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PREFATORY NOTICE.

Jacques Ozanam, the original composer of the ** Recreations in Mathe-
matics and Natural Philnsuph}",” was born in 1640, at Bouligneu, in
what is now called the department of Ain, in France. His family was of
Jewish extraction, but had long been members of the Church of Rome ;
and having landed property to which some ecclesiastical patrcnage was
attached, Jacques, who was the vounger of two sons, was intended for
the church ; and he accordingly entered on a course of study suitable for
his destination.

He is said to have been of gay, lively, and expensive habits, and to have
shewn no inclination for theological pursuits. Chemistry, mechanics, &e.
w_hich have a more obvious connection with the business of life, attracted
his attention ; and after his father's death, which took place about four
years after he began to read for the church, he abandoned theology, and
attached himself to science.

His opportunities of receiving assistance in his scientific studies, were
so scanty, that he may be considered as having been self-taught; and
though he cannot be regarded as having attained great eminence as a
mathematician, even among his contemporaries, he was the author of a
good many useful works, whose popularity carried them through
several editions.

It would appear, however, that in attaching himself to science, he did
not at first look to it as a means of living ; for soon after his father’s death
he removed to Lyons, where he taught mathematics grafuitously, consider-
ing it a degradation to receive pay for his instructions.

It is probable, however, that he soon changed his opinion on the sub-
ject. He was addicted to gaming; his private pecuniary resources were
limited ; and the stern realities of distress would speedily dissipate all
illusions about the dignity of teaching science for its own sake.

An act of striking and disinterested liberality, which he performed
towards two strangers, having been mentioned to the chancellor of France,
that distinguizhed personage invited the Lyonnese mathematician to Paris ;
where, after some time spent in dissipation, he married a young woman
without fortune, but who proved te him a most excellent wife. After
bearing to him twelve children, all of whom died young, she died in
1701, deeply lamented by her husband.

Ozanam subsisted in Paris by teaching mathematics, and met with con-
eiderable success, especially among foreigners. But, upon the breaking
out of the war of the Spanish succession, most of his pupils quitting France,
his professional income became both small and precarious,

He lived for some years in comparative indigence, but, towards the
close of Lis life, his difficulties were somewhat alleviated by his being
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admitted an éléve of the Academv of Sciences. He died of apoplexy, at
Paris, April 3rd, 1717, aged 77 years,

He was of a mild and cheerful temper, generous to the full extent of
his means, and of an inventive genius; and his conduct after marriage
was irreproachable. He was devout, but averse to disputations about
points of faith. On this subject he used to say, '* It is the business of the
Sorbonne to discuss, of the Pope to decide, and of a mathematician to go
straight to heaven in a perpendicular line.”

Jean Erienne Mowntucra (who so greatly enlarged and improved the
“ Recreations '’ of Ozanam, that he may be said to have made the work
his own,) was the son of a merchant at Lyvons, where he was born on Sept.
Gth, 1725, He wasleft an orphan at the age of sixteen, and was educated at
the Jesuit's College in his native town. His attention was chiefly directed
to the ancient classics; but having a natural taste for philological studies,
and a powerful memory, he was enabled to acquire an accurate knowledge
of several modern languages ; among which Italian, German, Dutch, and
English are mentioned. Under Le Pere Béraud, who was subsequently the
tutor of Lalande, he made considerable proficiency in the study of mathe-
matics and physics.

Having completed his course of general education, he studied for the
legal profession, first at Toulouse, and afterwards in Paris; where at the
scientific soirées of M. Jambert, he became acquainted with Diderot,
D’Alembert, Lalande, and other scientific men of the highest character,

Having published several scientific works, by which he acquired much
reputation, he began to be employed by the government. He was sent as
Intendant Secretary to Grenoble, where he married the daughter of M.
Roland in 1763 ; and in the following year he was sent as secretary and
astronomer rﬂ}'al to the expedition for culunising Cavenne.

On his return to France, after a few years’ absence, he obtained the
situation of “° Premier Commis des Bitiments,” and in addition the office
of ** Censor Royal of mathematical works,” an appointment which was
merely honorary.

It would appear, that though the income which he derived from his offi-
cial appointment was not large, vet, from his prudent and economical
habits, it was sufficient for the immediate wants of himself and his family.
He employed his leisure in educating his children, and in scientific pur-
suits ; following the latter, it is said, in secrecy, lest he should be suspected
of neglecting his official duties.

It was at this time that he edited the new edition of the ** Recreations ;"
aud so carefully had he concealed his connection with the work, that, on
its completion, a copy of it was sent to him, in his capacity of censor, for
examination and approval.

Besides expunging from the work of Ozanam much that was absurd,
puerile, and obsolete, he enriched his edition with dissertations upon almost
every branch of practical science ; and much of what he added is valu-
able even at the present day.

But the name of Montucla is best known from his ** History of the
Mathematics,” which contains, besides what is strictly historical, treatises
upon all the leading departments of the pure and applied sciences; and
abounds with interesting details respecting the discoveries and improve-
ments which have contributed to their progress.
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The French Revolution put an end at once to his office and the little
savings which his regularity and economy had enabled him to make
from his income,—throwing him on the world in his old age, stripped of
every thing but his integrity, and the love and respect of his friends. He
died on the 18th of December, 1799.

In 1803, a translation into English of Montucla’s Edition of Ozanam's
Recreations, by Dr. Charles Hutton, of Woolwich, was published in Lon-
don. In this Edition were incorporated many valuable additions and obser-
vations by the learned and judicious translator, who lived to superintend a
&{.;..‘;Td edition, which, with still further improvements, was published in

Dr, Hutton was born in Percy Street, Newcastle-upon-Tyne, on August
14th, 1737. His father, who was emploved in the coal works in the
neighbourhood, was understood to be descended from a respectable family
in Westmoreland. He died when Charles was only five years old; and
his widow married a person named Fraim, whose employment was that of
a colliery over-man.

From an accident which happened to Charles at play, he was not sent
when a boy to work in the pits, as his brothers were; but kept at school
for some vears, in the hope that he might be enabled to earn his bread by
his scholarship. He was taught to read by an old woman who conducted
a little school in the neighbourhood, and to write by a schoolmaster named
Robson, near Benwell, a village near Newcastle ; and he attended after-
wards a school at Jesmond, kept by the Rev. Mr. Ivison, a clergvman of
the English Church; and on Mr. Ivison's removal to a curacy in the
county of Durham, Mr. Hutton succeeded him in his school at Jesmond.

It would appear that between his being the pupil and the successor of
Mr. Ivison, Hutton had worked for some time (probably not long) as a
miner at Old Long Benton colliery,

Mr. Hutton’s school at Jesmond soon increased so much that he was
obliged to remove to a larger room in the neighbourhood,

While conducting with such success his village seminary, he attended
in the evenings the school of a Mr. James, at Neweastle, to prosecute his
studies in mathematics; and Mr. James some time after declining his
school, Mr. Hutton embraced the opportunity of settling in Newcastle as a
teacher. In that town, the metropolis of the northern counties, his suc-
cess was very great : and though his previous associates had been chiefly
among the humbler classes of society, his manners, as well as his talents,
rendered him acceptable as a private teacher in the famihies of the higher
classes. Among others, he had for his pupils the Jate Lord Chancellor
Eldon, and his lady, who was the daughter of a wealthy banker in New-
castle.

While in that town he published his Arithmetic, his Mensuration, and
his Tract on the principles of Bridges; and he made for the corpora-
tion a survey and l}lam of the town. He became also a lﬁildil]g writer in
the Ladies’ and Gentleman’s Diaries, and other scientific periodicals of
the day.

On the death of Mr. Cowley, professor of Mathematics in the Royal
Military Academy at Woaoolwich, Mr. Hutton offered himself as a candidate
for the situation ; and after an examination, which lasted several days, the
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examiners (Bishop Horsley, Dr. Makeslyne, and Col. Watson) unanimously
recommended him as preferable to all the other candidates, and peculiarly
well qualified to fill the situation, and he received his appointment accord-
ingly on May 24th, 1773. :

Soon after his settlement at Woolwich he was elected a Fellow of the
Royal Society ; and at a later period he received the degree of LL.D.
from the University of Edinburgh.

The Stationers’ Company appointed him general Editor of all their
Almanacs, except the Ladies’ Diary and Poor Robin, and he held the
appointment for forty-six years.

The editorship of the Ladies’ Diary afforded him an opportunity of
becoming acquainted with the talents and acquirements of many ingenious
individuals, who were improving themselves in science by endeavouring
to solve the mathematical questions proposed in the Diary; and as oppor-
tunity occurred, many of them were drawn by his kind discrimination from
obseurity, and placed in situations in which they have been eminently
useful to society. Indeed it has been justly said, that “ of this class of men
he was eminently the patron.”

After filling with distinguished ability the situation at Woolwich for
thirty-four years, he was permitted, at his own request, to retire ; and the
Board of Ordnance assigned him a pension of £500 per annum, in testi-
mony of regard for his long and faithful services.

He settled in London, and enjoyed for the last sixteen yearz of his life the
society of all the leading men distinguished for science and worth in the
metropolis,

He died on January 27th, 1823, and was buried in the family vault, in
the Churchyard of Charlton, near Woolwich.

For a full account of the various scientific labours of Dr, Hutton, and of
the peculiarities by which he was distinguished as a teacher of science, we
must refer our readers to a memoir of him by his friend, and eventual suc-
cessor in the chair at Woolwich, Dr. Olinthus Gregory, published in the
Imperial Magazine for March 1823.

Both Editions having been long out of print, the present Editor was
induced to undertake the superintendance of a new one; in which, by omit-
ting what appeared trifling or of doubtful utility, and introducing in its
stead a popular account of the more interesting discoveries in modern
science, the work might continue to be to the present generation a useful
manunal of Scientific Recreation, as its predecessors have been to the
generation which has passed,

Greenwich Hospital,
14th September, 1840,
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MATHEMATICAL AND PIHILOSOPHICAL

RECREATIONS,

PART FIRST.

CONTAINING THE MOST CURIOUS PROBLEMS AND MOST INTERESTING
TRUTHS IN REGARD TO ARITHMETIC.

AriTHMETIC and geometry, according to Plato, are the two wings of the mathema-
tician. The object indeed of all mathematical questions, is to determine the ratios
of numbers, or of magnitudes ; and it may even be said, to continue the comparison
of the ancient philosopher, that arithmetic is the mathematician’s right wing; for it
is an incontestible truth, that geometrical determinations would, for the most part,
present nothing satisfactory to the mind, if the ratios thus determined could not be
reduced to numerical ratios. This justifies the common practice, which we shall
here follow, of beginning with arithmetic.

This science affords a wide field for speculation and curions research : but in the
collection which we lere present to the mathematical reader, we have confined our-
selves to what is best calculated to excite the curiosity of those who have a taste for
mathematical pursuits.

CHAPTER 1.

OF OUR NUMERICAL SYSTEM, AND THE DIFFEREXNT KINDS OF ARITHMETIC.

It has been generally remarked, that all or mest of the nations with which we are
acquainted, reckon by periods of ten ; that is to say, after having counted the units
from 1 to 10, they begin and add units to the ten; having attained to two tens, or
20, they eontinue to add units as far as 30, or three tens; and so on, in succession,
till they come to ten tens, or a hundred ; of ten times a hundred they form a thou-
sand, and so on. Did this arise from necessity ; was it occasioned by any physical
cause ; or was it merely the effect of chance ?

No person, after the least reflection on this unanimous agreement, will entertain
any idea of its being the effect of chance. 'There can be no doubt that this system
derives its origin from our physical conformation. All men have ten fingers, a very

few excepted, who, by some lusus naturm, have twelve. The first men begwn
B



2 ARITHMETIC.

to reckon on their fingers. When they had exhausted them by reckoning the units,
it was necessary that they should form a first total, and again begin to reckon the
same figures till they had exhausted them a second time; and so on in succession.
Hence the origin of tens, which being confined, like the units, to the number of the
fingers, could not be carried beyond it, without forming a new total, called a hun-
dred ; then another ealled a thousand, and so cn.

From these observations,a curious consequence may be drawn, If nature, instead
of ten fingers, had given us twelve, our system of numeration would have been
different.  After 10, instead of saying ten plus one or eleven, ten plus two or twelve,
we should have aseended by simple denominations to twelve, and should then have
counted twelve plus one, twelve plus two, &c., as far as two dozens; our hundred
would have been twelve dozens, &e. A six-fingered people would eertainly have
had an arithmetic of this kind, which indeed would have sufficiently answered every
arithmetical purpose, and indeed would have been attended with some advantages,
which our numerical system does not possess,

In consequence of an idea of this kind, philosophers have been induced to examine
the properties of other numerical systems. The celebrated Leibnitz proposed one,
in which only two characters, 1 and 0, were to be employed. In this system of
arithmetie, the addition of an 0 multiplied every thing by twe, as it does by ten in
common arithmetic, and the numbers were expressed as follow :

I 1 T T e e 1 BIAYBNL 55 mimsiaie s o sk 1011
ol L R e, BT T B S HL O 10 TorElNE e e Traviied CH e 11040
TP ik ayme dtaata A e BTl 11 Thirteen.cccas sssnssannses 1101
LI | R R ) (] ] ) TOOUEBON o s s i ok S 1110
BUATE it i s e R 1031 | 50 e 11 T T S A prpn S 1111
R ks i i, w s e e . ALK Bixteen ....ssssseeiaenass 1000
Bevem ...o... PRI s Thirty-two....csivueeeven. 100,000
Bight . icccinvivinnivasans 1000 Sixty-four .... -0 vus000421,000,000
LT el L1 ] | Two thousand three hundred

] 3 R R e e 1) [ and seventy-nine .. 100,101,001,011

As Leibnitz found in the above mode of expressing numbers some peculiar advan-
tages, he published, in the Memoirs of the Academy of Sciences at Berlin, rules
fur performing, in this kind of arithmetic, the usual operations of common
arithmetic. But it may be readily perceived, that this new system, if introduced
into practice, would be attended with the inconvenience of requiring too many
figures : twenty would be necessary to express a number equal to about a million.

One curious cirenmstance in regard to this binary arithmetic must not be here
omitted. It serves to explain, as some pretend, a Chinese symbol, which has
occasioned great embarrassment to the learned who bave applied to the study
of the Chinese antiquities. This symbol, which is highly revered by the Chinese,
who aseribe it to their ancient emperor IFohi, consists of certain characters, formed
by the different combinations of a small whole line and a broken one. Father Bou-
set, a celebrated Jesnit, who resided some time in China as a missionary, having
heard of Leibnitz' ideas, observed, that if the whole line were supposed to repre-
sent our 1, and the broken line our 0, these characters would be nothing else than a
series of numbers expressed by binary arithmetic. It is very singular, that a Chinese
enigma should find its (Edipus only in Europe ; but perhaps in this explanation there
is more of ingenuity than truth.

If the binary arithmetie of Leibnitz is entitled to no farther notice, than to be
classed among the curious arithmetical speculations, the case however is not the same
with duodenary arithmetic, or that kind which, as already observed, would have been
brought into use had men been born with twelve fingers. This arithmetic would
indeed have been as expeditiouns as the arithmetic now employed, and even somewhat
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more 80 ; the number of the characters, which would have received an increase only
of two, to express ten and eleven, would have been as little burthensome to the
meimory as the present characters, and would have been attended with advantages
w’hmI} nught_ to make us regret that this system was not originally adopted.

It is not improbable, however, that the duodenary system would have been pre-
ferred, had philosophy presided at the invention; for it would have been readily seen
that twelve, of all the numbers from 1 to 20, is that which possesses the advantage
of being small, and of having the greatest number of divisors; for there are no less
than four divisors by which it can be divided without a fraction, viz., 2, 3, 4, and 6.
The number 18 indeed has four divisors also ; but being larger than 12, the latter
deserves to be preferred for measuring the periods of numeration, The first of
these periods, from 1 to 12, would have had the advantage of being divisible by 2, 3,
4, 6; and the second, from 1 to 144, by 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72;
whereas, in our system, the first period, from one to ten, has only two divisors, 2
and 5; and the second, from one to a hundred, has only 3, 4, 5, 10, 20, 25, 50. It is
evident, therefore, that fractions would less frequently have oceurred in the desig-
nation of numbers in that way, namely by twelves,

But what would bave been most convenient in this mode of numeration, is that,
in the divisions and sub-divisions of measures, it might have introduced a duodecimal
progression, Thus, as the foot has by chance been divided into 12 inches, the inch
into 12 lines, and the line into 12 points; the pound might have been divided into
12 ounces, the ounce into 12 drams, and the dram into 12 grains, or parts of any
other denominations ; the day might have been divided into 12 equal portions ealled
hours, the hour into 12 other parts, each equal to 10 minutes, each of these parts
12 others, and so on successively. The case might bave been the same in regard to
measnres of capacity.

Bhould it be asked, what would be the advantages of such a division ? we might
reply as follows. It is well known, by daily experience, that when it is necessary
to divide any measure into 3, 4, or 6 parts, an integer number in the measures of a
lower denomination cannot be found, or at least only by chance. Thus, the third or
the sixth of a pound averdupois does not give an exact number of ounces ; and the
third of a pound sterling does not give an integer number of shillings. The case is
the same in regard to the bushel, and the greater part of the other measures of ca-
pacity. These inconvenicnces, which render calculations exceedingly complex,
would not take place if the duodecimal progression were every where followed.

There is still another advantage which would result from a combination of duode-
nary arithmetie, with this duodecimal progression. Any number of pounds, shillings,
and pence; of feet, inches, and lines; or of pounds, ounces, &ec., being given, they
would be expressed as whole numbers of the same kind usually are in common arith-
metic.  Thus, for example, supposing the fathom to consist of 12 feet, as must ne-
cessarily be the ease in this system of numeration, if we had to express 9 fathoms 5
feet 3 inches and 8 lines, we should have no occasion to write 91 5f 3i 81, but merely
0538 ; and whenever we had a similar number expressing any dimension in fathoms,
feet, inches, &e., the first figure on the right would express lines, the second inches,
the third feet, the fourth fathoms, and the fifth dozens of fathoms, which might be
expressed by a simple denomination, for example a perch, &c. In the last place,
when it might be necessary to add, or subtract, or multiply, or divide, similar quan-
tities, we might operate as with whole numbers, and the result would in like manner
express, according to the order of the figures, lines, inches, ﬁmt: &e. : _

It may casily be conceived how convenient this would be n practice. :[')n this
account Stevin, a Dutch mathematician, proposed to adapt the subdivisions ot
weights and measures to our present system of numeration, by making them decrease
in decimal progression. According to thisﬂplan, the fathom would have contained

B
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10 feet, the foot 10 inches, the inch 10 lines, &c.  But he did not reflect on the in-
convenience of depriving himself of the advantage of being able to divide his mea-
sures, &e. by 3, 4, and 6, without a fraction, which is indeed of some importance.
On the suggestion of Borda, the centesimal division of the quadrant has been
adopted in France. Having divided the quadrant into 100 equal parts, called grades,
each grade is divided into 100 parts for minutes, and each minute into 100 parts for
seconds, &,
Let S = any are in the sexagesimal division, and D the same arc in the decimal
division ; then !
3 { 9 oD 105 S
%‘: lﬁ = 15 or i — 'ﬁ‘:l,al'ld D= 9 = S+ o
Therefore, to reduce an are expressed decimally to sexagesimals, multiply by 9, and
divide the product by 10. To reduce sexagesimals into decimals, to the arc expressed
sexagesimally, add its ninth part,
Example.—What is the sexagesimal value of 348 28067

34-2806
9

306064
= A
5163840
L4 set AHh
3830400
Answer.—30% 51° 38" 304, e
Conversely, it is required to express 30° 51’ 38” 304 decimally ?
60 | 38-304
G0 | 51-63584
J0-86064
Add 1-9th 342896
Answer 34 -FHOGD)

e

On the basiz of the decimal division the French have also constructed their system
of national measures. The distance from the pole to the equator being determined by
computations founded on an extensive series of trigonometrical operations ; its ten
millionth part, or the tenth part of a decimal angular second, equal to 39-371 English
inches, constitutes the metre, which is the French unit of length. From this metre
the several measures of surface and eapacity are derived, and a given measure of wa-
ter at its greatest concentration furnishes the standard of weights.

Whether, with its many apparent advantages, this method of divigion is ever likely
to be generally adopted seems very doubtful In the mean time its partial introdue-
tion is produetive of much inconvenience, as it not only deranges our habits, but
lessens the utility of our instruments and tables, all of which have been adapted to
the old system.

It is evident that in the duodenary arithmetic, the nine first numbers might be ex-
pressed ag usual, by the nine known characters, 1, 2, 3, &e. ; but as the period ought
to terminate only at twelve, it wonld be necessary to express ten and eleven by sim-

ple characters. In this case we might choose ¢ to denote ten, and & to denote eleven,
and then it is evident that,

10 would express twelve.
11 «.evsenness thirteen.

1 e e fifteen.
15 ..vvni v SEVEREEEN,
1 e e twenty.

18 ..ave.ea.... twenty-two.
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=

1% ..v 250000 .. twenty-three.
20 ... 3000000 twenty-four.
40 ............ forty-eight.
60 .....0...... seventy-two.
100 ciievsvsesse a hundred and forty-four.
00 s.eivisesanas four hundred and thirty-two.
1000 ....vv0s +u. one thousand seven hundred and twenty-eight.
2000 weveevsranss three thousand four hundred and fifty-six.

10,000 .......000.. twenty thousand seven hundred and thirty-six.

100,000, %¢. .., veea two hundred and forty-eight thousand eight hundred and
thirty-two.

Thus the number denoted by the figures ¢943 would be eighteen thousand six
hundred and twenty-seven ; for ¢000 is eighteen thousand two hundred and eighty,
900 is one thousand two hundred and ninety-six, 40 is forty-eight, and 3 is three
numbers, which if added will form the above sum.

It would be casy to form a set of rules for this new arithmetic, similar to those of
common arithmetie ; but as it does not seem likely that this mode of caleulation will
ever be brought info general use, we shall econfine ourselves to what has been already
said on the sulject, and only add, that a book was printed in Germany, in which the
common rules of arithmetic were explained in all the systems, the binary, ternary,
quaternary, and o on, to the duodenary inclusively.

O THE ARITHMETIC OF THE GCREEEKS.
The Greeks divided all their numbers, as we do ours, into periods of tens ; but for
the want of the happy idea of giving a loeal value to their numerical symbols, they

were obliged to employ thirty-six characters, most of which were derived from their
alphabet.

Thus our digits ...... 1,2, 3, 4,5, 6,789,
Were TE[.II‘EEI'."]‘Itﬂ[] h}r__ a By 7 3! g & Lom, &p
And 10, 20, 30, 40, 50, 60, 70, 80, 90
h}r I ® A ply ¥, 'El 4 wy 0
For hundreds they had g, s, - v, & 3% ¥ o,
And for the thousands they had recourse again to the characters of the simple units,
with the addition of a little dash below. Thus «= 1K), 8 = 200K, &c.
With these characters they could express any number under 10,000, or a myriad.
Thus 991 was ¢ = ; 7382, f+= £; and 4001, 2a.
In order to express myriads, they placed the letter M below the character repre-

senting the number of myriads they intended to indicate, as ;._I for 16000, ETI:IB for

43720000. This is the notation employed by Eutocius, in his commentaries on
Archimedes,

Diophantus and Pappus represented their myriads by the letters My, or more
simply still, by a point, placed after the number, thus 43728097 is expressed by
Yrof. My wglor 7B ncl.

The number 100,000,000 was the greatest extent of the Greek arithmetic; but
Archimedes indefinitely increased it, when he invented his system of Octates, or
periods of eight. Heassaumed 100,000,000 as a new unit, and called the numbers which
he formed with it numbers of the second order ; then assuming the square, cube, &e.
of 100,000,000 successively as a new unit, he obtained numbers of the third, fourth,
and higher orders.

This idea of Archimedes, we are informed by Puappus, Apollonius greatly improved;
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by reducing the octates to periods of fours, and dividing all numbers into orders of
myriads; thusthe number... .............. SRS T cass T332 38462643,
written according to the notation of Appollonius,is ..cooove TDAE yups Expys
the first period of four to the right being units, the next myriads, the next double
myriads, or numbers of the second order. The next would be numbers of the third
order, and =0 on indefinitely.

Having given a local value to his periods of fours, it was only necessary to
have done the same for single digits, to bhave arrived at the system in present use ;
and it is astonishing that he did not perceive the advantages of doing g0 ; and the
more singular, as the use of the cipher was not unknown to the Greeks, being always.
employed in their sexagesimal operations, when it was necessary, as in the division of
the cirele, of which ours is still a representative, as is evident from the following
example :

O+ v ™ =0 59 B" 17 13™

Having given an idea of the Grecian notation for integer numbers, we next proceed
to their method of representing fractions ; which was by placing the denominator
above, and to the right of the pumerator ; thus 5% represented }.  But when the
numerator was unity, a small dash was placed to the right of the denominrator, asy’
for &, ¢'for J. And the fraction L had a particular character, as c or /., ¢’ or K\

It now remains for us to explain the method employed by the ancients in perform-
ing the common rules of arithmetie with this complicated system of notation.

The examples below, of addition and subtraction, require no explanation, being
performed exactly as we do ours, proceeding from right to left ; but to this method,
though so clearly the most simple, the Greeks did not constantly adhere, as there are
many instances which make it evident that they did both addition and subtraction
from left to right.

Example in Addition. Example in Subtraction.
wgl M re 7.3021 b.yxAs 934636
Enu __60.8400 B.yv # 23409
My, Brac D03.2321 T I TO22T

In multiplication they usually proceeded from left to right, as we do in multiplica-
tion of algebra, and placed their snecessive products without much apparent order ;
but as each of their characters retained its own proper value wherever it was placed,
this want of order only rendered the addition a little more troublesome.

In the examples which follow we will mark the myriads by an m, the thousands
hy ™, the hundreds by “, &e., and so make the partial produets in the Greek, and the
translation identical. With this arrangement the reader will find it extremely easy
to follow the work.

1” 5 3
e 1" 5 3
{[.‘IT I-m &i}}?’
e 5" 5\
A 1 59
B. yul Dm e g 9 = 293400

L

The division of the Greeks was still more intricate than their multiplieation ; for
which reason, it seems, they generally preferred the sexagesimal division ; and no ex-
ample is left at length by any of their writers, except in the latter form ; but these
are sufficient to throw some light on the proeess they followed in the division of com-
mon numbers ; and Delambre, in an essay subjoined to the French translation of
Archimedes, has accordingly supposed the following example :
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'r?-ﬂ”]-rnﬂ{’i:_ux}! 432 3" 3" X Q{17 Y 3
FxB.y SwRy 152 3 T 873
A 150 0329 =
FRE MU 1_45 84
B.adxh 4 19029
_Y-fvE 3 646
guid 54069
5469

i g gD
: Tl‘lfe example will be found, on a slight inspection, to resemble that sort of divi-
sion in which we divide feet, inches, and parts by similar denominations, which,
together with the number of characters they employed, must have rendered this rule
extremely laborious ; and that for the extraction of the square root must have been
equally difficult; the principle of which was the same as ours, except in the differ-
ence of the notation ; though it appears that they frequently, instead of making use of
the rule, found the root by successive trials, and then squared it to prove the truth
of their assumption.

CHAPTER IL

OF EOME SHORT METHOD: OF PERFORMING ARITHMETICAL OPERATIONSE,

EECTION I.

Method of Subtracting several Numbers from several other given Numbers, without
making partial Additions.

Togive the reader an idea of this operation, one example will be sufficient. Let

it be proposed to subtract all the sums below the line at B, from all those above it

at A. Add, in the usual manner, all the lower figures of the first column on the

right, which will make 14, and subtract their sum from the ik
next highest number of tens, or 20. Add the remainder 6 to 56:}3‘1‘
the corresponding column above at A, and the sum total will be 2252 g.-'l
23. Write down 3 at the bottom, and because there were here 26848
two tens, as before, there iz nothing to be reserved or carried.

Add, in like manner, the figures of the second lower column, 22
which will amount to 9, and this sum taken from 10 will g;ﬁf”
leave 1; add 1 therefore to the second column of the upper B rRR A
numberz, the sum of which will be 20; write down 0 at the 162003

bottom, and because there were here two tens, while in the

lower column there was only one, reserve the difference, and substraet it from the
next column of the numbers marked B before you begin to add. In the con-
trary case, that is to say when there are more tens in any one of the columns marked

B than in the corresponding column above it, the difference must be added. In the
last place, when it happens that this difference cannot be taken from the next column

below, for want of more significant figures, as is the case here in the fifth column,
we must add it te the upper one, and write down the whole sum below the line. By
proceeding in this manner, we shall have, in the present instance, 162003 for the

remainder of the subtraction required.

BECTION II.

Some Short Methods of performing Multiplication and Division.
I. Every one, in the least acquainted with arithmetic, knows, that to multiply and
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number by 10, nothing is necessary but to add to it a cipher ; that to multiply by
100, two must be added, and so on.

Henee it follows, that to multiply by 5, we have only to suppese a cipber added to
the number, and then to divide it by 2. Thus, if it were required to multiply 127
by 5; suppose a cipher added to the former, which will give 1270, and then divide
by 2: the quotient G35 will be the product required.

In like manner, to multiply any number by 25, we must suppose it mulliplied by
100, or increased by two ciphers, and then divide by 4.  Thus 127 multiplied by 25,
will give 3175. For 127 when increased by two ciphers makes 12700, which being
divided by 4, produces 3175,

According to the same prineiple, to multiply by 125, it will be sufficient to add
three ciphers to the multiplicand, or to suppose them added, and then to divide by 8.
The reason of these operations may be so readily conceived, thatf it is not necessary
to explain it.

I1. The multiplieation of any number by 11 may be reduced to simple addition.
For it is evident that to multiply a number by 11, is nothing else than to add the
number to its decuple, that is to say, to itself followed by a cipher.

Let the proposed number, for ex., be : i . - . 67583
To multiply this number by eleven, say 3 and 0 make 3 ; write down 3 T43413
in the unitz place ; then add 8 and 3, which makes 11; write down 1 in
the place of tens, and carry 1 ; then 5and 8 and 1 carried make 14 ; write down 4 in
the third place, or that of hundreds, and carry 1. Continue in this manner, adding
every figure to itz next following one, till the operation iz finished, and the product
will be 743413, as above.

The same number may be multiplied in like manner, by 111, if we first write down
the 3, then the sum of 8 and 3, then that of 5, 8, and 3, then that of 7, 5, and 8, and
g0 on, adding always three contiguous figures together

I11. We shall only further observe, that to multiply any number by 9, simple sub-
traction may be employed. Let us take, for example, the same number as
T A L SN e I Il el e b

608247
To multiply this namber by 9, nothing is necessary but to suppose a cipher :m
the end of it, and then to subtract each figure from that which precedes it, beginning
at the right. Thus 3 from 0 or 10, leaves 7; 8 from 2 or 12, leaves 4 ; and if wia
eontinue in this manner, taking care to borrow 10 when the right-hand figure is too
small to admit of the preceding one being subtracted from it, we shall find the pro-
duet to be 608247,

The reason of these operations may be readily perceived. For it is evident, that
in the first we only add the number itself to its deeuple ; and in the latter, we sub-
tract it from its decuple. But in order to form a clearer idea of the matter, it ma
perhaps be worth while to perform the operation at full length, ’ ¢

'lf..":l.lllilzise operations of a similar kind may be employed in certain cases of Beliakoms
a8 In dividing, for example, a given number by any power whatever of 5. Thus i;'
it were required to divide 128 by 5; we must double it, which will give 256 : if .:we
then cut off the last figure, which will be a decimal, the quotient will be :2516 or
25f To divide the same number by 25, we must quadruple it, which will give 512 ;
and if we then cut off the two last figures as decimals, we shall have for the qumtig:]:-
a4 and 1’& To divide h}" 125, we must It'lIIHi]':]_',F the dividend lp_-'r 8, and cut off t-hl-'-Ei:
ﬁgm:fﬁ, In like manner we may divide a given number by any other power of 5.
but it must be confessed that such short methods of calculation are attended with m;
great advantage,
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SECTION III.

Short Method of performing Multiplication and Division by Napier's Rods
or Bones.

When large numbers are to be multiplied, it is evident that the operation might be
performed much more readily, by having a table previously formed of each number of
the multiplicand, wheu doubled, tripled, quadrupled, and so on. Such a table indeed
might be procured by simple addition, since nothing would be necessary but to add
any number to itself, and we should bave the double ; then to add it to the double,
and we should have the triple, &c. But unless the same figure should frequently
recur in the multiplicand, this method would be more tedious than that which we
wished to avoid.

The celebrated Napier, the sole object of whose researches seems to have been to
shorten the operations of arithmetic and trigonometry, and to whom we are indebted
for the ingenious and ever-memorable invention of logarithms, devised a method of
forming a table of this kind in a moment, by means of certain rods, which be has
described in his work entitled Rabdoiogia, printed at Edinburgh in 1617. The con-
struction of them is as follows :

Fig. 1. Provide several slips of card or ivory or metal reds, about nine times as
long as they are broad, and divide cach of them into 9 equal squares. (Fig. 1.)
Inscribe at the top, that is to say in the first square of each slip or rod, one
sl of the numbers of the natural series 1, 2, 3, 4, &e., as far as 9 inclusively.
t.| Then divide each of the lower squares into two parts by a diagonal, drawn
;}/:7 from the upper angle on the right hand to the lower one on the left, and in-
seribe in each of these triangular divisions, proceeding downwards, the double,
i triple, quadruple, &c. of the number inseribed at the top ; taking care, when
,ﬁ? the multiple consists of only oue figure, to place it in the lower triangle, and
% when it consists of two to place the units in the lower triangle, and the tens
f/f,/ in the upper one, as seen in the figure. It will be necessary to have one of
2’}_‘2’ these slips or rods, the squares of whiek are not divided by a diagonal, but 1n-
scribed with the natural numbers from 1 to 9. This one is called the index

rod. It will be proper also to bave several of these slips or rods for each figure.
Fig. 2. 1 Ii.l,! lr(:ds I:u,-_ing l}rl:jlﬂl‘ﬂl:l as above, let us suppose
that it is required to multiply the number 6785399,

21617 ol it e ) 3 Arrange the seven rods inscribed at the top with the
217 ,‘!’E,j”.ﬁf 0 %688 figures G785, &c., close to each other, and apply to
3 25 A ﬁ_:: 4 2 }fﬁi them on the left hand the index rod, or that inscribed
%% Lol 1g |35 |2 with the single ﬁgllr.l:ﬂ. (Fig. 2) ; I:IJI' whlc.:h means we
5 |94 4124|285 |24 shall have a table of all the multiples of each figure
A 3512515 54 in the multiplicand ; and sl:a_rcelj' any thing more will

A»ﬁ 5'5 o be necessary but te transeribe them. Thus, for ex-
(8wl g7 o5 ample, to multiply the above number by 6; looking
8 |8 24|54 56| 74l /3'_-{ for 6 on the index rod, and opposite to it in the first
9 2 LE 24154 Bi square, on the right hand, we find 54 ; writing down

and adding the 5 in the upper one to the 4 in the
lower triangle of the next square On the left, which makes 9; wFitE down the 9, and
then add the 5 in the upper triangle of the same square to the 8 in t]_u: lower tn:mg!e
of the next one ; and proceed in this manner, taking care to carry as in common utid!-
tion, and we shall find the result to be 40712394, or the preduct of 6785399 multi-

plied hy 6.

the 4 found in the lower triangle,
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Compound multiplieation, or by several figures, may be performed in the same
manner, and with equal facility. Let us suppose, for example, that the same number

is to be multiplied by 839938, Write down the multiplicand, and G780
the multiplier below it in the usual manner; and as the first figure _EEE-E"iB
of the multiplier is 8, look for it in the index rod, and by adding H4283192
the different figures in the triangles of the horizomtal column EUH}B?EW
opposite to it, the sum will be found to be 54283192, or the I‘?&H{:"{-’Hﬁﬁ;‘i’l

product of the above number by 8, which must be written down.  g356197
Then find the sum of the figures in the horizontal column opposite 54983102

to 3, and write the sum down as before, but carrying it one place “Faonaiia65202
farther to the left. Continue in this manner till you have gone =——————
through all the figures of the multiplier, and if the several partial produets be then
added as usual, you will have the total product, as above expressed.

A similar artifice may be employed to shorten division, especially when large sums
are to be often divided by the same divisor, Thus, for example, if the number
1492002 is to be divided by 432, and if the same divisor must frequently occur, con-
struct, in the manner above described, a table of the multiples of 432, which will
searcely require any farther trouble than that of transeribing the numbers, as may be
seen here on the left.

l.. 432 1492992 ( 3456
g lé;?}é 1296
3 T 9%
5 ... 2160 0410
6 ... 2502 2160
7 ... 3024 =
8 ... 3458 2502
9 ... 3883 2502
G000

—

When this is done, it may be readily perceived, that since 432 is not contained in the
first three figures of the dividend, some multiple of it must be contained in the first
four figures, viz., 1492. To find this multiple, you need only cast your eye on the table,
to observe that the next less multiple of 432 is 1296, which stands opposite to 3 ; write
down 3 therefore in the quotient, and 1296 under 1492, then subtract the former
from the latter, and there will remain 196, to which if you bring down the next
figure of the dividend, the result will be 1969. By casting your eye again on the
table, you will find that 1728, which stands opposite to 4, is the greatest multiple of
432 contained in 1969 ; write down 4 therefore in the quotient, and subtract as be-
fore. By continuing the operation in this manner, it will be found that the following
figures of the quotient are 5 and G; and as the last multiple leaves no remainder, the
division is perfect and complete.

Remark.—Mathematicians have not confined themselves to endeavouring to simplify
the operations of arithmetic by such means: they have nttcmptad something more,
and have tried to reduce them to mere mechanical operations. The celebrated Pas-
cal was the first who invented a machine for this purpose, a deseription of which
may be seen in the fourth volume of the Recueil des Machines preséntées & I'Aeadi-
mie. Sir Samuel Morland, without knowing perhaps what Pascal had done in this
respect, published, in 1673, an account of two arithmetical machines which he in-
vented, one of them for addition and subtraction, and the other for multiplication,
but without explaining their internal construction. The same object engaged the
attention of the celebrated Leibnitz about the same time ; and afterwards that of
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the marquis Poleni. A description of their machines may be seen in the Theatrum
Arithmeticum of Leupold, printed in 1727, together with that of a machine invented
by Leupold himself, and also in the Miscefl. Berol. for 1709. We have likewize the
Abaque rabdologique of Perrault, in the collection of his machines published in 1700,
It serves for addition, subtraction, and multiplication. The Recueil des Machines
prisentées a ' Académie Royale des Sciences contains also an arithmetical machine,
by Lespine, and three by Boistissandeau. Finally, Mr. Gersten, professor of mathe-
matics at Giessen, transmitted, in the year 1735, to the Royal Society of London, a
minute description of a machine of the same kind, invented by himself, We shall
not enlarge further on this subjeet, but proceed to give an account, which we hope
will be acceptable to the curious reader, of an ingenions method of performing the
operations of arithmetie, invented by Dr. Saunderson, a celebrated mathematician,
who was blind from his infancy.

BECTION 1IV.

Palpable Arithmetic, or a method of performing arithmetical operations, which may be
practised by the blind, or in the dark.

What iz here announced may, on the first view, appear to be a paradox ; but it is
certain that this method of performing arithmetical operations was practised by the
celebrated Dr. Saunderson, who, though he had lost his sight when a child of a year
old, made =0 great progress in the mathematies, that he was eleeted to fill the professor's
chair of that science, in the university of Cambridge. The apparatus he employed,
to supply the deficiency of sight, was as follows:

Let the square (Fig. 3.) be divided into four other squares, by two

&z 9. lines parallel to the sides, and intersecting each other in the centre,
1 These two lines form with the sides of the square four points of inter-
P y section, and theze added to the four angles of the primitive square,
| | give altogether nine points. If a lole be made in each of these

points, into which a pin or peg can be fixed, it is evident that there
will be nine distinet places for the nine simple and significant figures of our arithme-
tical system, and nothing further will be necessary but to establish some order in
wlich these points or places, destined to receive a moveable peg, ought to be counted.
To mark 1, it may be placed in the centre; to express 2, it may be placed immedi-
ately above the centre; to express 3, at the upper angle on the right ; and so on n
succession, round the sides of the square, as marked by the numbers opposite to each
oint.
= But there is still another character to be expressed, viz., the 0, which in our arith-
metic is of very great importance. This character might be expressed in a manner
exceedingly simple, by leaving the holes empty ; but Saunderson preferred placing
in the middle one a large-headed pin, unless when having unity to express, he was
obliged to substitute in its stead a small-headed pin. By these means he obtained the
advantage of being better able to direct his hands, and to distinguish with more
ease, by the relative position of the small-headed pins, in regard to the large one in
the centre, what the former expressed. This method therefore ought to be adopted ;
for Saunderson no doubt made choice of those means which were most significant to
his fingers. =
As the reader hias here seen with what ease a simple number may be expressed in this
manner, we shall now shew that a compound number may be expressed with equal
facility. If we suppose several squares to be constructed like the preceding, ranged
in a line, and separated from each other by small intervals, that they may be better
distinguished by the touch, any person acquainted with common arithmetic may
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Fig. 4. perceive, that the first square on the right will serve

8 to express units; the next towards the left to ex-

H:‘ EE‘ ijj press tens ; the third to express hundreds, &e. Thus

# [ the four squares, with the pegs arranged as represented
(Fig. 4.) will express the number 3805,

If you therefore provide a board, or table, divided into several horizontal bands,

on each of which are placed seven or eight similar squares, according to cireum-

Fig. 5. stances ; i’ these bands be separated by proper inter-

e vals, that they may be better distinguished ; and if

i:r'-* t i j EJI-] 271 all the squares of the same order, in each of the

— R bands, be so arranged, as to correspond with each

E‘} B 1‘] & 407 other in a perpendicular dircetion ; you may perform,

e — by means of this machine, all the different opera-

=1 1T E‘i’: 033 tions of arithmetic. The reader will find (Fig. 5.)

; . : a representation of the method of adding three num-

Hq -~| - --L-] g 1631 bers, and expressing their sum by a machine of this
|

- = kind.

Saunderson employed this ingenious machine, not only for arithmetical operations,
but also for representing geometrical figures, by arranging his pins in a certain order,
and extending threads from the one to the other. But what has been said is suffi-
cient on this subjeet ; those persons who are desirous of farther information respeeting
it, may consult Saunderson’s Algebra, or the French translation of Wolff’s Elements
Abridged, where this palpable arithmetic 1s explained at full length.

]

PROBLEM.

To multiply £11. 11s. 11d. by £11. 11s. 114,

This problem was once proposed by a sworn accountant to a young man who had
been recommended to him as perfectly well acquainted with arithmetic. And indeed,
hesides the difficulty which results from the multiplication of quantities of different
kinds, and from their reduction, it is well calculated to try the ingenuity of an arith-
metician. But it 13 not improbable that the proposer would have been embarrassed
by the following simple question: What is the nature of the product of pounds shillings
and pence multiplied by pounds shillings and pence ?  We know that the product of a
yard by a yard represents a square yard, because geometricians have agreed to give
that appellation to a square surface ome yard in length and one in breadth ; and 6
yards multiplied by 4 yards make 24 square yards ; for a rectangular superficies 6 yards in
length and 4 in breadth, contains 24 square yards, in the same manner as the product
of 4 by 6 contains 24 units. DBut who can tell what the product of a penny by a
penny is, or of a penny by a pound ?

The question considered in this point of view, is therefore absurd, though ordinary
arithmeticians sometimes are not sensible of it.
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CHAPTER 1II.

OF CERTAIN PROPERTIES OF NUMBERS.

W do not here mean to examine those properties of numbers which engaged so much
the attention of the ancients, and in which they pretended to find so many mysterious
virtues. Every one, whose mind is not tinctured with the spirit of credulity, must
laugh to think of the good canon of Cezene, Peter Bungus, collecting in a large
quarto volume, entitled De Mysteriis Numerorum, all the ridiculous ideas which
Nichomachus, Ptolemy, Porphyry, and several more of the ancients, childishly proga-
gated respeeting numbers. How could it enter the minds of reasonable beings, to
ascribe physical energy to things entirely metaphysical? For numbers are mere
conceptions of the mind, and consequently can have no influence in nature.

None therefore but people of weak minds ean believe in the virtues of num-
bers. Some imagine, that if thirteen persons sit down at the same table, one of them
will die in the course of the year; but there is a much greater probability that one
will die if the number be twenty-four,

I. The number 9 possesses this property, that the figures which compose its
multiples, if added together, are always a multiple of 9 ; so that by adding them, and
rejecting 9 as often as the sum exceeds that number, the remainder will always
be 0. This may be easily proved by trying different multiples of 9, such as 18, 27,
36, &e. _

This observation may be of utility, to enable us to discover whether a given num-
ber be divisible by 9, for in all cases, when the figures which express any number,
on being added together, form 9, or one of its multiples, we may be assured that the
number iz divisible by 9, and consequently by 3 also.

But this property does not exclusively belong to the number 9; for the number 3
has a similar property. If the figures which express any multiple of 3 be added, we
shall find that their sum is always a multiple of 3; and when any proposed number is
not such a multiple, whatever the sum of the figures by which it is expressed exceed
a multiple of 3, will be the quantity to be deducted from the number, in order that it
may be divisible by 3 without a remainder.

We must not omit to take notice here, of a very ingenious observation of the
author of the History of the Academy of Sciences, for the year 1726, which is, that
if a system of numeration, different from that now in use, had been adopted, that for
example of duodecimal progression, the number eleven, or, in general, that preceding
the first period, would have possessed the same property as the number nine does in
our present system of numeration. By way of example, let us take a multiple of
eleven, as nine hundred and fifty-seven, and let us express it according fo that system
by the characters 7 ¢ 5: it will here be seen that 7 and ¢ make seventeen, and 5
added makes twenty-two, which is a multiple of eleven.

This property of 9 and 3, in the decimal notation, admits of a very simple proof.
For let a be the digit in the units place, b, ¢, d, &c. those in the place of tens, hun-
dreds, &c. ; then the number will be represented analytically by 1000 d - 100 ¢4 10
bda; orby 990 1. d+99F1. c+911.54a; or by 999 d4-99 ¢ -9 b
d4¢-b4a But 999d4-99 e 95 is divisible both by 9 and 3 ; therefore, if the
whole number represented by 1000 d 4100 ¢ -4 10 b 4« be divisible by 9 or 3, the
remaining part, d 4 ¢ - & -+ a, must also be divisible by 9 or 3, And a like proof
would apply to the digit and its factors preceding the last digit of the first period, in
any system of numeration.
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In addition to the foregoing observations of the French author, may be added the
following remarks on the same subject, lately made by an ingenious English gentle-
man. IHe first expresses all the products of 9 by the other figures, in the following
manner, and then enumerates the curious properties,

1 flaide
L R T42=9
18..14-8=9 Bl..84+1=9
2:?'..2-&-?=

The component figures of the product, made by the multiplication of every digit
inte the number 9, when added together, make nine.

The order of those component figures -is reversed, after the said number has been
multiplied by 5.

The component figures of the amount of the multipliers (viz. 45), when added
together make xiNE.

The amount of the several products, or multiples of 9 (viz. 405), when divided
by 9, gives for a quotient 45 ; that is 4 -+ 5 = x1vE.

The amount of the first product (viz. 9), when added to the other products, whose
respective compon=nt figures make 9, is 81 ; which is the square of NinE.

The said number 81, when added fo the above-mentioned amount of the several
products, or multiples of 9 (viz. 403), makes 486 ; which, if’ divided by 9, gives for
a quotient 54 ; that is, 5 4 4 = NIXE. :

It is also observable that the number of changes that may be rung on nine bells, is
362880 ; which figures, added together, make 27 ; thatis, 247 = xinE.

And the quotient of 362880, divided by 9, is 40320 ; that is, 4 40434240 =
NINE.

11. Every square number necessarily ends with one of these figures, 1, 4, 5, 6, 9:
or with an even number of ciphers preceded by one of these figures. This may be
easily proved, and is of great utility in enabling us to discover when a number is not
a square ; for though a number may end as above mentioned, it is not always however
a perfeet square ; but, at any rate, when it does not end in that manner, we are cer-
tain that it is not a square, which may prevent uscless labour. In regard to cubie
numbers, they may end with any figure whatever ; but if they terminate with ciphers,
they must be in number either three, or six, or nine, &e.

If a square number end with 4, the last figure but one will be even, as in 64, 144,
and 97344,

If a square number end with 5, it will end with 25; as 625, 1225,

If a square number end with an odd figure, the last figure but one will be even,
az 81529, But if it end with any even digit, except 4, the last figure but one will
be odd, as 36, 576G, 13456,

No square number can end with two even digits except two ciphers, or two fours,
as 100, 144, 40000, 44044,
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r A square number cannot end in three equal digits, except they be three fours: nor
in more than three equal digits unless they be ciphers.

I Ever_‘_f square number is divisible by 3, or becomes so when diminished hy
lﬂilt-}". Thls may be easily tried on any square number at pleasure. Thus 4 less 1,
”.’ less 1, 25 less 1, 121 less 1, &e. are all divisible by 3; and the case is the same
with other square numbers, .

E\'cry square number is divisible also by 4, or becomes so when diminished by
unity. This may be proved with the same case as the former.

Eve_r}r square number is divisible likewise by 5, or becomes so when increased, or
else diminished by unity. Thus, for example, 36 — 1, 49-4-1, 641, 81 — 1, &e.,
are all divisible by 5.

Every odd square number is a multiple of 8 increased by unity.” We have examples
of this property in the numbers 9, 25, 49, 81, &e. ; from which if 1 be deducted the
remainders will be divisible by &.

If a square number be either multiplied or divided by a square, the product or the
quotient will be a square.

If a number be not a complete square, its square root cannot be represented either
by an integer, or by a rational fraction, either proper or improper.

IV. Every number is either a square, or divisible into two, or three, or four
squares. Thus 30is equal to 25+ 4-4-1;31=254-4-+-141;33=1641641;
63 =49490+4441, r 36=254 14 1.

We shall bere add, by anticipation, though we have not yet informed the reader
what triangular, or pentagonal, &c., numbers are, that

Every number is either triangular, or composed of two or of three triangular num-
bers. Andthat

Every number iz either pentagonal, or composed of two, or three, or four, or five
pentagonals, and so of the rest.

We shall add also, that every even square, after the first square 1, may be resolved
at least into four equal squares; and that every odd square may be resolved into
three, ifnotintotwo. Thus 81 =364-36-9; 121 =811 364-4; 160 =144}
25; 625 =400 144 -}-81.

V. Every power of 3, or of 6, necessarily ends with 5 or with 6.

VI. If we take any two numbers whatever ; then either one of them, or their sum,
or their difference, iz necessarily divizible by 3. Let the numobers assumed be 20 and
17 ; though neither of these numbers, nor their sum 37, is divisible by 3, yet their
difference is, for it is three.

It might easily be demonstrated, that this must necessarily be the ease, whatever
be the numbers assumed.

VII Iftwo numbers are of such a nature, that their squares when added together
form a square, the product of these two numbers is divisible by 6.

Of this kind, for example, are the numbers 3 and 4, the squares of which, 9 and
16, when added, make the square number 25: their produet 12 is divisible by 6.

From this property a method may he deduced, for finding two numbers, the squares
of which, when added together, shall form a square number. For this purpose, mul-
tiply any two numbers together; the double of their product will be one of the
numbers sought, and the difference of their squares will be the other.

Thus if we multiply together 2 and 3, the squares of which are 4 and 9, their pro-
duct will be 6; if we then take 12 the double of this product, and 5 the differ-
ence of their squares, we shall have two numbers, the sum of whose squares is equal
to another square number ; for these squaresare 144 and 25, which when added make

169, the square of 13. !
VIII. When two numbers are such, that the difference of their squares 15 a square
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number ; the sum and difference of these numbers are themselves square numbers,
or the double of square numbers.

Thus, for example, the numbers 13 and 12, when squared, give 169 and 144, the
difference of which 25, is also a square number ; then 25, the sum of these numbers,
is a square number, and also their difference 1.

In like manner, 6 and 10, when squared produce 36 and 100, the difference of
which 64 is also a square number ; then it will be found, that their sum 16 is a square
number, as well as their difference 4.

The numbers 8 and 10 give for the difference of their squares 36 ; and it may be
readily seen, that 18, the sum of these numbers, is the double of 9, which is a
square number, and that their difference 2 is the double of 1, which is also a square
number.

IX. If two numbers, the difference of which is 2, be multiplied together, their pro-
duct increased by unity will be the square of the intermediate number.

Thus, the product of 12 and 14 is 168, which being increased by 1, gives 169, the
square of 13, the mean number between 12 and 14.

Nothing is easier than to demonstrate, that this must always be the ease; and it
will be found in general, that the product of two numbers increased by the square of
half their difference, will give the square of the mean number.

X. A prime number is that which bas no other divisor but unity, Numbers of
this kind, the number 2 excepted, can never be even, nor can any of them terminate
in 5, exeept 5 itself ; hence it follows, that except those contained in the first period
of ten, they must necessarily terminate in 1 or 3, or 7 or 9.

One curious property of prime numbers is, that every prime number, 2 and 3 ex-
cepted, if increased or diminished by unity, is divisible by 6. This may be readily
seen in any numbers taken at pleasure, as 5, 7, 11, 13, 17, 19, 23, 29, 31, &ec. ; but
1 do not know, that any one has ever yet demonstrated this property 4 priori. But
the inverse of this is not true, that is, every number when increased or diminished
by unity is divizible by 6, is not, on that account, necessarily a prime number,

As it is often of utility to be able to know, without having recourse to caleulation,
whether a number be prime or not, we have here subjoined a tahle of all the prime
numbers from 1 to 10,000,

Table of the Prime Numbers from 1 to 10,000.

2 ] 163 | 263, 373 | 479 I.iﬂl] 719 | 853| 9771093 | 1223
3 ¥3 | 167 | 260| 379 | 487| 6o7| w727| B57| 983 | 1087 | 12290
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17 193 | 293| 401 | s09| 641 | 7s7| ss3l 1013 | 1123|1277 |
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29 107 311 421 Gl G453 773 on7 | 1031 | 1153 | 1280

il 109 | 211 313 431 547 | 659 | 787 | 911 | 1033 | 1163 | 1201
37 113 | 223 | 317 | 433 | 557 | GGl 7071 9818 | 1035 | 1171 | 12487
41 127 | 227 331 | 439 | 563 | 673 020 | 1049 [ 1181
43 131 2290 | 337 | 443 | 569 | 677 811 037 | 1061 | 1187 | 1301
&7 137 233 | B47 | 449 | 571 | 6B3 21 041 | 1061 | 1193 | 1303
HE 1349 239 | 349 | 457 577 | 691 B23 | 947 | 1063 1307
it 149 | 241 353 | 461 6BY 27| 953 | 1069 | 1201 | 1319
61 151 | 251 | 359 | 463 593 | T01 B29 | 967 | 1087 | 1213 | 1321
G7 167 ° 257 | 367 | 467 G0o| F0o0 B39 90711 1091 | 121% | 1327
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7193 | 7459 | 7669 | L0 | 8167 | 8359 | 8641 | 8530 | 9091 | 9310 | 9521 | 0769
coon | 7477 | 7673] Zg17 | 8171 8647 | 8849 9323 | 9533 | 9781
1207 | wagq | 7681 | 2217 | 8179 | s410 | 8663 | 8861 | 9103 | 9337 | 9530 | 9787
T2 e | vgsy | 2927 | s101 | 8423 | 8660 | 8863 | 9100 | 9341 | 9547 | 9791
‘213 | cage | v6m | S0 8429 | 8677 | 8867 | 9127 | 9343 | 9551 | oo
7219 | =499 | 7699 | 1937 | 6200 | 8431 | 8681 | 8887 | 9133 | 9340 | 9587 | [
7220 | o | mmon | iosy | 8219 | 8443 | 8689 | 8803 | 9137 | 937 e
7237 | 7507 | 7703 :Jﬁ' g221 | 8447 | 8693 9151 | 9377 | 9601 | @ i?
7243 | 7517 | 7717 | 7903 | go31 | 8461 | 8099 | 8923 | 9157 | 9301 | 9613 | T2EH
7247 | 7623 | 7723 | 7993 | gouy | a6y 8929 | 9161 | 9309 | 9619 | Y03
7354 | 7529 | 7727 | gqg | 823y 8707 | 8933 | 9173 g6a3 | 9059
7263 | 7537|7741 | ggy1 | 8243 | 8501 | 8713 | 8941 | 9181 | 9408 | 9629 | I000
7297 | 7541 | 7753 | g1~ | gogy | 8513 | 8710 | 8951 | 0187 | 9413 | 9631 ?H;;
ysoy | 2547 Effé 8039 | 5260 | 8521 | 8731 | 8963 | 9199 | 9419 | 0643 ;371
7309 | 7339 | 7190 | s0s3 | 8273 | 8527 | 8737 | 8969 9421 | 9649 | J 6,
qagy | 7999 | 7759 gg59 | 8287 | 8537 | 8741 | 8971 | 9203 | 9431 | 0661 ?33?
7331 | 2281 | 7793 | gogg | s201 | 8539 | 8747 | 5999 | 9209 | 9433 | 9677 | Y
7333 | 7273 | wg17 | 8081 | 8293 | 8543 | 8753 9221 | 9437 | 9679 | 0YoL
7349 | 7977 | 7gox | sosy | 8297 | 5563 | 8761 | 9001 | 9227 | 9439 | 9659 | goo7
7351 | 7253 | 2509 | 808D 8573 | 8779 | 9007 | 9230 | 9461 | 9697 | 9923
7369 | 7959 | vgq1 | soes | 8311 | 8581 | 8783 | 9011 | 9241 | 9463 9929
w303 | 791 | 7es3 8317 | 8597 9013 | 9257 | 9467 | 0719 | gga1
7603 | 7867 | 8101 | 5329 | 8599 | §503 | 9027 | 9277 | 9473 | 9721 | gu4l
7411 | 7607 | 7873 | 8111 | 8353 8807 | 9041 | 9281 | 9479 | 9733 | 040
7417 | 7621 | 7877 | 8117 | 8363 | 8609 | 8819 | 0043 | 9283 | 9401 | 9739 | yub7
7433 | 7639 | 7870 | 8123 | 8360 | 8623 | 8821 | 9049 | 9203 | 94u7 | 9743 | 9973 |

Eratosthenes invented what he called a seive for exeluding from a series of odd
numbers those which are not prime. The prineiple of the seive is this:

Having written down in consecutive order all oddenumbers, from one to any re-
quired extent, as : re i P

1,8, 5 7,9 11,13, 15, 17, 19, 21, 23, 25, 27, &c.
We begin with three, the first prime number, and over every subsequent third in
the series put a point, and from 3 a point i3 placed over every fifth number ; from
7 over every seventh number, and g0 on.

Then the numbers which remain without points are prime numbers,—and adding 2,
the only even prime, we obtain all the prime numbers included in the series.

Every prime number greater than 3 is of one of the forms 6 n++1, or6a — 1.

For every number is either divisible by 6, or leaves, when divided by it, a remainder
of 1, 2, 3, 4, or 5; that is, every number is of one of the forms G n, 6 n 1,6 2 4+ 2,
Gn43, Gn44, or Ga-}-5 But the first and fifth of these are divisible by 2, and
the fourth is divisible by 3, and are therefore not prime. Hence all prime numbers
greater than 3 are of the form Ga-f1orGa-+5 But 6n-+5is of the same
form, or would produce the same number, as 6 n — 1. For takingn =2, 0n-}5=
17, and taking n =23, 6 a—1=17. Therefore all prime numbers above 3 are of
the form6n4-1, or Gn—1.

