which produced may meet the tangent P R in
Z ; and lastly, through the point Q let L. R be drawn,
which may be parallel to S P, and may both meet
the circle in L, and the tangent P Z in R. And,
because of the similar triangles ZQ R, Z'T P, VP A,
RP% that is Q R L'will be to Q T2, as A V*to
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QRL ¥x PV*
AV » 1s equal to

P V2. And, therefore,

-
g = 2 " and

Q

the points P and Q continually approaching, for R L

B2 e Py
AV? W

Q 'T*. Letthese equals be multiplied into

write P V. Thus we shall find

ST 0l
QR
position VI.) the centripetal force is reciprocally as
<) e o T
v
rocally as the square of the distance or altitude S P,
and the cube of the chord P V jointly. Which was

to be found.

Cor. 1. Hence, if the given point S, to which the
centripetal force always tends, is placed in the cir-
cumference of this circle, suppose at V, the centri-
petal force will be reciprocally as the quadrato-cube
(or fifth power) of the altitude S P.

Cor. 2.—(Tig. 10.) The force by which the
body P in the circle A P T V revolves about the
centre of force S, is to the force by which the same
body P may revolve in the same circle, and in the
same periodical time, about any other centre of force
R, as R P* x S P, to the cube of the right line S G,
which is drawn from the first centre of force S, tp
the tangent of the orbit P G, and is parallel to the
distance P R of the body from the second centre of
force R.

. Therefore (by Cor. 1 and 5, Pro-

; that is (because A V? is given) recip-
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For, by the construction of this proposition, the
former force is to the latter, as R P* % P T3
to SP* %« PV3; that is, as SP % R P? to
SPx PV

PIe
PSG, TPV)toSGS3.

Cor. 8. The force, by which the body P in any

orbit revolves about the centre of force S, is to the

; or (because of the similar triangles

force, by which the same body P may revolve in the
same orbit, and in the same periodical time, about
any other centre of force R, asthe solid S P x R P%,
contained under the distance of the body from the
first centre of force S, and the square of its distance
trom the second centre of force R, to the cube of the
right line S G, which is drawn from the first centre
of force S to the tangent P G of the orbit, and is par-
allel to the distance R P of the body from the second
centre of force R. TFor the forces in this ogbit, at
any point I’, are the same as in a circle of tlfe same
curvature,

PROPOSITION VIIL—PROBLEM IIIL

Let a body move in the semi-circumference P Q A ; it is re-
quired to find the law of centripetal force, tending to a
point 8, so remote, that all lines P8, R 8 drawn thereto,
may be taken for parallel—(Fig. 11.)

From C, the centre of the semi-circle, let the semi-
diameter C A be drawn, cutting those parallels per-
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pendicularly in M and N, and let CP be joined.
Because of the similar triangles CP M, PZ T, and
RZQ, CP?isto P M?* as P R* to Q T* y and, from
the nature of the circle, P R* is equal to the rectangle
QR x RN 4+ QN; or, the points P and Q con-
tinually approaching, to the rectangle Q R x 2 PM.
Therefore C P* is to PM?*, as QR x 2P M to
QT 2 M A e T
ORTCP T GR
2PM: x SP*
AR
5, Prop. VI.) the centripetal force is reciprocally as
aPM3 v SP?
E B2
Al
R
tound.

Q T%; therefore

And therefore (by Cor. 1 and

; that is, (neglecting the given ratio

) reciprocally as P M3 Which was to be

The same thing is likewise easily collected from the

preceding proposition.

SCHOLIUM.

And, by a like reasoning, a body will be found to
move in an ellipse, or even in an hyperbola, or para-
bola, by a centripetal force, which is reciprocally as
the cube of the ordinate, directed to a centre of force,
at a very great distance.

A
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PROPOSITION IX.—PROBLEM 1V.

Let a body vevolve in a spiral PQS, eutting all the radii
SP, SQ, §e. in a given angle ; it is requirved to find the
larw of centripetal force, tending to the centre of that spiral.
(Fig. 12.)

Let the indefinitely small angle P S Q be given ;
and because all the angles are given, the species of
the figure SP R QT will be given. Therefore the
ratio 3% is given ; a:tf] 3i€ is as Q T 1 that is,
(because the species of that figure is given,) as S P.
But if the angle P S Q is any way changed, the right
line Q R, subténding the angle of contact Q P R
(Lem. XI.) will be changed in the duplicate ratio of

; L. L™ :
PR or QT. Therefore the ratio ——— remains

QR
the same as before ; that is, as S P. Therefore

T &1
Q R is as S P3, and (by Cor. 1. and 5,

Prop. VL) the centripetal foree is reciprocally as the
cube of the distance SP. Which was to be found.

PROPOSITION X.—PROBLEM V,

Let a body revolve in an ellipse ; it is required to find the
laww of centripetal force, tending to the centre of the ellipse.
(Fig. 13.)

Let C A, CB be semi-axes of the ellipse, G P,
B
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D K other conjugate diameters; PF, QT perpen-
diculars to those diameters: Q » an ordinate to the
diameter G P; and if the parallelogram Qv PR is
completed, the rectangle Pv G willbe to Q #, as P C*
to C D*; and (because of the similar triangles Q v T,
PCF) Qv isto QT as PC* to P F?*; and by
composition, the ratio of PvG to Q T* is compound-
ed of the ratio of P C* to C D?, and of the ratio of

x

Py

PC* to PF*; that 15, v G is to as P C* to

C D x P
PiC2
Conics) BC X CA for CD x PF, also (the
points P and Q continually approaching) 2 P C for
» G ; and multiplying the extremes and means

QT* x PC*
together, we shall have QR equal to

. Substitute Q R for P v, and (by

2BC* v CA*
PG

. Therefore (by Cor. 5, Prop. VI.) the

2BC* x CA*?
PC ‘
that is (because 2 B C* x C A* is given) reciprocal-

centripetal force is reciprocally as

1
ly as pC’ that is, directly as the distance P C....

Which was to be found.

Cor. 1. And therefore, the force is as the distance
of the body from the centre of the ellipse; and, on
the contrary, if the force is as the distance, the body
will move in an ellipse, whose centre coincides with
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the centre of force ; or perhaps in a circle, into which
the ellipse may be changed.

Cor. 2. And the periodical times of the revolutions
made in all ellipses whatsoever about the same centre
will be equal. For those times in similar ellipses are
equal (by Cor. 3 and 8, Prop. IV.) but, in ellipses
that have their greater axis common, they are to each
other, as the whole areas of the ellipses directly, and
the parts of the areas described in the same time in-
versely ; that is, as the less axes directly, and the ve-
locities of the bodies in the principal vertices inverse-
ly ; that is, as those less axes directly, and the ordi-
nates to the s5ame point of the common axis inversely ;
and therefore (because of the equality of the direct
and inverse ratios) in the ratio of equality,

/4
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SECTION III.

OF THE MOTION OF BODIES IN ECCENTRIC
CONIC SECTIONS.

PROPOSITION X1.—PROBLEM VI.

Let a body revolve in an ellipse ; it is required to find the

law of centripetal force tending to the focus of the ellipse.
—(Fig. 14.)

Let S be the focus of the ellipse. Draw S P,
cutting the diameter DD K of the ellipse in E, and the
ordinate Q v in 2; and let the parallelogram Qx» P R
be completed. It is evident that E P is equal to
the greater semi-axis A C: for, drawing H I from the
other focus H of the ellipse, parallel to E C, because
C S, CH are equal, E S, E I will be also equal; so
that E P is half thesum of P S, P I, that is, (because
of the parallels H I, P R, and the equal angles I P R,
HPZ,)of PS, PH ; which taken together are equal
to the whole axis 2 A C. Let QT be perpen-
dicular to S P, and putting L for the principal latus
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2B C*
ve AR

willbe to L X Pv,as Q R to Pp; thatis, as P E,
or ACto PC;and L X Pp, toGo P, as L to
Gv; and GoP to Qv as PC* to C D?*; and
(by Cor 2, Lem. VIL) the points Q and P continu-
ally approaching without end, Q v* is to Q 2* in the
ratio of equality; and Q 2*, or Q©v*, is to QT* as
E P* to P F*; that is, as C A* to P I*; or, (by Co-
nics) as C D* to C B*. And compounding all these
ratios together, L X QR is to QT as A C x
L P P or2CH x PC* v 1P, to
PO X G XCDx CB*, oras 2PCio Gu
But, the points Q and P continually approaching
without end, 2 P C and G v are equal. Therefore
the quantities L x QR and Q T* proportional to
these, are also equal. Let these equals be multiplied

2l e
into ——=, and L X SP* will become equal to

QR

Sk x Q1"
Q RQ . Therefore (by Cor. 1. and 5. Prop.

vectum of the ellipse (or for

V1.) the centripetal force is reciprocally as L. X< S P*;
that is, reciprocally in the duplicate ratio of the dis-
tance S P. Which was to be found.

PROPOSITION XIL—PROBLEM VIL
Let a body move in an hyperbola : it is required to find the
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taw of centripetal force tending to the focus of that figure.
—(Fig. 15.)

Let C A, C B be the semi-axes of the hyperbola ;
P G, K D other conjugate diameters ; P F a perpen-
dicular to the diameter K D : and Q v an ordinate to
the diameter GP. Let S P be drawn cutting the
diameter D K in E, and the ordinate Q v in &, and
let the parallelogram Q R P x be completed. It is
evident, that I P is equal to the semi-transverse axis
A C; for, drawing HI from the other focus H of
the hyperbola, parallel to E C, because C S, C H are
equal, ES, EI will be also equal; so that E P is
half the difference of P S, P I; that is (because of
the parallels I H, P R, and the equal angles IPR,
HPZ)of PS, PH;j the difference of which is equal
to the whole axis 2 A C. Let QT be perpendicular
to SP. And the principal latus rectum of the hy-

s

AC

have L X QR toL X Pw, as QR to Pv, or P
to Pv; that is (because of the similar triangles P « v,
PEC),ass PEto PC,or ACto PC. Also L X
Pv will be to Gv X P, as L to G v; and (by the
properties of the conic sections) the rectangle G v P
is to Qv*, as P C* to CID?*; and (by Cor. 2, Lem.
VIL) Q# to Qa*, the points Q and P continually
approaching without end, becomes a ratio of equality ;
and Q z* or Qv* is to QT?, as E P* to P F?*; that
is, as C A* to P I*, or (by Conies) as CD?* to

perbola (that is ,) being called L, we shall
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C B*: and, compounding all these ratios together,
B ¥Q Rz t0.Q T ad A C WE X P Cx €D
or 2CB* X PCAXCD*to PC X Gov X CIV
X CB*; oras2 PC to Gv. But the points P and
Q continually approaching without limit, 2 P C and
G v are equal. Therefore the quantities L X Q R
and Q T2, proportional to them, are also equal.

kS

S
Let these equals be multiplied into Qr’ and L x

gPran QT

QR ]
(by Cor. 1 and 5, Prop. VL) the centripetal force is
reciprocally as L. X S P*; that is, reciprocally in the

duplicate ratio of the distance SP. Which was to
be found.

S P* will be equal to

Therefore,

PROPOSITION XIII.—PROBLEM VIIL

Let a body move in the perimeter of a parabola : it is re-
quired to find the law of centripetal force, tending to the
focus of that figure—~(Fig. 16.)

Let P be the body in the perimeter of the parabo-
la, and from the place Q, into which the body is mov-
ing, draw Q R parallel, and Q T perpendicular to
SP; as also Q v parallel to the tangent, and meeting
both the diameter P (3 in v, and the distance SP in a,
Now, because of the similar triangles P v, SP M,
and the equal sides S P, S M of the one, the sides
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P a2 or Q R and P v of the other are also equal. But
by the properties of the conic sections, the square of
the ordinate Q v is equal to the rectangle under the
latus rectum, and the segment P v of the diameter;
that is, (by Conics) to the rectangle 4 PS X Py,
or 4 PS x QR; and, the points P and Q approach-
ing withont limit, the ratio of Qv to Q # (by Cor. 2,
Lem. VII.) becomes the ratio of equality. Therefore
Qa*, in this case, becomes equal to the rectangle
4 PS X QR. But(because of the similar triangles
QRQaT,SPN)Qa* is to QT3 as PS* to SN#;
that is, (by Conics) as PS to S A; that is, as
4 PS X QR to 4SA X QR, and therefore
(by Prop. IX. Lib. V, Elem,) Q T?*, and 4 SA X
Q R are equal. Multiply these equalsinto -S—}I,{, and

Q
b will become equal to SP* X 4 S A ;
QR

and therefore (by Cor 1 and 5, Prop. VL) the cen-
tripetal force is reciprocally as S P* X 4 S A; that
is, because 4 S A is given, reciprocally in the dupli-
cate ratio of the distance S P. 'Which was to be
found.

Cor. 1. From the three last propositions it follows,
that if any body P goes from a place P, with any
velocity, in the direction of any right line P R, and
at the same time is urged by the action of a centripe-
tal force, which is reciprocally proportional to the
square of the distance of the places from the centre ;
this body will move in one of the conic sections, hav-
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ing its focus in the centre of force ; and the contrary.
For, the focus, the point of contaet, and the position
of the tangent being given, a conic section may be
described, which at that point shall have a given cur-
vature. But the curvature is given from the centri-
petal force and the velocity of the body being given,
and two orbits, mutually touching each other, cannot
be described .b:,r the same centripetal force, and the
same ;é]ucit}'.

Cor. 2. If the velocity, with which the body goes
from its place P, is such, that in any indefinitely
small moment of time the line P R may be thereby
described ; and the centripetal force is such, as in the
same time to move that body through the space Q R |
the body will move in one of the conic sections ;

whose principal lafus rectum is the limit, to which
&

the quantity _Q R

Q R are continually diminished.

In these corollaries I consider the circle as an el-
lipse; and I except the case, where the body descends
to the centre in a right line.

approaches, while the lines P R,

PROPOSITION XIV.—THEOREM VI.

If several bodies revolve about one eommon centre, and the
centripetal foree is veciprocally in the duplicate ratio of
the distance of places from the centre ; I say, that the prin-
epal latera recta of their orbits are in the duplicate ratio

¥
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of the areas, which the bodics, by radii drawn to the cem-
tre, describe in the same time~(Fig. 8.)

For (by Cor. 2, Prop. XIIL.) the lafus rectum L

: : e
is equal to the limit, to which the quantity QR

approaches, while the distance of P and Q is conti-
nually diminished. But the small line Q R, in a
given time, is as the generating centripetal force;
that is, (by supposition) reciprocally as S P*. There-
Q1

fore 'Q R is as Q T* X S P?; that is, the latus rec-
fum L is in the duplicate ratio of the area Q T X
S P. Which was to be demonstrated.

Cor. Hence the whole area of the ellipse, and the
rectangle under the axes, proportional to it, is in the
ratio compounded of the subduplicate ratio of the /a-
tus rectum, and the ratio of the periodical time. For,
the whole area is as the area QT X S P, which is
described in a given time, multiplied into the perio-
dical time. :

PROPOSITION XV.—THEOREM VIIL

The same things being supposed, I say, that the periodical
times in ellipses are in the sesquiplicate ratio of their
greater axves.

For the less axis is a mean proportional between
the greater axis and the latus rectum ; and, therefore,
the rectangle under the axes is in the ratio com-
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pounded of the subduplicate ratio of the latus rectum,
and the sesquiplicate ratio of the greater axis. But
this rectangle (by Cor. Prop. XIV.) is in a ratio,
compounded of the subduplicate ratio of the lafus
rectum, and the ratio of the periodical time. Sub-
duct from both sides the subduplicate ratio of the
latus rectum, and there will remain the sesquiplicate
ratio of the greater axis equal to the ratio of the pe-
riodical time. Which was to be demonstrated.

Cor. Therefore, the periodical times in ellipses are
the same as in circles, whose diameters are equal to
the greater axes of the ellipses.

PROPOSITION XVIL.—-THEOREM VIIIL

The same things being supposed, and right lines being drawn
to the bodies, which touch the orbits ; and perpendiculars
being let fall on these tangents from the common focus : 1
say, that the velocities :'y" the bodies are in a ratio com-
pounded of the ratio qf' the perpendiculars inversely, and
the s.:tfxfrwﬁeg}ée ratio of the principal latera recta di-
rectly—(Tig. 8.)

From the focus S draw SY perpendicular to the
tangent P R, and the velocity of the body P will be
reciprocally in the subduplicate ratio of the quantity
B .os o
-
arc P Q described in a given moment of time; that
is, (by Lem. VIL) as the tangent P R ; that is, be-

For that velocity is as the indefinitely small
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cause of the proportionals PR to Q T and S P to
SY, as ’ PSE?Q T, or as S'Y reciprocally and
SP X QT directly; but SP x QT is as the area
described in a given time ; that is, (by Prop. XIV.)
in the subduplicate ratio of the latus rectum. “Which
was to be demonstrated.

Cor. 1. The principal latera recta are in a ratio
compounded of the duplicate ratio of the perpendi-
culars, and the duplicate ratio of the velocities.

Cor. 2. The velocities of the bodies, in their great-
est and least distances from the common focus, are in

the ratio compounded of the ratio of the distances
inversely, and the subduplicate ratio of the principal
latera recta dirvectly. Tor the perpendiculars are
now the distances.

Cor. 3. And therefore the velocity in a conic sec-
tion, at its greatest or least distance from the focus,
is to the velocity in a circle at the same distance from
the centre, in the subduplicate ratio of the principal
latus rectum to double that distance,

Cor. 4. The velocities of bodies revolving in ellip-
ses, at their mean distances from the common focus,
are the same as those of bodies revolving in circles, at
the same distances : that is, (by Cor. 6, Prop. 1V.) -
reciprocally in the subduplicate ratio of the distances.
For the perpendiculars are now the less semi-axes,
and these are as mean proportionals between the dis-
tances and the latera recta. Let this ratio inversely
be compounded with the subduplicate ratio of the
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latera vecta directly, and we shall have the subdupli-
cate ratio of the distances inversely.

Cor. 5. In the same figure, or even in different
figures, whose principal latera recta are equal, the
velocity of a body is reciprocally as the perpendicular
let fall from the focus on the tangent.

Cor. 6. In a parabola, the velocity is reciprocally
in the subduplicate ratio of the distance of the body
from the focus of the figure: in the ellipse it is more
varied, and in the hyperbola less than according to
this ratio. For (by Conics) the perpendicular let fall
from the focus on the tangent of a parabola is in the
subduplicate ratio of the distance. In the hyperbola
the perpendicular is less varied ; in the ellipse more.

Cor. 7. In a parabola, the velocity of a body, at
any distance from the focus, is to the velocity of a
body revolving in a circle at the same distance from
the centre, in the subduplicate ratio of the number
2 to 1; in the ellipse it is less, and in the hyperbola
greater, than according to this ratio. I'or (by Cor.
2 of this Prop.) the velocity at the vertex of a para-
bola is in this ratio, and (by Cor. 6 of this Prop.
and Prop. IV.) the same proportion is preserved in
all distances. And hence also in a parabola the ve-
locity is every where equal to the velocity of a body
revolving in a circle at half the distance ; in an ellipse
it is less; in an hyperbola greater.

Cor. 8. The velocity of a body, revolving in any
conic section, is to the velocity of a body revolving
in a circle, at the distance of half the principal latus
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rectum of the section, as that distance, to the perpen-
dicular let fall from the focus on the tangent of the
section. This appears by Cor. 5.

Cor. 9. Since (by Cor. 6, Prop. IV.) the velocity
of a body, revolving in this circle, is to the velocity
of a body, revolving in any other circle, reciprocally
in the subduplicate ratio of the distances; therefore
ex equo the velocity of a body, revolving in a conic
section, will be to the velocity of a body revolving in
a circle at the same distance, as a mean proportional
between that common distance, and half the principal
latus rec/um of the section, to the perpendicular let
fall from the common focus upon the tangent of the
section,

FINIS.
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GENERAL INTRODUCTION

TO THE

THREE SECTIONS.

Of the Method of Exhaustions.

Art. 1. BEFORE we enter upon the consideration
of the doctrine of Prime and Ultimate Ratios, it may
be of use to observe the steps by which the ancients
were able, in several instances, from the mensuration
of right-lined figures, to judge of such as are bound-
ed by curve lines : for as they did not allow themselves
to vesolve curvilinear fiouresinto rectilinear elements,
it is worth while to examine by what art they could
make a transition from the one to the other.

2. They found that similar triangles are to each
other in the duplicate ratio of their homologous
sides ; and by resolving similar polygons into similar
triangles, the same proportion was extended to these
polygons also. But when they came to compare cur-
vilinear figures, which cannot be resolved into recti-
linear parts, this method failed. 1In these instances,
they had recourse to what is called the Method of
Exﬁaustiuns ; the principle of which consisted, first,
m describing upon the curvilinear space a rectilinear

G



50

one, which, though not equal to the other, yet migit
differ less from it than by any assignable quantity ;
and secondly, in investigating the truth or falsehood
of every supposition that could possibly be made
contrary to the proposition to be proved; and by
reducing every such supposition to an absurdity,
thence indirectly inferring the truth of the proposi-
tion.itself. For instance, in comparing the areas of
two circles, they inscribed in each similar polygons,
which, by increasing the number of their sides, con-
tinually appmachecr to the areas of the circles, so
that the decreasing differences betwixt each circle
and its inscribed polygon, by still turther and further
divisions of the circular arcs, could become less than
any quantity that can be assigned: they found that
all this while the similar polygons observed the same
invariable ratio to each other, viz. that of the squares
of the diameters of the circles. Upon this they
founded their demonstration; and by shewing that
some absurdity must follow if we suppose the circles
to be to each other in a greater or in a less ratio than
the squares of the diameters, they concluded that
they must be in that very ratio. But as one com-
plete instance may serve better than any general de-
scription, to exemplify their reasoning, let the follow-
ing Theorem be proposed to be demonstrated by the
Method of Exhaustions,

3. The area of a circle is equal to half the produet of its ra-
dius and circumference—( Fig. 17.)

Let b d, the base of the right £% A a bd, be sup-
posed equal to the circumference of the circle A B D,
ab = radius C A, E F G H any equilateral polygon
described about the circle, A BD K a similar poly-

n inscribed in it. As the circumscribed polygon

% FGH is greater than the circle, so it is greater
than the triangle a b d (being = to a a whose altitude

is CA or ab, and base = perimeter E I G H.
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which is always greater than b4 d, the circumference ef
the ). The inscribed pnhgon is less than the @,
and it is also less than the A @ bd, (being = to a A
whose altitude = C Q, which is less than C A or « £,
and base = to its perimeter A B D K, which is less
than the circumference b4d); .. the ® and the

a b d are both constantly limits betwixt the external
and internal polygons EF G H, ABD K. Let the
arc A B be bisected in L, and the tangent at L. meet
AE, BEin Mand N, and the £ EL M being a
right £, E M must be greater than L. M or M A,
the A E L M greater than A L M, and EM N
greater than the sum of the a® AL M, B L N, and
consequently greater than half the space E A L B,
bounded by the tangents I A, E B, and the arc
A LB; .. (by Euclid 1. 10 B, the foundation of this
method) the circumscribed puhg{}u may approach to
the @ nearer than by any assignable quantity. The
inscribed polygon may also appr oach to the @ nearer
than by any amgmhlr_ quantity, as is shewn in the
Elements of Euchd, .. the ® and the A « b d, which
are both limits betwixt these polygons, must be equal
to each other. For if the A abd be not = to the
circle, it must either be greater or less than it. Ifthe
A a bd be greater than the @, then since the external
pﬂl}"run, by encreasing the number of its .t-.idea, may

be made to approach the @ so as to exceed it by a

quantity less than any difference that can be sup posed
to exist between itand the a a bd, it follows that the
external polygon may become less than that a,
which is absurd. Ifthe a @b d be less than the @,
then the inscribed polygon, by being made to ap-
proach the @, may exceed that a, which is also
absurd: Hence the circle and a are equal to each
other.

4. Archimedes in this demonstration does not sup-
pose the circle to coincide with a circumscribed equila-
teral polygon of an infinite number of sides, but pro-
ceeds in a more accurate and unexceptionable mauner.
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And in this consists the error of many writers, who
have asserted that curve lines were considered by the
ancient geometers as polygons of an infinite number
of sides. But this principle no where appears in
their writings: we never find them resolving any
figure or solid into infinitely small elements: on the
contrary, they seem to avoid such suppositions, even
when their demonstrations might have been some-
times abridged by admitting them. For instance, if
they could have allowed themselves to have consider-
ed circles as similar polygons of an infinite number
of sides ; after proving that any similar polygons in-
scribed in circles are in the duplicate ratio of their
diameters, they would have immediately extended
this to the circ{es themselves. But there is ground
to think, that they would not have admitted a ﬁenmn-
stration of this kind. It was a fundamental principle
with them, on which, as Archimedes expressly asserts,
they founded their propositions on curvilinear figures,
that the difference of any two unequal quantities may
be added to itself until it exceed any proposed finite
quantity of the same kind. But this principle seems
to be inconsistent with the admitting of an infinitel
small quantity or difference, which added to itself
any number of times, is never supposed to become
equal to any finite quantity whatsoever. The an-
cients, therefore, considered curvilinear areas as the
limits of circumscribed or inscribed figures of a more
simple kind, whick approach to these limits, (by a
bisection of lines or angles, that is continued at plea-
sure) so that the difference betwixt them may become
less than any given quantity. ‘The inscribed or cir-
cumseribed figures were always conceived to be of a
magnitude and number that is assignable ; and from
what had been shewn of these figures, they demon-
strated the mensuration or the proportions of the
curvilinear limits themselves, by arguments ab al-
surda,
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Of the Method of Indivisibles.

