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INTRODUCTION.

M. Porssox in his Memoirs on Electricity, Magnetism
and Molecular Actions, M. Ampere in his ¢ Theorie des Phe-
nomenes Electro-dynamiques,” and Fourier in his ¢ Theorie
de la Chaleur, have been the respective founders of the
physical sciences considered in this treatise in a mathematical
point of view. The subject of electricity (including what
is called ordinary electricity, Voltaic actions and magnetism,)
forming in itself a complete system, is the sole object of the
first part of this work, the other subjects being reserved for
the Second Part; and as the nrdiuﬂr}' course of mathe-
matical reading in the University is a sufficient preparation
for the study of the branches of science here treated, it is
hoped that the suggestion recently made by a distinguished
member of the University, will be in some degree answered
in the present Treatise.®

As an acquaintance with the properties of the remarkable
functions treated by Laplace in the Mec. Cel. Liv. 111. is in-
dispensable in investigations respecting electricity, instead of
referring to that work I have here introduced them under
the form of Preliminary Propositions; I have however fol-
lowed a different rout, making the functions which shall
possess those properties, the objects of investigation ; and

* Whewell's Dynamics, 2nd Ed. Preface, p. xviar.
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have thus arrived at a more general class of functions (which
are of great use in investigations relative to Latent Electri-
city,) and also obtained several new and remarkable theorems
with respect to Laplace’s functions: it must be added that
on referring to Crelle's Journal, I found that M. Jacobi
had anticipated me with a respect to few of the theorems

alluded to.

It was natural to consider the manner in which electricity
is disposed in bodies, previous to its becoming sensible by the
action of electro-motive causes; this is the object of the second
chapter, and T am not aware that it has becen before made

the suhject of mathematical investigation.

It could answer no useful purpoese to point out what is
new in the remaining parts of the work; that will easily be
recognised by those who are already acquainted with the sub-
ject, and those who are unacquainted would not benefit by
the information; I shall only add that the sixth and seventh
chapters contain the theories of Ampere on Voltaic actions,
and Poisson on magnetism, with such modifications as seemed

to simp]if}' the processes employed by those writers.

I have to return my best thanks to Professor Cumming,
for the facilities afforded me by the use of his apparatus, to
confirm experimentally some of the results deduced in this

work, from theoretical views.

R. M.

Cavs Covvece, June, 1833,
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UN BLECTRICITY.

CHAPTER 1.

PRELIMINARY FPROPOSITIONS,

Tue following propositions, belonging to Pure Mathe-
matics, are of the greatest importance in the investigations
relative to Electricity.

Pror. I.

To find a rational and entire function of given dimensions
with respect to any variable, such that when multiplied by any
rational and entire function of lower dimensions, the integral
of the product taken between the limits 0 and 1 shall always
vanish.

Let f(¢) be the required function of n dimensions with
respect to the variable #; then the proposed condition will
evidently require the following equations to be separately
true; namely,

(@).e.... ) f@)=0, [ f(t).t=0, ff(t).E=0,......,f (). '"'=0
each integral being taken between the given limits.

Let the indefinite integral of f(#), commencing when ¢ =0,
be represented by f,(#); the indefinite integral of f,(#), com-
mencing also when £=0, by f.(#); and so on, until we arrive

at the function f,(#), which is evidently of 27 dimensions,
then the method of integrating by parts will give, generally,

W@ -t =tf() -t fo(@) +a. (0 =1) . &7 fo(t) — &e.
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Let us now put £ =1, and substitute for # the values 1, 2, 3,
...... (n — 1) successively ; then in virtue of the equations (a),
we get,

-} RS AE - flti =0, fl) =0 GlE=0, e - =0

Hence, the function f,(f) and its (n — 1) successive dif-
ferential coefficients vanish, both when ¢ =0, and when # = 1;
therefore #* and (1 —1)" are each factors of f,(#) ; and since this
function is of 2 # dimensions it admits of no other factor but

) cm]st':mt .

Putting 1 — # = #, we thus obtain

f.() =c. (.g_'f]»;
d"(tty

and therefore f(¢) = e ——
mid therefore f(¢) =¢ ==

Corollary. If we suppose the first term of f(#), when

arranged according to the powers of #, to be unity, we evi-

1 - . L
dently have ¢ = B v this supposition we shall
T PP 7 -

denote the above quantity by P,.

i Pror. II.

The function P, which has been investigated in the pre-
ceding proposition, is the same as the coefficient of A" in the
expansion of the quantity

f1—2h.(1 —28) + A%}
Let 2 be a t;uantity which satisfies the equation

(et = U1 —W);

_ ’
that is, z&=—-ﬁ+2—};. {l —2h.(1-28)+ A g*;
d

theref‘ureﬁ; ={1-2h(1-2%) e
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But if as before we write ¢ for 1 — ¢, we have by Lagrange’s
Theorem applied to the equation (e)

15 f.’.(f.',‘")ﬂdi_ B d ey

w=t+h.tt + —. — + &ec.
7 1.2  di 1.2.3 df :
[ ; i) i
If we differentiate, and put for — {”;-)- its value 1.2.3...n. P,
(

given by the former proposition, we get

o . A !

df
; d ; . el 1 g
Comparing this with the above value of e the proposition

«

1s manifest.

Pror. III.

To integrate P,. ¢ from =0 to £=1; & being any quan-
tity entire or fractional between —1 and + <.

Since P, is a function of n dimensions of which the first
term 1s llI'Iil’:f, we may represent it h}r

-'-!!-!I + A'lt + J'I.Iz'tt"k A:itﬂ'i' ------ +A”f‘|rp
Hence, between the above limits we have
- : I A: .n"i-a- .c!"I
('“’J--...._’II!IJHEI=‘ '_+ + - —|“-air+i+"'—ri__-‘ ¥
ad+1 w+2 a+3 T+ 1n 41

The actual sum of the terms composing the right-hand
member of this equation is a fraction, of which the denomi-
nator is (# +1) (v +2) (v + 3)...... (v + 7 + 1) and the nu-
merator is some function of & of » dimensions, but which, by
the nature of P,, ought to vanish when we make @ successively
equal to 0, 1, 2, 3......(% — 1), and therefore can be no other
than ¢.v(v = 1) (v = 2).......(@ — 5 + 1), ¢ being a quantity
depending on » only: the right-hand member of the equation
(d) is therefore equivalent to the fraction

. (v — 1)_(;:: —2)eiiis®—m + 1)

ot @) @) @En 1)
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If we multiply this quantity by @ +1 and then put # = -1 it
beconies ¢ (= 1)" but the right-hand member of the equation
(d) under the same circumstances reduces itself to unity;
hence ¢ = (—1)" substituting this value we get the required
x.(2-1) (v —2)......(a —n 4+ 1)

Inteepals merpEli = i (v +1) (@+2) (v +3) (z+n+1)
i+ ofd . [ [ -

Prore. 1IV.

To determine, between the limits £ =0 and £ =1, the
integral of the product P,.P,.

Case (1). When m and n are unequal, one of them as
n must be the greater; then P, is a function of lower dimen-
sions than P, and therefore by Prop. 1. the required integral
18 Zero.

Case (2). When m and n are equal, then since

I} e, " {_’t_‘!_ft_)ﬂ '
e G TR

put 1 —¢ for £, that is, put

v i Lo G S IR
(-1}.'“ = —ﬁ—}-f E—Es:l'.:.;

L

instead of £”, then multiplying by #* and taking actually the

n'" differential coefficient, we get

r(2n-1)(2n-2)...(n+1
(€)...P,=(-1)". ( I)g ?J.&.mm“—‘-p(?f'-?&c.
- [ LI ...ﬂ

where B, C, &c. represent constants, of which it is unnecessary
to calculate the values.

Multiply both sides of the equation (e¢) by P,, and ob-
serving that between the assigned limits we have [ P,#~'=0,
i P.t" "% = 0 &e., we get

: Zn(2n-1) (2n-2)......(n+1) .

&P, . P = (=1 __.(F...,_._)(—}l.__ ,_.(__+_._) R b

il L Baveneuld
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but by Prop. 111
A ) ) n it
i e e

. 1
Hence we have [ P,. P = ——
¢ c Jl il t an " ]

Pror. V.

To develop the function P,

First Expansion. By Prop. 1., we have,
1 d*. (ty"

P = X
R Tl dt"

| d* . (ﬂ. ) e &’E-i

H P,=— . — "=t
ence, n 1.2.83...1m dtu{ -+ i _A
n n4l 7. n—l ﬂ_+1 n+9
() . =1—I—.—r.—_g+ f ) @ ,)E. )

Second Faxpansion. If w and v are functions of any vari-
able #, then the theorem of Leibnitz gives the indentity

d’*(uv]_ﬂd"u— ﬂd-v d""'u n(n-1) d&v d'"*v R
de. - Cde T dt db T 1.2 de de

put #=¢" and » = £ and dividing by 1.2.3...n we have,

2
(f:l ...... Pﬂ=f'”._ (?) =14

1.9.3
Third Expansion. Put 1 —2f= u and therefore £¢ = ;u" ,
hence P, = l : . o
98] .0l 8. n o
z 1 d” {‘u -t +$ -,ug"'ﬁ—-fﬂ:.i

2.4.0_..9n .du"



8 ON BELECTRICITY.

AR hE o :-'.t{n—l) oy ¥
(B)ersi= = . aen—-1) "
+;:- (n-1)(n-2)(n-3)

2.4.(2n—1) (2n - 3) &

_4—&131%'

Fowrth Expansion. Put 1 —2¢=cos0; hence by Prop. 11.
we have, P, = coefficient of 2" in (1 — 2/ cosf + ;’ﬁ]'i

But (1-2hkcos@+ k)~ h= 1=k, (1 -he?V)4,
1.8 a
= $1 4+ . het= ‘+———T R eV + et
e Sait . e Cs
x 31 +Lhe V= 4+ — . WPV 4 e}
i ﬂp'i'

and if we collect the coefficient of £" in this product, and sub-
stitute trigonometrical expressinns for exponential, we get,

1.3 o —
(h) ------ I“”=f-_5:_ i ( ’”- _])

— . YcosnP
4 l‘; ﬂar %
1.1 1.8.n¢{n—-1)
— - eos{n—2Y04% cos(n—4).0+&c.¢
1.(2n-1) ( ) 1.2.(2n-1)(2n-3) ( ) >

Corollary. The coefficient of cos (k6) in P, is zero, when
n —Fk is odd, but when 2 — k is even as 24, its value is then

, 1:8.5...(2n~1) 1 . 3...(2i-1) n(n-1)...(n-i+1)
S e e Nl {ﬂ’}i}-u-]‘}(ﬂﬂ—?}_. (en—2i+1y
By 1:8:5-- (.:?_—_!)_:ﬂf 1.8 G...(?E:.-’r;_l_}}
1.2.8...¢ 2.4.6...(n—k)
] 1.8.5...(2n-1) n(n-1)...(n—i+1)
¢ : :
g 2.4.6...2n (2n—1)(2n—3)...(2n—2i+1)
; 1.3.5...(2n-1) 2n(2n-2)...(n+k+2)
=a~-", - :
9.4.6,..2n  (2n-1) (2n—=3)...(n+k+1)
- 1.3.5...(?1+fﬂ—1}.