But though all prime numbers are included in these two forms, they include also
many numbers which are not primes. For example, if n =4, 6 n —+ 1 =125, which
is not prime, and if n = 6, 6 n —1 =35, which is not prime. Indeed, it maybe
demonstrated that no algebraie formula can contain prime numbers only.

With reference to the two forms under consideration, it has been proved that
whenever n is of the form 6 " 1" _-j_—- n’_—|- %, 6 n-}-1 is not prime; and whenever n
is not of that form 6 n 4~ 1 is prime.

Also that when n is of the form 6 #° 2" 4w’ w 0", G n—1 is wot prime, while it is
always prime when » is not of that form,
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XI. Another kind of numbers, which possess a singular and eurious property, are
those called perfect numbers. 'This name is given to every number, the aliquot parts
of which, when added together, form exactly that number itself. OF this we havean
example in the number 6 ; for its aliquot narts are 1, 2, 3, which together make 6.
The number 28 possesses the same property ; for its aliquot parts are 1,2, 4, 7, 14,
the sum of which is 28.

To find all the perfeet numbers of the numerical progression,take the double progres-
sion 21 4'I BJ ]ﬁl 13"2. {M‘j 12&! 253:- '5I-21 "124; 2‘}13, "“.“]"j. 81932, &e. ; and examine those
terms of it, which when diminished by unity, are prime numbers. Those to which this
property belongs, will be found to be 4,8, 32, 128, 8192; for these terms when diminished
by unity, are 3, T, 31, 127, 8191. Multiply therefore each of these numbers by that
number in the geometrical progression which preceded the one from which it is
deduced, for example 3 by 2, 7 by 4, 31 by 16, 127 by 64, 8191 by 4006, &e. ; and
the result will be G, 28, 406, 8128, 33550336, which are perfect numbers,

These numbers however are far from being so numerous as some authors have
believed.* The following is a series of numbers either perfect, or, for want of proper
attention, supposed to be so, taken from a memoir of Mr. Krafft, published in the Tth
volume of the Transactions of the Academy of Petersburgh. Those to which this
property really belongs are marked with an asterisk.

el
* 2B
- 4%
* 8128
130816
2006128
* 33550336
536854528
* BOBISHDOS6
* 137438691328
2190022206976
35184367304 528
562049936644096
6T199187632128
144115187807420416
*  2305843003139052128
36303488143124135936
Thus we find that between 1 and 10 there is only cne perfect number ; that there is
one between 10 and 100, one between 100 and 1000, and one between 1000 and
10000 ; but those would. be mistaken who should believe that there is one also
between ten thousand and a hundred thousand, one between a hundred thousand and
a million, &e. ; for there is only one between ten thousand and eight hundred mil-
lions, The rarity of perfect numbers, says a certain author, is & symbol of that of
perfection,

All the perfect numbers terminate with 6 or 28,

XII. There are some numbers called amicable numbers, on account of a certain pro-
perty which gives them a kind of affinity or reciprocity, and which consists in their
being mutually equal to the sum of each other's aliquot parts. Of this kind are the
numbers 220 and 284 ; for the first 220 is equal to the aliquot parts of 284, viz. 1, 2,
4, 71, 142; and, reciprocally, 284 is equal to the aliquot parts, 1, 2, 4, 5, 10, 11, 20,
23, 44, 55, 110, of the other number 220,

* The rule piven by Ozanam is ineorrect, and produces a multitude of numbers, such as 130816,
JHE12S, Soe., which are not porfect mumbers. When Ozanam wrote his mile, he did oot recolloct
that one of the multiplicrs must be a prime pumber,  But 511 and 2047 are not prioe sembers,

c 2
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Amicable pumbers may be found by the following method.  Write down, as in the
subjoined example, the terms of a double geometrical progression, or baving the ratio
2, and beginning with 2; then triple each of these terms, and place these triple
numbers each under that from which it has been formed ; these numbers diminished
by unity, 5, 11, 23, &e. if placed each over its corresponding number in the geometrical
progression, will form a third seriesabove the latter.  1Inthe last place, to obtain the
numbers of the lowest series, 71, 287, &ec. multiply each of the terms of the series,
6, 12, 24, &e., by the one preceding it, and subtract unity from the produet.

b 11 23 47 a5 191 a83
2 4 8 16 32 i 128
6 12 24 18 U 162 354 1

7l 287 1151 4607 18431 9727
Take any number of the lowest series, for example 71, of which its corresponding
number in the £rst series, viz. 11, and the one preceding the latter, viz. 5, as well as
71, are prime numbers : multiply 5 by 11, and the product 55 by 4, the correspond-
ing term of the geometrical series, and the last produet 220, will be one of the num-
bers required. The second will be found by multiplying the number 71 by the same
number 4, which will give 284,

In like manner, with 1151, 47, and 23, which are prime numbers, we may find two
other amicable numbers, 17206 and 18416 ; but 4607 will not produce any amicable
numbers, because, of the two other corresponding numbers, 47 and 935, the latter is
not a prime number. The case is the same with the number 18431, because 95 is
among its corresponding numbers; but the following number 73727, with 383 and
191, will give two more amicable numbers, 9363584 and 937056,

By these examples it may be seen, that if perfect numbers are rare, amicable

numbers are much more so, the reason of which may be easily conceived.

* XIIIL. If we write down a series of the squares of the natural naombers, viz. 1, 4,
9, 16, 25, 36,49, &e. ; and take the difference between each term and that which
follows it, and then the differences of these differences; the latter will each be equal
to 2, as may be seen in the following example.
1 4 9 16 2b 36 49

1st. Diff. 3 46 7 9 11 13

2d. Diff. 2 2 2 2 2
It hence appears, that the square numbers are formed by the continual addition of the
odd numbers 1, 3, 5, &c., which exceed each other by 2.

In the series of the cubes of the natural numbers, viz. 1,8, 27, &e., the third, in-
stead of the second differences, are equal, and are always 6, as may be seen in the
following example.

Cubes 1 s a7 54 125 216
1st. INfT, T 19 37 () a1

2d. Inft. 12 15 24 30

3d. Dill. [ [ (4

In regard to the series of the fourth powers, or biquadrates, of the natural numbers,
the fourth differences only are equal, and are always 24. In the fifth powers, the
fifth differences only are equal, and are invariably 120.

All this may be readily shewn, by taking the suceessive differences of the expanded
terms of the series 2°, z 41", x4-2", &c., giving to » the values 2, 3, 4, &c. in
SUCCESRI0MN.

These differences, 2, 6, 24, 120, &e, may be found by multiplying the series of the
numbers 1,2, 3, 4, 5, 6, &e, For the second power, multiply the two first; for the
third power, the three first, and so on.

XIV. The progression of the cubes 1, 8, 27, 64, 125, &ec. of the natural numbers,
1, 2, 3, 4, 5, 6, &c. possesses this remarkable property, that if any number of its
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a

terms whatever, from the beginning, be added together, their sum will always he a
square. Thus, 1 and 8 make 9; if we add to this sum 27, we shall have 36, which
is still a square number ; and if we add 64, we shall have 100, and so on,

The root of each square so formed is the sum of the roots of all the component
cubes. Thus 13 LP L 3 =36=1-12 +5°

XV. The number 120 has the property of being equal to half the sum of its
aliquot parts, or divisors, viz, 1, 2, 3, 4, 5, 6, 8 10, 12, 15, 20, 24, 30, 40, G0,
which together make 240. The number 672 is also equal to half the sum of its
aliquot parts, 1344. Several other numbers of the like kind may be found, and
some even which would form only a third, or fourth, of the sum of their aliquot
parts, or which would be the double, triple, or quadruple of that sum; but what
has been here said, will be sufficient to exercise those who are fond of such
researches,

5 LA s — = 1

CHAPTER 1IV.
OF FIGURATE NUMBERS.

Fig. 6. Ir there be taken any arithmetical progression, as for instance, the

A most simple of all, or that of the natural numbers 1, 2, 3, 4, 5, 6,

7, &e.; and if we take the first term, the sum of the two first, that of

ﬁ. the three first, and so on ; the result will be a new zeries of numbers,

1, 8, 6, 10, 15, 21, 28, &c. called triangular nwmbers, because they

ﬁ can always be ranged in such a manncr as to form an equilateral
triangle, as may be seen Fig 6.

Fig. 7.
The square numbers, as 1, 4, 9, 16, 25, 36, &e. arise from a like Jr:I
addition of the first terms of the arithmetical progression, 1, 3, 5, 7, 9,
11, &e., the common difference of which is 2. These numbers, as is
well known, may be arranged so as to form square figures. Fig. 7. z
A similar addition of the terms of the arithmetieal progression 1, 4,
7, 10, 13, &e., the common differenee of which is 3, will produce the
Fig. 8. numbers 1, 5, 12, 22, &ec., which are called pentagonal numbers,
- beeause they represent the number of points which may be arranged on
{‘I the sides and in the interior part of a regular pentagon ; as may be seen

Fig. 8; where there are three pentagons, having one common angle,
representing the number of points which increase arithmetically ; the
first having two peints on each side, the second three, and the thied
four ; and which progression, it is evident, might be continued ever
so far.

It is in this sense, and in this manner, that we must conccive the figurate num-
bers to be arranged.

It is almost needless to say, that the progression 1, 5, 9, 13, 17, &ec., the common
difference of which is 4, produces, by a similar addition, the hexagonal numbers, which
are 1,6, 13, 28, 45, &e.; and that in like manner may be found the heptagonals, the
octagonals, &e,

There is another kind of polygonal numbers, which result from the number of
points that can be ranged in the middle, and on the sides, of one or more similar
polygons, having a common centre.  These are different from the preceding ; for the
series of the triangulars of this kind is 1, 4, 10, 19, 31, &e., which are formed by the
suceessive addition of the numbers 1, 3, 6, 9, 12,

The central square numbers ave 1, 5, 13, 25, 41, 61, &e. ; formed, in like manner, by
the successive addition of the numbers 1,4, &, 12, 16, 20, &e.
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The central pentagonal numbers are 1, 6, 16, 31, 51, 76, &e. ; formed by the ad-
dition of the numbers 1, 5, 10, 15, 20, &e.

But we shall not enlarge farther on this kind of polygonal numbers, because they
are not those to which mathematicians usually give that name. Let us return there-
fore to the ordinary polygonal numbers.

The radix of a polygonal number is the number of the terms of the progression
necessary to be added in order to obtain that number. Thus the radix of the tri-
angular number 21, is G, because that number results from the successive addition
of the six numbers 1,2, 3, 4, 5, 6. In like manner, 4 is the radix of the square
number 16, considered as a figurate number, because that number is produced by
adding the four terms 1, 3, 5, 7, of the progression of the odd numbers,

Having given this explanation of the nature of polygonal numbers, we shall now
present the reader with a few problems respecting them.

PROBLEM I,
To find whether any proposed Number is Triangular, or Square, or Pentangular, §e.

The method of finding whether a number be square, is well known, and serves as
a foundation for discovering the other figurate numbers. This being supposed ; then
to determine whether any given number is a polygonal number, the following general
rule may be employed.

Multiply by 8 the number of the angles of the polygon less 2; multiply this first
product by the proposed number, and to the new product add the square of a num-
ber equal to that of the angles of the polygon less 4 : if the sum be a perfect square,
the given number is a polygon of the kind proposed.

It may easily be seen, that as the number of the angles in the triangle are 3, in the
square 4, in the pewntagon 5, &c., we shall have, as the multiplier of the proposed
number, in the case of the triangular number, 8; in that of the quadrangular num-
ber, 16; in that of the pentagonal, 24 ; and in that of the hexagonal, 32,

In like manner, as the number of the angles less 4, gives for the triangle — 1
for the square 0 ; for the pentagon, 1; for the hexagon, 2, &c.; the numbers to be
added to the product, as before mentioned, will be, for the triangle, 1 (becanse the
square of — 1 is 1); for the square, 0; for the pentagon, 1; for the hexagon, 4 ; for
the heptagon, 9; &ec. From these principles we may deduce the following rules,
which we shall illustrate by examples.

Suppose it were required to know whether 21 be a triangular number.

Multiply 21 by 8, to the product add 1, and the sum will be 169, which is a perfect
square : consequently 21 is a triangular number.

If we are desirous of knowing whether 35 be a pentagonal number, we must mul-
tiply 35 by 24, and the product will be 840; to this product if 1 be added we shall
have 841, which is a square number : we may therefore rest assured that 35 is a pen-
tagonal number.

PFROBLEM II.

A Triangular, or any Figurate Number whatever, being given ; to find its Radiz, or
the Number of the Terms of the Arithmetical Progression of which it is the Sum.

First perform the operation described in the preceding problem; and having found
the square root, the possibility of which will indicate whether the number be figurate
or not, add to this reot a number equal to that of the angles of the proposed poly-
gon less 4, and divide the sum by the double of the same number of angles less 2.
the quotient will be the radix of the polygon.

The number to be added is, for the triangle — 1, that is to say 1 to be deducted ;
for the square it is 0; for the pentagon 1; for the bexagon 2; &e,
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As to the divisor, it may be easily seen that for the triangle it is 2 (because the
double of 3 less 2 is 2), for the square 4, for the pentagon 6, for the hexagon 8, &e.

Let it be required therefore to find the radix of the triangular number 36.

Having performed the operation explained in the preceding problem, and found the
product 2859, tl‘:ﬁ gquare root of which is 17, subtract unity from this number, and
divide the remander by 2; the quotient 8 will be the radix or side of the trinngular
number 36.

Let the radix of the pentagonal number 35 be required.

Having found, as before, the radix 29, add to it 1, which will give 30, and divide
by 6; the quotient 5 will be the radix of this pentagonal number, that is to say, of
the number formed by the addition of the 5 terms of the series 1, 4, 7, 10, 13.

FROBLEM 11T,
The Rudix of & Polygona! Number being given ; to find that Number,

The rule for this purpose is exceedingly simple. From the square of the given
radix, subtract the product of the same radix by a number equal to that of the angles
less 4 ; the hall’ of the remainder will be the polygonal number required.

For example, what is the triangular number the radix of which is 127

The square of 12 is 144; the number equal to that of the angles less 4 is — I,
which being multiplied by 12 gives — 12: but according to the rule, — 12 ought to
be subtracted, which is the same thing as adding 12; in that case you will have 156,
which being divided by 2 gives T8,

What is the heptagonal number the radix of which is 207

To find the number required, take the square of 20, which is 400 ; then multiply
20 by 3, which is the number of the angles less 4, and subtract 60, the product, from
400 ; if you then divide the remainder 340 by 2, the quotient 170 will be ihe number
sought, or the heptagon the radix of which is 20.

It may not be improper here to remark, that the same number may be a poly-
gon or figurate number in different ways. Every number greater than 3 is a poly-
gon, of a number of sides or angles equal to that of its units.

Thus 36 is a polygon of 36 sides, the radix of which is 2; for the two first terms
of the progression are 1, 35. The same number 36 is a square ; and lastly it is tri-
angular, having 8 for its radix.

In the like manner, 21 is a polygon of 21 sides ; it is also triangular ; and lastly it
is octagonal,

PROBLEM IV,

To find the Sum of as many Triangular, or of as many Square, or of as many Pentagonal
Numbers, as we choose.

As by the successive addition of the terms of different arithmetical progressions,
we obtain new progressions of numbers, ealled triangular tmmhur?, square numbers,
pentagonals, &e. ; we can add also these last progressions, which wn}l{ give rise to new
figurate numbers, of a higher order, called pyramidal numbers. Those which arise
from the progression of triangular numbers, are called pfrmniﬂn‘lf; of the first order ;
those produced by the addition of the square numbers, pyramidals of the second
order; and those by the progression of the pentagonal numbers, pyrut}uduls of t.he
third order. The same operation may be performed with the p}'rnm:!iuls; v.:h_mh
gives rise to the pyramido-pyramidals. But as these numbers are of little wviility,
and can answer no other purpose than that of exercising the genius of st_uuh as are
fond of analytical investigation, we shall not enlarge farther on the subject. We
shall therefore eonfine ourselves to giving a general rule for adding as many figurate
numbers as the reader may choose.
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Multiply the cuhe of the number of terms to he added, by the number of the
angles of the polygon less 2; to the sum add three times the square of the said
number of terms, and subtract from it the product of the same number multiplied by
that of the angles less 5: if you divide the remainder by 6, you will have the sum of
the terms of the progression.

For example, suppose it were required to find the sum of the first eight triangular
numbers,

The cube of 8 is 512; which being multiplied by the number of the angles of the
polygon less 2, or hy 1, gives still 512; add to this number the triple of the square
of 8, or 192, which will make 704 ; then, as the number of the angles less 5, is —
2, multiply 8 by — 2, and you will have — 16; if you then add 16 to 704 you will
have 720, which bemng divided by 6, gives 120, for the sum of the eight first triangu-
lar numbers.

The same result may be obtained, with more ease, by multiplying the number of
the terms 8, by 9, and the product by 10, which gives also 720; which divided by 6,
the quotient is 120, as hefore,

In the ease of a series of squares, the number of which we shall here suppose to
by 10, we have only to multiply the number of terms, viz. 10, by the same number
plus unity, or by 11, and then by the double of the same number plus unity, that is
to say by 21 : the product of these three numbers, 2310, if divided by 6, gives 383,
for the sum of the first ten square numbers 1, 4, 9, 16, &e.

CHAPTER V.

OF RIGHTANGLED TRIANGLES IN NUMBERS ; 0R RIGHTANGLED TRIANGULAR
HUMBERS.

RicnraxcrLep triangular numbers, are rational numbers so related to each other,
that the sum of the squares of two of them is cqual to the square of the third.

The numbers 3, 4, and 5 have this property, 3* 4 47 being equal to .

Right-angled triangular numbers must be severally unequal ; for, if the two less
ones could each be represented by o, and the third or greatest by &, then 2 &* =
P, b=a ’v’! 2. an irrational number, whatever is the value of a.

The area of a rightangled triangle, whose sides are rational, cannot be equal to a
rational square. .

If a, b, and ¢ represent the sides of a triangle, and C be the angle opposite ¢; then
FC=00° a4 82=¢c: if C=120°%¢* +ab| &F =7 and if C=60° q?
—a b - b=

If » represent any number, and m any other number less than =, then »® -~ m?
will represent the hypothenuse of a rightangled plane triangle, of which the other
two sides are respectively #* — m*, and 2 n m.

For example,if n =2, and m = 1, then 0* +m? =5, —=m* =3, and Lnm =
4, which are rightangled triangular numbers.

If n =7 and m = 2, the formulie give 53, 45, and 28 for the numbers, and 53°
= 2809 = 45° - 28%,

We shall now propose and solve a few of the most easy and curious problems
respecting right-angled trinngular numbers.

PROGLEM I.
To find as many Rightangled Triangles in Numbers as we please.
This may be effeeted by the concluding formule which we baye just given, but
we think it right to add the following methods.
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Take any two numbers at pleasure, for example 1 and 2, which we shall call gene-
rating numbers ; multiply them together ; then having doubled the product, we ob-
tain one of the sides of the triangle, which in this case will be 4. If we then square
each of the generating numbers, which in the present example will give 4 and 1, their
difference 3 will be the second side of the triangle, and their sum 5 will be the hypo-
thenuse. The sides of the triangle, therefore, having 1 and 2 for their generating
numbers, are 3, 4, 4.

If 2 and 3 had been assumed as generating numbers, we should have found the
sides to be 5, 12, and 13 ; and the numbers 1 and 3 would have given 6,8, and 10.

Another Method.— Tuke a progression of whole and fractional numbers, as 1}, 23,
33, 44, &e., the properties of which are; lIst, The whole numbers are those of the
common series, and have unity for their common difference. 2nd, The numerators
of the fractions, annexed to the whole numbers, are also the natural numbers, 3rd,
The denominators of these fractions are the odd numbers 8, 5, 7, &e.

Take any term of this progression, for example 3§, and reduce it to an improper
fraction, by multiplying the whole number 3 by 7, and adding to 21, the produet, the
numerator 3, which will give 3. The numbers 7 and 24 will be the sides of a right-
angled triangle, the hypothenuse of which may be found by adding together the
squares of these two numbers, viz. 49 and 576, and extracting the square root of the
sum, The sum in this case being 625, the square root of which is 25, this number
will be the hypothenuse required. The sides therefore of the triangle produced by
the above term of the generating progression, are 7, 24, 25.

In like manner, the first term 1} will give the rightangled triangle 3, 4, 5.

The =zecond term 23 will give 5, 12, 13,

The fourth 4§ will give 9, 40, 41.  All these triangles have the ratio of their sides
different ; and they all possess this property, that the greatest side and the hypothe-
nuse differ only by unity.

The [Jt‘l:}grelisiﬂll IE.,, Eti&, 3{%, 45%, &, 18 of the same kind as the prece{]ing, The
first term of it gives the rightangled triangle 8, 15, 17 ; the second term gives the
triangle 12, 35, 37 ; the third the triangle 16, 63, 65, &e. All these triangles, it is
evident, are different in regard to the proportion of their sides; and they all have
this peculiar property, that the difference between the greater side and the hypothe-
nuse, is always the number 2.

PROBLEM II.

To find any Number gfﬂigﬁmﬂgfﬂd Triangles in Numbers, the sides of which shall

differ only by Unity.

To resolve this problem, we must find out such numbers that the double of their
squares plus or minus unity shall also be square numbers. OF this kind are the num-
bers 1, 2, 5, 12, 29, 70, &e. ; for twice the square of 1 is 2, which diminished by unity
leaves 1, a square number. In like manner, twice the square of 2is 8, to which if
we add 1, the sum 9 will be a square number.  And so on.

Having found these numbers, take any two of them which immediately follow each
other,as 1 and 2, or 2and 5, or 12 and 29, for generating numbers. The right-
angled triangles arising from them will be of such a nature, that their sides will differ
from each other only by unity. The following is a table of these triangles, with
their generating numbers.

Gener. Numb. Sides. Hypoth.
1 2 3 4 5
2 5 20 21 29
i 12 119 120 10
12 29 GG GO7 985
20 0 4059 4060 ajdl

70 1034 23600 23661 Sa461
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But if the problem were, to finda series of triangles of such a nature, that the hypo-
thenuse of each should exceed one of the sides only by unity, the solution would be
much easier. Nothing in this case would be necessary but to assume, as the generat-
ing numbers of the required triangle, any two numbers having unity for their differ-
ence, 'The following isa table similar to the preceding, of the six first rightangled
triangles produced by the first numbers of the natural series.

Gener. Numb. Sides. Hypoth.
1 2 3 1 5
2 3 5 12 13
3 4 f 24 25
4 3 9 40 41
5 G 11 G0 61
6 i 13 B4 85

If we assume, as generating numbers, the respective sides of the preceding series
of triangles, we shall bave a new series of rightangled triangles, the hypothenuses of
which will always be square numbers ; as may be seen in the following table.

Gener. Numb, Sides. Hypoth, Roots.
3 4 7 24 25 )
] 12 119 120 169 13
7 24 336 527 625 25
4 40 720 1519 1651 4]
11 GO 1320 347D 3721 61
13 54 2184 G887 7225 B

1t may here be observed, that the roots of the hypothenuses are always equal to
the greater of the generating numbers increased by unity.

But if the second side and the hypothenuse of each triangle in the above table,
which differ only by unity, were aszumed as the generating numbers, we should bave
a series of rightangled triangles, the least sides of which would always be squares.
A few of these are as follow :

Gener. Numb. Sides. Hypoth.
+ 5 9 40 4]
12 13 25 312 313
24 25 49 1200 1201
40 41 81 3280 3281

In the last place, if it were required to find a series of rightangled triangles, one
of the sides of which shall be always a cube, we have nothing to do but to take, as
generating numbers, two following terms in the progression of triangular numbers,
as 1, 3, 6, 10, 15, 21, &e. Dy way of example we shall here give the first four
of these triangles:

Gener. Numb. Sides. Hypoth.
1 3 6 8 10
3 6 36 29 45
6 10 120 4 136
10 15 00 125 320

FROBLEM IIT.

To find Three different Rightangled Triangles, the Areas of whick shall be
all Equal.

The following are three rightangled triangles which possess this property., The
gides of the first are, 40, 42, 48 ; those of the second 24, 70, T4 and those of the
third, 13, 112, 113.
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The method by which these triangles are found, is as follows :

Add the product of any two numbers to the sum of their squares, and that will
give the first number; the difference of their squares will give a second; and
double the sum of their product and of the square of the least number, will give the
third.

If you then form a rightangled triangle from the two first of the numbers thus
found, as generating numbers; a second from the two extremes ; and a third from the
first and the sum of the other two ; these three rightangled triangles will be equal
to each other.

No more than three rightangled triangles, equal to each other, can be found in
whole numbers ; but we may find as many as we choose in fractions or mixt numbers,
by means of the following formula :

With the hypothenuse of one of the above triangles, and the quadruple of its area,
form another rightangled triangle, and divide it by double the product which arises
from multiplying the hypothenuse of the triangle you made choice of by the difference
of the squares of the two other sides : the triangle thence produced will be the one
required.

PRODLEM IV.

To find a Rightangled Triangle, the Sides of which shall be in Arithmetical
Progression.

Take two generating numbers which have to each other the ratio of [ to2; the
gides of the rectangled triangle thence produced will be in arithmetical pro-
gression,

The simplest of these triangles, is that which has for its sides 3, 4, and 5, arising
from the numbers 1 and 2 assumed as generating numbers. But it is to be observed,
that all the other triangles, which possess the same property, are similar to this one,
and are only multiples of it. That there can be no other kind, might easily be
demonstrated in a great many different ways.

For let r, 24 a, and x -2 a, be the sides, then a* 4z Fa*=r+ 24", and this
quadratic equation gives r= 3a. Therefore the sides are represented by 3a, 44,
and 5 a.

Remark.—If it were required to find a rightangled triangle, the three sides of
which should be in geometrieal proportion, we must observe, that none such can be
found in whole numbers ; for the two generating numbers ought to bein the ratio of 1 to

»/ A/5—2, which is an irrational number.

PROBLEM V.

To find a Rightangled Triangle, the Area of whick, expressed in Numbers, shall be
equal to the Perimeter, or in a given ratio to it.

Of any square number, and the same square increased by 2, form a rightangled
triangle, and divide each of its sides by that square number: the quotients will give
the sides of a new rightangled triangle, the area of which, expressed numerically, will
be equal to the perimeter. ‘

Thaus, if we take, as generating numbers, 1 and 3, we shall have the triangle 6, 8,
10, the sides of which, if divided by unity, give the same 6, 8, 10, forming a triangle
having the property required ; for the area and the perimeter are each equal to 24.
T like manner, if we take 4 and 6 as generating numbers, we obtain for the required
triangle 5, 12, 13, which on trial will be found to possess the same pm];mrt}'.

These triangles are the only two of the kind which can be found in whole num-
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bers; but we may find abundance of them in fractional numbers, by means of the
squares 9, 16, &e.; such as the following: 4, 185, 202 or {8, ¢, ¥, or in their
least terms, Y, 1, 135,

If it were required that the area of the proposed triangle should be only in a given
ratio to the perimeter, for example that of §; take as gcncrating numbers o square,
and the same square inereased by 3, and form from them, as before directed, a right-
angled triangle : this triangle will possess the required property. Of this kind, in
whole numbers, are the two triangles 8, 15, 17, and 7, 24, 25: and numberless others
may be found in fractional numbers.

CHAPTER VI.

BOME CURIOUS PROBLEMS RESPECTING SQUARE AXD CUBE NUMBERS.

PROBLEM T.
Any Square Number being given, to divide it into Two other Squares.

IxnuMERABLE solutions may be found to this problem, in the following manner.
Let 16, for example, whose root is 4, be the square to be divided into two other
squares, which, as may be ecasily seen, can be only fractions.

Take any two numbers, as 3 and 2; multiply them together ; and by their product
multiply the double of 4, the root of the proposed square; the last product, whichin
this case iz 48, will be the numerator of a fraction, the denominator of which will be
13, the sum of the squares of the above numbers 3 and 2: the fraction §§ therefore
will give the side of the first square required, which square consequently will
be ¥4t

To obtain the second, multiply the given square by the above denominator 169,
and from the product 2704 subtract the numerator 2304: if we then take 20, the
root of 400 the remainder, (which will be always a square,) for a numerator, and 13
for a denominator, we shall have the fraction §} for the side of the second zquare.

The two sides of the required squares therefore, are 4§ and §§, the squares of which,
it and §22, will be found equal to the square number 16.

If we had taken for the primitive numbers 2 and 1, we should have had the roots
¥ and 12, the squares of which are 3 and 1 ; the sum of which is 4 or 16.

The numbers 4 and 3 would have given the roots §§ and §§, the squares of which
g8 and 334 still make up 12392 or 16.

It may here be seen, that by varying the two first suppesed numbers at pleasure, the
solutions also may be varied without end.

Remark.—Should it be here asked whether a given cube ean, in like mauner, he
divided into two other cubes? we shall reply, on the authority of an eminent analyst,
M. de Fermat, that it is not possible. It is equally impossible to divide any power
above the square into two parts, which shall be powers of the same kind; for ex-
ample, a biquadrate into two biquadrates.

FROBIL.EM IT.

To divide a Number, whick is the Sum of Two Squares, into Two other Sguares.

Let the proposed number be 13, which is composed of the two squares § and 4 ; it
is required to divide it into two other squares.

Take any two numbers, for example, 4 and 3; and multiply the former, 4, by 6, the
double of 3 the root of one of the above squares; and the second 3 multiply by the
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double of 2 the root of the other square; which will give as produets 24 and 12.
Subtract the latter of these numbers from the former, and their difference 12 will be
the numerator ofa fraction, the denominator of which will be 25, the sum of the
sqquares of the numbers first assumed. Multiply this fraction 13, by each of the assumed
numbers, viz. 4 and 3, and you will bave 4 and 3. If you then take the greater
of these numbers from the root of the greater square contained in 13, viz. 3, the re-
mainder will be §: and if you add the other to the side of the smaller square con-
tuined in 13, viz. 2, you will have §¢. These two fractions then, 8 and §, will be
the sides of the two squares sought, viz. 7§ and 3¢, which together are equal to 13.

By supposing other numbers, other squares may be obtained ; but these are suffi-
cient to shew the method of finding them.

Remark.—For a number to be divisible, in a variety of ways, inte two squares, it
must be either a square, or composed of two squares. Of this kind, taking them
in order, are the numbers 1, 2, +, 5, 8, 9, 10, 13, 16, 17, 25, 26, 29, 32, 34, 36, 37, &e.
We do not know, nor do we think it possible to find, any method of dividing into
two squares any number which is not a square, or the sum of two squares; and we
are of opinion that it may be established as a rule, that every whole number, which
is not a square, or composed of two squares, in whole numbers, cannot be divided, in
any manner, into two squares. A demonstration of this would be curious.

But every number is divisible, in a great variety of ways, into four squares ; for there
is no number which is not either a square, or the sum of two, or of three, or of
four squares. Bachet de Meziriac advanced this proposition,* the truth of which he
ascertained as far as possible by trying all the numbers from 1 to 323, It is added,
by M. de Fermat,} that he was able to demonstrate the following general and curious
properties of numbers, viz. .

That every number is either triangular, or composed of two or three triangular
numbers.

That every number is either square, or composed of two, or three, or four square
numbers.

And that every number is either pentagonal, or composed of two, or three, four,
or five pentagonal numbers. And =0 of the rest.

A demonstration of these properties of numbers, if they be real, would be truly
curious.

PROBLEM [III.

To find Four Cubes, two of which taken together shail be cqual to the Sum of the
other two.

This problem may be solved by the following simple method. Take any two
numbers of such a nature, that double the cube of the less shall exceed that of the
greater; then from double the greater cube subtract the less ; and multiply the re-
mainder, as well as the sum of the cubes, by the less of the assumed numbers :
the two products will be the sides of the two first cubes required.

In like manner, take the cube of the greater of the assumed numbers from double
the cube of the less; and multiply the remainder, as well as the sum of these two
cubes, by the greater of the assumed numbers: the two new products will be the
sides of the other two cubes.

For example, if we assume the numbers 4 and 5, which possess the above property,
we obtain, by following the rule, for the sides of the two first cubes, TH, 736 ; and

* Diophanti Alexandring Arithmeticorum, lib. vi. ewn Comm. €. G. Bacheti. Tolose, 1670, fol, p, 175,
t Ibid. p. 150,
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for those of the other two, 945 and 15, which being divided by 3, give for the two
first 248, 252 ; and for the two latter, 3135, 5.

If the assumed numbers be 5 and 6, we shall have 1535 and 1705 for the sides of
the two first cubes ; and 2016 and 204 for those of the other two.

Remark.— A number composed of two cubes being given, it is possible to find two
other cubes, the sum of which shall be equal to the former two. Vieta was of a con-
trary opinion ; but M. de Fermat, in his Observations on the Arithmetical Questions
of Diophantus, with a Commentary by Bachet de Meziriac, has pointed out a method
by which such cubes can be found. The caleulation indeed extends to numbers which
are exceedingly complex, and sufficient to frighten the boldest arithmetician ; as may
be seen by the following example, where it is required to divide the sum of the two
cubes 8 and 1 into two other cubes. By following the method of M. de Fermat,
Father de Billy found that the sides of the two new cubes were the following
nnmbers :

12436177735990097836481,
GODGZAR35G6G1 37297149
and 487267171714352336560.

— o

We must take these numbers on Father de Billy's word ; for we do not know that
any one will ever venture to examine whether he has been deceived.

But it is possible to resolve, without much trouble, another question of a similar
kind, which iz : To find three cubes which, taken together, shall be equal to a fourth.
By following the method pointed out in the above-mentioned work, it will be found
that the least whole numbers, which resolve the question, are 8, 4, and 5; for their
cubes added together make 216, which is the cube of 6.

We hLave confined ourselves to a few questions of this kind, but they might be
varied almost without. end. They are attended with a peeuliar kind of difficulty
which renders them interesting, and on that account they have been an object of at-
tention to varions analysts ; such as Diophantus of Alexandria, among the ancients, who
wrote thirteen books on arithmetical questions, of which the first six only remain,
with another on polygonal numbers. Vieta too exercised his ingenuity on questions
of this kind ; as did also Bachet de Meziriae, who wrote a commentary on the above
work of the Greek arithmetician. But this species of analysis was carried farther
than ever it had been before by the celebrated M. de Fermat. Father de Billy, about
the same time, gave proofs of the acuteness of his talents in this way, by his work
entitled Diophantus Redivious, in which he far excelled the ancient analyst. M.
Ozanam likewise shewed great ability in this speeies of analysis, by the resolution
of several problems which had been considered as insoluble. He wrote a work on
this subject, but it was never published ; and the manuscript, after bis death, came
into the hands of the late M. Daguessean, as we are informed by the historian of the
Academy of Sciences,

The Hindoos also were great adepts in such problems, as we learn from some alge-
braical works which have lately been found among them, an account of which may
be seen in the second volume of Tracts by the late Dr. Charles Hutton.
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CHAPTER VIL

OF ARITHMETICAL AND GEOMETRICAL PROGRESSIONS, AND OF CERTAIN PROBLEXMS
WHICH DEPEND ON THEM.

SEECTION I.

Ezplanation of the most remarkable properties of an Arithmetical Progression,

I¥ there be a series of numbers, either increasing or deereasing, in such a manner,
that the difference between the first and the second shall be equal to that between
the second and third, and between the third and fourth, and so on successively; these
numbers will be in arithmetical progression.

The series of numbers 1,2, 8,4, 5, 6, &e.; or 1,5, 9,13, &e.; or 20, 18, 16, 14, 12,
&e, 5 oor 15,12,9, 6,8, are therefore arithmetical progressions ; for in the first, the
difference between each term and the following one, which exceeds it, is always 1;
in the second it is 4: in like manner this difference is always 2 in the third series,
which goes on decreasing ; and in the fourth it is 3.

It may be readily seen, that an inereasing arithmetical progression may be continued
ad infinitum ; but this cannot be the case, in one sense, with a decreasing series ; for
we must always arrive at some term, from which if the common difference be taken,
the remainder will be 0, or else a negative quantity. Thus, the progression 19, 15,
11,7, 3, cannot be carried farther, at least in positive numbers ; for it is impossible
to take 4 from 3, or if it be taken we shall have, according to analytical expression,
— 1;* and by continuing the subtraction we should have — 5, — 9, &c.

The chief properties of arithmetical progressions may be easily deduced from the
definitions which we have here given. For a little attention will shew,

Ist. That each term is nothing else than the first, plus or minus the common dif-
ference multiplied by the number of intervals between that term and the first.
Thus, in the progression 2, 5, 8, 11, 14, 17, &e., the difference of which is 3, there are
five intervals between the sixth term and the fGrst; and for this resson the sixth
term was equal to the first plus 15, the product of the common difference 3
by 5. But as the number of intervals is always less by unity than the number
of terms, it thence follows, that we may find any term, the place of which in
the series is known, if we multiply the common difference by the number expressing
that place less unity. According to this rule, the hundredth term of an increasing
progression will be equal to the first plus 99 times the common difference. 1t it be
decreasing, it will be equal to the first term minus that product.

In every arithmetical progression therefore, the common difference being given, to
find any term the place of which is known ; multiply the common difference by the
number which indicates that place less unity, and add the product to the first term,
if the progression be increasing, but subtract it if it be decreasing: the sum or re-
mainder will be the term required.

2nd. In every arithmetical progression, the sum of the first and last terms, is equal
to that of the second and the last but one ; and to that of the third and the last but
two, &c.; in a word, to the sum of the middle terms if the number of the terms
be even, or to the double of the middle term if the number of the terms be odd.

This may easily be demonstrated from what has been said : for let us call the first
term A, and let us suppose that there are twenty terms in the progression ; if it be
increasing, the twentieth term will be equal to A plus nineteen times the common

# As the guantities called negative are real quantities, faken in a sepse contrary o that of the
quantities called pogitive, it is evident that, according to mathematical and analytical strictness, an
arithmetical progression may be contined ad infinifun, decreasing as well as increasing ; but we
here speak agreeably to the vulgar mode of expression.
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difference ; and their sum will be double the first term plus mneteen times that dif-
ference., But the second term iz equal to the first plus the common difference, and
the nineteenth term, or last but one, according to our supposition, is equal to the first
plus eighteen times that difference. The sum therefore of the second and last but
one, is twice the first term plus nincteen times the common difference, the same as
before. And so of the third and last but two.

3rd. By this last property we are enabled to shiew in what manner the sum of all
the terms of an arithmetical progression may be readily found; for, as the first and
last terms make the same sum as the second and last but one, and as the third and
the last but two, &e. ; in short as the two middle terms, if the number of terms be even ;
it thenece follows, that the whole progression contains as many times the sum of the
first and the last terms, as there are pairs of such terms. But the number of pairs
iz equal to balf the number of terms ; consequently the sum of the whole progression
is equal to the product of the sum of the first and last terms multiplied by half the
number of terms, or, what amounts to the same, to half the produet of the sum of
the first and the last terms by the number of the terms of the progression,

If the number of the terms be odd, as 9 for example ; it may be readily seen that
the middle term will be equal to half the sum of the two next to it, and consequently
of the sum of the first and the last. But the sum of all the terms, the middle term
exeepted, is equal to the product of the sum of the first and last terms by the number
of terms less unity, for example 8in the case here proposzed, where there are 9 terms ;
consequently, by adding the middle term, which will complete the sum of the pro-
gression, and wlhich is equal to hall’ the sum of the first and the last terms, we shall
have, for the sum total of the progression, as many times the half sum above.men-
tioned, as there are terms in the progression; which is the same thing as the
product of half the sum of the first and last terms by the number of the terms, or
the product of the whole sum by half the number of terms.

When these rules are well understood, it will be easy to resolve the following
questions,

PROBLEM I.

If a hundred stones are placed in a straight line, at the distance of a yard from each
other ; how many yards must the person walk, who undertakes to pick them up one
by one, and to put them into a basket a yard distant from the first stone ?

It is evident, that to pick up the first stone, and put it into the basket, the person
must walk 2 yards, one in going and another in returning; that for the second he
must walk 4 yards; and so on, increasing by two as far as the hundredth, which will
ollige him to walk two hundred yards, one hundred in going, and one hundred in
returning. 1t may easily be perceived also, that these numbers form an arithmetieal
progression, in which the number of terms is 100, the first term 2, and the last 200.
The snm total therefore will be the product of 202 by 50, or 10100 yards, which
amount to more than five miles and a half,

PROBLEM IT.

A gentleman employed a bricklayer to sink a well, and agreed to give him at the rate of
three shillings for the first yard in depth, five for the second, seven for the third, and
so on increasing Gl the twenticth, where he expeeted to find water : how much was
due to the bricklayer when ke had completed the work.

This question may be easily answered by the rules already given; for the diffe-
rence of the terms is 2, and the number of terms 20 ; consequently, to find the twen-
tieth term, we must multiply 2 by 19, and add 38, the product, to the first term 8,
which will give 4] for the twentieth term,
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If we then add the first and last terms, that is 3 and 41, which will make 44, and
multiply this sum by 10, or half the number of terms, the product 440 will be the
gsum of all the terms of the progression, or the number of shillings due to the brick-
layer when he had completed the work. [e would therefore bave to receive £22.

PROBLEM III.

A gentleman employed a bricklayer to sink a well to the depth of 20 yards, and agreed to
give him £20 for the whole; but the bricklayer falling sick, when he had finished the
eighth yard, was unable to go on with the work : how much was then due to fim ?

Those who might imagine that two fifths of the whole sum were due to the work-
man, beeause 8 yards are two fifths of the depth agreed on, would certainly be mista-
ken ; for it may be easily seen that, in cases of this kind, the labour increases in pro-
portion to the depth. We shall bere suppose, for it would be difficult to determine
it with any aceuracy, that the labour increases arithmetically as the depth; conse-
quently the price ought to inerease in the same manner.

To determine this problem, therefore, £20 or 400 shillings must be divided into
90 terms in arithmetical progression, and the sum of the first eight of these will be
what was due to the bricklayer for his labour.

But 400 shillings may be divided into twenty terms, in arithmetical proportion, a
great many different ways, aceording fo the value of the first term, which is here
undetermined : if we suppose it, for example, to be 1 shilling, the progression will be
1, 3,5, 7, &e., the last term of which will be 39 ; and consequently the sum of the
firzst eight terms will be 64 shillings. On the other hand, if we suppose the first term
to be 104, the series of terms will be 104, 11, 124, 134, 144, which will give 112
shillings for the sum of the first eight terms.

But to resolve the problem in a proper manner, so as to give to the bricklayer his just
due for the commencement of the work, we must determine what is the fair valueof a
vard of work, similar to the first, and then assume that value as the first term of the
progression. We shall here suppose that this value is 5 shillings; and in that case
the required progression will be 5, 6}, 8¢, 944, 115, 124, &c., the common diffe-
rence of which is §3, and the last term 35. Now to find the eighth term, which is
necessary before we can find the sum of the first eight terms, multiply the common
difference 4§ by 7, which will give 114;, and add this product to 5 the first term,
which will give the eighth term 164; ; if we then add 16§ to the first term, and
multiply the sum, 214, by 4, the product, 84 #, will be the sum of the first eight
terms, or what was due to the bricklayer, for the part of the work he bad compieted.
The bricklayer therefore had to receive 844 shillings, or £4. 4s. 2d.

PROBLEM IV.

A merchant being considerably in debt, one of his creditors, to whom he owed £1860,
offered to give him an acquittance if he would agree to pay the whole sum in 12 month-
Iy instalments ; that is to say, £100 the first month, and to increase the payment
by a certain sum each succeeding month, to the twelfth inclusive, when the whole debt
would be discharged: by what sum was the payment of each month increased ?

In this problem the payments to be made each month ought to increase in arith.
metical progression. We have given the sum of the terms, which is equal to the
sum total of the debt, and also the number of these terms, which is 12; but their
common difference is unknown, because it is that by which the payments ought to
increase ench month.

Tofind this difference, we must take the first payment multiplied by the number
of terms, that is to say 1200 pounds, from the sum total, and the remainder will

I
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be 660 ; we must then multiply the number of terms less unity, or 11, by half the
number of terms, or 6, and we shall have 66; by which, if the remainder 660 be
divided, the quotient 10 will be the difference requived. The first payment, there-
fore, being 100, the second payment must have been 110, the third 120, and the
last 210,

SECTION 1I.

Of Geometrical Progressions, with an explanation of their Principal Propertics.

If there be a series of terms, each of which is the product of the preceding by a
common multiplier ; or what amounts to the same thing, each of which is in the
same ratio fo the preceding; such a series forms what is ealled a geometrical pro-
gression.  Thus 1, 2, 4, 8, 16, &e., form a geometrical progression: for the second
is the double of the first, the third the double of the second, and 0 on in succession.
The terms 1, 3, 9, 27, 81, &ec. form also a geometrical progression, each term
being the triple nf that which precedes it.

1. The principal property of geometrical progression is, that if we take any three
following terms, as 3, 9, 27, the product, 81, of the extremes will be equal to the
square of the middle term 9; in like manner, if we take four following terms, as 3,
0, 27, 81, the product of the extremes, 243, will be equal to the product of the two
means or middle terms, 9 and 27.

In the last place, if we take any successive number of terms, as 2, 4, 8, 16, 32, 64,
the product of the extremes, 2 and 64, will be equal to the produect of any two which
are equally distant from them, viz. 4 and 32, or 8 and 16.  If the number of the terms
were odd, it is evident that there would be only one term equally distant from the
two extremes; and in that case, the square of this term would be equal to the pro-
duct of the extremes, or fo that of any two equally distant from them, or from the
mean term. .

Il. Between geometrical and arithmetical progression there is a eertain analogy,
which deserves here to be mentioned, and which is, that the same results are obtained
in the former by employing multiplieation and division, as are obtained in the latter
by addition and subtraction. When in ihe latter we take the half or the third, we
emnploy in the former extraction of the square, cube, &c. roots.

Thus, to find an arithmetical mean between any two numbers, for example 3 and
12, we add the two given extremes, and T4, the balf of their sum 15, will be the
number required ; but to find a geometrical mean between two numbers, we must
multiply the two extremes, and extract the square root of their product. Thus, if
the given numbers were 3 and 12, by extracting the square root of their product 36,
we shall bave 6 for the number required.

If we take any geometrical progression whatever, as 1, 2, 4, 8, 16, 82, 64, &e., and
write it down as in the subjoined -:smrnph- with the terms of an arithmetical progres.
sion above it, in regular order,

g 1 2 3 & & 8 T8 0 10
1 2 4 8 16 32 64 128 256 512 1024
the following properties will be remarked in this combination :

1st. If any two terms whatever of the geometrical progression, for example 4
and 64, be multiplied together, their product will be 256; if we then take the two
terms of the arithmetical progression corresponding to 4 and (4, which are 2 and 6,
and add them together, their sum 8 will be found over the above sum 2506,

2. If we take four terms of the lower series in geometrieal proportion, for exam-
ple, 2, 16, 64, 512, the numbers of the upper series corresponding to them will he
1, 4,6, 9, which are in arithmetical proportion ; for the difference between 4 and 1
s the same as that between 9 and 6.

3d. In the lower series, if we take any square number, for example 64, and in the
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apper series the term corresponding to it, viz. 6, the half of the latter will be found
to correspond to the square root of 64, the former, viz. 8.

By taking, in the lower series, a cube, for example 512, and in the upper series the
corresponding number @, it will be found that the third of the latter, which is 3,
will correspond to the cube root of the former 512, which is 8.

Thus, it is evident, that what is multiplication in geometrical progression, is addi.
tion in arithmetical ; that what is division in the former, is subtraction in the latter ;
and, in the last place, that which is extraction of the square, cube, &e. roots, in
geometrical progression, is simple division by 2, 3, &e. in arithmetical.

This remarkable analogy is the foundation of the common theory of logarithms ; and
on that account seemed worthy of some illustration.

ITL. Itisevident thatall the powers of the sume number, taken in regular order,
form a geometrical progression; as may be seen in the following example, which is a
geries of the powers of the number 2,

2 4 8 16 32 64 128, &e.
The case is the same with the powers of the number 3, which form the series,
3 9 27 Bl M43 729, &e.

The first of these series has this peculiar property, that if we take the first, second,
fourth, eighth, sixteenth, and thirty-second terms, and to them add unity, the result
will be prime numbers.

IV. The common ratio of a geometrical progression, is the number that results
from the division of any term by that which precedes it. Thus, in the geometrieal
progression 2, 8, 32, 128, 512, the ratio is 4; for if we divide 128 by 32, 32 by 8, or
8 by 2, the quotient will be always 4. The ratio therefore acts an important part in
geometrical progression; the same that the common difference does in arithmetical,
that is to say, it is always constant.

To find any term then, for example the 8th, of a geometrical progression, the ratio
and first term of which are known, multiply the ratio by itself 7 times, or as many
times as there are units in the place of the required term less one ; or, what is the
_same thing, raise the ratio to the Tth power; then multiply the first term by the
product, and the new produet will be the eighth term required. For example, let the
first term of the progression be 3, and the ratio 2; to find the 8th term, raise 2 to the
Tth power, which will be 128, and multiply 128 by the first term 3, the produet 354
will give the 8th term of the progression required.

We shall here observe, that had the 8th term of an arithmetical progression been
required, the first term and the common difference being given, we should have mul-
tiplied that difference by 7, and added the product to the first term ; which is a proof
of the analogy alrendy mentioned in the second paragraph.

V. The sum of the terms of any given geometrical progression may be found in the
following manner :

Multiply the first term by itself, and the last by the second, and take the difference
of the two products. Then divide this difference by that of the first two terms, and
the quotient will be the sum of all the terms.

Let us tuke, for example, the progression 3, 6, 12, 24, &c., the eighth term of which
iz 384, and let it be required to find the sum of these eight terms : the produet of the
first term by itself is 9, and that of the last by the second is 2304 ; the difference of
these produets is 2295; if this difference then be divided by 3, the difference of the
first and second terms, we shall bave for quotient the number 7063, which will be the
sum of these eight terms.

VI. Ageometrical progression may decrease in infinitum, without ever reaching 0 ;
‘or it is evident that any part of the quantity greater than O can never become 0. A
decreasing geometrical progression therefore may be extended without end; for by

p 2
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dividing the last term by the ratio of the progression, we shall have the following.
term.

We shall hece subjoin two of these decreasing progressions, by way of ex-
amples :—

1, Y 4 & T 4o a'p &e,
L L b 0 dv sh oo &e

V1L The sum of an increasing geometrical progression is evidently infinite; but
that of a decreasing geometrical progression, whatever be the number of terms as-
sumed, is always finite. Thus the sum of all the terms, in infinicum, of the progres-
sion 1, §, |, 1, &c., is only 2; that of the progression 1, 3, }, &, &c. in infinitum, is
only 1}; &e. This necessarily follows from the method already given, for finding
the sum of any number of terms whatever of a geometrical progression ; for if we
suppose it prolongued in infinitum, and decreasing, the last term will be infinitely
small, or 0; the product of the second term by the last will therefore be 0; and
consequently, to find the sum, nothing will be necessary but to divide the square of
the first term by the difference of the first and the second. In this manner it will be
found that the sum of 1,1, 3, 4, &e. continuwed in infinitum, is 2; and that of 1, 4,
s &e. will be§ or 14; for the square of 1 is 1, the difference of 1} and is i, and
unity divided by } gives 2; in like manner, 1 being divided by , which is the differ-
ence of 1 and 4, gives §.

Remark.—When we say that a progression continued in infinifum may be equal to
a finite quantity, we do not, like Fontenelle, pretend to assert that infinity can have
a real existence. What is here meant, and what ought to be understood by all such
expressions, is that, whatever be the number of terms of a progression assumed, their
sum never can equal the determined finite gquantity, though it may approach to it in
such a manner, that their difference will become sumaller than any assignable quantity.

PROBLEM I.

If Achilles ean walk ten times as fast as a tortoise, which is a furlong before him, can
erawl ; will the former overtake the latter, and how far must ke walk before he

does so ¥

This problem has been thought worthy of notice merely because Zeno, the founder
of the sect of the Stoics, pretended to prove by asophism that Achilles could never
overtake the tortvise ; for while Achilles, said he, is walking a furlong, the tortoise
will have advanced the tenth of a furlong; and while the former is walking that
tenth, the tortoise will have advanced the hundredth part of a furlong, and so on in
infinitum ; consequently an infinite number of instants must elapse before the hero can
come up with the reptile, and therefure he will never eome up with it,

Any person however, possessed of common sense, may readily perceive that
Achilles will soon come up with the tortoise, since he will get before it. In what
then consists the sophism ? It may be explained as follows :

Achilles indeed would never overtake the tortoise, if the intervals of time during
which he is supposed to be walking the first furlong, and then the tenth, bundredth,
and thousandth parts of a furlong, which the tortoise has suecessively advanced before
him, were equal; but if we suppose that he has walked the first furlong in 10
minutes, he will require only one minute to walk the tenth of a furlong, and
4 of a minute to walk the hundredth, &ec. The intervals of time therefore,
which Achilles will require to pass over the space gained by the tortoise, during
the preceding time, will go on decreasing in the following manner: 10, 1, {5 14,
yiope dc. 3 and this series forms a sub-decuple geometrical progression, the sum
of which is equal to 11}, or the interval of time at the end of which Achilles will

have reached the tortose.
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PROBLEM II.

Ifthe hour and minute hands of a clock both begin to move exactly at noon, at what
points of the dial-plate will they be successively in conjunction, during a whole revo-
lution of the twelve hours #

This problem, considered in a certain manner, is in nothing different from the pre-
ceding. The minute hand acts here the part which Achilles did in the former, and
the hour hand, which moves twelve times slower, that of the tortoise. In the last
place, if we suppose the hour hand tor be begiuning a second revolution, and the
minute hand to be beginning a first, the distance which the one has gained over the
other will be a whole revolution of the dial-plate. 'When the minute hand has made
one revolution, the hour hand will have made but one twellth of a revolution, and o on
progressively. To resolve the problem therefore, we need only apply to these data,
the method employed in the former ease, and we shall findd that the interval from
noon to the point where the two bands come again into conjuction, will be & of a
whele revolution, or, what amounts to the same thing, one hour and 4 of an hour,
They will afterwards be in conjunction at 2 hours and 4, 3 hours aud {, 4 hours
and 4, &c. ; and, lastly, at 11 hours |, that is to say at 12 hours.

PROBLEM [ITI.

A conrtier having performed some very important service to his sovereign, the latter,
wishing to confer on him a suitable reward, desired him to ask whatever he thought
proper, promising that it should be granted. The courtier, who was well acquainted
with the science of numbers, only requested that the monarel would give him a quan-
tity of wheat equal to that which would arise from one grain deubled sirty-three
times successively, What was the value of the reward 2

The origin of this problem is related in so curious a manner by Al-Sephadi, an
Arabian author, that it deserves to be mentioned. A mathematician named Sessa,
says he, the son of Daher, the subjeet of an Indian prince, having invented the game
of chess, his sovereign was highly pleased with the invention, and wishing to confer
on him some reward worthy of his magnificence, desired him to ask whatever he
thought proper, assuring him that it should be granted. The mathematician how-
ever only asked a grain of wheat for the first square of the chess-board, two for the
second, four for the third, and =0 on to the last or sixty-fourth. The prince at first
was almost incensed at this demand, conceiving that it was ill-suited to his libevality,
and ordered his vizier to comply with Sesza's request; but the minister was much
astonished when, baving caused the quantity of corn necessary to fulfil the prince's
order to be calculated, he found that all the grain in the royal granaries, and that
even of all his subjects, and in all Asia, would not be sufficient. He therefore
informed the prince, who sent for the mathematician and candidly acknowledged
that he was not rich enough to be able to comply withhis demand, the ingenuity of
which astonished him still more than the game he had invented.

Such is then the origin of the game of chess, at least according to the Arabian
historian Al-Sephadi. But it is not our business here to discuss the truth of this
story ; our business being to calculate the number of grains demanded by the mathe-
matician Sessa.

It will be found by ecalculation, that the 64th term of the double progression, be-
ginning with unity, is 9223372036854775808. But the sum of all the terms of &
double progression, beginning with unity, may be obtained by doubling the last term
and subtracting from it unity. The number therefore of the grains of wheat equal
to Sessa’s demand, will be 18446744073700551615. Now if a standard pint contains
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9216 grains of wheat, a gallon will contain 73723, and, as eight gallons make
one bushel, if we divide the above result by eight times 73728, we shall have
31274097412295 for the number of the bushels of wheat necessary to discharge the
promise of the Indian king; and if we suppose that one acre of land is eapable of
producing, in one year, thirty bushels of wheat, to produce this quantity would require
1042499913743 acres, which make more than eight times the surface of the globe ;
for the dinmeter of the earth being supposed equal to 7930 miles, its whole surface,
comprehending land and water, will amount to very little more than 126437830177
ﬁfillﬂl'u ACTes.

Dr. Wallis considers the matter in a manner somewhat different, and says,in his
Arithmetie, that the guantity of wheat necessary to discharge the promise made to
Sesza, would form a pyramid nine miles English in length, breadth, and height ; which
iz equal to a parallelopiped mass having nine square leagues for its base, and of the
uniform height of one league. But as one league contains 15840 feet, this solid would
be equivalent to another one foot in height, and having a base equal to 142560 square
leagues. Hence it follows, that the above quantity of wheat would cover, to the
height of one foot, 142560 square leagues ; an extent of surface equal to eleven times
that of Britain, which, when every reduction is made, will be found to contain little
more than 12674 square leagues.

If the price of a bushel of wheat be estimated at ten shillings, the value of the
above quantity will amount to £156374987061147. 10s., a sum which, in all probability,
far surpasses all the riches on the earth,

Another problem of the same kind is proposed in the following manner :

A gentleman taking a faney to a horse, whick a horse-dealer wished to dispose of at as
high a price as he could, the Iaiter, to induce the gentleman to become a purchaser,
offered to let him have the horse for the value of the twenty-fourth nail in his shoes,
reckoning one farthing for the first nail, two for the second, fouwr for the third, and
so on to the twenty-fourth., The gentleman thinking he should have a good bargain
accepied the offer. What was the price of the horse ?

By caleulating as before, the twenty-fourth term of the progression 1, 2, 4, 8, &ec,,
will be found to be 8388608, equal to the number of farthings the purchaser ought to
give for the horse. The price therefore amounted to £8738, 2s. 8d., which is more
than any Arabian horse, even of the noblest breed, was ever sold for.

Had the price of the horse been the value of all the mails, at a farthing for the
first, two for the second, four for the third, and so on, the sum would have been
double the above number, minus the first term, or 16777215 farthings, that is
L£17476. 5s. 33d.

We shall conclude this chapter with some physico-mathematical observations on
the prodigious fecundity, and the progressive multiplication, of animals and vegeta-
bles, which would take place if the powers of nature werc not continually meeting
with obstacles.

I. 1t is not astonishing that the race of Abraham, after sojourning 260 years in
Egypt, should have formed a nation capable of giving uneasiness to the sovereigns of
that country. We are told in the sacred writings, that Jacob settled in Egypt with
TUgpersons ; now if we suppoese that among these 70 persons there were 20 too far
advanced in life, or too young, to have children; that of the remaining 50, 25 were
males and as many females, forming 25 married couples, and that each couple, in the
space of 25 years, produced, one with another, 8 children, which will not appear in-
eredible in a country celebrated for the fecundity of its inhabitants, we shall find
that, at the end of 25 vears, the above TO persons may have inereased to 270 ; from
which if we deduct those who died, there will perbaps be no exaggeration in making
them amount to 210. The race of Jacob therefore, after sojourning 25 years in
Fgypt, may have been tripled. In like manner, these 210 persons, after 25 years
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more, may have inereased to 630; and so on in triple geometrical progression : hence
it follows that, at the end of 225 years, the population may have amounted to
1377810 perzons, among whom there might easily be five or six hundred thousand
atlults fit to bear arms.