The doctrine of Exhaustions, as delivered by
Aif‘l'.fl‘lIH'lEllL"?, being considered tedious and prolix h}
the modern geometers, ¥ arious methods were propo-
sed for the purpose of simplifying and abrid ging his
demonstrations. It was thought unnecessary to con-
ceive the fizures circumseribed about, or inscribed in,
the curvilinear area or solid, as being always assign-
able and finite ; and, l:hereiure, instead of the assign-
able finite fizures of Archimedes, indivisible or infi-
nitely small elements were substituted, and these being
imagined indefinite or infinite in numbu , their sum
was supposed to coincide with the curvilinear area or
solid.

6. It was upon these principles that Cavalerius, in
the 17th century, founded what is called the Method
of Indivisibles. In this doctrine, lines were conceiv-
ed to be made up of an indefinite number of points,
wperﬁclea of lines, and solids of alzpmﬁmes; and in
computing the magnitudes or proportions of areas or
solids, they computed the sum of all the indivisible
elements of which the area or solid is composed.
Thus for example, a A was conceived to be made up
of an indefinite number of lines parallel to the base,
and consequently the area of the A was equal to the
sum of all these parallel lines. Now to find the sum
of these parallel lines, we have only to conceive them
as a set of quantities in arithmetical progression—the
1st term being 0, and the last term the base of the
A, and the number of terms the perpendicular; ..
the sum of the series, or the area of the A, will =
base X 4 the perpendicular.

7. Ex. 2—T0o find the ratio betwixt the sphere and its
circumseribing cylinder by the method of indivisibles.—

(Fig. 18.)
Let the cylinder N M, the cone N O R, and the
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hemisphere M T S be cut by planes parallel to the
base, one of whichis CS K D C; then SO* = C D?
= 814 DO* =81F LD K LGP = SD*
+ D K*; and this is true for every section parallel
to the base ; .". since the circles of which these lines
are the 1 diameters are as the squares of the said %
diameters, it follows that the sum of all the circles in
the 1 sphere, together with the sum of all the circles
in the cone = the sum of all the circles in the cylin-
der ; the cylinder itself ."., which is composed of these
circles, is = to the % sphere and cone together : but
the cone is a third part of the cylinder ; this therefore
being deducted, there remains { sphere : cylinder
=l A L

8. In this doctrine then we see, that by the admis-
sion of infinitely small quantities, the old foundation
of geometry was abandoned, and suppositions resort-
ed to which had been avoided by Archimedes. And
though the new geometry had much the advantage
over the ancient in point of conciseness; yet the for-
mer was much inferior to the other in the ccltamt}
of its deductions, For as this doctrine was inconsis-
tent with the strict principles of geometry, so it soon
appeared that there was some danger ofits leading to
false conclusions, And after men had indulged them-
selves in admitting quantities that were not assign-
able, and in supposing such things to be done as
could not possibly be effected (against the constant
practice of the ancients), and had involved themselves
in the mazes of infinity, it was not easy for them to
avoid perplexity, and sometimes error,

9, To shew the caution which should be used in
the application of this doctrine, the following exam-
ple may be sufficient. If a @ be considered as a
polygon of an infinite number of sides, and .". an in-
finitely small are be supposed perfectly to coincide
with its chord, it follows that the time of the vibra-
tion of a pendulum in this arc = the time of descent
down its chord ;—but, by mechanics, the ratio of the
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times is that of the quadrant of a ® to its diameter.
Nor can this difficulty be removed except the arc be
again divided into an infinite number of indivisible
elements, infinitely less than the former ; 7. e. we must
have recourse to infinitesimals of the 2d order.*

Of the Doctrine of Prime and Ultimate Ratios.

Art. 10. Having taken a general view of the an-
cient geometry, as it existed in the time of Archi-
medes, and the changes effected in it by the modern
mathematicians, previous to Newton’s time ; we may
now proceed to the consideration of the doctrine of
Prime and Ultimate Ratios, which was invented by
Sir [ Newton, for the purpose, as he himself says, of
avoiding, on the one hand, the tedious demonstra-
tions ot the ancient, and on the other, the inaccurate
and objectionable positions of the modern geometers.
In this doctrine, magnitudes are not supposed to con-
sist of indivisible parts, but to be generated by con-
tinued motion. Linea nempe (as Newton says)
describuntur, ac describendo generantur, non per ap-
positionem partium, sed per motum continuum punc-

# There is no such difficulty when the method of prime and
ultimate ratios is applied to this case; for, though the arc and
ehord approximate to equality, the times of descending along
them do not approximate ; for, by the doctrine of limits, no
Fﬂrt of a curve, how small soever, can ever be taken for a right

ine : but even when they so far approach to each other, that
their lengths may be taken as equal, the curve still remains a
curve; its inclination is different from that of the chord; the
accelerating force along the curve perpetually varies, while the
accelerating force along the chord remains constant, and con-
sequently the times of describing these spaces are unequal, even
supposing their lengths the same,
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torum ; superficies per motum linearum, solida per
motum superficierum, anguli per rotationem laterum,
tempora per fluxum continuum, & sic in caeteris.
Ha geneses in rerum naturda locum veré habent, &
in motu corporum quotidie cernuntur. This me-
thod of conceiving all variable quantities to be gene-
rated by motion is the characteristic feature, which
distinguishes both this doctrine, and also that of flux~
ions,

11. This being premised, we now go on to the
doctrine itself, the principle of which is contained in
the following definition :—Let there be two quan-
tities, one fixed, and the other varying, so related to
each other that (1) The varying quantity, by a per-
petual augmentation or diminution, continually ap-
proaches to the fixed quantity. (2) That the vary-
ing quantity does never pass beyond or even actually
reach that which is fixed. (3) That the varying
quantity approaches nearer to the fixed quantity
than by any assignable difference; then, upon the
fulfilment of these three conditions, the fixed quantity
is called the Limit or Ultimate Magnitude of the
varying quuntit}r.

12. Fr.—According to this definition the @ de-
scribed Art. 8, is the limit of the polygon circumserib-
ing it. For, as was shewn in that Art, (1) this
ptﬁyfrun, by encreasing the number of its sides, con-
tin uaﬁly approaches to the area ofthe ®. (2) It can
never become less than the @, or even equal to it.
(8) By continually encreasing the number of its
sides, it may at length apprn&cﬁ nearer to the @ than
by any assignable quantity., The ® .. having the
conditions laid down in the last Art. is the Zimif of
the polygon.

13. The explanation given in Art. 11, of quan-
tities which have limits, is also to be extended to the
limits of ratios. The definition may be thus stated.
If there be two quantities that are (one or both) con-
tinually varying, either by being continually aug-
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mented, or continually diminished ; and if the ratio
they bear to each other does, by this means, perpe-
tually vary, but in such a manner, that (1) this vary-
ing ratio continually approaches to some determined
ratio; (2) that the varying ratio does never pass be-
yond, or even actually reach, the fixed ratio; (3) that
the varying ratio approaches nearer to the fixed ratio
than to any other that can be assigned : then, upon
the fulfilment of these three r:nmfr,mm, the deter-
mined ratio is called the limiting or witimate ratio of
the varying one.

14, fiv. 1.—Let o be any varying quantity ; make
da* + 32 = A, and 22 + & = B, then will A
and B also be varying quantities, as depending upon
x; when z vanishes, A and B will both vanish ; and
when # is infinite, they will both be infinite: I say,
that the determined R°. 3 : 1 is the limiting R° of
A : B, while # decreases in infinitum. For the R®.
A:B=the R 4243 : 22 F1; . (1] asa
decreases, A : B approaches to the R° 3 : 1; (2)
the R° A : B can never exceed, or even reach, that
of8:1;for62* 4+ 832 :24* 4 2 .78 : 1, but
6 z* 4+ 3.1'15 greater than 4 &* 4 3 »; . 4 2% +
$ a is always in a less R° to 2 2* 4 a than the R°,
3 : 1; (5) the Ratio A : B will approach nearer to
that of 3 - 1, than to any other that can be proposed ;
for 4 2 am] Q x may become less than any assignable
quantity, by the diminution of x; consequently the
R° 8 : 1 1s the limiting R®. of 4 2* 4+ 3 2 : 2 2?
-+ .

Lir. 2.—Taking the same R°. as before; I say,
that “]:u]e x increases in infinitum, the :ktmmam,d
Re. 2 : 1 is the hmltmg R° of A : B; for the given

1
R°, = thatof 4 + — —3 .% (1) the Ratio
o
A : B approaches that of 2 : 1; for as x increases
3 1

— and — decrease ; (2) the R° A : B can never be
T I

H
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less than, or even equal to, the R% 2 : 1; for 4. 2%
+2z:282 F+x::2:1; 545 4+ 8 x isalways
to 24* 4 « in a greater R°. than that of 2 : 1;
(8) the R° A : B will approach nearer to that of
2: 1 than to any other that can be proposed; for

S 1
— and —, by increasing #, may become less than
& i

any assignable quantity ; consequently the R° 2: 1
is the limiting R®. of 4 &* 4 8 x: 2 2* + a.

15. We see then in the two last Examples, that
though diminishing z, and consequently diminishing
the terms A and B, increases their R° ; and con-
trariwise increasing these terms, by increasing x, de-
creases their R°. ; yet there is a limit both to the in-
crease and decrease of this R®., though there is nione
to the terms themselves that compose lt, which, as we
have seen, in the first case decrease, and in the other
increase, in infinitum.

16. We will close these Examples, by proposing a
geometrical one, for the purpose of more clearly ex-
plaining Newton’s phrases of ¢ Ratio ultima quan-
titatum evanescentium,” and ¢ Ratio prima quantita-
tum nascentium.” Let(Fig.19) ABCD, EBCF
be two quadrilateral figures, and let D F be parallel
to A E: then the quadrilateral A B C D bears to
the quadrilateral E B C I the proportion of A D +
DCto EB 4+ CF. Now if the line D F be sup-
posed to advance towards A E, with an uninterrupted
motion, till the quadrilaterals quite disappear or va-
nish, this proportion of AB 4+ DC: BE 4+ CF
will, during this motion, contimually vary, (unless the
lmes DA, CB, I E produced meet in the same
point, which the:} are not here supposed to do) and
this proportion, by diminishing the distance between
D F and A E, may at last be brought nearer to the
proportion of A B : B E than to any other whatever
though it can never exceed, or even actually reach,
this pmportmn, .. the proportion of AB : BE is
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the limiting or ultimate proportion of the qumhll.nﬂ—
ral A B C D: the quadrilateral E B CT, because it
is the proportion which these quadrilater fﬂ-:-. can never
actually have to each other, but the limit of that pro-
portion.

In this Ex. then, as in the other above given, the
quantities themselves, i e. the quadrilaterals, have
neither of them any final magnitude, or even so much
as a limit; but, by the diminution of the distance be-
tween 1D F and A I, diminish continuvally without
L*n{i, yet there is a limit to the varving proportion
existing between them, viz. that of A H BE; .m[l
hence this limit is to be ealled the wltimate Re.
the vanishing quadrilaterals,

17. But that the meaning of the Ehp]ESSinll % Ra-
tio ultima quantitatum evanescentium” may be still
more clearly understood, we may further UlJSEH'L, (1)
That since the r;uadrlhtm als diminish by a continual
motion till they actually vanish, they may properly
be called vanishing quantities; since under this view
‘they have never any stable magnitude, but decrease
by a continued motion till they become nothing.
(2) That the quadrilaterals ABCD, BE FC, be-
come vanishing quantities, from the time we first
ascribe to them this perpetual diminution, 7. e. from
that time they are quantities going to vanish. And
as during their diminution they have continually dif-
ferent proportions to each other; so the R®. between
A B and B E is not to be called merely Ratio harum
quantitatum evanescentium; but wi/tima Ratio, &e.
and the same observations are applicable to the Ex-
ample given in Art. 14.

18. Should we suppose the line D T first to coin-
cide with the line A E, and then to recede from it,
thus giving birth to the quadrilaterals; then under
this conception, the R°. A B: B E, as it was belore
called the R°. wherewith the quadrilaterals vanish, is
now to be considered as the R° wherewith the qua-
drilaterals by this motion commence ; and the R may



60

also properly be called the first or prime R°. of these
quadrilaterals al their origin,

19. Asin Art. 17, the phrase vanishing quantities
was applied to the quadrilaterals, from the time that
they are qu:fml;itieu going to vanish ; so, under the pre-
sent conception, lhur are to be called nascentes, not
only at the very instant of their first production, but
according to the sense in which such participles are
used in common speech; just as when we say of a
body, which has lain at rest, that it is beginning to
move, though it may have been some little time in
motion. On this account we must not use the simple
expression, Ratio quantitatum nascentium, but Ratio
prima uantitatum nascentium.

Ve see here the same R°. may be called
sometimes the Prime, at other times the Ultimate,
R®. of the same varying quantities, according as these
quantities are UGHEIXEJ'ELI under the notion of vanish-
ing, or of being produced, before the imagination,
by an uninterrupted motion, The doctrine under
examination receives its name from both these ways
of expression.

The reader having now, it is hoped, gained a cor-
rect idea of the limit or ultimate magnitude of a va-
riable quantity and ratio, may proceed with advantage
to the first Lemma, wherein it is demonstrated that
the limits or ultimate magnitudes of two variable
quantities, or two variable ratios, approaching to
each other as there described, are accurately equal,



NOTES TO SECTION 1.

LEMMA L

21. Case 1.—Let there be two variable quantities
2 and y, which continually approach to equality, so
that their difference, when compared with either of
them, becomes at length less than any assignable
quantity ; then will » and y be ultimately Equul in
other words, if a be thL ultimate magnitude of 2, and
6 the ultimate magnitude of y, these limits a and &
will be accurately equal. For if not, let these limits
have a difference, d, 7. e. let b = a 4 d; then since
a is the limit of #, & can never exceed @, and .". can
never come nearer to @ -4 dy the limit of 4, than by
the given difference d; i.e. 2 and y, even in their ul-
timate state, can never approach nearer to each other
than by the glw..n difference d ; which is contrary 1o
the hypothesis : ., @ does accurately = &, i.e. 2 and
y are ultimately equal. Here 2 has been supposed
to be less than its limit a ; but the Prop. may be pro-
ved after the same manner, if' # be supposed to be
greater than «,

Case 2. Let there be two variable Ratios 2 : % and
v 1 z, which continually approach to equality ; so that
at length the R°. 2 : y approaches nearer to that of

z than to any other that can be assigned ; then
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will the R° z:y be ultimately = the R% »: 2; in
other words, if m : n be the limiting R°. of a : 3, and
p : ¢ the limiting R° of v : z, the R° m : n shall ac-
curately = that p: ¢. For if not, let there be any
given difference between them ; then, since the Ratios
a:yand v:=z can never actually reach their limits
m:n and p: g; it follows, that #:y and »: 2z can
never approach nearer to equality than by this given
difference, which is contrary to the hypothesis; .". the
Re°. m : n does accurately = that of p: ¢; 7 e the
Ratios # : y and » : = are ultimately equal.

Or both cases may be concisely proved, by observ-
ing, that both quantities, and the Ratios of quantities,
such as are understood in the Lemma, cannot ap-
proach nearer to each other than their limits do ; and
hence the absurdity of supposing these limits unequal
is immediately apparent.

LEMMA IIL

Note to Lemma 3,

292, What is here proved of the areas of the in-
seribed and circumseribed figures is not true of the
perimeters ; for the £¥ boundary of the circumseribed
always remains the same, being = A« 4+ A E, what-
ever be the number of divisions; and .. never ap-
proaches the curvilinear boundary as a limit ; and the
Z" boundary of the inscribed approaches that of the
cirumseribed as a limit, and is always greater than
the curvilinear boundary. Hence Newton's ultimate
suim in Cor. 1 must be strictly confined to area.
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Lem. 3—Cor. 3.

23. For (Fig. 20 ) one of the lines at least in each
pair al, I b, bm, mec, ¢n, nd, must cut the curve,
consequently one of the lines at least in each pair
must make a greater £ with the curve than the tan-
gents do; hence the a®apb, boc, ¢rd, formed by
the tangents, will fall within the mixtilinear spaces
alb, bme, end, and .". be less than them; conse-
quently since A @ {bmendis ultimately = the cur-
vilinear area, much more will the area Aapbocrd
be ultimately = the same curvilinear area.

Notes to Lem. 3.—Cor. 4.

24. The wltimate fioures here spoken of must be
applied only to the figures of the chords and tangents,
since the £T perimeters above mentioned, have not
the curve line for their limit. The Cor. so far as
relates to the chords, is perfectly evident ; if the
reader should not think it equally so for the figure
formed by the tangents, he may see a proof of it in
Art. 34.

25. Curvilinear limits of rectilinear figures. See
Scholium to Lemma XI., where Newton again cau-
tions his readers,* that if at any time he should, for
right lines, substitute curve lineole, they arve not to
understand that these lineolee are made up of right
lines, however small, (agreeably to the doctrine of
Indivisibles) but that the curves are the limits, to
which the vanishing right lines continually approach,
and ultimately equal.

# “Si pro rectis usurpavero lineolas curvas, nolim indivisibilia,
sed evanescentia divisibilia,”
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LEMMA IV.

26. For, by hypothesis, A’: a’ 1B : ¥ .1 C : ¢
ultimately; S A" : @/ A + B 4+ C:ad + 0 + ¢
ultimately ; but ultimately A’ 4+ B’ + ' = whole
figure A a E, and &’ 4+ ¥ 4 ¢/ = whole figure P pT ;
S. under the conditions mentioned in the Lemma,
AaE: PpT in the given R° of A’: a'.

LEMMA V.

Introductory Article to Lemma 5.

27. Definition.—Curvilinear figures, when referred
to a centre, are said to be similar, when they may be
supposed to be placed in such a manner, that any
right line being drawn from a determined point to
the terms that bound them, the parts of the right line,
intercepted betwixt that point and those terms, are
always in one constant R° to each other: or, in
other words, they are similar, when the rad. vect®.
containing equal £* are always proportional. Thus
the curvilinear figures A S D, a Sd, (Fig. 21 ) or the
figures SP D, S pd are similar, when any line S P
being drawn always from the same point S, meeting
the twe curves in P, p, the R° of SP : S p is inva-
riable. :

Lemma 5.

28. (1) Let SAD, sad (Fig. 22 ) be two similar
curvilinear figures, and let SA PQ D be any poly-
gon inscribed in the former ; draw s p, s ¢, &c., mak-
ing the £° at s respectively = the Z*at S; then
since by definition SA : SPIlsa:sp,and £ ASP
= ZLasp, the A* ASP, asp are similar ; and the
same may be shewn of all the remaining A< .. poly-
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gon sa pgd is similar to the polygon SAPQD;
and hence APa PQ:lap:pg; and PQ: QD ::
pgiqgd; SCAP:apiiPQ:pgiiQD: ¢d, &c,
and this is true when the number of the sides A P, a p,
P Q, p g, &e. is inecreased, and their magnitude di~
minished without limit; . (by Cor. Lem. lV.) curve
APD:curveapd i AP:apiiSA

29. (2) Taking the same mnatructlun as before,
since the pﬁl}%‘ﬂlﬂ SAPQD, sapgd are similar,
the A®into which they are dlwded will be similar ;
SN ASAP:asep:iaSPQ:aspgiia bQD
: A sqgd, &c.; . as before, curvilinear area S A D :
curvilinear area sad ii a SAP: asap i SA?
: s ﬂ':'-. — x

LEMMA VI.

Introductory Articles to Lemma 6.

30. A cuarve of continued curvature may be defined
to be aline traced out by a point, continually changing
its direction ; where we may observe that the word
continually implies that the change of direction of the
generating point must not be effected by starts or
impulses {pf} saﬂmlj but by an uninterrupted and
equable motion. hus the £ B C D (Fig. 23),
which measures the variation of direction of the ge-
nerating point at A and B, (while the point moves
from B to A) must, before it become nothing, pass
through all the llltermedmte degrees of m.lgmtud(,,
from B C D to nothing.

31. Irom this definition, it will appear that two
curves which cut one another, as E d, d I, ( Fig. 24)
cannot be called a curve of cuntuuwd curvature at the
point d ; for if @ and ¢ be taken ou opposite sides of
o, the variation of direction from a to ¢, viz. the £

I
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¢ b g has been effected per saltwm ; i. e. in passing frons
nothing to ¢ b g, the £ has not passed through all
the intermediate degrees of magnitude.

32. From hence also it follows, (1) That if the
distance betwixt two positions of the generating point
continually decrease, and at length ultimately vanish,
the change of direction of this point will also conti-
nually decrease, and at length ultimately vanish ; 7. e.
while B moves up to A (Fig. 28) the £ BCD is
decreasing continually without limit, till at last, when
A B ultimately vanishes, the £ B C D also ultimate-
ly vanishes. (2) That the direction of the generating
point is a tangent to the curve; for, suppose A D to
be the direction of the generating point at A, then,
if it did not change its direction, it would move along
the line A D; bat, by the definition, it is continually
changing its direction ; .. if it be in the line A D at
A, it will not continue in it, but will, in the next
moment of time, go either above or below it; .. AD
is a tangent to the curve at A. (3) That A D is the
only tangent ; for, if possible, let A V (Fig. 25 ) mak-
ing a finite £ with A 1), be a tangent, let the point
B move up to A, so that the change of direction
B C D may be indefinitely small, then will B C D be
indefinitely less than D A V; % a fortiori will the
mterior £, formed by the curve and tangent D A, be
mdefinitely less than D AV ; 4. e. D A passes inde-
finitely nearer the curve than any other line A V that
can be drawn:

Lemma G,

83. After what has been premised, the Lemma
may be easily proved thus. Let A, B (Fig. 25) be
two positions of the generating point, draw the chord
A B, and at the points A, B, draw A C, B C in the
direction of the generating points at A and B respec~
tively ; then A C, B C are tangents to the curve,
(Art. 32.) Now, by the continual approach of B to
A, the change of direction of the generating point
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will continually demeaae, and at length ultimately
vanish, (Art. 32) i.e. the £ BCD will ultimately
vanish ; a fortiori .5 will the interior £ B A D, con-
tained by the chord and tangent, ultimately vanish.

Note to Lemma G.

$¢. By the help of this Proposition, Cor. 4. Lem.
II1. may be easily proved. Let the two lines A 1),
D B ( Fig. 26 ), which touch the curve A CB of con-
tinued curvature in the points A, B meet each other
in D, and the chord A B be drawn ; the sum of the
tangents will be greater than the chord; and if the
curve be divided into any two parts in the point C,
and the chords A C, CB be drawn, and also E I a
tangent to the curve in the point C, mecting the tan-
gents AD, BD in E and I, the sum of the chords
A C, CB will be greater than the first chord A B;
and the sum of the tangents AE, EC, CF, F B,
greater than the sum of the chords : but AL E F
being less than AD, DF; AE, EF, FB wi]l be
less than A D, D B. Hence, if the number of parts,
into which the curve A C B is divided, be continually
increased, the sum of the chords will be continually
increased, and the sum of the tangents continually
diminished ; and the latter sum being always greater
than the former, the difference between them will
continually decrease; and as the £* between the
chords and tangents may be diminished without limit,
(Art. 33) this difference may be also diminished with-
out limit. Hence the difference between the perime-
ters of the figures, contained by the two lines A a,
A E, ( Fig. 1 ) and the chords, and by the same two
lines and the tangents, will be continually diminish-
ed, as the bases A B, B C, C D, &c. are diminished ;
and the perimeter of the curvilinear figure will be a
limit to them both.
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LEMMA VII.

I?iiwxfarcmry Article to Lenwina 7.

35. It follows from the definition of similar curvi-
linear figures given in Art. 27, (1) that to draw a
curve A c¢b similar to another A C B ( Fig. 27 ), we
must produce A B to any point b, and, while A 4 re-
volves round A as a centre, let the point & move in
the line A 4, so that A & may be to A B in a given
Re.; then will A ¢ be similar to A C B; (2) that if
A D be a tangent to A CB at A, it will also be a
tangent to the similar curve Acb at A; for draw bd
parallel to B D, then by similar a% d : BD 2
Ab: AB, in a given R%; .. bd will not vanish
till B D vanishes, 7. e. at the point A.

Lemme 7.

86. Produce A D (Fig. 27) to any distant point

d, and let d b be drawn parallel to D B, meet:illg the
chord A B produced in &; and through the point b
describe, as has been above shewn, the curve Ach
continnally similar to A C B, to which A d will be a
tangent; then, by similar a5 AB: ADIIAb: Ad;
and by similar figures (Lem. 5.) ACB : Aed ::
AB:Ad oras AD: Ad; .. the chord, are, and
tangent A B, A CB, and A D are always propor-
tional to the chord, are, and tangent Ad, A ¢ b, and
Ad But \"rhEll B moves up to A, the L b Ad (=
Z BAD) will, by Lem. 6, ultimately vanish ;
A b, and also” the: intermédiate arc A ¢ b, will conti-
nually approach A d, and at length will ultimately
coincide with, and become equal to it; and me.-
quently A B, A CB, and A D, which are always
proportional to these, will also ultimately be to each
other in a R® of equality.

i
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Notes to Lemma 7.