2. An4i)
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Hence the coefficient of cos(k6) in P, when n—Fk is even is

1.8.5...(n=k=1) 1.3.5...(n+k-1)
" 2.4.6...(n=k)  2.4.6...(n+k)

This quantity is evidently the coefficient of 4"cosk@ in
(1 —2hcosB + f:'-’}‘-l' when n — k& 1s even, and a similar process
will shew that the coefficient of A"~'cosk, in (1-2/ cos8 + .r‘ﬁ}‘*
is zero when 2 — & is even, but when n — % is odd its value 1s

1.3.5...(n+ k) g5 —F)

o] —_—

“'2.4.6...(n+k—-1) 2.4.6...(n—k-1)

Pror. VI.

To expand a given function of #, in terms of functions
of the same nature as P,, when such an expansion is possible.

Let y be the given function of £, and suppose
y=aP,+ 0P +eP, + &e.,
where a, b, ¢, &ec. are constant coefficients to be determined.
Multiply by P, and integrate from /=0 to #=1; hence
if the definite integral [, P,y be represented by a, we have
a=a [ P,P,+b PP +cf PP, + &e.
=a by Prop. 1v.

Again, multiply the same identity by P, and integrate from
=0 to t=1, representing the definite integral f P,y by (3, hence

B=a /P, P,+b PP +c|PP,+ &

zg by Prop. 1v.

Similarly, if we put the definite integral f P,y = ~, we get
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Thus a, b, ¢, &ec. are known and substituting their values,
we get

y=aP,+3BP +5vyP,+ T3Py + &c.

where u, 3, vy, &ec. are all numerical quantities, and P, P,, P,,
&e. rational and entire functions of ¢, the dimensions of which
are respectively expressed by their sub-indices.

Note. In the preceding investigation it has been assumed
that the function y was capable of being represented by a series
of the form alP,+bP, +cP, + &ec., we shall here consider in
what cases such an identity is possible.

First, when g is any rational and entire function of #, then
this identity is evidently possible, for if ¥ be of m dimensions
it has m + 1 coeflicients in its most general form ; if therefore
we take the first m + 1 terms of the above series, they express
another function of ¢ of m dimensions containing m + 1 arbi-
trary constants; and if we equate like powers of ¢ we shall
have m + 1 equations by which these constants may be de-

termined.

Examprre. To expand #, where m is a positive integer
in functions of the same nature as P, .

Here by Prop. 111. we have

1

L= EI}”tr.rr i !
i ne + 1
. ne

= P f" P

B=hB (m+1) (m+2)’
[Pt m . (m—1)

Bl T (m+1)(m+2)(m+3)

&c. = &e.
Hence,
1 3m 5.m.(m=1) -

f.?: - . s - — F —_ — . & "l e
m+ 1 £ (m+1)(m+2) E+|f;rir?-|—l}{',':‘~'.'+‘:E']n(*.-',ul-i-s} Byt
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Secondly, when y is any transcendent, which may be ex-
presscrd in a converging series always finite, from #=0 to £=1;
for we may then consider it as consisting of a great but finite
number of terms, and therefore the former reasoning will apply ;
and it is easy to see that none of the quantities a, 3, =, &ec.
will be infinite in this case®, the series in the required form will
moreover be converging, for values of ¢ between 0 and 1.

ExamprLe. To expand #™ where ¢ =1 - ¢

Let P, P,, P,, &c. denote the values of P,, P,, P,, &c.
when ¢ is put for #; it is evident by Prop. 1, that P, =(-1)". P,.

Hence we have a= [Pt from £=0 to t=1
= [ Pt"™ from t' =0 to { =1

1 2 ;
= since the accents may be omitted.
m 4+ 1

Similarly, 8= [P ¢™ from ¢=0 to t=1
== pP¢™ from =0 to ¥ =1

m
(m+1) (m+2)’
&c. = &ec.
T herefore
fn_ _1___ 3m Sm . (m—1) o

mrl  (mt1)(m+2) T (mt1) (mt2) (m+3)

which holds true for any value of m from —1 to +e, sup-
posing ¢ to be kept within the limits 0 and 1.

Corollary. Since P,= (—1)". P, this formula becomes

3 Sm. (m—
e P LR T o)

mr1 (). (mt2) {m+1)(m+ﬂ}(m+3)'Fl}+&c'

* Vide Camb. Trans. Vol. 1v. p. 359. Art. 3, &c.
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and 1f we now omit the accents, we get the same expression as
that already obtained for #", which is therefore true for all
values of m, from — 1 to +cc, provided # is between 0 and 1.

Thus, let m=—4, we get

2

2 {Pﬂ,+P1 T e &:c.}

1
m o
which may be confirmed by observing that by Prop. 11. we have
$1—-2h(1 -2+~ = P, + Ph+ P2 + &e.
and then putting h = 1.
Again, if we differentiate the general expression for #*, and
then put m = 0, we get
~log. (&) = (Py+ P) + L (P, + P)) + L (P, + Py) + &e.

A simple numerical illustration may be given by putting

t=21 when we have P, = coefficient of £** in (1 + A*)74

by Prop. 11.

1 v LB b
= y=1-41+ = + &e
24/ (3) v @) 2 e a4 9088
5 g 3.8
and —log. (%) =log.(2) =1 - - 3'_'13-4_;_5'5-71._ .c

Prop, VII.

To compare the indefinite integral of P, of any order not
higher than the 2", and commencing when # = 0 with its diffe-
rential coefficient of the same order.

If we denote the m"™ integral of P, by the symbol [*P,
I d" (¢t)"

then, since P, = — ;

1.2.3...n o 1"
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1 dr =" (it
we h::ﬂ’é ﬁmPﬂ:l 9 g 'H. dlf”(rm)

@ o L e aw

- 5

all the successive integrals commencing when ¢ =

Expanding the right-hand member by the Theorem of
Leibnitz, we have
d . f'” dn-—m-——l g lJ):'r

-+ ('ﬂ--—?ﬂ-) ﬂ'{‘: +W

i = E-‘J

1.2 8, fr Py =

(n—m}(ﬂ—mulj g .1 d*~ _=h
T t-f.f"'”‘ +b‘c

1.2

and actually performing the differentiations, this expression
becomes

; n n—m
n.(n—=-1)(n—-2)...(m+1). (L)Y . it = m 5 Cfpromel
( ) ( } { ) { ) { 1 m+1

n. {ﬂ—l} (n—m) (n—m—1) Bt e

1 ] (m+1) (m + 2)
X : e 1 7t [
In like manner, we have = ; L£7) » whence
dt 1.2.8...1n d "
] ch .;; dm}j 'tl‘; d‘-‘r-ﬁ'hﬁ.tﬂ ( )dtﬂﬂ dn-!—m—l_rn
-2 =" . — 0+ m S
dtw ﬂftlral-r.lt Az 2z dr d:tu-bm—-l

(n+m)(rn+m-1) &.¢" dF=2 ¢ 2
1.2 ‘Tde dprme TEE

and performing the differentiations, the first m terms will vanish,

and the expression will become

(-D)".n(m=1)(n=-2)...(m+1)x (n+m)(n+m—1)...(n+1)
xn.(mn—=1)...(n—m+1)

PR AL L
1 m+1

. (?L—l} {ﬂ+m)(ﬂ+m_ J' im—m=1
TR (m+l)(¢n+ﬂ}_' s

B
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Comparing both expressions, we get, finally

. P, = (— )" d". P,
(R ) (m4+m—1)...(n=m+1)" d¢

Corollary 1. Let m=1, we get
tt' dP,
n.(n+1) dt
from whence it is obvious that the definite integral of P, taken
between any two values of ¢ which render P, a maximum or a
minimum, or from any such value of # to #=0 or 1, always
vanishes®,

L

»

Corollary 2. Put 1-2¢=u in the equation just obtained,

. 1=
then since #t = = we get

(i®—1) 4P,

P, = :
2 n.(n+1) du’
d s
hence d_p_{(l - u). H}+ﬂ.(u+ 1).P, =0,

where P, is expressed by a differential equation.

Corollary 3. - We may also by this proposition integrate

. &P P i
from £=0 to £=1 the quantity (££)". T A for if we
‘

integrate by parts, observing that the part outside the sign of
integration vanishes between limits, we get

e TP dP, B d B
e 'f drr {( S df}‘

But
!{-‘ff} df: } =(=1)".(m+r) (m+r—=1)...(m=-r+1) . [~ P,
= — (m+7) (m—r+1) ()} . dz;:lpw

® Camb. Trans. Vol. 1v. p. 393.
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Hence

iR H T S

(m+r)(m—r+1) (1) ————= —

dP, &P,
A g dr

o e Rl

htt) gt " dF

we may thus reduce the index » by umity, and continuing the

process, we should finally arrive at
(m+r)(m+r—1)...(m—-r+1) .ﬁPmP",

whence by Prop. 1v. the required integral when m and  are

unequal is zero, but when equal it is

1

2m -+ 1

(m+r)y(m+r—=1)...(m—r+1).

Pror. VIII

If Q, be the coeflicient of A", in the expansion of the
quantity §1 —2 /% (cosdcosB' + sinfsin ' cos (p— ') + A} 743
also if ~ represent cos@, and u=cos @ cos@'+sinfsin @' cos (p—¢"),
and F' be any function of u; then shall j:_;;F Q=+2w[F.P,
the limits of u being —1 and +1; of s the same; and of ¢s
0 and 2.

Conceive a fixed line drawn through the centre C of a
sphere, of which the radius is unity.

Let a point P’ be taken within the sphere, at a distance %
from its centre ; the straight line A muking an anglf: @ with the
fixed line.

Let a point P be taken on the surface, and let the radius
passing through it make an angle 8 with the same fixed line;
and let the planes of the angles 8 8 be inclined to a fixed plane
at the angles ¢p and ¢'.