IT. If we suppose that the race of the first man, making a proper deduction for
those who died, may have been doubled every twenty years, which certainly is not
incongistent with the powers of nature, the number of men, at the end of five cen-
turies, may have amounted to 1048576, Now, as Adam lived about 900 years, he
may have seen therefore, when in the prime of life, that is to say about the five hun-
dredth year ef his age, a posterity of 1048576 persons.

ITI. How great would be the multiplication of many animals, did not the difficulty
of finding food, the continual war which they earry on against each other, or the
nuimbers of them consumed by man, set bounds to their propagation ? It might easily
he proved, that the breed of a sow, which brings forth six young, two males and four
females, ift we suppose that each female produces every year afterwards six young,
four of them females and two males, would in twelve years amount to 33554230,

Sgveral other animals, such as rabbits and cats, which go with young only for a few
weeks, wonld multiply with still greater rapidity : in half a century the whole earth
would not be suflicient to supply them with food, nor even to contain them!

If all the ova of a herring were fecundated, a very few years would be sufficient
to make its posterity fill the whole ocean ; for every oviparous fish contains thousands
of ova which it deposits in spawning time. Let us suppose that the number of ova
amounts only to 2000, and that these preduce as many fish, half males and halt fe-
males ; in the second yvear there would be more than 200000 ; in the third, more than
200000000 ; and in the eighth year the number would exceed that expressed by 2
followed by twenty-four ciphers. As the earth contains scarcely so many cubie
inches, the ocean, if it occupied the whole globe, would not be suflicient to contain
all these fish, the produce of one herring in eight years!

1V. Many vegetable productions, if all their zeeds were put into the earth, would
in a few years cover the whole surface of the globe. The hyosciamus, which of all
the known plants produces perhaps the greatest number of seeds, would for this pur-
pose require no more than four years. According to some experiments, it bas been
found that one stem of the hyosciamus produces sometimes more than 50000 seeds :
now if we admit the number to be only 10000, at the fourth crop it would amount to
a 1 followed by sixteen cipbers. DBut as the whole surface of the earth containus no
maore than 5507634452576256 square feet ; if we allow to cach plant only one square
foot, it will be seen that the whole surface of the earth would not be sufficient for
the plants produced from one hysociamus at the end of the fourth year!

SECTION IIIL
Of some other Progressions, and particularly Harmonical Progression.

Three numbers are in harmonical proportion, when the first is to the last, as the
difference between the first and the second is to that between the second and the
third. Thus, the numbers G, 3, 2, are in harmonical proportion ; for 6 is to 2, as 3,
the difference between the two first numbers, is to 1, the difference between the two
last. This kind of relation is called harmonical, for a reason which will be seen
hereafter.

I. Two numbers being given, a third which shall form with them harmonical pro-
portion may be found, by multiplying these two numbers, and dividing their product
by the excezs of the double of the first over the second. Thus, if 6 and 3 be given,
we must multiply & by 3,and divide the product 18 by 9, which is the excess of 12
the double of 6 over 3, the second of the mumbers given. In this ease the quoticnt
will be 2.
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It may hence be readily seen that, in one sense, it is not always possible to find a
third nuinber in harmonical proportion with two others; for when the first is less, if
its double be equal to or less than the second, the result will be an infinite or a
negative number. Thus, the third harmonic proportional to 2 and 4 is infinite ; for
it will be found that the number sought is equal to 8 divided by4 —4, or 0. But
every person, in the least acquainted with arithmetic, knows that the more the deno-
minator of a fraction iz inferior to unity, the greater the fraction; consequently, a
fraction which has 0 for its denominator is infinite.

If the double of the first number be less than the second, as would be the case
were it proposed to find a third harmonieal to 2 and 6, the required divisor will be a
negative number. Thus, in the proposed example of 2 and 8, it will be — 2; and
therefore the third harmonical required will be 12 divided by —2, that is —6.*

But this inconvenience, if it be one, is not to be apprebended when the greater
number is the first term of the proportion ; for if the first exceeds the second, much
more will its double exceed it. In this case therefore, the third harmonical will
always be a finite and positive number.

II. When three numbers, in decreasing harmonical proportion, are given, for ex-
ample G, 3, 2, it is easy to find a fourth : nothing is necessary but to find a third har-
monical to the two last, and this will be the fourth. The third and fourth may, in
like manner, be employed to find a fifth, and sc on; and this will form what is ealled
an harmonical progression, which may be always continued decreasing. In the
present example, this series will be found to be

ﬁ| 3! 2! ‘lll EI %: *h EI- &e.
or6, 3, 2, 4, % 1, § § &c

Had the two first numbers been 2 and 1, we should have had the harmoniecal pro-
gression2, I, L, L L L L L kb & & e

It is a remarkable property, therefore, of the series of {ractions, having for their
numerators unity, and for their denominators the numbers of the natural progression,
that they are in harmonieal progression.

Besides the numerical relation already mentioned, we find indeed, in the series of
these numbers, all the musical concords possible; for the ratio of 1 to 4 gives the
octave; that of § to }, or of 3 to 2, the fifth; that of & to }, or of 4 to 3, the
fourth ; that of | tol, or of 5 to 4, the third major; that of } to }, or of 6 to 5, the
third minor; that of } to }, or of 9 to 8, the tone major, and that of § to &, or of
10 to 9, the tone minor. But this will be explained at more length in that part of
this work which treats of music.

PFROBLEM.
What is the Sum of the Infinite Series of Numbers in Harmonical Progression,

Lbbibh fe?

It has been already seen, that a series of numbers in geometrical progression, if
continued in infinitum, will always be equal to a finite number, which may easily be
determined. But is the case the same in the present problem ?

We will venture to reply in the negative, though an author, in the Journal de
Trevour, has bestowed great labour in endeavouring to prove that the sum of
these fractions is finite. Buat his reasoning consists of mere paralogisms, which he
would not have ¢mployed had he been more of a geometrician ; for it ean be demon-
strated that the series L, 4, 1, 1, 1, &c., may be always continued in such a manner
as to exceed any finite number whatever,

® Seo what Lhas been already sail in repard to negative quantities, in the srticle on arithmetical
Pprogression,
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BECTION 1V.

Of various Progressions decreasing in infinitum, the Sums of which are known.

I. A variety of decreasing progressions, which have served to exercise the in-
genuity of mathematicians, may be formed according to different laws. Thus, for
example, the numerator being constantly unity, the denominators may increase in
the ratio of the triangular numbers 1, 3, 6, 10, 15, 21, &ec. Of this kind is the
tollowing progression :

bbb e A &e

Its sum is finite, and exactly equal to 2, or 14.

In like manner, the sum of a progression having unity constantly for its numerators,
and the pyramidal numbers for its denominators, as,

is equal to 1}, L& o e &e

That where the denominators are the pyramidals of the second order, as

is equal to 14. bt &y oy &e

That where they are the pyramidals of the third order, as

is equal to 13, b Ao e e oy &e

The law therefore which these sums follow, is evident : and if the sum of a similar
progression, that, for example, where the denominators are the pyramidals of the
tenth order, were required, we might easily reply that it is equal to 14,

II. Let us now assume the following progression,

!s L i! *! ﬁ:r ﬁ: l'-""'-"L-l
in which the denominators are the squares of the numbers of the natural pro-
gression,

If the reader is desirous to know its sum, we shall observe, with Mr. John Ber-
noulli, by whom it was first found, that it is finite, and equal to the square of the eir-
cumference of the circle divided by 6, or } of 3-14158°,

As to that in which the denominators are the cubes of the natural numbers, Mr.
Bernoulli acknowledges that he had not heen able to discover it.

Thosze who are fond of researches of this kind, may consult a work of James Ber-
noulli, entitled Tractatus de Seriebus Infinitis, whichis at the end of another pub-
lished at Bile in 1713, under the title of Ars Conjectandi, where they will find ample
satisfaction. They may also consult various other memoirs both of John Bernoulli,
to be found in the collection of hizs works, and of Euler, published in the Transac-
tions of the Imperial Academy of Sciences at Petersburgh.

CHAPTER VIIL

OF COMBINATIONE AND PERMUTATIONS.

Berone we enter on the present subject, it will be necessary to explain the method
of eonstructinga sort of table, invented by Pasecal,* called the Arithmetical triangle,
which is of great utility for shortening caleulations of this kind.

* This ia & mistake in Montncla, ns the triangle was invented some ages before Pascal: see Dr.
Hutton s Tracts, 4in, p. 80,
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Firzst, form a band A B of ten equal squares, and below it another ¢ p of the like kind,
but shorter by one square on the left, so that it shall contain only nine squares ; and
continuwe in this manner,
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ulways making each suceessive band a square shorter.  'We shall thus have a series of
squares disposed in vertical and borizontal bands, and terminating at each end in a
single square =0 as to form a triangle, on which account this table has been ealled the
arithmetieal triangle. The numbers with which it is to be filled up, must be dis-
posed in the following manner.

In each of the squares of the first band A B, inseribe unity, as well as in each of
those on the diagonal a E.

Then add the number in the first square of the band ¢ p, which is unity, to that in the
square immediately above it, and write down the sum 2, in the following square. Add
this number, in the like manner, to that in the square above it, which will give 3, and
write it down in the next square. DBy these means we shall have the series of the
natural numbers, 1, 2, 3, 4, 5, &e.  The same methad must be followed to fill up
other horizontal bands ; that is to say, each square ought always to contain the
sum of the number in the preceding square of the same row, and that which is imme-
diately above it. Thus, the number 15, which ocecupies the fifih square of the third
band, iz equal to the sum of ten which stands in the preceding square, and of 5 which
isin the square above it. The case 18 the same with 21, which iz the sum of 15 and 6 ;
with 35 in the fourth band, which is the sum of 15 and 20 ; &,

The first property of this table is, that it contains, in its horizontal bands, the
natural, triangular, pyramidal, &e., numbers; for in the second, we have the natural
numbers 1, 2, 3, 4, &c. ; inthe third, the triangular numbers 1, 3, 6, 10, 15, &e.; in
the fourth, the pyramidals of the first order 1, 4, 10, 20, 35, &e. ; in the fifth, the
pyramidals of the second order, 1, 5, 15, 35, 70, &c. This is a necessary consequence
of the manner in which the table is formed ; for it may be readily perecived that the
number in each square isalways the sum of those which fill the preceding squares on
the left, in the band immediately above.

The same numbers will be found in the bands paraliel to the diagonal, or the hypo-
thenuse of the triangle.

But a property still more remarkable, which ean be comprehended only by such of
our readers as are acquainted with algebra, iz, that the perpendicular bands exhibit
the co-efficients belonging to the different members of any power to which a binomial,
as a-- b, can be raised. The third band contains those of the three members of the
square ; the fourth those of the four members of the cube; the fifth, those of the
five members of the biquadrate. But, without enlarging farther on this subject, we
shall proceed to explain what is meant by eombinations.

By combinations are understood the various ways that different things, the number
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of which is known, ean be chosen or selected, taking them one by one, two by two,
three by three, &e., without regard to their order. Thus, for example, if it were
required to know in bow many different ways the four letters a, b, ¢, o, could he
arranged, taking them two and two, it may be readily seen that we ean form with
them the following combinations ab, ac, ad, b, bd, cd: four things, therefore, may
be combined, twoand two, six different ways. Three of these letters may be com-
bined four ways, abe, abd, acd, bed ; hence the combinations of four things, taken
three and three, are only four,

In combinations, properly so called, no attention is paid to the order of the things;
and for this reason we bave made no mention of the following combinations, ba, ca,
da, eb, b, de. If, for exmup'lc, four tickets, mavked a, by ¢, o, were put into a hat,
and any one should bet to draw out the tickets a and d, either by taking two at one
time, or taking one after another, it would be of no importance whether a should be
drawn first or last: the combinations ad or da ought therefore to be here considered
only as one,

But if any one should bet to draw out a the first time, and & the second, the case
would be very different; and it would be necessary to attend to the order in which
these four letters may be taken and arranged together, two and two: it may be
easily seen that the different ways are ab, ba, ac, ca, ad, da, be, b, bd, db, ed, de. In
like manner, these four letters might be combined and arranged, three and three, 24
ways, as abe, ach, bue, bea, cab, cba, adb, abd, dba, dab, bad, bda, acd, ade, dae, dea, cad,
cida, bed, dbe, cdb, bde, cbd, deb. This is what is ealled permutation and change
of order.

PFPROBLEM I.

Any number of things whatever being given ; to determine in how many ways they may
be conmbined two and two, three and three, &e., without regard to order.

Thiz problem may be easily solved by making use of the arithmetical triangle. Tlus,
for example, if there are eight things to be combined, three and three, we must take
the ninth vertical bund, orin all cases that band, the order of which is expressed by a
number exceeding by unity the nomber of things to be combined; then the fourth
horizontal band, or that the order of which is greater by unity than the number of
the things to be taken together, and in the common square of both will be found the
number of the combinations required, which in the present example will be 56.

But as an arithmetical triangle may not always be at hand, or as the number of
things te be combined may be too great to be found in such a table, the following
simple method may be employed.

The number of the things to be combined, and the manner in which they are {o be
taken, viz. two and two, or three and three, &c., being given :

1st. Form two arithmetical progressions, one in which the terms go on decreasing
by unity, beginning with the given number of things to be combined ; and the other
consisting of the series of the natural numbers 1, 2, 3, 4, &e.

2d. Then take from each as many terms as there are things to be arranged together
in the proposed combination.

3d. Multiply together the terms of the first progression, and do the same with
those of the second.

4th. In the last place, divide the first product by the second, and the quotient wil.
be the number of the combinations required.

L In how many ways can 90 things be combined, taking them two and two ?
According to the above rule we must maltiply 90 by 89, and divide the
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product 8010 by the product of 1 and 2, that is 2: the gquotient 4005 will be the
number of the combinations resulting from 0 things, taken two and two.

Should it be required, in how many ways the same things can be combined three
and three, the problem may be answered with equal ease ; for we have only to mul-
tiply together 90, 89, 88, and to divide the product 704380 by that of the three num-
bers 1, 2, 3; the quotient 117480 will be the number required.

In like manner, it will be found that 90 things may be combined by four and four,
2555190 ways ; for if the produet of 90, 89, 88, and 87, be divided by 24, the product
of 1, 2, 3, 4, we shall bave the above result,

In the last place, if it be required, what number of combinations the same 90
things, taken five and five, are susceptible of, it will be found, by following the rule,
that the answer is 43949268,

Il.—Were it asked, how many conjunctions the seven planets could form with each
other, two and two, we might reply 21 ; for, according to the general rule, if we mul-
tiply 7 by 6, which will give 42, and divide that number by the product of 1 and 2,
that is 2, the quotient will be 21.

If we wished to know the number of all the conjunclions possible of these seven
planets, two and two, three and three, &e. ; by finding separately the number of the
conjunctions two and two, then those of three and three, &e., and adding them
together, it will be seen that they amount to 120,

The same result might be obtained by adding the seven terms of the double geo-
metrical progression 1, 2, 4, 8, 16, 32, 64, which will give 127. But from this num-
ber we must deduct 7, becavse when we speak of the conjunetion of a planet, it is
evident that two of them, at least, must be united; and the number 127 compre-
hends all the ways in which seven things can be taken oune and one, two and two,
three and three, &c. In the present example, therefore, we must deduct the number
of the things taken one and one; for a single planet cannot form a conjunction.

PROBLEM II.
Any number of things being given ; to find in how many ways they can be arranged.

This problem may be easily solved by following the meihod of induction ; for

1st. Oue thing a can be arranged only in one way : in this case therefore the num-
ber of arrangements is = 1.

2nd. Two things may be arranged together two ways; for with the letters aand &
we can form the arrangements ab and ba : the number of arrangements therefore is
equal to 2, or the product of 1 and 2.

3rd. The arrangements of three things a,b, ¢, are in number six; for ab can form
with ¢, the third, three different ones, bac, fca, cba, and there can be no more. Hence
it is evident that the required number is equal to the preceding multiplied by 3, or
to the product of 1,2, 3.

4th. If we add a fourth thing, for instance 4, it is evident that, as each of the pre-
ceding arrangements may Le combined with this fourth thing four ways, the above
number 6 must be multipled by 4 to obtain that of the arrangements resulting from
four things ; that is to say, the number will be 2}, or the product of 1, 2,3, 4.

It is needless to enlarge farther on this subject ; for it may be easily seen that,
whatever be the number of the things given, the number of the arrangements they
are susceptible of may be found by multiplying together as many terms of the natural
arithmetical progression as there are things proposed.
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Remark.—1st. It may sometimes happen that, of the things proposed, one of them
is repeated, as a,a,6, c. In this case, where two of the four things proposed are the
same, it will be found that they are susceptible only of 12 arrangements instead of
24 ; and that five, where two are the same, can form only 60, instead of 120,

But if three of four things were the same, there would be only 4 combinations, in-
stead of 2%; and five things,if three of them were the same, would give only 20, in-
stead of 120, or a sixth part. But as the arrangements of which two things are sus-
ceptible amount to 2, and as those which can be formed with three things are 6, we
may thence deduce the following rule :

In any number of things, of which the different arrangements are required, if one
of them be several times repeated, divide the number of arrangements, found accord-
ing to the general rule, by that of the arrangements which would be given by the
things repeated, if they were different, and the quotient will be the number
required.

2Znd. In the number of things, the different arrangements of which are required, if
there are several of them which oceur several times, one twice for example, and
another three times ; nothing will be necessary but to find the number of the arrange-
ments according to the general rule, and then to divide ‘it by the product of the
numbers expressing the arrangements whieh each of the things repeated would be
susceptible of, if instead of heing the same, they were different. Thus, in the pre-
sent case, as the things which oceur twice would be suseeptible of two arrangements
if they were different ; and as those which oceur thriee would, under the like circum-
stances, give six; we must multiply 6 by 2, and the product 12 will be the
number by which that found according to the general rule ought to be divided.
Thus, for example, the five letters a, a,b, b, b, can be arranged only 10 different ways:
for, if they were different, they would give 120 arrangements; but as one of them
oceurs twice, and another thrice, 120 must be divided by the product of 2 and 6, vr
12, which will give 10.

By observing the precepts given for the solution of this problem, the following
questions may be resolved.

I.—A elub of seven persons agreed to dine together every day suceessively, as long as they
could sit down to table differently arranged. How many dinners would be necessary
Jfor that purpose?

It may be easily found that the required number is 5040, which would require 13
years and more than 9 months,

II. —The different anagrams which can be formed with any word, may be found in
like manner. Thus, for example, if it be required, how many different words can be
formed with the four letters of the word asmor, which will give all the possible
anagrams of it, we shall find that they amount to 24, or the continued product of 1,
2, 3,4, We shall here give them in their regular order.

AMOR MORA ORAM RAMO
AMRO MOAR ORMA RAOM
AOMR MROA OARM RAMAD
AORM MRAD OAME BMOA
ARMO MAOR OMEA RoaM
AROM MAROD OMAR ROMA

Hence it appears that the Latin anagrams of the word amor, are in number seven,
viz., Roma, mora, maro, oram, ramo, armo, erma. But in the proposed word, if one
or more letters were repeated, it would be necessary to follow the precepts already



40 ARITHMETIC.

given. Thus, the word Leopoldus, where the letter { and the letter o both oceur
twice, is susceptible of only 90720 different arrangements, or anagrams, instead of
362880, which it would form, if none of the letters were repeated; for, according to
the before-mentioned rule, we must divide this number by the product of 2 by 2, or
4, which will give 90720,

The word studiosus, where the u occurs twice, and the s thrice, is susceptible of
only 50210 arrangements; for the arrangements of the 9 letters it contains, which
are in number 362350, must be divided by the product of 2 and 6, or twelve, and the
quotient will be 30240,

In this manuer may be found the number of all the possible anagrams of any word
whatever ; but it must be observed that however few be the letters of which a
word is composed, the number of the arrangements thence resulting will be so great
as to require consitderable labour to find them.

HI.—How many ways can the folloving verse be varied, without destroying the

Measure

« Tot tibi sunt dotes, Yirgo, gqaot sidera ceelo

This verse, the production of a devout Jesuit of Louvain, named Father Bauhuys,
is celebrated on account of the great number of arrangements of which it is suscep-
tible, without the laws of quantity being violated ; and various mathematicians have
exercised or amnsed themselves with linding out the number. FErycius Puteanus
took the trouble to give an enumeration of them in forty-eight pages, making them
amount to 1022, or the number of the stars comprehended in the catalogues of the
ancient astronomers ; and hz very devoutly observes, that the arrangements of these
words as much exceed the above number as the perfections of the Virgin exceed thut
of the stars.*

Father Prestet, in the first edition of his Elements of the Mathematies, says that
this verse is susceptible of 2196 variations; but in the sccond edition he extends the
number to 3270.

Dr. Wallis, in the edition of his Algebra, printed at Oxford, in 1643, makes them
amount to J00G,

But none of them has exactly hit the truth, as has been reinarked by James Ber-
noulli, in his Ars Conjectandi. This author says, that the different combinations of
the above verze, leaving out the spondees, and admitting those which have no
cwsura, amount exactly to 3312,  The method by which the enumeration was made
may be seen in the above work.

The same question has been propuosed respecting the fullowing verse of Thomas
Lansius :

« Mars, mors, sors, lis, vis, styx, pus, nox, fex, mula crux, frans.”

1t may be easily found, retaining the word mefa in the antepenultima place, in
order to preserve the measure, that this verse is susceptible of 399168000 different
arrangements.

PROBLEM III.

Of the combinutions which may be formed with squares divided by a diagonal into two
differently eoloured triangles,

We are told by Father Sebastian Truchet, of the Royal Academy of Sciences, in

a memoir printed among those of the year 1704, that baving seen, during the course

of a tour which he made to the canal of Orleans, some square poreeluin tiles, divided

* See also Vossins de Scient, Math, cap. vii.
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by a diagonal into two triangles of different colours, destined for paving a chapel

and some apartments, he was indueced to try in how many different ways they could

be joined side by side, in order to form different figures.  In the first place, it may

. be readily seen that a single square, (Fig. 9.) aceording to its

Fig. 9. position can form four different figures, which however may

m ﬁ be reduced to two, as there is no difference between the

h A2 | || F | first and the third, or between the second and fourth, than

T what arises from the transposition of the shaded trinngle
into the place of the while one.

Now, if two of these squares be combined together, the result will be 64 different
ways of arrangement; for, in that of two squares, one of them may be made to
assume four different situations, in each of which the other may be changed 16
times. The result therefore will be 64 combinations.

We must however observe, with Father Sebastian, that one half of these combi-
nations are only a repetition of the other, in a coatrary direetion, which reduces
them to 32; and if attention were not paid to situation, they might be reduced to
10,

In like manner, we might combine three, four, five, &c., squares together, and-in
that case it would be found, that three squares are capable of forming 128 figures ;
that four could form 256, &e.

The immense variely of compartments which arise, in this
manner, from so small a number of elements, iz really astonizh-
ing. Father Sebastian gives thirty different kinds, selected from
a hundred; and these even are only a very small part of those
which might be formed. The annexed figure (10.) exhibits one
of the most remarkable.

In eonsequence of Father Sebastian’s memoir, Father Douat,
one of his associates, was induced to pursue this subject still far-
ther, and to publish, in the year 1722, a large work, in which
it iz considered in a different manmer. It is entitled “ Méthode pour faire une
infinité de dessins différents, avec des carreaux mi-partis de deux couleurs par
une ligne diagonale ; ou, Obszervations du P. D. Donat, religieux Carme de la P, de
T. sur un Mémoire inseré dans I'Hist. de 1'Acad. royale des Sciences de Paris,
année 1704, par le P. 8. Truchet, religicux du méme ordre.” Paris 1722, in dto. In
this work it may be seen that four squares, each i vided into two triangles of different
colours, repeated and changed in every manner possible, are capable of forming 256
different figures ; and that these figures themselves, taken two and two, three and
three, and so on, will form a predigious multitude of compartments, engravings of
which oceupy the greater part of the book. i

Tt is rather surprising that this idea should have been so little employed in archi-
tecture ; as it might furnish an inexhaustible source of variety in pavements, and other
works of the like kind. However this may be, it forms the object of a pastime, called by
the French Jeu du Parquet. The instrument employed for this pastime, consists of
a small table, having a border round it, and eapable of receiving G4 or a hundred
small squares, each divided into two triangles of different colours, with which people
amuse themselves in endeavouring to form agreeable combinations.
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CHAPTELR IX.

APPLICATION OF THE DOCTRINE OF COMBINATIONS TO GAMES OF CHANCE AND
TO PROBABILITIES,

Tuovcr nothing, on the first view, seems more foreign to the province of the
mathematies than chance, the powers of analysis have, as we may say, enchained this
Proteus, and subjected it to calculation. It has found means to measure the differ-
ent degrees of probability ; and this has given birth to a curious branch of the ma-
thematics, the principles of which we shall here explain.

When an event can take place different ways, it is evident that the probability of
its happening in a eertain determinate manner, will be greater when, of the whole of
the ways in which it can happen, the greater number determine it to bappen in that
manner. Ina lottery, for example, every one knows that the probability or hope of
obtaining a prize, is greater according as the number of prizes is greater, and as the
total number of the tickets is less. The probability therefore of an event is in the
compound ratio of the number of the cases which can produce it, taken direetly, and
of the total number of those according to which it may be wvaried, taken inversely ;
consequently it may be expressed by a fraction, baving for its numerator the number
of the favourable cases, and for its denominator the whole of the cases.

Thus, in a lottery.consisting of a thousand tickets, 25 of which only are prizes, the
chance of obtaining one of the latter will be represented bygg; or J ; if the num-
ber of the prizes were 50, this probability would be double, for in that ease it would
be equal to Jy; but, on the other hand, if the whole number of tickets, instead of a
thousand, were two thousand, the probability would be only one half of the former,
that is Jy. If the whole number of tickets were infinitely great, the number of
prizes still remaining the same, the probability would be infinitely small; and if the
whole number of tickets were prizes, it would become certainty, and in that case
would be expressed by unity.

Another prineiple of this theory, necessary to be here explained, the enunciation
of which will be sufficient to shew the truth of if, is as follows:

We play an equal game, when the money deposited is in direct proportion to the
probability of gaining the stake; for, to play an equal game, is nothing else than to
deposit a sum so proportioned to the probability of winning, that, after a great num-
ber of throws or games,the player may find himself nearly at par ; but for this purpose,
the sums deposited must be proportioned to the degree of probability, which each of
the players has in his favour. Let us suppose, for example, that A bets against B ona
throw of the dice,and that the chances are two to onein favour of A ; the game will be
equal if, after a great number of throws, the parties separate nearly without any loss;
but as there are two chances in favour of A, and only one in favour of B, after three
hundred throws A will bave gained nearly two hundred, and B one hundred; A
therefore ought to deposit two and B only one ; for by these means, as A in winning
two hundred throws will gain 200, B in winning a hundred throws will gain 200 also.
In such cases therefore, it is said that two to one may be betted in favour of A,

FROBLEM I.

In tossing up, what probability is there of throwing a head several times suecessively,
or a tail; ory in playing with several pieces, what probability is there that they will
be all heads, or all tails #

In this game it is evident, 1st, That as there is no reason why a head should come
up rather than a tail, or a tail rather than a head, the probability that one of the two
will be the case is equal to § , or an equal bet may be taken for or against.
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But if the game were for two throws, and any one should bet that a head will come
up twice, it must be observed, that all the combinations of head or tail, which can
take place in two successive throws with the same piece, are head, head; head, tail ;
tail, head ; tail, tail ; one of which only gives head, head. There iz therefore only
one case in four which can make the person win who bets to throw a head {wice in
succession; consequently the probability of this event is only 4; and he who
bets in favour of two heads, ought to deposita crown, and the person who bets against
him ought to deposit three; for the latter has three chances of winning, while the’
former has ouly one. To play an equal game then, the sums deposited by cach
ought to be in this proportion.

It will be found also, that he who bets to throw a kead three times in succession,
will have in hiz favour only one of the eight combinations of head and tail, which may
result from three throws of the same piece. The probability of this event there-
fore is 4, while that in favour of his adversary will be . Consequently, to play an
equal game, be ought to stake 1 against 7.

It is needless to go over all the other cases; for it may be easily seen, that the
probability of throwing a fead four times successively is 4 ; five times successively,
ey &

It is unnecessary also to enumerate all the different combinations which may result
from head or tail; but in regard to probabilities, the following simple rule may be
employed.

The probabilities of two or more single events being known, the probability of
their taking place altogether may be found, by multiplying together the probabilities
of these events, considered singly.

Thus the probability of throwing a head, considered singly, being expressed at each

throw by }, that of throwing it twice in succession, will be § x } or 4; that
of throwing it three times, and three successive throws, will be } x } x }, or
. &e.
; 2d. The problem, to determine the probability of throwing, with two, three, or
four pieces, all heads or all ¢ails, may be resolved by the same means. When two
pieces are tossed up, there are four combinations of head and tail, one of which only
is all heads. When three pieces are tossed up together, there are 8, one of which
only gives all heads, &e. The probabilities of these cases therefore are the same as
those of the cases similar to them, which we have already examined.

It may be easily seen indeed, without the help of analysis, that these two questions
are absolutely the same; and the following mode of reasoning may be employed to
prove it. To toss up the two pieces A and B together, or to toss them up in sue-
cession, giving time to A, the first, to settle before the other is tossed up, is certainly
the same thing. Let us suppose then, that when A, the first, has settled, instead of
tossing up B, the second, A the first is taken from the ground, in order to be tossed
up a second time ; this will be the same thing as if the piece B had been employed
for a second toss; for by the supposition they are both equal and similar, at least
in regard to the chance whether head or tail will come up. Consequently, to toss
up the two pieces A and B, or to toss up twice in succession the piece A, is the same
thing. Therefore, &e. .

3d. We shall now propose the following question: What may a person bet, that
in two throws a head will come up at least once? By the above method it will be
found, that the chances are 3 to 1.  In two throws, indeed, there are four combina-
tions, three of which give at least a head once in the two throws, and one only which
gives all tails; hence it follows, that there are three combinations in favour of the
person who bets to bring a head onee in two throws, and only one against him.

E
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PROBLEM II.

Any number of dice being given; to determine what probability there is of throwing an
assigned number of points,

We shall first suppose that the dice are of the ordinary kind, that is to say, having
six fuces, marked with the numbers 1, 2, 3, 4, 5,6 ; and we shall analyse some of the
first cases of the problem, in order that we may proceed gradually to those that ave
more complex.

lst. It is proposed to throw a determinate point, G for example, with one die.

Here it is evident, that as the die has six faces, one of which only is marked 6, and
as any one of them may as readily come up as another, there are 5 chanees against the
person who proposes to throw a six at one throw, and only one in his favour.

2. Let it be propoesed to throw the same point 6 with two dice.

To analyse this case, we must first observe that two dice give 36 different combi-
nations ; for each of the faces of the die A, for example, may be combined with each
of those of the die B, which will produce 36 combinations. But six may be thrown,
Ist, by 3and 3 ; 2d, by 2 with the die A, and 4 with the die B, which, as may be
readily seen, forms two distinet eases: 3d, by 1 with the die A, and 5 with the die B,
or 1 with B and 5 with A, which also gives two cases; and these are all that are
possible. Hence there are 5 favourable chances in 36 ; consequently the probability
of throwing 6 with two dies is i, and that of not throwing it is §}. This therefore
ought to be the ratio of the stakes or money deposited by the players.

By analysing the other eases, it will be found that, of throwing two with two dice,
there is one chance in 36; of throwing three, there are 2 ; of throwing four, 3;
of throwing five, 4; of throwing six, 5; of throwing seven, G; of throwing eight, 5;
of throwing nine, 4; of throwing ten, 3: of throwing eleven, 2; and of throwing
sixes, 1.

If three dice were proposed, with which it is evident the lowest point would be
three, and the bighest eighteen, it will be found, by means of a similar analysis, that
in 216, the whole number of the throws possible with three dice, there is 1 chanee of
throwing three ; 3 of throwing four ; 6 of throwing five, &c. : as may be seen in the
annexed table, the use of which is as follows.

It it be required, for example, to find in how many ways 13 can be thrown with
three dice, we must look in the first vertical column, on the left, for the number 13,
and at the top of the table for 3, the number of the dice ; and in the square below,
opposite to 13, will be found 21, the number of ways in which 13 may be thrown
with three dice. In like manner, it will be found, that with 4 dice, it may be thrown
140 ways; with five dice, 420; &ec.
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Table of the different ways in which any point can be thrown with one, two, three,
or more dice,

Number of the Dice.
S R | 1 R o S A 1
e [l I I [ |
] 7 ] I I I
3 1 - e i
L O ) T )
5 | R N R
6 Tl ] (o e 1 . T ]
-l | 6| 15| 20 15 G
8 | TR e S S
= B | T T ) 56
3 | 107] [ "8 1 27 [ 80 | 126 [ 126
il | | |2 | 27 | 104 | 205 | 252
S| | X | 25 | 125 | 805 | 456
CIST | |21 | 140 | 420 | 756
E |14 | ] | 15 | 146 | 540 | 116l
A B T | 10 | 140 | 651 [ 1666
16| 6 | 125 | 785 | 2247
| 3 | 104 TSIZ} | 9856
18 | | 1 [ 80 | 780 | 3431
19 56 | 735 | 3906
20 | 35 | 651 | 4221
21 | 20 | 540 | 4332
32 | | 10 | 420 | 4221
T | | 4 | 305 | 3906
24 1 | 205 | 3431
05 | 126 | 2856

When it is once known how many ways a point can be thrown with a certain
number of dice, the probability of throwing it may be easily found : nothing is ne-
cessary but to form a fraction, having for its numerator the number of ways in which
the point can be thrown, and for denominator the mumber 6, raised to that power
indicated by the number of dice; as the cube of 6, or 216, for three dice; the bi-
quadrate, or 1296, for four dice; &e.

Thus, the probability of throwing 13 with three dice, is #y; of throwing it with
four, 4 ; &e.

Various other questions may be proposed concening the throwing of dice, a few
of which we shall here examine.

1st. When two players are engaged ; to determine the advantage or disadvantage Qf

the person who undertakes to throw a certain fuce, that for c:mmp.fg marked G, in
a certain number of throws.

Let us suppose that he undertakes it at one throw : to find the probability of his
succeeding, it must be considered, that he who holds the die has only one chanee of
winning, and five of losing ; consequently to undertake it at one throw, he ought to
stake no more than one to five. There is therefore a great disadvantage in under-
taking, on an even bet, to throw six at a single throw of one die.

To determine the probability of throwing the face marked 6 in two throws with a
single die, we must observe, as has been already said, in regard fo tossing up, that

E 2
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this is the same thing as to undertake, in throwing two dice together, that one of them
shall have the side marked 6 uppermost. He then who holds the dice has only 11
chances, or combinations, by which he can win; for he may throw 6 with the first
die, and 1, 2, 3, 4, or 5 with the second ; or 6 with the second die, and 1,2,3, 4, or 5
with the first, or 6 with each die. But there are 25 combinations or chances unfa-
vourable to his winning, as may be seen in the following table:

B o = | :;,114,1|5,1
-2 a2 ] 8 el gl a iy o
I, 3 & a8 L - 4, 3 | 2 3
1 2.4{3,4‘4,45,»;
R s T 4,5]5,5

Henee it may be concluded, that he who undertakes to throw a 6 with two dice,
ought to stake no more than 11 to 25; and consequently, that it would be disadvan-
tageous to do it on equal terms.

It must here be observed that 36, the number of all the chances or combinations
possible in two throws of the dice, is the square of 6, which is the number of the
faces of one die ; and that 25, the number of the chances unfavourable to the person
who undertakes to throw a determinate face, is the square of 5, or of 1 less than the
same number 6. The number of the favourable chances therefore, in this case, is
equal to the difference of the squares 36 and 25, or of the square of the number of
the faces of one die, and of that of the faces of the same die less one.

In the case of undertaking to bring a 6 in three throws with one die, we must
consider, in like manner, that this is the same thing as to undertake that, in throwing
three dice at once, one of them shall bring a 6; but of the 216 combinations, which
result from three dice, there are 125 without a 6, and 91 among which there is at
least one 6 ; consequently, he who engages to throw a 6, either in three throws with
one die, or one throw with three dice, ought to bet no more than 91 to 125; and it
would be disadvantageous to undertake it on equal terms.

It is here to be observed, that the number 91 is the difference of the cube of the
number of the faces of one die, viz. 216, and of 125, the cube of the =ame number
lesz unity, or of 5. Hence it appears that, in general, to find the probability of
throwing a determinate face, in a eertain number of throws, or at one throw with a
certain number of dice, we must raise 6, the number of the faces of one die, to that
power which is indicated by the number of throws agreed on, or by the number of
dice to be thrown at one time; we must then raise 6 less unity, or 5, to the same
power, and subtraet it from the former; the remainder with this power of 5 will be
the respective number of chances for winning or losing.

Thus, if a person should bet to throw at least one 3 with four dice, we must raise
6 to the 4th power, which is 1296, and subtract from it the fourth power of 5, or
625 ; the remainder 671 will be the number of chances for winning, and 625 that of
the chances of losing ; consequently there will be an advantage in laying an even
bet.

1t is advantageous also to undertake, on an even bet, to throw any determinate
point, for.example 3, in five throws, or with five dice ; for if from the 5th power of
G, which is 7776, we deduct the 5th power of 5, or 3125, the remainder 4651 will
be the number of favourable chances, and 3125 that of the unfavourable. Conse-
quently, to play an equal game, he who bets on throwing the above point, ought to
deposit 4651 to 3125, or nearly 3 to 2.

2d. In how many throws may one bet, on equal terms, to throw a determinate doublet,

Jor example sixes, with two dice ¥

It has been already shewn, that the probability of not throwing sixes with two

two dice, is #§; consequently the probability of their not coming up in two throws,
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will be the square of that fraction; in three throws, the cube, &c. But as the
powers of every number greater than unity, however small the excess, go on always
increasing, those of a number less than unity, however small the defect, go on always
decreasing: the consecutive powers therefore of §; will go on always decreasing.
Now let uz conceive # to be raised to such a power as to be equal {o 1 ; it will be
found that the 24th power of §} is somewhat greater than 4; and that the 25th
power is somewhat less;* hence it follows that one may lay an even bet with some
advantage, that another will not bring sixes in 24 throws with two dice, but that
there is some disadvantage in taking an even bet that they will not come up in 25
throws. Consequently, he who bets on throwing sixes in 24 throws, does so with
disadvantage ; but if be lays an even bet that they will come up in 25 throws, the
advantage is in his favour.

3d. What probability is there of throwing any determinate doublet, for example two

threes, in one throw with fwo or more dice ¢

To determine thizs question, we must first observe, that he who undertakes to
throw two threes with two dice, has only one favourable chance, in the 36 chances
or comhinations given by two dice; and it thenee follows that he ought to bet no
more than 1 to 35.

In the case of three dice, 1t will be found that he ought to bet no more than 16 to
200; for the number of chanees or combinations possible with three dice is 216.
But when it is proposed to throw two threes with three dice, they may come up 16
different ways; for in the 36 combinations of the two dice A and B, all those in
which one 3 only is found, as 1, 3; 3, 1, &e., being 10 in number, by combining with
the side marked 3 of the die C, give two threes. Besides the combination 3, 3 of
the dice A and B, by combining with one of the six faces of the third C, will give
two threes. Here then we have 16 ways of throwing two threes with three dice,
which give 16 favourable chances in 216.  Consequently, the probability of throwing
two threes with three dice is Jf; and no more ought to be betted on the success
of that event than 16 to 200, or 2 to 25.

If the probability of throwing two threes with four dice be required, we shall find
thatit is expressed by {7k ; for, of the 1296 combinations of the faces of four dice, there
are 150 which give two threes, 20 that give 3, and one that gives 4, making altogether
171 throws, which give 2or 3or 4 threes. Consequently,no more than 171 to 1125,
orabout 1 to 63, ought to be betted on throwing, at leust, once threes with four dice.

In the last place, if the probability of throwing any doublet, at one throw, with
two or more dice, be required, it may be easily determined by the preceding methaod
of calculation ; for if an indeterminate doublet be proposed, it is evident that the
probability iz six times as great as when an assigned doublet is proposed ; and there-
fore we have only to multiply the probabilities already found by 6. The probability
therefore with two dice, will be § or }; with three dice, 3% or §; with four dice,
028 or 1§, &e.  So that there is an advantage in taking an even bet to throw at least
one doublet with four dice,

This property is not true when the number of dice exceeds three. The probability
of an assigned doublet with four dice is /%%, which multiplied by 6, and added to the

* Let n be the exponent of that power of § which is equal to }; that is to say, let
a5M be equal to 4. As the unknown quantity » is in the exponent, it must be disen-
Jon

) )
gaged from it, which may be done by means of logarithms. For _%?3» = 4, by taking
the logarithms we shall have n log. 35 — »n_log. 36 = log. }or= — log. 2; for log.
4+ = —log. 2. Hence = log. 35 — n log: 36 = — Jog. 2, or log. 2 == log. 36 — n

log. 2. — : .
log. 35. Therefore, n = — = Which gives n = 24'605, or 245

log. 36 — log. 35

nearly,
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probability of a different face coming up with each die, viz. to §x § x 4 x jor 380,
gives 4358, being 90 chances more than there is in all the four diee, which is im-
possible.

The probability of an assigned doublet with four dice, viz. 1L, includes the pro-
bability of some other doublet ; for aces, fwos, or any other doublet may turn up at
the same throw, which cannot happen with two dice or with three; so that the
multiplier 6 will not answer to the probability of an indeterminate doublet, when
there are more than three dice.

In such cases it is the safest and easiest way to find the probability of the reverse
problem—of not throwing doublets—and then subtracting that probability from
umily or certainty, the remainder is the probability for doublets.

PROBLEM III.

Tiwo persons sit down to play for a certain swm of money ; and agree that he who first
gels three games shall be the winner.  One of them has got twe games, and the other
one ; but being umeilling to continuve their play, they resolve to divide the stake : how
much of it ought each person to receive ?

This problem is one of the first that engaged the attention of Pasecal, when he
began to study the ealeulation of probabilities. It was resolved by Fermat, a cele-
brated geometrician, to whom he proposed it, by a different method, viz. that of com-
binations : we shall here give both.

It is evident that each of the players, in depositing his money, resigns all right to
it ; but, in return, each has a right to what chance may give him ; consequently when
they give over playing, the stake ought to be divided in proportion to the probability
each had of winning the whole sum had they continued.

Case 1st. This proportion may be determined by the following reasoning. Since the
first player wants one game to be out, and the second two, it may be readily perceived,
that if they continue their play, and if the second should win one game, he would
want, in the same manner as the first, one game to be out ; and in that ease, the two
players being equally advanced, their hopes or chances of winning would be equal.
This being supposzed, they would have an equal right to the stake, and consequently
each ought to have an equal share of it.

It is evident therefore, that if the first should win the game about to be played,
the whole money deposited would belong to him ; and that if he lost it he would
have a right only to the half. But the one case being as probable as the other, the
first has a righ# to the half of both these sums taken together. But together they
make §, the hall of whichis §; and this is the share of the stake belonging to the
first player; consequently that belonging to the second is only 4.

Cuse 2nd. The solution of the first case will enable us to solve the gsecond, in
which we suppose that the first player wants one game to be out, and the second
three ; for if the first should win one game, he would be entitled to the whole stake,
and if he lost one game, by which means the second would want only two games to
be out, ¥ of the money would belong to the former, as the parties would then be in
the situation alluded to in the preceding case. But as both these events are equally
probable, the first ought to have the half of the two sums taken together, or the
half of , that is J: the remainder } will therefore be what belongs to the second.

Case 3rd. It will be found, by the like reasoning, if we suppose two games wanting
to the first player, and three to the second, that on ceasing to play, they ought to
divide the stake in such a manner that the former may have {} and the latter £,

Case 4th. If four games were to be played, and if the first wanted only two
games, and the second four, the money ought to be divided in such a manner that the

former should have ! and the latter .
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But we may dispense with the above reasoning, and employ the following general
rule, deduced from it, which is to be applied by means of the arithmetical triangle.
Enter that diagonal of the arithmetical triangle, the order of which is equal to the
number of the games wanting to both players. As this number in the first case is
3, we must enter the third diagonal of the triangle; then because the first player
wants only one game, we must take the first number of that diagonal ; but because
two are wanting to the second, we must take the sum of the two first numbers,
which will give 3. These two numbers therefore, 1 and 3, will indicate, that the
stake ought to be divided in the same proportion: consequently the first player
ought to have 3, and the second 1.

As this rule may be easily applied to every other case whatever, we shall enlarge
no farther on the subject.

‘The second method of resolving problems of this kind, which is that of combina-
tions, is as follows:

To resolve, for example, the fourth ease, where, according to the supposition, the
first player wants two games to be ont, and the second four, so that together they
want six games; take unity from that sum, and beeause 5 remain, we shall suppose
the five similar letters a a o a a, favourable to the first player, and the five following,
& b & & b, favourable to thegecond. These letters must be combined, as in the fol-
lowing table, where, of the 32 combinations which they form, the first 26, towards
the left, where « occurs at least twice, will indicate the number of chaneces which
the first has of winning; and the last 6, towards the right, in which a never occurs
oftener than once, will indicate those favourable to the second.

Caaai i b aabbblabblh
faeal aabba abbbalbblbba
acaba abbaa bblbaalbabbb
aabaa bhbaaa ababb|bbabb
abaaa aabalb abbabibblbal
bouaadaa abaab bbaablbbblb

baaalb baabl

baaba balbla

babaa bbaba

ababa babalb

The expectation therefore of the first player, will be to that of the second, as 26
to G, or as 13 to 3.

In like manner, to resolve the case where the first player is supposed to have won
three games, and the other none, as he must win who first gets fnyr games, ti_le T
ber of the games wanting to both will be 5, which being diminished by unity, will
give 4. We must then examine in how many different ways the letters e and b can
be combined four and four, which will be found to be 16, viz. :

aaaa il abbb
i a b abalb babb
bbb
aalba baab bbab
abaa i b boa bbbha
baaa baba
bbaa

But, of these 16 combinations, it iz evident there are 15 where a is found at least
once; which indicates that there are 15 combinations or chances favourable to the
first player, and one favourable to the second. Consequently they ought to divide
the stake in the ratio of 13 to 1, or the former ought to have |j of it, and the
latter {;.
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PROBLEM IV,
Of the Genoese Lottery.

All persons areacquainted with the nature of lotteries, a kind of institution which
originated in Italy, and which was afterwards introduced into other countries of
Europe. It took its rise at Genoa, where it bad lang been customary to choose
annually by ballot five members of the senate, which was composed of 90 persons,
in order to form a particular council. Some idle persons took this opportunity of
laying bets, that the lot would fall on such or such senators. The government then
seeing with what eagerness people interested themselvesin these bets, conceived the
idea of establishing a lottery on the same principle ; which was attended with so
great suceess, that all the cities of Italy wished to participate in it, and sent large
sums of money to Genoa for that purpose. The same motive, and that no doubt of
inereasing the revenues of the church, induced the pope to establish one of the same
kind at Rome, the inhabitants of which became so fond of this species of gambling,
that they often deprived themselves and their families of the necessaries of life, that
they might bave money to lay out in the lottery. Many of them also indulged in
every kind of foolery that credulity or superstition could inspire, in order to obtain
fortunate numbers.

The analysis of this kind of lottery is reduced to the solution of the following
problem.

Ninety numbers being given, five of which are to be drawn by chance ; it is required
to determine what probability there is that among these five, there will be one, two,
three, four, or five numbers, which any one has chosen from among the 90 7

It may be readily seen, that ifone determinate number only were proposed, and that
if no more than one number were to be drawn from the wheel, the adventurer would
have only one favourable chance in the 90 ; but as five numbers are drawn from the
wheel, this quintuples the echance favourable to the adventurer, so that he has five
favourable chances in the ninety. His probability therefore of winning, is J;; and,
to play an equal game, the stakes ought to be in the same ratio, or, what amounts to
the same thing, the proprietor of the lottery ought to reimburse the price of the ticket
18 times.

To determine what probability there is, that two numbers selected will both come
up, we must first find how many combinations may be produced by 90 numbers,
taken two and two. In treating on combinations we have already shewn, that in
this case they amount to 4005 ; but as five numbers are drawn from the wheel,
and as these five numbers, combined together two and two, give 10 twos, it thence
results that, in these 4005 chances, there are only 10 favourable to the adventurer.

The probability therefore, that the two numbers selected may be among those drawn
10 1

from the wheel,will be expressed by =r= or 4003 For this reason the proprietor
of the lottery ought to give the adventurer, in case he should win, 400} times the
price of the ticket.

To determine what probability there iz, that three numbers selected will come up
among the five drawn from the wheel, we must find how many ways ) numbers can
be combined three and three, or how many threes they make. These combinations
amount to 117480 ; but as the five numbers drawn from the wheel form 10 threes, the
adventurer has 10 favourable chances in 117480, and the probability in his favour is
s of mhs-  To risk his money therefore on equal terms, the prize ought to be
11748 times the price of the ticket. ;

In the last place, it will be found that in 511038 chances, there is only one favour-
able to the person whn should bet that 4 determinate numbers will come up; and 1
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in 43949268 favourable to the person who should bet that five determinate numbers
will be the five drawn; consequently, in the last case, to risk his money on equal
terms, according to mathematical strictness, the adventurer, should he be successful,
ought to receive nearly 44 millions of times the money which he lays out.

PROBLEM V.

A and B playing at piquet : A is first in hand, and has no ace : what prebability is
there that he will get one, or two, or three, or four ?

It is well known that at this game 12 cards are dealt to each of the players, |
and that 8 remain in the pack, of which the first takes 5, and the last 3. This being

premised, it will be found that A’s chance to have any one ace is ECISETEE TR
to have two S e L L i L il el
to have three : S A S A e i .
to have four . . . ; Bind B

the sum of all these is 738, which is equal to 23.

Hence it follows, that the probability of his having an ace among the five cards he
has to take in, is 33, the difference between which numbers is 71, so that one may
bet 252 to 71 that A will take in some of the aces. But let us suppose that A is last
in hand ; in that case it is required how much he may bet that he will have at least
one ace among his three cards?

The probability of A having an ace among his three cards is 5 « for it
of having two it is : : : : . . . . . . .
of having three : : . : . e E : : ot iy
the sum of all which is 14 or 2.

Consequently, the probability that he will have either one, or two, or three in-
determinately, is 2. A may therefore take an equal bet with advantage, that he will
have one of the aces, for the ratio of the stakes would be 20 to 28,

FROBELEM YI.

At the game of whist, what probability is there, that the four honours will not be in the
hands of any two partners ¥

De Moivre, in his Doctrine of Chances, shews that the chance is nearly 27 to 2 that
the partners, one of whom deals, will not have the four honours.

That it is about 23 to 1 that the other two partners will not have them.

That it is nearly 8 to 1 that they will not be found on any one side.

That one may bet about 13 to 7, without disadvantage, that the partners who are
first in hand will not count honours.

That about 20 to 7 may be betted, that the other two will not count them.

And, in the last place, that it is 25 to 16, that one of the two sides will count
honours, or that they will not be equally divided.

PROBLEM VII,
Of the game of the American Savages.

Weare told by Beron de la Hontan, in his Poyages en Canada, that the Indians
play at the following game: they have 8 nuts, black on the one side, and white
on the other: these they throw into the air, and if it happens, when they fall
to the ground, that the black are odd, the player wins the stake ; if they are all
black, or all white, he wins the double ; but if there are an equal number of each, he
loses.

M. de Montmort, who analysed this game, finds, that he who tosses up the nuts, has
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an advantage, which may be estimated at ,3; ; and that to render the game equal,
he ought to deposit 22 when his adversary stakes 21.

PROBLEM WVIII.
Of the game of Backgammon.

The game of backgammon is one of those where the spirit of combination is
displayed in a very striking manner, and where it iz of great utility to know, at every
throw, what may be hoped or feared from the sueceeding throws, whether your own
or those of your adversary. The chances in this game, like those in others, may be
appreciated mathematically ; but we shall here confine ourselves to a small number
of examples, selected from those easiest to be comprehended.

I. A, being at play at backgammon, is obliged to make a blot ; now his throw is such,
that he can make it either where his adversary B may take it up with a single ace, or
where he can take it up by throwing seven in any manner : the question is, where should
he make the blot ?

As the number of chances for throwing one ace or more, is 11, and the number of
chances for throwing seven in any manner, are but 6, it will be safest to make the
blot where it may be taken up by throwing 7.

I1. Whether it is safer to make a blot, at backgammon, where it may be taken up by an
ace, or where it may be taken up by a tré?

The number of chanees for throwing one ace or more, and those for throwing one
tré or more, are each 11; but there are 2 chances for throwing deux ace, or 3; it
will therefore be safer to make the blot where it can be taken up only by an ace.

The following table will shew the chances of taking up a single blot however
situated.

No. of = R
Foill'l_fth Chances. Eiilitf::::lg_ f“ilﬂ_:s ety ri_I“;?E}EI
0 Nit. o N1,

: I+1T | 12 lm— 2

g | 1142 | 13 9 | = SRR
S ol o 1l g [F=n
TR T = . :
T T R e ]

Hence, if a blot is liable to be hit by any one face of the die, the mean pro-
bability of hitting it will be ‘;—1‘—;5

IIL. If twe blots be made at backgammon, so as to be hit by two different faces of the
die, what is the probability of hitting ene or both of them ?

By the first table it will appear, that the probability of throwing one or more, of any
two given faces, is 3. But besides this, one or both the blots may be at length
hit by the two dice, and the probability in this case will be different, according
to the number of points that will hit them, as in the following table:

= #} = § nearly.
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Face tal | R y otal
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Henee the probability of hitting two such blots, will be at a medium
21 4 29

23 36—

1V. If there be three blots, so situated as to be kit by three different faces; the pro-
bability of hitting one or more of them is required ?

The first table will give the probability of hitting one or more of the blots with a
single face or faces ; but besides this, there will be the probability of hitting one or
more ofthe blots with two dice, the least of which will be when the qiwn faces are 1,
2, 8, which have 1 42 =3 such chances, and the greatest when the given faces are
4, 5, 6, which have 3 4-4 -} 5 =12 such chances; the medium of these, viz.

3-|-12

= %ﬂ which divided by the eommon denominator 36, becomes §§ =#.

Henece, if a player at backgammon makes 3 blots, which are severally within the
reach of being hit by a smghz face of the die, it is almost a certainty that one of them
at least will be hit.

= 1, being added to 27, will make the whole probability about 27412

PROBLEM IX.

A mountebank at a country fuir amused the populace with the following qame : he had
6 dice, each of which was marked only on one fuce. the first with 1, the second with
2, and so on to the sizth, which was marked G; the person who played gave him a
certain sum of money, and he engaged to return it a hundred-fold, if in throwing
these six dice, the six marked faces should come up only once in 20 throws. If the
adventurer lost, the mountebanh offered a new chance on the following conditions : to
deposit a sum equal to the former, and to receive both the stakes in case he should
bring all the blank fuces in 3 successive throws.

Those unacquainted with the method to be pursued in order to resolve such pro-
blems, are liable to reason in an erroneous manner on dice of this kind ; for observing
that there are five times as many blank as marked faces, they thence conclude that
it is 5 to 1 that the person who throws them will not bring any point. They are
however mistaken, as the probability, on the contrary, is near 2 to 1 that they will
not come up all blanks.

If we take only one die, it is evident that itis 5 to 1 that the person who holds it
will throw a blank ; but if we add a second die, it may be readily seen, that the
marked face of the first may comhine with each of the blank faces of the second, and
the marked face of the second with each of the blank faces of the first ; and, in the
last place, the marked face of the one with the marked face of the other: consequently,
of 36 combinations of the faces of these two dice, there are 11 in which there is at
least one marked face. But, as we have already observed, this number 11 is the
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difference of the square of 6, the number of the faces of one die, and of the square of
the same number diminished by unity, that is to say of 5.

If a third die be added, we shall find, by the like analysis, that of the 216 combina-
tions of three dice, there are 91 in which there is at least one marked face ; and 91
is the difference of the cube of 6 or 216, and the cube of 5 or 125: the result will be
the same in regard to the more complex cases; and hence we may conclude that, of
the 46656 combinations of the faces of the 6 dice in question, there will be 31031 in
which there is at least one marked face, and 15625 in which all the faces are blank ;
consequently the chance is 2 to 1 that some point at least will be thrown ; whereas,
by the above reasoning, it would appear that 5 to | might be betted on the contrary
being the case.

This example may serve to shew how diffident we ought to be in regard to the
ideas which oceur on the first consideration of subjeets of this kind ; and it may be
added that, in this case, our reasoning is confirmed by experience. But to return to
the problem ; it is evident that, of the 46656 combinations of the faces of 6 dice,
thereis only one which gives the 6 marked faces uppermost ; the probablity there-
fore of throwing them at one throw,is expressed by jzkz ; and as the adventurer was
allowed 20 throws, the probability of his succeeding was only ;@i which is nearly
equal to gdy;. To play an equal game therefore, the mountebank should have en-
gaged to return 2332 times the money. But he offered only 100 times the stake, that
is, about the 23d part of what he ought to have offered, to give an equal chance, and
consequently he had an advantage of 22 to 1.

The chance offered to those who might lose was a mere deception; for the proposer
artfully availed himself of that propensity which every man, who had not sufficiently
examined the subjeet, would have to adopt the false reasoning above mentioned ; and
the adventurer would have the less hesitation to accept the offer as it would seem
that he might bet 5 to 1 on bringing blanks every throw; whereas it is 2 to 1 that
the contrary will happen. But the chance of not bringing blanks in one throw, being
to that of bringing them, as 2 to 1; it thence follows, that the probability of not
bringing them three times successively, is to that of bringing them, as 8 to 1. To
play an equal game therefore, the mountebank ought to bave staked 7 to1; conse-
guently, in the chance which he gave to the lozer, in a game where he had an ad-
vantage of 22 to 1, he had still an advantage of 7 to 1.

PROBLEM X.

In how many throws with six dice, marked on all their faces, may a person engage, for
an even bet, to throw 1, 2, 3, 4, 5, 6.

We have just seen that there are 46655 chances to 1, that a person will not throw
these 6 points with dice marked only on one of their faces; but the case is very
different with 6 dice marked on all their faces; and to prove it, we need only observe
that the point 1, for example, may be thrown by each of the dice, as well as the
2, 3, &e. ; which renders the probability of these six points, 1, 2, 3, &e. coming up,
much greater. :

But to analyse the problem more accurately, we shall observe, that there are 2
ways of throwing 1, 2, with two dice ; viz. 1 with the die a, and 2 with the die B;
or 1 with the die n, and 2 with o, If it were proposed to throw 1, 2, 3 with 3 diee ;
of the whole of the combinations of the faces of 3 dice, there are 6 which give the
points 1, 2, 3; for 1 may be thrown with the die o, 2 with r, and 3 with o3 or 1
with 4, 2 with ¢, and 3 with B; or 1 with 8,2 with A, and 3 with ¢; or 1 with n,
2 with ¢, and 3 with o ; or 1 with ¢, 2 with a, and 3 with ; or 1 with c, 2 with
B, and 3 with a.
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It hence appears that, to find the number of ways in which 1, 2, 3 can be thrown
with 3 dice, 1, 2, 3 must be multiplied together. Id like manner, to find the number
of ways in which 1, 2, 3, 4 can be thrown with 4 dice, we must multiply together 1,
2, 3, 4, which will give 24 ; and, in the last place, to find in how many ways 1, 2, 3,
4, 5, 6 can be thrown with 6 dice, we must multiply together these six numbers, the
product of which will be 720,

If the number 46656, which is the combinations of the faces of 6 dice, be divided
by 720, we shall have 644 for the chances to 1, that these points will not come up at
one throw ; consequently a person may undertake, for an even bet, to bring them in
65 throws; and one may bet more than 2 to 1 that they will come up in 150 throws.
In the last place, as the dice may be thrown 130 times and more, in a quarter of an
hour, a person may with advantage bet more than 2 to 1, that they will come up in
the course of that time.