37. In the demonstration B D is supposed to move
parallel to itself, as B moves up to A, while & ¢ re-
mains fixed, Hence (1) by the motion of B towards
A, A b is continually approaching nearer to A d with-
out limit; while, at the same time, it carries the in-
termediate arc A ¢ b (which is contmually unbending
itself) along with it. (2) The magnitudes of A b and
A ¢ b also continually approach to that of A d, nearer
and nearer without limit ; though these quantities can
never exceed A 4, nor indeed equal it, till B and A
actually coincide; .. the finite lines A b, Acd, and
A d ultimately coinciding are equal; whence this is
also inferred of the vanishing lines A B, A C B, and
A D, which are always proportional to them,

38. The Lemma is frequently explained by sup-
posing R BD (Fig. 3) to move round R fixed as a
centre, while, by this revolution, B continually ap-
proaches to A; at the same time d7 moves round
the fixed point d in a contrary direction, so as always
to keep parallel to R BD. But this explanation is
clearly at variance with Newton’s notions, as is evi-
dent from the next Lemma.—See Art, 41,

39. Since it would be difficult for the understand-
ing, in contemplating quantities, which elude the
notice of the senses, clearly to perceive the changes
which take place in the vanishing chord, are, and
tangent, and the limit to which their proportions
continually approach, Newton has had recourse to
the artifice of substituting, in the room of these van-
ishing quantities, fnite ones, which bear a constant
proportion to the others; and by ascertaining the
limit which the R° between the latter ultimately at-
tains, on the coincidence of B and A, he discovers
also the limit of the Ratios of the vanishing quanti-
ties, which are proportional to them. The same ob-
servation is applicable to the 8th and 9th Lemmas,
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LEMMA VIIL

40. Produce A D to any distant point d, and draw
dbr parallel to D B R, meeting A B and A R pro-
duced in b and »; and through b describe the curve
Acb always similar to ACB; then the figures
RAB RACB, and R A D are always similar to
rAb rAch, and A d; they are likewise always
proportional to them. For RAB: 7 Ab:iRA*:
pAF - RAD: vyAd: LW RAD:BAD . XNb:
» Ad; also sector RA C B: sector r Ach i R A*:
r A* (Lemma IV.) ;2 RAD: rAd: 5. RACB:
RADII7Acb: rAd. Now let B move up to A,
and ultimately coincide with it, then the £ d A b
(= £ DA B) will ultimately vanish; .. the three
continually finite A*» AD, rAcd, and r A d will
ultimately coincide with each other, and consequent-
Iy be ultimately similar and equal to each other ; .".
also the vanishing A* RAB, RACB, and RAD,
which are always pr O-pﬂﬂlﬂndl to tllﬂ former, will
also be ultimntely similar and equal to each other.

Note to Lemma 8.

41, It is plain, from the words ¢ triangula tria
semper finita,” in this Lemma, that R B D is suppo-
sed to move parallel to itself, while d b » remains fix-
ed; and not that B B D moves round R as a fixed
point; for in the latter case the aA® + Ab, r Ach,
» Ad would be ultimately infinitely great, and the
purpose for which these last a* were introduced (see
Art. 89) thus rendered useless.

=

LEMMA IX.

12, Produce A E to any distance point ¢, and take
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Ae: Ad :: AE: AD; draw ec, db parallel to
E C, D B, and let them meet the chords AC, A B
produced in ¢, b; then the A” A db, A ec being si-
milar to ADB, A E C respectively; Ab: AB
(::Ad s ABV S e s AR A KO Sed,
will be in the curve A & ¢, which is similarto A B C;

in the same manner during the 1ppm‘1ch of C ﬂnd
B to A, the points b, ¢, determined in like manmer,
will niwaﬁ be found in a curve similar to A B C
and because the curves A be, A B C are similar, the
arveas, A bd, A ¢ e will be similar, to the areas A B D,
A C E respectively, and they are .. proportional to
each other respectively; for ABD: Add (:: A D?
SR d*ICAEY: A ULACE 2 Ace; Sl altern®,
ABD: ACE i Abd: Ace. To the similar
curves ABC, Abe draw the tangent AF G fg ;
then as C and B move up to A, and ultimately co-
incide with it, the £ c A g is -::ﬂnlllnmli'-. diminished
and will ultimately vanish, .. the curvilinear areas
Abd, Acewill 11|tII'|]HtEhf' -:‘umcule with the recti-
linear arveas A f'd, Age; and be .* . ultimately to each
other as A d* : Ae", . also will the eurvilinear
areas A B D, A C E, which are proportional to these
others, be also ultimately in the Ratio of A d* : A ¢*
orof AD* : A E=

Note to Lemma 9.

48. It may be observed here, that the £, which
E A makes with the curve, as indeed all determined
£% and quantjties of whatsoever kind in this and the
following Sections, are supposed to be finite; New-
ton dlscﬁ:ms the use of infinitely small determinate
quantities as unintelligible, and by the words infi-
nitely small £% or infinitely small quantities, he
means variable quantities, which by a continual flux
are decreasing without limit.




LEMMA X.

Introductory Article to Lemma 10.

44, If the abscisse A B, A D (Fig. 28,) be as the
times in which a body, wrged by any finite force, deseribes
two spaces ; and the ordinates B C, D E be as the velocities
generated in those times ; and if A CLE be the curve traced
out by the extremities of these ordinates, the areas A B C,
A D E will be as the spaces described.

Let the times be divided into any number of equal
parts A I, I' G, GH, &c., and complete the paral-
lelograms A K, I' L, G M, &c.; then if the force be
mppﬂsed to act D]]]} at equul intervals of time, so as
to make the body move uniformly during the times
AF, FG, GH, &c. with the velocities I K, G L,
- IM &c., the spaces described in these times will
be iepresmted by the parallelograms, and the sums
of the spaces by the sums of the parallelograms.
Now let the intervals of time be continually glﬂ'ﬂﬂ-
ished, then will the force, which now acts by impul-
ses, continually become nearer and nearer a force
acting incessantly; and the sums of the parailelo-
grams, which represent the spaces, continually ap-
proach nearer and nearer to the curvilinear areas,
till at length, when the intervals of time are dimin-
ished, and their number increased in infinitum, the
force will become an incessant force, and at the same
instant the sums of the parallelograms become = the
curvilinear areas (Lem. IL.); .. under the circum-
stances mentioned in the Proposition, the spaces will
be accurately measured by the curvilinear areas.

We may observe that in this, and Propositions of
the like nature, a false hypothesis is made, viz. that
the force acts by impulses, and by consequence we
deduce a false conclusion, viz. that the spaces are

-
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vepresented by the sums of the parellelograms; but
as the assumed hypothesis approaches to the true, so
does the false coniclision approach to the true con-
clusion ; till at length, upon the attainment of the true
hypothesis, we attain at the same time the true con-
clusion : the true hypothesis and trae conclusion be-
ing respectively the limits of the assumed hypothesis,
and the conclusion consequent upon it.

Lemma 10. |

45. Let the times be represented by the lines A 1),
A E, and the velocities generated, !Jn,« the ordinates
D B, E C, then the spaces (]L.::ﬂrl.hLLl with these ve-
lnr.:ll;le': will, by what has been just proved, be repre-
sented by the arens A B D, A CE described by these
ordinates ; but the prime R°. of these nascent areas
ABD, ACEis (Lem. IX.) thatof AD*: A E*;
i. e. the spaces deseribed are, in the very beginning
of the motion, in the duplicate R° of the times in
which they are described.

Note to Lemina 10,

46. Observe that Newton here says the force must
be a_finite one; and that it must be so is evident from
hence, that if 11: were indefinitely small, the curve A-B
wnuld make with A D) an mdeﬁmteh small £, and
. Lemma 9, where this £ is supposed finite, would
be inapplicable.

Lem., 10.—Cor. 1.

47. Let A B and a b (Fig. 30 ) be similar parts of
similar figures described by two bodies in proportional
times ; and let two equal forces similarly applied act
upon the bodies, sufficient to make them move from
B to C, and from & to ¢, in the time that they would
have described A B, ab; then they will deseribe two
other curves A C, ac; and the limiting R°. of B C :

b ¢ (which, as being the distanices the bodies have
A K
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erred from their former course, are called errors iis
this Corollary) will be that of the squares of the times
in which A B, ¢ 6 would have been described. Lor
B C, ¢ may be considered as spaces described from
rest in those times by equal forces, and .. the Lemmsa
is applicable to them,

Note to Lemme 10.—Cor. 1

48, ¢ Are nearly, &c.”—Though strietly speak-
ing, by the spaces mentioned in this Lemma are
meant not any spaces actually described, however
small they be taken, but only the limiting ratio of
the spaces; vet still if B C, b¢ be acfual spaces de-
scribed, provided they are sufﬁmentl} small, they will
be as the square of the times quam proxime, z. e.
without any sensible error; and thus this and the
next Corollary are applied in the 66th Proposition
to find the errors produced in the motions of the
moon, &c. by the attraction of the sun.

- Lemma 10.—Cor. 3.

49, Let AD, ad (Fig. 29 ) represent two equal
times, D B, d b the velucmes gumrated in these
times ; then ‘will the spaces be represented i in the two
eases b} ADDB, adb; but ADBradbi:AD x
DB:ad x db ult:mately, DB:db ulnma!:e]y
{snue AD =ad);iein the very herrlnnmg of the
motion, space described varies as the momentary in-
crement of velocity when the time is given; but the
velocities generated in an indefinitely small given time
are proper measures of the accelerating forees ; % in
the very beginning of the mation, space varies as force,
when time 1s given ; but {by Lemma) space varies as
T, when force is given, .. when neither are given,
the space will, in the very beginning of the motion,
vary as F' X T,
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LEMMA XL

Introductory Articles to Lemmea 11.

50. Any two ares of curve lines touch each other
when the same right line is the tangent of both at the
same point; buf when they ave applied upon each
other they never perfectly coincide, unless they are
similar aves of equal and similar figures; and the
curvature of lines admits of an indefinite variety.
Because the curvature is uniform in a given @, and
may be varied at pleasure in them, by enlarging or
diminishing their diameters, the flexure or curvature
of circles serves for measuring that of other lines.

51. As of all the right lines, that can be drawn
through a given point in the arc of a curve, that is
the tangent which touches the are so closely, that no
right line can be drawn between them ; so of all the
circles that touch a curve in any given point, that is
said to have the sawre cwrvature with it, which touches
it so closely that no @ can be drawn through the
point of contact between them ; all other circles pass-
ing either within or without them both. This @ is
called the @ of curvature belonging to the point of
contact. The are of this @ cannot coincide with the
arc of the eurve, but it is sufficient to denote it the @
of curvature that no other @ can pass between them ;
as the tangent of the arc of a curve cannot coincide
with it, but is applied to it so that no right line can
be drawn between them. As mall curvilinear figures
the position of the tangent is continually varying, so
the curvature is continually varying in all curvilinear
fignres, the ® only excepted. As the curve is se-
parated from its tangent by its flexure or curvature,
so it is separated from its @ of curvature in conse«
quence of the encrease or decrease of its curvature :
and as its curvature js greater or less, according as
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it is more or less inflected from the tangent, so the
variation of curvature is greater or less, according as
it is more or less separated from the @ of curvature.
It is manifest that there is but one @ of curvature
belonging to an arc of a curve at the same point ; for
if there were two such circles, any circles described
between these through that point would pass between
the curve and @ of curvature, against the Sup]mSItan.
Having thus shewn what the © of curvature is, it
will be necessary to point out, in the next place, the
method of describing it; this is done by the following
proposition :—

52. Let EM H (Fig, 31) be any curve, E'T a tangent at
the point T, EBb a vight line, making any £ with E'T ;
T MR any straight line parallel to E B, meeting the tangent
in T, and the curve in M ; then if the rectangle MT X TK
be always taken = E T?, and ¥ K B be the curve traced out
by the point K thus taken, and if this curve vitimately passes
through B, the circle whose chord is E B, and tangent E'T,
shall hove the samne cwrvature with the curve EM H at the
point B ; and the contoct of EM and E R shall be aleays
the closer, the less the £ is, that is contained at B by the
curve B K Y, and the circle of curvature B Q E.,

Let TK meetthe @ in Rand Q; then RT %
TQ = ET* = MT X T K (by hypothesis) .".
RT:-MT::TK:TQ. Suppose first that BK,
the part of the curve B K I that is next to the point
B adjoining to it, falls without the @ B Q, and sup-
pose TK, h‘l. moving pam]lel to itself, to appmach
to EB trH it coincide with it ; then while the point K
describes K B, T' K being Eleﬂiﬁ'l than TQ, RT
must be greater than M 1, and the arc E M of the
curve must pass without the @ E R, betwixt it and
the tangent K T ; and since any @ {Lsuﬂmd through
% upon a chord less than E B touching E T, falls
within the @ E R B, it is manifest that no au_h ®
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can pass betwixt the curve EM and @ E R B. Nor
can any @ E b described upon a chord E b greater
than E B touching I T pass between E R and 15 M ;
for let T K meet this @ in» and ¢, then»T x Tg
T AN AT W = 50 M Ty 0 230y -
T K, and since I' K B (by hypothesis) passes through
B so that the part of if, that is next adjoining B,
must be within the arc b ¢ of the ® b ¢ L, it foliows
that while K describes this part of F K B, T ¢ must
be greater than T K; and .. M T greater than » T,
“Therefore the arc E » of the ® E » 6 is without the
curve 1% M, and passes betwixt it and the tangent I T.
Hence no @ whatever can pass betwixt £ M and ER;
and consequently the @ E R B has the same curva-
ture with ¥ M at E. Suppose now that the part of
the curve B K F, that is next adjoining to B, falls
within B Q (Fig. 31 ); then while K LTE.‘:H‘.‘I‘“!ES this
part of the curve F K B, T K being less than T Q,
R T must be less than M T, and the arc E M must
fall within E R ; and since any ® described through
E, upon a chord greater than I B, falls without the
@ E R, it is manitest that no such @ can pass be-
twixt E R and £ M. Nor can any ® E 7 b describ-
ed upon a chord E b less than E B touching E T,
pass between E R and E M ; for let T K meet this
@inrandg, and M T being: »r T:: Tg: TK, and
T ¢ being less than T K while K describes K B, M T
must be less than » T ; and consequently the arc E »
must fail within E M. Therefore, in either case, all
the circles that can be described through. E fall with-
out both E R and E M, or within them both; and
no @ whatever can pass between them when the rec-
tangle MT x T K is alwavs = E T, and the curve
in which K is always found passes through B; 7. e.
the @ ER B and the curve E M have the same
curvature at I, which was the first part of the pro-
position,

Let Em (Fig. 32 ), any other curve touching ET
in E, and /& B, another curve passing through B,
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meet T K in m and Z; and let the rectangle m T x
T  be likewise always = E T?; then the curvature
of Em at E shall be the same as that of the @ ER B,
or that of the curve E M, by what has been demon-
strated. Because m T X TAh MT x TK, RT
% T Q are equal to each other, Tm: TM I TK
s Thkand Tm: TR::TQ: T&%# Thereforeifthe
arc B [ pass between BK and B Q, the curve Em
must pass between E M and ER so that E m must
have a closer contact with this @, than E M has with
it : and the less the £ is, that is formed by the curve
FK B and the @ of curvature E Q B at B, the
closer is the contact at E of the curve EM H, and
the @ of curvature E Q B. Thus the curve BK F,
by its intersection with E B, determines the curva-
ture of E M ; and by the £ in which it cuts the @
of curvature it determines the degree of contact of
E M and that ®; the £ B ET and the right line
E T being given.

Cor.1. Singe MT ¥ TK = ET* TK =

ET*
MT

it, then will T K ultimately coincide with, and be

equal to, E B: . in all cases, whatever be the curve,

the chord of the ® of curvature = the ultimate value
E T* EM>

or = the ultimate value of -
MT M1

Cor. 2. It appears from the demonstration, that
according as the arc B K falls without or within the
arc BQ, the arc E M falls without or within the @
E R B: that when the curve FK B cutsthe @ ER B
in B, the curve II M E cuts the @ of curvature in
¥ : that when the curve I K B is on the same side of
the ® B Q E on both sides of B, the curve HM E,
continued on both sides of E, is on the same side of
the @ of curvature ; and that the contact of the curve
EMH and the @ of curvature is elosest when the
curve B K touches the arc BQ in B, the £ BET

Now let M move up to E and coincide with

of
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being given ; but is farthest from this, or is most openy
when B K touches the right line K B in B.

Cor, 8. There may be indefinite degrees of more
and more intimate contact between a @ E R B and
a curve E M H, The 1st degree is when the same
right line touches them both in the same point; and
a contact of this sort may take plaee betwixt any @,
and any arc of any curve. The 2d is when the curve
EMH and @ E R B have the same curvature, and
the tangents of the curve B K I and @ B Q E inter-
sect each other at B in any assignable angle. The
contact of the curve I M and @ of curvature E R
at I is of the 8d degree or order, and their oscula-
tion is of the 2d, when the curve B K F touches the
® BQE at B, but so as not to have the same cur-
vature with it, The contaet is of the 4th degree or
order, and their osculation of the 3d, when the curve
B K F has the same curvature with the @ BQ E at
B, but so as that their contact is only of the 2d de-
gree: and this gradation of more and more intimate
contact, or of approximation towards coincidence,
may be continued indefinitely ; the contact of EM
and E R at E being always of an order two degrees
closer than that of BK and BQ at B. There is
also an indefinite variety comprehended nnder each
order. Thus when EM and E R have the same
curvature, the £ formed by the tangents of B K and
B Q admits of indefinite variety, and the contact of
EM and E R is the closer the less that £ is. And
when that £ is of the seme magnitude, the contact
of EM and E R is the closer the greater the @ of
curvature is; for since TR : TM :: TK : TQ,
dive. R M (which subtends the £ of contact M E R)
:FTRUKQ:TEK, and S B M- KEQIRT X
TQ(ET?) : KT x TQ; .. when ET is given,

R M varies as and when K Q (or

EPxTQ
£ KBQ) is given, R M is less, in proportion as
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the mchnrrh, KT x T Q, which ultimately =

= -2 iy g

ch. curv.)?, is greater. 'When B K touches the @
BQ at B it may touch it on the same or on differ-
ent sides ﬂf their common tangent ; and the £ of
contact K B Q may admit of the same variety with
the £ of contact M E R in the former case. DBut
there is seldom occasion for cﬂnsi{lering these higher
degrees of more intimate contact of the curve £ M H,

and ® of curvature EE R B.

Cor. 4. The curvature is uniform in the @ only.
When the curvature of 2 M H encreases from E to-
wards H, and consequently corresponds to that of a
@ gradually less andl less, the are E M falls within
E R, and B K is within BQ. When the curvature
of E M decreases from E towards H, and conse-
quently corresponds to that of a @ that is gradually
greater and greater, the arc E M falls without E R,
and B K is without BQ. According as the curva-
ture of E M varies more or less, it is more or less
unlike to the uniform curvature of a @, the are of
the curve EE M H separates more or less from the arc
of the @ of curvature E R B, and the £ contained
by the tangents of B K F and B Q E at B is greater
or less. And thus the quality of curvature, {as it is
called by Sir I. Newton) depends on the £ contained
by the hngents of BK and B Q at B.

Cor. 5. Let the curve E M H, for example, (Fig.
33 ) be a parabola, E B a diameter‘, ET the tangent
at E, then because parameter X TM = ET?> =
MT x TK, T K is always = the parameter, .". in
this case B K is a str aight line parallel to the langent
E T, which interseets E B in B, so that EBis =
that parameter. Therefore if upon the diameter of
a parabola, a right line E B be taken from E the ver-
tex of this diameter = to its parameter, a @ E R B,
described upon this right line as its chord, that touches
the parabola at I, shall be the @ of curvature. And
because the right line B K cuts the @ B Q E in B,
unless when E is the vertex of the figure, the parabola
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cuts the ® of curvature (that case excepted); and
passes within the @ of curvature when it is produced
towards the vertex, but without it when produced the
contrary way.

Cor. 6. When E B does not meet with the curve
I' K (Fig. 34), but is its asymptote; any ® being
deseribed touching E T in E, a greater @ shall ala
ways pass between it and the curve E M; and the
greater this @ is, the closer shall its contact be with
the curve E M. For since the curve F K produced
passes without any @ E Q B, how great soever, that
can be described through E, E M must always pass
betwixt EE R and the tangent I£T. This is the case
in which the curvature is said to be infinitely small,
(being less than that of any @) or the radius of curva-
ture infinitely great. Of this we have an example in
the vertex of the cubical parabola; for in that case
ET}: =TM X n* (where a® is a given square) .
ET? s ET* TR e TR
T ST B >
E T, hence ET x T K = the given square &*; ..
the curve I K is the common hyperbola, whose
asymptotes are £ B and E'T. The curvature is of
the same kind at the vertex of any parabola, wherein
T M is as any power of E’

3 I, whose exponent ex-
ceeds 2; for F K, in all those cases, is an hyperbola,
of which E B is an asymptote,

Cor. 7. When the curve F K (Fig. 85) passes
through E, no @ can be described through E so
small, but a less ® shall pass between it and the
curve I2 M, and the less this @ is, the closer shall its
contact with E M be. For since the curve F K pas-
ses within any @ that can be described through E
on the same side of E T, thearc E M is always withe
in E R. Inthis case, because the curvature surpasses
that of any @, it is said to be infinitely great, or the
radius of curvature to be infinitely small.  Of this we
have an example at the vertex or cuspid of the semi-

L
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cubical parabola ; for in that case ET? = M T# x

E T3
a, (where @ is a given line) .. G e and
E T | R 7 B1%
ﬁ_'_:ﬁ‘ = g X ET;hUtﬁ_'f' ="K, 1,.‘_1,1; —

TK?* hence a X ET = TK?*; .. FKE is the
common parabola, whose lafus rectum = a, and which
touches I B in E.

Lemmra 11.

58. Cuse 1. It follows, from Cor. 1. Art. 52, that
if A G, drawn perpendicular to A D, and B G,
perpendicular to A B, intersect each other in G, the
limit to A G is the chord of curvature AL For by
similar a* GA:ABI: AB: BD, .. GA =
A B? 3
B_-Z_[Bfl" and consequently their limits are equal; but

i

the limit of 3D is the chord of curvature (by Cor.

1), .. also the ultimate value of A G is the chord of
curvature, or A G ultimately = A I. The proof of
the Lemma is .". evident. ;

Case 2. Let B D and bd (Fig. 36 ) be equally in-
clined to A D at any given £ ; draw B E, ¢ per~

endicular to A DD, then by similar a*BD: 4d::
BE:be; iein the given R of AB* : AP by
the first case.

Case 3. Let the £ *at D and d (Fig. 36) be not
equal, 7. ¢e. let B D), bd converge to some point O,
at a finite distance. Draw B E, 4 ¢ perpendicular to
A D, then when A B, A are diminished without
limit, their difference B & will be diminished without
limit; .. the £ BO& will be diminished without
limit; but £ BOb= £ Ad0O — £ ADO; ..
the £ AdO = £ AD O ultimately, and conse-
quently B D E, 4 d ¢ are ultimately similar, and BD
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~bdi:BE: be; i.e. in the ultimate R° of A B*:
A &P

LTemma 11.—Cor, 2,

54. Let the sagittee E I, e/ (Fig. 87) bisecting
the chords A B, A &, meet in H ; join A H and pro-
duce it to K, making AH = HK; join KB, Kb
and produce them to D, d. By construction A H :
AK:IAF:AB, .. HF, KBor FL, BD are
parailel,  'When B moves up to A, the ultimate R®,
of EL : BD is that of A E*: A B* (by Lem.) or
that of AF* : AB* orthatof 1:4 (for AF, AE
are ultimately equal). But BD: FL:IIAB:AF
224:2, .. EL: F L ultimately 1 1 : 2, consequent-
ly F E, E L are ultimately equal, and .". E I is ulti-
mately to BD 111:4. In like manner ¢f is ulti-
mately to bd:i1:4; S EF:BD:ilef: bd ulti-
mately, and EF : e/ ! BD: bd ultimately; but
B D, 6 d converge to a given point K, .". (Lem. Case
3), the points B,  meeting in A, B D, & d and con-

sequently E F, e /" are ultimately as the squares of
AB,Ab

Lemma 11.—Cor. 5.

55. By Cor.1, AC: Acii CB?:¢l? ultimately,
( Fig. 38 ) which is the property of the parabola; .%
the curve A B, whatever be its nature, provided it be
of finite curvature (see Schol.) may ultimately be con-
sidered as a parabola; .. the curvilinear area A C B
= % C D ultimately, and consequently the curvilinear
area ADB = § CD ultimdtely = 5 of the s ADB
ultimately, and consequently the remainder, the seg-
ment A B, = ¥ A AD B ultimately; but A AD
varies as A I or A B3 ultimately (Cor. 4); .. alse
the curvilinear area A D B and segment A I vary as
A D3 or A B ultimately.
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SCHOLIUM.

Introductory Articles to Scholium.

56. Prop. 1. Lei there be two curves of any kind (Fig.
39) AB, Ab, aud suppose the s of contact B AD in the
15t case to be indefinitely greater than the £ of contact b A D
in the other ; then shall the curvature of A B be indefinitely
greater than that of Ab ; and conversely.

Let A I, A7 be the diameters of curvature of A B

and A b respectively; then A1 = BD ultimately,
A D?
and Ai = - 5D ultimately, .. A1 : A7 in the ul-
AD* AD?

BD ' 3D’ 7. e. in the ultimate Re°.
of 6D : BD. Now the £ BAD is indefinitely
greater than & A D by hypothesis, but the ultimate
R of BD : 4D is the same with that of those £,
for they ultimately measure them; .. ultimately B D
is indefinitely greater than 6 D; .. A{is also in-
definitely greater than A I; but the curvature o
1
D". of curve.’
greater than that of A b.