Then g is evidently the cosine of the angle (w) included by
the right lines CP and CP..

Hence if F' represent the density at the point P, then the
sum of all the elements divided by their distances from P' is
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F ! : .

expressed by f f-E., putting the distance PP =¢, and the
¥ "'":p

double integral being extended over thL surface of the -aphn?re :

the limits of P hemg U.J-:Iuntl} 0 and 27+ and i}f"}z or cos@, —1

and +1.

But since ' 1s a function of ~, the annulus which contains
all the points similarly situated as P with respect to P, will
be expressed in mass by — 27 F'sinw. cw or 20 Fdu; the sum
of all the elements of the spherical surface divided by their

2 I
>

respective distances from P’ will be now express

from u=—1 to p=+1.
F F
Hence ff—ﬁ=+iﬂ7rf§.
Y ﬁf'r} [z

J 0
But 5= &+ Qi+ QL L e
and also = P, + P,k + P.h* +...&c. where P, = the coefficient
of k*in §1 —2h.(1 —26) + A*} % when 1 —2¢=p;
and if we equate like powers of &, we have

f},ﬁJ,FQ“ = + E"J’I‘ﬁl ,FI”H.

Corollary. If F = Q, we obtain a theorem analogous to
that given in Prop. 1v. viz.
f}. f:b Q. Q. =27 j;l P,P,=0, m and n being unequal,

4o
2n 4+ 1

,lcyfﬂj:Qn-Qu=+ﬂ"?l'_f;,.Pn.Pﬂ=

Pror. IX.

The function Q, satisfies the equation,

__{ r;q,t} 1 @*Q

(1 Sl Ayl T d¢"+ﬂ (n+1)Q,=0.
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Put as before u = cos@cosf’ + sinf sin@ cos (¢ — '), then
if 2 be any function of 8 and ¢, the principles of the differential
calculus give the equations

da 1 du

— — e

dvy sin@ d@’

d Q.= z}dj d*uw  cos@ du
T =ap b 2

dw du d#
But 70 = 2. do
e : ‘o
= $cosBsin® cos (¢p — @) —cosf'sin B} ;
e
du du d
T F $cosBsind’ cos (¢p — ') cost sinf}* _Hd,u

and by a similar process we get

de da

Ea__— {sinfsind sin(¢p— @)},

dﬂ“_. P .sin*@ . sin* @' sin®(¢p ~ a;f))-——a-— sin@sin®' cos (p— ).
d(;b d p”
Now the substitution of these values in
i du 1 d*u
dey {( Lk d-;.-} sin’f " d¢p?
will reduce it to
d*u du
1 — u® -2
( #)d i A

t-—ll[I;—f-’)——?f
OI’d 'ub{fj.+

Assign now to w the particular value Q,= P, as was
shewn in the last proposition by putting ~ =1 —2%, thence
we obtain

i o dﬂ . d ( rdPn)
&—ﬂ:{{l—”}-&;} thﬂt]ﬁ, E o
| 8,
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mu} i dQy sy AP
o ( 57

d
- —-_— 1l — A . = *—._n
df};{( T} d'}r l+~-4‘;..-2 dtp"t dt -
==n.(n+1).P,
=—n(n+1).Q,

Pror. X.

To expand @, in a series arranged according to the cosines
of the multiples of P - {}’)ﬂ

The term which involves cosk (¢p — ¢) in the expansion
of the surd
{1 — 2h [ cos@ cos@ + sinf sinﬂ’cus{tp = q!)'}] + B} -3
can come from those terms only in which cos (¢p — ¢) is raised
to powers equal to k, k + 2, k + 4, &c.; it must therefore con-
tain the factor sin® (8) or (1 - .-}.‘2)'5.,

Now @, is the coefficient of A" in the above-mentioned ex-
pansion, from whence it is easily seen that the coefficient of

cosk (¢p — ') in Q, is of the form
(1=t (™ + g 4y
and therefore, if this quantity be represented by ¢,, we have

Q.= G+ 1 ¢05 (P — @) +q. cos2 (¢p — ) +q; cos3 (¢p — ) + &e.

Substitute this value for @, in the equation given in
Prop. 1x. and equate to zero the coefficient of cosk (¢p — ')

which results, hence
d daq i
Aty IF g e i

dﬁ,{( T}dr},} ]
put now for g, its value given above, and equating like powers
of ~, we have in general

n=K—4q _l_'”},

S tn(n+1) g, =0;

n-k-2m+1)(n—-F%k—-2m+2)
2m(2n — 2m + 1) '

[

@, =

Wi W= ]
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from whence by assigning to m successive values, it follows that
_(n-k) (m—Fk—1) e
2.(2n—-1) g

(n—k)y(n-k-1)(n—k-2)(n—-k-3)
s 2.4.(2n—1).(2n — 3)

k
g, = a4 (1 — %)% {?,,_k

f}’u—"-{ LN &C.

which equation may for abridgement be written

@ = - F, (),

where @, remains yet to be determined.

Now, since 6 and @ are similarly involved in @, and there-
fore also in ¢, if we make cos@' = ~/ it is evident that we must
have

- A‘Fk(".”}'Fk(TL
where 4 is independent of # and €.

Put 9:8’:;—5, and therefore oy =~'=0; then if n -k

1s even, we have from the general value of F, (v),

1.2.80c0000eei(n—F)
A(m-Fk)x@rn-1)©@n—-3)...(e+k+1)’

F.(0) = :

and g, which in this case is the coefficient of A" cosk (¢p — ')
in the expansion of §1 — 2% cos (¢ — @) + ~*} ™% is expressed
by 4}, (0)§"

But by Prop. v. the same coefficient was shewn to be
equal to
1.3.5...(n—-k—-1)x1.8.5...(n+Kk~1)
2.4.6...(n+k)x2.4.6...(n+k)

A_ﬂ{l.ﬁ.ﬁ...(ﬂ-ﬁ._l)}a Galh— 1) =B 1)
= e e '(n+1)(ﬂ+2).__(ﬂ+k}:

except when % =0, for then we must take only half the value
given by this formula.
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d
But when n — k& is odd, then if we denote - SF, ()}
i 4

by F', (), we have
1.2.8......(n=FK)
A (m=k-1) x (2n-1) (2n-3)...(n+k+2)’

Fﬁk {ﬂ) == 9
and it is evident that the coefficient of ~~/' in g, is 4 { F", (0) {*

Now the surd of which Q,2" is the general term when ex-
panded, neglecting the second and higher powers of ~, ~/,
is evidently

$1—2hcos(p—@) + 1} 3+ heyey' §1 —2hcos(p— ') + A%} 5,
from whence the coefficient of ~~/ in qk,l is the same as the
coefficient of A"~' in

$1 —2hcos(¢p — ') + A} 1
that is, by Prop. v.

1.8.5...{n—k)x1.8.5...(n + k)
'2.4.6...(n-k-1)x2.4.6...(u+k=-1)"

comparing this with the value above obtained for the same, we
get exactly the same value for 4, as in the former case.

Hence the required development is

o~ {22 R ) B

e L TN Fy () Fi(y) cos(¢p — @)

(7 -1 : _
ey POV o) el

Pror. XI.

To find the most general, rational and entire function,

with respect to sinfl, cos@, singh, cos¢h, which will satisfy
the equation
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4 (1 %) d;ui : o n.(n+1).u=0
where ~ is put for cos@.

Suppose the required function is expressed in terms of the
sines and cosines of the multiples of ¢, and let the general term
of this expansion be represented by A, coskep + B, sinkd.

Substitute this value for # in the given equation, and com-

paring the terms which contain the same multiples of ¢, we
obtain, as in the last proposition,

S (n="Fk)(n—"Fk-1)
4, =a,(1-) 1'? “ - ) .

n=F g
2(2n-1) v hilserd

. e n=klnok=1) . ..
Bt @Y iy e Bi@n=1) T e

where a, b, are arbitrary constants.
Now by Prop. v., if we put 1 — 2¢ = ~, we have
n(n—1 nn.(n=1){rn—-2)(n—-3
_P“:'ﬂ{n“;n —-—--—---—-( ) -2 ( ){ )( )

e n—d Q.
2(2n—1) 2.4(2n-1) (2n-3) W
dk}% | b (ﬂ“’k}{}l—-k-—l) f—F =2
‘ E}T=¢3A" A=y + &e
where ¢ and ¢ are independent of ~.
: d P
Hence, 4, = a,sin” (). ——
dry
p d* P,
BJ‘: ':.3.1; sin” (9) = k
dry

where «, [3, represent arbitrary constants.

Hence the required function in its most general form, is

, Vd R
w=a,P, + (a,cos + ,Glsmt;b) .sinf p

& F,

k-

+ (a,cos2¢p + 3. sin2 b) sin‘f . + &e.
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Pror. XII.

[f V,, Z, are any rational and entire functions which
satisfy respectively the equations
d dY. 1 &Y,
r.-._{(l —ﬁ'.;E) } -+ 3" -
a,"y d ~ 1 —ry dqf:

d 12 dZ, 1 d&PZ, 1\ Z

v g @ vl e e e T
it is required to find the value of [, [, ¥,,Z, between the limits
y=—1 and v=+1, and from q{}:{] to qf)=27r.

+m(m+1). ¥, =0,

Putting ~ = cosf, we have by the last proposition,

. ooy
Y, =ayP, + (a;cosgp + 3, sing) . sin6 ey
+ (@;cos2¢p + B, sin2¢p) sin* {f::;m &e. ,
and
Z,=a P, + (a,cosp + b, si siﬂdp"
AT 1 COSCh  singd) . sin Fﬂ;
+ (aycos2¢ + b, sin2¢) sin*6 . i—% &e.;

where ag, a5 Bis a2y Bas &c., and a4y, 4, b, &c. are any ar-
bitrary constants.

Multiply both these series together, and integrate the
product with respect to o, from ¢ =0 to ¢ = 2=, observing
that the integral of the product of the cosines or sines of
unequal multiples of ¢ vanishes between the given limits;

hence,

o A
f;r_,, K.u Z“ — {ﬂ-ﬂﬂnIJmP” ‘i‘*% (ﬂ?lf_',h T IIIJHGI) 51“29 dr}r . E}:

&P, &P,

+ 51; (2.a, + byf3,) sin‘6 '&';;— : ﬂt'}"z
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The general term of this series is evidently a constant
quantity multiplied by

AP, &P
sin®* () dr _EE:F -
and if we make ~=1—2¢ and # =1 —¢ as before, we have
&P, 4P, deP. P,
L, s1n®" o ol .
HERGT v = U s

which by Prop. vir. Cor. 3. =0, when m and n are unequal,
but when m = n, its value is

Hence when m and n are unequal,
ﬁ‘; j;ﬁ Ym zn = ﬂ':.«

but when m = n,

e A

Aq: @
focly + = 72 (1 + 1 r:&a+b
Eﬂ.lliﬂu =) ( )(11 |1,'|

+5m—=1).n.(n+1) (0 +2) (aa: + b.3) + &e.