He therefore who engages, for an even bet, to throw these points in a quarter of an
hour, undertakes what is highly advantageous to himself, and equally disadvantageous
to his adversary.

PRODBLEM XI.

A eertain person proposed to play with T dice, marked on all their faces, on the following
conditions : he who held the dice was to gain as many crowns as he brought sives;
but if he brought none, he was to pay to his adversary as many crowns as there were
dice, that is 7. What was the ratio of their chances ?

To resolve this problem, we must analyze it in order. Letus suppose then, that
there is only one die; in this case it is evident, that as there is only 1 chanee in
favour of him who holds the die, and 5 against him, the ratio of the stakes ought to
be that of 1 to 5. If the first therefors gave a crown every time he did not throw
6, and received only the same sum when a 6 came up, he would play a very un-
equal game.

Let us now suppose 2 dice. In the 36 combinations, of which the faces of 2
dice are susceptible, there are 25 which give no 6; 10 which give 1, and 1 which
gives 2. He therefore who holds the dice, has only 11 chances in his favour, 10 of
which may each make him gain a crown, and the remaining 1 make him gain two.
His chance then of winning, according to the general rule, will be }§ 4 &; and be-
cause, if the 25 chances which do not give a 6 should take place, he would be
obliged to pay 2 crowns, the chance of his adversary will be §}. Consequently the
chance of winning will be to that of losing as I to 52, or 12 to 50, or less than 1 to 4.

To determine, in the more complex cases, the chances which give no 6, those
which give one, those which give two, &c. it must be observed, that they are al-
ways expressed by the different terms of the power of 5 4 1, the exponent of which
is equal to the number of the dice. Thus when there is only one die, the number
5 - 1 expresses, by its first term, that there are five chances without a 6, and one
which gives a 6; if there be two dice, as the product of 5 41 by 5+ 1, or the
square of 541, is 25 4 10 4+ 1, the first term 25 indicates that there are
25 chances, in the 36, which give no 6; 10 which give one, and 1 which gives
two.

In like manner, as the cube of 5 11is 125 4 75 -4 15 4 1, it denotes that, in
the 216 combinations of the faces of six dice, there are 125 in which there is
no 6; 75 in which there iz one; 15 in which there are two, and 1 where there
are three.

The fourth power of 5 4~ 1 being 625 4 500 - 150 - 20 4- 1, it indicates, in the
same manner, that in the 1296 combinations of the faces of four dice, there are
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625 without a 6 ; 500 which gw{. G; 150 which give two, 20 which give three, and

only 1 that gives four.
We shall pass over the intermediate cases, and proceed to that where 7 dice are

employed. In this case then it will be found, that the Tth power of 5 4~ 1 is 78125
-+ 109375 - 63625 4 21875 4 4375 4 525 435 + 1 = 270036, In the 279936
combinations of the faces of 7 dice, there are 78125 which give no G; 100375
where there iz one: 65625 where there are two; 21875 where there are three, &e.
But as he who holds the dice would have to pay 7 crowns for each of the first 78125
chances, should they take place, we must consequently, according to the general rule,
multiply that number by 7, and divide the produet by the sum of all the chances,
in order to obtain the chance against him, whichis = §§i. To find the favourable
chance, we must multiply each of the other terms by the number of the sixes it
presents ; add tngethl,.r the different products, and divide the sum by the whole of
the chances, or 279936 ; in this m'mn-.r we shall have, for the chance in favour of
the person who holds the dice, §533. His chance of winning, therefore, is to that of
losing, as 325502 to 540687 ; that is to say, he plays a disadvantageous game, or it
is 54 to 32, or 27 to 16, or more than 3 to 2, that he will lose.

By a like process it may be found, in the case of eight dice, that the chance of the
person who holds them, is to that of his adversary, as 2259488 to 3125000, which
is nearly as 3 to 4.

If there were nine dice, the chance of the person who holds them, would be to
that of his adversary, nearly as 151 to 173, or nearly 25 to 29.

If there were ten dice, the chance of the former to that of the latter, would
be as 101176960 to 97656250, that is to say, nearly as 101 to 97f. The advantage
then begins to be in favour of the former, only when the number of the dice is 10;
and, to play an equal game, a less number ought not to be employed.

CHAPTER X,

ARITHMETICAL AMUSEMENTS IN DIVINATION AND COMBINATIONS.

PROBLEM I.
To tell the Number thought of by a person,

I. Desige the person, who has thought of a number, to triple it, and to take the
exact half of that triple, if it .be even, or the greater half if it be odd. Then desire
him to triple that half, and ask him how many times it contains 9; for the number
thought of will contain the double of that number of nines, and one more if it be

odd.
Thus, if 5 has been the number thought of ; its triple will be 135, which cannot

be divided by 2 without a remainder. The greater half of 15 is 8; and if this
half be multiplied by 3, we shall have 24, which contains 9 twice: the number
thought of will therefore be 4 <= 1, that is to say 5.
Proof.—If the number be an even one, it may be represented by 2 x, and if an odd
9
one by 2x-}-1. Then in the case of an even number f:' ¥ 3 x 3 represents the

operations which the person thinking of a number is requested o perform upon it.
The result is 9z, the ninth 'Eglrt of which doubled is 2 x, the number thought of. In
the case of the odd number :.":';;{ % 3 x 3 =9z - 4}, which contains 9, x times,
and 2 x -1 is the number thought of.

In the same way may each of the following methods be shewn to be true,
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II. Bid the person multiply the number thought of by itself; then desire him to
add unity to the number thought of, and to multiply that sum also by itself; in the
last place ask him to tell the difference of these two products, which will certainly
be an odd number, and the least half of it will be the number required.

Let the number thought of, for example, be 10, which multiplied by itself gives
100; in the next place 10 increased by 1 is 11, which multiplied by itself makes 121,
and the difference of these two squares is 21, the least half of which, being 10, is
the number thought of.

This operation might be varied in the second step, by desiring the person to mul-
tiply the number by itself, after it has been diminished by unity, and then to tell the
difference of the two squares; the greater half of which will be the number
thought of.

Thus, in the preceding example, the square of the number thought of is 100, and
that of the same number less unity is 81 ; the difference of these is 19, the greater
half of which, or 10, is the number thought of,

IIl.—Desire the person to take 1 from the number thought of, and to double the
remainder ; then bid him take 1 from this double, and add to it the number thought
of. Having asked the number arising from this addition, add 3 to it, and the third
of the sum will be the number required.

Let the number thought of be 5; if one be taken from it there will remain 4, the
double of which, 8, being diminished by 1, and the remainder, 7, being inereased by
5, the number thought of, the result will be 12: if to this we add 3, we shall have
15, the third part of whiech, 5, will be the number required.

Remark.—'This method may be varied a great many ways ; for instead of doubling
the number thought of, after unity has been deducted from it, the person may be
desived to triple it ; then after he has been desired to subtract unity from that triple,
and to add the number thought of, he must add 4 to it, and the  of the sum arising
from these operations will be the number required.

Let the number required be x : if unity be subtracted from it the remainder will he
z — 1 ; multiply this remainder by any number whatever, », and the product will be
nx — n; again subtract unity, and we shall have for remainder nx—n —1; if z, the
number thought of, be then added, the sum will be (s <4-1)r —n —1; and if to this
sum we add the above multiplier increased by unity, that is to say 3, if the first
remainder was doubled, 4 if it was tripled, &e., the result will be (2 1) 2; which
being divided by the same number, the quotient will be x, the number required.

Unity, instead of being subtracted from the number thought of, might be added to
it : and then, instead of adding, at the end of the operation, the multiplier increased
by unity, it ought to be subtracted, after which the remainder may be divided as
above.

Let the number thought of, for example, be T ; if unity be added, the sum will he
8, and this sum tripled will give 24 ; it 1 be still added, we shall have 25, and this
sum increased by 7 will make 32; from which if 4 be deducted, because the number
thought of was tripled after unity had been added, we shall have 28; one fourth of
which will be the number required.

IV.—Desire the person to add 1 to the triple of the number thought of, and to
multiply the sum by 3; then bid him add to this product the number thought of,
and the result will be a sum, from which if 3 be subtracted, the remainder will be
ten times the number required. If 3 therefore be taken from the last sum, and if
the eipher on the right be cut off from the remainder, the other figure will indicate

the number sought.
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Let the number thought of be 6; the triple of which is 18, and if unity be added
it makes 19; the triple of this last number is 57, and if G be added it makes 63, from
which if 3 be subtracted the remainder will be 60: now if the cipher on the right
be cut off, the remaining figure 6 will be the number required.

Remark.—If 1 were subtracted from thrice the number thought of, the remainder
tripled, and the number thought of again added, it would be necessary, after the per-
gon had told the result, which would always terminate with 7, to add 3 instead of
subtracting it, as in the above operation; and the sum would then be the decuple of
the number thought of.

To the preceding methods, given by Montucla, of | 1. | 1L | I_[[._I IV.] V. | VL

telling the number of whichapersonhas thought, may 1| 2 ]| 8 16|32
be added another ingenious one, by means of the : g 'ff 9117 | 33
annexed columns of numbers, which are thus pre- m | o= ; { i‘; ;: 3;
pared. 9|10 12|12 20| 36

e

Having entered the geometrical series, 1, 2, 4, 8, 11 | 11 |13 | 13 | 21 | 37
16, 32, as the top series of the six columns, the 13 | 14 | 14 | 14 | 22 | 38

other numbers in each column downward are pro- i? :g |15 | 15| 23 | 39
duced by this rule. 55 | in ! g? | E:: | g: | :‘:
To the first number add successively a unitas | a1 | 22 | 92 | 06 | 26 | 40
often as i denoted by one less than the first num- 23 | 23 | 23 | 27| 27 | 43
ber; and then, to the last of these, add a number | 25 | 26 | 25 | 25 | 28 | 44
45

|
which is one more than the top number, and so on | 27 | 27 ! 29 | 20 | 29 !
till the columns are filled up. | i o | b

> : 31 | 31 | 31 | 31|31 |4
Now having prepared the columns, it may beas | 33 | 34 | 36 | 40 | 45 *;
well, for the sake of secresy, to have them on dif- | 35 | 35 | 37 | 41 | 49 | 49

ferent slips of paper. 37 |38 | 38 | 42 | 50 | 50
Request a person to think of any number not | 39 | 39 | 39 | 43 | 51 | 51

: . 1 41 | 42 | 44 | 44 | 52 | 52

greater than the highest contained in the columns, | ;4 | 45 o e | 53 | &3
in the present case 63, and desire him to point out | 45 | 46 | 45 .;E e
all the columns in which it is contained, or shewing 47 | 47 | 45 | 47 | 65 | 55
each column separately, ask, Is the number there? | 49 | 50 | 52 | 56 | 56 | 56
Then, recolleeting that the numbers at the top are | °1 | 31 | 83 | 57 | 57 | 57
1,2, 4,8, 16, 32, add together in your mind the | 53 | 52 | o3 | o0 | 05 | 28
figures of this series at the tops of all the columns 57 | 58 | 60 | 60 i 60 | 60
containing the number thought of, and the sum of | 59 | 59 | 61 | 61 | 61 | 61

these numbers will be the number required. 61 | 62 | 62 | 62 | 62 | 62
63 | 63 | 63 | 63 | 63 | 63

Thus for example, if the person says his numberisin the 2nd, ath, and 6th columns,
2 4 16 - 32, or 50, is the number. If he says it is in the Ist, 2nd, 4th, and 6th co-
lumng, 1424832, or 43 is the number.

The problem may be varied by requesting the person who thinks of a number to
give you those eolumns only which do not contain it, and you will then discover it by
subtracting the sum of the top numbers from the highest number, 63. Thus, if the
number is not in the 2ud, 5th, nor 6th column, it must be 63 — 50, or 13.

PROBLEM II.
To tell two or more numbers which a person has thought o ' f.

I.—When each of the numbers thought of does not exceed 9, they may be easily
found in the following manner :



DIVINATION AND COMBINATIONS. 65

Having made the person add 1 to the double of the first number thought of, desire
him to multiply the whole by 5, and to add to the product the second number. If
there be a third, make him double this first sum and add 1 to it ; after which desire
him to multiply the new sum by 5, and to add to it the third number. If there be
a fourth, you must proceed in the same manner, desiring him to double the preceding
sum ; to add to it unity; to multiply by 5, and then to add the fourth number, and
50 on.

Then ask the number arising from the addition of the last number thought of, and
if there were two numbers, subtract 5 from it if three, 55 ; if four, 555 and so
on; for the remainder will be composed of figures of which the first on the left will
be the first number thought of, the next the second, and so of the rest.

Suppose the numbers thought of to be 3, 4, 6: by adding 1 to 6, the double of the
first, we have 7, which being multiplied by 3, gives 35; it 4, the second number
thought of; be then added, we shall have 39, which doubled gives 78, and if we add
1, and multiply 79, the sum, by 5, the result will be 395. In the last place, iif we
add 6, the third number thought of, the sum will be 401 ; and if 55 be dedueted fiom
it, we shall bave for remainder 346; the figures of which, 3, 4, 6, indicate in order
the three numbers thought of.

One method we shall here omit, as we shall have occasion to employ it in another
amusement of the same kind, called the game of the ring.

II.—If one or more of the numbers thought of are greater than 9, two cases
must be distinguished : 1st, that where the number of the numbers thought of is
odd; 2d, that where it 1s even.

In the first case, desire the person to tell the sums of the first and the second ; of
the second and the third ; of the third and the fourth, &c., as far as the last, and then
the sum of the first and the last. Having written down these sums in order, add
together all those the places of which are odd, as the first, the third, the fifth, &e. ;
make another sum of all those the places of which are even, as the second, the
fourth, the sixth, &e.; subtract this sum from the former, and the remainder will be
the double of the first number.

Let us suppose, for example, that the five following numbers are thonght of, viz. :
3, 7,13, 17, 20, which, when added two and two, as above, give 10, 20, 30, 37, 23 : the
sum of the first and third and fifth is 63 ; and that of the second and fourth 18 57 :
if 57 be subtracted from 63, the remainder 6 will be the double of the first number
3. Nowif 3 be taken from 10, the first of the sums, the remainder 7 will be the
second number ; and, by proceeding in the same manner, we may find all the rest,

In the second case, that is to say, when the numbersof the numbers thought of is
even ; ask,and write down as above, the sum of the first and the second ; that of the
second and third ; and so on as before ; but instead of the sum of the first and the
‘last, take that of the second and the last; then add together those which stand in
the even places, and form them into a new sum apart; add also those in the odd
places, the first excepted, and subtract this sum from the former: the remainder will
be the double of the second number; and if the second number thus found be sub-
tracted from the sum of the first and second, the remainder will be the first number ;
if it be taken from that of the second and third, it will give the third ; and so of the
rest,

Let the numbers thought of be, for example, 3, 7, 13, 17 : the sums formed as
above are 10, 20, 30, 24: the sum of the second and fourth is 44, from which if 30,
the third sum, be subtracted, the remainder will be 14, the double of 7, the second
number. The first therefore iz 3, the third 13, and the fourth 17.

F
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PROBLEM III.

A person lhaving in one hand an even number of shillings, and in the other an odd,
to tell in which hand he has the even number.

Desire the person to multiply the number in the right hand by any even number
whatever, such as 2; and that in the left by an odd number, as 3 ; then bid him add
together the two products, and if the whole sum be odd, the even number of
shillings will be in the right hand, and the odd number in the left ; if the sum be
even, the contrary will be the case.

Let us suppose, for example, that the person has 8 shillings in his right hand, and
7 in his left 3 8 multiplied by 2 gives 16, and 7 multiplied by 3 gives 21 ; the sum of
which, 37, is an odd number.

If the number in the right hand were 9, and that in the left 8, we should have
0w 2 =18 and 8 % 3 = 24; the sum of which two products*is 42, an even
number.

Investigation.—Let x represent the number in the left, and y that in the right
hand, and let 2 » and 2m 4 1 represent any even and odd numbers. Then
2ayd-2mt1l.ea=2.ny+mx-+xis the sum of the products directed to
be taken. Now 2. ny -} m x is necessarily even. Therefore when the whole pro-
duct is even, x, the remaining term, is also even ; and when odd, = iz odd, which is
the rule.

PROBLEM IV,

A person having in one hand a piece of gold, and in the other a piece of silver,
to tell in which hand he has the gold, and in which the silver.

For this purpose, some value, represented by an even number, such as 8, must be
assigned to the gold, and a value represented by an odd number, such as 3, must
be assigned to the silver: after which the operation is exactly the same as in the
preceding example.

Remarks.—1. To conceal the artifice better, it will be sufficient to ask whether
the sum of the two products can be halved without a remainder ; for, in that case, the
total will be even, and in the contrary case odd.

II. It may be readily seen that the pieces, instead of being in the two hands of
the same person, may be supposed to be in the hands of two persons, one of whom
has the even number, or piece of gold, and the other the odd number, or piece of
silver. The same operations may then be performed in regard to these two persons
as are performed in regard to the two hands of the same person, calling the one pri-
vately the right, and the other the left.

PROBLEM Y.
The Game of the Ring.

This game is nothing else than an application of one of the methods employed
to tell several numbers thought of, and should be performed in a eompany not ex-
ceeding 9, in order that it may be less complex, Desire any one of the company to
take a ring, and to put it on any joint of whatever finger he may think proper. The
question then is to tell what person has the ring, and on what hand, what finger,
and what joint.

For this purpose, call the first person 1, the second 2, the third 3, and so on ; also
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call the right hand J, and the left 2: the first finger of the hand, that is to say ihe
thumb, must be denoted by 1, the second by 2, and so on to the little finger;
and the first joint of each finger, or that next the extremity, must be called 1, the
second 2, and the third 3.

Let is now suppose that the fifth person has taken the ring, and put it on the first
joint of the fourth finger of his left hand. To resolve the problem, nothing is
necessary but to discover these numbers 5, 2, 4, 1, which may be done in the
following manner.

Desire some one to double the first number 5, which will give 10, and to subtract
1 from it ; desire him to multiply 9, the remainder, by 5 which will give 45; to this
product bid him add the second number 2, which will make 47, and then 5 which will
make 52: desire him to double this number, and the result will be 104, and fo sub-
tract 1, which will leave 103. Desire him to multiply this remainder by 5, which
will give 315, and to add to the product the third number 4, or that expressing the
finger, which will give 519: then bid him add 5, which will make 524, and from 1048,
ihe double of this sum, let him subtract 1, which will leave 1047 : then desire him
to multiply this remainder by 5, which will give 5233, and to add to this product 1,
the fourth number, or that expressing the joint, which will make 52306; in the last
place bid him again add 5, and the sum will be 5241, the figures of which will indi-
cate, in order, the person who has the ring, and the hand, finger, and joint, on which
it was put.

It 1s evident, that all these operations amount, in reality, to nothing else than
multiplying by 10, the number which expresses the person ; then adding that which
expresses the hand ; multiplying again by 10,and so on.* But as this artifice is too
easily detected, it might be better to employ the method taught in Prob. 11
No. 1, to discover any number of numbers thought of at pleasure ; for, on account of
the number which must be subtracted, the operation will be more difficult to be com-
prehended.

The problem might be proposed in the following manner, and be resolved by
the same process.

Tlhree or more persons having each selected a card, the number of the spots of
which docs not erceed 9, to tell the number of the spots of each.

Desire the first person to add 1 to double the number of the spots of his card ; to
multiply the sum by 5, and to add to the product the spots of the card of the second
person : then desire him to double that sum; to add unity to it, to multiply the
whole by 5, and to add to this product the spots of the card of the third person: by
subtracting from the last result 55, if the number of the persons be 3; 5355, if it be
4 ; 5555, if it be 5, the figures which compose the remainder will indicate, in order,
the spots of the eards selected by each person.

This process may be demonstrated with as much ease as the former ; let the num-
bers to be guessed, less than 10, be x, ¥, z: we confine ourselves to three, for the sake
of brevity. If 1 be added to the double of the first number, we shall have 2 « -+ 1,
and multiplying by 5, the product will be 10 = - 5; if the second number y be

* For the satisfaction and information of the reader, we shall here give the following demonstra-
tion. Let the four numbers to be guessed be =, ¥, 2, & according to the above method, we most
double x, which will give 2 x; if 1 e then subtracted we shall bave 2 o — 1, and wultiplyimg by 5,
the reanlt will be 10 x — 5. If w, the second number, be added, we shall have 10r — 5+ y, and 3
added te this sum will make 102 4 ¥ which being doubled will give 202 -+ 23 ; if | be subtracted,
there will remain 20 x + 2 y — 1, which multiplicd by 5 will give 100x -+ 10 % — 5 ; to this product
if the third number z, and 5 be added, the sum will be 100 x + W0y 4+ 2; and if unity be taken
from the double of this sum, the result will be 2002 + 20y < 22 — 1 if wo then wubiply by &,
we shall have for product 1000 2 4 100 ¥ + 10 2 — §; and by adding 5 and the last number, #, the
sum will be 100z + 100 y + 10z + . If x, w, 2, # represent numbers, below 10, a8 5, 2, 4, 1,
the sum will be 5000 + 200 4+ 40 + 1, or 5241, If the numbers were 9, 6, 5, 4, the sum for 41T
same reason, would be 0654 ; which is a demonstration of the precess above indicated.

F 2
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added, the sum will be 10 r 4 5 <~ y, and 1 added to the double will make 20 » 4
10 42 y 4 1, which multiplied by 5 gives 100 x 4= 50 -4 10 y - 5; if we then add
the third number z, we shallhave 100 z 4 50 4- 10y ++ 5 4z, or 100 = -+ 10 y -
z -} 55: if r, y, z are, for example, 5, 6, 7, this expression will be 567 - 55, or 612.
From this last sum therefore, if we deduct 55, the remainder will be 567, which in-
dicates in order the three numbers to be guessed.

For the sake of brevity, we shall not give any other example, as the reader may
recur to that before given in Prob. 11.

PROEBLEM VI.

To guess the number of spots on any eard, which a person has drawn from a
whole pack.

Take a whole pack, consisting of 52 eards, and decire some person in company to
draw out any one at pleasure, without shewing it. Having assigned to the different
cards their usual valie, according to their spots, call the knave 11, the queen 12,
and the king 13. Then add the spots of the first card to those of the second; the
last sum to the spots of the third, and so on, always rejecting 13, and keeping the
remainder to add to the following eard. 1t may be readily seen that it is needless to
reckon the kings, which are counted 13. 1f any spots remain at the last card, sub-
tract them from 13, and the remainder will indicate the spots of the card that has
been drawn ; if the remainder be 11, it has been a kpave ; if 12 it has been a
queen ; but if nothing remains, it has been a king. The colour of the king may be
known by examining which one among the cards is wanting.

If you are desirous of employing only 32 cards, the number used at present for
piquet, when the cards are added as above directed, reject all the tens; then add 4
to the spots of the last card, and a sum will be obtained, which taken from 10, if it
be less, or from 20 if it exceeds 10, the remainder will be the number of the eard that
has been drawn; so that if 2 remains, it has been a knave, if 3a queen, if 4 a king,
and so on.

If the pack be incomplete, attention must be paid to those deficient, in order that
the number of the spots of all the cards wanting may be added to the last sum, after
as many tens as possible have been subtracted from it; and the sum arising from this
addition must, as before, be taken from 10 or 20, according as it is greater or less than
10. It is evident that by again looking at the cards, the one which bas been drawn
may be discovered.

The demonstration of this rule is as follows: since, in a complete pack of cards,
there are 13 of each suit, the values of which are 1, 2, 3, &e., to 13, the sum of all
the spots of each suit, calling the knave 11, the queen 12, and the king 13, is seven
times 13 or 91, which is a multiple of 13; consequently the quadraple of this sum is
a maltiple of 13 also: if the spots then of all the cards be added together, always
rejecting 13, we must at last find the remainder equal to nothing. It is therefore
evident that if a card, the spots of which are less than 13, has been drawn from
the pack, the difference hetween these spots and 13 will be what is wanting
to complete that number: it at the end then, instead of reaching 13, we reach
only 10, for example, it is evident that the card wanting is a three; and if we reach
13, it is also evident that the card wanting is one of those equivalent to 13, or
a king.

If two cards have been drawn from the pack, we may tell, in like manner, the
number of spots which they contain both together: that is, how mueh is want-
ing to reach 13, or that deficiency increased by 13; and to know which two,
nothing is necessary but to count privately how many times 13 has been com-
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pleted, for with the whoele of the cards it ought to be counted 28 times: if it
be counted therefore only 27 times, with a remainder, as 7 for example, the spots
of the two cards drawn amount together to 6: if 13 be counted only 26 times,
with the same remainder, it may be conecluded that the two cards formed to-
gether 13-4-6, or 19

The demonstration of the rule given when the same number of cards is used,
as that employed for the game of piquet, viz. 32, ealling the ace 1, the knave 2,
the queen 3, the king 4, and assigning to the other cards the value of their spots,
is attended with as little difficulty; for in each suit there are 44 spots, making
altogether 176, which, as well as 44, iz a multiple of 11; we may therefore always
count to 11, rejecting 11, and the number wanting to reach 11, will be the
value of the card which has been drawn.

But the same number 176, if 4 were added to it, would be a multiple of 10
or of 20; and hence a demonstration also of the method which has been taught.

FROBLEM YII.

A person having an equal number of counters, or picces of money, in each hand,
to find how many he has altogether.

Desire the person to convey any number, as 4, for example, from the one hand
to the other, and then ask bim how many times the less number is contained in
the greater. Let us suppose that he says the one is triple of the other; and in
this case multiply 4, the number of the counters conveyed from one hand into
the other, by 3, and add to the product the =ame number 4, which will make
16. In the last place, from the number 3 subtract unity, and if 16 be divided by
2 the remainder, the quotient 8 will be the number contained in each hand, and
consequently the whole number is 16.

Let us now suppose that when 4 counters are conveyed from one hand to the
other, the less number is contained in the greater 24 times: in this case we must,
as before, multiply 4 by 24, which will give 94; to which if four be added, we
shall have 134, or ¥; if unity be then taken from 2}, the remainder will be 14,
or 4, by which if 4 be divided, the quotient, 10, will be the number of counters
in each hand, as may be easily proved on trial.

Proof.—Let x he the number in each hand, @ the number transferred from the

one hand to the other, and = = the multiple which the sum is of the remainder.
. w1

n—1

« 3 a gene-

ral rule.
PROBLEM YVIIL

Several cards being presented, in succession, to several pevsons, that they wmay each
choose one at pleasure; to guess that whick each has thought of.

Shew as many cards to each person as there are persons to choose; that is to
say, 3 to each if there are 3 persons. When the first has thought of one, lay
aside the three cards in which he has made hiz choice. Prezent the same num-
ber to the second person, to think of one, and lay aside the three cards in the
like manner, Having done the same in regard to the third person, spread out
the three first cards with their faces upwards, and place above them the next
three cards, and above these the last three, that all the cards may thus be dis-
posed in three heaps, each cousisting of three eards. Then ask cach person in
which heap the eard is which he thought of, and when this is known it will be
easy to tell these cards, for that of the first person will be the first in the heap
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to which it belongs; that of the second will be the second of the next heap, and
that of the third will be the third ot the last heap.

- PROBLEM 1X.
Three cards being presented to three persons, to guess that which each has chosen

As it is necessary that the cards presented to the three persons should be dis-
tinguished, we shall call the first a, the second B, and the third ¢; but the
three persons may be at liberty to choose any of them at pleasure. This choice,
which is suseeptible of six different varieties, having been made, give to the first
person 12 counters, to the second 24, and to the third 36: then desire the first
person to add together the half of the counters of the person who has chosen the
card A, the third of those of the person who has chosen B, and the fourth part
of those of the person who has chosen ¢, and ask the sum, which must be either
23 or 24; 25 or 27; 28 or 29, as in the following table:

First. Second. Third. Bums.
12 24 i
A B o 23
A [ B 24
I A C 25
C A B 27
n c A 28
o B A 20

This table shews, that if the sum be 25, for example, the first person must
have chosen the card B, the second the card A, and the third the card ¢; and
that if it be 28, the first person must have chosen the card B, the second the
card ¢, and the third the card A ; and so of the rest.

PROBLEM X.

A person having drawn, from a complete pack of fifty-twe cards, one, two, three,
Jour, or more cards, to guess the whole number of the spots which they contain.

Assume any number whatever, such as 15, for example, greater than the num-
ber of the spots of the highest eard, counting the knave 11, the queen 12, and
the king 13, and desire the person to add as many cards from the pack, to the
first card he has chosen, as will make up 15, counting the spots of that card;
let him do the same thing in regard to the second, the third, the fourth, &e.;
and then desire him to tell how many cards remain in the pack. When this is
done, proceed as follows :

Multiply the above number 15, or any other that may have been assumed, by
the number of cards drawn from the pack, which we shall here suppose to be 3;
to the product, 45, add the number of these cards, which will give 48; subtract
the 48 from 52, and take the remainder 4 from the cards left in the pack: the
result will be the number of spots required.

Let us suppose, for example, that the person has drawn from the pack a 7, a
10, and a knave, which is equal to 1l: to make up the number 15 with a 7,
eight cards will be required; to make up the same number with a 10, will re-
quire five; and with the knave, which is equal to 11, four will be necessary.
The sum of these three numbers, with the 3 cards, makes 20, and consequently
32 cards remain in the pack. To find the sum of the numbers 7, 10, 11, mul-
tiply 15 by 3, which will give 45; and if the number of the cards drawn from
the pack be added, the sum will be 48, which taken from 52, leaves 4. 1If 4
then be subtracted from 32, the remainder, 28, will be the sum of the spots
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contained on the three cards drawn from the pack, as may be easily proved by
trial.

Another Ervample.—Let us suppose two cards only drawn from the pack, a 4
and a king, equal to 13; if cards be added to these to make up 15, there will
remain in the pack 37 cards,

If 15 be multiplied by 2, the product will be 30, to which if 2, the number of
the cards drawn from the pack, be added, we shall have 32; and if 32 be taken
from 52, the remamnder will be 20. In the last place, if 20 be subtracted from
37, the number of the cards left in the pack, the remainder, 17, will be the
number of the spots of the 2 cards drawn from the pack.

Remarks—1. If 4 or 5 cards are drawn from the pack, it may sometimes hap-
pen that a suflicient number will not be left to make up the number 15; but
even in this case the operation may be still performed. For example, if 5 cards,
the spots contained on which are 1, 2, 3, 4, 5, have been drawn; to complete
with each of these cards the number 15 would require, together with the 5 cards,
at least 65; but as there are only 52, there are consequently 13 too few. He
who counts the pack must therefore say that 13 are wanting.

On the other hand, he who undertakes to tell the number of the spots, must
multiply 15 by 5, which makes 75; and to this if 5, the number of the cards, be
added, it will give 80; that is to say, 28 more than 52 : if 13 then be subtracted from
28, the remainder 15 will be the number of the spots contained on these 5 cards.

But if we suppose that the cards left in the pack are, for example 22 which would
he the case if the five cards drawn were the 8, 9, 10, knave = 11, and queen = 12,
it would be necessary to add these 22 to the excess of 5 times 1545, over 52, that
is to say to 28, and we should have 50 for the spots of these 5 cards, which iz indeed
the exact number of them.

II. It the pack consists not of 52 cards, but of 40, for example, there will still be
ne difference in the operation : the number of the cards, which remain of theze 40,
must be taken from the sum produced by multiplying the made up number by that
of the cards drawn, and adding to the product the number of these cards.

Let us suppose, for example, that the cards drawn are 9, 10, 11, that the number
to be made up is 12, and that the cards left in the pack are 31. Then 12 x 3 =
36, and 3 added for the 3 cards, makes 39, which subtracted from 40 leaves 1. IF1
then be' taken from 31, the remainder 30 will be the number of the spots re-
quired,

III. Different numbers to be made up with the spots of each card chosen might be
assumed ; but the case would still be the same, only that it would be necessary to
add these three numbers to that of the cards, instead of multiplying the same num-
ber by the number of ecards drawn, and then adding the number of the cards. In
this there is so little difficulty, that an example is not necessary.

IV. The demonstration of this method, which some of our readers perhaps may
be desirous of seeing, is exceedingly simple, and is as follows. Let a be the num-
ber of cards in the pack, ¢ the number to be made up by adding cards to the spots
of each card drawn, and & the cards left in the pack; let x, ¥, z express the spots
of the cards, which we shall here suppose to be 3, and we shall then have, for the
number of the cards drawn, e —2—+c—py-+c—z-=3; which with the cards lelt
in the pack b, must be equal to the whole pack. Then 3 c—E—S—.r-_y-—:~|—IE.-
—a, or zy+:=3c}+3+4+b—a, or=b—(a—3c—3). Butrd-y-4 z is
the whole number of the spots; %is the number of cards left in the pack, and a —
3 ¢—3 is the whole number of cards in the pack, less the product of the number
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to be completed by the number of the cards drawn, minus that number. There-
fore, &c.

PFROBLEM XI.

Three things being privately distributed to three persons ; to guess that which each
has got.

Let the three things be a ring, a shilling, and a glove. Call the ring A, the shilling
E, and the glove 1; and in your own mind distinguish the persons by calling them
first, second, and third. Then take twenty-four counters, and give one of them to
the first person, two to the second, and three to the third. Place the remaining 18
on the table, and then retire, that the three persons may distribute among themselves
the three things proposed, without your observing them. When the distribution has
been made, desire the person who has the ring to take from the 18 remaining counters
as many as he has already ; the one who has the shilling to take twice as many as he
has already, and the person who has the glove to take four times as many ; aceording
to the above supposition then, the first person has taken 1, the second 4, and the
third 12; consequently one counter only remains on the table. When this is
done, you may return, and by the number left can discover what thing each has got,
by employing the following words :

1 2 3 5 6 i
Par fer César jadis devint si grand prince.

To make use of these words, you must recollect that in all cases there ean remain
only 1 counter, or 2,3, 5, 6, or 7, and never 4: it must be likewise obzerved that
each syllable contains one of the vowels which we have made to represent the three
things proposed, and that the above line must be considered as consisting only of six
words: the first syllable of each word must also be supposed to represent the first
person, and the second syllable the second. This being comprehended, if there
remains only 1 counter you must employ the first word, or rather the two first
syllables, par fer, the first of which, that eontaining A, shews that the first person
bas the ring, represented by a; and the second syllable, that containing E, shews
that the second person has the shilling, represented by g ; from which you may easily
conclude that the third person has the glove. If two counters remain, you must
take the second word César, the first syllable of which, containing E, will shew
that the first person has the shilling, represented by ®, and the second syllable,
containing A, will indicate that the second person has the ring, represented by a:
you may then easily conclude that the third person has the glove. In general,
whatever number of counters remain, that word of the verse which is pointed out
by the same number must be employed.

Remarks.—Instead of the above French verse, the following Latin one might be

used.
N SO R ST el

Salve cerla anima semita vila quies.
This problem might be proposed in a manner somewhat different, and might be
applied to more than three persons: those who are desirous of farther information

on the subject, may consult Bachet in the 23th of his * Problémes plaisants et
delectables.”
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PROBLEM XII. -

Several numbers being disposed in a circular form, according to their natural series,
to tell that which any one has thought of.

The first ten cards of any suit, disposed in a cireular form, as seen in the figure
below, may be employed with great eonvenience for performing what is announced
in this problem. The ace is here represented by the letter o annexed to 1, and
the ten by the letter K joined to 10.

2 3 4
B c D
1 A ES
10 & F G
I H a
9 8 T

Having desired the person who has thought of a number or card to touch also
any other number or card, bid him add to the number of the ecard touched the
number of the cards employed, which in this caseiz 10. Then desire him to count that
sum in an order contrary to that of the natural numbers, beginning at the card he
touched, and assigning to that card the number of the one which he thought of;
for by counting in this manner, he will end at the number or eard which he t.hnught
of, and consequently you will easily know it.

Thus, for example, if the person has thought of the number 3, marked c, and
has touched 6, marked r; if 10 be added to 6, it will make 16; if 16 be then
counted * from ¥, the number touched, towards E, », ¢, B, A, and 50 on in the
retrograde order, counting 3, the number thought of, on ¥, 4 on g, 50n n, 6 on ¢,
and so round to 16, the number 16 will terminate on ¢, and shew that the person
thought of 3, which corresponds to c.

Remarks.—1. A greater or less number of cards may be employed at pleasure.
If there are 15 or 8 eards, 15 or 8 must be added to the number of the card
touched.

2, To conceal the artifice better, you may invert the cards, so as to prevent the
spots from being seen; but you must remember the natural series of the cards, and
the place of the first number, or the ace, that you may know the number of the card
touched, in order to find the one to which the person ought to count.

FROBLEM XIII.

Two persons agree to take alternately numbers less than a given number, for example
11, and to add them together till one of them has reached a certain sum, such as 100;
by what means can one of them infallibly attain to that number before the other ?

The whole artifice of this problem consists in immediately making choice of
certain numbers, which we shall here point out. Bubtract 11, for example, from
100, the number to be reached, as many times as possible, and the remainders will
be 89, T8, 67, 56, 45, 34, 23, 12, and 1, which must be remembered; for he who
by adding his number less than 11, to the sum of the preceding, shall count one
of these numbers before his adversary, will infallibly win, without the other heing
able to prevent him,

These numbers may be found also, with still greater ease, by dividing 100

* [t is to be observed that the person must not eount this sum aloud, but privately in his own
mind.
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by 11, and adding 11 continmally to 1, the remainder, which will give 1, 12, 23,
a4, &e.

Let us suppose, fr:rr‘m-:nmp]r., that the first person, who knows the game, takes
1 for his number: it is evident that his adversary, as he must count less than
11, can at most reach 11 by adding 10 to it. The first will then take 1, which
will make 12; if the second takes 8, which will make 20, the first will take 3,
which will make 23 ; and proceeding in this manner successively he will first reach
34, 45, 56, 67, T8, 89. When he attains to the last number it will be impossible
for the second to prevent him from getting first to 100 ; for whatever number the
second takes, he can attain only to 99, after which the first may say, ““and 1 makes
100, If the second takes | after 89, it will make 90; and his adversary may
finish by saying, * and 10 make 100.”

It is evident that when two persons are equally well acquainted with the game,
he who begins must necessarily win.

But if the one knows the game and the other does not, the latter, though first,
may not win ; for he will think it highly advantageous to take the greatest number
possible, that is to say 10; and in that case the other, acquainted with the nicety
of the game, will take 2, which with 10 will make 12; one of the numbers he
ought to secure. But he may even neglect this advantage, and take only 1 to
make 11; for the first will probably still take 10, which will make 21, and the
second may then take 2, which will make 23 ; he may then wait a little longer to
get hold of some of the following numbers 34, 45, 56, &e.

If the first is desirous to win, the least number proposed must not be a measure
of the greater; for in that case the first would have no infallible rule to direet
him in his operations. For example, if 10, which measures 100, were assumed,
instead of 11, by subtracting 10 from 100 as many times as possible, we should
have the numbers 10, 20, 30, 40, 50, 60, 70, 80, 90, the first of which, 10, could
not be taken by the first ; for being obliged to employ a number less than 10,
if the second were as well acquainted with the game, he might take the complement
to 10; and would thus bave an infallible rule for winning.

PROBLEM XIV.
Sizteen counters being disposed in two rows, to find that which a person has thought of.

The counters being arranged in two rows, as A and B, desire the person to think
of one, and to observe well in which row it is

C n E F H I
o 0 o 0 o 2
0 a i o 0 0
u o 0 0 o 0
0 0 [ 0 0

SO s oD SR b
=T = T = TR = = B = T~ T -
aocodesoso B
= L= [ = = Y B = T = B -

Let us suppose that the counter thought of is in the row 4; take up that whale
row, in the order in which it stands, and dispose it in two rows ¢ and D, on the
right and left of the row B; but in arranging them, take care that the first of the
row A may be the first of the row ¢; the second of the row a the first of the row
p; the third of the row A, the second of the row ¢, and s0 on; then ask again in
which of the vertical rows, ¢ or », the counter thought of is. Suppose it to be in
c: take up that row as well as the row p, putting the last at the end of the
first, without deranging the order of the counters, and, observing the rule already

M
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given, form them into two other rows, as seen at £ and ¥; then ask, as before, in
which row the counter thought of is. Let us suppose it to be in £: take up this
row, and the row v, as above directed, and form them into two new rows, on the
right and left of n. After these operations, the counter thought of must be tle
first of one of the perpendicular rows, m and 1; if you therefore ask in which
row it is, you may easily point it out; and as it is here supposed that each of the
counters has some distingmishing mark, you may desire them to be mixed together,
and still be able to tell the number thought of, by observing the mark.

It may be readily seen that, instead of counters, cards may be employed; and
when you have discovered, by the above means, the one thought of, you may cause
them to be mixed, which will better conceal the artifice.

Remark.—1f a greater number of counters or cards, arranged in two vertical
rows, be supposed, the counter or card thought of will not necessarily be the first
in the row to which it belongs, after the third transposition : if there be 32 counters
or cards, four transpositions will be necessary; if thereare 64, five; and so on,
before it can be said, with confidence, that the counter or card thought of oceupies
the first place in its row; for if this counter or card were at the bottom of the
perpendicular row a, supposing 16 counters in each row, or 32 altogether, it would
not arrive at the first place till after four transpositions: if there were G4, or 32
in each row, it would require five; and so on, as may be easily proved by trial.

PROBLEM XY.

A ecertain number of cards being shewn to a person, to guess that which he has
thought of.

To perform this trick, the number of the ecards must be divisible by 3; and to do
it with more convenience, the number must be odd.

The first condition, at least, being supposed, desire the person to think of a card ;
then place the cards on the table with their faces downward; and, taking them up
in order, arrange them in three heaps, with their faces upward, and in such a manner
that the first card of the packet shall be the first of the first heap ; the second the first
of the second, and the third the first of the third; the fourth the second of the first,
and s0 on. When the heaps are completed, ask the person in which heap is the card
thought of, and when told, place that containing the card thought of in the middle ;
then turning up the packet, form three heaps, as before, and again ask in which is
the card thought of. Place the heap containing the card thought of still in the
middle, and, having formed three new heaps, ask which of them contains the eard
thought of. When this is known, place it as before between the other two; and
again form three heaps, asking the same question. Then take up the heaps for the
last time ; put that containing the card thought of in the middle, and placing the
packet on the table, with the faces of the cards downward, turn up the eards till you
count half the number of those contained in the packet; 12 for example, if there
be 24, in which case the 12th card will be the one the person thought of.

If the number of the cards be, at the same time, odd, and divisible by 3, as 15, 21,
27, &e., the trick will become much easier ; for the card thought of will always be
that in the middle of the heap in which it is found the third time ; so that it may he
easily distinguished without counting the eards; nothing will be necessary for this
purpose, but to remember, while you are forming the heaps the third time, the card
which is the middle one of each. Let us suppose, for example, that the middle card
of the first heap is the ace of hearts ; that of the second the king of hearts, and that
of the third the knave of spades; it is evident, if you are told that the heap con-
taining the required card is the third, that this card must be the knave of spades.
You may therefore cause the cards to be shufiled, without touching them any more,
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and then, looking them over for the sake of form, may name the knave of spades
when it oceurs.
PROBLEM XVL

Fifteen Christians and fifteen Turks being at sea in the same vessel, a dreadful storm
came on, which obliged them to throw all their merchandise overboard ; this however
not being sufficient to lighten the ship, the captain informed them that there was no pos-
sibility of its being saved, unless half the passengers were thrown overboard also.
Having therefore cansed them all to arrange themselves in a row, by counting from 9
to 9, and throwing every ninth person into the sea, beginning again at the first of the
row when it had been counted to the end, it was found that after fifteen persons had
been thrown overboard, the fifteen Christians remained. How did the captain arrange
these thirty persons so as to save the Christians ?

The method of arranging the thirty persons may be deduced from these two

French verses:
Mort, tu ne failliraz pas

En me livrant le (repas.
Or from the following Latin one, which is not so bad of its kind :
Populeam virgam mater regina ferebat,

Attention must be paid to the vowels a, E, 1, 0, U, contained in the syllables of these
verses; observing that Aisequalto 1, Eto 2, 1to 3, oto 4, and v to 5. You must
begin then by arranging 4 Christians together, because the vowel in the first syllable
is 0; then five Turks, because the vowel in the second syllable is v ; and so0 on to
the end. By proceeding in this manner, it will be found, taking every ninth person
circularly, that is to say, begiuning at the first of the row, after it is ended, that the
lot will fall entirely on the Turks,

The solution of this problem may be easily extended still farther. Let it -be
required, for example, to make the lot fall upon 10 persons in 40, counting from
12 to 12. Arrange 40 ciphers in a eircular form, as below ;

S
0000000000000000
0 0
10 0
0 0+
0 0t
0000000000000000
T t

Then, beginning at the first, mark every twelfth one with a cross ; continue in this
manner, taking care to pass over those already crossed, still proceeding circularly,
till the required number of places has been marked ; if you then count the places
of the marked eciphers, those on which the lot falls will be easily known: in the
present case they are the Tth, the 8th, the 10th, the 12th, the 21st, the 22d, the 24th,
the 34th, the 35th, and the 36th,

A captain, obliged to decimate his company, might employ this expedient, to make
the lot full upon those most culpable.

It is related that Josephus, the bistorian, saved his life by means of this expedient.
Having fled for shelter to a cavern, with forty other Jews, after Jotapat bad been
taken by the Romans, his companions resolved to kill each other rather than sur-
render. Josephus tried to dissuade them from their horrid purpose, but not being
able to succeed, he pretended to coincide with their wishes, and retaining the authority
he had over them as their chief, to avoid the disorder which would necessarily be
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the consequence of this eruel execution, if they should kill each other at random,
he prevailed on them to arrange themselves in order, and, beginning to count from
one end to a certain number, to put to death the person on whom that number
should fall, until there remained only one, who should kill himself. Having all
agreed to this proposal, Josephus arranged them in such a manner, and placed himself
in guch a position, that when the slaughter had been continued to the end, he re-
mained with only one more person, whom he persuaded to live.

Such is the story related of Josephus by Hegesippus; but we are far from war-
ranting the truth of it. However, by applying to this case the method above indi-
cated, and supposing that every third person was to be killed, it will be found that
the two last places on which the lot fell were the 16th and 31st; so that Josephus
must bave placed himself in one of these, and the person he was desirous of saving
in the other.

PROBLEM XVII.

A man has a wolf, a goat, and a cablage, to carry over a river ; but being obliged to
transport them one by one on account of the smallness of the boat, in what manner
is this to be done, that the wolf may not be left with the goat, nor the goat with the
cabbage ?

He must first carry over the goat, and then return for the wolf; when he carries
over the wolf, he must take back with him the goat, and leave it, in order to carry
over the cabbage; he may then return and carry over the geoat. DBy these means,
the wolf will never be left with the goat, nor the goat with the cabbage, but when
the boatman is present.

PROBLEM XVIII,

Three jealous husbands, with their wives, having to cross a river at a ferry, find a boat
without a boatman ; but the boat is so small that it can contain no more than two of them
at once. How can these siz persons cross the river, two and two, so that none of the
women shall be left in company with any of the wmen, unless when her Lusband is
present ¥
The solution of this problem is contained in the two following Latin disticks :

It duplex malier, redit nwnn, vebitque manentom,
Irguue nna ; utuntur tunc duo pluppe viri.

IPar vadit et redeunt bind, mulicrque sororem
Advehit ; ad propriam fine maritus abit.

That is: * Two women cross first, and one of them, rowing back the boat, carres

over the third woman. One of the three women then returns with the boat, and

remaining, suffers the two men, whose wives have crossed, to go over in the boat,

One of the men then earries back his wife, and leaving her on the bank, rows over

the third man. In the last place, the woman who had crossed enters the boat, and

returning twice, carries over the other two women., "

This question is proposed also under the title of the three masters and the three
valets. The masters agree very well, and the valets also; but none of the masters
can endure the valets of the other two; so that if any one of them were left with any
of the other two valets, in the absence of his master, he would infallibly cane him.

FROBLEM XIX.

Tn what manner can counters be disposed in the eight external cells of a square, so
that there may be always 9 in each row, and yet the whole number shall vary from 20
to 92 ¢ . :

Ozanam proposed this problem in the following manner, with a view no
cxeite the curiosity of his readers:

doulbit to
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A certain convent eonsisted of nine cells, one of which in the middle was oceupied
by a blind abbess, and the rest by her nuns.  The good abbess, to assure herself that
the nuns did not violate their vows, visited all the cells, and finding 3 nuns in each,
which made 9 in every row, retired to rest. Four nuns however went out, and the
abbess returning at midnight to count them, still found 9 in each row, and therelore
retired as before. The 4 nuns then came back, each with a gallant, and the abbess
on paving them another viait, having again counted 9 persons in each row, entertained
no suspicion of what had taken place. But 4 more men were introduced, and the
abbess again counting 9 persons in each row, retired in the full persuasion that no
one had either gone out or come in. How was all this possible?

This problem may be easily solved by inspecting the four following figures: the
first of which represents the original dispesition of the counters in the cells of the
square ; the second that of the same counters when 4 are taken away ; the third the
manner in which they must be disposed when these 4 are brought back with 4 others;
and the fourth that of the same counters with the addition of 4 more. It is here
evident that there are always 9 in each external row ; and yet, in the first case, the
whole number is 24, while in the second it is 20, in the third 28, and in the fourth
32,

Fi] 3 3 4 1 4
| P 3 IL [ I
3 3 4 1 4

L L d —
2 5 | 2 1 y 1
1 Ol e 5 Iv. | .
2 5 2 1 7 1

It would seem that Ozanam had not observed that these variations might bave
been carried still farther : that four men more might have been introduced into the
convent, without the abbess perceiving it; and that all the men might have after-
wards gone out with six nuns, so as to leave only 18, instead of the 24 who were in
the cells at first. The possibility of this will appear by inspecting the two following
figures.

0 0 f 0] I 5 | 0 4

V. T g 9 ’ YL 0
|

0 9 0 | ] 4| 0 ] 5

It is almost needless to explain in what manner the illusion of the good abbess
arose, It is because the numbers in the angular cells of the square were counted
twice; these cells being common to two rows. The more therefore the angular cells
are filled, by emptying those in the middle of each band, these double enumerations
become greater; on which account the number, though diminished, appears always
to be the same ; and the contrary is the case in proportion as the middle cells are

filled by emptying the angular ones, which renders it necessary to add some units to
have 9 in each band,
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PROBLEM XX.

A gentleman has a bottle, containing 8 pints, of choice wine, and wishes to make a
present of one half of it to a friend ; but as he has nothing to measure it, exeept two
other bottles, one capable of containing 5 and the other 3 pints, how must he manage,
s0 as to put exactly 4 pints into the bottle capable of containing 57

To enable us to resolve this problem we shall call the bottle containing the 8
pints, a; that of 5 pints, B; and that of 3 pints, ¢; supposing that there are 8 pints
of wine in the bottle a, and that the other two are empty, as seen at b, B 5
Having filled the bottle B with wine from the bottle A, in which there
will remain no more than 3 pints, as seen at g, fill the bottle ¢ from s, D
and consequently there will remain only 2 pints in the latter, as seen at =
F: then pour the wine of ¢ into a, which will thus contain 6 pints,as F
seen at G, and pour the two pints of B into ¢, as seen at w.  In the last @
place, having filled the bottle B from the bottle A, in which there will =
remain only 1 pint, as seen at 1, fill up ¢ from B, in which there will re- 1
main 4 pints, as seen at K ; and thus the problem is solved.

‘Remark.—If you are desirous of making the four pints of wine remain in th
hottle a, which we have supposed to be filled with 8 pints, instead of
remaining in the bottle B, fill the bottle ¢ with wine from the bottle a,
in which there will remain only 5 pints, as seen at »; and pour 3 pints
of ¢ into B, which will consequently contain 3 pints, as seen at E:
having then filled ¢ from A, in which there will remain no more than 2
pints, as seen at F; fill up » from ¢, which will thus contain only 1
pint, as seen at ¢. In the last place, having poured the wine of the
bottle B into the bottle A, which will thus have T pints, as seen at u;
pour the pint of wine which is in ¢ into B, consequently the latter
will contain 1 pint, as seen at 1; and then fill up ¢ from 4, in which there
will remain ouly 4 pints, as was proposed, and as seen at K.

A

i = -~ " - v T

e O S D RS
(R =R e e = T T

Aom DO

o = =1 2 B n B O = OO

— s D MRS 2SS oE
oo W

B ==

PROBLEM XXI.

A gentleman has a bottle containing 12 pints of wine, 6 of whick ke is desirous of
giving to a friend ; but as he lkas nothing to measure it, except two ather botties, one
of T pints, and the other of 5, how must he manage, to have the G pints in the bottle

capable of containing T pints ¢

This problem is of the same nature as the preceding, and may be solved in the
like manner. Let T represent the twelve-pint, s the seven-pint, and ¥ the five-pint

bottle. The bottle T is full, and the other two, s and ¥, are empty, 12 7 5
as scen at . Fill the bottle F with wine from T, so that T shall con- T 8 F
tain only 7 pints, as seen at 1; then pour into s the wine containedin < 12 0 0
F, which will remain empty, and the bottle s will contain 5 pints, as 1 y i 1
seen at 1; having filled ¥ from T, the latter will coutain only 2 pints, 1 7 5 0
the bottle s will contain 5, and the bottle F will be full, asseenatx; ® 2 5 3
in the next place fill s from ¥, and 7 will still contain only 2 pints, . 2 7 3
while & contains 7, and ¥ 3, as seen at L; then empty sintoT, and 3 3 0
F into s, by which means T will econtain 9 pints, and 83, Fremaining ¥ 4 7 1
empty, as seen at ar: fill ¥ from T, and pour from F into s as much as o 1{1; El1 3
]

will fill it, so that there will then be 4 pints in 7, 7 pintsin 8, and 1~ p : ]
pint in ¥, as seen at 5: pour the 7 pints from s into T, and the pint contained in ¥
into s, after which T will contain 11 pints, 8 1, and ¥ will be empty, as seen at 0.
In the last place, having filled the five-pint bottle ¥ from the bottle T, and poured
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these 5 pints from ¥ into s, which already contains 1, it will be found that T contains

6 pints, and that s contains 6 also ; so that the desired result has been obtained.

PROGLEM XXII.

To make the knight move into all the squares of the chess board, in sucezssion, without
passing twice over the same.

As the reader perhaps may be unacquainted with the }
movement of the knight at the game of chess, we shall 13 10 | 14
here explain it. The knight being placed in the square y o] 1
A, cannot move into any of those immediately surround- '

e — | —— — | —
|

ing it,as 1,2, 8,4, 5,6, 7, 8; nor into the squares 9, L+ T | 11
10, 11, 12, which are directly above or below, and on = ==
each side of it ; nor into the squares 13, 14, 15, 16, which i 6 | 3 |
are in the diagonals; but only into one of those which, | . 2 | \ 15

in the annexed figure, are empty.

Several eminent men have amused themselves with this problem, such as Mont-
mort, Demoivre, and Mairan, and each of these has given a solution of it. In those
of the two former, the knight is supposed to be placed at first in one of the angnlar
squares of the chess board; in that of the third, he is supposed to begin to move
from one of the four central squares; but in our opinion it was not known, till
within these few years, that placing the knight in any square whatever, he may be
made to traverse the whole chess board, and even in such a manner that, without
returning the same way, he shall pass a second time over the board under the like
conditions. For this last solution we are indebted to M. W , @ captain in the
Kinski regiment of dragoons, in the imperial service.

We shall here give four tables, representing these four solutions, with an explana-
tion and some remarks.

1. M. Montmort. I1. Demoivre.

) 3 [, : { T ! '
1 38 31 | &4 3 46 a0 49 34 40 22 | 11 36 | 30 | 24 1
a2 |25 | 2 |

i 39 | 30 | 42 4 47 21 | 10 i 35 | 50 | 23 | 12 i a7 40

37| & | 33 t oG | 45 6 | 41 | 28 48 | 33 |62 |57 | 38 | 25| 2 | 18

34 | 25 | 36| 7 40 | 27 | 48 3 9 20 | 51 | &5

9!5[! 17 | 56 | 11 | 52 [ 19 (50 | |32 |47 | 58 | 61 | 56 | 53 | 14 | 3

24 | 657 | 10 | 62 | 18 | 49 | 12 | 53 lQi 8

61 | 16 | 50 | 22 | 66 | 14 | 51 | 20 46 | 31

68 (23 | 62 | 15 | 64 | 21 | 54 | 13 7 |1E1
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o3 | 56 ] 51 | 60 | 1 44 'S

II1. M. Mairan. IV. M. Wee—,
25 J| 52 | 41 | g | 27 | 30 | 43 ; 6 38| 9 |24 |2 |52 7 |34]19
10 | 39 | 24 | 57 | 54 | 63 | 28 ‘ 31§ |23 |26 11| 36|50 48| 5 |46

62 10 | 30| 6215 |56 |53)|18] 33

| | e | s e

g0 |11 {38 |55 (58 |61 |32 |45])|27]12]5s5

i

5 | 49 | 60 | 45 | 4

|
61 | 54 | 57 32|1

[

e e || e |

37 | 22 | 59 | 48 19!2 15 | 4 40 | 63 | 50

=]

12 | 49 | 20 | 35 | 14 17|4E!3:* 13 | 28 | 1

e —

1

3l

I
|
i
|
et | |
142 15 | 30 :i\-u

*31|35 13 | 18 | 47 3+i3|16 64 | 41 29 | 2 |43 | 16

Of these four ways of resolving the problem, that of Demoivre is doubtless the
easiest to be remembered ; for the principle of his method consists in filling up, as
much as possible, the two exterior bands, which form as it were a border, and not
entering the third, till there is no other method of moving the knight from the place
where he is, to one of the two first, a rule which in the clearest manner subjects the
movement of the knight to a eertain necessary progress, from his first step to the
50th, and beyond it; for from the cell marked 50 there is no choice in placing him,
except on those marked 51 and 63 ; but the cell 51 being nearer the band, ought to
be preferred, and then the movement must necessarily be through 52, 53, 54, 55, 56,
57, 58, 59, 60, 61. When he arrives at 61, it is a matter of indifference whether he
be placed in the cell marked 64, for he may thence proceed to the last but one 63,
and end at 62 ; or be placed in 62, to proceed to 63, and end at 64. [t may therefore
be said that the movement of the knight in this solution is almost constrained.

The case is not the same with the fourth, which it is difficult to practise in any
other manner than from memory ; but it is attended with one very great advantage,
which is, that you may begin, as already said, at any cell at pleasure ; because the
author took the trouble to bring the knight at the conclusion to a place from which
he can pass into the first. His movement therefore is in some measure circular, and
interminable, by adhering to the condition of not passing twice over the same cell,
till after 64 steps.

It may be readily seen, that to make the knight perform this movement withont
confusion, the cell he has quitted must be marked at each step. For this purpose a
counter may be placed in each cell, and removed as the knight passes over it; or,
what will be still better, a counter may be placed in each cell when he has passed it,

PROBLEM XXIII

To distribute among 3 persons, 21 casks of wine, T of them full, T of them empty, and
T half full, so that each shall have the same quantity of wine, and the same number
of casks.