Next let the curvature of A B be indefinitely great-
er than that of A &, then shall the £ B A D be in-
definitely greater than the £ & A D; for as before
Al: Aiin the ultimate R%. of 6D : B D, and A{
is indefinitely greater than A I by hypothesis, . BD
is ultimately indefinitely greater than 6 D, and con-
sequently the £ B A D indefinitely greater than the
&L O0AD,

timate R°, of

. the curvature of A B is indefinitely
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57. Prop. 2. Let there be two curves A B, A b, and let
the £ of contact B A D bear a finite Ratio to the £ of
contact b A D ; then if the curvature of A B be finite, the
curvature of A b will also be finite ; and conversely if the
eurvature of A B, Ab be both finite, the £* of contact B A D,
b A D will be to each other in a finite Ratio.

For, as before, AI: A 7 in the ultimate R of 4 D
: BD; but4 D : B D ultimately in a finite R°.
by hypothesis, . AIL: A7 in a finite R°, but Al is
finite, .. also A 7is, and consequently curvature of
A b is finite. : !

Again A1: A 7 in the ultimate R° of 4 D : B D
but the R° of A1: A is finite by hypothesis .". the
ultimate R° of 6D : B D, and consequently that of
the Z.. of contact, is finite,

Cor. 1. Let A B be any @, then since the curva-
ture of a @ is always finite, it is manifest that the
curvature of all curves, whose £* of contact bear a
finite R°. to that of this @ ; or, which is the same
thing, the subtenses of whose £%of contact bear ulti-
mately a finite R°. to that of this @, will be finite;
and if the limiting R of the subtenses of the £ of
contact of the curve and @ be not only finite, but
also a R°. of equality, then the curve and @ have the
same curvature at the point of contact.

1
Cor. 2. Since AI: Az:: :
BD &D
tures of two curves are to each other as the £°% of
contact, or as the w/timate subtenses of these angles.

, the curva-

Seholivm.

58. In the above Lemma, the £ of contact is sup-
posed to bear a finite R° to that of a ®, i. e. the
curvature is supposed to be neither indefinitely great,
nor indefinitely small (Cor. 1. Art. 57.) This 1s
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manifest from the Lemma itself, which was proved on
the supposition that the diameters A G, A g had a
limit, viz. A1; 7. e. that the curve had a @ of curva-
ture. To shew, however, this in another point of
view, it may be worth while to prove (1) That, con-
versely to the Lemma, if B D vary as A D* ulii-
mately, the curvature of A B is finite. (2) That if
B D ultimately vary in any other R°, greater or less
than that off A 13, the curvature is not finite, but in-
finitely small or infinitely great. (3) That there may
be curves, whose curvatures are indefinitely great or
indefinitely small, and again curves, whose curvatures
are indefinitely greater or indefinitely smaller than
that of those others, and so without end; and thus
that the £ of contact B A D may be divided into a
series of £% each of which is indefinitely greater or
indefinitely smaller than the one which is adjacent to
it, and that this division may be continued sine limite.

(1) Let AEV (Fig, 40 ) be any @, and A B the
curve, then since B D ultimately varies as A D* (by

A D*

hypothesis) it ultimately = (where @ is a

proper constant quantity), but E D ultimately =

AD? ; .
TR IL . the ultimate B° of BD: ED = that of
—— = that of AV : a, which last R®. is

always finite, whatever be the value of AV provided
it be finite, and .*. the ultimate R°. of BD : ED is
finite, and .". the curvature of A B is finite, (by Cor.
1, Art. 57.)

(2) Let BD (Fig. 41.) ultimately vary in any R*,
greater than that of A D?, for instance A I3, then

_ A D¢
B D ultimately = —— (where @ is a proper con-
L ﬂd

stant quantity), also as before E D ultimately =
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A D? AD¥ AD* _
iV o B2 BB b ultimately, 7. e.

a*
ca iy Tkt AV ultimately, but in the ultimate state

A D is indefinitely less than f-v, whatever be the
value of A V provided it be finite, .". B D is ultimate-
ly indefinitely less than K 1D ; and .. the curvature of
A B is indefinitely small, (by Art. 56.) i.e. no ®
however great, can pass between the curve A B and
tangent A D, as appeared also from Cor. 6, Art. 52.
And the same may be shewn when B D ultimately
variesas AD% ADS, ADS...... A D" where n (pro-
vided it be greater than 2) may be any N°, whatever,
whole or fractional.

Next let BD (Fig. 40) ultimately vary in any

i

R®, less than that of A D?, for instanee A D7 then

3 2

A D> ATV

B D ultimately = oo DN B Slime e
3
e

e timately, 7. €. «. F ultimately ;

&

e i a
but in the ultimate state, A D is indefinitely less
AYV
than 2 whatever be the value of AV provided it
a

be finite; .. E D is ultimately indefinitely less than
BD, and .". the curvature ot A B is indefinitely great ;
7. e. there can be no @, however small, which does not
pass without the curve (by Art. 56); as appeared also
from Cor. 7, Art. 52. And the same may be :-;lmw::
4 g
when B D ultimately varies as A D¥? AD®¥ AD®
ersnd D", where n (provided it be less than 2) may

be any fractional N°, whatever.
(8) (7) Let A P (Fig. 42) be a curve, such that
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D P ultimately varies as A D? then, as we have seen
above, the curvature of A P is indefinitely small.
(j7) Again, let A C be another curve, such thag

; : A D+
C D ultimately varies as A D* = ultimately e
ADE A 3
g el IR B : 2= 3 A D ult

a* m? a
mately, but A D is ultimately indefinitely less than

m3

0
ﬂ:'

or curvature of A C is indefinitely less than that of
A P, which is indefinitely small. And in the very
same manner, if the subtense ultimately varies as
A D5 A DS &ec., we shall have a series of £° of
contact goin% on in infinitum ; each of which is inde-
finitely less than the preceding. Also between any
two of these £° there may be inserted a series of in-
termediate Z° going on in infinitum, any one of
which is indefinitely less than the preceding. Tor
instance, between A D* and A D3 there may be in-

13 11 ] £ g

serted the series ADs’ AD3s’ AD* AD* AD™
i1 14

AD73? AD5? &e. &e.  And again, between any

two £* of this series, there may be inserted a new
series of intermediate Zs, differing from each other
by infinite intervals, and so on without limit,

Next (7) let A E be a curve, such that E D ulti-

mately varies as AD%s then, as has been before
shewn, the curvature of A K is indefinitely great.
(17) Again, let A I' be another curve, such that
4

. CD is ultimately indefinitely less than P D,

1 . : 3 Ao
F D ultimately varies as A D’ = =~ ultimately,
ms
4 3
3 A
£ 1
then FD: ED 2 't}_?_: i : E: : AD°® ul-
3 T

n a” i3
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T
timately, but A D° is ultimately indefinitely less than
ot
—3 % ultimately F D is indefinitely greater than
m®
E D, or curvature of A I is indefinitely greater than
that of A E, which is indefinitely great. And in the
]

very same manner, if the subtense varies as A D7,
& 1

AD?, AD?%,....AD", (n being any fractional num-
ber whatever less than 2) we shall have a series of
Z£* of contact running on in infinitum, each of which
is indefinitely greater than the one which precedes it.
¢ Neque novit natura limitem,”



NOTES TO SECTION Ik

Tntroductory Articles to Section I1.

59. Defr, ¢ Whatever tends constantly to solicit or
impel a body towards a fixed point or centre, is call-
ed a centripeial foree.

The centripetal force, which is found to exist in
the sun and p‘am.t.s,' is, by way of distinetion, called
gravity, or the force of gravity.

60. The word gravity is used in three different
senses, or rather it is spoken of as bemg greater or
less 11 reference to three different measures, As (1)
we may say for instance that the glmfltv of the earth,
at the distance of one mile from its surface, is greater
than the gravity of the earth, at the distance of 1000
miles frem its surface. By this proposition we mean
that the velocity uniformly generated in a given time,
in a body at one mile’s distance from the earth’s sur-
face, is greater than the velocity uniformly generated
in the same given time, at the distance of 1000 miles
from it. The word, when used in this sense, 1s call-
ed the accelerating ﬁmru: of gravity ; and, in general,
when we speak of the force of gravity at different dis-
tances from the same attracting budv, the accelerating
force of gravity is always understood. Hence the
following definition. ¢ When the velocity uniformly
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produced in a given time is the measare by which
gravity is said to be greater or ]css ; then it is called
the accelerating force of gravity.

This ;u:cn,leratmrr force of gravity is in all cases
found to be unarmbly the same at equal distances
from the centre of the same attractimg body, and to
vary according to some regular law of the distance
from that centre; and hence it is, that the variation
of this force is usually Expressed in terms of the dis-
tance from the centre of the attracting bm.h' : for ine
stance, when it is said that gravity varies as the ut
power of the distance, the expression denotes that
the accelerating force of gravity (measured by the
velocity umf's::rm!y generftt:,d in a given time) in-
creases or decreases as the nth power of the distance
from the centre increases or deereases; and I o« D
is called the law of the accelerating force.

(2) Again, we may say that the gravity exerted
upon a cubic inch of vold is greater than that vpon a
cubic inch of cork. Here we no longer refer to the
same measure as before, but mean by the Prop. that
the quantity of motion, uniformly generated in a given
time in the gold, is greater than that uniformly gene-
rated in the same time in the cork, when placed at an
fgrmrl distance from the attlnLt*Fg l}ﬂtl‘li, s centre; or,
in other words, that the weight of the gold is areater
than the weight of the cork. The w:m!, when vsed
in this ELEDI'ILI sense, is called the motive foree of gra-
vity, and as, when speaking of gravity at diffe 1'-:*:11,
distances from the centre of the same 'L"thi"lhllr body
we mean the accelerating force of gravity ; so, w! uzu
speaking of the gravity exerted upon dificrent bodies
at the same distance, the motive force of gruvity is
to 'be understood. Hence the follewing dchnivon.
¢ When gravity is considered as greater or less m
proportion to the quantity of motion it uniiormly pro-
duces in a gweu time, then it is called the notive
Joree of gravity.

The only difference then betwixt the accelerating
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and motive force of gravity is this, that inasmuch as
gravity produces both velocity and momentum, we
call it one or the other, according, as for the sake of
convenience, the velocity or momentum is taken to
be the measure of if.

(3) Lastly, we frequently speak of the gravity of
different attracting bodies, as when we say that the
gravity of the earth is greater than the gravity of the
moon. By this Prop. it is meant that the accelerat-
ing force of the earth, at a given distance from its
centre, is greater than the accelerating force of the
moon at the same given distance from s centre.
The word, when used in this last sense, is called the
absolute force of gravity; and when the gravity of
different attracting bodies is spoken of, the absolute
force of gravity (measured in the manner above de-~
scribed) is always understood. Hence the following
definition. ¢ When gravity is considered as greater
or less, in reference to the efficacy of the cause which
produces it, then it is called the absolute force of gra-
vty

61. The aceelerating forces, acting upon bodies, at differ-
ent distances from different centres of force, are as the abso-
lute forces, ond the law of the foree jointly ; i.e. if ¢ and ¢
represent the absolute forces, D and § the two distances, and
the law of the force be the direct n'* power of the distance ;
F:fi:gxX b=p X a8,

For if the distances of the two bodies from their
respective centres be the same, the accelerating forces
are the same with the absolute forces, i, e. if D = & ;
F:fiie:p; and if the absolute forees be the same,
t.eeif ® = p; F : £ D* : ¥; . when both the
absolute forces and distances are different, F : g e:
d X Dr:p x &,

62. Cor. I, ¢, and 3 = 1: I" will be represented
by # x 1", or by the absolute force and the law of
the force.
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PROPOSITION I.

Note to Prop. 1. ‘
63. Since (Fiz. 43) the a* SAB, SBe¢, Secd,

&ec. are always equal to each other, and to the a®
SAB, SBC, SCD, &c. the whole S A Bdis
equal to the whole polygon SABCD, and their
limits will be equal ; but the limiting position of A Bd
is that of a tangent at A, and the limit of the poly-
gon f:) ABCD is the curvilinear area SABC D

it . A d (Fig. 44 ) be the space described in the tan-
gent with the velocity at A continued uniform, in the
time that the body describes A D with a variable ve-
locity, the area S A d will be equal to the area S A D.

J."\rﬂtf fo PW:_‘?J. ],—m(,h?', 4

64. If the areas described in a given time are not
equal, 7. e. if bodies move in different orbits, the bases
of the &% which in all cases represent the velocities,
will be as those a*® directly, and the perpendiculars
upon the bases inversely, i. e. by takmg the limiting
R ., the velocities of bodies revnlvmg in different or-
bits are at any points of the orbits universally as the
areas described in a given time directly, and the per-
pendiculars upon the tangents to those points inverse-
ly. Hence, if the time be denominated 1, V = A B,
but A B = e B, N = - where & = area de-

perp. )
seribed in a given time, and p = perpendicular.

Prop. 1.—Cor. 2
65. Suppose first the body to deqm ibe uniformly
the chords themselves A B, B C; join A V, then
since CV is = and parallel to B¢, it is also = and
parallel to A B; .. BV, which passes through
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the centre S, is the diagonal of the parallelogram
A B CV; now since the position of B V will not be
altered by the magnitudes of A B, and B C, let them
be diminished in infinitum, then will they ultimately
coincide with the chords of two ares successively de-
scribed in equal times (when those arcs are diminish-
ed in infinitum), and B V, which always passes through
the centre, will ultimately coincide with the diagonal
of the parallelogram formed by those chords,

Prop. 1.—Cor. 3.

66. If the body actually moved over A B, B C;
DE, EF, &c. and the force acted impulsively, the
force at B would be to the force at E accurately as
BV to EZ, they being the uniform effects of the
force at those points; but if the force act incessantly,
and consequently A B, B C: D E, E I be diminish-
ed in infimtum, the force at B will be to the force at
E in the ultimate R° of BV : EZ, 7. e. as in the
last Cor. in the ultimate R°. of the diagonals of the
parallelograms formed by the chords of arcs succes-
sively described in equal times.

Prop. 1.—Cor. 4.

67. Draw the diagonals C A, D F, which will bisect
BV, EZinm and i, then (Cor. 8) F* at B : F*
at E in the ultimate R° of BV : E Z or in the ulti-
mate R° of Bm ; E »n; but the ultimate magnitudes
and positions of B m, E n are those of the sagitte of
two arcs A B C, D E T described in equal times,
which converge to the centre S, and bisect the chords
A C, DF when these arcs are diminished in infi-
nitum,

Prop. 1.—Cor. 5.

68. The parabolic are described by a body falling
obliguely at the earth’s surface may be deduced in
the same manrer from the polygonal meétion, only in
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this case the sagittee will be equal and parallel to each
other ; these sagittax may, as in the former case, be
proved to be measures of the force, 7. e. of the force
of mv:t_',r at the earth’s surface ; hence the force of a
hoﬁy mnvm%' in any curve will be to the force of gra~
vity in the ultimate R°. of the sagittae of the arés de-
scribed in equal times in the two cases. Now the
sagitta of the parabolic arc described in a very small
tlme, as one second, is known by experiment in feet ;
if .. we can find the sagitta of the arc of an other
curve described in the same small time in I%et, we
can make a direct comparison between the centripe-
tal force in the curve and that of gravity.

PROPOSITION II.

69. Let us first suppose that the body describes
the polygon A B C D I formed by the chords of this
curve, and that it is deflected unh at the £* B, C,
D, &c.; then since B¢ = A B, the body, if not act-
ﬁd upon by any foree, would at th(: end of the second
pumun of time be found in ¢, having described B ¢ ;
but it is really found in C at that hme, having de-
seribed BC; ¢ C .°. which completes the A B Ce¢
must represent the quantity and direction of the force:
acting at B, since it is the motion which, when com-
bmetl with B ¢, produces B C the real motion; 7. ¢
the force at B must act in a direction parallel to ¢ {J;
but since SBC (= SAB) =SB¢, Ccand S B
are parallel, .". force at B acts in direction B S; and
it may be shewn in like manner, that the force at C,
D, E, &c. is directed to the same point S. Now let
the sides of this polygon be diminished and their N°,
increased ad infinitum, in which case the force acts
incessantly, and the body describes a curve line; the
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demonstration still remains the same, since it did not
at all depend upon the magnitudes of A B, B C, &e.

Prop. 2—Cor. 1.

70. Let S A B, SB¢ (Fig. 45) be two equal A®
as in the Prop.; draw ¢ D parallel to B 8, then if
S B C be greater than S A B, 7. e. if the description
of the areas be accelerated, the vertex of S B C must
fall without ¢ D, .". if ¢ C be joined, and B I be drawn
parallel to it, the centre of force S will be in B F,
and .". must have moved up from S into that line, or
it has declined towards that quarter towards which
the body is going; and in the very same manner
when the description of the areas is retarded, the ver-
tex of the A will fall within ¢ D, or the force will
decline to the other side of 8, 1. e. in antecedentia,

Observations on the two last Propositions.

On Polygonal and Curvilinear Motions.

71. Let A B CD (Fig. 46 ) be-a polygon described
by a body round S, and suppose the straight lines A B,
B C, CD, &c. to be described in the same indefinitely
small time T. Now of this motion of a body in a
polygon, it may be observed, (1) That the force acts
only by impulses, which succeed each other after
equal intervals, viz. when the body is at the points B,
C, D, &c., and consequently that the uniform motion
of the body in any side of the polygon, as B C, is
compounded of two uniform motions; one which
would carry it in the original direction which it had
at B, viz, through B E (= A B) in the given time
T; and the other, which would uniformly carry it
through E C, parallel to B S, in the same time T.
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(2) That this uniform velocity towards the centre IS
getlemtul the moment the body arrives at B, by the
instantaneous impulse of the force, and is I'lbt equal
to that which a hnr.[} would acquue by falling from
rest in the given time T, by the uniform ﬂCi‘.lUll of the
same for ce

Now let us, in the next place, suppose the body to
describe the curve A B C I, and to be found in the
points A, B, C, D, &ec. in thl., same instants of time
that the bod}r in the polygon was. Then the body,
when at B, will no longer have the direction B E as
in the polygon, but the direction B G, which is
tangent to the curve at B since then, if the force l!ml
not m:ted the bml} would have been found in B G,
but is really found in C; it is evident that G C must
be the space through which the force has drawn the
hud_',r in the given time T ; which line G C, since the
force in the indefinitely snnll tnm, T will not change
its direction, must coincide in position with E G
Now it will be shewn, Art. 78, that C A ultimately
= 2C L, and that B G is parallel to CL; ... CA
ultimately = 2 B G, and.". K C ultimately = 2 G C;
that is, the defleetion in the polygonal motion is
ultimately just double the contemporaneous deflec-
tion in the curvilinear,

This difference in the deflection is what cﬂllstimtes
the chief distinetion betwi Ixt a polygonal and curvi-
linear motion ; and a very little ‘consideration will
shew that it ibjll‘:‘t what ought to take place, from the
difference of the hypotheses in the two cases. For
since curvilinear motion is a case of continued deflec-
tion, the velnmty towards the centre, in any one in-
definitely small portion of time, is a variable wluflf}f
beginning from nothing ; whereas in the polygonal
motion it is the vdm,it} so acquired continued wuniform
for the same time ; consequently, since the force for
the indefinitely small time T will be constant, the
space described in the former case ought to be only
half what is described in the latter. Hence it is per-

N
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tectly legitimate to reason from a polygonal to a cur-
vilinear motion, and the only difference between them
is this: that as in the curvilinear motion the force
acts incessantly, so, to make up for this, thereis a
proper corresponding diminution in the space through
which it has to draw the revolving body.

Cor. 1. Hence the foree is measured, both in the
polygonal and curvilinear motion, by the same quan-
tity, viz. by the ultimate value of EC or 2 G C; for
in the former case E C being the space uniformly de-
scribed by the action of the force in the given time in
which B E is described, is a proper measure of the
intensity of that force; and, in the latter case, since
G C is a space freely described from rest in the same
given time, 2 G C will be a measure of the fluxion of
the velocity uniformly generated in that time, or a
measure of the force,

Cor. 2. Let SB = g, then G C being the deflec-
tion of the curve from the tangent ultimately = ¥ d*y,
.~ force in curve (x 2 G C) o d*y.

Cor. 3. Though the force in the curve is properly
measured by #wice the subtense of the arc deseribed
in an indefinitely small given time; yet when the
forces to be compared together, are all computed in
the same way, it matters not whether we take the
subtenses, (as Newton generally does, see Prop. 1,
Cor. 4) or their doubles, as the measures of them ;
the R°. being the same in both cases. Nevertheless,
when the forces so found are to be compared with
others derived from a floxional calculus, (which has
always a reference to the polygon) it is absolutely ne-
cessary to take the double subtense for the measure
of the force.

PROPOSITION 1V,

72. Since the bodies ( Fig. 47 ) move equably in the
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©° equal areas will in each case be described in equal
times ; consequently equal sectors or areas will be de-
scribed round the centres S, s in equal times; .. the
centripetal forces tend to the centres of the @ Again
let BAE, bae, be two arcs described in the same
indefinitely small time, then A C, & ¢, which bisect
the chords and tend to the centres of the oF will be
the sagittae of these indefinitely small ares ; .. Feeat A
= F* at @ in the ultimate R° of AC: « e, or of

chord A B'* ch. a O1? arc A BI? arcab\*
%% — or of e

AG ag AG ag

(Lem. 7). Now let A F, af; be any two arcs des

scribed in equal times; then, since the motions are

uniform, AB:abilAF:af, "FatA:Fatae::
arc A B» arc a H1? arc A Fl? arc a f)? )

L - —— e

- -

AG : ag TR as

73.. If the absolute forces be different, the expres-
sion for the force is the same; for the accelerating
force is in all cases proportional to the subtense of the
arc described in an indefinitely small given time.

Prop. 4—Cor. 2.

74. Let F and f be the centripetal forces of bodies
describing different ®% V and v their velocities, P
and p their periodic times; C and ¢ the circum-
ferences of the @% R and » their radii ; then since
in all cases of uniform motion, velocity o« space

directly and time inversely, V : »: "; “— %5 (since
r

the circumferences of ®° are as their radii) P B

. Vs ..R‘ 8 i e 2 SR O]
ole : g 1ence JEs RE

ril

T ot
PP
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Note to Prop. 4.—Cor. 7.
75. Let = absolute force, and the law of the

force be ; then if bodies revolve round different

Ran-1 ?

- s F3 5 1
centres, accelerating force will (Art. 61) B
R~ .;?;%

=] B s
L | * P

%

Introductory Articles to Prop. 4.—Cor. 8.