Cor. 1. If we represent the general value of Z, by
F (0, ¢), and suppose Y, to be the coefficient of 2" in the
expansion of the quantity,

31 —2h [cosBcos® + sin@sind cos(p — @) | + 2°} 74,

which by Prop. 1x. Evitienﬂ}r satisfies the equation in the
enunciation of the present proposition, then shall

£, ¢);

that is, it is the same as Z, when 6 and ¢ are changed into &’

hh¥Zu=

dar

,..'.TL-I-]

and ¢, and then multiplied by

For if in the expansion of ¥, given in Prop. x., we put for
F', (~) its value found in the succeeding proposition, we have
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i1 in@ e
sinfsin 6 ,-‘“". 2 _2cos (¢ — ¢)
n(n+1) d'y ﬂ:'}:

in* 6 sin” 6’ &P, FF, :
2 ——.2cos2(¢p — ¢) &e.
(n-—l)n(rz.+1} (n+2)° dey " dey?
where ~/' = cos@ and P, is the same function of ' that P, is of
+v; then comparing this value with the form assumed for ¥, in
the present proposition,

Fl'l = I'Ju jj,:rl +

we have a,=1,

2sin cosgp’ d P,
n(n+1) d~/ =

”smﬁ mnqb dr,
P nm+1) dey

& =z,

251

H

substituting these values, we obtain

4

d
f'}“ .ﬁfr ]"rl zn = ':ﬂfl:l + ("11“03?{)’ + bl Si1 t;b;:ll sinf’ -—-‘—}-?’:

2n + 1 ; d~

a
-}

. . a P
+ (aycos2 )’ + bysin2g') s-lnﬂlﬂ"'?-z;l + &e.},

which is evidently what the general value of Z, becomes, when

A and ¢ are respectively changed into 6" and rtf;’; and the re-
4 ar

n+l

sult multiplied by

Cor. 2. A process similar to that employed in Prop. 1v.
will equally apply to the expansion of a given function #, in
terms of functions of the same nature as Z : that 1s, such as
satisfy the equation

GBI

a =0,




CHAPTER 1I1.

STATEMENT 0F THE ORDINARY ELECTRICAL PHENOMENA.

(1). Production of Electricity.

WuEex a piece of amber, sealing-wax, &c. or a plate of
glass is rubbed briskly with a woollen cloth, and then held
near small pieces of paper or other light substances, some are
observed to fly towards the rubbed body, and attaching them-
selves to it for a short time, to fly off again, while others
having arrived within a short distance of that body, suddenly
fly back without touching it. These phmnomena are called
electrical from the Greek elexvpor’ amber, and in this case
the body which exerts such attractions and repulsions is said
to be electrised by Friction.

Electricity is also produced when bodies undergo a change
of state, as when melted sulphur is poured into a metallic pot,
supported on glass legs, and allowed to solidify by cooling;
in this state both the sulphur and the vessel exhibit signs of
electricity.

Pressure as in the case of the topaz, and heat as instanced
in tourmaline develop electricity.

The organization also of certain animals, as the torpedo,
produces effects similar to the electrical, particularly in the
shock received when touched by the hand.

(2). Communication of FElectricity.

Let a cylinder of glass, the axis of which rests on fixed
supporters, be made to revolve rapidly by means of a handle
attached to the axis.

’ D
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During the rotation, let a silk cushion stuffed with hair
be pressed in a fixed position against the cylinder, by means
of a strong and elastic lamina of iron about an inch broad,
to which it is attached, and which at its lower extremity com-
municates with the ground ; the cylinder will thus be rendered
electrical by friction.

Let a hollow metallic cylinder, of which the length is about
three or four times the breadth, be placed on a dry glass sup-
porter, and then let one end of it armed with sharp points,
be brought near the revolving cylinder.

If the room, in which the experiment is made, be darkened,
streams of light will be observed at short intervals, rushing
from the electrified glass cylinder to the sharp points, accom-
panied with a crackling noise.

After this process is continued for a few minutes, let the
metallic cylinder be removed, holding it by the glass supporter;
it will then be found to possess the electrical properties, in
attracting and repelling light bodies, and in communicating
a slight shock when touched by the hand.

Such is the principle on which the common electrical
machine is constructed, where the glass cylinder rendered
electrical by friction has evidently communicated electricity
to the metallic cylinder placed near it; and it may be ob-
served that another metallic body with a glass handle, would
by merely touching the former, acquire similar properties.

(8). Electrical Influence.

Suppose that electricity is produced, as in the preceding
article, and communicated to a metallic globe resting on a
glass supporter. Let the globe be then brought near a thin
metallic cylinder resting also on a glass supporter, the latter
will then be found to possess electrical properties, which may
be exhibited by bringing light bodies near its surface, or more
simply by suspending at different points of the cylinder, pairs
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of pith balls connected by fine flaxen threads passing over the
cylinder; the pair of balls which are suspended at the ex-
tremity of the cylinder nearest the globe, will recede from
each other through a large angle; those near the middle of
the cylinder will scarcely have any divergence, but those at
the middle and beyond, diverge more and more, the nearer we
approach the second extremity of the ecylinder.

Let now the cylinder be removed from the vicinity of the
globe, the former will instantly lose all its electrical properties,
and the balls will return to their natural positions: thus the
mere presence of an electrised body induces an electrical state
in adjacent bodies resting on glass supporters.

(4). Conductors and Non-conductors.

The metallic bodies, which we have supposed placed on
glass supporters, are said to be insulated ; for if instead of
glass a metallic supporter were used, with its lower extremity
in contact with the ground, the effect of this communication
would be to deprive the electrised bodies of the properties
they had acquired, and to restore them to their natural state.

Let now a metallic rod be insulated and electrised, and
let a series of insulated metallic rods in their natural state,
be placed in successive contact with each other; touch then
the first of the series with the electrised rod, they will all
become electrical almost instantaneously; but if one part of
the series had been a stick of sealing-wax or a glass rod, this
part would neither acquire electricity itself, nor suffer the
metallic rods beyond it to acquire any, but would completely
cut off the communication with the eleetrised rods: it is there-
fore said to be a non-conductor of electricity, and such sub-
stances are therefore used for insulators; on the other hand,
the metallic bodies by which the communication may be pro-
longed to any extent, are named conducfors.

Metallic substances and liquids are mostly conductors ;
gums, vitrefactions and dr}f gases non-conductors; there is
however but little probability that there exists any substance
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which is either a perfect conductor, or an absolute non-con-
ductor ; thus the glass supporters in the preceding experiments,
always exhibit some small signs of an electrical state, at that
extremity which is in contact with the electrised metallic
body.

(5). Positive and Negative Electricities.

Let an insulated metallic globe (4), and a pith ball (a),
of very small dimensions compared with the globe, and sus-
pended by a silk string, be both electrised by communication
with the machine described in Arf. (2). In like manner let
another globe (B) and another pith ball () be electrised by
means of a machine, which differs from the former in having
the revolving cylinder composed of some resinous substance
instead of glass.

The ful]nwing phenomena will then ocecur:

When the ball (@) is brought near the globe (A4), it will
be repelled with great energy: and in like manner will (b)
be repelled when brought near (7).

On the other hand, when the ball (#) is brought near the
globe (4) or the ball (@) near the globe (B), the balls will no
longer be repelled, but attracted towards the globes.

The ball («) and globe (4), in electrising which the glass
revolving cylinder was employed, are said to be charged with
vitreous or positive electricity, and the ball (b) and globe (B)
with resinous or negative electricity : the preceding phenomena
may then be announced by saying that electricities of a like
kind repel, and of unlike kinds attract.

If instead of the globe (A) a pith ball (a") of equal dimen-
sions with (a) and similarly electrised, had been used, then the
two balls would mutually repel; the reason that (4) is appa-
rently not repelled by (a) is merely that its mass is so much
greater; for if it were also suspended by a fine string, it would
in reality begin to recede from (a) with a velocity which would
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be to the initial velocity of («) as the mass of (@) to that of
(4), in consequence of the necessary equality between action
and reaction ; but the action of gravitation tending to restore
it to its original position, the angle through which it moves in
the case above considered would be quite insensible.

When the ball (a) is observed to recede from the globe
(A), we are not to infer that the electricity in (@) being re-
pelled by that in (4) draws along with it the matter of the
ball (2) by cohesion to its particles, because the conducti-
bility of the ball renders the supposition of such cohesion very
improbable ; and it is at the same time obvious, that the pha-
nomenon would be produced merely by rendering the pressure
of the electricity against the surrounding air unequal, for the
air being a non-conductor will not suffer it to escape, and re-
acting unequally on different points of the surface of the ball,
would produce the observed motions.

Note. No very general law has been observed with respect
to the nature of the substances by the friction of which either
kind of electricity may be produced ; it is however universally
true that the rubbing and the rubbed substances always ac-
quire opposite electricities, from whence the inconvenience of
the names, vitreous and resinous, as applied to electricity, is
apparent ; for if two plates of glass or two pieces of resin be
rubbed together, one of the glass plates will acquire resinous,
and one of the pieces of resin, vitreous electricity.

(6). Capacity for Electricity.

When plates of different substances, but of the same form
and dimensions, are charged by means of the common electrical
machine, the number of turns made by the revolving cylinder,
and consequently the quantity of electricity communicated
before its escape, which is indicated by the electric spark,
varies according to the material of which the subtance is com-
posed, and being found greatest in non-conductors, they are
therefore said to have the greatest capacity for electricity.
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The mode of electrising a non-conductor, as for instance
a plate of glass, is the following; place it on a conducting
surface communicating with the ground, and also put a me-
tallic plate in contact with the upper surface; having charged
this plate with electricity, remove it by means of insulating
handles, the glass will then be found strongly charged with
electricity.

(7). Electrical Instruments.

A variety of instruments have been constructed for dif-
ferent purposes connected with experiments on electricity ;
as our object is to describe merely the most simple and use-
ful, we shall take only the Electroscope, Proof-plane, Tor-
sion-balance, and Leyden Jar.