This problem admits of two solutions, which may be clearly comprehended by
means of the two following tables,

Persons. fnll pasks, emply. half full,
1=t 2 2 o
L. 3 2d 2 2 3
Jd 3 3 1
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Persons. full casks. empty. half full.
1=t 3 3. 1
I1. 3'.’(] 3 3 1
ad 1 1 ]

It is evident that, in these two combinations, each person will bave 7 casks, and
31 casks of wine.
“But it may be easily seen that the whole number of the casks must be divisible by
the number of persons, otherwise the thing required would be 1mpossible.
It will be found, in like manner, that if 24 casks were to be divided among 3 per-
sons, under the same conditions, we should have three different solutions, as follow :

Persons. full casks. empty. halfl full.
Ist 3 3 2
I. < 2d 3 3 2
3 il 2 2 4
Ist 2 2 4
I1. < 2d . 2 4
¢ 3d 4 4 0
1st 1 1 (5
II1. g 2d ] 3 a
24 4 4 0

If there should be 27 casks to be divided, there would be three solutions also :

Persons. full casks. empty. half full.
Ist 3 3 H
L. gﬂd 3 3 3
ad 3 3 3
1st 1 1 '
II. %2& 4 4 1
Sd 4 4 1
1st . £ 5
I1I. 3 24 3 3 3
al 4 4 |

CHAPTER XI.
CONTAINING SOME CURIOUS ARITHMETICAL PROBLEMS,

PROELEM 1.

A gentleman, in his will, gave orders that his property should be divided among his
children in the following manner :— The eldest to take from the whole £1000, and the
Tth part of what remained ; the second £2000, and the Tth part of the remainder ;
the third £3000, and the Tth part of what was lefi ; and so on to the last, always
increasing by L1000,  The children having followed the disposition of the testator, it
was found that they had each got an equal portion : how many children were there,
what was the father’s property, and to how much did the share of each child amount ?

It will be found by analysis, that the father's property was £3G000; that there
were G children, and that the share of each was £6000.

Thus, if the first takes £1000, the remainder of the property will he £33000, the
Tth part of which £5000, together with £1000, makes £6000. The remainder, after
deducting the first child’s portion, is £30000, from whichif the second takes £2000,
the remainder will be £28000, but the Tth part of this sum is £4000, which if added
to the above £2000, will make £6000, and =0 on.
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FROBLEM 1I.

A gentleman meeting a certain number of beggars, und being desirous to distrilute
anong them all the money he had about lim, finds that if he gave sixpence to each he
would have 2s. too little ; but that by giving each a groat, he would have 25, 8d. vver :
hiow many Eruggars were there, and what sum had the gentleman in his pocket ?

There were 28 beggars, and the gentleman had in bis pocket 12 shillings ; for if 28 be
multiplied by 6, the product will be 168, from which if 2 shillings or 24 pence be sub-
tracted, as he wanted 24 pence to be able to give each sixpence, the remainder will
be 144 pence = 12 shillings ; but by giving each of the beggars 4 pence, he had
occasion only for 112 pence, or 4 times 28; consequently he had 32 pence, or 2s. 84.
remaining. g

PROBLEM ITI.

A gentleman purchased for £110. a lot of wine, consisiing of 100 bottles of Durgundy,
and 80 of Champagne ; and another purchased at the same price, for the sum of
£95, 85 bottles of the former, and T0 of the latter : whatwas the price of each kind
of wine ?

It will be found that the Burgundy cost 10s. per bottle, and the Champagne 13s.
as may be easily proved.
FPROBLEM IV.

A gentleman, on his death-bed, gave orders in his will, that if his lady, who was then
preguant, brought forth a son, he should inherit two thirds of his property, and the
widow the other third ; but that if she brought forth a daughter, the mother should
inkerit two thirds, and the daughter one third ; the lady however was delivered of two
children, a boy and a girl, what was the portion of each ¥

The only diffieulty in this problem is to dizcover, in what manner the testator
would have disposed of his property, had he foreseen that his lady would have been
delivered of two children. It has generally been explained in the following manner :
As the testator desired that if his wife brought forth a boy, the latter should have
two thirds of his property, and the mother the other third, it hence follows that his
intention was to give the son a portion double to that of the mother ; and as he gave
orders that in case she brought forth a daughter, the mother was to bave two thirds
of the property, and the daughter the other, there is reason to conclude that he
intended the portion of the mother to be double that of the daughter. Consequently,
to combine these two conditions, the property must be divided in such a manner,
that the son may have twice az much as the mother, and the mother twice as much
as the daughter. If we therefore suppose the property to be £30000, the share of
the son will be £17142§, that of the mother £8571§, and that of the daughter
£42854.

As a supplement to this problem, another is differently proposed. Iu case the
mother should be delivered of two sons and a daughter, in what manner must the pro-
perty be divided ? :

In our opinion, no other answer can be given to tlns question, than what would be
given by the gentlemen of the bar ; that the will, in such a case, would be void; for
a child having been omitted in the will, all the laws with which we are acquainted
would pronounee its nullity : 1st, because the law is precise; and 2d, because it is
impossible to determine what would have been the disposition of the testator, had he
had two sons, or had he foreseen that his wife would be delivered of tweo.

a2
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FROBLEM WV,

A brazen lion, placed in the middle of a reservoir, throws out water from its mouth, its
eyes, and its right foot. When the water flows from its mouth alone, it fills the reservoir
tn 6 hours : from the right eye it fills it in 2 days ; from the left cyein 3, and from the

oot in ¥, Inwhat time will the bason be filled by the water flowing from all these aper-
tures at once ¥

To solve this problem it must be observed, that as the lion, when it throws the
water from its mouth, fills the basou in 6 hours, it can fill } of it in an hour; and
that as it fills it in 2 days when it throws the water from its right eve, it can fill § of
it in an hour. It will be found, in like manner, that it can fill J of it in an hour
when the watér flows from its left eye, and J; when it flows from its foot. By
throwing the waters from all these apertures at once, it furnishesin an hour } 4 L +
#; + d, and these fractions added together are equal to 8.  We must therefore make
the following proportion: IF )y are filled in one hour or G0 minutes, how many
minutes will the whole bason, or 25, require: or as 61 is to 288, so0 is | hour, to the
answer, which will be 4h. 43m. 16§} seconds,

PROBELEM YI.

A mule and an ass travelling together, the ass heyan to compiain that her burthen was
too heavy. ** Lazy animal,” said the mule, * you have little reason to complain ; for
tf Itake one of your bags, I shall have twice as many as you, and if I give you one of
mine we shall then have only an equal number.” With how many bays was each loaded #

This problem, which is one of those commonly proposed to beginnersin Algebra, is
taken from a collection of Greek epigrams, known under the name of the Anthology ;
and has been translated, almost literally, into Latin as follows

Una cum mulo vinum portabat asella,

Atque sun graviter sub pondere pressa gemehbat.
Talibu= at dictis mox inerepat ipse pementem ;
Mater, quid lupes, tenerse de more puelle §
Dupla tuis, si des mensuram, pondera gesto:

At si mensuram aceipins, squalia porto.

Dic mibi mensaras, sapicns geometer, istas {

The analysis of this problem has also been expressed in indifferent Latin verses,
which we shall here give, to gratify the reader’s curiosity.

Unam asina accipiens, amittens mulam et unam

Ei fiant eqoi, certe utrigue ante duolius

Distabant a se. Accipiat si mulus at naam,

Amittatque asing unam, tunc distantia fiet

Luter eos quatvor.  Muli at cum pondera dopla

Sint agina, huic simplex, mulo est distantia dopla.
Ergo habet hee quatuor tantum, mulusgue habet octo,
Unam asing si addas, s reddat mulus et unam,
Mensuras quinque hwe et septem mulus habebunt.

That is: * As the mule and the ass will both have equal burthens when the for-
mer gives one of his measures to the latter, it is evident that the difference between
the measures which they carry is equal to 2. Now if the mule receives one from the
ass, the difference will be 4; but in that case the mule will have double the number
of measures that the ass has; consequently the mule will have & and the ass 4. If
the mule then gives one to the ass, the latter will have 5 and the former 7:" these
were the number of the measures with which each was loaded, and which solve the
problem,

This problem, which might be expressed in a great variety of forms, is not the only
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one furnished by the Greek Anthology. The following are a few more, translated
into the Latin verse by Bachet de Meziriac, who inserted them in a note to one of the
problems of Diophantus,

| -

Anrea mala ferunt Charites, squalia cuigue

Mala insunt calatho: Musarum his obvia turba

Mala petunt, Charites cunetis gqualia donant ;

Tunc &qualia tres contingit habere, novemague :

L¥ie quantum dederint numerus sit ut omnibus idem §
That is: ** The three Graces, carrying each an equal number of oranges, were met
by the nine Muses, who asked for some of them; and each Grace having given to
each Muse the same number, it was then found that they had all equal shares : How
many had the Graces at first ?”

The least number which will answer this problem is 12; for if we suppose that
each Grace gave one to each Muse, the latter would each have three; and there
would remain 3 to each Grace.

The numbers 24, 36, 48, &ec., will also answer the question ; and after the distri-
bution is made, each of the Graces and Musez will have 6, or 9, or 12, &e.

IT.

Die, Heliconiadum decas O sublime Sororum,
Pythagora, tua quot tyrones tecta frequentent,
Qui, sub te, gophie sudant In agone magistro ¥
Dicam ; tagque animo mea dicta, Polycrates, lhaori;
Dimidia hornm pars praeclara mathemata discit,
Quarta immortalem naturam nosso laborat ;
Septima, sed tacite, sedet atque audita revoeivit;
Trea sunt fEeminel sexus.

“ Tell me, illustrious Pythagoras, how many pupils frequent thy school? One
half, replied the philosopher, study mathematics, one fourth natural philosophy, one
seventh observe silence, and there are three females besides,”

The question here is, to find a number, the 1, }, and } of which -~ 3, shall be
equal to that number. It may be easily replied that this number is 28,

L.

e quota nune hora est 1 Superest tantum ecce diei
Quanium bis gemini exacta de luce trientes.

“ A person being asked what o'clock it was, replied, the hours of the day which
remain, are equal to 3 of those elapsed.”

If we divide the day, as the ancients did, into 12 equal portions, the question will
be to divide that number into two such parts, that § of the first may be equal to the
second ; in this case the result will be 5§ for the number of the hours elapsed; and
consequently for the remainder of the day 6§ hours.

1V.

Hic Diephantus habet tumulom, qui tempora vite
[Mius mira denotat arte tibi.

Egit sextautem juvenis, lanuging malas
Yestire hine coepit parte dundecima.

Septante uxori post heee sociatur ¢t anmno
Formosns quinto nascitur inde pucr.

Bomissem @atis postgquam attigit ille paterna,
Infelix subita morte peremptus chit

Quatnor westates genitor lupére superstes
Cogitur, hine annos illius assequere,

“ This is the epitaph of the celebrated mathematician Diophantus. It tells us that
Diophantus passed the sixth part of his life in childhood, and the twelfth part in the
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state of youth ; that after a seventh part of his life and five years more were elapsed,
he had a son, who died when he had attained to half the age of hbis father, and that
the latter survived him only four years.”

To resolve this problem, we must find a number, the 1, 4, }, and } of which - 5
- 4, shall be equal to the number itself. This number is 84.

PROBLEM VIIL

The sum of L5000 having been divided among four persons, it was found that the
shares of the first two amounted to £285; those of the second and third to
£320; those of the third and fourth to £215; and that the share of the first
was to that of the last as 4 o 3. What was the share of eacl ?

The solution of this problem is exceedingly easy. The first bad £160, the second
£125, the third £935, and the fourth £120.

It is to be observed, that without the last-mentioned econdition, or a fourth one ot
some kind or other, the problem would be indeterminate ; that is to say, would be
susceptible of a great many answers: the last condition however limits it to one
only.

FROBLEXM VIII.

A labourer hired himself to a gentleman on the following conditions: for every day
he worked he was to receive 2s. Gd.; but for every day he remained idle le
was to forfeit 1s. 3d. : after 40 days’ service he had to receive £2. 15s. How
many days did he work, and how wany remain idle ?

He worked 28 days of the 40, and remained idle 12.

PROBLEM IX.

A bill of exchange, of £2000 was paid with half-guineas and crowns ; and the
number of the pieces of money amounted to 4700. How many of ecach sort were
employed ?

There were 3000 half guineas and 1700 crowns.
The solution of this and that of the preceding problem are left as exercises for the
young student.

PROBLEM X.

A gentleman, having lost his purse, cowld not tell the exact sum it contained, but
recollected that when he counted the pieces two by two, or three by three, or five
by five, there always remained one; and that when he counted them seven by
seven, there remained nothing. What was the number of pieces in his purse ?

It may be readily seen that, to solve this problem, nothing is necessary but to find
a vumber which when divided by 7 shall leave no remainder; and which when
divided by 2, 3, 5, shall always leave 1. Several methods may be employed for this
purpose ; but the simplest is as follows :

Sinee nothing remains when the pieces are counted seven by seven, the number of
them is evidently some multiple of 7; and since 1 remains when they are counted
two by two, the number must be an odd multiple: it must therefore be some of the
series 7, 21, 35, 49, 63, 77, 91, 105, &-.

This aumber also, when divided by 3, must leave unity ; but in the above series, 7,
49, and 91, which increase arithmetically, their difference being 42, are the only
numbers that have the above property. It appears likewise, that if 91 be divided
by 5, there will remain 1; and we may thence conclude that the first number which
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answers the question is 91 : for it is a multiple of 7, and being divided by 2, 3, or 5,
the remainder is alwys 1.

Several more numbers, which answer this question, may be found by the following
means : continue the above progression, in this manner: 7, 49, 91, 133, 175, 217,
259, 301, until you find another term divisible by 5, that leaves unity; this term
will be 301, and will also answer the conditions of the problem ; but the difference
between 1t and 91 is 210, from which it may be concluded, that if we form the pro-
gression :

91, 301, 511, 721, 931, 1141, &ec.
all these numbers will answer the conditions of the problem also.

It would therefore be still uncertain what money was in the purse, unless the
owner could tell nearly the sum it contained. Thus, for example, if he should say
that there were about 500 pieces in it, we might easily tell him that the number was
Hll.

Liet us now suppose that the owner had said, that when he counted the pieces two
by two there remained 1; that when he counted them three by three there remained
2 four by four, 3; five by five, 4; six by six, 5; and, in the last place, that when
ke counted them seven by seven, nothing remained. @

It is here evident that the number, as before, must be an odd multiple of 7, and
consequently one of the series 7, 21, 35, 49, 63, 77, 91, 105, &¢. But the numbers
35 and 77, of this series, answer the condition of leaving 2 as a remainder when
divided by 3, and their difference is 42. For this reason we must form a new arith-
metical progression, the difference of which is 42, viz.

35, 77, 119, 161, 203, 245, 287, &c.

We must then seek for two ::umhcrs in it, which when divided by 4 shall leave
3 as remainder. Of this kind are the numbers 35, 119, 203, 287; and therefore we
must f::rrm a new progression, the difference of the terms of which is 84.

a5, 119, 203, 287, 371, 455, 539, 623, &ec.
Ia this new progression we must seek for two terms, which when divided by 3,
shall leave 4; and it will be readily seen that these numbers are 119 and 539, the
difference of which is 420, A series of terms therefore which answer all the eon-
ditions of the problem except 1, is

119, 535, 959, 1379, 1790, 221%, 2639, &e.
But the last condition of the problem is, that the required number, when divided
by 6, leaves 5 as remainder., This property belongs to 119, 959, 1799, &ec., always
adding 840; consequently the number sought is one of these in that progression,
For this reason, as soon as we know nearly within what limits it is contained, we
shall be able to determine it.

If the owner therefore of the purse had said, that it contained about 100 pieces,

the number required would be 119; if he had said there were neariy 1000, it would
be 959, &ec.

Remark.— The =olution of this problem, according to the method taught by Oza-
nam, would be imperfect. For after finding the smallezt number which answers the
conditions of the problem, viz. 119, he would merely say, that to obtain the other
numbers which answer them, the numbers 2, 3, 4, 5, 6, 7, ought to be successively
multiplied together, and their product 5040 added to 119, the first number found:
this would give the number 5159, which would answer the proposed conditions uiso,
But it may be readily seen, that there are several other numbers, between 119 and
5159, which answer these conditions, viz. 959, 1799, 2639, 3479, 4319.

In treating of chronology, we shall give the solution of another problem of the
same kind; viz., To find any year of the Julian period, the golden number, cycle of
the sun, and cycle of indiction, for that year, being given.
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PROBLEM XL
A sum of money, placed out at a certain interest, increased in 8 months to £3616.

135, 4d. ; and in two years and a half it amounted to £3937. 10s. What was
the original eapital, and at what rate of inierest was it placed out ?

That young algebraists may have an opportunity of exercising their own ingenuity,
we shall here give the answer only of this problem. By employing the proper
means of analysis, they will find that if r = the interest of one pound for a year, a

the first amount and & the second, that r = ]ﬁ_'f"__:;_!, which, with the given value of
Sa—40

a and b, gives r = Jsth of a pound, or the rate £5. per cent. per annum ; and hence
the eapital is easily found to be £3500.

FROBLEM XII.

Three women went to market to sell egys; the first of whom sold 10, the second
25, and the third 30, all at the same price. As they were returning, they began
to rechon how much money they carried back, and it was found that each had
the same sum. How many eggs did they sell, and at what price?

It iz ewident that, to make what is announced in this problem possible, these women
must have sold their eggs at two different times, and at different prices; for if the
one who had the least number of eggs sold a very small number at the lowest price,
and the remainder at the highest, while the one who bhad the greatest number sold
the greater part at the lowest price, and could sell only a very small number at the
highest, it may be easily seen that they might have got equal sums of money.

The question then is to divide each of the numbers 10, 25, 30, into two such parts,
that if the first part of each be multiplied by the first price, and the second by the
second, the sum of the two products shall be equal.

This problem is indeterminate, and susceptible of ten different solutions. It is, in
the first place, necessary that the difference of the prices of the first and the second
sale shall be an exact divisor of 13, 20, 5, the differences of the three numbers given ;
but the least divisor of these three numbers is 5, and for this reason the prices must
be Gand 1, or T and 2, or 8 and 3, &ec.

It we suppose the two prices to be 6 and 1, we shall have seven different solu-
tions, as seen in the following table ;

Women. 15t sale. 2d sale. Total amomnnt.

1st. 4 eggs at 6d. 6 at 1d. 30

I 3:’.’.’:]. 1 94 30
3d. 0 30 30

1st. b o I3

11. 35&'{!. 2 ' & 35
3d. 1 ) 35

1st, [ 4 _ 40

TI1. - 24d. 3 Lt 40
3d. 2 28 40

1st. 7 3 45

IV, 32{1 4 2] 45
3d. 3 or 45

1st, 8 2 50

Y. - & b 20 S50
3d. 4 L 50

1st, 9 1 55

VI. < 2d. [ 19 55
3d. 5 25 a5

Ist. 10 0 G0

VII. < 2d. T 18 il
3d. 6 24 G0
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If we suppose the two prices to be 7 and 2, we shall have also the three following
solutions :

Women. 1=t sale, 24 sale. Total amount,

1at. 8 eggs at Td. 2 at 2d. ()

I. gﬂd. 2 23 L]
ad. 0 : 40 (i1

Ist. 9 1 65

II. %?ﬂ. 3 2:) i
ail. 1 20 5

1st. 10 0 T0

I11. gﬂﬂ. 4 21 70
ad. 2 28 70

It would be needless to try 8 and 3, or any other number, as no solution could be
obtained from them, for reasons which will be seen hereafter.

Remarks.—We are told by M. de Lagny, in the second part of his ** Arithmetique
Universelle,” p. 456, that this question is susceptible of no more than six solutions ;
but the author is here mistaken, for we have pointed out ten. As it may afford plea-
sure to those who are studying algebra, to be made acquainted with the method em-
ployed for obtaining them, we think it our duty here to give it.
We shall call the price at which the women sold the first time u; and that at
which they sold the second time p.
If x then be the number of the eggs sold by the first woman, at the price u, the
number of those sold at the price p will be 10 — x; the money arizsing from the first
sale will be x u, that of the second will be 10 p — p x, and the sum total will be x u
- 10p — px. If z be the number of eggs sold by the second woman, at the first sale,
we shall have u z for the money arising from the first sale, and 25 p — pz for that
arising from the second, making together zu—425p — p z.
In like manner, if y represent the number of eggs sold, the first time, by the thrd
woman, we shall bave u y for the money arising from the first sale, 30 p — py for
that of the second, and for the total of the two sales uy—+30p — py. But, by
the supposition, these three sums are equal; consequently ru--10p —pr=1zu
+2Bp—pz=uy-+30p— py, from which we obtain the three following new
equations :
st —pr=zu—pz-+1lip
ru—pr=uy—py—+20p
2u—pz=uy—py-—+35p

And dividing the whole by u — p, we have these three others, viz.,

2 5p
.:-_..z—[uu__ =
20
r_y+1::-%
=yt

from which it may be coneluded, that ¥ — p must be a divisor of 15, 20, and 5,
otherwise 2P - i 4 2P
Y¥—p #—p u—

cessary they should be. But the only number which is a divisor of 15, 20, and 5, is
5, which shews that the prices of the two sales could be only 5 and 0, 6 and 1, T and
2, 5and 3, &e.

It may be easily seen, that the supposition of 5 and 0 will not answer the con-
ditions, sinee in that case there would have been only one sale,

We must therefore try the second supposition, 6 and 1, viz. ¥ = 6and p =1, which
gives for the two last equations, s =y -4, z=y-} 1.

, would not be integral numbers, which it is ne-
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But we have here three unknown quantities, and only two equations ; for which
reason one of these unknown quantitics must be assumed at pleasure. Let us take
y, and first suppose it = 0.

This will give r = 4, and z = 1, and we shall have the first solution, which shews
that the first woman sold the first time 4 eggs at G pence each, and consequently,
the second time Gat 1 penny each ; while the second sold 1 the first.time at 6 pence,
and the other 24 at 1 penny each, and the third sold all ber egge at the second price:
they would then all have 30 pence each.

By making 3 = 1, we shall have the zecond solution.

By making y = 2, we shall have the thrd.

By making - = 3, we shall have the fourth.

By making y = 4, we shall have the fifth.

3y making y = 5, we shall have the sixth.

By making y = 6, we shall have the seventh.

We cannot suppose y to be greater than G, because then we should have » = 10;
which is impossible, as the first woman has only 10 eggs to sell.

We must therefore proeeed to the following supposition, viz, ¥« =7, and p = 2,
which gives two equations, r =y -+ 8; z =y 4 2.

If y here be first made = 0, we shall have r = 8, and z = 2, which gives the
eighth solution,

By making y = 1, we shall have the ninth.

By making y = 2, we shall have the tenth.

But y cannot be made greater, for then & would be greater than 10, which is im-
possible.

It would be useless also to try for the values of u and p, 8 and 3 ; for these would
necessarily give to = a value greater than 10, which cannot be the case.

We may therefore rest assured that the problem is susceptible of no more solu-
tions than the ten above-mentioned.

FROBLEM XIII.

To find the number and the ratio of the weights with which any number of pounds,
from unity to a given number, can be weighed in the simplest manner.

Though this problem on the first view seems to belong to mechanies, it may he
readily seen that it is only an arithmetical question: for, to solve it, nothing is ne-
cessary but to find a series of numbers beginning with unity, whieh, added or sub-
tracted from each other in every way possible, shall form all the numbers from unity
to the greatest proposed.

It may be solved two ways ; either by addition alone, or by addition combined with
subtraction. In the first case, the series of weights which answers the problem,
is that of the numbers increasing in double progression; in the second, it is that of
those in the triple progression.

Thus, for example, with weights of 1 pound, 2 pounds, 4 pounds, 8 pounds, and
16 pounds, we can weigh any number of pounds up to 31: for, with 2 and 1 we can
form 3 pounds; with 4 and 1, 5 pounds; with 4 and 2, 6 pounds; with 4, 2, and 1,
7 pounds, &e  With the addition of a weight of 32 pounds, we can weigh as far as
63 pounds; and so on, doubling the last weight, and deducting from that double
unity.

But by employing weights in the triple progression, 1, 3, 9, 27, 81, all weights from
1 pound to 121 can be weighed with them: for, with the second less the first, that
is to say, putting the first into one scale and the second into the other, we can make
2 pounds ; by putting both in the same scale, we can form 4 pounds; by putting 9
on the one side and 3 and 1 on the other, 5 pounds; by 9 on the one side and
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3 on the other, 6 pounds; by 9 a:d 1 on the one side and 3 on the other, 7 pounds ;
and so0 on,

It is here evident that thie last method is the simplest, being that which requires
the least number of different weights.

Both these progressions are more advantageous than any of the arithmetical ones ;
as will appear on trial; for if the increasing arithmetical weights, 1, 2, 8, 4, &c. were
employed, 15 would be necessary to wmgh 120 pounds; to weigh 121 with weights
in the increasing progression 1, 3,5, 7, &e., 11 would be required. No other pro-
gression would make up all the weights possible, from 1 pound to the greatest re-
sulting from the whole of the weights. The triple proportion therefore is the most
convenient of all.

The solution of this problem may be of the greatest utility in commerce, and the
ordinary concerns of life, as it affords the means of weighing any weight whatever
with the least possible number of different weights.

PROBLEM XIV,

A country woman carrying eggs to a garrison, where she had three guards to pass,
sold at the first, half the number she lhad and half an egg more ; at the second,
the half of what remained and half an egg more; and at the third, the half of
the remainder and half an egg more: when she arrived at the market place, she
had three dozen still to sell. How was this possible without breaking any of the eqgs ?

It would appear, on the first view, that this problem is impossible ; for how can
half an egg be sold without breaking any? The possibility of it however will be
evident when it is considered, that by taking the greater half of an odd number, we
take the exact half 4+ }. It will be found therefore that the woman, before she passed
the last guard, had 73 eggs remaining, for by selling 37 of them at that guard, which
is the half - 4, she would have 36 remaining. In like manner, before she came to
the second guard she had 147 ; and before she came to the first, 205.

This problem might be proposed also in a different manner, as follows :

PROBLEM XV.

A gentleman went out with a certain number of guineas, in order to purchase
necessaries af different shops. At the first he expended half his quineas and
half a guinea more ; at the second, half the remainder and half a guinea more ;
and so at the third. When he returned he found that he had laid out all his
money, without having received any change. How was this possible ?

He had 7 guinew, and at the first shop expended 4, at the second 2, and at the
third 1; for 4 is the half of 7 and } more; the rcmumtler being 3, its bAlf is 14, and
# more makes 2; but 2 taken from 3 leaves 1, the half of which is 4, and § makes
1; consequently nothing more remains.

,Remarﬁe.—lf the number of places at which the gentleman expended all his money
were greater, nothing would be necessary but to raise 2 to such a power, that the
exponent should be equal to the number of places, and to diminish it by unity.
Thus, if there were 4, as the fourth power of 2 is 16, the required number would be

5; if there were 5, the fifth power of 2 being 32, the required number would be 31.

PROELEM XVI.

Three persons have each such a number of crowns, that if the first gives to the
other two as many as they each have ; and if the second and third do the same ;
they will then all have an equal number, namely 8. How many has each ?

The first has 13, the second 7, and the third 4; as may be easily proved, by dis-
tributing the crowns of each as announced in the problem.
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PROBLEM XVII.

A wine merchant who has only two sorts of wine, one of which he sells at 10s.,
and the other at 5s. per bottle, being asked for some at 8s. per bottle, wishes to
Lnow how many bottles of each kind he must wmiz together, to form wine worth
Bs. per Dottle ?

The difference between the highest price, 10s., and the mean price required, is 2;
and that between the mean price and the lowest is3; which shews that he must take
3 bottles of the wine at the highest price, and two of that at the lowest. This mix-
ture will form 5 bottles, worth 8s. each.

. In problems of this kind, in general, as the difference between the highest price
and the mean price, is to the difference between the mean price and the lowest, so is
the number of measures at the lowest price, to that of those at the highest, which
must be mixed together to have a similar measure at the mean price.

PROBLEM XYIIIL

A gentleman is desirous of sinking £100,000, which together with the intercst is to
hecome extinct at the end of 20 years, on condition of receiving a cerfain annuily
during that time. What sum must the gentleman receive annually, supposing in-
terest to be at the rate of fire per cent.?

The sum which the gentleman ought to receive annnally is £8014. 19s. 2d, 1-7/.

If the number of years were emall, for example 5, this problem might be resolved,
without algebra, by the retrograde method, and false position ; for if we suppose the
sum, which at the last year exhausts the capital and interest, to be £10.000, we shall
find that the capital alone at the commencement of that year was £952313 ; and if
we add the £10,000, which were paid at the end of the year preceding the last, the
sum, £195231F, will be the capital increased with the interest of the 4th year; con-
sequently the eapital at the beginning of that year was only £185944f; whence it
follows, that before the payment, at the end of the third year, the sum was £38504 4%,
which represented the capital inereased with the interest of the third year. By
thus going back to the commencement of the first year, the original capital will be
found to be £4320. 15s. 4d. We must then make the following proportion: As
this capital is to the supposed sum of £10000, so is the sum to be suuk, on the
above conditions, to the annuity, or sum to be received every year.

But it may be readily perceived, that in the case of 20 or 30 years, this method
would require very long calculations, which are greatly shortened by algebra.*

PROBRLEM XIX,

What is the interest with which any capital whatever would be increased, at the
end of a year, if the interest due at every instant of the year were itself to be-
come capital and fo bear interest?

This problem, to be well understood, has need of explanation. A person might
place out his money under this condition, that the interest due at the end of a month,
which at the interest of 5 per cent. would make a 60th of the capital, should be added
to the capital, and bear interest the following month at the same rate; that at the

* If @ be the capital; m the interest, lam.d n the number of vears ; the annuity or sum to be re-
ax(l+ EJ‘ %

eeived every year, will be T ,1.}“—- “'- which in the case of 20 years, and allowing in-
i 205834

terest to be at 5 per eont., ( being thea == 20) will be found == a x 33 1680
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expiration of this month, the interest of the above sum, which would be a 60th -J-
wi of the original eapital, should be still added to the ecapital, increased by the in-
terest of the first month, and bear interest the following month, and so on to the end
of the year.

What is done here in regard to a month, might be done in regard to a day, an hour,
a minute, or even a second, which may be considered as a part of the day infinitely
small : the gquestion then is to know, what in this case would be the interest pro-
duced by the eapital at the end of the year, the interest of the first second being at
the rate of five per cent. or Jyth.

It might be supposed, on the first view, that this compound and super-compound
interest would greatly increase the 5 per cent.. and yet it will be found that it pro-
duces an increase scarcely sensible ; for if the capital be 1, the same eapital inerensed
with simple interest, at five per cent., will be 1 4 &, or 1 4 &, and when in-
creased with the interest accumulated every second, it will be 148, or rather, when

BT
expressed more exactly, 12897,

PROBLEM XX.

A dishonest butler, every time he went into his master’s cellar, stole a pint from a
particular cask, which contained 100 pints, and supplied its place by an equal
quantity of water. At the end of 30 days, the theft being discovered, the butler
was discharged. Of what quantity of wine did he rob his master, and how much
remained in the cask?

It may be readily seen that the quantity of wine which the butler stole did not
amount to 30 pints ; for the second time that he drew a pint from the cask, taking
the hundredth part of what it contained, it had already in it a pint of water, and as
he each day substituted for the liquor he stole a pint of water, he every day took
less than a pint of wine. To resolve, therefore, the problem, nothing is necessary
but to determine in what progression the wine which he every day stole decreased.

For this purpose, we must first observe, that after the first pint of wine was drawn,
there remained in the eask no more than 99 pints. and the pint of water which had
been added. When a pint therefore was drawn from the mixture, it was only §f of
a pint of wine; but before the pint was drawn, the cask contained 99 pints of wine;
consequently, after it was drawn, there remained 99 pints — i, that is to say 4, or
98 pints 4+ ¢Jz. When the third pint was drawn, the wine contained in it would
be only i -+ =L, which being taken from the quantity of wine in the cask, viz
98 pints, would leave 1952 or 9T pints |- 208

It. must here be remarked, that 4 is the square of 99 divided by 100 and that
.Eliﬁ is the cube of 99 divided by the square of 100, and =0 ¢n; consequently, when
the second pint is drawn, the wine remaining will be the square of 99 divided by the
first power of 100; after the third, it will be the cube of 99 divided by the square
of 100, &c. Whenece it follows, that after the 30th pint is drawn, the quantity of
wine remaining will be the 30th power of 99 divided by the 29th power of 100.
But it may be found, by logarithms, that this quantity is 73{, consequently the
quantity of wine stolen is 26. 3.*

* I the nsnal method of calenlation were employed, it wounld be neceesary to find the 30th power
90, which would contain not less than 59 fipures, and to divide it by unity followed by 58 ciphers ;
whereas if logarithms be used, pothing is vecessary but to multiply the logarithm of 80 by 30, which
will give SOS86O05G0, and to sobtract th privduct of the legarithm of 100 IHLI|ti]‘.I-|il.‘w|. I‘J'j" ?ﬂ,whit‘h
is 580000000, The remaindoer, 15600560, i3 the logarithm of the required quantity ; which, ia the

tables, will be found 1o be nearly T3{j5
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PROBLEM XXI.

A and B can perform a certain piece of work in 8 days, A and C ean do it in 9
days, and B and C in 10 days ; how many days will each of them require to per-
form the same work, when they labour separately?

A will perform it in 143} days; B in 17§ days; and C in 23]; days.

PROBLEM XXII.

An Englishman owes a Frenchman £1. 11s. ; but has no other money to pay his
debt than seven slallings pieces, and the Ir Mc&mm! has only French crowns, valved
at five shillings. How many seven shillings pieces must the Englishman give to
the Frenchman, and how many crowns must the latter give to the jormer, that
the difference shall be equal to 31 shillings in fovowr of the Frenchman, $cr that
the debt may be paid?

The simplest numbers that answer this question, are 8 seven shillings pieces, and 5
erowns : for 8 seven shillings pieces make 56 shillings, and & erowns make 25; con-
sequently their difference, of which the Frenchman has the advantage i in this kind of
exchange, is 3i shillings.

This problem is susceptible of an infinite number of solutions; for it will be found
that the same result may be obtained with 13 seven shillings pieces and 12 crowns ;
18 seven shillings pieces and 19 crowns; always inereasing the number of seven shil-
lings pieces by 3, and that of the erowns by 7.

Remark.—For the sake of young algebraists, we shall here give the analytical
zolution of this problem. Let z represent the number of the seven shillings pieces,
and y that of the crowns; 7z then will be the sum given by the Englishman, and
that given by the Frenchman willbe=35y. But as the difference of these two sums
must be equal to 31, we shall have 7x — 5y = 31 shillings; consequently 7x = 31

+ 5y, andr= m 4 —I—:i + Y shillings. But z is a whole number, and 4

being one also, +'J~'r must be a whole number, and three times that quantity,
T
which is 2 +Tm~"" 142y 4 __+ ¥, must also be a whole number. Consequently

2 + ¥ must be & whole number. l‘ut it equal to 4 then y =T u — 2, and x, which

is eqlal to A “1{55" =5u+438 Ifu=1theny=5andx=8 Ifu= 2, then
y=12, and r = 13. If u = 3, then y = 19, and x = 18, &e,

CHAPTER XIIL

OF MAGIC SQUARES.

Tae name Magic Square, is given to a square divided into several other small
equal squares or cells, filled up with the terms of any progression of numbers, but
generally an arithmetical one, in such a manner, that those in each band, whether
horizontal, or vertical, or diagonal, shall always form the same sum,
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There ate also squares in which the product of all the terms in each horizental, or
vertical, or diagonal band, is always the same. We shall speak of these also, but
in a cursory manner, because they are attended with as little difficulty as the
former.

These squares have been called magic squares, because the ancients aseribed to
them great virtues; and beeause this disposition of numbers formed the bases and
principle of many of their talismans,

According to this idea, a square of one cell, filled np with unity, was the symbol
of the deity, on account of the unity and immutability of God; for theyv remarked
that this square was by its nature unique and immutable ; the product of unity by
itself being always unity.

The square of the root 2 was the symbol of imperfect matter, both on account of
the four elements, and of the impossibility of arranging this square magically, as will
be shewn hereafter.

A square of 9 cells was assigned or consecrated to Saturn; that of 16 to Jupiter;
that of 23 to Mars; that of 36 to the Sun; that of 49 to Venus; that of 64 to Mer-
cury ; and that of 81, or nine on each side, to the Moon.

Those who can find any relation between the planets and such an arrangement of
pumbers, must no doubt have minds strongly tinetured with superstition; but such
was the tone of the mysterious philosophy of Jamblichus, Porphyry, and their dis-
ciples. Modern mathematicians, while they amuse themselves with these arrange-
ments, which require a pretty extenzive knowledge of combination, attach to them
no more importance than they really deserve.

Magic squares are divided into even and odd. The former are those the roots of
which are even numbers, as 2, 4, 6, 8, &c. ; the latter. of tliose the roots of which
are odd, and which, by a necessary consequence, Lave an odd number of cells; such
are the squares ot 3, 5, 7, 9, &c. As the arrangement of the latter is much easier
than that of the former, we shall first treat of them.

BECTION 1.
Of Odd Magic Squares.

There are several rules for the construction of these squares; but, in our opinion,
the simplest and most convenient, is that which, according to M. de la Loubere, is
employed by the Indians of Surat, among whom magic squares seem to be held in as
much estimation as they were formerly among the ancient visionaries before men-
tioned. ; '

We shall here suppose an odd square, the root of which is 5, and that it is
required to fill it up with the first 25 of the natural numbers, In this case, begin
by placing unity in the middle cell of the horizontal

i

band at the top; then proceed from left to right, as- S T e

cending diagonally, and when you go beyond the square, | | .

transport the next number 2 to the lowest cell of that l T | i i 16
% 1 f - 5

vertical band to which it belongs ; set3 in the next cell,

ascending diagonally from left to right, and as 4 would | 4 | 6
go beyond the square, transport it to the most distant

|1:51-m|&:2|-
cell of the horizontal band to which it belongs; set 5in | 10 | 12 ‘ 19 | 21 | 3

|

|

the next cell, ascending diagonally from left to right,
and as the following cell, where 6 would fall, is already
occupied by 1, place 6 immediately below 5; place 7 and :
8 in the two next cells, ascending diagonally, as seen in the figure; and then, in
consequence of the first rule of transpBsition, set 9 at the bottom of the last vertical
band ; then 10, in consequence of the second, in the last cell on the left of the sm_rmlil
horizontal band ; then 11 below it, according to the third rule: after which continue

II|!B 25| 2 | 9

o
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to fill up the diagonal with the wumbers 12, 13, 14, 15; and as you can ascend no
farther, place the following number 16 below 15; if you then proceed in the same
manner, the remaining cells of the square may be filled up without any difficulty, as
geen in the above fizure.

The following are the squares of 3 and 7 filled up by the same method ; and as these
examples will be sufficient to exercise such of our readers as have a taste for amuse-
ments of this kind, we shall procesd to a few general remarks on the properties of a
gquare arranged according to this prineiple.

30 |39 |48 | 1 |10 19

|
a8 (47| 7 | 9 mlz;!ﬂg
Eillﬁ| 46| 6 | 8 _l;_-z'{:.-r:;j?_
al|s |7 5 | 14|16 25|34 | 36 | 45
1 gi2| 13 | 15 | 24 | 33 a2 44| 4

e —

21 |23 |32 |41 | 48| 3 |12

|
1

22 3]-F

40 | 489 2 11 | 20

1st. According to this disposition, the most regular of all, the middle number of
the progression occupies the centre, as 5 in the square of 9 cells, 13 in that of 25,
and 25 in that of 49; but this is not necessary in the arrangement of all magie
squares.

2d. In each of the diagonals, the numbers which occupy the cells equally distant
from the centre, are double that in the centre: thus 30 - 20 = 47 +3=281 22
= 24 4 20, &c., are double the central number 25,

3d. The case is the same with the cells centrally opposite, that is to say, those
similarly situated in regard to the centre, but in opposite directions both laterally
and perpendicularly: thus3l and 19 are eells centrally opposite, and the case iz the
same in regard to 48 and 2, 13 and 37, 14 and 36, 32 and 18. DBut it happens
that, according to this magic arrangement, those cells opposite in this manner, are
always double the central number, being equal to 50, as may be easily proved.

4th. It may be readily seen, that it is not necessary that the progression to be
arranged magically, should be that of the natural numbers 1, 2, 8, 4, &e.: any
arithmetical progression whatever, 3, 6, 9, 12, &e., or 4, T, 10, 13, 16, &c., may be
arranged in the same manner.,

5th. Nor is it neceszary that the progression should be continued: it may be
disjunct, and the rule isas follows. If the numbers of
the progression, arranged according to their natural

order in the cells of the square, exhibit in every direc- | 1 | R e G
tion, vertical and horizontal, an arthmetical progres- . | 5 _-g _1:1_ !
sion, they are susceptible of being arranged magically | | :__ .

take, for example, the series of numbers 1, 2, 3, 4, 5; -
1,8, 9,10, 11; 13, 14, 15, 16, 17; 19, 20, 21,23, 93. | 19| 20
25, 26, 27, 28, 29: as these, when arranged in the cells |
of a square, every where exhibit an arithmetical pro-
gression, they may be arranged magically; and indeed,
according to the above rule, they may be formed into the annexed magic square.
Moseopulus, a modern Greek author, and Bachet have also invented magic
squares. But their methods are inferior Lo one contrived by M. Poignard, and im-

I
_ I

" in the same square, and by the same process. Letus | 13 [ 14 | 15 | 16 | 17
|

21 | 23 | 23

25{25]21‘:23 29
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proved by M. de la Hire. Of this method we now proceed to give a short
account.

Let it be required to fill up a square having an odd root, such as 5. Having con-
structed the square of cells, place in the first horizontal row at the top, the five
first numbers of the natural progression, in any order, at
pleasure, which we shall here suppose to be 1,3, 5, 2,
4; then make choice of a number, which is prime to the | [ (S A
root 5, and which -when diminished by unity does not
measure it: let this number be 3; and for that reason
begin with the third figure of the series, and ecount | 4 | y | 3 | 5 | o
from it to fill up the second horizontal band 5, 2, 4, -
1, 3; then begin again by the next third figure, inelud- 3{5]|2|4]|n
ing the 5, thatis to say by 4, which will give for the
third band 4, 1, 3, 5, 2; by following the same process, : !
we shall then have the series of numbers 3, 5, 2, 4, 1,
to fill up the fourth band: continue in this manner, always beginning at the third
figure, the preceding included, until the whole square is filled up. This square will
be one of the components of the required square, and will be magic; for the sum of
each band, whether horizontal, or vertical, or diagonal, is the same, as the five num-
bers of the progression are contained in each without the same figure being ever
repeated.

Now construct a second geometrical square of 25 =
cells, in the first band of which inscribe the multiples | 0 | 15| 10 | 20
of the root 5, beginning with a cipher, viz. 0, 5, 10,
15, 20, and in any order at pleasure, such for example
as 3, 0, 13, 10, 20: then fill up the square according to o | 15| 10 | 20 | 5
the same principle as before, taking care not to assume |___
the same number in the series always to begin with. | 20| 5 | 0 | 15 | 10
Thus, for example, as in the former square, the third ——— ==
figure in the series was taken. in the present one the el B Sl I
fourth must be assumed; and thus we shall have a '
gquare of the multiples, as seen in the annexed figure. This is the second compo-
nent of the required magic square, and is itself magie, since the sum of each band in
every direction is the same.

L+

10 | 20 5 0 13

Now to obtain the magic square required, nothing is | 6 | 3 | 20 | 12 | 24
necessary but to inscribe, in a third square of 25 cells, ' |
the sum of the numbers found in the corresponding |13 | 22| 9 | 1 |18
cells of the preceding two; for example 541, or 6, in ™ l 16 | 13 |
the first on the left, at the top of the required square; ' |
0 + 3, or 3 in the second, and so on ; by these means we | 23 | 10 | 2 l 19 | 11
shall have the annexed square of 25 cells, which will

necessarily be magice,

By these means, any of the numbers may be made to | 2 | 1 | 3 e
fall in any cells at pleasure; for example 1 in the central -
cell ; nothing is necessary for this purpose, but to fill 3 | ¢ | %
up the middle band with the series of numbers in such 3 1
a manner that 1 may be in the centre, as seen in the i
annexed figure ; and then to fill up the rest of the square T e 1 5 EJ
according to the above principles, begiuning at the —
highest band, when the lowest has been filled up. P B | 3

H




03 ARITHMETIC.

To form the second square, place a eipher in the
centre, as seen in the annexed figure, and fill up the
remaining cells in the same manner as before, taking s 1ol o |15 I 20
care not to assume the same quantities as in the former ] L
for beginning the bands. 15 120 | &6 |10 ]| O

E{IIE 1k ﬂllﬁ—[

16 | 20 5!10

10 L] 15 | 20 | 3

22| 6 |13 | 4 | 20
In the last place, form a third square by adding to- = P [ R -;l"
gether the numbers in the similar cells, and you will _ml_____L-__’__ S

have the annexed square, where 1 will necessarily | 14 | 12 | | 18 | 24

occupy the centre. T
16 | 23 | 9 | 15| 2

24

Lag |21t e

Remarks.—I. We must here obszerve, that when the number of the root is not
prime ; that is, if it be 9, 15, 21, &e., it is impossible to avoid a repetition of some
of the numbers, at least in one of the diagonals; but in that case it must be ar-
ranged in such a manner, that the number repeated in that diagonal shall be the
middle one of the progression; for example 5, if the root of the square be 9; 8
if it be 15 ; and as the square formed of the multiples will be liable to the same
accident, care must be taken, in filling them up, that the opposite diagonal shall
contain the mean multiple between 0 and the greatest; for example 36 if the root
be 9; 105 if it be 13.

II. The same thing may be done also in squares which have a prime number
for their root. By way of example we shall here form a magic square of the first
two of the following ones:

1 2 3
i el 1 al s R T T 11\z|1u 19 | 23
B R R 20|10 0| 5 15 | 22'1514—5_ 16
e | ) o 0|5 : 20:E+|13 v 40
P 3_1_2.5 5 wlzu.min] 9 |18 | m ;z-r.a
S I s (5 | 15 aﬂ|| |l 3 | “'-" _25—1_1-1—

in the first of which 3 is repeated in the diagonal descending from right to left,
and in the second 10 is repeated in the diagonal descending from left to right.
This however does not prevent the third square, formed by their addition, from
being magic.
SECTION II.
Of Even Magic Squares.

The construction of these squares iz attended with more difficulty than that of
the odd squares, and the degree of difficulty is different, according as they are
evenly even, or oddly even: for this reason we must divide them into two
classes.
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Squares evenly even, are those the root of which when halved is even, or ean
be divided by 4 without remainder; of this kind are the squares of 4, 8, 12, &e.
The oddly even are those the root of which when halved gives an odd number ;
as those of 6, 10, 14, &«.

As the ancients have left us no general rule on this subject, but only some
examples of even squares magically arranged, we shall here give the best methods
invented by the moderns, and shall begin with squares evenly even.

Let us suppose then that the annexed square A ncn is
to be filled up magically, with the first 16 of the natural
numbers : fill up first the two diagonals; and for that 1 !
purpose begin to count the natural numbers, in order, |
1,2, 3, 4, &c., on the cells of the first horizontal band 6 | 7 |
from left to right ; then proceed to the second band, and e

A 1
when you come to the cells belonging to the dingonals, in- ! ‘
D

4

scribe the numbers counted as you fall upon them; by 13 16
which means you will have the arrangement repre-
sented in the annexed figure,

When the diagonals have been thus filled, to fill up the cells which remain
vacant, begin to count the same numbers, proceeding from the angle » in the
cells of the lower band, going from right to left, and :
then in the next above it; and when any cells are found |
empty, fill them up with the numbers that belong to |
them ; in this manner you will have the square 16 l_
filled up magically, as seen in the annexed figure, 8 BT BT
and the sum of each band and each diagonal will be
34.

L

1 16| 14 4

12 | 6 7 g

13 3 2 16

Rule for Squares evenly even.

Having given, according to M. de la Hire, a very general rule for odd squares,
which is eapable of producing a great number of variations, we shall do the same in
regard to even squares; especially as it will equally serve for evenly even and oddly
even magic squares. It is as follows :

Let it be required, for example, to fill up magieally a square of 8 cells on each
side.

For thiz purpose, arrange, in the first = ;
horizontal band in a square of that kind, : e I o __li_ i e
the first eight numbers of the arithmetical g8 | 5 | 4 | " al s | & 1
progression, but in such a manner, that |—— ,
those equally distant from the middle
ghall form the same sum ; viz. that of the
root augmented by unity, which in this , _
case is 9; the second band must be the g8 | & | & | 2|5 | 6 1
inverse of the first; the third must be
like the first ; the fourth like the second, 1 6 5 2 £ | 3 8
and so on alternately, till the half of the o [ .
square is filled up ; after which the other
half may be formed by merely reversing iofhe U d g iy 1 a1 's
the first, as may be seen in the above [
figure. This will be the first primitive square.

To form the second, fill it up according to the same principle with the multiples
of the root, beginning with 0, that is to =say, 0, 8, 16, 24, 32, 40, 48, 56 ; taking care
that the extremes shall always make 56, but instead of arranging these numbers in a

horizontal direction, they must he arranged vertieally, as in the following figure,
u 2

=1
(]

L
=
—

l <]
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as | 8 |48 | 8 i g |48 | 8 | 48 49 |12 (83| 10] 15| 52| 12| 56
16 | 40 | 16 | 40 | 40 | 16 40 | 16 24 |43 | 20 | a7 | a2 | 21 | 46 | 17
B2 | 24 |32 | 24 | 24| 32 | 24 -;;r 33 |30 | 37 | 26 | 31 | 36 F;;*i 40
o |56 | 0 | 56 _,EE 0 _5-13- 0 8 | 59| 4 63|58 5 |62 2
56 L a6 L] 0 a6 i _Ciﬁ— 64 3 G0 7 2 G1 G a7
24 | 32 | 24 | 32 | 32 | 24 | 32 | 24 25 | 38 | 29 | 34 | 39 | 28 | 35 | 32
20 | 16 | %0 | 16 | 16 | 40 | 16 | 40| |48 | 19 | 42 | 23 | 12 [ 45| 22 |
= e Pl e B e e 9 | 54|13 ] 50 | 85 | 12 -!;T 16

When this is done, add together the similar cells of the two squares, and you will
have a square of 8 on each side, as in the last figure above.

Without enlarging farther on squares evenly even, we shall give the simplest me-
thod of constructing squares oddly even.

Method for Squares oddly even. I [

We shall take, by way of example, the square :
of the root 6. To fill it up, inseribe in it the first
six numbers of the arithmetical progression, 1, 2, 5 |. N T 1 9
3, &c., according to the above method; which '
will give the first primitive square, as in the an- E |6 & | &1 4%
nexed figure.

=
&
-]
s
-
.

o4 | 6 |24 | 24 | 6 | 24
The second must be formed by filling up the |

cells in a vertical direction, according to the same 0 |[30| 0] o |30] 0
principle, with the multiples of the root, begin-
ning at 0, viz. 0, 6, 12, 18, 24, 30, 13 y 18

18 | 12| 18 | 18 | 12 | 1B

12 |12 |[.18 | 12

30 0 30

A -

The similar cells of the two squares if then

added, will form a third square, which will re- | , | 3; l 4| 3 | 36 | 5
quire only a few corrections to be magic. This ; |
third square is as here annexed. 17 | 24 | 15 | 16 | 19 | 14

a2 | 1 | 3¢ | a3 6‘35

11 (30 | 9 lnj25-3|
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To render the square magie, leaving the corners fixed, transpose the other numbers
of the upper horizontal band, and of the first vertical one on the left, by reversing
all the remainder of the band; writing 7, 28, 27, 12, instead of 12, 27, &e., and in
the vertical one, 32, 23, 17, and 2, from the top downwards, instead of 2, 17, &c.

It will be necessary alsc to exchange the num- |
bers in the two cells of the middle of the second
horizontal I!ami at the top, of the lowest of the 32 31| 3| 4 |36 5
geconid vertical band on the left. and of the last
on the right. The numbers inthecells aand 3 | 23 | 18 | 15 | 16 | 19 | 20
must also be exchanged, as well as those 1in ¢ and
p; by which means we shall have the square
corrected and magically arranged, o R | 6| ss

29 | 7 | 28| 9 | 12| 26 |

14 | 24 | 21 22|13 17

11 | 25 | 10 | 2% l 30 8
!

SECTION III.
Of Magie Squares with Borders.

Modern arithmeticians have added a new difficulty to the subject of magie squares,
by propesing not only to arrange magically in a square a progression of num-
bers, but by requiring that this square, when lessened by a band on each side, or two
or three bands, &c., shall still remain magic; or a magic square being given, to add
to it a border of one or more bands, in such a manner, that the enlarged square thence
resulting shall be still magie.

To give an example of this construetion, let it be required to form a magic =quare
of the root 6, and to fill it up with the natural numbers, from 1 to 3G6. The first
even magic square possible being that of 4 on each side, we shall first arrange it
magically, filling it up with the mean terms of the progression, to the number 16,
and reserving the first and the last 10 for the border. For the interior square there-
fore we shall take the numbers 11, 12, &e., as far as 26 inclusively, and shall give
them any magie disposition whatever : there will then remain the numbers 1, 2, &e.,
as far as 10, and 27 az far a= 36, for the horder,

To dispose these numbers in the border, first _____ - Sl
place the numbers 1, 6, 31, 36, in the four corners, 1 | 35 | 34 ! . | 30 | 6
and in such a manner that diagonally they shall ' | :
make 37. As cach band must make 111, it will be | 33 | 11 | 25 1 24 } 14 ] 4
necessary to place in the first band four such num- et
bers,that their sum shall be 104 ; and as their com-
plements to 37 must be found in the lowest, where 8 |18 | 20 | 21 | 15 | 20
there is already 67, it will be necessary that they .
should together make 44: there are several com- 10 | 23 | 13 ! 12 | 26 | 27
binations of these numbers, four and four, which
can make 10}, and their complements 44; but it L = | i I 36
is necessary at the same time that four of those re-
maining should make 79, to fill up the first vertical band, while their complements
make 69 to complete the last. This double condition limits the combination to
85, 34, 30, 5, which may be placed in the first band in any order whatever, provided
their complements be placed below each of them in the last band ; and the four
numbers requisite to fill up the first vertical band will be 33, 28, 10, 8, which may
be arranged any how at pleasure, provided the complement of each be placed oppo-
site to it in the corresponding cell on the other side.

28§ 22 | 16 | 17 | 19 1]
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It is not absolutely necessary that 1, 6, 31, 36
should be placed in the four corners of the square: 2 | 36 J 31
if we suppose them to be filled up, in the same
order, with 2, 7, 30, 33, it would be then neces-
gary that the four first numbers should make 102, | .5 192 | 15 | 17 | 19
and their complements 46, while the four last
make 79, and their complements 69 : but it is o9 J18 | 20 | 21 | 15 | 28
found that the first four numbers are 36, 31, 27,
&, and the second 34, 32, 9, 4. The first being
arranged any }m\'&r in the four empty cells of the e £ i lasas
first band, and their complements below, the second
must be arranged in the cells of the first vertical
band, and their complements each at the extremity of the same horizontal band ;
by which means we shall have the new square with a border, as seen above.

If it were required to form a bordered square of the root 8; it would be neces-
sary to reserve for the interior square of 36 cells, the 36 mean numbers of the
progression ; and they might be formed into a bordered square around the magic
square of 16 cells; with the 28 remaining numbers, we might then form a border
to the square of 306 cells, &e.

Henee it appears, in what manner we might form a magie square, which when
successively lessened by one, two, or three bands, shall still remain magie.

fﬂ|3 7

34 § 11 | 25 | 24 ili 3

=

4 |23 |13]|12)|26] 33

SECTION 1V,
Of another kind of Muagic Square in Compartments.

Another property, of which most magic squares are susceptible, is, that they
are not only magic when entire, but that when divided into those squares into
which they can be resolved, these portions of the original square are themselves
magic. A square of 8 cells on a side, for example, formed of four squares, each
having 4 for its root, being proposed, it is required that not only the square of
64 shall be disposed magically, but each of those of 16, and that the latter even,
however arranged, shall still eompose a magic square,

What is here required, is easy; and this is even the simplest method of all
for constructing squares that are evenly even, as will appear from what follows,

To construct a square of G4, in this manner, take the first 8 numbers of the
natural progression, from 1 to 64, and the 8 last, and arrange them magically in a
square of 16 cells; do the same thing with the 8 terms which follow, the first 8 and
the 8 which precede the last 8, and by
these means you will Il]E.l.'F[', o, ageondil - T e el S [
magic square; form a similar square of ¥
the 8 following numbers with their cor- | 60 | 6 7 |67 052! 14|15 4o
responding ones, and another with the )
16 means : the result will be four squares | B 16 | 50 | 51 | 13
of 16 cells, the numbers in wh?ch wi]l R ] i) e (| s —m— =
be equal when added together, either in
bands or diagonally 3 for they will every | 4o | 4y i e B e R
where be 130. It is therefore evident, |
that if these squares be arranged side by | 44 | a2 | 23 |41 ] 36 | 30 | a1 | a3
gide, in any order whatever, the square
resulting from them will be magie, and
the sum in every direction will be 260. | .. I .1 5| 45 1 57 o

on
(41 ]

on
(4]
w
&
L=
[}

24 | 42 | 43 | 21 | 32 | 34 | 35 | 29

40

)
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BECTION V.
Of the Variations of Magic Squares.

The square having 3 for its root is suceptible of no variation: whatever method
may be employed, or whatever arrangement may be given to the numbers of the
progression from 1 to D, the same square will always arise, except that it will be
inverted, or turned from left to right, which is not a variation. But this is not
the case with the square having 4 for its root, or that of 16 cells: this being sus-
ceptible of at least 830 variations, which M. Frenicle has given in his Treatise on
Magic Squares.

The square of 5 is susceptible of, at least, 57600 different combinations; for
according to the process of M. de la Hire, the 5 first numbers may be arranged
120 different ways in the first band of the first primitive square ; and as they may
be afterwards arranged in the lower bands, beginning again by two different quan-
tities, this will make 240 variations, at least, in the primitive square ; which, com-
bined with the 240 of the second, form 57600 variations in the square of 5. But
there are doubtless a great many more, for a bordered square of 5 cannot be
reduced to the method of M. de la Hire; but one bordered square of 5, the
corners remaining fixed, as well as the interior square of 3, may experience 36
variations. What a number therefore of other variations must be produced by
changing the interior square and the angles!

A bordered square of 6, when once constructed, the corners remaining fixed, and
the interior square being composed of the same numbers, may be varied 4055040
different ways ; for the interior square may be varied and differently transposed in
the centre 7040 ways: each of the horizontal bands at top and at bottom, the ex-
tremities remaining fixed, may be varied 24 ways; for there are four pairs of num-
bers susceptible of changing their place, which may be combined 24 ways; and
there are also four pairs in the vertical bands between the corners. The number
of the combinations, therefore, is the product of 7040 by 576, the square of 24, which
gives 4055040 variations. But the corners may be varied, as well as the numbers
assumed to form the interior square; and it hence follows, that the wnole number
of the variations of a square of 6, while it still remains bordered, is equal to several
millions of times the former.

The square of 7, by M. de la Hire's method alone, may be varied 406425600 dif-
ferent ways.

These variations, however numerous, ought to excite no surprise; for the number
of dispositions, magie or not magic, of 49 numbers, for example, forms one of 62
figures, of which the preceding is, as we may say, but a part infinitely small.

SECTION VI.

Of Geometrical Magic Squares.

We have already observed, in the beginning of this chapter, that numbers in geo-
metrical progression might be arranged in the cells of a square, and in such a man-
ner, that the product of these numbers, in each band, whether vertical, or horizon-
tal, or diagonal, shall always be the same.