76. Let P Q E be any curve (Figs. 48 and 49 ),
and S any point within it; take any point s, and from
it draw any line s p3 suppose the radius vector S P of
the curve P Q E to revolve round S, and at the same
time let the line s p begin to revolve round s, with an
angular velocity always equal to that of S P, and so
that s p may always be to S P in a given R°; then
will the curve, traced out by p, be similar to the curve
P QE (Art. 27). 'The points S, s, are called points
similarly 5111=1tul, and 1if L“jnq, i T A
P SQ. PSC, &ec. respectively, then p, ¢, ¢, &c., and
P, Q, C, &c., are milul similar points; sp, $q, 56,
&e., aml SP, 8Q. 8C, &e. similar or homologous
lines; pg, pe, g, &e., and PQ, PC, QC, &c. 5l=
milar or homologous arcs; and p s ¢ pSe gse &e,
and PSQ, PS C QSC, &e. sllmlal areas of the
similar figures 1et~ne(twely

77. From the definition of similar figures, it fol-
lows, (1) That if 8, s be points similarly situated, the
chords of similar ares P Q, p g, make equal £° with
the radius vectors 8 P, s p3 and are to each other in
a given R°. For since PS : SQ i ps: sq, and
LPEQ ==Zpegh-at PED. page are similar s
b 4 QPR vy, mnﬁ PQ:pg:.PS: ps
in a.given R° (2) That the langents to similar
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points P, p, make equal £° with the radius vectors
to those points; for £ SPQ always = £ spgq by
the first case, .". they are ultimately equal; but these
L* are llll'l]]"llf‘h the £* between the tangents and
the radii, . £ SPR = « spir. (3] That similar
arcs P E, pe, as also similar areas PSE, pse, of
similar figures are to each other in a given R°; for
let the similar arcs P E, p e, be divided into the same
number of similar ares PQ, QC; pg, q¢, &,y and
draw the chords then, by the in:,t case, these chords
are to one ﬂnuther' in a given R°., viz. in the R°. of
S P : s p; consequently the sums of the chords are in
the same given 1’% . ; and since this is always the case,
they are also ultimately in this given R°.  Hence,
Cor, Lem. 1V., the arc PE : the similar arc pe in
that given R®.; i. e. similar curves, or similar arcs of
similar curves, are to one another as any similar or
homologous radius vectors. And in the same manner,
by dividing the similar areas into similar parts, we
have the areas of similar curves, or of similar parts
of similar curves to one another in a given R°, viz. in
the duplicate R°. of any homologous radius vectors.
(4) That the similarly situated chords of curvature
PV, pwvto similar points of similar figures, are as
the radius vectors to those points, or as any other
homologous lines in the ficures. For draw the sub-
tenses Q R, g r of the evaiiescent ares P Q, p ¢ parallel
to S P, s p; then, by the nature of the @.of curva-
ture, P V:PQIOPQ:QR; andpo:pag:ipy:
gr; but by similar A*PQ: QR Iipg: g ..
PV:pvliPQ:pqiiSP:sp, or as any homolo-
gous lines in the fiylln::ﬂ:

78. Let AP Q be any arc, (Fig. 48) AQ the
chord of that arc; S the centre of force. Draw the
radius S P bisecting the .chord A Q, then will P N
be the sagitta of the are A P Q at the point P where
S N meets the curve ; draw the tangent B R, and the
subtenses Q R and A B paraliel to S P, and let PV
be the chord of curvature at the point P; this being
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premised, it follows (1) That this sagitta will ultimate-
ly bisect the arc A P Q, or that the point P is ulti-
mately in the middle of the arc A P Q: for since Q N
— N A, and that Q N u tlmatelv = arc QP, and
A N ultimately = arc A P, .". arc Q P ultimately =
arc A P. (2) That the chord A N Q is ultimately par-
allel to the tangent B R drawn to the curve at the
point P; for A B is ultimately to Q R as P B* or
PA*to PR* or P Q% i e. ina R° of equality ; they
are also parallel, .. A Q and B R are also ultimately
parallel. (3) That the evanescent subtense Q R or
A B is ultimately = to the sagitta P N, which ulti-
mately bisects the arc A P Q; for R N is ultimately
a parallelogram, ~. QR and P N are ultimately
equal,

Prop. 4—Cor. 8.
79. Let APE, ape (Figs. 48 and 49) be two

similar figures, hc-n ing the centres of force S, s similar-
ly situated in them, P and p similar pmntﬁ of the or-
bit, A P Q, a p ¢ two arcs described in the same time,
whose middle points are ultimately P> and p, join S P,
sp; then since PN, pn ultimately bisect the ares
AP Q, apg, they are ultimately the sagitte of those
arcs (Art. 78), .\, centripetal force in P : centripetal
force in p in the ultimate R° of PN : pn; or of
» = 'II.
Q R: g r (Art. 78), or of Sl—iﬂ : £ i
* % PV P
reason of similar figures, G'u t. 77) in the ultimate R®,
S ps
Hence the centripetal forces in these similar points
are also as the squares of the velocities directly, and
the distances inversely ; for the velocities are in the
ultimate R°, of the ar cs 1’1 P Q, a p ¢ described in the
same time.
Again, the centripetal fm ces at those similar points

s or by
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are also as the distances directly, and the squares of
the periodic times inversely. For let AP Q, a

no longer represent evanescent arcs described in the
same time, but similar evanescent particles of the
similar curves, described in the indefinitely small
times T and # ; also let V and » represent the velo-
cities at P and p ; A and a the whole areas of the
similar figures; P and p the periodic times; then
" since APQ,apg mu}r be considered as described

ol N o BEG l‘IPQ’ SP sp
uniformly, V' : 0 38 —m—1 = G et

= 3 - N Ll

(by Art. 77); but F at I': Fat p:: Sp ¢ PEE—,
Pl sp . )

S R v Bk pl ,1_— Foar But since T: P
SSQA: A and £: p! bl?'ﬂ' :r'md that SQA
cgga it Row (Rrt. 7T --Tat 3P ops hence F
LBl Jgp SP sp
at P : F ﬂt}} i -'_1,:-' .- f"_- i ‘—IJ';—' ?-
: Vs PAL, L.
Hence since I o o and as - in similar fig-

o

ures, the preceding Cors. will apply to bodies de-
scribing similar parts of similar curves, having their
centres of force similarly situated ; for Ex. if the peri-
odic time be as the nth power nl any homologous
radius vectors, the forces will be reciprocally as the
2n—1" power of any homologous radius veetors, and
the contrary; and note, when distances are mention-

ed, the similar or homologous distances are always
understood.

Prop. 4—Cor. 9.

80. Let P A (Fig. 50) be an arc described in @y
time, P B the space fallen through in the same time
by the force at P continued .Jmfnrm take P Q an
evanescent arc, Q R the subtense parallel to P S, and
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complete the parallelogram ; then the evanescent sub-
tense QR or P Cis the space fallen through by the
centripetal force, in the same tume that the arc PQ
is described (Art. 71). Let T and ¢ represent the
times of falling through P B and P C, or of describ-
ing the ares P A, P Q; then since S varies as T?,
when Fisgiven, PC: PBii : T> L. PQ*: P A?

L PQ Pas e i e
“']'}-Ei. :-P(};blltpc-— PG!‘ "'PB_ PG

asnd PB:PA::PA:Pi3

Deductions from Prop. 4 and its Cors.

81. Suppase a body to revolve uniformly in a cirele ; re-
quired the space through which it must fall, when acted upon
by the centripetal foree at the cireumference continued wni-

_form, in order to acquire the velocity it has in the circle.

Let P B (Fig. 50 ) = required space, and suppose
P A to be the arc uniformly described in the time of
the body’s falling through P B, then PA = 2 PB;
but (Cor. 9) PB: PA :: PA : PG;:; i PB
- PS
2 PRI PB i PGor2gPs, . PB = ~—i=~

a
1 radius.

82. Required the same in any eurve.

LetP O ( Fig. 48 ) = required space, P V = chord
of curvature, P Q an indefinitely small are, and Q R
(= P N) the subtense of the £ of contact ; then since
the velocities are as the spaces uniformly described in
the same time, velocity in curve : velocity acquired
through PN L. PRQ: 2 PN, .
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V*in curve : V* through PN I PQ* : 4 P N?; but
V2 thro’ P N: V2 thro’ PD orViincurve::PN: 1’0

R N s PN ¢ B Sind PO =
Py PV
;1-_[3? T2 ginee t of chord of curvature.

e

Or thus, by Art. 96, S = 2

Sy it RERY S C Y
- I R S e

L bhutVr=Fx

83. Required the velocity and periodic time of a body re-
volving in a circle at the earth’s surfuce.

Let V = velocity required, measured by the arc
described in one second, » = radius of the earth,

g = 82; feet; then in general V? = 2 F §
in this case 2 g S = (Art. 81) 2 g X

I W
= ¥ gr = feet per second.

Aga.m, to find the permd]c time, put = = 3.14159 &ec. .
2ar

J.whole circumference = 2 = » .. P. T = = —

Qar (47
v =" V’[ g—m seconds, » being expressed in feet.

L}

* The following are the formule applicable to the rectilinear
motion of bodies acted upon by constant or variable forees ; de-
duced upon the supposition that gravity is represented by g -
32 feet, its effect produced in 17,

Force constant. Force variable.
p = Fti d: = Fdi
Pt ds = vdi

2 vdyv = Fds
L .—F.-I.—t_‘- F == ,di'.r...
2 d
y o
2 K



100

Cor. 1. The velocity in miles = 4,92083 per se-
eond, and the P. T = 1™, 24™, 275

Cor. 2. Hence if a body be projected from any
point P on the earth’s surface in a horizontal direc-
tion with the velocity of ¥ g # feet in a second, it
will revolve as asecondary round the earth; for sup-
pose a body so to revolve, then at the point P it will
have the same direction, the same velocity, and be act-
ed upon by the same force as the projected body, ..
if the revolving body continue to move round the
earth in a @, the projected body must also revolve
in the same manner.

Cor. 3. Hence also having given the radius of the
circle described by any I‘E'.*Dli";illg body, and its velo-
city or periodic time, we can compare the centripetal
force with that of gravity, For since by Prop. 4, F.

"‘IT.'-E- i 1‘..'1- .uﬂ-
« R § S Rt et call f the force of

gravity, then will » = the earth’s radius, and v* =
‘Ua
gr, " I : gravity U

R
lbl

L] - & w j‘ .
Again, since I': /711 P 7 call /" the force

of gravity, then will » = the earth’s radius and p* =

4 =y I . R gr R
SR gravity 58 —— 1 —2—— 11— .
: , b }r - LI -
o P? 4 oy |
8
T where R must be expressed in feet, and P in
seconds.
Cor. 4. To find an Equation for the force we have

] : V3

by last Cor. T : force of gravity :: g3 now let

the force of gravity be represented by its effect pro-

duced in a given time as 17, or by g; then I : g ::
A& V=

p & F= R And upon the same suppo-
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+ 7 R
l):-
To shew the use of the two last Cors. let us apply
them to the solution of the following Problems.

sition it will be found that I' =

84. 1. Let a body revolve in the cirele M L D (Fig. 51) with
a velocity acquired in falling througlh M B by gravity ; ve
quired the Ratio of the centripetul farce to that of gravity.

Let V = velocity in curve, then V? = 2o X
"I.“}
M B; hence since F varies as o e have as in
o X MB
first part of Corollary 3, ¥ : gravity i - bh{[ 3

:2MB: MS.
f:rr If the bud} be made to revelve uniformly in
the ® M E D by means of a weight fixed to a sl.rmg .
then we shall have the tension of the string arising
from the centrifugal force of the body, to the tension

arising from the same H("]D;IIL h'mgmg freely, in the
above R of 2 MB: M S

2. Compare the force of gravity with the centrifugal force
at the equator.

Let P = time of the earth’s revolving round its
axis in seconds, R = radius of the earth in feet ; then

It
. - . "
since F varies as 1—}-;, we have as in 2d part of Cor,

3, Centrifugal force at Equator : Force of gravity ::
R &g

P 44

3. Gliven the moon's periodic time, and the radius of her
orbit ; to find how far she wowld foll in V' supposing her
projectile motion fo be destvoyed.

J.et P = moon’s periodic time, R = radiuns of her



108

R
orbit, then since I varies as —1;:- we have by Cor.
e | -0 00 | Ll 2 R

4. Required the periodic time of a body describing a coni-
cal surface.

The body at B (Fig. 52) is retained in its orbit
by three forces ; gravity in direction S A, tension of
the str ing in dlrectmn B S, and centr 1fugul force in di-
rection A B, .. the sides rJF the o S A B will repre-
sent them ; hence ctantuqual force or I : gravity org

AB:SASLF = A : hence since I’ varies as
R AB AB 4

g' " w ;’ . : B e
Pz.!wﬂ hd'!-":"'.- Sﬂ : g ' 133' H 4 &5 . P —
4 S A fd-SA
——and P=~ T

Cor. 1. Hence periodic time : T through 2 S A :
4 b A v’f& S A

i {r
5 =] o
® : diameter.
Cor. 2. Required the periodic time when the ten-

sion of the string = 3 times the weight of the body.

Let SB = L; then will S A, by Problem, = %

T

sy 7 1 it circumference of

oAB 0.3AB o.3AB A B
R e — : hence t gy
S A L ) % P>
‘o s 47 SA 4L
= A P — W | and P = «
4 = g 3 8
T
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PROPOSITION VL

85. Let BPQ, b pq, (Fig. 53 ) be two indefinitely
small ares described in the times T, #; S and s the
centres of force; S C P, se p, the radii vectors; which
ultimately bisect the chords B Q, & ¢, and .". also ul-
timately bisect the ares BP Q, bp g, in P and p, (Art.
78); draw the tangents P R, p#, and the subtenses
Q R, ¢~ parallel to SP, sp; let also K P L be an
arc described in the same time with 4 p ¢, and which
shall be ultimately bisected by SP; then will its
chord K L. also be ultimately bisected by S P, and
consequently P C, P N, p ¢, are ultimately the sagittae
ofthearcs BPQ, KPL, 6pg. Hencesince KP L,

b p q are arcs described in the same time,

PN: :Fat P: Fatp; and by Cor. 2, Lem. II.
PC __PT\I P IO BPR - EPLA Tt
e PC

SPCipc i FXT : f X &5 and F:fil T

re - : :
=y or the forece in the middle of the arcs varies as

sagittae of I‘.hﬂSE arcs

tnm?l" in which they are described.

This Prop. is general, being applicable to different
bodies revolving i the same ‘or different orbits, and
round the same or different eentres of force.

Prop. 6.—Cor. 1.

86, Let P Q and p g (Fig. 54 ) be two indefinite-
ly small arcs, PR, pr tangents at P and p; Q R
q r subtenses par: IHEI to SP, sp; then QR, gr are
uhim wely = the sagittee of two arcs whose middle
points are ]_'l p (Art, 78) or the sagittee of double the
arcs ' Q. p g: also the time of describing 2 PP Q is
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ultimately proportional to the time of describing P Q;
QR g7
oo = T2 p0

hence Fat P : Fatp i:
QR g e

— 1 ————— I (since in the same curve

THPQ =~ Ti.pgq
QR

> areas are proportional to the times) ———3
the areas are proportional to the times) m
H e QR A Ry -

: 77 __ . e. the centripetal force, in different points
Dot g
of the _same curve, is in the ultimate Ratio of

SP*. QT*

*E R inversely.
Notes to Prop. 6.—Cor. 1.
Sl Hed lid, | it 1s of t
87. QR iscalledaso id, because it is of three

o 4 e . !
dimensions; for On being a third proportional to
two lines Q R and Q T, must also itself be a line, and

4 | SP: QT
S P* is the product of two lines; .. TR R T
the product of three lines, and is therefore analogous
to the solid content of a parallelopepid, whose three
adjacent sides are the three lines.  Again, not only is
SP >0 Sy Yy _ ;

QR : T A finite Ratio up-

the Ratio

on the coincidence of I* and QQ, but the terms of the

Re. also are always finite; for S P* is finite, also since

the A* SPY, QNT are ultimately similar S Y?* :
QT QN

S ol R g 'L?N"‘ ::-“ﬁ—n— g aR : but the
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‘]

i
limit of ——+— 1s the chord of curvature P V, a finite

QR
Z
line, .. also the limit of QR and consequently of

SP. QT
R R L te.
o" 15 finl

88. The formula for the centripetal force, given in
the above Corollary, is only applicable to the finding
the variation of the force, in different points of tl:l-L.
same orbit, and does not extend to different curves ;
for in the proof of that Corollary, the area SP Q
was assumed proportional to the time in which it was
described ; which is not generally true for different
orbits. 'We may, however, find a general equation

Sag*.

for the force thus—In all cases ' o E v § i
R 2QR

gravity (g) :: EL},_T : -%—E- R— N Now

let @ = areain 3”7, thena : SPQ :: V¥ : T

SPQ I:Six (Q f’11 ' -:]:‘I-1II Sl}l KQII"IJ- :

- & — *a} L

a p

S X QR

= P x QT which is a general expression ap-

plicable to different orbits round the same or differ-
ent centres of force. If A = whole avea of the curve,
and P = periodic time, we have P: 1" i1 A:a =

p <+ in this section and the following we may, if

o
necessary, lor 8 @*, substitute P

Prop. 6.—Cor. 2.

89. Draw SY, Sy (Fig. 5¢) perpendicular to
the tangents at P and p; thensince SP X QT =
SY x Q P, being each ultimately double of the

AaSQP, audthatb}: X gt = Sy X g p for the
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same reason, .. F. at P : F. at p in the ultimate R®,
QR qr
SHEKQP‘" Sy‘}{g;f'

Notes to Prop. 6.—Cor. 2.
SY: % B P2
QR

is a solid, and it is also finite upon the coincidence

90. For the reasons given in Art. 87,

P
of Q and P ; for S Y?* is finite; and 81{ is ultimately

= chord of curvature P V, a finite line.

91. The above Corollary is only applicable to dif-
ferent points of the same curve, for the reasons given
in Art. 88; but it may be made general by the me-
thod pulsuE{l in the former Corollar y, from which it

sa* x QR
appears that the centripetal force = SY: x QP

Prop. 6.—Cor. 3.
QR
-'1'_': Yz e Q P.‘:

92. By Cor. 2, F.at P : F. at p:

ﬁ' r L QI]:.. ‘ ;
Sy X ¢ p? ultimately, but QR is ultimately =

=

chord of curvature at P = P V, and n-g-{-_- =

1 1
.1, , ' 1.1 . w & ®
] L] al I L I L ﬂt— P * ¥ S 1": }{ 1] “I‘T o S‘?)fz }{ i_]‘ ::I

Notes to Prop. 6.—Cor. 3

8 a*
93. In general F = ST XPV
94. From this Cor. may easily be deduced De
Moivre’s expression for the centripetal force. Fo
let P N ( Fig. 55 ) be the curve, P F the diameter of
curvature, and P C = radius of curvature = R, the
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rest as before; then by similar a5, SP : SY: PF

: 2R X a8Y ; s
o AR o g I' varies inversely
SY}: X R _ : f
8 g which expression may be made gene-

ral in the same manner as the rest.

Prop. 6.—Cor. 4.

1
[ r {or i ) . i i ———
95; By Cor. 8, F.at P : IV, atp :: SY: x PV
y but (Cer. 1, Prop. 1) 8 Y2,: 842 &8
Viat P
2By

: .':}yz X po
Virabp oV ab' By W et PP, gt
_Eﬂt;} V*

s or the centripetal force o0 =————
ch. curv®,

Note to Prop. 6.—Cor. 1.

8 a*
96 In general T' = SY X PV but, Art. 64,
b 4‘ f:; Ll -E:r $ "
O — RZERE = PV Hence the formula
v ;
Y for the centripetal force in Cor. 4 is general,

and applicable either to one or different orbits, round
the same or different centres of force, and the reason
why a general expression should be deduced from
one that is not general, is obvious from the method
of proof observed in this Note,

Or the Equation may be thus deduced. In gene-

. ,
mlL.Y =2 BS = 2.0 X ey (Axt. 82) = F X
Ve V3
_;_"'}-:EIJV.

Jl
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Lntroductory Articles to the remaning Parts
of this Section.

9i. Af « body, wrged by any centripetal force, is moved in
any manier ; and another body ascends or descends in a
right line ; and their velocitics are egual in any one case of
equal altitudes, their velocities will be equal at all equal al-
titudes.— NewT. Lig. 1., Pror. 40.

Let any body descend from A (Fig. 56 through
D, E, to the centre C; and let another body be moved
from V in the curve line VIKZ  With the centre
C, at any intervals, let the concentric circles D T,
E K be described, meeting the 1|ght line A Cin I»
and K, and the curve line “VIKim I and K. Let
I C be joined meeting K Ein N ; and let the perpen-
dicular N T be drawn to 1 K ; am.l let the interval
DEorIN of the mrcumfemnces of the cireles be
very small; and let the bodies have equal velocities in
D and 1. Sinece the distances CD, CI are equal,
the centripetal forces in I aud I will be equal. Let
these forces be expressed by the same equal lines D E,
[ N; and ifone force I N is resolved into two N T an{l
[T; the force N T, by acting in the direction of the
line N T perpe ililiﬂll].,ll" to I T K the path of the
body, will not change the velocity of the body in that
pafh, but will only th aw the bod y from its rectilinear
course, and make it turn aside continually from the
tangent of the orbit, and proceed in the curvilinear
path ['T K - In producing this effect, that whole
force will be employed : but the other force I 'T, by
acting in the direction of the course of the body, will
be wholly employed in accelerating it, and in a very
small given time will produce an acceleration propor-
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«wional to itself. Therefore the accelerations of the
bodies in D and I, produced in equal times (if the
limits of the ratios of the nascent lines D E, I N,
LK, IT, NT are taken) are as the lines DE, I'T;
but in unequal times, are as those lines and the times
jointly. But the times in which D E and I K are
described, because of the equal velocities, are as the
spaces described D E and 1K ; and therefore the
accelerations, in the course of the bodies through
the lines D E and 1 K, arcas DE and I'T, DE
and I K jointly ; that is, as D E* and the lu;.l.mgk
1T X IK. But the rectangle I T' X I K is equal
to I N*, that is equal to D E*; and therefore equal
accelerations are generated in the transit of the bodies
from D and I to E and K : therefore the velocities of
the bodies in E and K are equal: and by the same
argument they will always be found equal in all sub-
sequent equal distances. Which was to be demon-
strated.

By the same argument, bodies with equal velo-
cities, and equally distant from the centre, will be
equally retarded in their ascent to equal distances.
W'hicf: was to be demonstrated.

Heuce the following Corollar

Cor. Let C be the centre of ﬁ:-rcc:, A the point from
which a body must fall by the action of the force to
acquire the velumt} in the curve at V, C Dand C 1
equal distances from the centre C in the straight line
and curve; v = velocity at I, CI = a, I = force in
direction I C, then will'v dv = — T da; for v, do, F
and dx are llle same, both in the curve and :-,lmlglll
line. Hence, according to whatever law the velocity
of the body descending in the right line V. C may vary,
in the same manner will the velocity in the curve alse
vary.

98. To find the fluxional expression for the law of the
Yorce, supposing @ body to revolve round « fixved centre.

Let ¥ = distance of the body from the centre of
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force, p = perpendicular upon the tangent, F =
force, and v = velocity at the distance y; then

4 a* - 4 a* dp
_ Coydy = — ; but, Cor. Art. 97,

1o 7
4 a* dp dp
o ;
dy pPdy
Or the same unnrusn.hznff;D ely follows from Prop. 6,

—

tjffu _— — Ilfgy: " ® ]__l

Cor. 8, for F g, 8@
) N R L3 W ot —
21 9% el zxﬂpd’y
)
4a dp ¢ dp
p dy
Ex. 1. Required the law of the force in the hyper-
o M @y ' d 1 1
bolic spiral.—Here p = VE*T,;F i E = ‘;,_r" A =
dp dh dp 1
o & oC = and F o i o —
plive, St Pdy,

Ex. 2. Required the same in the spival of Archi-

v i

des—Here p = =———, 5. — = — 4 —
me -E 1."333, + y_z j'-i'z' ‘yq + : 3
2dp +b'dy @ 2dy ! dp 2 b
N g PR oLy G
1
i 53

Ex. 8. Hequived the same in the involute of a cir-
cle.—~Let » = radius of the @, then by the nature
1 1

-

of the curve p* = % — %, s — = ———, and
dp Y Yy
— q e

=- B == = ==
Py et L P

Ex. 4. Requived the same when the square of the ve-
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locity is proportional to the logarithm of the distance
dp 1-

[,

Here v* o log. 3, ==t log. v, <

(IS Cc ot —

P dy Y,
the force .". is repulsive, and varies inversely as the
distance.

99. The squares of the velocity of bodies revolving in any
curve, are in the joint Ratio of the accelerating forces, and
chords of curvature.

For (Art. 96) V? = F X 1 PV a E X PV.

100. To compare the velocity in any point of the curve,
with the velocity of a body revolving in @ circle at the same

distance.

V* o« F X PV, and in this case F is the same
in the curve and @, - V¥ : # L1 P V:pn

Cor. Let y = distance from the centre of force,
p = perpendicular on the tangent, then if for PV,
p v, we substitute their values, we shall have V* ; »*

. 2pdy A B

& :o? - § m——

e

dp e P

101. If a body revolve in a curve of any kind round «
centre of foree, to compare the LT velocity of the perpendicu-
lar wpon the tangent, with that of the radius vector.

Let P, Q (Fig. 8) be two points in the curve in-
definitely near to each other, to which the tangents
PY, Qy are drawn ; let fall the perpendiculars S'Y,
S # upon the tangents PY, Qy, and from P and Q
draw P C, Q C perpendicular to the curve at I and
QQ, which will meet in C, the centre of curvature ;
then since P C, Q C are respectively parallel to Y S,
yS,the ZPCQ = £ Y Sy; hence £7 velocity of
perpendicular @ £* velocity of distance 11 £ Y Sy :

_ _ QP Q'
LPSQi £ZPCQR: LPSQ I —: st
i S
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P PO

CP SP
Ep .rfy __dp dy

2 B P BN Ss s BN S

;.ﬂ,r; p ' gr'

Cor. Hence, and by Art. 100, V* incurve : V3
in @ at the same distance I £" velocity of distance :
Z* velocity of perpendicular; and .°. the velocity in
the curve = velocity in the @ at the same distance,
when the £7 velocity of the distance = the £ velo-
city of the perpendicular.

102, The angular velocity in any curve @s as the area de-
seribed in a given time divectly, and the square of the dis-
dinee inversely.

Let PSQ, psq (Fig. 57), be two indefinitely
small £%; A and « thu.ueas deseribed about S and s

in the same given time, then £* velocity about S :
o5

£L" velocity about s i3 £ PSQ: £ psg 5- B

gt SPRL spxXgt A a

f;;” Spr 5 p* ".Sl“'s;f'-
Cor. In the same curve A = @, .°. L' velocity «
1

dist.”

103. 7o find the variation of the paracentric velocily in
any curve.

Let PQ (Fis. 58) represent the velocity in the
curve; draw Q T perpendicular to S P, then will
P T represent the velocity towards the centre s to find
which, put SP =y, SY =p, then SP : Y &

2a
POXET 4 o Bl
ST e - _-;-J-

P Pare
*V’F_:_;"
7y
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104, Reguired the rate at which the lnear -t:efucﬂi,r de=
CPEHSES T (el CUIvE.
Let SP =y, SY = p, v = velocity in curve at
. 1 dp dp
P, then sincev ¢ —y — dv « — —ordop o — :
. foa P
from the equation to the curve get a value of p in

G
terms of y, and consequently a value of — in terms

A o
of y and dy; but ‘*”_y’f —pr:piiPTordy: QT
n di 1y d :
= —f% -‘i—_y:f_i_ =SP X QT = area

Vi—r  YPr—7

Wt

deseribed in a given time = 1, S dy = __i__.f_;
Py

substitute this value of dy in the propeortional equa-

ap :
tion dv o« —, and the thing required is done.

105, Required the rate at which the 27 velocity deereases

it ARy CUrve.

1
Let = represent the £7 velocity, then 2 « —, .

¥
0 di

s ] O :’ ord e o -"-f; but by the last Article,
i y

Ll

Py Pyt

Of the nature, variation, §c., of the centrifu-
zal force.