Electroscope. A pair of small and extremely light balls
made of elder-pith and connected by a fine silk thread taken
from the cacoon, form when well dried, a simple and useful
instrument for indicating the presence of electricity ; when
the string is held by the middle so that the balls hang to-
gether and are made to touch a body slightly electrised, they
instantly both recede from that body, and diverge from each
other; if they are taken enclosed in a glass cage to the upper
strata of the atmosphere in fine weather, their divergence con-
tinually increasing shews it to be in an electrical state, and
even at the surface the same phanomenon frequently ocecurs,
when a cloud charged with electricity moves over-head at a
small altitude.

Proof-plane. This useful instrument consists of a very
small disc of gilt paper attached to the extremity of a good
insulator, which generally is a filament of gum-lac; it is ap-
plied in measuring the intensity of electricity at the different
points of the surface of a body, for by contact with any point,
it will take when very small, an electrical charge proportional
to the quantity of electricity at that point; immediately on
being removed it should be applied to a delicate electrometer,
such as that which will be next deseribed.
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A natural application has been made of this instrument,
to shew experimentally that when a conducting body is elec-
trised, none of the free electricity remains in the interior; but
the same may be also proved by enveloping the body with a
conducting cover, as paper, which if composed of two parts
which meet so as exactly to cover the body, may be put on
and taken off by means of insulating handles; if the substance
be electrised and the envelop then put over it, the paper when
removed will be found charged with electricity, while the body
will be completely deprived of it, thus demonstrating that all
the free electricity resides on the surfaces of bodies.

Torsion Balance. Suppose a needle of gum-lac is sus-
pended horizontally by an extremely fine silk thread perfectly
unravelled, if we move the needle from its natural position
in a horizontal plane, the torsion which the thread undergoes
will tend to restore it to its primitive place, with a force pro-
portional to the angle of torsion, which is here the same as the
angle through which the needle is made to deviate; this angle
may be observed by enclosing the apparatus in a glass cylinder
round which there is a graduated band in the same horizontal
plane as the needle.

Another torsion may be communicated to the thread from
its upper extremity, to effect which, a graduated brass plate
to the center of which the thread is attached, moves with
friction on the top of a smaller glass cylinder placed on the
former, and a stationary index will shew the angle through
which it has turned.

When both torsions are in opposite directions, the whole
torsion is their sum, and in the same directions, their differ-
ence.

To instance the use of this instrument, suppose a pith ball
() attached to the end of a needle of gum-lac, while another
(B) is attached to a fiwed insulating supporter, so as to be in
contact with the former ; when the balls are electrised, the first
will be repelled through an angle (w), and if we make the
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; g . @
length of the needle a unit, the distance or chord 4B = ﬂsmg,

and the repulsive force, which is some function of this distance,
may be represented by f(w), while the force of torsion, which
balances the repulsion and is as the angle of torsion may be
represented by mw, m depending on the material of the thread
only ; hence we must have
)
?Rtﬂ———“f{w)ﬂﬂﬂg.

If now the plate at the top be made to revolve, so as to
bring (A) nearer to the fixed ball (B), another position of
equilibrium will be formed ; and representing the total torsion
by # and the arc AB in this position of the ball (4) by 6,

we have

mi = f(6) cnsg+

J(0) cos

{250 [l o

2
Hence, — =
w w

[ (w) cos S

similarly, for a third position of 4 when the arc 4B =0" and
the torsion = £, we have

r

, a
y I(H)EDEE

R ]
)

L]
f (w) cos —
2
and so on for any number of positions.

Now since all the quantities ¢, #, &e. and o, 8, 8', &e. are
measured by the construction of the instrument, we can try
if any assumed form of f(#) will verify the above equations,
and from Coulomb’s experiments it appears that when

f(6) =

(71

5 these equations will be satisfied with remarkable
Vers
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exactness ; but the versed sine of the arc 4B is as the square
of the chord, hence the repulsion of (B) on the ball (4) must
be proportional to the inverse square of the distance.

If instead of the ball (B) the proof-plane above described
be used, and the arc 4B through which (4) recedes be put
equal to w, the corresponding intensity of the electricity on
the proof-plane being i, and on another trial these quantities
are ' and i'; then assuming the law of electric action to vary
as the inverse square of the distance, we have
{ﬂi Vers. r,u’

af

T
- o 3
i @ Vers.m

thus by combining the proof-plane and torsion-balance, we may
form a very exact electrometer.

Leyden Jar. Let a glass bottle be lined inside and out-
side with tin-foil, except a small portion towards the top; let
the inside be electrised positively, by means of a brass chain
communicating with the prime conductor of an electrical ma-
chine, and also with the interior foil at the bottom of the jar.

The positive electricity in the interior will attract and
therefore detain the negative electricity of the exterior foil, but
it will repel the positive which will thus escape into the ground,
on which we may suppose the jar placed ; the exterior foil will
therefore be negatively electrised.

If now a communication be made between the internal and
external electricities, by placing for instance one hand on the
outside foil and the other on the chain conducting to the inside,
a smart shock will be immediately felt ; such is the principle on
which the Leyden jar is constructed.

A series of such bottles communicating with each other,
and with the prime conductor of an electrical machine, and
placed in a wooden box lined with tin-foil, constitute what
is called an electrical battery.

K
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(8). Gradual dissipation of Electricity.

When a body is insulated and electrised, the intensity
of the electricity rapidly diminishes (particularly when the
atmosphere contains much moisture) so as ultimately to be-
come quite insensible.

The causes of this loss of intensity are:

First. 'The imperfect insulation of the body; for as was
stated in Art. 4, there is no known substance which may be
regarded as an absolute non-conductor.

Secondly. The surrounding air, the particles of which
become electrised by contact with the body, and then are re-
pelled by it, while other particles coming successively in con-
tact with it, carry off in like manner additional portions of
electricity.

Thirdly. The humidity of the air which deposits on the
insulator small globules of water, and thus forms a conducting
chain reaching from the body to the ground: this which is
the principal cause depends on the hygrometric state of the
atmosphere.

When the latter cause is avoided, by making the experi-
ments in fine weather, the loss of intensity in a short interval
of time due to the first two causes, is found to be proportional
to the actual intensity ; hence if i be the intensity at any time Z,
and m a constant quantity depending on the nature of the
electrised body, we have

therefore, i=c.e™;

where ¢ represents the initial intensity : hence in equal sue-
cessive portions of time the intensity diminishes in a geome-
trical progression.
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(9). Effects of Electricity.

When a conducting body is charged with electricity of
either kind, a pressure due to the mutual repulsion of the
electrical particles will be exercised against the air which is
a mnon-conductor; this pressure is generally different at dif-
ferent points of the surface of the conductor, but at a given
point it will depend on the whole charge, and will increase
with it. If by adding to the charge we increase the pressure
until it is sufficient to overcome the resistance offered by the
air, it will escape from the conducting body at that point in
which it has the greatest intensity. This tendency to escape,
may be increased by placing another conducting body near
the former; the natural electricities of this conductor being
decomposed by influence, that which is unlike the electricity
of the charge becomes collected on that part of the second con-
ductor which is near the first, and by its attraction evidently
increases the tendency of the electricity in the first conductor,
to escape.

The escape of the electricity is indicated by a spark or
stream of light visible between the conductors, caused by
the great pressure exercised against the air during the passage
of the electricity, the velocity of which is immensely great ;
but if the electricity be discharged through an exceedingly fine
wire, the latter will be rendered red-hot, indicating the agita-
tion of the molecules of which it is composed.

A similar experiment has been made with lung metallic
bars, and the result has been a sensible and permanent altera-
tion of magnitude.

In like manner, a moderate electrical charge passed through
fluids contained in narrow glass tubes, produces so rapid an
expansion of the fluids that the tubes are often burst.

Water may be formed by passing the electric spark in a
jar containing hydrogen gas and common air, or oxygen.
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If a metallic rod, terminated in a fine point, and covered
with an isolating substance, except at that point which is
in contact with water be electrised, the latter will be decom-
posed into its constituent gases.

Many other chemical effects are produced by electricity,
but it will be sufficient here to state that oxygen generally
combines with bodies positively electrised, and the combination
is favoured by raising the temperature of the body.

Vegetable as well as animal life may be destroyed by the
electric shock, but in the latter instance, more moderate shocks
have been applied with doubtful success in such diseases as
nervous contractions, deafness, rheumatism, &ec.

The colour of the electrical spark depends partly on the
substance to which electricity is transmitted, partly on the
medium through which it passes; the more distant we pIm:e_
that substance, or the more the medium is rarified, the whiter
will be the colour of the spark. When examined by viewing
it through a prism, the effects are similar to those of common
light.

(10). Diffusion of Electricity.

Both the electricities are contained in every known sub-
stance, and the quantities of each kind susceptible of develop-
ment, when the body is in its natural state, are generally
equal.

If the body is a conductor, and is brought near another
body positively or negatively electrised, its electricities will
be partially separated and in equal quantities.

When chrystalline bodies exhibit electricity in consequence
of a change of temperature, the electricity at one angle or pole
1s positive, and negative at the opposite one.

The atmosphere, when pure, is in a state of negative elec-
tricity, the more intense as we ascend to higher regions, where
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its density is less; but when rendered impure by breathing, in
a close room, it is found to be positively electrised.

When a solid body undergoes fracture, or is torn asunder,
the separated surfaces are found oppositely electrised.

In the formation of gases and the condensation of vapours,
electricity is developed ; thus snow and hail, immediately after
falling, are found negatively electrised.

Thunder and lightning are effects of electricity, and the
heavy showers of rain which frequently accompany this phz-
nomenon, may be conceived to be produced by the electric
discharge, bringing into combination, the oxygen and hydrogen
gases at that time in the atmosphere, in the same manner that
those gases when contained in a glass vessel, are combined by
passing through them the electrical spark.

Many other meteoric phaenomena, as the Aurora Borealis,
&e. seem referable to the same cause; and some experiments
not sufficiently confirmed, would seem to indicate that even
solar light possessed some electrical qualities.



CHAPTER III.

ON ELECTRICITY IN ITS LATENT STATE.

(11). Definition of Latent Electricity.

WaeN a conducting body is taken in its natural state and
applied to the most delicate electrometer, it will generally
evince no signs of electricity ; but when brought near an
electrised body its opposite ends will then be found to be
electrised, the one positively, the other negatively; it will
however be instantaneously restored to its mnatural state, by
removing the influencing body. (Art. 3). The electricities
which have thus subsided into a state of neutralization, are
here called latent ; and the mathematical character of latent
electricity, is, that the total action of the system on an ex-
ternal point, is zero. :

(12). Mathematical Signs of the Electrical Forces.