To construet a square of this kind, the same principles must be followed as
in the construction of other magie squares; and this may be
easily demonstrated from the property of logarithms. Without |95 | 1 | 32
enlarging further therefore on this subject, we shall confine our- | — |~
selves to giving one example; it is that of the 9 first terms 4 | 16 | 64
of the double geometric progression, 1, 2, 4, 8, &e. arranged |~ —
in a square of 3 cells on each side. The product is evi-
dently the same in every direction, viz, 4096,

8 |256] 2
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Remarks.—The ingenious Dr. Franklin, it seems, carried this curious speeulation
further than any of his predecessors in the same way. He constructed both a
magic square of squares, and a magic circle of circles, The magic square of
squares is formed by dividing a great square into 256 little squares, in which all
the numbers from 1 to 256, or the square of 16, are placed in 16 columns, which
may he taken either horizontally or vertically. Their chief properties are as
follow :

1. The sum of the 16 numbers in each column or row, vertical or horizontal,
is 20506,

2. Every half column, vertical and horizontal, makes 1028, or just one half of the
same sum 2050,

3. Half a diagonal ascending, added to half a diagonald descending, makes also
the same sum 2056 ; taking these half diagonals from the ends of any side of the
square to the middle of it; and so reckoning them either upward or downward ; or
sideways from right to left, or from left to right.

4. The same with all the parallels to the half diagonals, as many as can be drawn
in the great square: for any two of them being directed upward and downward,
from the place where they begin, to that where they end, their sums still make the
same 2056,  Also the same holds true downward and upward; as well as if taken
sideways to the middle, and back to the same side again.

5. The four corner numbers in the great square added to the four central num-
bers in it, make 1028, the half sum of any vertical or horizental column which
contains 16 numbers ; and also equal to half a diagonal or its parallel.

6. If asquare hole, equal in breadth to four of the little squares or eells, be cut
in a paper, through which any of the 16 little cells in the great square may be
seen, and the paper be laid upon the great square; the sum of all the 16 numbers
seen through the hole, is always equal to 2056, the sum of the 16 numbers in any
horizontal or vertical columm. :

The magic cirele of circles is composed of a series of numbers, from 12 to 75 in-
clusive, divided into 8 concentrie circular spaces, and ranged in 8 radii of numbers,
with the number 12 in the centre; which number, like the centre, is common to all
these circular spaces, and to all the radii.

The numbers are so placed, that 1st, the sum of all those in either of the con-
centric circular spaces above mentioned, together with the central number 12, amount
to 360, the same as the number of degrees in a circle.

2, The numbers in each radius also, together with the central number 12, make
just 360,

3. The numbers in half of any of the above circular spaces, taken either above or
below the double horizontal line, with half the central number 12, make just 180, or
half the degrees in a circle,

4. If any four adjoining numbers be taken, as if in a square,-in the radial divisions
of these eircular spaces, the sum of these, with half the central number, make also
the same 180,

5. There are also included four sets of other circular spaces, bounded by ecircles
thatare excentric with regard to the common centre; each of these sets containing
five spaces. For distinction, these circles are drawn with different marks, some
dotted, others by short unconnected lines, &e.; or still better with inks of divers
colours, as blue, red, green, yellow.

These sets of excentric circular spaces intersect those of the coneentric, and each
other; and yet, the numbers contained in each of the excentrie spaces, taken all
around through any of the 20, which are excentric, make the same sum as those in
the concentric, namely 360, when the central number 12 is added.
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Their halves also, taken above or below the double horizontal line, with half the
eentral number, make up 180,

It is observable, that there is not one of the numbers, but what belongs at least
to two of the circular spaces ; some to three, some to four, some to five; and ot
they are all so placed, as never to break the required number 360, in any of the 28 cir-
cular spaces ‘within the primative circle.

CHAPTER XIII.

POLITICAL ARITHMETIC.

SiNcE politicians have acquired juster ideas respecting what constitutes the real
strength of states, various researches have been made in regard to the number of the
inhabitants in different countries, in order to ascertain their population. Besides, as
almost all governments have been under the necessity of making loans for the most
part on annuities, they have naturally been induced to examine according to what
progression mankind die, that the interest of these loans may be proportioned to
the probability of the annuities becoming extinet. These ealeulations have been
distinguished by the name of political arithmetic, and as it exhibits several curious
facts, whether considered in a political or a philosophieal point of view, we have
thought it our duty to give it a place here.

SECTION 1.
Of the Proportion between the Males and the Females.

Many people imagine that the number of the females born exeeeds that of the
males ; but it has long since been proved that the contrary is the case. More boys
than girls are born every year; and since the year 1631, a small interval excepted,
we have a register of births, in regard to sex, and it has never been observed that
the number of the females born ever equalled that of the males. It is found, hy
taking a mean or average term ina greater number of years, that the number of the
males born is to that of the females, as 18 to 17. This proportion is nearly that
which prevails throughout all Franee; but, to whatever reason owing, it seems ag
Paris to be as 27 to 26.

This kind of phenomendn is observed, not only in England and in France, but in
every other country. We may be convineed of the truth of it by inspecting the
monthly and other periodical publications, which at the commencement of
every year give a table of the births that have taken place in most of the ecapital
cities of Europe: it may there be seen that the number of the males born, always
exceeds that of the females; and consequently it may be considered as a general
law of nature.

We may here observe a striking instance of the wisdom of Providence, which has
thus provided for the preservation of the human race. Men, in consequence of the
active life for which they are naturally destined by their strength and their courage,
are exposed to more dangers than the female sex ; war, long sea voyages, employments
laborious or prejudicial to health, and dissipation, carry off great numbers of the
males; and it thence results, that if the number born of the latter did not exceed
that of the females, the males would rapidly decrease, and soon become extinct.

SECTION 1I.

Of the Mortality of the Human Race, according to the Different Ages.
In this respect, there is apparently a considerable difference between large towns
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and the country ; but this arises from the women in town rarely suckling their own
children; and consequently the greater part of their children being put out to nurse
in the country, as it is in the period of childhood that the greatest mortality prevails,
it becomes most apparent in the country. To make an exact ealculation, it ought
to be founded on the deaths which happen in the towns, as well as in the country ;
and this M. Dupré de St. Maur has endeavoured to do, by comparing the registers
of three parishes in Paris, and twelve in the country.

According to the observations of this author, in 23904 deaths, 6454 of them were
those of children not a year old ; and carrying his researches on this subject as far as
possible; he concludes, that of 24000 children born, the numbers who attain to dif-
ferent ages are as follow :
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Such then is the condition of the human species, that of 24000 children born,
scarcely one half attain to the age of 9; and that two thirds are in their grave before
the age of 40 ; about a sixth only remain at the expiration of 62 years ; a tenth after
70 ; a hundredth part after 86; about a theusandth part attain to the age of 96 ; and
six or seven individuals to that of 100.

We must however observe, that the authors who have treated on this subject,
differ from each other. According to the table of M. de Parcieux, for example, the
half of the children born de not die before 31 years are completed ; but according to
M. Dupré de St. Maur they are cut off’ before the commencement of the ninth year.
This difference arizes from the table of M. de Parcieux having been formed from lists
of annuitants, who are always select subjeets: for a father never thinks of pur-
chasing an annuity on the life of a child who is sickly, or has a bad constitution.
The laws of mortality in these cases therefore are different; and if the one is a
general and common law, the other is that which public administrators, who grant
annuities, ought to consult with great care, that they may not make loans too
burthenzome.

SECTION III.

Of the Vitality of the Human Species, according to the Different Ages, or Medium
of Life.

When a child is born, to what age may'a person bet, on equal terms, that it will
attain?  Or if the child has already attained to a eertain age, how many years is it
probable it will still live? These are two questions, the solution of which is not
only curious, but important.

We shall here give two tables on this subject; one by M. Dupré de St. Maur, and
the other by M. Parcieux; and add to them a few general observations,
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TIME 10 LIVE.

M. de St. Maur. || M. de Parcieux.
AGE. | YEARS. | MoNTHS.| YEARS. | MoNTHS.
[i] 2]
1 a3 41 9
2 38 42 8
3 40 43 6
4 41 44 2
5 41 G 44 5
G 432 44 3
7 492 3 dad
=) 41 G 43 ]
a9 40 10 43 3
10 1) 2 42 8
20 33 5 36 3
30 28 30 B
40 a9 1 25 [
50 16 7 19 5
60 11 1 14 11
70 6 2 9 2
76 4 G i 10
B0 3 7 5
855 3 3 +
a0 2 2 ]
05 5 G
0 4 G
a7 3 4
08 2 3
99 1 2
100 + 1

Two observations here occur, in regard to these tables. The first is respecting the
difference between them. 1In that of M. Parcieux, the time assigned to each age to
live, is more considerable, and the reason has been already mentioned. We have
even suppressed the first year in the table of M. Parcieux, because the difference was
by far too great, and in our opinion it arose from two causes. lst. No one ever
thinks of purchasing an annuity for a child in its first year, until the goodness of its
constitution has been fully ascertained. 2d. Tt is not at the birth of a child, but in
the course of the first year, towards the middle or end, that such a measure is
hazarded ; for as annuities remain sometimes several months, and even a whole year,
to be filled up, people are not under the necessity of sinking money on so young a
life, and have time during the course of several months to acquire some certainty
respecting the constitution of the subject. In our opinion, therefore, the 34 years of
vitality, assigned by M. de Percieux to a child just born, ought to be cousidered asap-
plicable to a child from 6 to 9 months old, and more ; but it is during the first months
of the first year that the life ofa childis most uncertain,and that the greatest number die.

The second observation, which is common to both tables, is, that vitality, exceed-
ingly weak at the moment of birth, goes on increasing after that period, till it comes
to another, at which it is the greatest; for the chance is less than 3 to 1 that a new
born child will attain to the end of its first year,* and one may take an even bet that

* According to the principles explained in treating of probabilities, the probability of a child newly
born being alive at the end of a vear, is to that of its dying before that poriod, as the vomber of tha
children alive at the end of a year, i3 to the number of these dead 5 that is to say, a3 1750 (o GIGD;
which is somewhat less than the ratio of 3 to 1. In the other cases the caleulation 1s the same, Take
the number of those who have died in the cburse of the year, and divide by it the number of those
alive ; this will express what may be betted to 1, that the person who has completed that year will
complete another.
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it has only 8 years to live; but when it has atfained to the commencement of the
second year, one may bet 6 to 1 that it will attain to the third ; and it is an even
chance that it will live 33 years, In a word, it is seen by the table of M. Dupré de
St. Maur, that it is towards the age of 10 years, or betwen 10and 15, that life is most
secure. At that period, one may take an even bet that the child will live 43 years ;
and it is 125 to 1 that it will live a vear, or 25 to 1 that it will live five years.
Beyond that period the probability of living a year longer decreases. At the age of
20, for example, it is somewhat less than 16 to 1, that the person will not die within
the five following years. When a person has reached his sixtieth year, it is no more
than 3} to 1 that he will attain to the beginning of his sixty-fifth year.

SECTION 1IV.
Of the number of Men of different ages in a given number.

It may be deduced from the preceding observations, that when the inhabitants of a
country amount to a million, the number of those of the different ages will be as
follows :

Between 0 and 1 year complete 38740 55 G0 e o a711o0
1 and 5 . ‘s 119460 60 65 i ok 28690
5 10: e AT 99230 6 7 (| 21305

10 15 ik 04530 70 B .. Ve 13195
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20 25 a 55 82380 80 85 . i 2820
25 30 .. . 77650 a5 o0 . 2 1025
30 35 . .s T1665 90 95 e . B3
35 40 o - 64205 95 100 .. i 82
40 45 ¥ = 57230 Above 100 years ... i 3 or 4
g ﬁ oty ﬂiﬂg Total.. 1,000,000

Thus in a country peopled with a million of inhabitants, there are about 573460
between the age of 15 and 60; and as nearly one half of them are men, this number
of inbabitants could, on any emergency, furnish 230,000 men eapable of bearing
arme, even if an allowanece be made for the sick, the lame, &c., who may be supposed
to be among that number.

SECTION V.

Of the Proportion of the Births and Deaths to the whole Number of the Inhabitants

of @ Country.—The consequences thence resulting.

As it would be difficult to number the inhabitants of a country, and mueh more to
repeat the enumeration as often as it might be necessary to aseertain the population,
means have been devised for accomplishing the same object, by determining the pro-
portion which the births and deaths bear to the whole number of the inhabitants ;
for as registers of births and deaths are regularly kept in all the civilized countries of
Europe, we may judge, by comparing them, whether the population has inereased of
decreased ; and in the latter case ean examine the causes which have produced the
diminution.

It is deduced, for example, from Dr. Halley’s tables of the state of the populations
of Breslaw, about the year 1690, that among 34000 inhabitants, there took place, every
year on anaverage, 1238 births; which gives the proportion of the former to the lat-
ter as 274 to 1. In regard to cities, such as Breslaw, where there is no great influx
of strangers, we may therefore adept it as a rule, to multiply the births by 274 in
order to find the number of the inhabitants.
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There appeared in 1766, a very interesting work on this subject, entitled, * Re-
cherches sur la Population des la Généralités d’Auvergne, de Lyon, de Rouen, et
de quelques Provinees et Villes du Royaume,” &e., by M. Messance, By an enumera-
tion of the inhabitants of seventeeri small towns or villages in the generality of
Auvergne, compared with the average number of births in the same places, the author
shews that the number of births 1s to that of the inhabitants, as 1 to 24}, & & a
similar enumeration, in twenty-eight small towns or villages of the generality of Lyons,
gave the ratio of 1 to 23f; and by another made in five small towns or villages of
the generality of Rouen, it appeared that the ratio was as 1 to 27} and 4. But as
these three generalities comprehend a very mountainous distriet, sueh as Auvergne,
another which is moderately so, as the generality of Lyons, and a third which con-
sists almost entirely of plains or cultivated hills, as the generality of Rouen, there is
reason to conclude that these three united afford a good representation of the aver-
age state of the kingdom; combining therefore the above proportions, which gives
that of 1 to 254, this will give the proportion of births to the number of the inha-
bitants, for the whole kingdom, without including the great cities: so that for two
births in the year we shall have 51 inbabitants,

But as, in towns of any magnitude, there are several classes of eitizens who spend
their lives in celibacy, and who contribute either nothing or very little to the popu-
lation, it is evident that this proportion, between the births and effective inhabitants,
must be greater. M. Messauce says, he ascertained, by several comparisons, that the
ratio nearest the truth, in this case, 1= 1 to 28, and that this is the proportion
which ought to be employed in deducing, from the number of births, the number of
the inhabitants of a town of the second order, such as Lyons, Rouen, &c. ; which
agrees pretty well with what Dr. Halley found in regard to the city of Breslaw.

In the last place, for cities of the first class, or the capitals of states, such as Paris,
London, Amsterdam, &e., where a great many strangers, attracted either by pleasure
or business, are mixed with the inhabitants, and where great luxury prevails, which
inereases the number of those who live in voluntary celibacy, it iz very probable that
the above ratio must be raised, and that it ought to be carried to 30 or 3.

M. Kerseboom, in his book entitled, ** Essai de Calcul politique, concernant la
quantité des habitans des Provinces de Hollande et de Westfriesland,” &e., printed
at the Hague in 1748, has endeavoured to shew that to obtain the number of the inha-
bitants in Holland, the number of the births ought to be multiplied by 35.
If this he the case, there is reason to conelude that marriages are less fruitful or less
numerous in Holland than in France ; and this difference may be founded on physical
Caunses, -

If these caleulations be applied to determining the population of great cities, it will
be seen that the opinions entertained in general on this subject, are erroneous ; for
it is commonly said that Paris contains a million of inhabitants ; but the number ot
births there, taking one year with another, never exceeds 19500, which, multiplied by
30, gives 585000 inhabitants ; if we employ as multiplier the number 31, we shall
have 604500, and this is certainly the utmost extent of the population of Paris.

SECTION VI.

Of some other Proportions between ffu; Inhabitants of a Country.

We shall present to the reader a few more short observations in regard to popu-
lation. The book, which we quoted in the preceding paragraph, shall still serve us
as a guide.

By combining together the three generalities above mentioned, it is found,

1st. That the number of the inhabitants of a country, iz to that of the families,
as 1000 to 222}; so that 2000 inhabitants give in common 445 families, and con-
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serently 41 heads on an average for each, or 9 persons for two families, In this
respeet, those of Auvergne are the most numerous ; those of the Lyonnois, are next;
and those of the generality of Rouen are the least numerous. By taking a mean, it
is found also, that in 25 families, there is one where there are six or more children.

4. The number of male children born exceeds, as has been said, that of females;
and this excess continues till a eertain age ; for example, the number of boys of
the age of fourteen, or below, is greater than that of the females of the same age,
and in the ratio of 30 to 20. The whole number of the females, however, exceeds
that of the males, in the ratio of about 18 to 19. We here see the effect of the
great consumption of men, oceasioned by war, navigation, laborious employments,
and debauchery.

3d. It is found that there are three marriages annually among 337 inhabitants; so
that 112 inhabitants produce one marriage.

4th. The proportion of married men or widowers, to married women or widows,
is nearly as 125 to 140 ; and the whole number of this class of society, is to the
whole of the inhabitants, as 265 to G631, or as 53 to 126.

5th. According to King and Kerseboom, the number of widowers is to that of
widows, as 1 to 3 nearly ; so that there are three widows for one widower. This
at least is deduced from the enumerations made in Holland and in England. But
15 the case the same in France? It is to be regretted, that the above-mentioned
author did not make researches on this subject. In our opinion, however, this pro-
portion is pretty near the truth, and it will excite no astonishment when it is
considered that the greater part of the men marry late, in comparison of the
women.

6th. If the above proportion between widowers and widows be admitted, it thence
follows, that among 631 inhabitants there are 118 married couples, 7 or 8 widowers,
and 21 or 22 widows; the remainder are composed of children, people in a state
of celibacy, servants, or passengers.

Tth. It thence results also, that 1870 married couples give annually 357 chil-
dren; for a eity of 10000 inhabitants would econtain that number of married
couples, and give 357 annual births. TFive married couples therefore, of all ages,
produce annually one birth,

8th. The number of servants is* to the whole number of the inhabitants, as 136
to 1535 nearly ; which is somewhat more than the eleventh part, and less than the
tenth. :

The number of male servants is nearly equal to that of the female, being in the
ratio of 67 to 69; but it is very probable that in large cities, where agreat deal
of luxury prevails, the proportion is different.

9th. The number of ecclesiasties of both sexes, that is to say, secular as well as
regular, comprehending the nuns, is to the inhabitants of the above three gene-
ralities, as 1 to 112 nearly: this is contrary to the common opinion, which sup-
poses the proportion to be much greater.

10th. By dividing the territory of these three generalities among their inhabi-
tants, it is found, that the square league would contain 864 ; but the square league
contains G400 acres; each man therefore, on an average, would have T acres, and
each family being composed, one with another, of 4} heads, 33} acres would fall to
the share of each family, But it is to be observed that the generality of Rouen,
considered alone, is much more populous, since it contains 1264 inhabitants for each
square league, which gives to each head no more than 5 acres,

11th. It appears by the same enumerations, that a very sensible increase in the
population has taken place since the beginning of the last century. It is indeed
found, that the annual number of the births bas been augmented ;. and by eomparing
the present period with the commencement of the last century, there is reason to
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conclude, that the number of the inbabitants is now greater than what it was at the
beginning of the eentury, in the ratio of 1456 to 1350; which makes less than a
twelfth, and more than a thirteenth, of increase. This iz doubtless owing to
the great extent to which agriculture and commerce have been ecwrried, and to the
cessation of those wars which so long exhausted the interior of France. The wound
given to the nation by the revoeation of the ediet of Nantes scems healed, and even
more; but had it not been for that event, France, in all probability, would contain a
sixth more of inhabitants than it did at the commencement of the 18th century; for
the number who expatriated in consequence of that revocation, amounted perhaps to
a twelfth part of the whole people.

SECTION WVII.
Some Questions which depend on the preceding Observations.

The following are some of those questions, in the solution of which the preceding
observations may be employed: we shall not explain the prineiples on which each
15 resolved; but shall merely confine ourselves to referring to them sometimes, that
we may leave to the reader the pleasure of exercising his own ingenuity.

Ist. The age of a man being given, that of 30 for example, what probability is
there that he will be lLiving at the end of a determinate number of years, such
as 13. ;

Seek in the table of the second section for the given age of the person, viz. 30
years, and write down the number opposite to it, which is 11405 ; then take from
the same table the number opposite to 45, which is 7008, and form these two
numbers into a fraction, having the latter for its numerator, and the former as its
denominator; this fraction will express the probability of a person of 30 years of
age living 15 years, or attaining to the age of 45.

The demonstration of this rule iz obvious to every one who understands the
theory of probabilities.

2d. A young man 20 years of age borrows £1000, to be paid, capital and inferest,
when he attains to the age of 25 ; but in case he dies before that period, the debt to
become extinet. What sum ought he to engage fo pay, on attaining to the age
of 25?2

It is evident that if it were certain he would not die before the age of 25, the sum
to be then paid would be the capital increased by five years’ interest, which we here
suppose to be simple interest : the sum therefore which in that ease he ought to en-
gage to pay, on attaining to the age of 23, would be £1250. But this sum must be
increased, in proportion to the danger of the debtor dyingin the course of these five
years, or in the Inverse ratio of the probability of his being alive when they are ex-
pired. As this probability is expressed by the fraction §g32, we must multiply the
above sum by this fraction inverted, or by {382, which will give £1329. 3s. 114., that
is to say, £79. 3s. 11d. for the risk of losing the debt, which certainly cannot be
conszidered as usury.

3d. A state or an individual having occasion to raise mowey on annuities, what
interest ought to be given for the different ages, legal interest being at the rate of 5
per cent. ?

The vulgar, who are accustomed to burthenzome loans, entertain no doubt that 10
per cent. is a great deal for any age below 50, and that such a method of borrowing
cannot be advantageous to the state. But this is a great mistake ; for it will be
found by caleulation, employing the before-mentioned data, according to the table of
M. de Parcieux, that 10 per cent. cannot be allowed before the age of 56. Aeccording
to the same table, no more than 6} can be given at the age of 20 ; G} at 25; 64 at 30;
Tiat40; 84at 50; 10 at 56; 114 at 60; 16§ at TO; 27% at 80; 3 at 85.
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It is also a very great error to believe, that on account of the number of persons
who lay out money on these loans made by governments, they are soon freed from
a part of the annuities by the death of a part of the annuitants. The slowness of the
increase of annuities in tontines, is a sufficient proof of the falsity of this idea; be-
sides, the great number of the persons is the very cause why the extinction of the
annuities takes place according to the laws of probability above explained. A fortu-
nate circumstance, at the end of some years, may free an individual from an annvity
established on the life of a man aged 30; but if this annuity were divided among 300
persons of nearly the same age, it is certain that he would not be freed from this
burthen before the expiration of about 65 years ; and at the end of 32 or 33 years one
balf of the annuitants would still be living. This M. de Parcieux has shewn, in the
clearest manner, by examining the lists of different tontines.

4th. Legal interest being at 5 per cent. ; at what rate of interest may an annuity be
granted on the lives of twoe persons, whose ages are given, and payable till the death of
the last survivor 2

ath. What interest may be allowed on a capital, sunk for an annuity on the lives aof
two persons, whose ages are given, and payable only while both the annuitants are
living #

Gth. A certain person, whose age is given, has an annuity, secured on the public
Junds, of £1000; but being in want of money, he is desirous to sell it.  How much is
o worth ?

Tth. A, aged 20, and B, aged 30, agree to purchase, on their joint lives, an annuity
of L1000, te be equally divided between them, during their lives, with a reversion to
the survivor. How much ought each of them to contribute towards the purchase
money ¥

Bth. How much ought each to contribute, supposing it stipulated between them, that
B, the eldest, should enjoy the whole till his death ?

th, Legal interest being at 5 per cent., what is the worth of an annuity of £100, on
the lives of three persons, whose ages are given, and payable till the death of the last
survivor ?

10th. An annuity is purchased for the life of a child, of 3 years of age, on this con-
dition, that the urmm'e‘y af e end nfﬂﬂcﬁ year s fo be added fo the ‘ﬂurcfmsg nmoney,
till the annuity equals the capital sunk, At what age will the annuity be due, legal
inferest being at 5 per cent.?

Many people imagine that a capital can be deposited in the bank of Venice on this
condition, that nothing is received for the first 10 years, but after that period the
annuitant receivesan annuity equal to the capital. This however is entirely ground-
less, as has been shewn by M. de Pareieux in his ** Addition 4 1'Essai sur les Probabi-
lités de la durée de la Vie Humaine,” published in 1760 ; for it is there shewn, by a
ealeulation, the demonstration of which is evident, that if £100, for example, were
sunk on the life of a child 3 years of age, it could not begin to enjoy an annuity of
£100 till it had attained to the age of 45 or 46..

The table of M. de Parcieux presents, on this subject, two things vary curious.
For example, on the above supposition, if the increase of the annuity were not stopped
1ill the end of 54 years, the person ought to receive £205 per annum during the re-
mainder of his life ; if it were not stopped till 58 years, he ought to receive till the
time of his death £300; and by stopping it only at 75 years, he would be entitled to
£20900 per annum : in the last place, if the arrears due each year were left, on the
like conditions, to accumulate till the 94th year, the annuity for the remainder of
the person’s life ought to be £134009. 19s. 2d., a sum- which must appear prodi-
glous.

But it may seem astonishing that M. de Parcieux should begin his calculations
only at the age of 3 years. It is very true that people do not venture capitals in the
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purchase of annuities on the lives of new-born children ; but if ever such an establish-
ment existed at Venice, it is evident that it must have been only on the supposition
of the money being risked on the life of a child just born, because great mortality
takes place during the first year. For this reason we have examined what would be
the result of such a supposition ; and we have found that, if the sum of £100 were
sunk, on the above couditions, on the life of a child just born, it ought. aceording to
the table of M. Dupré de St. Maur, to procure it an annuity of £10. 15s. ; that this
sum sunk in like manner, at 8 per cent., at the end of the first year, by adding the
annuity, would give at the end of the second year £11. 11s. Td. These £11. 11s. 7d.
sunk at 6% per cent., which is the interest that might be allowed at the commence-
ment of the third year, would, at the end of the third, or the commencement of the first
fourth, amount to £12, 5s. 1d., and by a calculation similar to that of M. de Parcieux,
it will be found, that the annuity would be increased to £100 at about the age of 36;
which is still very far distant from what is commonly believed.

If legal interesi be supposed to be 10 per cent., as it was in the 16th century, it
will be found, that it would be only about the 26th year that a person could receive
an annuity equal to the capital sunk at the time of his birth.

Those who are desirous of farther information on this subject, may consult
Demoivre's Essay upon Annuities on Lives, and M. de Parcieax’s * Essai sur les Pro-
babilités de la durée de la Vie Humaine,” and Dr. Price on Reversionary Payments.
The other authors who have treated mathematically on these matters, are Dr. Hal-
ley, Sir William Petty, Major Graunt, King, Davenant, Simpson, Maseres; and
among the Duteh, the celebrated John de Wit, grand pensionary of Holland, M,
Kerseboom, Struyk, &ec.
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PART SECOND.

CONTAINING A SERIES OF GEOMETRICAL PROBLEMS AND QUESTIONS,
CALCULATED FOR EXERCISE AND AMUSEMENT.

PROBLEM 1.

From the extremity of a given right line to roise a perpendicular, without continuing the
line, and even without changing the opening of the compass if necessary. :

Fig. 1. I. Ler o & (Fig. 'I,j‘ e th(lz given st.rai;;hl: line, :1Im] A 111‘13 ex-
tremity, from which it is required to raise a perpendicular, without
prolonging it.
From A towards B assnme 5 equal parts at pleasure ; and extending
the compasses from A, so as to include 3 of these parts, describe the
s 2 arc of a circle; then from b, the extremity of the fourth part, with
an opening equal to the 5 parts, deseribe another; these two arcs will
necessarily eut each other in a eertain point ¢, from which if a straight line, asc a, be
drawn, it will be perpendicular to A B.
For the square of ¢ a, which is 9, added to the square of A b, which is 16, are
together equal to 25, the square ¢ b: the triangle ¢ & b is therefore rightangled at A.
We Tnight n:a.l:.u::ru; also, for the radius of the are to be deseribed from the puint. A,
a line equal to 5 parts; for the base 12, and for the other radius 13; because 5, 12,
and 13, form a rightangled triangle. Indeed, all the rightangled triangles in numbers,
of which there are a great variety, may be employed in the solution of this problem.
Fig. 2. II. On any part whatever of the given line a » (Fig. 2.3, describe
an isosceles triangle A ¢ B, that is, so that the sides a ¢, ¢ 1 shall be
equal ; and continue A c to », =0 that cp shall be equal tocs; if a
line be then drawn from p to B, it will be perpendicular to a 8. The
demonstration of this is so easy that it requires no illustration.

1

PROBLEM IT.

To divide a given straight line into any number of equal parts, at pleasure, without
repeated trials.

Fig. 3. Let it be proposed, for example; to divide the line a » (Fig.
c 3.y into 5 equal parts. Make this given line the base of an
equilateral triangle A B c; and from the point ¢, in the side ¢ B,
: continued if neeessary, set off 5 equal parts, which we ghall
suppose to terminate at », and make ¢k equal to cp; then
" } dihe make D F, for example, equal to one of the five parts of cp;
7] \/\ and draw ¢ ¥, which will interseet A p in G: it is evident that

A j B G will be the fifth part of A B.
E 7 If » f were equal to § of ¢ p, by drawing ¢ f we should have
g, a8 the point of intersection of ¢ f and a®, which would give By equal to 2 of

AB.  And so on.

F b

FROBLEM III.

Without any other instrument than a few pegs and a rod, to perform on the ground the
greater part of the operations of geometry.

It is well known that most geometrical operations may be performed in the fields,
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by means of thelgraphumetnr: and it would even seem that this instrument is abso-
lutely necessary in practical geometry.

A geometrician however may happen to be unprovided with such an instrament,
and even destitute of the means of procuring one. We shall suppose him in the
woods of America, with nothing but a knife to cut a few pegs, and a long stick to
serve him as a measure: he has several geometrical operations to perform, and even
inaccessible beights to measure; how must he proceed to accomplish what is
here proposed?

We shall suppose also, that the reader is acquainted with the method of tracing
out a straight line on the ground, between two given points; and in what manner it
may be indefinitely continued on either side, &c. This being premised, we shall now
proceed to give a few of those elementary probiems of geometry, required to be
performed, without employing any other line than a straight one, and even excluding
the nse of a cord, with which the are of a cirele may be deseribed.

1st. Through a given point te draw a straight line, parallel to a given straight line.
Fig. 4. Let am (Fig. 4.) be the straight line, and ¢ the point

N through which it is required to draw a straight line pa-

A s rallel to A . From the point ¢ draw the line ¢ B, to any

Ah point in A B, and divide ¢ B into two equal parts in p; in

this point » fix a peg, and from any point A in the given

straight line, draw, through b, an indefinite line A p E, and make D E equal to A D :

if a straight line be then drawn through the puints ¢ and E, it will be parallel to a B,
2d. From a given poinl in a given straight line, to raise a perpendicular.

Fig. 5. Divide the given line o » (Fig. 5.) into two equal parts, A ¢

= and ¢B; and from the point ¢ draw, any how at pleasure, the

» line ¢ d; make ¢ p equal to ca; draw p a h, and make A E equal

to A c, and A ¥ equal to A p; through the points E and r draw

the line ¥ E ¢ ; and if E ¢ be made equal to EF, we shall have

r the point @, which with the point a will determine the position

B e £

“"‘xx:‘w / of the perpendicular 4 c.
Rk
.

For the sides a p and a ¢ of the triangle ¢ a p, being re-

spectively equal to the sides a¥ and A E of the triangle g o F,

these two triangles are equal; and, in the triangle p ¢ A, the sides ¢ p and ¢ A being
equal, the sides E A and E ¥ of the other will be equal also : the angle B ¥ A therefore
will be equal to E o F, and consequently toca p.  But in the triangle ¥ G a, the side
¥ G is equal to A B, for Fe by construction iz the double of FE, and ¥ or A E is
equal to A ¢, which is the half of An: the triangles Fa ¢ and A p B then are equal;
gince the sides ¥ G, F A, are equal to the sides A B, A D, and the included angles equal :
the angle ¥ A G will therefore be equal to A p »; but the latter isa right angle, because
the lines ¢ B, ¢ b, € A, being equal, the point b is in the circumference of a semicircle,
described on the diameter A 8. The angle ¥ a G then is a right angle, and G a is

perpendicular to A B. . '
3d. From a given point A, to draw a straight line perpendicular to a given straight
line.
Fig. 6. Assume any point B (Fig. 6.) in the indefinite line B ¢; and,

having measured the distance B A, make B ¢ equal to B A ; draw

¢ A, which must be measured also, and then form this propor-

tion: as B ¢ is to ¢ n, the half of A c, =0 is A ¢ to a fourth pro-

portional, which will be c £; if ¢ & be then made equal to this

fourth proportional, we shall have the point E, from which if

% the line A E be drawn through a, it will be the perpendicular
required.

12
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4th. To measure a distance A B, accessible only at one of ils extremities, as the
breadth of a river or diteh. §e.

Fig. . First fix a peg at a (Fig. 7.); then another in any pﬂint o
assumed at pleasure, and a third at », in the straight line be-

R LY tween the points B and c; eontinue the lines ¢ A and » A inde-
=1 <= finitely beyond A, and make the lines A & and a ¥ respectively

,_r._wﬂ/uf;""——'*-—*u_.__ equal to a ¢ and AD; in the last place, fix a peg at ¢, in such

— E & manner as to be in a straight line with a and », and also with

L/; F ¥ and E: the distance A ¢ will then be equal to A n.

If it be found impossible to proceed far enough from the line
A Btowards E or ¥, we may take in A E or A ¥, only the half or
the third of acand A b, for example se, Ao f; if a peg be then fixed in g, so as to
fall in the continuation of both the lines B A and e f, we shall have & ¢ equal to the
half or the third of A B respectively.

Fig. 8. Now let the distance a B (Fig. 8.) be inaccessible through-
out. The solution of this case may be easily deduced from
that of the former: for having fixed a peg in ¢, and having
continued by a series of pegs the lines ne and 4 ¢, if the
parts ¢ E and ¢ ¥ be, by the above means, made respectively
equal to Bc and ¢ A, or the half or the third of these lines,
it may be readily seen that the line which joins the points &
and 7, will be equal to the line required, or to the half or third of it; and that in
either case it will be parallel to it, which resolves the problem, to draw a line paral-
lel to an inaceessible line.

These examples are sufficient to shew in what manner a person, who has only
a slight knowlatlge of geometry, may execute the greater part of geometrieal opera-
tions, without any other instruments than those which might be procured in a wood
by means of a knife. It must indeed be allowed that one can never be in such
circumstances, unless” on some very extraordivary oecasion ; but, however, it may
afford satisfaction to those who have a turn for geometry, to know in what
mauner they might proeeed, if ever such a case should happen.

It is remarkable, that it is not perhaps possible to resolve in this manner, that is
to say, without employing the are of a circle, the very simple problem, and one of the
first in the elements of geometry, viz., to deseribe an equilateral triangle. We have
often attempted it, but without suceess, while trying how far we could proceed in
geometry by the means of straight lines only.

[

PROBLEM IV,

To describe a circle, or any determinate are of a circle, without knowing the centre, and
w&'ﬁﬂﬂ'f l:'ﬂJ‘H‘PHSHQS_

To those who are little acquainted with geometry, this will appear to be a sort
of paradod; but it may be easily explained by that proposition, in which it is de-
monstrated, that the angles whose summits touch the circumference, and whoze sides
pass through the extremity of the chord, are equal.

Let a, ¢, B, (Fig. 9.) be three points in the required
Fig. 9. circle orarc; having drawn the lines a c and ¢ B, make
£l

¢ an angle equal to A c® of any solid substance, and fix
two pegs in A and B; if the sides of the determinate
angle be then made to slide between these pegs, the
B vertex or summit will deseribe the eireumference of
the circle. So that if the summit or vertex be fur-
nished with a spike or peneil, it will trace out, as it

revolves between A and B, the required are,
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If another angle of the like kind were constructed, forming the supplementof A e
to two right angles, and if it were made to revolve with its sides always touching
the points A and B, but with its summit in a direction opposite to ¢, it would deseribe
the other segment of the circle, which with the arc a ¢ B would make up the whole
circle.

It wmay sometimes happen that it is necessary to describe, through two given points,
the arc of a determinate cirele, the centre of which is at a great distance, or inae-
cessible on account of some particular eauses. Should it be required, for example,
to describe on the ground a cirele, or the arc of a cirele, with a radius equal to 2 or
3 or 4 hundred yards; it may be readily seen that it would be impracticable to do it
by means of a cord ; the mode of operation therefore must be as follows. In a and

: B, (Fig. 10.) the extremities of that line which we here suppose
Fig-10. to be the chord of the required are, the amplitude or subtendin

: p 0 g

angle of which iz known, fix two pegs, and then find out, by

means of a graphometer or plane table, any point ¢, in such a

position, that a ¢ and B e shall form an angle, A ¢ B, equal to the

oy
i —B

L\ S given angle, and in that point fix a peg; ther find out another

' -._,.f':xr-"a_.-‘/ point d, so situated that A J and B d shall form an angle, A d B,

%____,_:-“‘E.‘f equal to the former; if the points £ and e be found in like
)

manner, it is evident that the points ¢, , e, and f will be in the
are of a cirele capable of containing the given angle. If the points g, &, ¢, &, be then
found, on the other side of A B, so situated, that the angle A g B, or A & B, &c. shall
be the supplement of the former, the points ¢, d, e. £, g, b, ¢, &, will evidently be all in
a circle.
PROBLEM V.

Three points, not in the same straight line, being given, to describe a circle which

shall pass throuah them.

Let the three points be those marked 1,2, 3, (Fig. 11.) : from
one of them as a centre, that for example marked 2, and with any
radius at pleasure, describe a cirele ; and from one of the other two
points, 1 for example, assumed as a centre, make with the same
radius two intersections in the circumference of the first circle,
as at a and B; draw the line A B, and assuming the third point 3 as
a centre, make with the same radius two more intersections in
the cirenmference of the first eircle, as » and £: if DE be then
drawn, it will cut the former line A B in the point ¢, which will be the centre of
the circle required. If a circle therefore be deseribed from this point as a centre,
through one of the given points, its circumference will pass through the other two.

It may be readily seen that this construetion is the same, in principle, as the com-
mon one, taught by Euclid and all other elementary writers; for it is evident that the
the lines 1 4, 2 4, 1 B, 2, are equal to each other; consequently the line o B is per-
pendicular to that which would join the points 1 and 2, or to the chord 12 of the
required cirele; hence it follows, that the centre of the circle iz in the line A B : for
the same reason this centre is in the line p E, and therefore it is in the point waere
they intersect each other.

If the three given points were in a straight line, the lines A B and p E would be-
come parallel, and consequently there would be no intersection.

PROBLEM VI.
An engineer, employed in a survey, observed from a certain point the three angles
Sformed by three objects, the positions of which he had before determined : it is re-
guired to determine the position of that point, without any Jfarther operation.

This problem, reduced to an enunciation purely geometrical, might he proposed n
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the following manner: a triangle, the sides and angles of which are known, being
given, to determine a point from which, if three lines be drawn to the three angles,
they shall form with each other given angles.

In this problem there are a great number of cases; for either the three angles,
under which the distances of the three given points are perceived, occupy the
whole extent of the horizon, that is to say are equal to four right angles, or occupy
only the half, or less than the half. In the first case, it is evident that the required
point is situated within the given triangle; in the second, it is situated in one of the
sides; and iu the third, it is without. But for the sake of brevity we shall here
confine ourselves to the first case.

Let it be required then to determine, between the points
Fig. 12. A, B, ¢, [Fig. 12 ) the distances of which are given, a point » s0
gituated, that the angle A p B shall be equal to 160 degrees,
copto 130% and epa to TOP. On the side o B describe an
are of a circle eapable of containing an angle of 160°%; and on
the side & c another capable of containing an angle of 1307;
the point where they intersect each other will be the point
required.

Tor it is evident that this point is in the circumference of the are described on the
side a B, and capable of containing an angle of 160°; because from all the points of
that are, and of no other, the distance A B is seen under the angle of 160°. In like
manner the point » must be found in the arc described on the side B ¢, and capable
of containing an angle of 130°; consequently it must be in the place where they
intersect each other, and no where else.

Remark.—On this construction, a trigonometrical solution may be founded, to de-
termine in numbers the distance between p and the points A, B, and ¢; but we shall
leave this to the ingenuity of the reader.

FROBLEM VIIL.

If two lines meet in an inaccessible point, or a point which cannot be observed, it is
proposed to draw, from a given point, a line tending to the inaceessibie point.

Fig. 13. Let the unknown and inaccessible point be o (Fig. 13.),
g E  the lines tending to it Ao and Bo; and let & be the point

”‘77‘ from which it is required to draw a straight line tending
L] o4 towards o.

Through the point £ draw any straight line E ¢, inter-
secting A o and B o in the points D and ¢; and through any
point ¥, assumed at pleasure, draw F ¢ parallel to it ; then
make this proportion: ascpisto DE, so isFo tocm; if
the indefinite line B E be then drawn through the points E and =, it will be the line
required. ¢

Or if the given point be e, make this proportion, as ¢ is to ce,soisFe to ®h;
the line e & will be that required.

The demonstration of this problem will be easy to those who know, that, in any
triangle, if lines be drawn parallel to the base, all those drawn from the vertex of the
triangle, will divide them proportionally.

¢ B

PROBLEM VIII.
The same supposition being made ; to eut off two equal portions from the lines B o
and & o (Fiz. 14.)
From the point A, draw a ¢ perpendicular to Bo, and Ap perpendicular to Ao :
if the angle ¢ A » be then divided into two equal parts by the line a £, meeting Bo
in B, this line will cut off from Boand A o the two equal parts, A o and £ 0.
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Fig. 14. This may be easily demonstrated, by shewing that, in
consequence of this construction, the angle o A E becomes
equal to oe A, But the angle 0 A E is equal to the angle

: I J oac plus caE; and the angle oE A is equal to opa or
Ii |1 cac plus EAD, OF EAC, which 1s equal to it; the angle
T o A E then is equal too E A, and the triangle o A E is isosceles,

F ¢pp—p therefore, &ec.

PROBLEM IX,
The same supposition still made ; to divide the angle A 0 E into two equal parts, ( See
last figure.)

Construct the same figure as in the preceding problem; then between the two
given lines draw any line ¥ ¢, parallel to the line A £ ; and divide the lines A E and Fa
into two equal parts in 1 and 1: the line m1will divide the angle o 0 Einto two equal
parts. The demonstration of this is so easy that it requires no illustration.

These problems, az may be readily seen, eontain operations of practical geometry
of great utility in certain cazes; such, for example, as when it is necessary to cut

roads through a forest, or when it is required to make them tend to, or end at, a
common centre.

PROBLEM X.
Two sides of a triangle, and the included angle, being given ; to find its area.

Multiply one of the sides by balf the other, and the product by the sine of the
ineluded angle: this new product will be the area.

It may be easily demonstrated, that the area of every triangle is equal to half the
rectangle of any two of its sides, multiplied by the sine of the included angle.
Let anc (Fig. 15.) be a triangle, having an acute

Fig. 13. angle at a; produce A c towards o, and from Ao as a
X ecentre, with the distanee a B, deseribe the semicirele

EF b; then from the point A, draw ¥ a perpendicular to
A c; and from the point B, draw n D alse perpendicular
to Ac.

It is here evident that the two triangles ¥ A ¢ and
Bac are respectively to each other as AF is to mp; that is to say, as radius is
to the sine of the angle B a ¢, or as unity 15 to the number which expresses that sine;
the triangle ¥ a ¢ then being equal to half the rectangle of ¥ A by a ¢, the other will
be equal to that half rectangle multiplied by the sine of the angle n ac.

This property enables us to avoid that tedious process, necessary to be employed
in order to find out the measure of the perpendicular let fall from the extremity of
one of the known sides on the other, that the latter side may be then multiplied by
the half of this perpendicular.

Thus for example, let the two sides a 5 and A ¢ be respectively equal to 24 and 63
yards ; and let the included angle be 45°. 'The product of 63 by 12 is 756, and the
sine of 45° is 0°70710; if 756 therefore be multiplied by 0070710, according to the
method of decimal fractions, the product will be 53448,

2 A D I

PFROBLEM XI.

To find the superficial content of any trapezium or quadrilateral figure, without know-
ing ils sides.

Fig. 16. The solution of this problem is a consequence of the pre-

B ¢ ceding. Let thegiven trapezium be A pep (Fig. 16.) ; measure
'ﬁg\l the diagonals A ¢ and BD, as well as the angle which they make
e p at the point where they intersect each other in E; if these diag-

onals be then multiplied together, and half their product by the
sine of the above angle, the last product will be the area. This method is far shorter
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than if we should reduce the trapezium to triangles, in order to find the area of each
of them.

Corollaries.— A very curious theorem, which no author has before remarked, may
be deduced from this problem. 1t is as follows: If two quadrilateral figures have
their diagonals equal, and intersecting each other at the same angle, whatever may
be their difference in other respects, these quadrilateral figures will be equal as to
their area.

Fig. 17. No. 1. 1st. Thus, the quadrilateral A zep (see last figure) is equal
b to the parallelogram a bed (Fig. 17. No. 1.), which has its diag-
‘-— ¢ onals equal to those of A 5cp, and inclined toward each other
o v at the same angle.
of
Fig.17. No. 2. 2d. The same quadrilaieral A Bcp, is equal to the triangle
B E A ¢ (Fig. 17. No, 2.), formed by the two lines A ¢ and a B, equal
/\ to the diagonals & ¢, DB, and inclined at the same angle.
A C
Fig. 17. No.3. 3d. The same quadrilateral will be equal also to the triangle

aBc (Fig. 17. No. 3.), if the lines A c and p & of that triangle,

are equal to the diagonals of the quadrilateral, and equally
inclined.

4th. In the last place, this same guadrilateral A BcD (Fig.
16.3, will be equal to the quadrilateral aéed (Fig. 17. No.4.)
the diagonals of which do not iutersect each other, if ae and

d b are equal to A c and b B, and if the angle & e ¢ is equal to the
angle BEC.

PROBLEM XIT.

Two cireles, not entirely comprehended one within the other, being given ; to find a
point from which, if a tangent be drawn to the one, it shall be a tangent also to the
other. o v : :

Fig.18. No. 1. e tl:‘;llfr?'irrlt :cdﬂcntres A and B (Fig. _IB. I\::n. 1) n.f

fircles, draw the indefinite straight line A B1:

then from the centre ao draw any radius ac, and
through the eentre B draw the radius B D parallel to

it. 1f the points ¢ and » be joined by the line c b,

it will meet A B in 1, which will be the point re-

i quired ; that is to say, if 1 £ be drawn from the point

1, a tangent to one of the circles, it will be a tangent

also to the other,

When the circles do not cut each other, the point
1 (Fig. 18. No. 2.) may happen to fall between them,
To find it, in that case, nothing is necessary but to
draw the radius B D parallel to a ¢, and in a direction
opposite to that of Fig.18. No. 1. asand e¢p will
intersect each other in the point 1, which will have
the same property as the former.

Remark.—We cannot here help observing, that if any secant whatever, as 1p um or
rd i (Fig. 18. No. 1.), be drawn from the point 1, through the two circles, the rect-
angle of 1D and 11, or of 1d and 1A, will be always the same, that is, equal to the
rectangle of the two tangents 1E and 1¥. In like manuer, the rectangle of 1 ¢ and
16, or of 1¢ and 14, will be equal to the rectangle of the same tangents. Thisisa
very remarkable extension of the well known property of the circle, by which the
rectangle of the two segments 1D and 16 is equal to the square of the tangent re.
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PROBLEM XIII.

A yﬁﬂf:’eﬂ?ﬂ‘ﬂ, at Lis death, left two children, to whom he bequeathed a triangular field,
to be a.'fimrm:‘f equally between them ; in the field is a well, which serves for watering
it ; and as it is necessary that the line of division should pass through this well, in

what MAIRRSr MUSL 1t be drawn, so as to intersect the well, and divide the field, at the
same fime, nto fwo equal parts.

Fig. 19. Let the given triangle be A 1 ¢ (Fig. 19.), and the given point
B be 8. From the point & draw the lines Epand e, parallel to the

base and the side B c respectively, and meeting them inp and v ;

let the base A ¢ be divided into two equal partsin 3 ; and having

drawn the line p 3 from the point p, draw B x parallel to it, and
¢ divide c ¥ into two equal parts, in 1; on 1r describe the semi-

cirele 1 K &, in which apply Rk = rc; and, having drawn 1k,
if 1¥ be made equal to it the points ¥ and & will determine the line ¥ & c.

_Remark.flt 1i5 evident {:I:‘at ¢ 1 must be at least double of cr; otherwise ¢ r could
Tmt be ‘:Ipphed in the semicircle described on 1w, which would render the problem
1mpossible. ;

In numbers.—Let A 5 = 48 fathoms, e = 42, Ac=30,cp=18 and DE or cR
=6 ; consequently cm will be=15. Butcp ccMiicpcn,that is tosay 18 15
22427 35; hence it follows that cx =35, and c1= 171; and as cr is equal to 6,
we shall have 1R = 114. But the triangle 1 x = being right-angled, 1 k =
of TR — RE*= o/ 1321 — 36 = ./ 961, or % fathoms, which gives c¥= 27
fathoms.

Fig. 20. The demonstration of this construction is too prolix to be
given in this work; and there are even a variety of cases which
it would be tedious to explain. We shall therefore confine
ourselves to one of the simplest; that is, where the point E is
N in one of the sides (Fig. 20.)

H‘ﬁ.';-t'..'-‘ The construction in this case is exceedingly easy ; for having

A = © divided A ¢ into two equal parts in a1, and drawn &, and BN
parallel to it; if the point N falls within the triangle, by drawing the line E 5, the
problem will be solved; but if the point ¥ falls without the triangle, it will be neces-
sary to draw the line a £ ; then x o parallel to it, through the point x,and o & through
the point o: the last line, o g, will solve the problem.

For because o is parallel to mx, the triangle MpE=mxEr; and if the triangle
cME be added to ecach, we shall bave the triangles ¢ M and ¢ E 5 equal to each
other. But the triangle c B M is the half of the triangle A B¢, because AM=MC;
consequently c E 5 is the half of Ancalso. In like manner, because E A is parallel
to N o, the triangles A X E and A o E are equal; and therefore if the triangle A GE,
which is eommon to both, be taken away, the triangle A 5 ¢ will be equal to o E;
hence it follows, that if we add to the space ¢ 4 6 E the triangle G o E, we shall have
the space c A 0 E =1the triangle c £ x, which we have already shewn to be equal to
the half of amc.

But if the gentleman had left the field to be divided equally
Fig.21. among three children, by lines proceeding from the given point
E (Fig. 21.); if we suppose one line of division e n already
drawn, it would be necessary to proceed as follows :

Divide the base A ¢ into three equal parts; and let the points
of division be » and ¢ ; draw the line  p, and 1 F parallel to it ;
' then draw the line £ ¥ from the point E, and if the point ¥ does

€ pot fall without the triangle, the trapezium BEFA B will
be one of the thirds required.

b
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But if the point ¥ falls without the triangle, we must proceed as above directed ;
that is to say, the line £ A must be drawn towards the angle A, and r o parallel to it
from the point ¥, as far as the side A B, which it meets, we shall suppose in o; the
line ko will give the triangle B o E, equal to the third of the triangle proposed.
BE1¢CB, the other third, may be found in like manner; consequently the remainder
of the figure will be a third also. The three lines therefore, £ 0, &1, and £ B, which
I'"‘ul'l_ll,'l]. from the p{:illt E, will divide the I}:I'i}p{l::l;ll t.l'imlgic into three E[ill.il.l parts,

By the same method a triangle might be divided into 4, or 5, or 6, &c. equal parts,
by lines all proceeding from a given point; and this point may be assumed even
without the triangle.

PROBLEM XIV.
Two points and a straight line, not passing through them, being given ; to describe a
circle which shall touch the straight line, and pass through the two given points.

Fig. 22. Let the given line be a » (Fig. 22.) and the given
points ¢ and p. Join these two points, and on the middle

“\f g,.» __r \ of the line ¢ » raise the perpendicular & ¥, meeting the
l'r. r given straight line in ¥; and on the same line let fall the

perpendicular & 1 ; draw ¥ ¢, and from the point &, with
the radius & 1, describe a eircle intersecting ¥ ¢, conti-
nued, in 1; draw 1 &, and through the point ¢ draw ¢ K
parallel to it: the point ® will be the centre, and K ¢ the radius of the circle
required.

For if the perpendicular & L be let fall from the point K, on the line A n, it will be
equal to K ¢, whichisequalto g p. ButFEistoF K, as EH 1stoK L, and as E 1
to K ¢; therefore E mis to K L as £ 1 to K ¢; and consequently, as E 1 15 equal to
E H, K L will be equal to k ¢: therefore, &ec.

It may be readily seen, that if the given line passzed through

\s&’

e BL F B

Fig. 23. one of the given points, the centre of the required circle would
B be in the point & (Fig. 23.) where ¢ &, drawn perpendicular to
A B, intersects & K, which is perpendicular to ¢ », and divides
it into two equal parts in E.
\ In the first case, the problem might be resolved in a different
A &=——3 — manner, viz., by continuing the line c p (Fig. 22.) till it meets

A 1 in ai; then taking a mean proportional between a ¢ and
M p, and making L equal to it; if a circle were then deseribed through the ponts
¢, b, L, it would be the one required. But this solution would be attended with
difficulty, if the point » were at a great distance, whereas in the former case this is
a matter of indifference.

PROBLEM XV.

Two lines A B and ¢ (Fig. 24. with a point £ between them, being given ; to describe

A a cirele which shall pass through this point, and touch the
Fig 24. n two lines.

If the two lines meet, as at ¥, draw the line r 1 dividing
the angle 5 ¥ » into two equal parts; or, if they are parallel,
draw one, such as ¥ 1 (Fig. 25.) equally distant from both ;
D then from the point E draw E G 1, perpendicular to ¥ u, and
Fig. 25. make ¢ 1 equal to ¢ ; the points 1 B will be so situated that

if a circle, touching one of the given lines, be deseribed through

ST - ¢ : : ; : o
/" Fﬂ\ them, it will touch the -‘:nt'llt:r given line also; which reduces
1\‘ ‘; 7 HE this problem to the preceding one.

A5
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THEOREM I.
Various demonstrations of the forty-seventh proposition of the first book of Euclid, by
the mere transposition of parts.

The beauty of this elementary proposition, and the difficulty beginners often find
to comprehend the demonstration, have induced some geometricians to invent others
of a simpler nature. Some of these are very ingenious, and worthy of notice, be-
cause it can be seen on the first view, that the square of the hypothenuse is com-
pozed of the same parts as the squares of the two sides; with this difference only,
that they are differently arranged. Some of these demonstrations are as follow :

Fig 26. 1st. Deseribe the right angled triangle 4 8 ¢ (Fig. 26.5,

! and on the two sides of it, A ¢ and 5 ¢, construct the two

squares ¢ ¢ and ¢ D.  On the base A B raise the two per-

pendiculars A 1 and s u, the former meeting G ¥, continued,

in 1, and the latter meeting & D in ®; and then draw 1 H.

It may, in the first place, be easily demonstrated that a 1

and & 1 are equal to A B; so that A 1 H B is the square of

the base o B; for it may be readily seen that the triangle

B H D is equal and similar to the triangle 5 A ¢, as well as
ihe triangle 1 ¢ a; so that & 5 and A 1 are each equal to a4 B.

It may be shewn, with equal ease, that the small triangle K E mis equalto1F o:
and lastly, that the triangle 1 k L is equal to a o c.

But the constituent parts of the two squares are, the quadrilateral ¢ 8 1 x, the
triangle B D H, the triangle kK H E, the quadrilateral G A o F, and the triangle A ¢ o,
which we shall shew to be the same that compose the square A B 1 1; for the quad-
rilateral ¢ B # K is common, and the triangle 8 ® D is equal to 8 ¢ A, and may be sub-
stituted for it, and transposed into its place. In like manner, we may conceive the
triangle A c o transposed into 1 K L; there will then remain, in the square of the
hypothenuse, the vacuity 1 & A, and we shall have, to fill it up, the quadrilateral
¥ 0 A G, with the triangle Kk e\ : let the triangle K E B be transposed into o ¥ 1, which
is equal to it, and it will complete the triangle 1 A G, which is equal and similar to
1 A L; hence it follows that the square of the hypothenuse is composed of the same
parts as the squares of the other two sides.

We may therefore cut these parts from a piece of card, and first compose the two
squares of the two sides, and then that of the hypothenuse, which will form a sort of
amusement in combination.

2d. The second method, which is nearly the same as the pre-
ceding, will appear perhaps a little more evident. Let ¢ D and
cF (Fig. 27) be the squares of the two sides, which contain the
right angle of the triangle A ¢ B: having continued ¥ A untila ®
is equal ¢ B, on the side ¥ H construct the square FED G: and
on A B, the hypothenuse, the square A®. It may be easily
proved that the angles & and ¥ will be in the sides of the former,
and that am, 5D, EG, ¥F will be all equal, as well as Fa, BH,
DE, GN.

But it may be readily seen that, by drawing the line x 1 parallel to ¥ H, the
two squares ¢ D and ¢ F will be composed of the parts 1, 2, 3, 4, 5; and the
square A E is composed of the parts 1, 5, 6, 7, 8. But the parts 1 and 5 are com-
mon, and the parts 6 and 2 are evidently equal: it remains then that the parts 4
and 3 should be equal to the parts 7 and 8. But this is also evident; for the part 3
is equal to 9, and the part 8 to 5, consequently the parts 4 and 3, or 4 and &, are
equal to the parts 7 and 8, or 7 and 5, since the rectangle ¥ 1 is divided into two
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equal parts by the diagonal. The squares of the sides then are composed of the

same parts as the square of the hypothenuse, and consequently they are equal,

dd. Retaining the same construction, it is evident that the square ¥ D 15 equal
to the squares of the two sides o ¢ and ¢ B of the right-angled triangle a ¢ B, plus
the two equal rectangles ¢ ¢ and ¢ B. But the square A g, of the hypothenuse,
13 equal to the same square less the four equal triangles ABH, BED, EGN, NFa,
which taken together are equal to the two rectangles above mentioned, since each of
the triangles is the half of one of the rectangles, ‘The quantity by which the square
¥ b exceeds the squares of the sides of the right-angled triangle a c g, is the same as
that by which it exceeds the square of the hypothenuse: these squares and that of
the hypothenuse are therefore equal ; for quantities which are less than a third by an
equal quantity, are themselves equal,

We shall now give a few propositions which are only generalizations of the forty-
seventh of the first book of Euclid, and from which that celebrated proposition is
deduced as a simple corollary.

THEOREM II.

If a square be described on each of the sides of any triangle A B ¢ ( Fig. 28 and 29,3 ;
and if"a perpendicular & 0 be let fall from one of the angles, as B, on the opposite
side a c; if the lines v E and B ¥ be drawn in such a manner that the angles A £ B
and c ¥ B shal! be equalto the angle B ; and lastly if g 1 and ¥ L be drawn parallel to
¢ G, the side of the square, the square of A v will be equal to the rectangle a 1, and
the square of B ¢ to the rectangle ¢ L.; consequently the sum of the squares on A Band
B ¢ will be equal to the square of the base less the rectangle E L, if the angle B be
obtuse, and plus the same rectangle if the angle 8 be acute.”