106. Supposing a body to revolve about a centre
of force, and the motion in the curve to be resolved
into two, one in the direction of the radius vector,
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and the other perpendicular to it, it is evident tliat
that part of its motion, which is perpendicular to the
radius vector, will give the body a tendency to recede
from the centre. This tendency of the body to re-
cede from the centre, in consequence of its rotation
round it, is called the centrifugal force, and the space
by which it thus recedes, in an indefinitely small
given time, is the measure of this force.

Thus let P Q (Fig. 57) be an arc described in an
indefinitely small given time, S the centre of force;
resolve P Q into P T and T Q, and with S as centre
and S @ as radius deseribe the circular are Q ». Now
since P Q represents the whole motion of the body,
P T will represent that part of it which is towards the
centre; and by this alone the body would be found
at the distance S T from the centre at the end of the
given time; but in consequence of the motion T Q
perpendicular to S P, it is really found at Q at the
end of the given time, and at a distance from the
centre = SQ or Sa. In consequence .7 of the per-
pendicular motion T Q, the body has receded from
the centre through a space = T x, which .°. by the
definition is a measure of the centrifugal force.

107. Strictly speaking, the term jforce, applied to
this tendency of a body to recede from the centre in
consequence of its rotation round it, is inaccurate; it
being merely the effect of that property in all matter
of persevering in its rectilineal direction : it is .". de-
nominated a force, merely because we must employ a
centripetal force to balance it, just as we suppose a
resisting vis inertiee because we must employ force to
move a body.

108. From the above definition of a centrifugal
force, it follows (1), That if a body revolve in a circle,
the centripetal and centrifugal forces are equal ; for
T P (Fig. 59) is the space through which the body
recedes from the centre in consequence of the per-
pendicular motion T Q, and .". represents the centri-
tugal force; also P T taken in a contrary direction
represents the effect of the centripetal force, .". &c.
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Or the same conclusion may be deduced from consi-
dering that the body always -continues at the same
til‘itﬂllLE firom the centre, and .. through whatever
space it must recede from the centre in consequence
of the centrifugal force, through the same space must
it approach the centre in consequence of the centri-
petal.

(2) That if a body revolving in any eurve come to
an apse, it will, after that, J]‘.il'}ln‘.m(.‘]] to, or recede
from, the centre, according as the centripetal is great-
er, or less, than the centrifugal force. Forlet P Q
( Fig. 60 ) ht: the curve, P the apse, PA a @ deseri-
bed with S as centre and S I" as radius, and which
falls without the curve P Q: then by constructing the
figure as before, we shall have T 2 to represent the
centrifugal Imt:u, and PL the Lulllipc}t.ll but since
S A is greater than S Q, P T is greater tlmu T,
i. e. when the body approaches the centre from an
apse, centripetal force is greater than Lﬂllt.llillg-.l]
conversely, &c. Butif @ P A (Fig. 61) falls w lt]‘llll
the curve, 7. ¢, if the body recedes from the centre,
T x is greater than P T', i. . centrifugal force is
greater th.m centripetal, .. &c. Or the same con-
clusion may be deduced from considering that since
the whole motion towards the centre is the eflect of
the centripetal force, and the whole motion from it
the effect of the cefitritugal, the body must approach
to, or recede from, the centre, according as the first
is greater or less than the second.

(8) That if the body be not at an apse, 7. e. if the
direction of the body’s motion be oblique to the radius
vector, the body’s .1pp|mcll to, or recess from, the
centre, does not depend upon the centripetal force
being greater or less than the centrifugal; for in this
case PT (Fim 62} = Py + yT =Py 4+ QR,
#. e. the motion tlileul} towards the centre is made

up of the motion Q R in that direction arising from
the action of the centripetal force, together with that
part of the tangential motion nluuulled by Py

Q
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which is in the dirction P S; hence, in consequence
of this tangential motion, the body may approach to-
the centre S, even though the centrifugal force be
greater than the centripetal, as is represented in the
figure, and the eontrary.

(4) That in all cases the ccntrlﬁigal is equnl and
opposite to the centripetal force of a body revolving
in a cirele at the same distance, and with the same
£* velocity ; for if # Q represent a eircular are de-
scribed in the same given time in which the arc P Q
is described, 2T will be a measure of the centripetal
force in that circle, but T'x has been shewn also to
represent the centrifugal force of the body revolving
in the curve P Q.

109. The centrifugal force in different pornts of different
curves is proportional to the square of the area deseribed in a
given time directly, and the cube of the distunce inversely.

For centrifugal force at P (Fig. 57) : D% at p :%
QF o SPxQ T sp ot
Tritadi it :
SP  sp S p3 s p?
A:- a* V; I.n .l,z-}_,l
i ik R By : .
Dist. 3 Dist. D? d?
Cor. 1. In the same curve A = a, 7. e, in different
points of the same curve, the centrifugal force o

1

Cor. 2. To find an equation for the foree, we havc
L 4 ORI R SP2Q1 R

12 G8P T BP - ADBER,
if # = twice area described in 1”.

110. To compare the centripetal and centrifugal forces in
aniy curve.

Centripetal ; centrifugal force :: QR : T z ::
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PON T A 82, SY? A
: H . - (by similar a®), =
PWisSASB* PV 28P

2p JJ J3 rh;
S » BeX T e PV 22 9 e i
P8 I Bepl = T

[

PROPOSITION VIL

Notes to Prop. 7.

d11. In general, we have, as in Art. 88, the cen-
. Ba* X AV?
tripetal force = = which is ¢rue for dif-
SP* X PV
ferent @° having the same or different centres of
force.

112, If the centre of force S (Fig. 64 ) be without

the circle, - which expresses the law of
SP* X PV3
the force, is positive, while the body moves from B
through P to A; but at A and B, P'V vanishing, the
force becomes mﬁmte. From A through V and ES
to B, PV lying the contrary way to what it did in
the superior part of the orbit, the explﬂsamn for
the force becomes negative ; the centre " repels the
body.
ljl'rﬂ. To prove the Prop. fluxionally, let S P [ Fig.
dai=g PV. =2 8Y =0, PF =b; then I’ 5.
SV =AS.8SB = some cuusmnt I]llﬂl]tih’, =0,
— ey

g8 Y K e—yi=a* T.xc = '"—:F——* Also by si-
: swe WA o i .
milar a% y:p Il b S0 L e and i
b d 20 ydy dp b* y
= - = ———and —— =
3.
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114, By Arts. 99 and 100, the velocity in the
Pa. AV o L
'.;.;']',—]','1‘: ; and the 1':-.1=.u‘t1:.' in the curve at

P: velocity in ® at same distance I ¥ IPV V' EP,

GRS =

Il S be in the circumference of the @, the R®. be-
comes that of 1 : ¥ 2,

115, By Art. 110. Centripetal force : cetitllfugal it
2SP. AV . PV3,

Notes to Pmy. 72 CoraB

116. If the periodic times be not equal, then neither
are the areas {[e'-‘.m ibed in a given time round the two
centres equal; .. in that case, I' vound S : F round

R P".SP : H( 3 et

R —— -, - A
P. T, rmnul h ol 1" | mmul 1{, ; since AV

and the whole areas are L!w same 1n bulll Cases.

21 N B HEIPPUHU R G‘;n l['.l be ‘in the centre of
the circle, and S to be at V in the circumference ; to
compare the forces round each centre, the periodic
tiimes being the same. Since the u]m]e areas and
periodiec times are the same in both cases, F o

] T L] -
F.round : F. round V ::

1
B EA RPAPT

s 1 R — I s ] " = j"'j, 1 11‘-{
PG s TP B R A

PROPOSITION VIII.

Notes to LProp. 8.

X L: I—j;
118. Since I’ « aP M % SP and that S I**

is infinite, it might be mhnul that force was in-
finitely small ; the contrary however will appear
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[rom the general solution. TFor, in general, ' =

8 at Ql{ ; 4 g "'h' o 1
e RO s e L e ————,

SPr QI S X2 4

Now let & = velocity in direction A C, which is con-

stant, since the force in the direction ut the ordinate

does not affect the motion of the body in the direction
ofethebligeisen e’ N3 B R 2 QT* (8 P?

e R i RN S X2
SHS N, N = gy andie™ = evs X T F

NQP’ u"QR cP 86, "31’"’
4 SP*.QT* = 2PM3SP* X7 2 T

e e S . e
PA R finite quantity when P M is finite.

1 95 By Art. 99, the relm:it:.; in the curve at P

b EF
= RV

120. ]h Art. 110, centripetal force at P : centri-
fugal it 2 S5 : SY* x PV ::2SP x CP::
P M* x P DM, i e centrifugal force is nothing, as
also appears from the definition of a centrifugal force
in Art. 106.

121, 1o find the fluxional expression for the law
of the force, supposing this force to act in parallel
lines. ;

Let A B [ Fig. Gﬁ,}‘“ nBP=yw PT=dnTR
= dy, b = velocity in the dllELLmu A B, “Inch in
the same curve will be constant, (Art. 118), v = ve-
locity in the direction of the ordinate B P, and I' =
foree in the direction I B; then da : dgaati:y =

b ely b d* G dy
o T R A e and v dp = '{'—'y; but — v dv
de dr da*
b dy d*y
=R dy . BX dyis Bt J‘..-“—-f and F = —
i
0 d iy d*y

e e . oril P @ be an arc described
di* de* ? s

i an indefinitely small géven time da is constant, and
I' oo — d*u.
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QR

Or thus. By Prop.6, I « T PTQhﬁtT‘ fe PG
LSRR T  OR ock
Pl 11 SocT e X P or o

P ¥ —d
-T_.,——'-y-r as before.

122. To prove the Prop. fluxionally, put PM =

—rdx
B CM=a,y= Yri—2addy= g5——

P e A
xdr
rde X — — —yda®
—rdr o xdr dy—yda® Y
PRSI s T o
—d* Xext + vy d*y 1
= 3‘3 ,..FD!: ___;r;*.r;’ o ';3'
SCHOLIUM.

dntroductory Article to Scholivm.,

128. Lemma.—Let P O (Fig. 67 ) be the diameter
of curvature of the conic section D I’ L, C the centre,

C D the 1 conjugate diameter produced to meet
P QO in F, then will P O «x PAS

1 1 g2 CD?
For CD « Pr CD* « Pie and PE
1 1
or PO « 3 s but by conies PA o 54 % P A®

1
o Pl—.g and PO o« P AL

or. If the distance betwixt the foci of the ellipse
increase, P O still o« P A3 ; if " this distance become
infinite or the ellipse migrate into a parabola, P O
e I’ A% and hence the PI’Ui]. 1s general,

£s
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Scholium.

124. Let L. P D be any conic section, P V the
chord of curvature perpendicular to the axis, then
Qi MR S M3 P A*

A g P R*
Q aPVIi:PM*:PA*

L Qite. QR
but! PV&: PO & PM-: PA

T* T PO
RIFED By 2B, =

ewOR QR T DPA®
1 , . SP2QT
X PM? « (by Art. 128) P M3, .". R
1
PM};and F oc ——., i
P M3

The same_fluviona’ly.
In parabola * = 2ax, .ydy = adrand dy =

a dr a dy da a* da* 4 d*y
—_— =l = ——— = — yood B o = =4
Y 2 y da*
a* 1
Of =K
¥ T 4
In ellipse and hyperbolay = — x ¥ @@ — i
[/
- 8 b Ry = z dx b 7 oat dz b*
e a 'V'ﬂ:___'l.z_ a _a.x _-{;..-
b 4
e b drdy — d b*
X 1 .r, . ﬂuly' = — A i Y it -
Y a* k a*
= f’lfdf—d.r*}f* —dr* xi-f+y
ﬂi- a]-
" - x = : but
Y Y
b* o*

since y* = @t —a?, Lot 4+ Y = 0 Dby
(4} (¢4

b



PROPOSITION IX.

Introductory Avrticle to Proposition 9.

125. The curve which cuts all its radii. drawn
from a fixed point, in a given £, is called the ¢ 1qui-
angular Spiral.’

From this definition it follows, that the chord of
curvature to any point of the spiral is double the ra-
dius vector at that point; for let S [ Fig. 70 ) be the
centre of the spiral, P Q an indefinitely small arc:
from Q and P draw Q O, P O perpendicular to the
curve at Q and P respectively, which will meet in O
the centre of curvature; take PV the chord of cur-
vature passing through S, and join V Q: then since
the £ OQA = £ OPQ, take from these the equal
Z5SQ A, SP A, and the remainder the 2 OQ S
= the remainder the £ O P S, and the £°at C are
vertical £, & COPy= Q50 it 2P IC
being at the centre is double the £ PV Q at the eir-
cumference, .. also £ PSQ =52 A“BV @.: but
L PS8Q = . L PYQF BERSQON... MINO
= Z28QV, and SQ e P = SN LD —
g 5P,

Prop. 9.

126. Case 1. Let PQ, p ¢ (Fig. 71 ) be two indefi-
nitely small arcs, and let us suppose in the first place
the £ PSQ to be a given £, 7.¢. thatthe £ PSQ
= £ pSgq, then since the £* at S, P and R are
respectively = the £% at S, p and r, the remaining £
SQR = remaining £ S¢ ;.. the ficures SQ R P
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and Sgrp; QRPTandgrpt; QP T and gp ¢
S P Q and S p ¢ ave respectively similar to each other,
and .’. have their homologous sides proportional, ."
QT g¢ QT
QT :q¢: i QR: ¢gr, . — = —-and :

QR qr QR y
gt’" SPE.QT
gt P: *SP:Sp, i —m———
v e Q gtlQ qp Ps QR
S PP th"'

SP1Sp il F atps Fear P
=

Case 2. Suppose the £ PSQ not to be = £
P Sq; make in that case the £ PS» = £ pSy,

- r:— q f!-
then by the first case : ——iSP:Sp;but
T @ qr

QR:7¢:i QP?:«P? i e by similar A% 2 QT
T 4 o | Foad =
: @ 72, .'.—-:9- .'.Q :—g S SP:Sp
T e Q R Q R qr
as in the first case; and this is the meaning of New-
ton’s e:-:pressinn, “if the £ P S Q is in any way
changed.”
127. To prove the Prop. fluxionally put S P = 1
SY =p; thenp:yinagiven B°.}im: 1, .p =
1 1 4 a* dp 4 a* 1
my, and — = =nglss = o ===,
P w8
128. By Arts. 99 and 100, the velocity in the

1
curve o« —— and velocity in curve = velocity in a

@ at the same distance.

129. By Art. 110, centripetal force : centrifugal
SSP*: SY*:irad? : sin.£ SPY#® and .. ina
constant R°, in the same spiral.

R
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PROPOSITION X.*

Notes to Prop. 10.

130. To make the Prop. general, we have (Art.
8a* X QR 4a* X PC

SP* x@QT? ACE x €8
expression is general, and true for bodies moving
round different centres.

131. If different bodies revolve round the samie
centre, then at equal distances the forces will be equal ;

]
hence AL must be constant, .". when differ-
AC*: CB

ent bodies revolve round the same centre, the force
o CP. J

132. Let ¢ represent the absolute force, then acce-

1Tl D —

; which

4! &
lerating =¢ X PC = *x.PC
erating lorce @ AC* X BC? ’
: 4 a*
S R AG NBO

* Table of Equations, containing the most common and use-
ful properties of the Conic Sections :—

Parabola.
Latus rectum or L = 4 8 A [ Fig. 16 ).
TN=2AN (Fig.s52).
SY2 =8P.SA(SY = ;7 on langent.)
Qux = 4 SP. Pv ( Fig. 16).

SP = i_iﬁT._is , where 3 = £ Iraced oul by radius veclor.
Chord of curv. = 4 S P.

3

T 45 P
TirI ) Lt ey
iane. of curv VSa

Equation to the curve y* = a x (a = lalus rectum.)
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155. To prove the Prop. fluxionally, put a =

1
1
axis major, & =_} axis minor, ¥y = C P, i”' =
P I' = perpendicular on the tangent, then p* =
a* OF 1 @+ 0 3 L datdp
and — = ek L A
rr: JFJ:' pe ,y; F; ﬂi: b;, Ra .{I:’ 1_13 ﬂ’y
-'l- a* y
= ———and F « w.
(LJ- b-"-
Lilipsc.

SP 4 PH =2 AC (Fig. 11,
AS.SM=BC

aBC*
L_-ﬂc,-
5P
e .&._._.
2Y BC. P

SP.PH=CD*
AC:' 4 CB*=CP* 4 CD%
AC.CB=CD.PF.

;_Pﬂ.uGKCD"
S S SN
§C
BC=a ¥ | — ¢*, where e = eccentricily = ic
sP —Pj— © N A a".-él—.-:w}‘ where 3 = £

14 ecos. 3 14 ecos, b
traced out by S P,

2C D=
Ch. curv, through Cr, = P
g CD*
Ch. curv. through focus = 20
=
Diam. of ourv. = D 4

i g
. % BF et .
Equation to the curve y* = —— , 2ax — %, when the abscissa
fi%

begins at the vertey. -
- i

o

. a®

Or y* = — —-t?‘:, when the abscissa begins al the centre,
o ] -
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F T
134. V= &/ F x :#;-.CPK%;-:

S
¥ X CD* = ¢% X CD « (round the same com-

mon centre) C D,
185. Velocity in-ellipse : velocity in € at the same

/2 C D?* B AL M
distance 3 ¥/ 23 M B CP S OD: 0P

Cor. Hence the velocities in the ellipse and circle

Hyperbola.

HP —SP =2 AC (Fig. 15).
AS.SM=BC(Cs,

2 BC*
Il et

SP

= 3- s

5 Yz BC P H

SE.PH= €D
AC* —CB* =(C Pz — CD-=.
AC.CB=CD.PF.

Pv.vG X CD=2

vF = 1
Q C P
BC=ua Ve — 1
b 1 . (6% —
S P —_— ] = ( i_{_
e 14 ecos ¥ 1 4+ ¢ cos. 3
Ch. curv, through cen. = EC D”'
CcCP
=
Ch. curv. through foeus = e :
AC
Diam. of cury. = iC_D:
PT
L g g
e [ GEC 2ar + a* abscissa beginning at the verler,

I'p'j:-

a5

Y A - 4 A
or y- = « 2% — a*, ghscissa beginning al the centre,
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at the same distance are equal in four points of the
ellipse. Tor through the extremities of the major and
minor axes (Fig. 72) of the ellipse draw tangents
which will form a rectangle. Join G C, H C, which
produced will pass through I and K, since A F and
H K, A B and H K are similar parallelograms, and
.. about the same diameter ; draw B M, which is bi-
sected in L, consequently B M is an ordinate to the
diameter P R ; also B M is parallel to HK, ... QD
is a conjugate diameter to P R; and since £ BCP
=" BCIR CP = CD=CR =0, " ihe
velocities in the ellipse and @ at the points P, D,
R, Q, are equal. ]

186. Centripetal force : centrifugal :: PC+: A C.2
C B*. Hence these forces are equal when P C* =
A C, CB, or when the distance from the centre is a
mean proportional between the two 4 axes of the el-
lipse. To find this point geometrically ; from C M
(Fig. 73 ) cutoff CD = CB; on D A as diameter
describe a £ ® D E A, produce C B to meet it in E,
and with C as centre and C E as radius describe the
® P P” E; then will the centripetal force be = the
centrifugal at the points P, ¥/, P”, P"; for join C P
then CP*(=CE*=AC.CD)=AC, CB, and
the same may be proved of the other points.

Prop. 10.—Cor. 2.

o L whole area
Ehlepl. WNGL.L oy iy sl ek et temp.

whole area 4 a*

= but (Art. 182) ¢ = AC x OB AR
ACxCD Lo LT mACX BC
5} R S T 3ACXBCXe}

2

By ! £
b_.|—l|. 3

3 4oe. P.T. in all ellipses round the same

1

centre 1s constant, and about different C®, o - g




NOTES TO SECTION III.

PROPOSITION XI.

138. Or the Proportions may be thus arranged :—
| RS LT B B B S B
By 2.1 o wPC 2PEorat
QT*% Q7 S o R S Do) B L By

sy T = P w0 TE P s PO oS

QT : QESZPEIALE B3R PO, ACH
QI 2BOY it LeQi, S B

. -Q—i{ = .e"".._(-:__ = L, and QR = I
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PROPOSITIONS XI. XII & XIIIL

Notes to Props. 11, 12, and 13.

139. To make the above Props. general, we have
. , 8 a* :
(Art. 88) the centripetal force = TSP which

expression is general for bodies moving round differ-
ent centres of force.

140. If different bodies revolve in conic sections
round the same centre, then when they are at the
same distance from it, the forces will be equal, ..
8 & ! :

—, must be constant; consequently in this case the

1
force « .
P
141. Let ¢ represent the absolute force, then ac-
e @ 8 a® 8§ a*
celerating force = i = {5 gpe R v
e L.&
and @* = —¢

142. To prove the Prop. fluxionally, we have in

the ellipse p* = &* X ; in the hyperbola p*

2a—y
y
=80 X —-——-; and in the parabola p* = ay ;

1 Erz 1 1 2.—:2 1
)=y P A=yt F: ()
1 I ¢ I 4 a* dp : ]

» E‘j}’ X T (in all the three cases)

8 a*

L X

=

T

i

s,
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PROPOSITION XIV.

Note to Prop. 14.

143. This Prop. is only applicable to different

bodies moving round the seme common centre. To
Z

make it general, we have L = "QT’ but (Art. €8)

F

QR = 5 when the time is given, = -EB;PP‘ ol P

28P* X QT? 8 a* )
= — 5 + The same conclusion

was obtained In Art. 141.

Note to Prop. 14— Cor.

144. If bodies revolve in ellipses round different
otk

# ¢
centres, wehave A = P.a = P. # "gf SACCE
o LE. ok P.

PROPOSITION XV.

Note to Prop. 15.

145. This Prop. is only applicable to different

bodies moving round the same common centre. To
. A

make it general, P. T = e but (Art. 141) ¢* =

Riigi “uBiClp BC. Yy A
;i.lﬂ-—'- ——— -.l 1}.T —
4 AC 2 VA i




PROPOSITION XVIL

Note to Prop. 16,

146. This Prop. is only true for different bodies
moving round the same common centre ; to make it

A v TN e
general we have V = —gg—— = gy = ¥a.8Y

which is applicable to bodies moving round different
centres of foree.

Pfﬂ;ﬂ- ]ﬁ.—ﬂﬂ?‘. 4.

L 2AC 2B C*
147. For V* : v* 1} B - AC?”L i
L :L:I1: 1;and.. since the velocities in @° o
1
VT the velocities of bodies revolving in ellipses

round a common centre will at the mean distance oc
1

—

v dist.

Prop. 16.—Cor. 6.

148. For in different points of the same curve V o

1 1 1
——: . inparab. V o ot —5—— ; In the ellipse
S I SY *Vg§p I

e Sty 1 1 (HP
and hyperbola' V of a=57 08 === ' ==-
: ; vPH
Now in the ellipse, as S P or the denominator of this
fraction increases or decreases, H P or the numera-
tor decreases or increases; consequently the fraction
S




3

138

HE : 1
P will vary more than the fraction SP° and .’

the veloeity will vary in a higher Re, than ‘V"S']-J" :

but in the hyperbola, as S P increases or deereases,
H P also increases or decreases; consequently the

HP ]

- yaries less than the fraction ——5. 1. ¢
SP sSP°

fraction

1
the velocity varies in a less R% than ———.
¥ V'SP

Prop. 16.—Cor. 7.
: ” oA BA
149. For in the parabola V* : o* I SP.SA °
QSP L] - - ey
'S?..ﬂ: BouatorNesr it W0 i 1
2 B C?
AC 2SP
In the ellipse V* : * & niox 5B BE
“ FH
HP s AC 5 N apiis "J-ITF SR
N SETED S N
YEAC—SP: Y AL UM - gil-av2—
2 I
InhyperbolaV:p:: VHP: YAC::Y2AC 4 SP
TP
AVER O M 2k m ol N Aok B
Hence also velocity in parabola = velocity in &
at 1 the distance. For

Y o:okigY 9 ;1 ¥
& v:velocityin Or. 2 SPil1: 49

< V = velocity in ® radius £ S |
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But in ellipse V ¢ v I Mo _ .1
Xv:v.inOr.k SP i1 Vg
SN ibharntSP:: Vgt o Y
e Vois less than velocity in ©r. } S P

And in hyperbola V : v 1! vy 4 : 1
X v: velecity in @r. 2 SP Il 1 v o

S Vivelocityin @r.a SPvYa2q: vV
. V is greater than velocity in @r. 3 S P.

Prap. 16.—Clors. 8 and 9.

150. For let V = velocity in the conic section at
ihe distance S P ; v = velocity in a @ at the distance
of } the latus rectum ; and v = velocity ina ©@ at
the distance S P: then since the lafera recta in the
conic section and first @ are equal

V:wv:iiy L:SY, whichis the 8th Corollary.
Againw:v 2 YV SP: ¥ L
S Vit YIL x SP : 8, which is the 9th
Corollary.

DEDUCTIONS FROM THE PRECEDING PART
OF THIS SECTION.