Conceive a fixed electrical particle P, of either kind of
electricity, to act on a positive particle p which is free to
move, let the distance Pp be represented by x, P being the

~ _,origin, and the right line joining the particles, the axis of @ ;
A+ et p represent tlmﬁmass of P, and f(x) the law according to
which the force varies at different distances. Then ¢ repre-
senting the time, the equation for the motion of p is
d*a
pf(a) = de’

according as the action is repulsive or attractive, that is, ac-
cording as the electrical particle P is positive or negative;
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this ambiguity is removed by giving p the sign expressed by
the name of that kind of electricity, of which it represents
the quantitative accumulation in P; for the second equation
would then be
d*x
o~ f}f(ﬂ.’-’) R d# 3

which 1s the same as the first.

With this convention, the nafure of the action between
two electrical particles will be indicated by the sign of the
product of their masses, the sign + expressing repulsion and
— attraction.

It is moreover evident that the formula

Jefy fpo

extended through the whole of a given system, will not express
the whole quantity of electricity in that system, but merely
the excess of the quantity of positive, above that of negative
electricity.

The statical effect of an electrical system, which, estimated
in any direction, is the difference between the effects of all
the attracting and of all the repelling particles, will by this
notation be expressed by merely one integral instead of the
difference between two sums.

(18). To find the law of force, tending to or from

each electrical particle.

When a sphere is electrised by communication, the whole
quantity of developed electricity resides on the surface;
(Art. 7. Proof-plane) and it is evident that its distribution
there will be uniform ; moreover, it is necessary for the equili-
brium of the latent electricity in the interior of the sphere, that
the total action of this external stratum on any internal point,
must be zero, the system of latent electricity being of itself
in equilibrium.
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Take therefore any point / within the sphere, at a dis-
tance & from the centre ), make the centre the origin, and the
right line OP joining the given point, and centre the axis of @,
and let » be the radius of the sphere.

Let a section of the spherical surface be made by a plane
drawn perpendicular to the axis of @, at a distance @ from the
origin, and let f be the distance of any point in this seetion,
from the assumed point P.

If we take another section made by a plane at a very small
distance ¢ («), the total attraction of the annulus between both
sections on the given point P, will be directed in the line OP,

h—a
and be represented by 2xr.¢ (f). L—-f—i da, where e;b(f)

expresses the required law of force at different distances.

But since the whole action on P is zero, we have
3

h —a

frq}{ﬂ' f =0, from 2 =—-1 to 2=+ 1.

Now f*=r"+k —2ha;

d h—. d
hence d:«: = Lf ﬁ, and jw{:_;:
df A%
therefore, [ (f). T 0, between the above limits,

Let ¢ (f) be the differential coefficient of ¢, (f), taken
with respect to f as variable.

d . .
Hence ﬁf"?’* (f)=0;

d Bt Ve U S
or, ﬁf}¢,{f).1={}, :-,mu:zfz-ﬁ.
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Again, let f¢h, (f) be the differential coefficient of + (f),
then observing that the limits of f are r =k and r+h, we get
L yeen -2y e-nl-o
r+h) - —-—1 r—~h); =
7 T 4 s A

and e'.-:panding the functions by Taylor’s theorem,

dr 1.ﬂ+3' dr

ah P ( 4kt d® e (v
hence, : \P( ) + ' atd
1.2.38 dr 1.2 %.4. 5" dy

+ &c. =0,

this evidently requires each term to be separately equal to
ZeTo ;

3 3 df“;_._ =-{.
Now since —%}f} = fap(f)s
therefore, 2 ‘If ( f) = (f) + fd ¢ (f)

af
{P\P{f} 2 d¢1(f) fdszl{f}

dafrs df df*
‘P(f)

k|

sl

substituting this value, we have
a$(f) __, ¢,
af 14
and integrating log ¢ (f) = log (4) —2log (f), 4 representing

a constant quantity,

hence ¢ (f) = % )

that is, the force varies inversely as the square of the distance.
F
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(14). If a be the distance of any point ¥ from a fived
point O, and V represent the sum of all the molecules of an
electrical system when divided by their respective distances
from P, the action of the whole system on P in the direc-

1V
tion OP will be represented by {:13

Make the fixed point O the origin of co-ordinates, and OF
the axis of @3 let f be the distance of any molecule from P,
dm the bulk, and p the density of this molecule, and @, y, * its
co-ordinates; then since

= §(a—a) + 9 + 2210,
J =

o
(%) D
d e $(a —a) + o + =¥l

therefore,

Now the force exerted h}' this partic]-:: on the pnim P in the
'I’JS*?J‘I.

f?

in the direction of the right line OP, gives

direction of f, is represented by , which being resolved

pgm a-—x d r”_,oSm)
LI IR T

the density p being a function of the co-ordinates @, y, ~ only.

pﬁm

But since V is the sum of all the quantities extended

throughout the entire system, therefore, the total action on P

. : 2 . . dV

in the direction OP, is evidently represented by s
43
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(15).  When electricity is latent in any body, the quantity
of positive electricity contained in the body, is equal to that of
negative.

Let » be the distance of any external point P, from a
fixed point O taken within the body.

Make O the origin of co-ordinates, and let @ be the angle
which OP makes with the axis of a, and ¢ the inclination of
the plane in which @ lies to the plane of @ .

Again, let p be the electrical density at any point p, within
the body of which the polar co-ordinates measured in like
manner, are ', ¢, ¢,

Then since the cosine of the angle p OP included between
» and 7 is evidently cos@ cos8’ + sin@ sin®’ cos (¢p — ), if we
represent the distance Pp by f, we have

-;,: y1* — 290" [cosB cos B + sinBsinf cos (¢ — ¢p')] + 1} -

F
——1Q“+Q;—+Q —+EzL}
adopting here the notation used in Prop. viIn

Also *-sinuz- the mass of the electrical particle p is repre-
sented by p?*sin@’ . 1 06 & ¢ @', it follows that the whole action
on P in the direction OP, is, by Art. (14),

{fjﬂfﬁ.p? Elﬂﬂ (3+Q1 +Q3T—2+&¢)}

which must be equal to zero since the electricity is latent ;

n‘ FE

1
henee, p S for for pr™ sin 0/(Q, + Q: i g Qa:_ -+ Ezc)}
¢ being a quantity independent of », and since P is only
limited to be an external point, we may put » = %, which

gives ¢ = 0.
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Suppose now the integrations actually performed, putting
A= [y Jy [ Quprsind,
B = [ fy [y Qpr"sing,
&e.

and the integrals being extended throughout the entire system,
we obtain thus,

A, VBl
—+—z+—_i+&ﬂ.=ﬂ,
T T b i

which requires 4 =0, B=0, C=0, &c.

Now since Q, =1, it is evident that A4 is the excess of the
quantity of positive above that of negative electricity in the
entire system, (Art. 12); hence, when the electricity is latent,
those quantities are necessarily equal.

Note. 'Though the quantities of both electricities must
be equal in the latent state, this condition alone is not sufficient
to produce that state, since there are besides an infinite number
of equations, B =0, C' = 0, &c. also to be satisfied.

(16). To find the law of the distribution of latent elec-
tricity in an indefinitely thin vod of any material.

Take the length of the rod as a unmit, and let ¢ be the
distance of any point (p) in the rod, from one extremity, and
k the distance of a point (P) in the direction of the rod pro-
duced from the same extremity; and therefore, & —# will be
the mutual distance of both points.

Let p be the electrical density or accumulation at the point
p, then since the electricity is latent, the total action on the
external point P, is zero; and consequently if each electrical
particle be divided by its distance from P, the sum of the
quotients is constant (Art. 14), if morecover we suppose P’ at
an infinite distance, it is evident that this constant is zero.
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- ]
Hence, J s 0, from ¢=0 to t=1;
c =t

; £ 11 t o 1
that 1s, Jip (j + 7 + 7 S I:«:c.) = 0,

which requires that we have, separately,
_,If;p = 0, _ﬂpt = j;'{}f" =0, &C..uu.o. (a).

The number of equations which it is necessary to satisfy,
is therefore infinite; we may first suppose that they are only
7 in number, and then put n = .

If we make 1 —¢=1¢, as in Prop. 1., and refer to the rea-
soning of that proposition, it will be obvious that #'¢" is a
factor of the n™ integral of p, with respect to #; all the sue-
cessive integrals commencing when ¢ =0; if the other factor
which remains arbitrary and can depend only on the physical
constitution of the rod, be called 77, then we have

"

d Fn
p= Et.(T.s‘.ﬁ ),

and when we make » infinite, this quantity expresses the law
of the electrical distribution.

It is evident that with this arrangement, the electricity will
be latent with respect to all external points, whether in the
direction of the rod produced or not; for the reciprocal of
the distance of the point p from any such external point, may
be expanded in a series of the form

A1]+ Att't' Jigﬁ'i‘ ET.'E-;

and when we multiply by p and integrate, the result is zero by
the equations (a), which P has been made to satisfy ; hence, the
total action must also be nothing.

Corollary. Suppose the above value of p expanded in a
series of the form

'?“UP;] + n:i PL =+ ﬂrgjjg 1 ally e ﬂw,,ljj"_l -} ﬂ';}}.}-a + 6;['. I}F Ijl'ﬂp. g 1
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then it is evident by the equation (a), that when multiplied
by P,, and then integrated from #=10 to ¢ =1, the integral
must vanish when m<mn, since the terms of which P, is
formed, consist of powers of £ less than the n™; but by Prop. 1v.

: : a
the same integral is equal to ———, hence a,, = 0, and conse-
9m + 1

quently we have
P = a’u"pu ¥ ”J=+I‘Pu+ L+ y 'r-'.dijn+=3 =p &U' 3

that is, the electrical distribution in a rod of any material, may
be conceived to be formed by the superposition of several
systems of which the general Zype is P,, when n is indefinitely
areat.

(17). When electricity is latent in a straight rod, there
are an indefinitely great number of points at which the elee-
tricity is neutral.

The equation 7'¢'t" =0, when solved with respect to £,
has n real roots each =0, and n real roots each =1; and it
may have more real roots due to the real factors of 7"

Hence the limiting equation
d
— (Tt ") = 0
di ( )

has (n — 1) roots each =0, (n — 1) roots each = 1, and at least
one real root between 0 and 1.