Fig. 28. The demonstration of this theorem is as follows: the

: triangle A EB is similar to the triangle a B ¢, because the
angle A is common, and the angle A E B equal to the
angle ABc; consequentlyac: AE ;. AB: o E, whence

it follows that the rectangle of A¢c X A E, or of A E ¥
A H, which is the same since A H = A ¢, is equal to the
square of A B,

In like manner it may be proved that the square of
B ¢ is equal to the rectangle ¢ 1.

But it may be readily seen, that if the angle s be
obtuse, the line B E will fall between the points A and
D, and the line & ¥ between ¢ and »; the contrary of
which is the ease if the angle 8 be acute; and that
these two lines are confounded with, or coincide with,
the perpendicular B p, when the angle s is a right
one.

In the first case then it is evident, that the sum of
the squares of the sides, is less than the square of the
base by the rectangle E 1.

And in the second case, that they exceed it by the
rectangle E L.

Lastly, that if the triangle be right-angled at 5 ; as
the rectangle £ L vanishes, the sum of the squares of
the sides is equal to the square of the base; which is a very ingenious generali-
zation of the celebrated theorem of Pythagoras.

e v

* For this ingenious theorem, from which is deduced the famous problem of the right-angled
triangle, we are indebted to Clairault, junior, who putlished it at thesge of sixteen, in a small work
printed iu 1731. 'This young man would certainly have tredden in the steps of his brother, bad he
oot been cut off by o premature death.
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THEOREM III.

Let & B ¢ (Fig. 30.) be a triangle, and let any parallelogram c g be deseribed on the
side a ¢, and any parallelogram B ¥ on the side A D; continue the sides v E and K F
till they meet in the point u, from which draw the straight line w a v, and make 1. 1
equal to 0L A ; if the parallelogram ¢ o be then completed on the base v ¢, by drawing
B 0 or ¢ N parallel to 1. m, this parallelogram will be equal to the two ¢ & and B F.

Continue o pand x ¢ till they meet the sides of the paral.
30. Ielugl':mls eFand ci, in P and ®, and draw ¢ r.

Then since cr and 1 A are parallel, and comprehended be-
tween the same parallels, viz. ¢ o and » u, they are equal ;
consequently ¢ ris equal to L M. In like manner it may be
demonstrated that B 7 is equal to L . crand 5p therefore
are equal, and the figure 2 P R cis a parallelogram equal
to B N,

Now it is evident that the parallelogram n 1, on the base
R €, is equal to the parallelogram r ¢ 4 u, because it is on the same base and be-
tween the same parallels; and for the same reason the parallelogram acpeE=
A CRH; consequently the parallelogram acDE=ncLG.

It may be demonstrated, in like manner, that the parallelogram sk FA=3RFPGL;
consequently the two parallelograms c &, B ¥, are together equal to srarc, or to
B ¢ ¥ 0, which is equal to it.

Corollary.—The reader, if in the least acquainted with geometry, may readily
see that this very ingenious proposition is only a generalization of the celebrated
proposition by which it iz proved, that in every right-angled triangle, the =quares
of the two sides, containing the right angle, are equal to that of the hypothenuse.
For if we suppose that the triangle 3 A ¢ iz right-angled at a, and that the two
parallelograms ¢ & and g ¥ are the two squares, it may be easily conceived that the
third parallelogram s % will be also a square, viz. that of the hypothenuse ; in con-
sequence of the preceding demonstration then, these two first squares will be equal
to the third. This theorem is extracted from Pappus Alexandrinus.

THEOREM 1V.

If the base of a triangle be bisected, the squares of the other two sides are equal to twice
the square of half the base, and twice the square of the line joining the middle point
of the base to the vertical angle.

Fig. 31. For let o (Fig. 31.) be the middle of the base, andc E a
perpendicular from the vertex ¢ on the base A . Then a
= a4+ p+2ap.pEandprcf=8p*+pDC* — 2 pD.
DEoOr B¢ =a0*4 0D —2aD. pE. Whence byadding we

= iy B have A+ ecf=2a0°4| 2D

THEOREM V.

In every quadrilateral figure whatever, the sum of the squares of the four sides, is equal
to the sum of the squares of the two diagonals, plus four times the square af the line
which joins the middle of these diagonals.

Fig. 32, Let 4 5 ¢ b (Fig. 32,) be a quadrilateral figure, the two diago-

a nals of which are A ¢ and 8 p; and let us suppose them

divided each into two equal parts in E and ¥, and that the
straight line & ¥ has been drawn. It may be demonstrated, that
the squares of the four sides, taken together, are equal to the
squares of the two diagonals, plus four times the square

of E F.
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It is said that we are indebted to Euler for this elegant and very curious problem,
which may be easily demonstrated by the aid of the preceding theorem.

For jometos and . Then a4 s? =24+ 2, andap* 4=
248242 e v Therefore A B84 ap - =4 ar?4-2e?4- 210,
But B e* 20 =28B¥ 4 2 ¥ e therefore 2 pE* |- 2e 0*=4 B ¥*-}- 4 P 2. There-
fore a8t teprPtapr=43e*+-4 8+ 4rf=a 48?4 re’

Corollary.—If the guadrilateral is a parallelogram, then £ F coineide, and the pro-
position shews that the square of the sides of a parallelogram are together equal to
the squares of the diagonals.

The preceding theorem, therefore, is only a particular case of the prezent one.

PROELEM XVI
The three sides of a reetilineal triangle being given ; to determine its superficial content,
without measuring the perpendicular let fall from one of the angles on the opposite
side.

From half the sum of the three sides subtract each of the three sides separately ;
multiply the three remainders together, and the product by the half sum of the sides;
the square root of the last product is the area required.

Let the three sides, for example, be 50, 120, and 150 yards ; the half sum of which
is 160; the first difference is 110, the second 40, and the third 10: the product of
these four numbers is 7030000, the square root of which 1s 2653 and  nearly, which
is the area.

It may be easily shewn, that the usual method, that is to say, by finding the per-
pendicular let fall from one of the angles on the opposite side, would require a much
more tedious calculation,

Remark.—By this method we have a very easy rule for finding the radius of the
circle inseribed in a triangle, the three zides of which are given : nothing is necessary
but to multiply together the difference between each side and the half sum; to
divide the product by this half sum, and to extract the square root of the quotient:
the result will be the radius required.

Thus, in the zbove example, the product of the differences iz 44000; which
divided by 160, gives 275 ; the square root of this quotient 164g;, is the radius of the
circle inseribed in the given triangle,

PROBLEM XVII.

In surveying the side of @ hill, ought its real surface to be measured, or only the space
occupied by its horizontal projection ?

It may be easily proved that, in this ease, the horizontal projection or base only
ought to be measured ; for the object of surveying is nothing else than to determine
the quantity of any kind of production that land is eapable of producing, or the num-
ber of the buildings that can be erected on it. But it is evident that as trees and
plantz always rise in a direction perpendicular to the horizon, an inclined plane ean
contain no more than the horizontal one which corresponds toitas its base. In like
manner, no more buildings ean be raised on inclined ground, than on its horizontal
projection ; because the walls of an edifice must always be vertical: a little more
care only is required in building on such ground than on horizontal.

Another reason is, that inclined ground, compared with the horizontal ground in
the neighbourhood, contains less vegetable earth or mould, as part of it is always
carried away by the rains, and deposited on the lower grounds; consequently it is
not capable of supplying nourishment to such a quantity of productions as the
other.
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It is therefore evident that the horizontal surface only, and not the real or in-
clined surface, ought to be measured, unless these considerations are thought to be of
little value in adjusting the price.

Remark.—It is in topographical descriptions of mountainous countries chiefly, that
care should be taken to reduce the whole to a horizontal plane ; for if we suppose
that a country has been surveyed, and that, in measuring the sides of pretty steep
mountains, the real and not the horizontal distances of places have been taken, it
will be impossible, in construeting a map, to make the measures agree. This indeed
would be the same thing as if one should attempt to transfer to the plane or base of
a pyramid, the triangles which form its inclined sides : for if one of the triangles were
laid down on it, all the rest would be falsely represented.

PROBLEM XYVIII.
To form one square of five equal squares.
Fig. 33. No. 1. Divide one side of each of four of the squares, as A, n, ¢, D,

(Fig. 33. No. 1.) into two equal parts, and from one of the
‘\ﬂ mﬂ .:": €| angles adjacent to the opposite side draw a straight line to
— the point of division; then cut these four squares in the
[*E ™ ‘ [ B direction of that line, by which means each of them will be
divided into a trapezium and a triangle.
Lastly, arrange these four trapeziums and these four
Fig. 33 No. 2. triangles around the whole square E, as seen Fig. 33. No. 2;
= 7 and you will have a square evidently equal to the five squares
given.

Remark.—By means of the solution to the following pro-
blem, one square may be formed of any number of squares at
pleasure ; for any number of squares may be transformed into
an oblong, and we shall shew, in the next problem, how an
oblong may be resolved into several parts, susceptible of being arranged in such a
manner as to form a square.

PROBLEM XIX.

Any rectangle whatever being given ; to convert if, by a stmple transposition of parts,
tnfo @ square.

Fig. 34, No. 1. Let the given rectangle be A scp (Fig.34. No.l1.) To cut it into

¥ geveral parts susceptible of being arranged in a =quare, first find

1y 71 the geometric mean proportional between the sides B aand A n;

Ih']?,'f. : make A E equal to that mean proportional, and draw E ¥ per-
H M. i

pendicular to A&, EF will cut a b in the point ¥, which will
either fall beyond b, in regard to the point A, or on the point
p itself, or between b and a : this forms three cases, the last
of which subdivides itself into two, but if one of them be well
understood, there will be no difficulty in the rest.

Case 1st. In the first place then, let the point ¥ be beyond
D, as scen (Fig. 84, No.1.) Az the line e ¥ will intersect cp
in the point L, make A 6 equal to p L, and draw ¢ B perpendicular to o &, by which
means ¢ H will eat off from the triangle A Bk, the small triangle & ¢ 1.

Fig.34. No.2. . Then r:ult- the given ‘rcctm:g.]u :'u: int? I'rm:' p.'a.r:rs, Im'c:.ul':iing tf: the

nes AE, L, and ¢ 1, and the result will be the trapezium a E LD,
the triangle ® c1, the trapezium c pE u, and the small triangle a 6 m,
which we shall respectively denote by the letters a, b, ¢, d; lastly,
arrange these four parts as seen Fig. 34, No. 2, and you will have a
perfect zquare.
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The demonstration may be easily found, by considering, in Fig. 34, No. 1, the
square constructed on AE, viz. AEEI; but it is first necessary to shew, that
if a1 be drawn parallel to EF, and x1, through the point n, parallel to a &, the
rectangle A k K 1, thence resulting, will be a square. Now this is easy; for if 1K
be continued till it meet 5 ¢ produced in P, we shall evidently have the rectangle
AEKI equal to the parallelogram a g P n, which is equal to the rectangle asc D, OF
that of apand 4 D; hence it follows that A E into AT is equal to A B X aD. But
the square of A E is equal to A B into A D, consequently A E into A1 is the same thing
as the square of A L. ;

This being demonstrated, draw L ¢ parallel to A D, and L parallel to A i ; then,
from the points 3 and 6, to a D and A &, draw the perpendiculars 3 x and 6 H. It is
here evident that the triangle a 3 ~ is equal and similar to Exc: in like manner the
triangle A G 1 is equal and similar to DL K; and the trapezium BEHG is equal and
similar to ¥ p 1y, for BE is equal and parallel toD N, G to M¥, DItOEH, and M1
to cu. The four parts AELD, ECL, BEH G, A GH, which compose the rectangle
A C, are therefore equal to the four ABLD, A M N, ND1IM, and » L K, which compose
the square A EK I, or its equal, that of the same figure, No. 2, &e.

Fig.34. No.3. Case 2d. 1f the point ¥ falls on the r:::rint b, the Eﬂilltim} of the
problem wiil be exceedingly easy ; for in that case the triangle d
vanishes, since p L vanishes ; the square equal to the rectangle,
therefore, will be composed of the rightangled isosceles triangle
A E b (Fig. 34. No. 3.), and the other two right-angled and isosceles
triangles A B E and ¢ b E, equal to each other, and to the half of the
former; consequently these parts may be arranged in a square
without any difficulty. This case indeed can never exist but when
the side A B is exactly the half of A p: the rectangle A ¢ is then composed of two
equal squares. But the manner in which two equal squares may be fomed into one
is well known.

Fig.85. No. 1. Case 3d. Let us now suppose, that the point ¥ falls be-
tween A and p (Fig. 85. No. 1), but in such a manner that
FD is less than 8. In this case make EG equal to ¥, and
draw ¢ ® perpendicular to A E; by which means the rectangle
ac will be divided into four parts, viz., the ‘tri- Fig.35. No.2.
angle a E ¥, the trapezium ¢ D FE, the trapezium
ABcH, and the triangle Eam; which we shall
distinguish by the letters a, b, ¢, d. If these four
parts be arranged as seen Fig. 35, No. 2, we shall
have a perfect square,asmay be easily demonstrated.
Fig.35. No.3. If ¥ p be exactly equal to BE, it is evident, that instead of the tra-
] w pezium A B G H, we should have a triangle A 5/ ; so that the square to

3 be formed would consist of three triangles, and a trapezium EcpF, as
seen Fig. 35. No. 3.
If ¥ b exceeds £ B, and is exactly equal to A ¥, draw » P parallel to
Fie.35. No.4 E ¥, and if the rectangle be eut according to the lines A , E ¥, and PD
12, 00, Vo, &, g : :
, there will be formed three triangles and a parallelogram g o, which if
V‘ arranged as seen Fig. 35. No. 4, will compose the square A 1K E.
Lastly, we may suppose the height A » of the given rectangle to be
k such, that having the general construction described in the first part of
A this problem, the line ¥ b exceeds the line A ¥, or is any multiple of it,
with or without a remainder. In that ease, to resolve the problem, set off the line
A F as many times as possible on ¥ p. For the sake of simplification, we shall here
suppose that the former is contained in the latter only once, with the remainder L p.
Draw L M parallel to £ 7, and by these means we shall have the parallelogram LM EF,
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which may be placed in Fa ~ 0; then make Ec equal to pr, and draw ¢ 1 perpen-
dicular to A E; cut the rectangle A B e D according to the lines A g, EF, ML, and G m,
into five parts, viz., the triangle A gr, the parallelogram ¥ Ly g, the trapeziums
LDCM, AHGB, and the triangle ¢ wE; which we shall distinguish by the letters
a,b, ¢, d,e; these five parts can be arranged into a perfect square, as A 1 K B, which is
composed of the triangle a, the parallelogram &, the trapeziums ¢ and o, and the
small triangle e.

If A ¥ were contained twice in F D, six parts would be requisite ; two of them pa-
rallelograms as b.

By a sort of retrograde progress, the following problem may be resolved.

PROBLEM XX.

To cut a given square into 4, or 5, or 6, fe. dissimilar parts, which can be arranged so
as fo_form a rectangle,

Let it be required, for example, to divide the square AE k1 (Fig. 35. No. 1.), into
four parts susceptible of such an arrangement. On the side g K ascume E F greater
than the half of it, and draw 4 ¥; make A 0 equal to E¥, and draw oy parallel to
A F; lastly, from the point m, where o M meets 1K, draw M 58 perpendicular to A F;
the four parts required will be the triangles AEF, 0o 31, and the two trapeziums
AOMN, M % FK, which may be arranged in such a manner, as to form the rectangle
ABcD. To those who have comprehended the solution of the preceding problem,
this will appear evident,

Fig. 36. If five parts be required, assume ¥ (Fig. 36.), of such a
length, that it may he contained inE K twice, with a remainder;
let these parts of the line ek be k¥ and Fo, and let the re-
mainder be oK ; draw A ¥, and, making a ¥ and x p each equal
to E¥, draw no and pg parallel to aF, the latter of which
will meet the side K1 in @; from this point draw @ » perpen-
dicular to wo; and we shall have two triangles, a parallelo-
gram, and two trapeziums, which are evidently susceptible of
being formed into an oblong such as ABcD; since they are
the same parts into which that oblong might be divided, in
order to form, by their transposition, the square AEKI;
therefore, &c.

PROBLEM XXI.
To divide a line in extreme and mean ratio.

A line is divided in extreme and mean ratio, when the whole line is to one of the
segments, as that segment is to the other. As a great many g_;;em::etriml problems
are reduced to this division, some of the geometricians of the sixteenth century gave
it the name of the divine section. But without adopting so empbatical a denomina-
tion, we shall proceed to the solution of the problem.

Let the line, to be divided in extreme and mean ratio, be A B

Fig.37. (Fig 87.) TFrom its extremity B raise the perpendicular ® ¢,

and make it equal to the half of A B; draw a ¢, and make cn

equal to ¢ B; if A4 E be then made equal to the remainder A D,

the line A B will be divided as required, and we shall have this
ratio; aBisto AEas A Eisto E B,

Fig. 38. No. L. Remarks.—The line a b (Fig. 38. No. 1.) being divided in
e . extreme and mean ratio, if its greater segment be added to
R T € jt, we shall have the line b ¢, also divided in extreme and

mean ratio, in the point a; so that & ¢ will be to baas baistoac.
¥ K
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2d. The line b a (Fig. 88. No. 2.), being divided, in the samne

Fig.38. No. 2. manner in ¢, if ¢ d be made equal to the small segment b e, ¢a will

b——¢ 2 & then be divided in the same manner; that is to say, ca will be to
cdascdtoda.

PROBLEM XXII.
On a given base to deseribe a right angled triangle, the three sides of which shall e
in continued proportion,

Fig. 39. On the given base A B (Fig. 39.) deseribe a semicircle ;

D divide A B in extreme and mean ratio in ¢, and raise the perpen-

/,._- I, dicular ¢ p till it meet the semicirele in b ; then draw the lines
/l% ADand pu: the triangle A 8 p will be the one required, and
__J*f'-'f s A B will have the same ratio to A D as A D has to p B, as might

be easily demonstrated.

o

PROBLEM XXIII.

Two men, who run equally well, propose for a bet to start from a, and to try who shall
Jirst reach B, after touching the wallc v, (Fig. 40.) What course must be pursued in
order towin ¥

Fig. 40. It may be readily seen that, to determine the course to be
pursued in order to win, it will be neeessary to determine the
position of the lines o £ and E B, of such a nature, that their

sum shall be less than that of all the others, as a e, e 8, &e.

Put it may be demonstrated that this sum is the least possible,

when the angle A E ¢ is equal to the angle ren. For let us

suppose A ¢ drawn perpendicular to ¢ p, and continued till

c F be equal to a ¢,and that £ ¥ and £ 8 have been drawn ; in

this case the angles A £ c and ¢ k ¥ will be equal. But A g ¢ is equal tos £ p by the

supposition, consequently the angles ce ¥ and B E p will be equal also; and it thence
follows, that, as ¢ D is a siraight line, ¥ 8 will likewise be one. But B EF is equal

to & E and E A taken together, as Be and e ¥ are to Beand ¢ A; the course A

therefere will be shorter than any other Be a, for the same reason that » ¥ is shorter

than the lines B ¢ and e F.

To find then the point E, we must draw A c and B p perpendicular to the line ¢ b,

and then divide ¢ p in E, in such a mapner, that ¢ & shall be to ED as ¢ A to D B.

PROBLEM XXIV.
A point, a cirele, and a straight line, being given in position, to describe a cirele which
shall pass through the given point, and touch the cirele and
straight line.

Through the centre of the given ecircle draw n £ (Fig. 41.)
perpendicular to the given straight line, and let it cut the
circlein p and ¥; draw also B A to the given point a, and
take B ¢ a fourth proportional to B A, BE, B¥; if a circle be
then deseribed through the points a and 6, touching the line
¢ p, it will touch also the given circle,

If the point A be within the circle, the construction will be
the same: in this case itis evident that the line which ought
to be touched by the required circle, must enter the given ecircle
also; and there are even two circles which will resolve the pro-
blem, as may be seen in Fig, 42.
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PFROELEM XXYV.

Two circles and a straight line being given; to deseribe a cirele which shall touch
them all,

This problem is evidently susceptible of several cases; for the circle which touches
the straight line may inclose beth the other eircles, or ouly one of them, or may leave
them both without it ; but, for the sake of brevity, we shall confine ourselves to the
last case, and leave the rest to the sagacity of our readers, who, when they compre-
bend this solution, will find no difficulty to resolve the rest.

Let there be given two circles, whose radii are ca and c a

Fig. 43. (Fig. 43.), and let the line » E be given in position. In the
il ___:“?\,1 present case, on the radius ¢ A make a 0 equal ¢ a, and with the
( i BN radius c o deseribe a vew cirele; draw also beyond p E the
._HC- /I line d e parallel to p E, and distant from it by a quantity equal
\\\:—" st to ¢ a; then, by the preceding problem, describe a circle
/ ' ,’j:“? through ¢, which shall touch the eircle having for its radius c o,
~P{ 3 -Ji-*” and also the straight line d ¢; let the centre of this cirele be i;
;t H\“\\T‘J / if its radius be diminished by the quantity A o or ¢ a, the circle
TR described with this new radius will evidently be a tangent to
o the two given circles, as well as to the straight line v &,
L e -
PROBLEM XXVI.
Of inseribing reqular polygons in the circle.

Fin. 44 The following general method of inseribing regular polygzons
I‘q':, : in the circle, is given in various books of practical geometry.
On the diameter A B (Fig. 44.) of the given circle, describe an
;i-—'-f . equilateral triangle ; and divide this diameter into as many equal
/4 A parts as the required polygon is intended to have sides; then

4 el

B”ﬁ'-.:'ﬁ-:u-_:--'--_- J A from k, the summit of the triangle, draw through e, the extre-
]\ \ f,*’ mity of the second division, the line & ¢; and continue it {ill it
e meet the cireumference of the circle in p: the chord A p, they
say, will be the side of the required polygon to be inscribed.
We have noticed this method merely to say that it is 1:'|.'run1:l::-u5, and could be in-
vented only by a person ignorant of geometry, or .EIE.E intended only as near t.he
truth. For it may be easily duumn%truted that it is fulse, even ‘H,-IJI_',[II umplf)}'t'ﬂ i.ur
finding the simplest polygons. such for example as the octagol. 1t will be tuu“i“f-
deed, by trigonometrical ealenlation, that the uugh‘z DCa, \.'-"l.llt.'l'l‘ uugh.r. to }{“ 4.-3‘, is
48° 14; whenee it follows, that the chord AD is not the side of the inscribed
octagon. : 5 : : i
None of the regular polygons can be inseribed geometrically and without frlall, by
means of a rule and compasses, except the triangle, and those polygons deduced from
it, by doubling the number of sides, as the hex:ngun_, Lh!e dodecagon, &c.
T'he square and those polygons deduced from it in like manner, as the oetagon, the
sedecagon, &c. .y
The pentagon and those dedueed from it, as the dm:ngma_, mlu:I llu:? eikosiagon, &ec.
The pentedecagon and its derivatives, as the polygon of thirty sides, &ec. J
The rest, such as the. heptagon, enneagon, endecagon, &e., cannot be described by
means of the rule and compasses alone, without trial; and all those who have
attempted this method, have failed or have produced ridiculous p:lralugism_:-u :
The following in a few words, is the method of deseribing geometrically in a
circle, the five primitive polygons, which may be inscribed with the rule and

COimn pﬂSSES. 2
K
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Divide the circle a p B E (Fig. 45.) mto four equal parts,
by the two diameters A B and b E, intersecting each other at
right angles ; then divide the radius ¢ p into two equal parts
in ¥, and draw o ¥ ¢ parallel to A 1: the line & ¢ will be the
side of the inscribed equilateral triangle, as well as ¢ o
and o E.

The line & B, as every one knows, will be the side of
the square,

If & u be made equal to the radius, it is in like manner
evident, that it will be the side of the hexagon.

Divide the radius A ¢ into two equal parts in 1, and draw £1; make 1K equal to
1 ¢, and the chord £ 1 equal to the remainder EK : E L will be the side of the decagon ;
and by making the are L M equal to the arc Ex, we shall have the chord = for the
gide of the pentagon,

Then divide the are o o1, which is the difference between the arc of the pentagon
and that of the triangle, into two equal parts in », and draw the straight line o 5,
which will be the side of the pentadecagon, or polygon of 15 sides.

Remark.—~The heptagon is susceptible of a construction, not geometrical, but
approximated, which is pretty near the truth, and which on that account deserves to
be known; it is as follows: First describe an equilateral triangle, or at least deter-
mine the side of one, the half of which will be the side nearly of the insusceptible
heptagon. It will be found indeed by calenlation, that the side of the triangle, radius
being unity, will be equal to 086602, the half of which is 0-43301, and the side
of the heptagon is 0-43387 ; the difference therefore between it and half the side of
triangle, is less than a thousandth part.  Whenever then the thousandth part of the
radius of the given cirele is an insensible guantity, the above construction will ap-
proach very near to the truth.

[t is much to be wished that methods of construction equally simple, and as
near the truth, could be discovered for all other polygons; which indeed is not
possible

PROBLEM XXVII.

The side of a polygon of & given nuwmber of sides being known ; to find the centre of
the circumseriptible circle,

This problem is, in some measure, the reverse of the former, and may be easily
solved for the same polygons.

We shall say nothing of the triangle, the square, and the hexagon, because those
who are acquainted with the first elements of geometry, know how to find the
centre of an equilateral triangle and a square, and that the side of the hexagon is
equal to the radius of the circumseriptible cirele.

We shall begin therefore with the pentagon.—Let A B

Fig. 46. (Fig. 46.) be the side of the pentagon : at the extremity of

/ which raise the perpendicular A ¢, equal to 3 AB; drawsc,and
G, cut off from it ce=a¢, and make s¥ =5 E; then with the
c centre A, and the radius a ¥, describe an are of a circle, and

from the point B, with the radius B A, describe another inter-

"
El
|

Foos T h J*  secting the former in ¢ : the line B will be the position of the
' second side of the pentagon, and the two perpendiculars on the
\ middle of the sides A » and Bc will give, by their intersec-
\ / tion, he position of the centre u.
Vi For the octagon.—Let a B (Fig.47.) be the given side; on

this line describe a semicirele, and raise the radius ¢ ¢ perpendi.
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Fig. 47. cular, and indefinitely continued; draw the side of the square
X B G, and make ¢ F equal to the halfof BG; draw F B perpendi-
cular to the diameter, and through the point E, where it cuts
thf:. semicirele, draw A &, which will meet cc continued in p:
b thls‘puint D will be the centre of the circle requiredi.
];,,--" o . For the decagon. —1f a B (Fig. 46.) be the given side, find, as
E IFJ} pentagon were to be construeted, the line n ¥, and from the
) ) points A and B with theradius a ¥, deseribe the isosceles triangle
A & B: the point & will be the centre of the decagon,
: For the dodecagon, and any other polygons what-
Fig. 48 ever.—Let the line given for the side of the polygon
,,«f' be aB (Fig.48.) With any radius whatever ¢ p

A B @ﬁ describe a cirele, and inserihe in it the required
\  dodecagon or polygon, the side of which we shall

G i m {0 suppose to be pE: continue DEto F, if A 1 exceeds

\ D g, 30 that D F shall be equal to o 8, and then draw

¢ E, and its parallel ¥ c: the point where the latter

meets the diameter D | continued, will evidently be
the centre of the cirele, in which the required polygon is inseriptible,

Though we have given particular methods for the pentagon, octagon, and decagon,
it is evident that the last method may be applied equally to them all.

We shall conclude this article, on polygons, with the two useful tables, one of
which eontains the sides of the polygons, the radius of the circle being given, and the
other the length of the radius, the side of the polygon being known.  If the radius of
the circle then be expressed by 100000, the side of the inseribed triangle will be

withinan unitof .. ........ 175205 1 that of the decagon ...... §1803
that of thesquare........ 141421 that of the endecagon .. ., 56347
that of the pentagon .... 117537 that of the dodecagon .... 51763
that of the hexagon ...... 100000 that of the tredeeagon.. .. 47844
that of the heptagon ....  BG[T7 that of the tesseradecagon. | 44503
that of the octagon ....ss 76336 that of the quindecagon .. 41382

that of the enneagon .... G8404
On the other hand, if the side of the polygon be 100000, the radius of the cirele will

be, in the case of the triangle 57733 of the decagon +.vvuu.v.. 161804
of the square............ TO710 of the endecagon .......,. 177470
of the IH_-“[;;g[)n e B506GS of the llﬂih}ﬂ'il;{i}ll T e ]ﬂ.‘“ﬁ
of the bexagon «vveeeea-+ 100000 of the tredecagon ........ 200012
of the heptagon.. ssvessas 115237 of the tesseradeeagon ... 224703
of the octagon ..esss.... 130657 of the quindecagon ...... 240488

of the enneagon .eve.... 146190

PROBLEM XXVIIT,
Method of forming the different reqular bodies.

It was long ago demonstrated in geometry, that there can be only five bodies
terminated by regular figures, all equal to each other, and forming with one another
equal angles. These bodics are :

The tetraedron, which is formed by four equilateral triangles.

The cube, or hexaedron, formed of six equal squares.

The octaedron, formed of eight equal equilateral triangles.

The dodecaedron, formed of twelve equal pentagons,

The icosaedron, formed of twenty equilateral triangles.

Two methods may be employed to form any one of these regular bodies, The
first is, to construct a sphere, and then to cut off the excess, so that the remainder
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shall form the regular body required ; the other, which resembles the process used
in stone-eutting, consists in first tracing out on a plane, made at hazard, one of the
faces of the body to be formed, and then cutting out the adjacent faces, under the
determinate angles.

To resolye then the problem in question, we shall first answer the following
questions,

Ist. The diameter of a sphere being given, to find the sides of the faces of each of
the recular bodies.

2d. To find the diameters of the less circles of that sphere, in which the faces of
each of these bodies are inseriptible.

3d. To determine the opening of the compasses, with which each of these cireles
may be described on the surface of the same sphere.

4th. To determine the angles which the contiguous faces form with each other, in
their common intersection.

Ist. A sphere being given ; to find the sides of the faces of each of the five
reqular bodies.

Fig. 49, Let A e (Fig. 49.) be the half of a great circle of the given
& sphere, and A ¢ one of its diameters. Divide a ¢ into three
equal parts, and let a1 be two thirds ; draw 1 perpendicular

E B to the diameter, cutting the circle in g, and join a x: this
line will be one of the faces of the tetraedron, and ¢ = will be

A3
A

;‘/:' Y. %\ that of the cube or hexaedron,

/ i / \\‘» Then, through the eentre ¥, draw the radius ¥ B, perpendi-

¢ T A cular to a ¢, cutting the circlein B, and join A B: this line o B

will he the side of the octaedron inscribed in the same sphere.

The side of the dodecaedron will be found, by dividing £ ¢, the side the hexaedron,

in mean and extreme ratio, and taking for the side of the dodecaedron the larger
segment ¢ K.

Lastly, from a, the extremity of the diameter, draw the perpendicular a @, equal

to A ¢, and from the centre ¥ drawn the line ra, intersecting the eircle in m: an

will be the side of the icosaedron.
The radius of the circle being 10000, the side of the tetraedron will be found, by

caleulation, to be equal to 16320; that of the hexaedron or cube, 11546; that of
the octaedron, 14142 ; that of the dodecaedron, 77136 ; and that of the icosaedron,
10314,

2d. To find the radius of the lesser circle of the sphere, in which the face of the

proposed regular body is inscriptible.

T he method of determining the radivs of the cirele ﬂirﬂulﬁﬁl‘riptil}le to the irinng}cl
the square, and the pentagon, which are the only faces of the regular bodies, has
been shewn already, and consequently the problem is thus solved.

To express them in numbers, as we know that when the side of the equilateral
triangle is 10000, the radius of the circumscribing circle 1s 5773, therefore, as the side
of the tetraedron is 16329, nothing is necessary but to say, As 10000 is to 5773, so is
16329 to a fourth proportional, which will be 94206, h

It will be found, in like manner, that the radius of the lesser circle, in which the
octaedron can be inscribed, is 8164,

And it will be found alzo, that the radius of the eircle in which the face of the
icosaedron can be inscribed, is GOTO.

The side of the square being 10000, the radius for the circumscribing circle, as is
well known, is 70T1; which will give for the radius of the face of the hexaedron,
B1G4.
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Lastly, the side of the pentagon being 10000, we shall have for the radius of the
circumseribing eircle 8506, which will give for the radius of the face of the dodecac-
dron, G070,

3d. To determine the opening of the compasses, with whickh the cirele, capable of re-
ceiving the face of the regular Lody, ought to be described on the sphere.

Fig. 50. This is very easy; for if B F (Fig. 50.) be the radius of the
!essur circle of the sphere, capable of receiving the given face,
it is evident that ¥ D is the opening of the compasses proper for
describing this circle on the surface of the sphere. But ¥ is
the sine of the angle ¥ ¢ », which will consequently be given ;

" and ¥ is the double of the sine of half this first angle: ¢p
therefore may be found by secking in the tables for the angle
Fom, then halving it, afterwards seeking for the sine of that
half, and then doubling this sine. This operation will give the

value of Fo, which in the ease of the tatraedron will be 11742; in those of the

hexaedron and octaedron, 9192; and in those of the dodecacdron and icosaedron,

6408,

i,

4th. To find the angle formed by the faces of the different regular bodyes.

Fig, 51. Dreseribe a eircle (Fig. 51.) as large as possible, and determine

¢ in it the side of the regular body required ; if a perpendicular
”_‘\ be then let fall from the centre on this side, it will be the dia-
/ \ meter of a second ecirele, which must also be described, We

Af——————p  shall here suppose that this diameter is a B.

Describe then, on the side of the regular body found, the
proper polygon, or at least find the centre of the circumseribing
circle, and from this centre let fall a perpendicular on the side
which has been found ; in the second circle already mentioned, make the lines a p
and A ¢ equal to this perpendicular, and the angle » A ¢ will be equal to the angle
required.

It will be found, by ealeulation, that this angle, for the tetraedron, is T0° 32°; for
the hexaedron, 90%; this is evident because the faces of the cube are percendicular
to each other; for the octaedron, 109° 28°; for the dodecaedron, 116° 34'; and for
the icosaedron, 138° |2,

We shall here collect all these dimensions in the following table, where we sup-
pose the radius of the sphere to be 10000 parts.

Iy

Sides Radii of the Distances Angles of
- e e L LR T
Tetraedron 16329 0426 115742 70° 32’
Hexaedron 11540 B164 9192 a0 00
Octaedron 14142 B1G4 0192 109 28
Dodecaedron FEEET: GO0 6408 116 34
Teosasdron L 10514 G070 G408 138 10

It will now be easy to trace out, by either of the above methods, any required
regular body whatever,

First method.—Let it be required, for example, to form a dodecaedron from a
sphere.  First deseribe a eircle of a diameter equal to that of the sphere, and deter-
mine in it the side of the dodeeaedron, or the side of the pentagon, which is one of
its faces; also the radius of the circle in which this pentagon can be inscribed, and the
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opening of the compasses proper for describing it on the sphere; which may be easily
done by the precepts before given.

Or, if we suppose the radius of the proposed sphere to be 10000 parts, take upon
a seale G408 of these parts, and with this opening of the compasses describe, on the
surface of the sphere, a cirele on the eircumference of which the five angles of the
inscriptible pentagon may be determined ; from two neighbouring points describe,
with the same opening of the compasses, two ares, the intersection of which will be
the pole of a new civele, equal to the former: continue in this manner, from every
two points, and you will have the rve poles of the five faces, which rest on the
first. In like manner, you may easily determine the other poles, the last of which,
if the operation be exact, ought to be diametrically opposite to the first. Lastly,
from these twelve poles, deseribe two equal circles, whicli will both be cut into five
equal parts, and these will determine twelve segments of a sphere, which being cut
off, will give the twelve faces of the dodecaedron required.

Second method.—Having first found out, on the proposed block, a plane face, de-
scribe on it the polygon belonging to the regular body required ; then cut out, on
each side of this polygon, a new plane, inclined according to the proper angle, as
determined in the above  table, or which has been traced out by means of the
geometrical construction before given, and you will thus obtain so many plane faces,
on which new polygons, having one side common with the first polygons, must be
described.  If the same thing be done on these polygons, you will at length arrive
at the last, which, if the operation bas been exactly performed, must be perfectly
equal to the first,

Sth. To form the same bodies of a picce of card.
If you are desirous of forming these bodies of a piece of card or stiff paper, the
following method will be the most convenient.

First trace out on the card all the faces of the
4 required body, viz. four triangles for the tetrae-
=1

" dron, as seen Fig, 52, No. 1, six squares for the
\ % ; I |
| a

Fig. 52,

cube, as No. 2, eight equilateral triangles for the
F octaedron, No. 3, twelve pentagons for the dode-
cacdron, No. 4, and twenty equilateral triangles
for the icosaedron, No. 5. If you then cut the
edges, it will be easy to fold up the faces so as to
join, and if they be then glued together, you will
have the rezular body complete.

The ancient geometricians made a great many geometrical speculations respeeting
these bodies ; and they form almost the whole subject of the last books of Euclid's
Flemenizs. A modern commentator on Euelid, M. de Foix Candalle, has even ex-
tended those speculations, by inseribing these bodies within each other, and com-
paring them under different points of view; but, at present, such researches are
considered as entirely useless. They were suggested to the ancient, by their be-
lieving that these bodies were endowed with mysterious properties, on which the
explanation of the most secret phenonomena of nature depended. With these
bodies they compared the celestial orbs, &e. Bat sinee rational philosophy has
begun to prevail ameng mankind, the pretended energy of numbers, and that of the
regular bodies of nature, have bheen consigned to oblivion, along with the other
visions, which were in vogue during the infancy of philosophy, and the reign of
Platonism. For this reason, we shall say nothing farther of these speculations, and
confine ourselves to a very curious problem, respecting the cube or hexaedron.
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PROBLEM XXIX.

T cut a hole in a cube, through which another cube of the same size shall be able to
pass.

If we conceive a cube raized on one of its angles, in such a manner, that the
diagonal passing through that angle shall be perpendicular to the plane which it
touches ; and if we suppose a perpendicular let fall on that plane from each of the
elevated angles, the projection thence resulting will be a regular hexagon, each side
and each radius of which may be found in the following manner.

Fig.53. On the vertical line A B_(Fi;_::..ﬁﬂ.} equal to the diagonal of the

cube, the square of which is triple to that of the eube, deseribe a

A semicircle, and make ac equal to the side of the cube; from the

/ point ¢ let fall, on the horizontal tangent of the cirele in B, the per-
C

pendicular ¢, B E will be the side and the radius of the required
hexagon abed, Fig. 54.

When this operation is finished, describe on its hexagonal projec-
tion, and around the same centre, the square which forms the pro-
jection of the given cube placed on one of its bases, so that one of
Fig. 54. sides shall be parallel, and the other perpendicular to the diameter
ac: it may be demonstrated, that this square can be contained within
the hexagon, in such a manner, as not to touch with its angles any
of the sides: a square hole therefore, equal to one of the bases
of the cube, may be madein it, in a direction parallel to one of its
d diagonals, without destroying the continuity of any side ; and con-
gequently another cube of equal size may pass through it, provided
it be made to move in the direction of the diagonal of the former.

PROBLEM XXX.

With one sweep of the compasses, and without altering the opening, or changing the

centre, to describe on oval.

This problem, as is the case with others of a similar kind, is a mere deception ;
for it is not specified on what kind of surface the required curve ought to be de-
scribed. Those to whom this problem is proposed, will think of a plane surface,
and therefore will consider it impossible, as it really is; while indeed the surface
meant is a curved one, on which it may be easily performed.

If a sheet of paper be spread round on a cylindric surface, and if a circle be de-
seribed upon it with a pair of compasses, assuming any point whatever as a centre,
it iz evident that, when the sheet of paper is extended on a plane surface, we shall
havean oval figure, the shortest diameter of which will be in the direction correspond-
ing to that of the axis of the cylinder.

We should however be deceived, were we take this curve for the real ellipsis, so
well known to geometricians. The method of deseribing the latter is as follows.

PROBLEM XXXI.
To describe a true oval or ellipsis geometrically.
The geometrical oval iz a curve with two unequal axes, and having in its greater
axis two points so situated, that if lines be drawn to these two
points, from each point of the circumference, the sum of these
two lines will always be the same.

Let A B (Fig. 55.) then be the greater axis of the ellipsis to
be described ; and let »E, intersecting it at right angles, and
dividing it into two equal parts, be the lesser axis, which is also
divided into two equal parts in ¢; from the point D asa

Fig. 55.
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centre, with a radius equal to a ¢, deseribe an arc of a circle, cutting the
greater axis in F and J: these two points are what are called the foci: fix n
each of these a pin, or, if you operate on the ground, a very straight peg; then-
take a thread, or a chord if you mean to deseribe the figure on the ground, having
its two ends tied together, and in length equal to the line a B, plus the distance ¥ f;
place it round the pins or pegs ¢ f; then stretch it as seen at ¥ f, and with a
pencil, or sharp pointed instrument, make it move round from B, through o, A, and
E, till it return again to B: the curve described by the pencil on paper, or on the
ground by any sharp instrument, during a whole revolution, will be the curve
required.

This ellipsis is ealled the Gardener's Oval; becanse when gardeners deseribe that
figure, they use this method,

It is here seen that the geometric ellipsis, or oval, is, as we may say, a circle with
two centres; for in the circle the distance from the centre to any point of the eir-
cumference, and from that point back to the centre, is always equal to the same sum,
viz. the diameter. In the ellipsis, where there are two certres, the distance from
one of them to any point of the eircumference, and from that point to the other
centre, is always equal to the same sum, or to the greater diameter.

A circle therefore is nothing else than an ellipsis, the two foci of which, by con-
tinually approaching, have at length been united and confounded with each other,

Another method of describing an ellipsis, which may be also used sometimes, is as
follows.

Let A me (Fig.56.) be a square, and B & and E1 the two

Fig. 56. semi-axes of the ellipsis o be deseribed., Provide a rule, such

A as E p, equal to the sum of these two lines, and baving taken

/Aj]-* E F equal to B 1, fix in the point F, by some mechanism which

_,_,..lg may be easily invented, a pencil or piece of chalk, capable of

P tracing out a line upon paper ; then make this rule turn in the

/ﬁﬂ given right angle, in such a manner, that its two extremities

shiull always touch the sides of that angle, and during this

movement the pencil fixed in 7 will describe a real geometrical
ellipsis.

It may be readily seen, that if the pencil or chalk were fixed in the point G, which
divides » £ into two equal parts, the curve deseribed would be a cirele,

Vil
E

Remark.— Another sort of oval, very much nsed by architeets and engineers, when
they intend to form a fat or an acute arch, is called by the French workmen anses
de paniers. It consizts of several arcs of circles having different radii, which mu-
tually touch each other, and which represent preity nearly a geometrical ellipsis.
But it has one fault, which is, that however well these arcs touch each other, a nice
eye will always observe at the place of junction an inequality, which is the effect of
the sudden transition of one curve to another that is larger. For this reason, any
arch which rises on its pier without an impost, seems to form an inequality, though
the arch at itz junction with the pier may touch it exactly.

This inconvenience however is compensated by one advantage, which is, that for
the vousseirs of the arch, there is no need but of two panneauz, or model boards, if
the quarter of the oval be formed of two ares, or of three if it be formed of three:
whereas, if it were a real ellipsis, it would have oceasion for as many parneaur as
vousspirs. If any one however should have the eourage, and it would require no
small degree of it, to surmount this diffieulty, we entertain no doubt that the real
ellipsis would have more beauty than this bastard kind of it.
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PROPLEM XXXII.
On a yivﬂ‘.'l.ﬁﬂﬂ!, to describe an infinite number of triangles, in which the sum of the
two sides, standing on the hase, shall be always the same.

This is only a corollary to the preceding problem. TFor on a given base let there
be described an ellipsis, baving the two extremities of that base as its foei: all the
points of the ellipsis will be the summits of as many triangles on the given base ¥ 6 f,
¥ g f, (Fig. 55.), and the sum of their sides will be the same ; consequently they will
all have the same perimeter, and the greatest triangle will be that which has its two
sides equal ; for it is that which has the summit at the most elevated part of the
ellipsis.

THEOREM VI.

Of all the isoperimetric figures, or figures having the same perimeter, and a determi-
nate number of sides, the greatest is that which has all its sides and all its angles
equal.

Fig. 57. We shall firsf demonstrate this theorem in regard to triangles.

Let a cn (Fig. 57.) then be a triangle on the base a B, the sides

of which ac and ¢B are unequal. We have already shewn,

that if there be constructed a triangle a ¥ B, the equal sides of
which A ¥ and ¥ B are together equal to A ¢ and c B, the triangle

A FB will be greater than a ¢ b.

For the same reason, if there be constructed, on A 7 as a base,
the triangle A b ¥, the sides of which, o & and & ¥, are equal to
each other, and together equal to A B and B ¥, the triangle o & F will be greater than
aFB. In like manner, if we suppose F a and a & equal, and their sum equal to F a
and A B, the latter triangle ¥ # & will be still greater than a ¥ 5, which has the same
perimeter, &c. But it may be readily seen by this operation, that the three sides of
a triangle always approximate towards equality, and that, by conceiving it continued
ad infinitum, the triangle would at length become equilateral, and consequently the
equilateral triangle will be the greatest of all.

For example, if the three sides of the first triangle be 12, 13, 5, the zides of the
second will be 12, 9, 9; those of the third 9, 104, 10}; those of the fourth 104, 9§,
9% ; those of the fifth 93, 10}, 10} ; those cf the sixth 103, 3, 93; those of the
seventh 94§, 104, 10, and so on; by which it is seen that the difference always de-
creases ; so that at last the three sides become 10, 10, 10, and the triangle will then
be the greatest of all.

If we now take a rectilineal polygen, such as A B¢ D E F (Fig.
58.), all the sides of which are unequal : draw the lines 4 ¢, CE,
and & o. By what has been already shewn it will be seen, that
if an isosceles triangle a b c be described on A ¢, in such a
manner, that a band b ¢ shall be together equal to A B and
B ¢, the polygon, though of the same perimeter, will become
greater by the excess of the triangle A b ¢ above A B¢, If the
same thing be deneall around, the surface of thepolygon will be
continually augmented; all its sides and its a.ng]-:s will more
and more approach to equality ; and consequently the greatest of all will be that which
has all its sides and angles equal. : :

We shall now demonstrate, that, of two regular polygons, having the same peri-
meter, the greater is that which has the greatest number of sides. 1 For this purpose
let any polygon, an equilateral triangle for example, be eircumseribed {‘nund a i?ll‘l:]l:!,
and let & ¥ u 1(Fig. 59.), be an bexagon circumscribed about the same eirele : it 15 evi-
dent that the perimeter of the latter will be less than that of the triangle; for the

Fig. 58.
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parts ¥ E, ¢ H, and 1 K, are common, and the side a ¥ is
less than ¥ & plus B 6, &e.; a hexagon, concentric to the
former, and equal in perimeter to the triangle, which we
here suppose to be a ¥ o, will therefore be without the
hexagon k ¥ 1 ; consequently the perpendiecular c { will
be greater than ¢ L. But as the triangle has the same
perimeter as the hexagon M N o, their areas will be as
the perpendiculars ¢ 1, ¢ £, let fall from the centre of the
circle ; and therefore the hexagon, having the same peri-
meter as the triangle, will be the greater.

What has been demonstrated in regard to a triangle and hexagon of the same peri-
meter, is evidently applicable to any other two polygons, one of which has a number
of sides double to that of the other; consequently the more sides a polygon of a
determinate perimeter has, the greater is its area.

Remarks.— 1st. This leads us to a consequence much celebrated in geometry,
which is : that ofall the figures, having the same perimeter, the circle is of the greatest
capacity ; for a circleis only a polygon of an infinite number of sides, or, to use a more
geometrical expression, is the last of the polygons resulting from their sides being con-
tinually doubled ; consequently it is the greatest of all.

2d. We shall here remark also, that if upon any determinate base, and with a de-
terminate perimeter, there be described several figures, the greatest will be that
which has the greatest number of sides, beside the base, and which approaches nearest
to regularity ; hence it follows, that if it be required to deseribe, with a determinate
length, ona given base, the greatest figure, that figure will be the segment of a circle,
viz. a segment having that base for its chord, and for its are the given length.

All these things may be demonsirated by a mechanical consideration, For let us
suppose a vessel, the sides of which are flexible, and that any liquor is poured into
it ; the sides it is certain will arrange themselves in such a manner as to contain the
greatest quantity possible. On the other hand, it is well known that the vessel will
assume the cylindrie form ; that is to cay its base and the sections parallel to the base
will be circular ; hence it follows that, of all figures baving the same perimeter, the
circle is that which comprehends the greatest area.

By means of the above observations it will be easy to solve the following questions.

I.—a has a field 500 poles in circumference, which is square; B has one of the
same circuniference which is an oblong, and proposes to A an exchange. Ought

the latter to accept the offer #

It is easy to answer that he ought not ; and A would sustain more loss by the ex-
change the greater the inequality is between the sides of the field belonging to s, This
inequality might even be such, that the latter field would be only the half, or the
fourth, or the tenth part of that of a. For let us suppose the field of a to be 100
poles on each sidey and that the field of B is a rectangle, one side of which is 190
poles, and the other 10, by which means it will have the same perimeter as the other ;
it will however be found that the surface of the latter will be only 1900 square poles,
while that of the former will be 10000. If one side of the field belonging to B were 195
poles, and the other 5, which would still make the perimeter 400 poles ; its surface
would be only 975 poles, which is not even a tenth part of that of the field belong-
ing to a.

Il.—A farmer borrowed a sack of wheat, measuring 4 feet in length, and 6 Sfeet in cir-
cumference ; for which he returned two sacks of the same length, and each 3 Jeet in
circumference : did he return the same quantity of wheat ¥
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He returned only half the quantity ; for two equal circles, having the same perimeter;
taken together, as a third, do not contain the same area; the area of both is only
the half of the third, each of them being but a fourth of it.

II.—A green-grocer purchased for a certain sum, as many heads of asparagus as
could be contained in a string a foot in length ; being desirous to purchase double
that quantity, he returned next day to the market, with a string of twice the length,
and offered to double the price of the former quantity, for as many as it would con-
tain., Was his offer reasonable ?

No—the man was in an error toimagine that a string of twice the length would con-
tain only double the quantity of what he puerchased the preceding dav; for a circle
which has its circumference double to that of another, bas itz diameter double also,
But the area of a circle, the diameter of which is double to that of another, is equal
to four times the area of the other,

Remark.—1t remains for us to observe here that as the eircle of all the figures
having an e ual perimeter, is the greatest ; the sphere among the solids is that which
contains the greatest volume.  Thus, if it were required to make a vessel of a deter-
minate capacity, but in such a manner as to save the materials as much as possible,
it ought to be in the form of a sphere. But this will be better illustrated by the fol-
lowing problem,

PROBLEM XXXITI.

A gentleman wishes to have a silver vessel of a eylindric form, open at the top, capalle
of containing a culie fool of Lquor ; but being desirous to save the material as much as
possible, requests to know the proper dimensions of the vessel.

If we snppose that the vessel ought to bea line in thickness, for example, it is
evident that the quantity of the matter will be proportional to the surface, The
gquestion then is: OFf all the cylinders, capable of containing a cubic foot, to deter-
mine that which shall have the least surface, exelusive of the top.

It will be found that the diameter of the base ought to be 16 inches 4 lines;
and the height 8 inches 28 lines, which is the ratio of nearly 2 to 1 between the
diameter and the height.

If it were required to have the vessel in the form of a cask, close at both ends, the
question would be: To find a cylinder which shall bave its whole surface, compre-
hending the two bases, greater than that of any other of the same capacity. Inthis
case the diameter of the base ought to be 13 inches, and the height 12 inches 52 line.

PROBLEM XXXIV.
On the form in which the Bees construct their Combs.

The ancients admired bees on account of the hexagonal form of their combs. They
observed that, of all the regular figures which can be united, without leaving any
vacuum, the hexagon approaches nearest to the circle, and with the same capacity
has the least perimeter; whence they inferred that this animal was endowed with a
sort of instinet, which made it choose this figure as that which, containing the
same quantity of honey, would require the least wax to construet the comb; for it
appears that bees do not prepare wax on its own account, but in order to construct
their combs destined to be the repositories of their honey, and receptacles for their
young.

This however is far from being the prineipal wonder in regard to the labour of
bees, if we can give the name of wonder to alabour blindly determined by a peculiar
organization; for it may be remarked, in the first place, that it is not absolutely
wonderful that small animals, all endowed with the same activity and the same
force, pressing outwards, from within, small cells all arranged close to each other,
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and all equally flexible, should give them, by a sort of mechanical necessity, a hexa-
gonal form. If we suppose indeed a multitude of eireles, or small eylinders, highly
flexible and somewhat extensible, close to each other, and that forees acting inter-
nally, and all equal, tend to make heir sides approach each other, by filling up
the vacuities left between them, the first form they will assume will be the hexa-
gonal; after which all these forces remaining in equilibrium, nothing will tend to
change that form.

However, not to deprive the bees of the admiration which they have excited in
the above respect, we shall remark that this is not the manner in which they labour.
They do not first make circular cells, and then transform them into hexagons by
extending them in concert. The eells, which terminate an imperfeet comb, are
composed of equal planes inelined to each other, nearly in that angle which the hexa-
gonal form requires, But let us proceed to ahother singularity, still more wonder-
ful,in regard to the labour of bees,

This singularity consists in the manner in which the bottom of their cells is formed.
We must notindeed imagine that they are all uniformly terminated by a plane perpen-
dicular to their axes; there is a method of terminating them which employs less wax,
and even the least possible, still leaving to the cells the same capacity ; and it is this
method which these inseets adopt, and which they execute with great precision,

To execute this disposition, itis necessary, in the first place,that the tworows of cells,
of which 1t iz well known acomb comsists, and which stand back to back, should not be

Fig. 00. arranged so as to make their axes eorrespond, but in such a manner

s N that the axis of the one may be inaline with the common juncture

! of three posterior. As is seen Fig. G0, where the hexagon de-

scribed with black lines corresponds with the three formed of

dotted lines, which represent the plane of the posterior cells;

and it is thus that the cells of bees are arranged, to suit the dis-
position of their common bottoms,

In the second place, to give an idea of this disposition, let us
suppose an hexagonal prism, the upper base of which is the hexa-
gon o B ¢DE F (Fig. 61.) with a triangle A 2 ¢ inseribed in it.
Let the axis P o be continued to s, and through the point 5 and
the side a c let a plane pass, which shall cut off from the prism
the angle B, =0 as to form a rhomboidal face A s ¢ T; such is
one of the bottoms of the cell of a comb: if two other similar
planes be made to pass through s and the sides a & and & ¢, they
will form the other two; so that the bottom is terminated by a

triangular pyramid.

It may be readily seen, that wherever the point 8 may be situated, as the pyramid
AC o8 is always equal to A ¢ B T, and as the case is the same with the rest, the capa-
city of the cell will not vary, whatever be the inclination of that part of the bottom
turned towards a ¢. DBut the case is different with the surface where there is such
an inclination, that the whole surface of the prism and of its bottom will be less
than with any other inelination, It has been found, by the researches of geometri-
eians, that, for this purpose, the angle formed by the bottom with the axis ought to
he 54° 447 ; from which there results the smaller angle of the rhombus A T c or s s ¢,
equal to 70° 32, and the other sa T or scr of 109° 28,

But this is exactly the inclination of the sides of the parallelogram, formed by
each of the three inclined planes of the bottom of the cells of a comb, as appears
by the mensurement of a great many of these cells. Hence there is reason to con-
clude, that bees construct the bottom of their cells in the most advantageous form,
so as to have the least surface possible, and in such a manner indeed, as can be de-



GEOMETRICAL PROBLEMS. 143

termined only by modern geometry.®* Who can have given to these insects, so con-
temptible, not in the eyes of the philosopher, who never despises the least of the
works of the Deity, but in the eyes of the vulgar, that wonderful instinet, which
directs them to perform so perfeet a work, but the supreme Geometrician, of whom
Plato said, what is verified more and more as we become acquainted with the works
of nature, that he does every thing numero, pondere, et mensura,

PROBLEM XXXV,
What is the greatest polygon that can be formed of given lines #

It may be demonstrated that the greatest polygon that can be formed with given
lines, is that about which a eirele can be ecireumseribed,

But it may be still asked, whether there be any particular order, in regard to
the sides, capable of giving a greater polygon than any other arrangement. We can
answer that there is not; and that, whatever be the arrangement, if the polygon can
be inscribed in a circle, it will be always the same; for it may be easily demon-
strated, that whatever be this order, the size of the circle will not vary; the poly-
gon will always be composed of the same triangles, having their summits at its
centre : the only difference will be, that they will be differently arranged.

PROBLEM XXXVI.

What is the largest triangle that can be inscribed in a circle; and what is the least
that can be circumseribed about 1t ?

The triangle required in both these cases is the equilateral.

The case is the same with the other polygons. ‘The greatest quadrilateral figure
that can be inscribed in the cirele, is the square ; this figure also is the least of all
those that ean be circumseribed about a circle.

The regular pentagon is likewise the greatest of all the five-sided figures that can
be inseribed in the circle; and the same figure is the least of all the pentagons that
ean be circumseribed about the eircle. And so on.

PROBLEM XXXYVII.

A B (Fig. 62.) is the line of separation between two plains ; one of which Ac1p con-
sists of soft sand, in which a vigorous horse can scarcely advance at the rate of a
league per hour ; the other A BD K is covered with fine turf, where the same horse,
without much fatique, can proceed at the rate of a lcague in half an hour ; the two
p:’uccs C and D are g'!:I:-E!.I'-t in j‘.’lﬂ.'h'tf{)ih et i3 to ey the distance C A and DB of eacilt
Jfrom the line of boundary A B, as well as the position and length of A B, are known ;
now if a traveller has to go from © to ¢, what route must he pursue, so as to employ
the least time possible on his journey ?

Most people, judging of this gquestion according to common ideas, would imagine
that the route to be pursued by the traveller, ought to be the straight line. In this
however they would be deceived, as may be easily shewn ; for if the straight line

Fig. 62, ¢ ED be drawn, it may be readily conceived that it will be gaining
an advantage to perform, in the first plain, where it is difficult to
travel, the part of the journey ¢ ¥, which iz somewhat shorter than
cE; and to perform in the second, where it is much easier to
travel, the part.¥ p, longer than » E, that is to say, than the space
which would be passed over by going directly from ¢ to p; so that

less time would really be empleyed to go from ¢ to », by c v and r n,

than by c e and E D, though the road by the latfer is shorter.

* The Abbz Delisle says improperly, in the notes to the foorth book of his Translation of the
Georgics, that Reauwmer, having proposed this problem to Keenig, the |atter, offter a great sany
calcadations, at length found the angle of the inclination of the planes which form the bttom of
these cells.  Mothing however is easier than the solution of this problom by means of fluxions:
two lines of caleulation are sufficient; and a solution muy even be given without that assistance.
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This indeed may be demonstrated by caleulation. For if B¢ be drawn per-
pendicular to A B, through the point ¥, it will be found that one can go from
¢ to p, in the least time possible, when the sines of the angles cr G and D F | are
to each other respectively in the inverse ratio of the velocity with which the tra-
veller can pass over the planes A c 1B and a 5D K, that is to say, in the present case,
as 1 to 2; and therefore the sine of the angle ¢ ¥ G, ought to be half only of that of
the angle » F 1.