151. Of the LINEAR velocities of bodies revolving in
conic sections, the centre of force being in the focus.

1. Required a general expression for the velocities of bodies
vevolving in any of the conic sections.

ra T S _lp =~ T
(1) Inparabola V* = F X } PV = S X 281
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g %
= SI‘”"v o ST

(2) In ellipse and hyperbola V* = F X 1 PV =
@ SP. PHeersil B px PH

SE " T ACHEE EC RPa TV e e
Or the same may be deduced from Art. 146, by
substituting for L and SY in the Equation V =
Lt x ot
vg SY
Cor. 1. If different bodies revolve round the same

centre, ¢ is constant; .. in parabola V o -;f—&,?}

(AP

and in ellipse and hyperbola V « 5+ AC.SP

Cor. 2. In different points of the same curve we

have in parabola V « ; and in ellipse and

H
hyperbola V o« /¢

v Sp

=

g~

2. To compare the velocity in a conic section with the ve-
locity in a circle at the same distance.

Vo ¥P V ". velocity in conic section : velocity

(2CD*

in © at same distance :: ¥/ ——— By Y98

07900 5 s L o M
Vb AT ED NP R,

Or the same may be demonstrated as in Prop. 16,
Cor. 7.
Cor. 1. Hence velocity in ellipse = velocity in a
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© at the mean distance ; forin that case HP = A C;
the same is also shewn in Prop. 16, Cor. 4.

Cor. 2. Hence also the same conclusions may be
deduced as those given in Prop. 15, Cor. 7.

3. To compare the velocity in any point of the ellipse with
the velocity at the mean distance.

V x Sy velocity in ellipse : velocity at mean

= . n 1 1 s ———— rr—y

distance . : r"S_P': cg - YHP: VvYSP.
CBY 5

4. If a body revolve in an ellipse ; veguired the point
where the velocity ts an arithmetic mean between the greatest
and least velocities.

Let D and & = greatest and least distances p =
perpendicular upon the tangent at the required point ;

1 Tl 23
then by the Prob. —

Eia

SR e L dh

= 1} L, or at the required point the perpendicu-
&

lar = 1 the latus rectum ; to find when this is the
b* i a /A

case wehave p =  =b X yo 0 - o =

P Salr

8g—uz T @ 4 b®

5. Required the same when the velocity is a geomelric mean

between the greatest and least velocities.
L]

1 1
Here D X = 7 Vit =3 = i and p = b;
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7. ¢. the required point is at the ex{remity of the
minor axis, or at the mean distance.

6. Required the same when the velocity is an harmonie
mean between the g?*mresr and least velocities.

i 1
Here by Prob. D‘, — and - are in harmonical

progression, % Dy p nnd ¢ will be in arithmetical pro-

. D+ h

gression .~ 2 p = D + Sand p = =« Ii

the distance be required at this point, we have
O 5 b 2 o

Lt —a Ll 'lza*-]-fﬁ

7. Requived the point in the parabola, where the decre-
ment of the linear velocily is @ maximum.

By pursuing the method given, (Art. 104) we have

1 —1 dy
v o E}—ﬂ:y - F;but by that Art. dy =
Vi—r _ Yy—ay “".’-';—-fﬂ, g
py = abyi T aby Y3
i ! ‘ Y= 1 &
which is a maximum by Prob.; J.=—— or — ——
: e o
7 y Cddy 5ady S
15 4 maxmum, .. -:.;b-_ —_— yﬁ_ =0, 0r y = -
8. Required the same in the cllipse.
1 ’'e rz—y —-’ 2 Di— a—y -1
DL N ——!,..:fycc %
P Y Y "
2 adi 2 a di "
2 !4 SDDE N ke j ‘ﬂ

o
. Y ¥Zu—y Y
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T
y — B S )
v y 2 a—y w :; —yt—b
- - b—'-——-"——, ey G o
| ¥ )
b et
R V3 a—y
V2 ay—yp—0 : . 2ay—y—¥
§ = = maximum, .'. = T
yive iy Py. 2a—y
1 b* ; 4 dy
S i | g = maximum, .\ —— —
¥ ¥-2a—y ¥

10 @ b* 4 }4 dy—6 U* ¥ dy
S = o; or2y’ — 8ay* +
y'e i _J
8 a* 4 3 b’uy — 5 al* = o; from whence  may
be found.

9. Required the point in the parabolu, where the paracen-
tric velocity is & maximum.

. L
By Art. 103, Paracentric velocity o M,

% ry
& - e a ? —t1 1
=« o111 t-]“s case o ......E.._....;_u—- — I-n,1:!,;;“'[]'l_].'rnj i _I{‘_,—_‘-f
3
y> 4
ol : . i .
or — — — = maximum, .. y = 2a, . ¢ the requi-

O ,
red point is at the extremity of the latus vectum.

10. Required the same in the ellipse and hyperbola.

- . A Yy — p‘T ‘
Paracentric velocity o« —Z 2, which by Prob.

Py
LY —p 1 1 .
lS i mulmum, s or — —-— = maximuml,
g on gl

gadty I 22wl ! .
fa s ———— -, + — —— = maxi-

0 y y“ Eﬁ Y o
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bt
mum, ..y = — = L latus reclum.
t

152. Of the ANGULAR velocities of bodies revolving
in the conic sections ; force tending fo the focus.

1. Reguired a generval expression for the angular velocity
of bodies revolving in any of the conic sections.

Let @ = area described in a given time, then £*
a Lp x ¢t

EE———————
‘S P S P=.
Cor. 1. If different bodies revolve round the same
|

SPs
Cor. 2. In different points of the same curve £*

velocity o

centre, ¢ is constant, .". £* velocity «

relocit :
velocity o S

2. To compare the 2 velocity in a conic section with the
2" velocity in a © at the same distance.
|5
LT velocity o i (since the distance is the

same) B velocity in the conic section : £°
velocity in a @ at the same distance :: Lt : 2°S Pt
3Lt : SPk

Cor. Hence Z£F velocity in the conic section =

£* velocity in @ at the same distance at the extre-
mity of the lafus rectum.

3. To compare the »" velocity in any point of the ellipse
with the mean 27 velocity.

If a circle be described with the focus of the ellipse



145

as centre, and radius = A C or mean distance, the
periodic time in this circle will = the periodic time
in the ellipse, hence the uniform £7 velocity in this
© will represent the mean £" velocity of the body

i

in the ellipse; .". since £* velocity « Sp7 we have

" ‘lr'{:lﬂ{!it}' n any point P : mean £* velocity

(or £"velocity in @ radins = mean distance) ::
j2ChB

o T T o | 1

§P ' AC 5P ‘ECCB

Cor. Hence the £7 velocity in the ellipse = mean
Z" velocity when SP* = A C. C B, or when the
distance from the focus is a mean proportional be-
tween the ¢ axes of the orbit.

Y. To compare the L* velocity at the mean distance with
the mean L velocity.

£* velocity at mean distance : mean £* velocity
/2 C B*
M AC —Va AC e
AC* ACE - : :
Cor. Hence the £7 velocity at the mean distance
is less than the mean £ velocity.

5. The LT velocity round the higher focus of an ellipse of
small excentricily is nearly waiform.

Take P p (Fig. 74) an indefinitely small are,
jon P S, pS, and PH, p H; from P draw Pz
perpendicular to S p produced, and P m perpen-
dicular to H p ; then because the £ P p m =
L SpbB = £ Ppn, and that the £° at z and
m are right Z%and P p common, .. Pn = Pm;
Hence £* velocity round S : £7 velocity round

T
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. W e Shley _.P._ﬂ. : ﬁl ve
H e PHp T Hop s PS: PH -
i 1 1 1

SP:PH VP {Em rn s miibe &

1
locity round S is represented by gpe the £r*

1
velocity round H is represented by =5y or

1
by CD# Which quantity, if the ellipse be of small
excentricity, will be very nearly constant.

6. Required the point in the ellipse where the LT velocity is
an arithmelic mean between the greatest and least LT velocities.

Let D and 8 = greatest and least distances, 2 =

1
required distance; then by the Problem ptE =
2k 2IR 2b* g
¢$!"r—Ez+3:"*D:+§@ UtD'['P

+2D8=47% .]F 48 = 40> —2D ¢ =
2 b i

ba* —92b* — 2&‘—5"&“{1

4o e 2B S0 =
b*

T = V'E{I}—E‘r;-

7. Reguired the same when the L veloeity is a geometric
mean between the greatest and the least.

1 1 1
Here*ﬁ—;}{ rrl S U = D 3 and 2 =

3.1-
VD35 = b

8. Required the same when the angular velocity is an
harmanie mean between the greatest and the least.

Here D?, 2* and & are in arithmetical progression
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3 %2

L

gt but D* 4 3

— 4@ —=2D =4 =20 S .y = """’ﬂff—f)“.

o B A =P P dnd ¥ =

9. Required the point in the parabola wheve the decrement
of the L* velocity is a maximum.

By Art. 105, the decrement of the £* velocity o

ﬁf — " L
y=r , which by Problem is 2 maximuam, ..
ry

§P—pF 1 ] 1 1

or ——— A ——— . —— S g AT
i gttt g ‘

mum, ..y =

10. Reguired the same in the ellipse.

1
Lety = SP, » = P H; then as before .— —
ry
. ] v k- 5
br s is a maximum, or ot --y—g Is a maximum, ..
Pyldo—THoydy 8dy ydv—Tv
I 4 E;; G B i
8 dy
+ — =o;butv=2¢— y,and dv = —dy, . by
Y
. - Ti E (& =1 8
substitution, A 3 J —_——— =0, . 3y —

Y
Tay + 4 0* = o; from which equation y may be
found.
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153. Of Centripetal and Centrifugal Forces in the
Conic Scctions, the centre of force being in the focus.

1. Reguired a general expression for the centrifugal foree
in the conic seclions.

Let ¢ = area described in a given time, then Art.
4 a* L. p
SPP 2SP
Cor. 1. If different bodies revolve round the same

109, Cor. 2, centrifugal force =

centre, ¢ is constant, .". the centrifugal force ce T
Cor. 2. In different points of the same curve, cen-

1
trifugal force o Sy

2. To compare centripelal and centrifugal forces in the
costie seetions.

(1) In parabola; centripetal force : centrifugal :
a8 P8 x PVLESP oS ASR 4T,

(2) In ellipse and hyperbola ; centripetal force :
cenfrifugal 322 S P SV PV 28 P B x
SE eRRIH L N RO

Cor. Hence centripetal force = centrifugal at the
extremity of the latus rectum.

3. Force in any conic section : force in circle at the same
distance, and moving with the same Llwvelocity :: S P :
‘ Lc

(11'

For by Art. 139, force o I xSp: & (since the

£" velocity and distance, and consequently « are
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the same in both cases) s .. foree in conie section :
4

force in ® at same distance, aud moving with the
1 1

same £ velocity it v : Sgp PSP L

Or the same may be tleduced from the last Exam-
ple: for the force in the ® at the same distance, and
moving with the same £* velocity, is equal to the
centrifugal force in the curve, but it has been shewn
Iémm‘. centripetal force : centrifugal (i SP : L L, ..
C.




MISCELLANEOUS PROBLEMS TO THE
TWO LAST SECTIONS.

| ermrm————

1. If the 4th power of the periodie times in different ©°
are as the.cube of the velocities, find how the force, periodic
tume, and velocity vary in terms of radius.

3 R b R

Pt o V3, % PP Vi, and —or — o —,

R Vs
V.« BY,
Again, P* « Vi « R%, and P « R
R 2

Lastly, F « pr & R

2. Find the actual velocity and periodic time of a body
revolving at the distance of two of the earth’s radii above ils

surface.
I lgr
V:JF.Rz g.—;.ﬂr:v’—-’*.
2a.3r /108 r
AlsoP = —_—
v &

3. Given the force of gravity on the earth's surfuce, and
the moon's periodic time ; to find her distance.

Let # = distance then as before

" ?-Tv 'Il.r:r: i QWE
V=WVg 2= &"'—g’—~~='; and P = o

[ A
3 S
i . — -
itlt —_— .ialf:'
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k. A body is revolving in a given @ about ifs centre, if
the absolute force be increased in a given R°., what must be
the change of velocity that the body may still describe the
same circle ?

Let force before change : force after 121 : n;
then since V « ¢! when R is given,
V. before change : V., after 111 : 23

5. What must be the law of the force, that the areas dat.
temp. in all ©° wuniformly described about the centre of force,
may be equal ?

A
P o« — o (by Prob,) A « R?*;
a

ol 400
S F o0 — o0 —.
U .

6. Let the magnitude of a planet : magnitude of earth : :

n : 1, and their densities as 1 : p; vequirved the space fullen
through in 1" at the surface of the planct.

Q¥ of matter magnitude X density

Here I « o
r  a

S
o density X o denstt}r X & nmgn'—‘
S F gru.ut:,r(b)..»\fn X 1: "w"l }{p,

v’ | 20 e g 4/
& ﬂ and S = = H.

P 2 2p

g

Il

7. Required the Ratio of the quantities of matter in planets
which have secondaries revolving round them.
Let ¢ = absolute force = quantity of matter in

primary; D = 1 axis of the ellipse described by the
secondary, or = mean distance of the secondary
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from the primary, P = periodic time of the second-
E.ll':,.' 3
D: D?
then by Art 145, P* o« — .. p « .
= o, 1:"1-
D3
2 may .. be assumed = -—P-:r—; from whence we shall

get the quantity of matter of the several planets in
proportional numbers.

8. Required the Ratio of the densities of planets whick
have secondaries revolving round them.

Let r = radius of primary, s = sin. of the £ un-
der which » appears at the dlbt"HICL D to radius unity :

> ] quan, Mr )
then since density « ———, we have density «
ll'lflgnl-
@ D y3 1
o : but = % .. density ot ——
?3 PI_ 113 2z ‘4’3
: 1
assume .". density = - , and we shall get the
% Sj.

density of the planets in proportional numbers.

0. Required the Ratio of the weights of equal bodies on
the surfuces of planets having secondaries revolving rownd
them.

The weight of any body o quantity of matter X ac-
celerating foree; .". since the bodies are equal by sup-
position, the weight will be as the force with which
the planets attract it,

. : 7 D?
i e. weight « —— o« ——,
= | Bl
This will also give the R°. of the spaces fallen

through in 1” at the surface of the pluneta ; for space
« accelerating force, when the time is given.

Note.—The density, &c. of planets, “‘.Im,h have not
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satellites revolving round them, can only be found by
observing the effects which those planets produce
upon the other planets in disturbing their motion.

10. Having given the quantities of matter of the earth
and moon and their distance ; find that point between them
at which a body would be at rest.

Let @ = distance of earth and moon, # = dis-
tance from the moon where the attractions are equal,
Q and ¢ the quantities of matter ;

e vy
Then 7 — —B—; or 7 — Q )
x (@ e gV x & =3
W
--.1" i —_--i..-_.—.—.—_l'
YQ4+ vy

11. Supposing the carth and moon to be of equal densities,
and diameter of earth : diameter of moon :: 4 :1; shew
that the point of equal attraction between the earth and moon
divides the distance between their centres in the R of 8 : 1.

Let R and » be the radii of the earth and moon,
D and 3 the distances of the point of equal attraction
from each ; then

o
11 SIS
fa P = 3% 1L Chigs
but when densities are equal,
Rrgli R = s h
gl [ I8 Bt [

12, If the attraction of the earth and moon be as their
quantitics of matter direetly and the squares of their dis-
tances inversely ; what is the nature of the cwrve in which a
body being placed wowld be equally attracted to both ?—
(Fig. T4 2)

Let E be the earth, M the moon ; A the point de-

U
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termined, Prob. 10, where, the attraction to botls
bodies is equal, A lying immediately between I and.
M. '
Pt EA =0 0 =4, AN =0 PN ="
Q q QB o q

Then = = —

EPF T PM I A T amar +4
Q—g- £ — qb‘—Qa* 4 Qa-{-g bh. 25—

Q_—-;-'..z"“
bt%:*-mQa = ¢ lF,
" Q—g. = Qa+¢b. 22— Q—gq. 22
Qa+qb

o = *2a — g
Y O=¢ ;
"« the curve is a circle,
Cor. 1. If the 1 ® revolve round the diameter
A C B, it will generate a sphere, in every point of
which a body being placed, will be equally attracted

to both bodies.
b
Cor. 2. The radius of the sphere = ___'%; i g ’

and AM = a.
Qa4 gd

-—— — a = distance of the

LM =
centre of the sphere from the moon’s centre.

Qa+ qb
Q—gq

Cor. 3.

EC:
[ FeR L b Q. a1
ICHCE Q_g 'ﬂ:+ - Q—g Y - Iﬁ!"!“' v

Tt Qa+qgbill :cos. ACD,
SDCF = 2 ACD is known.,

13. Having given the welation between the centrifugal
force and the force of gravity at the carth's equator ; deler-
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mine the relation between the centrifugal foree and the foree
of gravity at the equator of Jupiter, the densitics and times
of revolution round their axes being known.

Let D and 3 be the densities of Jupiter and the
earth, P and p their times of revolution round thml
axes, and let centrifugal force of earth : gravity :
wds

: R
then since centrifugal force = ——— and gravity
D. R?
ot a D.R,
F 1
— X =3
Gl ot L
F F n

+» — in case of Jupiter : — in earth = —
G G

]
S s o ol B B
and F: Giinptd: PRI,

14. The earth being supposed a sphere revolving aboué its
axis with a given g * velocity ; find the point in the plane
of the equator where the centripetal foree = the centrifugal.

Let Pp be the earth’s axis (#%0. 68), E C the
{:quam:, A the required point; put CA = 2, CK
= 7, P = time of the earth’s revolving on its axis,
P T s body revolving at the earth’s sur-
face, then

centripetal force at E : centrifugal at E 11 P* : p*
centrifugal force at K : centrifugal at A I: : a
centripetal force at A : centripetal at F 227 : &*

-"» centripetal force at A ; centrifugal at A I: s P
Tl
Py

¥ iProb. p* 2% = P¥ 3, and » = n. B
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15. The same things betng supposed ; find the curve in o
meridional plane which is the locus of a body, the centrifugal
Jorce of which, opposed to gravity, is every where equal to
the foree of gravity acting upon it—(Fig. 68.)

Let A be the point in the plane of the equator
where centripetal force = centrifugal (see last Prob.),
M an¥ other point in the meridional plane ; put CN

=2, MN =y CA = a; then

centrif. force at A : centrif. at M (or MB) !l a: y

M B: M D (opposed to grav.) i Y& 442 : o

.centrip. force at M : centrip.at Alle* : a* 4

—

. centrip. force at M: MD i@ : o Y@ 4 4,
.. by Prob. y* Vi P = at;
an equation belonging to a curve of the 5th order,
having two infinite legs, to which P p produced is an
asymplote,

16. fn the 10th Lemme, where A1 represcuts the time,
D B the velocity, and A BD the space deseribed ; if a
straight line be drawn touching the curve A B in B the ex-
tremily of the ordinale, the tangent of the £ which this line
mekes with the axis will represent the foree.

-

dr G I

- =t L PTBG =

=g =
tan. £ BED.

19. If a body begins to roll from B (Tig. 77) down the
quadrant BY D, with the velocity acquired in fidling throwqgl:
the given space A D ; to delermine the point where it will
leave the quadrant, and the point wheve it will mect the ho-
rizontal plane.

When the body leaves the quadrant it will describe
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a parabola, let it leave the circle in P; then 1’ is a
point both in the parabola and circle, and P B D is a
circle of curvature to the parabola at P, since I’V «
V2 :
[ hence velocity at P = wvelocity acquired in

falling down }" of the chord of curvature or L ' I';
but it also = velocity down A B 4+ B E;

PR RO B E
. AB 4 BE = = e

2

BC—2ADB . ,
v BE &= 3 = vers. sin. of arc de-

seribed.

Again, from A draw A N parallel to the horizou,
which line is the directrix of the parabola I’ p ; make
L SPr=ZLZNPxr,andPS =PN, and S is the
focus 3 with Sas centre and A C as radius, describe a
circle cutting the horizontal line C p in p; p is the
point required. TFor Sp = CA =po; J.pisa
]mint in the parahuia.

Cor. IftAB = 1} BC, BE = o, or the body will
fly off in a Lillgult at B; if AD be greater than
L B C, then B E is negative, 7. e. ver. sin. is negative,
or the Prob. is impossible.

18. Suppose a body to Legin to move from the point C
(Fig. 78) of the eyeloid A C P ; to find the point where the
body will leave the curve.

Let I? be the point required ; then as before {mnu

P = }chord of curvature of cycloid, and .. of
Ts

parabola since P V « i) PForED =BE,

e AD — AE = AE— AB, ... AE =
AD +AB

o3
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19, {f any wumber of bodies be vetained in hovizontal cir-
cular orbits by means of strings of uncqual lengths, and the
distance of the centres from the point of suspension be equal ;
the times of their revolutions will be the same.

This immediately appears from Art. 84, Ex, 4 ;
for it is there shewn that P. T. o« ¥ S A.

20. A body whirled round by a string C A (Fig. 79.) in
a vertical plane just keeps the string extended at A ; requived
the proportion of the tension of the string at B to the weiglt
of the body.

By the Prob. the centrifugal force at A is just =
the weight of the body, and .. the velocity at A is =

1

that acquired in falling through D A = o also

the velocity at B = that acquired through DA+ AD
5AC
or
2
is given, 7. e. o« space fallen through;
centrifugal force at B: centrifugal force at A,
or weight of the body, 115 : 1;
but the tension of the string at B is made up of the
centrifugal force at B together with the weight of

the body ;
.. tension of string at B: weight of body, :: 6: 1.

;3 . since centrifugal force o« V3, when »

21. If a body suspended by « string oscillate through o
quadrant (the exvtremity of the quadrant being the lowest
point) ; to compare the tension of the string with the weight
of the body in any point of the descent.

Let P (Fig. 80 ) be any point of the descent, W
— whole weight of the body, w = that part of it which
is employed in stretching the string, C = centrifugal
force of the body at P, and x = sin. £ I’ A B to
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radius 1. Then gravity or weight of tle body = g,
k]
Sl = pa;also Centl'iﬂlgul force = — =2ga; ..
o
C4 w=tensionat P = 3 ga,
.. tension : weight 218 ga: gli8ax: 1.
Cor. Hence the tension of the string at the lowest
point = three times the weight of the body.

22. Reguired the same in the eycloid.

Let gravity or the weight of the body be repre-
sented by g, and put D G (Fie. 81) = @, and D F
= x; then

g:w!:DG:DE:DG : DF? iad : ot
LB T e o
Bl It ' g cale =

7 oF 7 o G lpon thereans Sle == vy

2gx

A

. ga*
< C + w or tension at P = =5 + ¢
(L

rz‘} - :rﬁ]"t
— M 2
g8 o)
o 4 o

: . 1
. tension at P: weight i g. R 2 2 e at 4 a®
@

: at.

Cor. At the lowest point, tension : weight 31 2: 1.

23. Let AP (Fig. 82) be a slender rod in the form of a
curve, whose avis N A is perpendicular to the horizon, and

let @ ving be padt wpon it at any point P ; suppose the rod to
revolve about A N with such n velocily that the ring may re-
main al vest al P ; vequired the nature of the curve A P,
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that the ring may also remain at rest at every other point of
the rod.

Draw P T a tangent to the curve at P, put N P
= y, T N = subtangent = ¢, V = velocity of the
rod at P; then if gravity be represented by g, we

&

have centrifugal force at P = — = supposeto P D
L)

e :
: that part of the force which urges the body

Y
up therod, or PE I P T : g,
‘U:.
sSPE = :
[l

again, gravy or g (= P C) : that part of it whicl
urges the body down the rod, or PB 11 P T: ¢;
¢
S 0 = H— —g—-;
g b
but since the body remains at rest, PE = P B, 7. e.
2 gt

B R
in like manner if p be any other point, the velocity
necessary to make the ringrest atp = v g X £ n;
< in order that the body may remain at rest both at
P and p,
vel” at Pmust betovel* atp 2 YT N ¥ zn;

but vel> at P: vel’ atp i PN: p n;
.% in order that the body may remain at rest both at

I and p,

T Nmustbetozn:i PN*:pnd,
or the subtangent must be as the square of the or-
dinate, 7. e. the curve must be a parabola.

Cor. Hence if a vessel of water revolve about its
axis, the cavity formed in the fluid by the revolution
of the vessel will be a paraboloid; for every particle
of the water forming the surface of the cavity re-

and V = g X TN;
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mains at rest by the supposition, and .. by the fore-
going Prob. must lie in the surface of the paraboloid.

24. The curve A B P being a parabola, and the rest as
before ; let it be required to find the proper velocity with
which any point P must revolve, that the ring placed at 1’
may remein al rest,

Let @ = space fallen through by gravity to ac-
quire the required velocity ; then as before we have
WA ow
Pl = PT=pPT

g XTN g% 2AN

and PB = B AT T
Gop o o AN
L= =P, e = AN, or the body

must fall throngh a space equal to the abscissa of the
curve.

TN

Cor. 1If A P be any other curve, x = —g i ot

the space fallen through must = % the subtangent.

23, A-cyﬁndrieaﬂ vessel is filled with water ; with what
velocity must it be whirled round its axis that } the water may
be thrown out ?

By Cor. Prob. 23, when the cylinder is turned
round, the surface of the water in the vessel is a para-
boloid ; and since the eylinder is full at first, the quan-
tity of water thrown out will always be equal to the
content of the paraboloid thus formed : now the great-
er the velocity of the cylinder, the greater will be the
quantity of water thrown out; 7. e. the lower will the
vertex descend ; and since by the Prob. just half the
water is thrown out, the cylinder must be whirled
with such a velocity that the vertex of the paraboloid
may descend till it just totuch the bottom of the eylin-

X
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der ; for in that case the quantity of water thrown out
= the content of the paraboloid inscribed in the cy-
Imdu = 1 content of the cylinder. Let FA M
( Fig. 83 ) be the surface of the water; then since
after it has assumed this position it is supposed to re-
main at rvest, any particle as P is at rest. Leta =
space fallen through to acquire the velocity of rota-
tion at P; then bv proceeding as in last Prob., 2 =
AN: d‘,ﬂ{[ for the same reason the velocity of a 1.‘]-:11-
ticle at M, or the velocity of the cylinder = velocity
acquired down G A or the height of the vessel,

26. A eylindrical vessel of a given magnitude is filled with
water ; with what velocity must it be whivled round its axis,
that the water may just cover } the base ?