Similarly the equation
d*
— (T =0
77 ( )
has (n — 2) roots each =0, (n — 2) roots each =1, and at least
two real roots between 0 and 1.

Continuing this process, it follows that the equation
d"
d "

has at least » real roots hetween 0 and 1.

(T =0
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Now this last equation determines the positions of the
newfral points, for at such points we must have p=0; and
since » is an indefinitely great number, and the length of
the whole rod being comprehended between ¢ =0 and £=1,
it follows that there are an indefinitely great number of neutral
points ranged along the rod.

(18). 7o trace the distribution of latent electricity re-
presented by the function P, n being indefinitely greal.

The equation P, =0, which is of » dimensions with respect
to #, has all its roots real and lying between the limits 0 and 1;
(Art. 17.) let them be represented by ¢,, &, £;...7,, where #, is
the least, and the remaining roots are arranged in the order
of their magnitudes.

The points at which the electrical acecumulation i1s a maxi-
dP,

dt
of which lie between the roots of the equation P,=0. Let
Tys Tay Tyeea Ty Tepresent the values of ¢ at those points.

0: the roots

mum, are defined by the limiting equation

’ L] - L - L] L]
The order in which all the preceding quantities stand with
respect to magnitude, is evidently the following :

brs Tys Loy Tus bgeeaTaoyy £y

Conceive now the electricity positive at one extremity of
the rod where # =0, the corresponding value of the electrical
accumulation P, is then represented by + 1, from which point
it diminishes so as to vanish when # = #,, after which the elec-
tricity becomes negative, and increases in intensity until £ =7, ;
it then diminishes and vanishes a second time, when ¢ =14,;
the electricity after this becomes again positive, and so on;
it is therefore on the whole disposed in % successive portions,
containing alternately the positive and negative electricities:
and since P, is the coeflicient of A" in the expansion of

$1—2h (1 —2¢) + A*} 4, by Prop. 11.,
and therefore when # =1, is the coefficient of A" in (1 + A)~",
it follows that the electrical accumulation at the second
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extremity of the rod, is the same in quantity as at the first,
but of the same or of a different name, according as n is
even or odd.

If we denote by P, the electrical accumulation when we
put for ¢ its supplementary value 1 —¢ or #, then we have
by Prop. 1.,

1 d.lr (tr'}n
7ol :
G SeL R ot S
= 1 & (£'t)"

108 78 iy g

hence, P, = (-1)". P,,
that is, the electrical accumulation is the same in quantity at
any two points equi-distant from the middle of the rod, but
is of the same or of different names according as n is even
or odd.

Again, if we put £=# =1 in the second expansion of
Prop. v. we get

Py i (E) " {ﬂﬁ:ﬂ}” « {n(u-1)(=~z—&s)}*+ el .

1 1.2 1.2.3

Now the quantity between the brackets is the part which does
not contain % in the product,

n n(n-1) ., . n 1 n.(n=1) 1
1=A)(1+R)"
( .

that i1s, in

R :

it is therefore equal to the coefficient of 2" in (1 — 4%)", and
consequently is zero when 2 is odd, but when # is even, its
value is

n(n - 1)...(§+ 1)

T
I JEII!_
o

dna

-
o
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P, is therefore also zero when n is odd, but when 2 is even,
its value 1is

1 n(n-1)(»n-2),..1 1.2.8...n
aon ' @ = " g
2 (].2.:5...?) (2.4.6...n)
{‘!
1.8.5...(n - 1)
R AR M
1.3.8.5.5...(n—-1)(n—1

hence, ( )( e n. P,

2.2.4.4.6...(n—2).n

and making » indefinitely great, we get

/()

TN

where o 1s the semicircumference of a circle of which the radius
s unit}': the electrical accumulation at the middle of the rod
is therefore zero when n is odd, but when #n is even, it is to the

- - E - -
accumulation at the first extremity as /\/ (—-) : 1; and it is
3 i

positive or negative, according as » is of the form 4m or
4m + 2, m being an integer.

Though the total quantity of positive electricity is equal
to that of negative, (Art. 15.) and the whole is arranged in =
successive cumuli of alternately positive and negative electri-
cities, these cumuli are not to be regarded as equal to each
other, but the first positive cumulus is equal and of a con-
trary name to that portion of the second which is terminated
at the point of maximum intensity, the remaining portion of
the second is equal and of a contrary name to that portion
of the third, which is terminated at the point of its maxi-
mum intensity, and so on; for by Prop. vir. Cor. 1, [P,
vanishes from £ =0 to ¢ = +,, from # = T, to # = 7, and gene-
rally from ¢=7, to t=7,,,.

To determine the points of maximum intensity along the
rod, suppose that we take its first extremity as origin, and

G
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construet a curve in which the abscissa a is taken equal to /£,
and the ordinate y = P,, this curve will cut the axis of »
at the n neutral points, and the ordinates will express both
in magnitude and name, the corresponding electrical intensities;
in like manner let the curves ' = P,_,, " = P,,, be con-
structed ; if from the intersections of the two latter curves
perpendiculars be let fall on the axis of x, they will deter-
mine the points of maximum intensity.

For by Prop. v., we have

n n+1 : n(n—1) (n+1)(n+2)
sl :

P=1——.—. £ —&e.;
| e | Rl
hence,
n—1 n n—-1)(n-2) n.(n+1)
P,,__1=1———.-.f+( )( ) ( ).!-—E.:q:.,
1 ] g pEal L
and
n+l1 n+4+2 n4l1).n (n42)(n+s
P,.+]= _—'—'—"—'4-'_-'—-{‘-'-(__'"—')'—-(——')"("__)ufﬂ_&C.;
1 1.2 | [
therefore,
n nt+l £
P_.-P, ,=202n+1) jt——. —.—
n=1 EE ( + }{ 1 1 o
+ﬂ{u—l} (n+1).(n+2) £ :
T 1.2 A

=2(2n+1). P, commencing when £ =0,

but at the points of maximum intensity [P, =0 by Prop. vir.
Cor 1., hence at those points

j':'J'i-'l=}:'|lrcl-r-ll or y)=y”';‘

they are therefore defined by the intersections of the above
mentioned curves.

The n neutral points are indefinitely near each other, for
whatever order of magnitude P, belongs to, P,_, and 7, ., may
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- B P — _P |
be considered of the same order, and since ﬁj”nz—l’—l-—ﬁ-’"—1 :
2(27n + 1)
: e e 1 )
it follows that == is of the order —; but in the portion of

)
ki
the curve of electrical intensities between the neutral ]".I-l}il]t.‘-i

where @ = £, and @ ={,,,, this quotient is evidently of the
same order as the difference #,,, —#,, hence the distance be-

- . \ 1

tween two successive neutral points is of the order —, they
7

are therefore indefinitely near each other, and the extreme

neutral points are indefinitely near the extremities of the rod.

Suppose now the curve of electrical intensities to revolve

round the axis of @, the content of the solid generated is

: this

expressed by s [ P?, from £ =0 to ¢=1, that is
4 9n + 1

solid is composed of 7z small solids of revolution, of which the
axes are bounded by the neutral points; each of these ele-

- ® 1 & - L]
mentary solids is therefore of the order —, and since its axis
] o

1 : 2 : :
is of the order —, therefore its principal section at right angles

)

to the axis is of the same order, hence the corresponding value
. . 'l " = ®

of P, is of the order —=; in fact the ordinate at the middle

»,/u

2
of the rod has already been found equal to »\/ (__._) :

1t

Corollary. The most general form of the electric distri-
bution when latent, is produced by the superposition of several
systems of which the type is P,, the number of neutral points
remains indefinitely great, the quantities of the opposite elec-
tricities are still equal; but if taken in equal pairs, beginning
with the first cumulus, they will not necessarilly be bounded
at the points of maximum intensity : lastly, the names of the
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electricities at the extremities of the rod will still depend on
the circumstance, whether # is an odd or even number; for if
as in Prop. 11., we form the equation

=1+ hu(l —u);

and if we represent by U what 7" becomes when ¢ is changed
into u, we get by Lagrange’s Theorem,

h d
j:‘f.}':-,';?-l']' F&Ttt' +'j]—"::;- E—(Trﬁfw) + &c. ;
dﬂ Tf“ft" i e 3
hence the accumulation Li-ﬁ——) is the coefficient of A" In
[}

o
31 —2h (1 —2%) + fz“}i.

d d
St qu or in 7.— , that is, In
dt f di :

Now if 4, B are the values of 7", when # is put equal to 0 and 1
respectively, then since the corresponding values of # are also
0 and 1, we get for the accumulations at the extremities, the
respective coefficients of 2" in

A | B
—_— = . AN - - =
$1 —2h + A*Lh {|+gﬁ,+!ﬁi;%

that is, 4 and B(-1)";

whatever, therefore, may be the proper signs of 4 and B,
the similarity or dissimilarity of the extreme electricities will
be affected by the circumstance of » being an odd or even
integer.

(19). Do find the law of distribution of  electricity on
a spherical surface, so that the total action on evternal points
may vary as any inverse power of the distance from the
centre, higher than the second.

Make one extremity of the diameter the origin, and let p
be the electric accumulation in the section made by a plane
perpendicular to this diameter at a distance 2af, a being
the radius of the sphere, the corresponding annulus is 47a®. 03
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and if (3 be the distance of any point P in the produced
diameter from the origin, its distance to any point in the
annulus 1s

{a + B + 248 (1 —2t)}}

hence, the value of ¥ (Art. 14.) is in this case expressed by

Fl-*.-ru!o
./: gn’a+ﬁ*+ﬂaﬁ{1 —ﬂt)}% 3

4 2 a’
% j,Gi { }'1%4_ I’EE ’8$+&L ¢ . p by Prop. 11,

let the required accumulation on the same annulus be ex-
panded in a form

p=a,Po+a, P+ a, P, + a3 Py + &c. ;

dra”  d 8 o, O
= =--+Ezc}

BT R

whence the force on the point P tending from the centre

dv a 24, a 3a a”
= m=dgrgtdl e e T Y
2

d3 O AR

hence if p=a,P

hEnCE, "}" =

(-1)*.(n+1) a,.a*
s .

the force on P=-4 .
an + 1 ,Gu+2

Cor. 1. The value of V for internal points, is
3 o
rl-':.rraﬁ{f’ﬂ—P —+P ——&C}.ﬂnP,,

t¢ra(-1).a, 3"

3
29 + 1 o

: dV
and therefore, the force tending from the centre, or + —

df
is then

br(-1y.n a7

Qm 4+ 1 ar!
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Cor. 2. The law of electrical arrangement in this in-
stance 1s such, that there are # neutral lines on the surface
dividing it into n + 1 portions, which contain alternately the
opposite electricities ; and since the surface of a spherical
annulus 1s pmpnrtimml to the mutual distance of the planes
by which it is bounded, it is obvious from the reasoning of
the preceding article, that the quantities of the opposite elec-
tricities contained between one of the neutral lines and the
adjoining lines of maximum accumulation, are exactly equal;
lastly, the poles will be of the same or opposite names, ac-
cording as n is even or odd.