PROBLEM XXXVIII.
On a given base to describe an infinite number of triangles, in such a manner, that the sum
of the squares of the sides shall be constantly the same, and equal to a given square.
; Let a B (Fig. 63 and 64.) be the
Ffﬂ}: 3. Fig. 64 given base, which must be divided

F mto two equal parts in c; then
T &
”’f'w from the points A and B, with a
m radius equal to half the diagonal
(_;.ﬂ o i- - = -
B W T s of the given square, deseribe an

isosceles triangle, of which ris the
vertex; draw € ¥, and from the point ¢, with the radius ¢ ¥, describe a semicircle on
A B, produced if necessary : all the triangles having A B for their base, and whose ver-
tices are at F, f, ¢, in the circumference of the circle, will be of such a nature, that
the sum of the squares of their sides will be equal to the square given, :

Remark.—Every one knows that when the sum of the squares of the sides is equal
to the square of the base, the triangle is right-angled, and has its vertex in the cir-
cumference of the circle deseribed on that base. Here it is seen, that if the sum of
the squares of the sides is greater or less than the square of the base, the vertices of
the triangles, which in this first case are acute-angled, and in the second obtuse-
angled, are always in a semicirele also, having the same centre, but on a diameter
greater or less than the base of the triangle; whichis a very ingenious generalization
of the well known property of the right angled triangle.

PROBLEM XXXIX.

On a given base, to describe an infinite number of triangles, in such a manner, that the
ratio of the two sides, on that base, shall be constantly the same.

Divide the given base Ao B (Fig. 63.) in such a manner

Fig. 65. in p, that A D may be to p B, in the given ratio, which we

a . Jf shall here suppose to be as 2 to 1. Then say, as the
Jﬁ‘f" 0 : difference between apand nristopB,s0is A Bto BE;

/ Ffffﬁ&qJ.g:}T' and if A » exceeds p B, B E must be taken in the direction
A B C E A BE] then divide p & into two equal parts in ¢, and from

¢ as a centre, with the radius ¢ D or ¢ E, deseribe a semi-
cirele on the diameter o E: all the triangles, as A¥B, A 5, A ¢ B, &c., having the
same base A B, and their vertices ¥, f, 4, in the circumference of this semicircle, will
be of such a nature, that their sides a7, ¥B; A f, f5; A ¢, ¢ B, will be in the same
ratio, viz., that of A D to p B, or of A Eto E B, which is the same thing,

But the centre ¢ will be found much easier by the following construction: on a b
describe the equilateral triangle A G p, and on » B, the equilateral triangle D H B;
through their summits, ¢ and 1, draw a straight line, which being continued will
cut the continuation of A B in the point ¢, and this point will be the centre required.

THEOREM YII,

In a circle, if two chords, as a® and cp (Fig. 66.) intersect eack other at right
angles ; the sum of the squares of their segments, ¢ E, AE, ED, and & B, will always
be equalto the square of the diameter.
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The demonstration of this curious and elegant theorem, is exceedingly easy ; for
it may be readily seen, if the lines 8 p and A ¢ be drawn, that their two squares are
together equal to the squares of the four segments in question.

Fig. G6. Moreover, by making the are rc equal to A b, we shall have the

Fb a3t arc ¥ p equal to A ¢, and consequently the angle ¥ p ¢ equal to

F s‘r AcE, which is itself equal to a sp; the angle ¥ D B therefore

“-.:‘H"M will be a right angle, since it i1s equal to £ p & 2and B E, which

e h""“-ﬂ.,‘_‘ together make a right angle; hence the squares of o and v 5

A\\: — are equal to the square of the hypothenuse ¥ n, which is the
e diameter.

It must here be remarked, that the result would be the same,
if we suppose the point e, where the chords meet, to be without the circle; in that
case the four squares; viz. those of e a, ¢ b, e e, and e d, would still be together equal
to the sguare of the diameter.

Remark.—Circles being to each other as the squares of their diameters; it is evi-
dent that if on E A, EB, Ec, and ED, as diameters, four cireles be deseribed, these
circles will be together equal to the circleacsp. And they will also be propor-
tional ; for we know that BE is to Ecas Ep is to EA. But if four magnitudes are
proportional, their squares are so also. Moreover, it is evident that whatever be the
position of these two chords, their sum will always be equal, at the most, to two
diameters if they both pass through the ceutre; or at least to one, if one of them
passes through the centre, and the other almost at the distance of a radins. By
means of this theorem, therefore, it will be easy to solve the following problem,

PROBLEM XI.

To find four Prup.nrtiomf circles, which taken together shall be equal to a given cirele,
and which shall be of such a nature, that the sum of their diameters shall be equal
to a given line.

It is evident, for the above reasons, that the given line must be less than twice the
diameter of the given cirele, and greater than once that diameter, or, which is the
game thing, that the half of this line must be less than the diameter of the given
circle, and greater than its radius.

This being premized; let the given line, the sum
Fig. 67. of the diameters of the required civeles, be a b

(Fig. 67.) the half of whichis a ¢; let ApBE be the

given circle, the two diameters of which are A » and

p E, perpendicular to each other. On the radii ca

and ¢ E continued, make the lines ¢ F and cc equal

to a ¢, and draw ¥ 6, which will necessarily intersect
¢ H, the square of the radius of the cirele. In the
part 1 K of that line comprehended within the square,

D assume any point L, from which draw the lines Ly g,

and L. ¥ r, the one parallel and the other perpendicular

to the diameter a 5; through the points mand x,where
they intersect the cireumference of the cirele, draw M & and X q, the one parallel and
the other perpendicular to 4 B: the chordsxsand m will be the two chords required.

For it is evident that ¥ g and MR are equal to L g, and L r, which are together equal
to cG or ¢ ¥, or to the half ofab; the whole chords then are together equal to ab;
consequently, by the preceding theorem, they solve the problem, and the four
circles described on the diameters ¥ o, o M, o8, and o, will be equal to the circle
ADEE.

Remark.—The line ¥ ¢ may happen only to touch the circle; in which case any
point, except the point of contact, will ﬂ“i}““”i’ solve the problem

&-
ol
O]
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But if r g intersect the circle, as seen Fig. 68, the point L
must be assumed in that part of the line 1%, which is with-
out the circle, as seen in the same figure.

This solution is much better than that given by M. Oza-
nam : for he tells us to take on ae {Fig, ﬂ?} a purti.un less than
the radius, and to set it off from ¢ to ¢: then to draw the
lines g and M R, and to set off the remainder of ac from o
to r; but it is necessary that the point r should fall beyond g,
otherwise the two semi-chords would not intersect each other.
In the last place, according to the magnitude of ae, in regard to the radius,
there is a certain magnitude which must not be exceeded, and which M. Ozanam
does not determine : this therelore renders the solution defective,

PROBLEM XLI
Of the Trisection and Multiseetion of an Angle.

This problem is celebrated on account of the fruitless attempts made, from time
to time, to resolve it geometrieally, by the help of a rule and compasses, and of the
paralogisms and false constructions given by pretended geometricians, But it is
now demonstrated, that the solution of it depends on a geomeiry superior to the
elementary, and that it cannot be effected by any construction in which a rule and
compasses only, or the circle and straight line, are employed, exeept in a very few
cases ; such as those where the arc which measures the proposed angle is a whole
circle, or a half, a fourth, or a fifth part of one. None therefore but people ignorant
of the mathematies attempt at present to solve this problem by the common geometry.

But though it cannot be solved by the rule and compasses alone, without repeated
trials, there are some mechanieal constructions or methods, which, on aceount of
their simplicity, deserve to be known, They areas follow :

Let it be proposed, for example, to divide the

Fig. 69. angle A B c (Fig. 6I.) into three equal parts. From

4 g the point a let fall, on the other side of the angle,

. the perpendicular A ¢, and through the same point a

D draw the indefinite straight line 4 £ parallel to 5 c;

= if from the point B you then draw to A £ aline neE,

in such a manner, that the part ¥ g, intercepted be-
tween the lines A cand a g, shall be equal to twice the line o B, which may be
done very easily by repeated trial, you will have the angle ¥ B c equal to the third
part of A B c.

If ¢ £ indeed be divided into two equal parts in p, and if A p be drawn; as the
triangle ¥ A E is right-angled, p will be the centre of the eircle passing through
the points ¥, A, E; consequently na, b E, and b F will be equal to each other, and to
the line A B; the triangle A p E then will be isosceles, and theangles DaE and DE &
will be equal; the external angle A D F, which is equal to the two interior ones
p AE and D E A, will therefore be the double of each of them. But as the triangle
B A D 18 isosceles, the angle A Bpis equal to A pB, and the angle Axp, or its equal
FBC, is half of the angle A Bp; consequently the angle A B is divided by B E, in
such a manner, that theangle B c is the third part of it.

Another method.—Let the given angle be A cm

Fig. 70. (Fig. 70.): from the vertex of it as a centre, de-

A scribe a circle, and continue the radius B cindefinitely

\—\\ to ; then draw theline Ak in such a manner, that

H@,{‘\\ the part p E, intercepted between B E and the circum-

I & 5 £ ference of the ecircle, shall be equal to the radius B c;

if cu be then drawnthrough the centre ¢, varallel to
A E,the angle » cu will be the third part of the given angle A c n.
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If the radius ¢ be drawn, it may be readily seen that the angle He A is equal,
on account of the parallel lines, to ca D or c» A. But the latter is equal to the
angles pcE and v E ¢, or to the double of one of them; since ¢b and D & are equal
by construction; and as the angle v ¢Bis equal to Dck or DEC, the angle AcH is
the double of u ¢ B, and consequently A ¢ Bis the triple of 1 ¢ b.

PROBLEM XLIT.
The Duplication nfthg Cube.

To double a rectilineal surface, or any curve whatever, as the circle, square,
triangle, &e., is easy; that is to say, one of these figures being given, it is easy to
construct a similar one, which shall be the double or any multiple of it whatever, or
which shall be in any given ratio to it at pleazure : nothing is necessary for this pur-
pose, but to find the mean geometrical proportional between one of the sides of the
given figure, and the line which is to that side in the given ratio, this mean will be
the side homologous to that of the given figure. Thus, to deseribe a circle double
of another, a mean proportional must be found between the diameter of the former
and the double of that diameter; this proportional will be the diameter of the double
circle, &e. The case is the same with every other ratio.

All this belongs to the elements of geometry. But to construet a double solid
figure, or a figure in a given ratio to another similar figure, is a much more difficult
problem, which cannot be solved by means of the cirele and straight line, or of the
rule and compasses, unlesz a method of repeated trial, which geometry rejects, be
employed. This at present is clearly demonstrated; but the demonstration is wot
susceptible of being comprehended by every one.

Respecting the origin of this problem, a very curious circumstance is related.
During the plague at Athens, which made a dreadful havoe in that city, some persons
being sent to Delphos to consult Apollo, the deity promised to put an end to the
destructive scourge, when an altar, double to that which had been erected to him,
should be constructed. The artists who were immediately dispatched to double the
altar, thought they had nothing to do, in order to comply with the demand of the
oracle, but to doubleits dimensions. By these means it was made octuple; but the
god, being a better geometrician, wanted it only double. As the plague still con-
tinued, the Athenians dispatched new deputies, who received for answer, that the
altar was more than double. It was then thought proper to have recourse to the
geometricians, who endeavoured to find out a solution of the problem. There is
reason to think that the god was satisfied with an approximation, or mechanical solu-
tion ; had he required more, the situation of the people of Athens would have
deserved pity indeed.

There was no necessity for introducing a deity into this business. What is more
natural to geometricians than to try to double a solid, and the cube in particular,
after having found the method of doubling the square and other surfaces? This is
the progress of the human mind in geometry.

Geometricians soon observed that, as the duplication of any surface consists in
finding a geometrical mean between two lines, one of which is the double of the
other, the duplication of the cube, or of any solid whatever, consists in finding the
first of two continued mean proportionals between the same lines. We are indebted
for this remark to Hippocrates of Chios, who from being a wine merchant, ruined by
shipwreek or the officers of the excise at Athens, became a geometrieian. Sinee that
time, all the efforts of geometricians have been confined merely to the finding of two
continued geometrical mean proportionals between two given lines, and these two
problems, viz., that of the duplication of the cube, or, more generally, of the con-
struction of a cube in a given ratio to another, and that of the two continued mean
proportionals, have become synonymous.

.
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The different methods of solving this problem, some of which require repeated
trial, and some no other instruments than a rule and compasses, are as follow :

Fg. 7. 1st. Let the two lines, between which it is required to find

two mean proportionals, be A v and ac (Fig. 71.) Form of

BN SR them the rectangle 1 A ¢ p, and continue the sides Az and ac
\ i‘uh indefinitely ; draw the two diagonals of the rectangle inter-
j'}_"‘l 0 kY secting each other in 3 and we shall then have the solution
.,r" /] % of the problem, if the line F pG terminated by the sides of
] {E i the right angle ¥ A 6, be drawn through the point p, in such a
G DA { manner, that the points 6 and ¥ shall be equally distant from
E. ﬁe 7, . the point &; for in that case the lines a®, cG, n¥, and ac,

will be continued in proportion.

Or, with & as a centre, describe an are of a cirele, az ¥ 1 .G, in such a manner, that
by drawing the line ¥ G, it shall pass through the point p: we shall then have a
solution of the problem. :

Another method iz as follows: Circumseribe a cirele about the rectangle BaAcD;
then through the point p, draw the line ¥ ¢, in such a manner, that the segments ¥ o

and G i1 shall be equal: the lines ¢ and g ¥ will be continued mean vroportionals
between A and ac.

Fig. 72, E.ﬂ' Form a right ::mg_"[e uflﬂw two given ]il'lEE-I AR lﬂi‘!l‘] B

E.l L (Fig. 72,3 ; and baving continued Bc and A B indefinitely,

w from the point & as a centre, describe the semicirele pE A ;

vl draw also the line A ¢, and in the continuation of it find a point

e G of such a nature, that by drawing the line ncm1, the

5 5 4, segments G H and KT shall be equal to each other: the line
. u i will be the first of the two means.

3d. Let ¢ a (Fig. 73.) be the first of the given lines:
from the point ¢, with the radius c B, equal to the half
of ¢ a, deseribe a ecirele, and in this cirele make the chord
B D equal to the second of the given lines, which must
be continued indefinitely ; draw the indefinite line A D E,
and from the point ¢ draw the line ¢ £ ¥, in such a man-
ner, that the part & ¥, intercepted with the angle EDF,
shall be equal to cg; the line p r will then be the first
of the required mean proportionals, and c E will be the
gecond. This construction is that of Sir Isaac Newton.

PROBLEM XLIIL.
An angle, which is not an exact portion of the cireumference, being given, to find 1ts
value with great accuracy, by nicans of a pair of compasses ﬂn{:;_

From the vertex of the given angle, with as great a radius as possible, deseribe a
circle, and mark its prineipal points of division, as the half, third, fourth, fifth, sixth,
eighth, twelfth, and fifteenth parts of the cirecumference; then by means of the
compasses take the chord of the given are, and set it off along the cireumference,
from a determinate point, going round it once, twice, thrice, &c.; and connting the
number of times that the chord is applied to the cireumference, until you fall exactly
on one of the points of division, which cannot fail to be the ease after a certain
number of revolutions, unless the given are be inecommensurable to the circumfer-
ence; then examine what the point of division is, or how many and what aliquot
parts of the circumference it is distant from the first point ; add the number of de-
grees which it gives to the product of 360 degrees multiplied by the complete num-
ber of turns made with the compasses, and divide the sum by the number of times
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that the compasses were applied to the circumference: the quotient will be the
number of degrees, minutes, and seconds, required.

Let us suppose, for example, that the compasses, with an opening equal to the
chord of the given are, have been applied to the circumference seventeen times, and
that after four complete revolutions they have coincided exactly on the second divi-
sion of the circle divided into five equal parts. The fifth part of the eireumference
is 72°% and two fifths are 144°; if 144 then be added to the product of 360° by 4,
which is the number of the complete revolutions, and if the sum 1584° be divided
by 17, the quotient 93° 10° 35" will be the value of the required are,

PROBLEXM XLIV.
A straight line being given ; to find, by an easy operation, and without a seale, to a

thousandth, ten thousandtl, hundred thousandth, §e. part, nearly, its proportion to
another,

Liet the first or least of these lines be called a, and second mn.

Take with a pair of compasses the extent of the line a, and set it off as many
times as possible on B: we shall here supposze that a is contained in the latter three
times, with a remainder.

Take this remainder in the COmPasses, and set it off, in like manner, on the line n,
as often as possible: we shall suppose that it is contained in it seven times, with a
remainder.

Take the second remainder, and perform the zame operation on the line B, in which
we shall suppose it to be contained 13 times, with a remainder ; and, in the last place,
let us suppose that this toird remaimnder 15 contained in ¢ exactly 24 times.

Then form the following series of fractions ; 1, 3's, 5.94'1s 3-9-f357, and reduce them
to decimal fractions, which will be 0-333333, 0-047619, 0-003663, 0000152, The
given line is in decimals equal to the first of these fractions, minus the second, plus
the third, minus the fourth, which gives 0-280:225, without the erro of one of thess
parts entirely, that is to say of a millionth part.

It may be easily seen that no scale, however small the divisions, conld give so ap-
proximate a ratio; and even if we suppose such a scale to exist, there wounld still
remain an uncertainty in regard to the division on which the extremity of the given
line would fall ; whereas, a line applied with the compasses along a greater one, can
never leave any uncertainty in regard to the number of times it is contained in it, with
or without a remainder.

If the above fractions be added in the usual manner, we shall find that the given
line is equal to 83 of the second,

PROBLEM XLV.

To make the same body pass through a square hole, @ round hole, and an
elliptical hole.

We give a place to this pretended problem, merely because it is found in all the
Mathematical Recreations hitherto published ; for nothing is easier to those who are
in the least acquainted with the simplest geometrical bodies.

Provide a right eylinder, and suppose it to be cut through its axis; this section
will be a square or a rectangle ; if cut through a plane perpendicular to the axis, the
section will be a eircle ; and if cut obliquely to that axis, the seetion will be an
ellipsis. Consequently, if three holes, the first equal to this rectangie, the second
to the cirele, and the third to the ellipsis, be cut in a piece of wood or pasteboard,
it is evident that the cylinder may be made to pass through the first of these holes,
by moving it in a direction perpendicular toits axis ; it will also pass through the cir-
cular hole when moved in the direction of its axis; and through the elliptical hole,
when held with the proper degree of obliquity ; in all these eases it will exartly touch
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the edges of the hole, so that if the hole were smaller it would be impossible to make
it pass through it.

This problem might be solved by means of other bodies; but it is so simple that
nothing farther needs be said on the subject.

FPROBLEM XILVI.

To measure the circle, that is to sny, to find a rectilineal space equal to the cirele, or
more generally, to find a straight line equal to the circumyference of the cirele, or to
a given arc of that circumference.

We are far from pretending to give an exact and perfect solution of this problem :
it is more than probable that it will ever baffle the efforts of the human mind; but
it is allowed in geometry, that when a problem cannot be completely solved, it is
gome merit to approach near to it, and the more so when the unknown quantity is
circamseribed within the nearest limits, But though geometricians despair of ever
being able to find the exact measure of the circle, they have accomplished things
highly worthy of notice ; for they have found means to approach so near to it that
even if the radius of a cirele were equal to the distance between the sun and the first
of the fixed stars, it is certain that its cireumference might be found from the radius,
without the error of a hair’s breadth, This is doubtless more than sufficient to
answer the nicest purposes in the arts; but it must be allowed that it would give
great pleasure to a geomeltrical geniug, to be able to tell exactly the measure of the
circle; thatis to say, to know it with the same precision that we know, for example,
that a parabolic segment is equal to two thirdsofa pat&]lﬁlﬂgmm having the same base

and the same altitude.

L.—The diameter of a cirele being given; to find, in approzimate numbers, the circum=-
Serence ; or vice versa.

When moderate exactness only is required, we may employ the proportion of
Archimedes, who has demonstrated that the diameter is to the circumference nearly
as | to 34, or as T to 22

If we therefore make this proportion: as 7 is to 22, so isa given diameter to a
fourth term; or if we triple the diameter and add to it a seventh, we shall have the
circumference very nearly.

The eircumference of acirele, the diameter of whichis equal to 100 feet, will be found
therefore to be 314 feet 3 inches 5) lines : the error in this case isabout 1 inch 6 lines.

If we are desirous of approaching still nearer to the fruth, we must employ the
proportion of Metiusg, which is that of 113 to 855: we must therefore say as 113 to
435, so is the given diameter to the required circumference. The same diameter as
before being supposed, we shall find the circumference to be 314 feet, 1 inch, 10{§
lines ; the difference between which and the real eircumference is less than a line.

If still greater exactness be required, we have only to employ the proportion of
10000000000 to 31415926535 ; the error in this case, if the circumference were a great
cirele, such as the equator of the earth, would be, at most, half a line.

To find the diameter, the eircumference being given, it is evident that the in-
verse proportion must be employed, We must therefore say as 22 is to 7, or as 355
to 113, or as 314159 is to 100000, or as 31415926535 to 10000000000, so is the given
circumference to a fourth term, which will be the diameter required.

IL.—Tle diameter of a circle being given ; to find the area.

Archimedes has demonstrated that a circle is equal to the rectangle of half the
radius by the circumference. Find therefore the circumference, by the preceding
paragraph, and multiply it by half the radius, or the fourth part of the diameter: the
product will be the area of the eircle, and the more exact the nearer to the truth the
circumference has been found.
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By employing the proportion of Archimedes, the error, in a circle of 100 feet diame-
ter, will be about 3} square feet.

That of Metius would give an error less than 25 square inches, or about a sixth of
a square foot. As the circle inquestion would contain about 7834 square feet, the
error, at most, would be only one 47124th part of the whole area.

But the area of a circle may be found, without determining the circumference;
for it follows, from the proportion of Archimedes, that the square of the diameter 1s
to the area, as 14 to 11; from that of Metius, that it is as 452 to 355; from the pro-
portion of 100000 to 314159, that is as 100000 to 78539, or with still greater exact-
ness as 1000000 to TS53UE.

The area of the circle therefore will be found by making this proportion, as 14 is
to 11, or as432 to 333, oras 1000000 is to 783398, s0 is the square of the given diame-
ter, toa fourth proportional, which, if the last proportion has been employed, will be
very near the truth,

III — Geometrical constructions for making a square very nearly equal to a given cirele,
or a straight line equal to a given circular circumference.

Having shewn some methods for finding numerically, and very near the truth, the
proportion between a cirele and the square of its diameter, we shall now give some
geometrical constructions, exceedingly simple and ingenious, for accomplishing the
same ohject.

Fig. T4. lst. Let o A pc (Fig. 74.) be a circle, of which A ¢ is the dia-
< meter, and A Ba quadiant; let A g, 2D, and pc be chords equal

to the radius ; from the point B, draw to the points & and p, the
“‘ lines ¢ E and B D, intersecting the diameterin r and o; the sum
€ a of the lines B¥ and ro will be equal to the quadrant of the

cirele, within a five thousandth part.

i)

2d. Let o » (Fig. 75.7 be the diameter
Fig. 75, of the circle, ¢ thecentre, and ¢ 5 the radius
B perpendicular to that diameter. JIn a D
o coentinued, make pE equal to the radius;
. then draw pE, and in A F continued make

| T o | I¥ 1C _& = i LT L i 5 x
E 'F "B ' k¥ equal toit; if to this line ¥, its fifth

part ¥ ¢ be added, the whaole line a4 6 will
be equal nearly within a 17000th part to the
circumference deseribed withthe radius ¢ A,

For if p o4 be supposed equal to 100000, o ¢ will be found equal to 314153,
with less than an unit of error: but the circnmference corresponding to this diameter
is, with the difference of nearly an unit, 814159; the error therefore at most is yyy of
the diameter, or about the 17000th part.

ad. If the semicirele a B ¢ (Fig. 76.) be given; from the

Fig. 76. extremities a and ¢ of its diameter, raise two perpendiculars,
o one of them ¢ & equal to the tangent of 30° and the other A ¢
equal to three times the radius ; if the line g e be then druwp,
it will be equal to the semi-circumference of the circle, within
a hundred thousandth part nearly.

Tor it will be found by this construction, the radins being
supposed to be 100000, that the line £ 6, within a unit nearly,
is equal to 314162, and toe spmi-circamference would be, Wll‘lll
the difference of nearly an unit, 314159 ; the error therefore 1s
about i of the radius, or less than a hundred thousandth
part of the circumference.
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4th. Let a (Fig. 77.) be the centre of the given
circle, and nE and ¢ B its two diameters, perpendicular
to each other. On any radius, such as A D, make AF
equal to half the side Ec of the inseribed square; draw
g¥1I indefinitely, and to the point m, draw ¥ u dividing
AcC in extreme and mean ratio, am being the lesser
segment ; if ¢1 be drawn parallel to Fu through the
point ¢, the square BLKI, constructed on B1, will be
nearly equal to the circle of which Bc is the dia-
meter.

For it will be found by ealeulation, that s and B F are respectively equal to
69098 and 61237, the radius being 100000; =1 therefore will be found equal to
88623, the square of which is 78540, &e., the square of the diameter being 100000,
&e., while the circle is 78530, &e.

Sth, Inscribe in the given circle a square, and to three times the diameter add a
fifth part of the side of the square; the result will be a line which will differ from
the circumference by about a 17000th part only.

IV.—Several methods for making, either numerically or geometrically, and very near the
truth, a straight line equal to the given are of a circle.

1st. Let the given are, which ought never to exceed
1 Fig. 78. 80°, be e (Fig.78). To obtain the length of it very
nearly in a straight line, draw » B perpendicular to the
diameter A B, and continue the diameter to o, so that
A D shall be equal to the radius; if DE be then drawn,
it will cut off from » u the line BE somewhat less, but
very nearly equal to the are BG.

But if the line d fg e, be drawn in such a manner, that the segment d f; intercepted
between the cirele and the diameter continued, shall be equal to the radius, the
straight line pe will then be somewhat greater than the are ng; but very near it,
if the are does not exceed 30 degrees,

For this theorem we are indebted to Snellius; but it was first demonstrated by
Huygens. We shall shew hereafter, that it is very useful in trigonometry.

2d. It has been demonstrated also by Huygens, that twice the chord of half an
are, plus the third of the difference between that sum and the chord of the whole
arc, is nearly equal to the are itself, when it does not exceed 3(°,

For if we suppose the are to be 30° the chord will be 25882 parts, the diameter
being 100000 ; that of half the same are, or of 15°%, will 13053, the double of which
is 26106 ; if from this we subtract 25882, the difference will be 224, the third of
which, 74%, added to 26106, will give 261803 for the arc of 30°. Twelve times this
arc ought to give the whole circumference ; but 26180% multiplied by 12, is equal to
314168, and the circumference is 314159, the difference therefore is only the nine
hundred thousandth part of the radius.

It being remembered that a circle is a polygon, whose sides are indefinitely zmall
and infinite in number, the following is a simple method of arriving approximately
at the ratio of the circumference to the diameter. :

Fig. 79. Let A B be the semi-side of a regular polygon, c its centre ; along 4 ¢
produced take cp=cs; then the izosceles triangle B¢ v will have the
angle p =4 Bc A, and the perpendiculars crand 1¥ on D and A D re-
spectively, will give the middle points 1 and ¥ of those lines. Since then
1¥ =4 84, and p =10 } Be 4, 1F is the semi-side of a regular polygon
of the same perimeter as the first, but having twice the number of
gides.
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Calling the radii of the cwreumscribed and inseribed eircles of the first polygon,
viz. 5¢ and c A, R, r, and those of the second, o1 and p F, R, 7, we have
pF=%(pectca)y=13 (rofcalore'=4 (&41r);
and by the rectangular triangle c1p, we have
DI=aDFXDCOrR =,/ R
OfF the four radii, r, r, &',/, therefore, the first two being known, the last two may
be deduced from them.

Another polygon of the same perimeter as the seeond, but of twice the number of
sides, will have for its radii ®”, r”, and these have the same relation to ', #, that
®’, 7', have to R, r; we shall then form an infinite series,

e o O SR el TS -
in which each term r is half the sum, and each term & the square root of the product
of the two terms which precede it.

Now in a hexagon the side is equal to the radius of the circumseribing ecircle; if
then we call this radius 1, the perimeter of the figure will be 6, and c a, the radius
of the inseribed cirele, = o/ B — BA’ =4/ F = 0'866025. And from these
values of R and r we deduce successively the following results.

= 0-866025 | 09040469 | 0°054588 | 0°954908
R = 1*000000 | D°957G62 | 0°955100 0054940
r = 0°933013 | 0°963566 | 0°064844% | 0°054024
R = 0965925 | 0°95561 0954972 0054932, &e.

Here r, , r.... are readily found, and the calculations of m, ®, R".... are very
rapid by logarithms; and moreover when r and R agree in the first half of the
figures, as at the place we have marked with an asterisk, » as well as » may be found
by taking half the sum of the two preceding terms.

We arrive at last to r = r = 054929 ; or the radius of the circumseribing = ra-
dius of the inscribed cirele, therefore these civeles coineide with each other, and with
the polygon which lies between them. Then -054929 is the radius of a circle whose
perimeter is 6, and the proportion

2oy 054020 or 1°909858 © 1::6 : 3-14159
gives 3:14159 for the circumference of a circle whose diameter is 1, By this methed
we can carry the approximation to any point we wish,

In the Mathematical Tracts of Dr. Charles Hutton, several series are investigated
for computing the circumference of a eircle from its diameter.

The following is better adapted to computation than any other that has yet been
discovered.

Let A be an are of 45%, to radius n'm'tq.r. Then

jdx[l+ + 51 + 730+ oop e ]
A=

310 o lﬂ 910

i 4 8 128 16
[‘rﬁ"‘ L1+ 5:100 T 5100 + 7100 + 57100 + &°- ]

Where =, &, y, &¢. denote the preceding terms in each series.

Remark.—As we promised to give a short account of the different attempts made
respecting the quadrature of the circle, we shall here discharge our promise. What
we are going to say on the subject, is only an abstract fmm a very curious work,
published by Jombert in 1754.*

It will first be proper to divide those who have employed themselves on this
problem, into two classes, The first, consisting of able geometricians, were not led
away by illusions. Being aware of the difficulty or impossibility of the problem,

* The author of that curious little work was Montucla himself.—Note by Dy, Hutton.
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they confined themselves merely to the finding out methods of approximation more
and more exact ; and their researches have often terminated in digcoveries in almost
every part of geometry.

The other class consists of those who, though scarcely acquainted with the ele-
ments of geometry, and scarcely knowing on what principles the problem depends,
have made every effort to solve it, by aceumulating paralogisms on paralogisms. Like
the unfortunate Ixion, condemned to roll up a heavy burden eternally without being
able to bring it to the place of its destination, we find them twisting and turning the
cirele in every direction, without advancing one step further. When a geometrician
has convinced them of an error in their pretended demonstrations, we see them
returning a few days after, with the same demonstration in a new form, but equally
contemptible. Very often they do not hesitate to contest the best established truths
in the elements of geometry ; and, in general, sensible of the weakness of their
knowledge in this department of science, they consider themselves as specially
illuminated by Heaven to reveal truths to mankind, the discovery of which it has
withheld from the learned, in order to confer the honour of it on idiots. Such is
the ridiculous but real picture of this sort of men. It may be readily conceived that
in the short history we are about to give of the quadrature of the cirele, we shall
not be so unjust towards the eminent geometricians, as to couple them with such
visionaries. The singular flights of the latter will only furnish us, towards the end
of this article, with matter for an amusing addition to it.

Geometry had scarcely been introduced among the Greeks, when the quadrature
or measure of the cirele began to give employment to all those who possessed a
mathematical genius. Anaxagoras, it is said, exercized himself upon it while in
prison ; but with what success we are not informed.

The question had been already become celebrated in the time of Aristophanes,
and perbaps had made some geometrician lose his senses’; for in order to ridicule
the celebrated Meto, that comic writer introduces him on the stage, promising to
gquare the cirele.

Hippocrates of Chios certainly made it an object of his research: for it could be
only by endeavouring to square the eirele that he discovered his famous lunules.
Some even ascribe to him a certain combination of lunules, from which, as they
pretend, he deduced the quadrature of the circle ; but in our opinion without any
foundation ; for as he held a distinguished place among the geometricians of his
time, he could not be a dupe to the paralogism of a school-boy: his object was only
to shew, that if the lunule described on the side of an inscribed hexagon, could be
made equal to a rectilineal space, the quadrature of the cirele could be thence de-
duced ; #nd in this he was perfectly right.

It is very probable that geometricians were not long ignorant that the cirele is
equal to the rectangle of half "the cirecumference by the radius. Before the time of
Plato, geometry had been enriched with more difficult discoveries, yet this truth is
first found in the writings of Archimedes. Something more however was necessary :
the proportion between the circumference and the diameter, or the radius, remained
to be detecmined ; and this discovery occasioned, no doubt, many a sleepless night to
that profound geometrician. Not being able to succeed with geometrical precision, he
had recourse to approximation, and found, by caleulating the length of an inscribed
polygon of 96 sides, and that of a similar one circumseribed, that the diameter being
1, the cireumference would be more than 34§, and less than 318, or 34. For he shewed
that the inscribed polygon is somewhat less than 3}, and that the circumseribed is
somewhat greater than 341,

Since that time, if great exactness be not required, to find the ratio of the diameter
to the circumference, the proportion of 1to 31, or of 7 to 22, is employed ; that is tu
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say, the diameter is tripled, and one seventh of it is added: tlus seventh 1s never
neglected, but by the most ignorant workmen.

This cbject, we know, engaged the attention of several more of the ancient geo-
metricians ; among whom were Apollonius, and one TPhilo of Gadara; but the
exactest approximations which they found have not reached us.

The first of the modern geometricians, who made any additions to what the ancients
bad transmitted to ug, respecting the measure of the circle, was Peter Metius, a
geometrician of the Netherlands, who lived about the end of the sixteenth eentury.
Being employed in refuting the pl'eten_[iml quadrature of one Simon i@ Quercu, he
found this very remarkable proportion, which approaches exceedingly near to the
truth between the diameter and the eircumference, viz. as 113 to 335. The eiror
is scarcely the ten millionth part of the circumference.

After him, or about the same time, Vieta, a celebrated French analyst and geome-
trician, expressed the ratio of the circumference to the radius by the proportion of
10000000000 to 314159206535, and shewed that the latter number was too small, but
that if its last figure were augmented by only one unit, it would be too great. About
the same period also Adrian Romanus, a geometrician of the Netherlands, carried
this approximation to 16 figures; but all these were far exceeded by Ludolph van
Ceulen, a native of the Netherlands likewise, who earried this proportion to 35
figures, and shewed that, if the diameter be unity followed by 35 ciphers, the cir-
cumference will be greater than 314159265358079323846204338327050288, and less
than 3141592653580703238462064338327050280,  He was so proud of this labour,
which however required less sagacity than patience, that, like Archimedes, he
requested it might be inseribed on his tomb-stone : his desire was complied with,
and this singular monument is still to be seen, it is said, in one of the towns of
Flanders.

Willebrord Snell, another countryman of Metius, made several important ad-
ditions to what had been done on this subject, in his book entitled * Cyclometria.”
He discovered the method of expressing, by a very approximate proportion and an
exceedingly simple caleulation, the magmtude of any arc whatever ; and he made
use of it to verify tlhie ealculation of van Ceulen, which he found to be correct. He
then caleulated a series of polygons, both inscribed aud circumseribed, always
doubling the number of sides, from the decagon to that of 5242880 sides ; so that
when a proportion between the diameter and cirenmference of the circle pretended
to be exact is proposed, one may refute it by means of this table, and shew which
is the circumseribed polygon greater than the supposed value of the circumference,
and what circumseribed polygon it surpasses; in either case this will serve to prove
the falsity of the pretended rectification of the eircular cireumference.

The celebrated Huygens, when very young, enriched the theory of the measure of
the circle with a great many new theorems. He combated also the pretended
quadrature of the circle, which Father Gregory St. Vineent, a jesuit of the Nether-
lands, announced as discovered, and requiring only a few caleulations, which he
dexterously forgot to make. Gregory St. Vincent, however, was an able geome-
trician ; he wrote an answer to Huygens, and the latter replied ; some of Gregory's
pupils entered the lists also; and another jesuit, a geometrician, combated on
the same side. DBut it is certain, whatever Father Castel may have said, that
Gregory was mistaken, and that his large work, which contains some very inge-
nious things, ended with an error, or something unintelligible. As he pretended
to have found the quadrature of the circle, why did he not perform those calcu-
lations which are necessary to express it numerically? DBut this was never done,
either by him, or by any of his pupils, who carried on the dispute with a great
deal of asperity.

James Gregory, a celebrated geometrician in Secotland, undertook, in 1668, to



156 GEOMETRY,

demonstrate the absolute impossibility of the guadrature of the cirele. This he
did by a very ingenious method of reasoming, which deserves perhaps to be better
examined. However it did not meet with the approbation of Huygens, and this
produced a very warm dispute between these two geometricians. But, it must be
confessed, that Gregory gave several very ingenious methods for approaching nearer
to the measure of the eircle, and even to that of the hyperbola.

The higher geometry supplies us with a great number of different methods for find-
ing, by approximation, the measure of the circle, and the greater part of them
are easier than the preceding: but this is not a proper place for entering into an
explanation of them. We shall content ourselves with observing, that by means
of these methods the approximation of Ludolph wvan Ceulen bas been carried as
far as 127 figurez or decimals. Sharp, an English geometrician, first carried it to
74 figures; Mr. Machin extended it to a hundred, and M. de Lagny continued it
to 127 : it is as follows. IF the diameter be unity, followed by 127 ciphers, the
circumference will be greater than 314158926535807932384626433832705028841071-
G939937510582007494459230781 T4062006208008028034 8253421 1 TO6T 98214808651 32 -
T23066470938446, and less than the same number, when the last figure is increased
only by unity. The error therefore is less than a portion of the diameter ex
pressed by unity, divided by unity followed by 127 ciphers. If we suppose a
cirele, the diameter of which is a thousand millions of times greater than the
distance of the sun from the earth, the error in the ecircumference would be a
thousand millions of times less than the thickness of a hair.

It is even possible to go still further; and Euler has pointed out the method,
in the Transactions of the Imperial Academy of Sciences at Petersburgh; but
it must be confessed that it would be superfluous labour.

We cannot conclude bétier this short history of the quadrature of the circle,
than by an account, which will no doubt amuse some of our readers, of those
who have miscarried in their attempts to solve this problem, or who have fallen
into ridiculous errors on the subject

The first, among the moderns, who pretended to have found the quadrature of
the ecirele, was Cardinal de Cusa. One of his methods was, to roll a cirele or
cylinder over a plane, till the point which first touched it should touch it again;
and he then endeavoured, by a train of reasoning, which displayed nothing geome-
trical, to determine the length of the line thus described. He was refuted by
Regiomantanus, in 1464 or 1465

After him, that is to say, about the middle of the sixteenth century, Orontius
Finzus, though professor royal of the mathematics, rendered himself famous by
his paralogisms, not only in regard to the quadrature of the circle, but alzo in re-
gard to the trisection of an angle and the duplication of the cube. Peter Nonius,
however, a Portuguese geometrician, and J. Borelli his former pupil, clearly exposed
the fallacy of his reasoning. The same Orontius Fineus publizshed a]so a work on
Gnomonies, which is nothing but a series of paralogisms.

We are astonished to find the celebrated Joseph Sealiger fall, soom af‘ter, into the
same crror. As he had no great esteem for geometricians, he was desirous to
shew them the superiority cf a man of letters, in solving, by way of amusement,
what bhad so long puzzled them: he attempted the quadrature of the ecirele, and
seriously imagined he had discovered it, by giving, as the measure of it, a quantity
which was only a little less than the inscribed dodecagon. It was therefore no
great difficulty for Vieta, Clavius, and others, to refute his reasoning : this threw
him into a violent passion; and according to the practice of that period, exposed
the latter in particular to a great many epithets not very decent, while it confirmed

Sealiger more and more in his opinion, that geometricians were destitute of common
EETIEE.
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We are sorry to include, among this class, the celebrated Danish astronomer,
Longomontanus, who pretended to prove that the diameter of a circle iz to the
circomference, exactly as 100000 is to 314185. Soon after, the famous Hobhes
imagined also that he had found the quadrature of the circle; and being refuted by
Dr. Wallis, he undertook to prove that the whole system of geometry before taught
was nothing but a series of paralogisms, This forms the gubject of a work entitled,
“ De Ratiociniis et Fastu Geometrarum.”

Olivier de Serres, the agriculturist, by weighing a circle and a triangle, equal to
the equilateral triangle inscribed, believed he had found that the circle was exaetly
the double of it. This weak man did not see that this double is exactly the
hexagon inseribed in the same eircle. )

A, M. Dethlef Cluver pretended, in 1695, to have squared the cirele; and he reduced
the problem to one much easier, which he announced in the following manner: ** In-
venire mundum Menti Divine analogum.” He unsquared the parabola, and endea-
voured to prove that Archimedes had been deceived in regard to the measure of that
hgure.

Leibnitz endeavoured to engage him in a dispute with M. Nieuwentyt, who then
started a great many difficulties against these new calculations ; but the attempt did
not zuceeed,

Though these ridiculous attempts, as appears, ought to have prevented others,
men were seen, and are still seen daily, falling into errors of the like kind. About
30 years ago, a M. Liger pretended that he bad found out the quadrature of the
circle, by demonstrating that the square root of 24 was the same as that of 25; and
that of 50 the same as that of 49: this he demonstrated, according to his own
terms, not by geometrical reasoning, which he abhorred, but by mechanizm combined
with figures.

A certain Sieur T. de N found out something not less curious, viz., that
curves ought not to be measured by comparing them with straight lines, but by
comparing them with curves. This being once demonstrated, the quadrature of the
circle is merely children’s amusement.

M. Clerget made another discovery no less interesting, viz., that the cirele is a
polygon of a determinate number of sides; and he thence deduced, which is very
curious, the magnitude of the point where two unequal spheres touch each other.
He demonstrated also the impossibility of the motion of the earth. No one before
him kad been able to suspect the least affinity between these questions.

But what shall we say of the complex ealeulations of the late M. Basselin, a
professor in a university, who, after as much labour almost as Van Ceulen, found a
proportion between the diameter and eircumference beyond the limits even of Ar-
chimedes ? This weak man, who had so happily discovered the gquadrature of the
circle, was ignorant, till some days before his death, that Archimedes had squared
the parabola. He proposed also, had he recovered from his malady, to exumine the
process of Archimedes, being fully convinced that the geometrician of Syracuse had
been deceived.

But if these men incurred only ridicule, and ridicule confined to the circle of a
small number of geometricians, we are now going to introduce one to whom the
ambition of squaring the circle cost much dearer. We allude to the Sieur Mathulon,
who, from being a manufacturer of stuffs at Lyons, commenced geometrician and
mechanist s but with less suceess than Hippocrates of Chios, who, from being a wine
merchant at Athens, became an illustrious geometrician, SBieur Mathulon, about
forty years ago, deposited the sum of 1000 crowns at Lyons, and having announced
to geometricians and mechanists the discovery of the quadrature of the eircle and
perpetual motion, declared he would give the above sum to the person whoe should
prove that be was in an error. M. Nicole, of the Academy of Sciences, proved that
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his knowledge of geometry was very limited; that his pretended quadrature was a
mere paralogism; and demanded the 1000 crowns, which were adjudged to him.
The Sieur Mathulon demurred, and maintained that he ought to prove also the falsity
of his perpetual motion; but he lost his suit, and M. Nicole gave up the 1000 crowns
to the general hospital at Lyons, to which they were delivered.

Had the Chatelet of Pariz been equally severe, a similar folly would have cost
much more to a man of some property, who, about thirty years ago, announced the
quadrature of the circle; defied the whole world to refute him; and at last, by way
of challenge, deposited 10000 livres to be adjudged to the person who should prove
that he was mistaken, It is impossible, without lamenting the weakness of the
human mind, to see this grand discovery reduced to dividing a eircle into four equal
parts, by perpendicular diameters, turning these quadrants with their four angles
outwards, so as to form a square, and then pretending that this square is equal to the
cirele. According to the principles of this pretended mathematician, for two figures
to be equal it is not necessary that they should touch each other throughout their
whole extent ; it is sufficient that they touch, or can touch. Thus the square is not only
equal to the inscribed circle, but even to any figure included in the cirele, the salient
angles of which touch the circumference,

It would not have been difficult to shew to any other person than the author, that
this was absolute nonsense. Three persons appeared as claimants of the 10000
livres; the cause was tried at the Chatelet, but this tribunal was of opinion that a
~man's fortune ought not to suffer for the errors of his judgment, when these errors
are not prejudicial to society. On the other hand, the king decreed that the bet
should be considered as void; and that both parties should take back their money.
The author extorted from the Academy of Sciences a sentence, by which he was
desired to study the elements of geometry; but he was still convinced that future
ages would blush for the injustice done to him by that in which he lived. Before
we conclude this article, we must say a few words respecting M. le Rohberger de
Vausenville, who in a work called ** Consultation sur la Quadrature du Circle,” asks
geometricians, whether the quadrature of the circle weuld not be found, it means
could be devised for determining the centre of gravity of a sector of a circle, in
common parts of the radius and the circumference of the same circle. We do not
rightly understand what the author means by common parts of the radius and the
circumference. If he means those parts of the radius in which it is usual to express
the circumference—as when it is said that if the radius be 100, the circumference
will be 314—we can answer, in the name of all geometricians, that the quadrature of
the circle would, in that case, be found. We will even not hesitate to tell him, that
in whatever mauner he determines, in the axis of a sector or arc of a circle, its centre
of gravity, provided that in this determination the are itself is not employed as one
of the data, he will have solved this famous problem ; for who does not know that
the distance of the centre of gravity of the semi-circumference, for example, from
the centre, forms a third proportional to the fourth part of the circle and the radius ?
But this determination of the centre of gravity of the sector, or arc of a circle, is a
discovery rather to be wished than hoped for.

M. de Vausenville had no need to challenge, either individually or in general, all
the geometricians of Europe, and even those of Turkey and Africa, where tihe
meaning of the words centre of gravity is certainly not known; and he had still
less occasion to inform them that if they did not refute him he would eonsider their
silence as a sign of their defeat, and that his quadrature was acknowledged as resting
on a solid foundation. This bravado will certainly excite neither the Eulers,
the d’Alemberts, nor the Bernouillis, &c., to attack his quadrature. Either M. de
Vausenville is right, and in that case mathematicians will acknowledge his discovery,
and bestow on him every just praise; or his pretended quadrature is a mere paralo=
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gism, and of course it will meet with as little attention as that of Henry Sullamar,
a real Bedlamite, who found it in the number GGG, inscribed on the forchead of the
beast in the Revelations ; or those of many others which deserve, in like manner, to
be consigned to oblivion,

PROELEM XLVIIL
Of the length of the Elliptical Cireumference.

We have spoken in a pretty full manner of the cireular circumference, the exact
determination of which in length would give the quadrature of the circle. But no
author, as far as we know, has said any thing satisfactory, or useful in a practical
view, respecting the circumference of the ellipse. It is however necessary, in many
cases, and even in practical geometry, to know the length of that curve; in the
higher geometry there are also a great many problems the solution of which depends
on the same knowledge: a few observations therefore on this subject may be of
utility.

Some authors, who have written on practical geometry, are of opinion that the
circumference of an ellipse is an arithmetical mean between the circumference of the
circles described on the two axes as diameters; but this is a mistake ; and had they
possessed alittle more of the spirit of geometry, they would have readily perceived
it; for it may be easily demonstrated that this is false in an ellipse much elongated,
as in that which bas the greater axis 20, and the lesser 2. The circumference of
this ellipse indeed will certainly be greater than 40, while the mean proportional
between the circumferences of the circles described on its axes, as diameters, will be
only 344,

The rectification of the elliptical circumference is a problem which is almost the
same, in regard to the quadrature of the circle, as the latter is to a common problem
in geometry. John Bernouilli is the only person who has given a method susceptible
of being reduced to practice for measuring the length of the elliptic line. He shews
indeed, in an excellent memoir, published in his works, how to determine the ecircular
circumferences which are limits alternately less and greater than the circumference of
a given ellipse: and by this method we have calculated the following table. We
have supposed a series of ellipses, one half of the common greater axis of which is
10 parts, while the half of the less axis becomes successively 1, 2, 3, &e., as far as
10, the last value given by a cirele; and we have found that the length of the eir.
cumferences of the ellipse is as here expressed.

Common length of the greater axis, 20.*

Length of the mean cir-

Lesser Length of the cumference of the circles

axis, elliptic circumference. described on the greater

and less axis,
2 40°63245 34°5579
£ 42'01568 376990
i3 4368526 4054086
8 46 02506 430822
10 48°44215 47°1238
12 5105407 50°2654
14 53-82377 534070
16 b6 72730 S6 5486
158 59°31022 596002
20 62-83185 G2-83185

® Sir Jonas Moore also calculated a like table for the eiliptic circumferences, extending ten
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It here appears, that the circumference of the circle, which forms a mean between
those described on the greater and less axis, is always less than the elliptic line, and
the more sensibly so, the more the ellipsis differs from a eircle: in the first of the
above ellipsis the error is the Tth part.

By the help of this table all the mean lengths of the ellipsis between the preceding
may be calculated : nothing is necessary but to take the proportional parts.

Let us suppose, for example, that the greater axis of a semi-ellipse is 20 feet, and
that the half of its less axis is 71 feet; it is evident that, in this case, the whole of
the less axis will be 15 feet. This ellipsis then will hold a mean place between that
in which half the less axis is §j of the greater, and another in which the less axis is 1§
But by dividing the difference between the lengths of these two ellipses into two
equal parts, it will be found, without any considerable error, that the length of the
circumferenee of the mean ellipse will be 55:27558 parts, the axis being 20; conse-
quently the half of the proposed ellipsis having its transverse diameter equal to 20
feet and its conjugate to T4, will be 27 feet G inches and 8 lines: the error being
scarcely a line.

PROBLEM XLVIIL.

To describe geometrically a circle, the circumference of which shall approach very near
to that of a given ellipse.

It is to Mr. John Bernouilli also that we are indebted for this simple and ingenious
method of describing a circle isoperimetrous to a given ellipse. As it may serve as a
supplement to what we have said of the rectification of the ellipse, we shall here
give it a place.

Fig. 80. Ff::rm the two axes of the given ellipsis into ome
- straight line, as a p (Fig. 80.Y, in which a ® is equal to
the greater axis, and & » to the less : let this line a B be
the diameter of a semicirele 4 ED, which must he di-
vided into 4, 8, 16, or 32 parts, &c. at pleasure, and ae-
cording as greater precigion may be required. We shall
here suppose the number of equal parts to be 16. From
4 the point B draw to each point of division straight lines;
then take the 16th part of the sum of all these lines 8a, 81, 22, 83, &e., as far as
B D inclusively ; and if with the line henee arising as radius, a circle be described,
you will have a circular circumference so nearly equal to that of the given ellipse,
that it will not differ from it one hundred thousandth part, even in the most unfa-
vourable case, such as that, for example, where the ratio of the axes of the ellipse
isas 10 to 1.

It may be readily seen, that if the semicircle had been divided into 8 parts, it
would have been necessary to take only the 8th part of the sum of all the lines
drawn to the points of division, including the points p and a.

If this operation were performed with a circle of a foot radius, the precision of
the result would approach very near the truth; and by means of a geometrie secale,
with exceedingly minute divisions, a very satisfactory numerical approximation might
be found withont caleulation.*

times as for, thatis, to a bhundred different ellipses,the eonjugate axes gradually inereasing from 1
o 100, which is the constant transverse. The numbers indeed are set down to four decimals, bot
they are not commonly true to more than two.—Nole by Dr. Hutton,

* It is noticed above, by Montucla, that an arithmetical mean between the twoaxes of an ellipe,
has been often taken as the diameter of a circle of equal cireumference with the ellipse. It may be
added that this rule always gives the perimeter in defect, or less than just.

Another rule, almost as easy, which gives the perimeter always in excess, or more than just, is
this: Square each axis, aod take the arithmetical mean between  these squares ; that is, add tho
squares together, and take half the sum ; then extract the square root of this wean, and it will be
pearly the diameter of a eircle of equal circumference. As



GEOMETRICAL PROBLEMS. 161

PROBLEM XLIX.
To determine a straight line nearly equal to the arc of any curve whatever,

" We shall suppose that the amplitude of the givenare is not very eonsiderable, as
not more than 20 degrees; that is to say, if tangents be drawn at the extremities
of the are, and then perpendiculars to these tangents, the angle included between
these perpendiculars shall be at most 20 degrees.

This supposition being made; draw the chord of the arc; and then find, either
by caleulation, or by means of the compasses, the third of the tangents compre-
hended between the place where they meet and the points of contact ; if we then add
to this third two thirds of the chord, we shall have a straight line so nearly equal
to the arc, that in the present case the difference will be but a ten thousandth part.
But if the amplitude be only about 5 degrees, the error will not be a millionth part,
as has been shewn by M. Lambert, member of the Academy of Sciences at Berlin, in
a very interesting work, published in German, which is highly worthy of being
translated,

If the amplitude of the given are be greater,as about 50 degrees for example,
nothing will be necessary but to divide it into three parts nearly equal, and to draw
tangents to the extremities of the are and to the points of section, which will give a
portion of the polygon circumseribed about the curve; if the three chords of the
three parts of the are be then drawn, and if two thirds of these three chords be added
to the third of the tangents, forming the eircumseribed polygon, theresult will be a
line equal, within a hundredth thousandeh part, to the length of the given arc.

PROBLEM L.
A eircle, having a square inscribed in it, being given ; to find the diameter of a cirele in
which an octagon of a perimeter equal to the square can be inseribed,

Fig.8l. Let a 8 (Fig. 81.) be the diameter of the given circle, and

A D the side of the inscribed square. Divide A D into two

equal parts in E, and raise & ¥ perpendicular to A D, meeting

the given eirele in ¥; if 4 ¥ be then drawn, it will be the

diameter of a circle, in which if an octagon be inscribed it
will be equal in perimeter to the given square.

For it is evident that the circle described on the diameter

A ¥, will pass through the point £, since the angle A E ¥ is

a right angle. It is also evident that the line drawn t'mr_n I,

the centre of the second circle, to the point &, will be _parallel to D F, because the sides

apand a Fofthe triangle D A F are bisected 1iI1 ﬂ}e points & and 1. 1Hul; the angle A¥ D

is half a right angle, being halfof p ¢ A, which is a right angle, since 1..111:- chord of 1Iqme

inscribed square subtends an arc of 90° : consequently _the-. s:ngle. ATE s egual to 4-_: :

whence it follows that A 1 is the side of the nctag:;:n msc_nheri in thhe circle having

o ¥ for its diameter. And it is evident that eight times a Eis equal to four

times A D,

Remark.—If a E be, in like manner, divided into two equal partsin @, and if‘ cH be
drawn perpendicular from the point G, till it meet the scc:uln-:l circle; by drawing a m,
that line will be the diameter of a third circle, in which, if a polygon of 16 gides be

o et 5 = 2 o
inseribed, it will be isoperimetrous to the ahu-r.e square or oc :
Hence it follows, that if this operation were infinitely continued, we should obtain

C " h in cxcess as the former is in defect, if an arithmetical mean
sy Eaitfrh:.::kl:hniﬂf ;!hm.l'":huir sum, it will bie the diameter of a circle rjf equal circime
?::;i?:u :v'li::‘i" the [‘Iﬂ_;r thousandth part of the :filmll,-. and is th:.', nearest aqpmtg::&atgig;m };t
i i treatise on Mensuration, where severa
Eiﬁ“mfﬁﬁf tL'i.'“;ﬁ;f;ﬁ';ﬁﬂu"ﬂ and also for any puart of it.— Noete by Dv. Hutton.
r

M
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& cirele or polygon of an infinite number of sides, isoperimetrous to a given square.
The cirecumference of this cirele therefore would be equal to the perimeter of the
gquare, and we should thus have the quadrature of the circle.

We have seen a very ingenious attempt to discover the quadrature of the cirele on
this principle.  The author, M. Janot, professor of mathematics in the Roval Military
School, reduced the problem to a very exact equation, but complex, by the solution
of which be expeeted to obtain this last dimmeter ; but when he seriously tried to reduce
it, be found the twe members of his equation to be composed of the same terms,
which of course gave him no solution.

PROBLEM LI.
The three sides of a rightangled triangle being given; to find the value of its angles
without trigonometrical tables,

We shall first suppose that the ratio of the hypothenuse to the least side is greater or
not less than 2 to 1, in order that the angle opposite to that side may be at most about
30°; for the error will be less the more that angle is below 30°,

This being premised ; let us suppose, for example, that the hypothenuse of the tri-
angle is equal to 13, the greater side comprehending the right angle 12, and the less
5. We must then make this proporticn: as twice the hypothenuse, plus the greater
side, or 38, is to the less side or 5, so is three times unity or 3, to a fourth propor-
tional, which will be 1§, But I reduced toa decimal fraction iz 0-39473 : if this
number be divided by 0-1745, the quotient will be the number of the degrees and
parts of a degree contained in the angle opposite to the less side.  This quotient is
2244 which makes 22° 37 15”. DBy the tahles it will be found to be 22° 37" 28",

It the sides of the triangle are nearly equal, such for example as 3, 4, 5, we must
suppose in the triangle a line ¢ p (Fig. 82.) dividing the angle opposite to the

Fig. 82 side A B, or that represented by 3, into two equal paits.

SRR But it is known that in this case the opposite side A B will be

& divided in the same ratio as the adjacent sides; consequently
2 the segment B p may be found by the following analogy:

B E As the sum of the two other sides or 9, is to 3, the third side,

50 is ¢ B or 4, to B o, which will be § or §; if the squares of §

and 4, or of ¢ pand 8 D, be then added together, by extracting the square root of the

sum, which in decimals is 17-777, we shall have for the square root 4-21637, which

will be the value of ¢ p. Inthelast place, by applying the above rule to the triangle

B ¢, we shall find the angle® ¢ p to be 18 26’ 7%, and consequently its double, or the

angle a ¢ v, 36° 52 14”. By trigonometrical tables the latter will be found to be

36° 52’ 15”; so that the difference is ouly oue second.

PROBLEM LII.

An are of a circle being given, in degrees, minutes, and seconds ; (o find the correspond-
ing sine, without the help of trigonometrical tables.

The solution we are going to give of this problem, is not so simple and short as
the preceding ; but it appears to be the best hitherto proposed, especially as it is easy,
and may be readily remembered by means of an observation we shall make at the end,
and which will shew its source as wellas the demonstration of it.

In this problem there are three cases, which require three different methods of
operation. The given arc may exceed €0°, or it may be less, or at most not more
than 30°; and in the last place it may be greater than 30°, but less than 60°.

Ist. We shall suppose that the arc exceeds 60° and that ite sine is required.
Take its complement to 90° and reduce that arc into parts of the radius, which we
shall suppose to be 100000 ; for this purpose, nothing is necessary but to multiply
the degrees it contains by 17454, and the minutes by 26°00, and then to add the
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products. Square this arc thus reduced, and raise it also to the fourth power;
divide the square of it by 2, and from the quotient subtract unity or the radius;
divide the fourth power of it by 24, and add the quotient to the above remainder : :
the number thence resulting will be nearly the sine of the given arc.

Let the given are, for example, be 70* 30¢; its complement to 907 is 19° 80/, which
reduced to parts of the radius, as beforesaid, will give 34025, The square of this
numhber, suppressing the five last figures, which are useless, because we have no ocea-
sion for more than 100000 parts of the radius, is 11585, and its half 5792, which
taken from 100000 leaves 94208. Square 11583, which will give the fourth power of
34035 ; and if five figures be suppressed, as useless fur the reason before mentioned,
we shall have 1341, which must be divided by 24. The quotient, which is somewhat
less than 56, being added to 94208, will mak= 94264, which will be the sine of 70° 30,
And this is exactly what it will be found to bein the tables of sines,

2d. Let us now suppose that the given arc is at most 30°.  Find the eube and fifih
power of that are reduced to parts of the radius; ther divide the cube hy 6, and the.
fifth power by 120; if the first quotient be subtracted from the are, 