Let A B CD (Fig. 84) be the cylinder, Amn B
the cavity formed in the water, let the paraboloid
Am L B be completed, andput HL = 2, HG =
/s then

AB*:mu* i LH:LGIlr:e—1;

but by Prob. A B* : m#* :12:1;

2l ity —M

and2:2—1(1):a:h,

S = 2 & ; hence by proceeding as in the last
Prob. we shall have the velocity of a particle remain-
ing at rest at B, or the velocity of the eylinder = that
Eu:tluu red in hs.lhnrr down H L or 2 /.

27. A frustum of « cone of given dimensions, and having
its smaller end downwards, is_filled with water ; with what
velocity must it vevolve round its axis, that all the water may
be expelled ?

Let AMN B (I%g. 84 ) be the frustum; then in
order that all the water may fly out, the velocity of
the vessel must be such that the fluid would, if' per-
mitted, form itsell into the paraboloid A BN LM
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circumscribing the frostum:; put A B = o, M N =
5 LH = z,and HO =/ ; then

iyt r—hand e et —0 0w A,
a* h ;
Sex = S = space fallen through to ac-

quire the velocity sought.

28. Centrifugal force at the equator, avising from the
eartl's rotation round its oxis : the centrifugal foree in any
parallel of latitude : : rad.)* = cos. latitude)* ; supposing the
carth a perfect sphere.

Let P p (Fig. 76 ) be the earth’s axis, A Q the
equator, A B any parallel of latitude, » = latitude,
and take Q D and B n proportional to the centrifugal
forces at Q and B; resolve Ba into Bm and m o,
then will B m represent that part of the centrifugal
force at B which diminishes the force of gravity ;

R
then since F « Sl (since P is here given) R,

we have

RQD:BaiiCQ:AB:1:caes:a
AndB2:Bm::CB: AB::1:cos 2

S QD : Bm il :eos, A2

Cor. 1. Hence, since Q D is constant, the diminu-
tion of gravity, or that part of the ceutllluﬂnl foree

which dlmtﬂlEhES aravity, in going from pole o e jua-
tor, o CO0s. 7%,

Cor. 2. Requir&d the latitude in which centrifugal

1 th
force = — the centrifugal force at the equator.
m
. 1
Here 17 o 1o 1 1, Scosd = ——
vom
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29, Required the velocity of the earth vound s axis, that
the centrifugal foree in lat. 60° may = force of gravity
there.

Let V = required velocity, C = centripetal force
or gravity, ¢ = centrifugal force at equator, ¢/ =

V=
centrifugal force in latitude 60°; then since I’ « T
we have
Cretera YVt
but.cticl i3 12 s cose alBasdin 3,
S i £ et R
but C = ¢ by hypothesis, /. V = ¥4z,

30. Required to find how the weight of the same body va-
ries on different parts of the eartl’s surface,

Let P = time of the earth’s rotation round its
axis; p = periodic time of a body revolving at the
earth’s surface; C = centripetal force or force of
gravity ; ¢ = centrifugal force at the equator; ¢ =
{‘]EIlll'ii.l.lg:ll force in any other parallel of latitude;
then

e 1% 2 eos. A

& Cre sl PP p tos. a2,
& C: C—¢ (or comparative weight) 11 P?
: P* — p?. cos. 2%;
but the Ist and 8d terms are constant,

e —

Joweight oo P* — p?, cos, 2%,

Or thus. Let » = radius of the earth, v = velg-
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city round its axis, then since F o V2 when R is
given,
- Lt r} - p .. B @ z
Ceeii Vv D pir ey

& c:c it 1% cos. A *

sl g ry vt cos. Al?

ir 4
g1

& C : C — ¢ (or comparative weight) *:
2 g — vt cos, AP
s weight o« gr — %, €os. » 2,

Cor. To compare the force of gravity in any two
latitudes.

Let L = cos. lat. in one of the places, I = do. at
the other; then since force of gravity « g r — v*.
cos. A1*, gravity at one place : gravity at the other
wgr—1Av rgr—DPov oor i PP—p* L? ¢ b3

31. Required the Ratio of the times of oscillation of a pen-
dulum in any two given latitudes, supposing the earth a sphere.
Let L and [ be the cosines of the two latitudes, T

and ¢ the times of oscillation of the pendulum at those
latitudes, P and p as in the last Prob.; then since

time of oscillation o IVE T when the ]el]gth of the

1;‘L;|.'
pendulum is given, we have by Cor. Prob. 30,
T:tnvYP —pR: VPP _ 2L
Cor. If the two places be the pole and the equator,
we have ! = cos. 0 = rad.,, and L = ¢0s.90° = 0;
S e P
32, In a given latitude a pendulum will oscillate once in

e second, supposing the earth wnot lo revolve round its axis ;

required the o motion round its axis, that the pendulum
mery oscillate once in fwo seconds.

Let v = required velocity round its axis; [ = cos.
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latitude ; F = force of gravity at 1st, or when the
arth is at rest ; f = force of gravity when it revolves

1
round its axis; then since time of oscillation « —=— 7

when the length of the pendulum is given,
1 1

L9 W T
11235 "f' TV
" “"”g?'-ﬁ v* g:-" (by Cor. Prob. 50);
Sogr=4gr — 4 PR,
$gr ¥
& v = g?, and v = _3_51_1".
4 [* 21

33. Supposing o pendulum in latitude 60° fo oscillate
seconds, when the earth revolves round its axis with a velocity
of v feet per second ; required the velocity of the earth round
its aais, that the pendulum may oscillate once in tiwo seconds.

Let V = required velocity, then, as before, com-
parative gravity o gr — v*. ¢os. 2\* o« (in this case
where latitude = 60°. ) 4 gr — vs,

1 1

2 Vagr—VF UV gr — v
Sodgr—uvt = 16gr —4 V3,

M2 or 4+ v
and V = « = % .

34. A pendulim, vibrating in a certain time at the pole
of the earth, vibrates onee less in n times when carried to
place 300 from the equator.  In what time does the carth re-
volve round its axis ?

Ne@, of vibrations when length is given o v | s
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(TTEw
[F §% e =~

:rr:n—ll'.""gr:""':: 4 ?

f2n—1

< by reduction v = -3 — X v',i,g,:

35. Suppose the earth a sphere, and that a pendulim
whose length is (a) inches vibrates seconds in latitude 60°.
What will be the length of a pendulum that vibrates seconds
at the equator ?

Here L. o« I' when time is given,

r

.'.rI:L:ZP""—-'-;:P‘-ﬂP‘,

41P* — 4 p?
4 P*—p*

SsL=aX

36. Compare the space described in 1" by gravity in any
given latitude with that which would be deseribed in the same
time, if the earth did not revolve round its axis.

This in other words is to compare space described
in any latitude in 1” with that described in the same

time at the pole.
Here S « I, .".
S. in given latitude : S. at pole i P* — p* L*
=P
Cor. If the latter place were the equator we should
have
S. in given latitude : S, at equator i P* — p* L*
: l}z- . f P:_
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37, Let the Force act in the direction of the ordinates ; o

Sind the curve when T o b §
ya
4 d*y 1 da*
I.‘ X, — _{I,r“-_ 4 :?;;, t'l e {fz‘:'; (&4 _:yz'_,
dy da® di? da®
and — dy d*y « PR P e

Sody ""’; o da, and ¢ o _y:,
or the curve is the semicubical parabola.

38. Required the curve in which a body, revolving by a
Sorce which aets in lines 17 to the axis, shall approach or
leave the axis with a veloaty always proportional to the or-
dinafe.

dy dy
Here v « y or dy o ¥, . — is constant, or —
4 o

o dr,

el
and if M be a proper constant Q¥, M. P dr,
1

Y
which is the property of the logarithmic curve.

39. Compare the velocity at any point in a curve with
that in a @ at the same distance when the £ formed by the
distance and tangent is ¢ minimum. (Fig. 8.)
ydp —p dy

yz-

£ 0,

il
ShéSPY:%:mh&

di
b '%}-;-{ = % ch. curvature = y, .".

Yive.ino Yy ¥yta-n

40. If the force vary according to any low of the dis-
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tance ; shew that in any orbit, at the point where the centri-
petal and centrifugal forces are equal, the velocity towards
the centre of foree is a maxtmum,

N
By Art. 103, paracentric velocity « Y il
rY
i 1 . Lo oo
<+ when a maximum e gl
2 dp 2 dy 2 dy 2p dy
R T T e A et -4
p y ip dp

o2 S0 S1Y" . PV, . centrip. = centrif. force.

41. Find in what eurve a body must revolve round a
repulsive force, varying as the distance from a point, so that
its velocity may always equal that in a © at the same dis-
tance round an equal attractive centre of foree.

It is evident the curve must be an hyperbola, the

centre of force in the centre; and it may be proved,
as in Art. 135, that

the velocity in this curve : velocity in @ at the
same distance round an equal attractive force
-3t B L gl o

~. by Prob. CD always = C P, which is the
property of the equilateral hyperbola ;

the body .. moves in this curve.

42, How must the foree be changed in an ellipse, to make
a body move in a parabola ?

V2 1

F o gy « (in this case where V is given) 573
g SP.PH

“. Fin ellipse : Fin parabola 114 SP : —¢x&—

< 2AC: PH.
b g
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48. How must the force be changed in an ellipse ot tie
lower apse, that the body may describe a circle ?

; : B e
As in the last F « PV

Fif et o b oldiiam €= = P g
mell.  ¥.1n ® .. 2 distance : AC .« tlistance

= & lat. rect.

44, Compare the velocity of a body at the extremity of the
latus rectum of an ellipse with the velocity at the mean dis-
tance ; force being in the jocus.

L b - SY: o
V2 at extremity of L. R. : V* at m, distance :: C I}*
o iy
S P
2CB* : CB 5 " HP:SP

)

L
H2AC—7Z 5 2AC —CP  CB
2. SC
11 4 & 1} — &, where ¢ = excentricity = AC

45. A comet is in the perihelion of a given ellipse ; com- -
pare its velocity with the velocity it would have in a para-
bola at the same perihelion distance—(Fig. 14.)

V* o« PV when F is given,
2B
<. V*in ell. : 'V2 in parab. i R P 4MS

AN Z2AGC S 1 e 2,

46. If @ body move in a conic section (force tending to
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Sforus ) ; the velocity at the distince S T 15 fo the velocity at
any other distance S Q as @ mean proportional between H P,
and 5 Q is to a mean proportional between S P and H Q.

1
¥V o Sys oF « PV, i

[SQ [P
T o, i W ~ ST L | S
1‘ L] at. ].- o 1"‘! ﬂtr Q LR | (J Hi 1{ Q H - {..-’ ]1 v P I:I

47. If a body revolve in an ellipse (whose major and mi-
nor aves are given ) with the force tending to the focus, and
the tinie of revolution be given ; find the wctual velocity of
the body at any given point in its orbi,

Let? = per. time = P.T.in @ rad. AC; ¢ =

4 ax. maj. d = any distance; then velocity at the
2ra

mean distance = velocity in ©® radius A C = =

v since V¥ o Sy

2Qaa i d g

——:; V at distance d i3 T

4
v Qaa (@ q— d
AL Y )

AB. Determine the (£ r distance of a body from the vertex
of an ellipse, whose excentricity = } ; at which the velocity

: greatest velocity =1 1 : “".Sq.—( Fig. 14.)
1

Since V* o« ——,
e g

<15 il ol M-

a8 MY Ol —— Rt 5
i s L Th
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<8P = P H, or the body is at B;
N
to find £ BSM wehave SC = }, mdCB = __>,
S BSC=60%and BSM = 120°.

49. Gliven the velocity of projection = to the velocity in a
1
etrcle at the same distance (F o D ) ; required the direction

an which a body must be projected at a given distance, that
the focus of the conic section described may bisect the } ax.

maj. : and determine the magnitude and position of the axes.
—(Fig. 14.)

The point of projection must be the extremity of
the 1 axis minor, and the given distance = SB =
A C = (by Prob.) 2 S C; also if a tangent be sup-
posed drawn at B, the £ it makes with SB = £ of
projection = B 8 C; to find which we have

SB-SCIZv] ik cos. BEC =4,
" £ of projection = 60°. Hence { ax. maj. = the
oiven distance, and makes with it an £ of 60°.;

A S s - @ 3 & 3

also BC = hB‘—bC‘:AC._Q.

50. The times of moving from the perilielion to the ex-

tremity of the lat. rect. in different parabolas vary in the
sesquiplicate ratio of the perihelion distances.

i

N 5 -

3

For P. T o — iox —= “et' =p==wom LA,

it ¥ B

51. Having given the major and minor axes of an ellipse,

and the force in the focus; compare the P.'T. in the ellipse

with the P.T. in a @, whose radius = greatest distance in
the ellipse—(Tig. 14.)

P. T. in an ellipse or P.T. in @ rad. 5 B. :
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P.T.in © rad. SA - SBs: S Az

i a i
nﬂ*: +*’r &‘=nr::l:l+a-lf—

52, Given the velocity at any point of an ellipse (foree in
dhe focus ) ; it is required to find the per. time.

Let v = velocity at the given distance & ; then
v : velocity at mean distance or velocity in ® at mean

r d
distance :: 1 : —_—
v 2a—'d
A ; d
<. velocity in © at m. distance = v f——
v 2ald
. P.T.in @ at mean distance = P. T. in ellipse
cire. 27a [f2a—d '
— _‘:‘r_ — U L] v d -

53. Compare the time of a revolution about the centre of
a given ellipse with that about its focus.

& =
By Art. 187, P. T. round centre = ‘-f,—
3
= 27 as
and by Art. 145, P. T. round focus = Vel
¢

e Papis : gi.

54. Find the actual P.'T. in a given ellipse (centre of
Sforee in the focus) ; supposing the force at a given distance
(d) is to the force of gravity as F : 1.

Force at distance d = g F, & .". at mean distance

d:
= e —
40
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S P.T.in @ at mean distance or P. T. in ellipse

* [ 44

—

. >

55. If an n'® part of the earth were taken away, what
change would be produced in the moon's orbit, and in what
ratio would her periodic time be increased, the moon’s orbit
before the change being supposed circular ?

1
Since I' « o the new orbit will be one of the

conic sections, the centre of the earth being in the
focus. Let.. AP Q (Fig. 75) be the original, and
A R M the new orbit, and let the change take place
when the body is at A; then since the original orbit

is a @, the point A will be an apse of the conic sec-
tion A R M.

V2 1
Now F o« —— o (in this case) — ;
Py Py
.« force before change or (1) : force after (1 — %)
2 CD?*
i—— 128 A,
AC
: 2CD? 2SA.SM
fe.n:n—1:: 2 SAIl—————:128A
AC AC
o S5M:AC::2AC —AS: AC;
w—11
i'.J"LC: '__'__+SA|
n—2

Now (1) let » = 2, 7.e. let 1 the earth be taken
away, then will A C be infinite, or the curve in that
case will be a parabola.

(2) Let n be less than 2, 7. ¢, let more than § the
earth be taken away, then will A C be finite but ne-
gative ; .. curve is an hyperbola.

(8) Let n be greater than 2, or let less than 1 the
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earth be taken away; then will A C be finite and po-
sitive, or the curve in that case will be an ellipse,

n— 1
whose } axis major = — . S A,
n— 2
To find the change in the periodic time; we have
1 ax. mﬂj.\f,
> PNt oo b
pd
.S Az
. P.T. before change : P. T, after : i vipd
' =y
"f_:,% SA*
ﬂ. .
= ”n—E!z:w}n—l;
J

n

which R is only real and finite when » is greater
than 2, or when the enrve is an ellipse.

Cor. In the two last cases Lax.min}¥ = AS.SM
— AS.AM—AS = . S Az,

N o—

56. Supposing the velocity with which a body would re-
volve in a circle at the earth's surface to be given ; what must
be the velocity, the direction continuing the same, that the ex-
centricity of the orbit may be 1000 miles ?

Let AP Q (former figure) be a great ® of the
earthy A R M the ellipse ﬁescribed by the body, Sthe
centre of the earth or focus of the ellipse, S C the
excentricity; put AS = n, SC = a, ¥ = velocity
inARMat A, v = velocityin APQ at A;

1‘_1'1
then since I' « PV and that IY is the same at A

in both cases,
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¥ « P V: hence
- CDP 28A.SM s'x
AQ 2 i
S M:ACHi2a 4 r:a + 1,
[2a 4 r

" V=vvV —,
a + r
Cor. If @ be infinitely greater than », or the path
of the body be a parabola V = » # 2.

V3.

57. The velocity in an ellipse at the greatest distance s
half that with whick a body would move in a pavabola at
the same distance ; what is the excentricity of the ellipse ?—
(Fig. 14.)

Viome PN,

I-g C_l‘!: 1 . _{‘:Bl ) 1‘ C
L: 41— : 4 SA g (SM):2AC,
AC 5C
- Gy ;ﬂ]]dh'cﬂlﬁ—-ly

58. Suppose a comet in its descent towards the sun to im-
pel the earth from a civewlar orbit in a direction making any
acute L with the eartl's distance ; and the velocity after
impact : veloeity before : L AL T Jind what change
would be produced in the length of the year.

3:2::HP:AC::2AC—7r: AL,
}i .441 C _— '2 s
; R e
~. PT. before impact : P. T, after i rz : 273
10 v

59, If with a force varying as . a velocity which is

Dl

to the velocity in a © s ¥3.¥2%atan £ &, and at a
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distance d, a body be projected ; find the excentricity of

the orlit deseribed.

As before, AC = 24d.
Amain, p 1 dilsin. % 2 1

op =d.sin Y, but p* = 0> — 8.8
: 9AC—SP
d 0
= 0F — = _ -
3d 3

L o SR, S

Sl 2O R R R e B =V A 2 R
= & 4d* — 8 d2 sin. 92
5C e

id AP Nl e Mg
mldﬁcmc_v’l it|.‘:.111.’.i.

: 1 : ;
G0. Force varying as e @ body is projected from a gi-
ven point in a direction whick makes an £ of 60° with the
distance, with a velocity whick is to the velocity in a para-
bolzas 1 : ¥ 8. Find the magor axis, the position of the
apse, and the excentricity of the ellipse described.~—(Fig. 14.)

Ve PV,%1:3:1:2AC—8SP:2AC,

2SS P SP
and PH = =t

A ] et

Again, SP: SY :i1:5in. 60:: 2 Vs,
3 S 1]3« S_ PJ- S 1]
Rl el — and P Y? = 3 &PYz?
= PH, .. A*SPH & SPY are similar and equal.
Hence £ PSA =30° and PSM = 150°
= position of the apse,
8% .« BP ME

Fastly, SH = SY & SC = i e

Z



61. Given the major and minor aves of an ellipse ; re-
quired the radius of a © described round the focus as a
centre, in which the periodic time is equal to the time of
moving through the aphelion, from mean distance to mean
distance—(Tig. 14.)

Let P = periodic time in required @. rad. 2; p
= time from mean distance to mean distance ;

then since P. T, o« — we have
T

vx* tareaofelll +2 Ao SCB

P e
: Vo ¥
Tad :
Sl R A
L 2 s 6 g '_b:.g 3
= W 2 I il
. ARSI
caat F2af Va2 —1;
r-*m-}-ﬂrr'e‘*”n" fﬁ%
hut P&, 0 = - )
7 + 2¢\3
or, in terms of ¢, = a.—: )

62. The perihelion distance of @ comet is % the distance
of the earth from the sun, wnd its ovbit which is parabolical,
cnel the earth’s which is civewlar, are in the same plane ;
howw many days is the comet within the earil's orbit ?

Leét PT p be the earth’s orbit (Fig. 69 ), then

frice B.T, ot —
since P. T. o
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P. T. of earth : T, through P A »
GJePTp SPAgp
P 1!. I_; . V_E_ =

Now to find parabolic area ST* A p we have

SP:r:AN+AS=AN+§,

- g .?. -
S AN = —q—,ﬂml AS =8N
Asaniy 3RS A N= PN, A Pp=2 PN

s g s
3
16 r* —_
hence area PAp = £ ANPp = ?;4 < NE
s S
and a PSp=PN.SN = Q.Vz,
LTHEs o
SSPAp=PAp—PSp = T
27
_ ? 4 r
AlsoL. R.in @ : L. R.in pnrab.::ﬂr:—g_ e 8:2,

S P.T. of earth (365°) : T through SP A p

ar®r. 102 o S
. — w . WS a i 10 3.
Wog

63. Find the perilelion distance of the comet that stays
the longest time within the cartl's orbit.—(Fig. 69.)

2
SPAp = 3 AN.Pp — aPSp

4
— — AN.PN— SN.PN
|
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x 4 ANNPN—=3SN. PN

o« PN % ¢+ AN_—38N.

PutSP=r, AS=a, . vr = AN 4 7 and
AN=7r—aua,

= RN e g a i P A N e

Vb, r—a,

S Area o 'V’rl-:r. r—a Xr <4+ 2a

SIPPAp A T
. by Prob. __} = MRE.HT dr.r=—z.r42x
v L U

= max. or r — & .7 + 22)* = max,

=
<« by reduction @ = 5

G4, Given the perihelion distance of a comet deseribing a
parabola, and the radius of the carth’s orbit here supposed

cirewlar ; compare the time of the comet's moving through 90
degrees of true anomaly with the length of the solar year.

Put. ST = », A S:= a, then

T $d.2a
P. T, of earth : T. tlu‘uugh 90° 1: ——— :L'—
. v 2r . 4 4 a

i

3 a
o 2 a2

:‘V"g_' 3

L]
-

65. An imperfectly elastic body vevolving in an ellipse,
whaose excentricity is L, is reflected at the mean distance by a
piane coincident with the distance so as to move dafter impact
in the divection of the axis minor ; find the degree of elas-
ticity, and compare the periodic times in the two ellipses.—

(Fig. 14.)
In ASBCsinceSC=Jand SBb=1, £BSC



181

= 60° = £ of incidence which the direction of the
body makes with the plane, and .". the £ of reflexion
which the direction of the body makes aftei impact
with the same plane produced = 30°, .. by mechan-
ics,
Velocity before imp. : velocity after % sin, 60° :
sin. 80°:: Y 8 1 1;
but V* ‘o BV
.+ ch. cur. before impact. : ch. cur. after 21 3 : 1,
orif# = %} ax. maj. of new orbit,
andio =18 Bi= 0,

Q2a* 2a.2x—a

‘_(I : » bl Y S
- 5{?— &
N A =‘_'5"' . ® ;
T, belore s P. L oalter &3 % ; = 2:5¥s5
g VE.

Lastly by mechanics,
I compression : I of elasticity :
tan, 60° : tan. 30° .3 8: 1.

66. Find the R of the velocity at the extremity of the
latus rvectum of an ellipse (the force being in the focus) to
the velocity in a @ whose radius is the distance of the near-
er apside from the focus, and shew that as the excentricity
is encreased, this R°. approaches to a R, of equality.

Yo
= oxr ?

SY
. V. at extremity of L. R. : V. in (5:. r. 5 M

e e i

(Fig. 14) % VERCT =R : YVALLERA

V x
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Ly EEE e e AN ETE e T e
o MAC 380 YA 4+ AG 8C

s %] 2 V] ¢, where e = E’E
+ ¢ + & AC

= excentricity.

This R°. decreases tille = ¥ 2 — 1, it is then least,
and thence approaches to 1.

67. df a body revolve in an ellipse, the force being in one
focus, the £*. velocity about the other focus is not accurate-
ly equal to the mean LY. velocity exeept at four points.
Determine those points.
By Art. 152, Ex. 5, we have
1 1
rvel.round S : £ vel.round H 2! o=
5 e SP ' CD:

and (Art. 152. Iix. 3) mean £°. velocity round S ::
1 1
AC.CB" S P

S mean £". velocity : £”. velocity round H ::
1 1
R OB C D
s when Z£', velocity round H = mean £, velocity,

GIF = AC.CBorSE PH =AC OB,

Sr.2a—a —abandae =« + Y& —ab.

Or the four values of C D may be determined geo-
metrically exactly as for CP in Art. 186; and if to
these conjugate diameters be drawn, we shall have the
required distances,
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68. The excentricity of the cirth's orbit being small, the
variation of the £°. velocity is nearly proportional to the
cosine of the £ made by the radius vector and the perilielion
distance.

Variation of £*. velocity from mean Z£'. velocity

1 1
el A=
1 4 e. cos.v)? 1
i a. 1-_——_-;5‘]:' Bk .-;". y &

x (I + 2e cos. v + &e.) — (1 —3 ¢ &)
x 2 e cos. v + &c. x cos. v nearly.

69. Shew the earth’s LT, velocity to be nearly twice as
great as it would have been had the earth's motion been wni-
Jorm.—(Fig. 14.)

Let A and @ = earth’s £, velocity at M and A ;
A’ and ¢’ = D?, supposing the motion had been uni-

form ; then since £7% veloeity o 5 in the 1st case,
1

and o D in the second,
A—a:a:.:SA* —SM?*:SM*::2 AC.2 SC: SM>

and & : AA—a .. SM : 25C: but

1 1
a:a iV at A : mean v* SﬁL LB“CB:SJ’L

vl g =gt A OB :SM. S A2 AC
:CB::2: Y1—¢* i: 2: 1 nearly, since the ex-
centricity of the earth’s orbit is small.

FINIS.
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