Cor. 3. If we superpose several systems of which the
type is P,, as a, P, + a, P, + a, P, + &c., then the action will be,

for internal pnints

and for external points,

2 3 1
{4 i, o la
_i?r{ﬂuﬁ—?r‘q; —__"—'—SEE..
and if we take only those systems in which n is an indefinitely
great number, then the actions are respectively,

on (B () e () 3)

the sign f denoting a rational and entire function; and since

B

! o 1 2 y ) n—1
for external points (ﬁ) , and for internal points (—)
: a

are indefinitely small, the arrangement is then proper to a
system of latent electricity endowed with opposite poles, or
:a}mmetrlcal with respect to a diameter.

(20). T find the action of the electrical system repre-
sented by P, on any point.
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In the preceding article the system is arranged symme-
trically with respect to the diameter passing through the
point acted on; let now P be a point not in this line, let 3
be its distance from the centre, § the angle formed by the
right line (/3) which joins the centre and the point P, with
the above diameter, and ¢’ the inclination of the plane in
which the angle 8 lies, to a fixed plane.

In like manner let a, 8, ¢ be the polar co-ordinates of
any point p in the spherical surface where the accumulation
P, is a function of @, and a is the radius of the sphere;
and putting cosf = -, we have

. 4&1’

y = j ’ —_—

when D) equals the distance Pj:-;

o5 Sa* —2af3[cos@ cos® + sin@ sin@ cos (¢p — P+ B}

put 3 = ka, and adopting the notation of Prop. virr, we have

1 1
— = —3Q + Qi + Q1 + &e.}, for internal points,
I a
1
and — =— -f G gl + g + &c. E for external points.

D 3 k?

Let P, be the value of P, when 8 is put for 6, then
by Prop. x11, we have

Jg,rf{;. P,Q, =0 when m is not equal to m,

dmr

and f, [, P.Q, = l+P',,,

Hence for internal points, we have

4 4 %
e g F".'?_l,

V= :
29 + 1 dap 4+ 1 i1




50 ON ELECTRICITY.

and for external points,

dqa® P, dar T L

| R - e

,/3 'Ji'l‘ﬂ _2?1""‘1‘}}”-'{3”-'-];

V-

: dV
and the corresponding forces which are represented by m y Are
i

47 . (n +1 ¥ itk
and — _“(___) .. (—-) .

that is, the electrical force follows the same law of variation as
before, but the intensity is different in different diameters, and
is always proportional to the electrical accumulation at the
extremity of the radius which passes through the given
point.

Cor. 1. The values of V are both independent of ¢/,
hence there is no force tending to move P out of the plane
passing through thﬂtdpoint and the fixed diameter, with respect
to which the distribution is symmetrical; but in this plane,
beside the force tending to or from the centre, there is another
perpendicular to that direction, tending to move P circularly

: : : dv :
in that plane, its value is generally 340’ that is,

L

for internal points, — - :
I oan+1 dE

sw  dP, (ﬁ)"" ,

dq¢ dFP, fa\"t*
and for external, ( ) s

an+1 dé \B
both of which for points near the surface tend in the same
direction.

Conr. 2. If a series of conical surfaces which have their
common vertex at the centre, be drawn through the neutral
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lines, there will be no action on any points in them, tending
to or from the centre; one of the surfaces is a plane passing
through the centre, perpendicular to the axis of the sphere,
when =n is odd.

If another series of conical surfaces be drawn from the
same vertex through the lines of maximum accumulation,
there will be no action on points in these surfaces, which
would tend to turn them round the centre; one of the sur-
faces is a plane when n is even.

e . 7 e et
Cor. 3. When = is indefinitely great, then (—) for

B

n=1
exterior points, and (—) for interior points, are indefi-
[

nitely small, hence, the electricity with the distribution re-
presented by P,, is completely latent; it is therefore also
latent when any number of such systems are superposed.

(21). To find the action of the latent electricity in an
indefinitely thin spherical shell, on points extremely near
the surface of the shell.

First, suppose the electricity symmetrically arranged with
respect to an axis, that is, to be endowed with poles; the
accumulation at any point, is then represented by

”'”Ijﬂ + a‘u+1Pﬂ+1 + H’:‘r-v?ﬁpﬂ'f"d + &c' *

n being indefinitely great, using the same notation as in the
last article.

Hence, for any external point, if 7, is the particular value
of P, at the extremity of the radius drawn from the centre
to that point, we have

I

an+s 3

: 3
are { u’ﬂ a‘e ' 'ﬂ'n-l-'l L

; ¥ o
l'r=4"?l'_ E g e T +_.,'IJ + I 1f+‘.'$‘(" ?
B |12n+1 3 "'on+8 3 i

H
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and for internal points

Hn—l ["“"'EH——B-I}, + g1 E F

V, = d7r— e —, B il
? a~l2n + 1 n+3 a s
ﬂ'n : . ]
= .E;E.Pﬂ+3+&.u. ;
2n+4+5 o
Let F, ¢ be the foicts which result from the first value of

V, tending ru.f;pe{:tiu?’_ from, and round the centre of the
sphere, I;, ¢, the corresponding forces due to V,, we have

aln+1 o 1n4+2 o
F=—-d4mr— S = By B
g l2n+1 B MRS em a8 5 MR e
n+3 a
+ +"—-ﬂ- -F .+&E.,
Q'ﬂ+5 Bq U =2 }1
3" n I 9+ 1
F,.=47— =, P + . (2 o
: algn+1 B Mrag g Y e

E — -y F:r+2 + &[L} )
[y

1 a’ QFHH
+ -._-u B T e —— *
apy 3 BT 4o +&c}’

,6"{ 1 a dP, 1 AP i
=4! . Mo a T Yoy @ & _—..__’|I o
P s o |2n+1 3 BT R s T +&L'}'

Let now A represent any finite distance of an external
point from the surface nnlf the shell, then % will be the distance
of an external point which is indefinitely near the shell; 3 will
in this case be equal to a + % -

a" s _4a
and therefore, — = (1 + —) =c =
B na
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|

since 7 is indefinitely great; also will be = %,

2n +1

=1, &e.

B

: : A
Hence for external points, at a distance — from the shell,

7
we have
_a
F=-2r¢ “{ﬂnP'-,+G~+1Fn+1+”n+zfyu+==&“'}
2 ,_;_1" dFu d}}:wl an-+‘i'
q}z —Iﬂr— i {ﬂlﬂﬁﬁr+ﬂﬂ+]-'d—ﬂg—+ﬂﬁ+g_{fe—r'+&ci}-

Now the part between the first pair of brackets, expresses
the electric accumulation at that point of the spherical surface
which is directly wnder the point acted on; represent this
accumulation by A4, we then have

A
for external points F=—-27xd .¢ «
grdd’ 2
e R E «.
n do
e : : . A
Similarly for internal points when 8 =a - =
.4
F. = E'JTA’ € i 4
e d4 -2
1= —_— .

n - de

If now we suppose the system to be no longer symme-
trical with respect to a diameter, but to result from the
superposition of several systems, having different poles, it is
evident that the whole accumulation at any point, will be
the sum of the accumulations due to each system, and the
total action will be the sum of the separate actions, when
estimated from the centre; we shall therefore still have
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denoting now by A’ the total accumulation on that point of
the surface which is directly under the point acted on: but
the forms of the expressions for the forces tending to turn
the point round the centre in any plane, are to be estimated
by decomposing in that plane, the force due to each separate
system ; and summing them, they will still be of the form

o L
(ib:__'jil"ﬁ 2

T

2 _a
¢|—_+A1-E * oy

T

A, being a function of the co-ordinates of the point on the
surface, immediately under the point acted on.

Note. Though the expressions for ¢b, ¢, contain a factor

] - - -
— they are still of the same order with respect to magnitude,
n

as F, F,; in fact, if we take the elementary system expressed

by a,P,, we have

S
ﬁ‘m—ﬂwfﬁnfjr”_ﬁ it
¢ 2ar N
=—.l,. @,
) do
Now it was shewn (Art. 18.) that P, is of the order
1 SR 1 .
— ., and J—; is of the order —; hence, I, is of the order
L ! e )
1 -
et and since by Prop. virn
ﬂl J
(3 }l
- tt dF,
1 R ¥ ?
n(n+1) di
el A d P,

, and therefore also ® is of the order =;

it dg’

hence
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g M

hence,

S

is of the order ﬂ—l-— , that is, unity; therefore,
n}

the ratio of ¢b to ¥' in the system resulting from superposition,

will also be finite in general.

Corollary. TFrom the preceding investigation it follows:

1. That the action of the latent electricity of a spheri{:a]

shell, on points directly above the neutral points, tends solely
to turn them round the centre.

2. That the actions on internal and external points, situ-
ated in the same radius, and equidistant from the shell, are
equal and contrary in the direction of the radius, and equal and
like in any given direction perpendicular to the radius.

3. That if a point be supposed to move parallel to the
surface and extremely near it, it will be acted on alternately by
attractions and repulsions, as well as by other forces tending to
drive it alternately backward and forward; and the intensity
of the first set of forces at a given distance, is proportional to

the electrical accumulation at the point immediately under that
acted on.

(22). To find the action of the latent electricity of a
lane surface on points indefinifely near it.
P p Y

Make the radius a, infinite in the expressions obtained in
the last arficle ; the action tending to or from the surface on
any point, becomes then 27 p, where p is the electrical accu-
mulation at the point of the plane surface immediately under
that acted on, it is therefore the same as the action of a plane
of indefinite extent, endowed with an electrical accumulation

uniformly equal to p, on a point situated at a finite distance
from the plane.

There is also an action pm'al]u:rl to the surface, and which
1s uniform for points situated on the same normal and at
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indefinitely small distances from the plane, and this is the only
force which acts on points taken directl}r over any neutral

point.

Remark. 'The molecules of electricity in the latent state
are not to be considered in a state of absolute rest, for they
are acted on by finite forces, but which rapidly pass from
positive to negative; the nature of the accumulation at any
instant, ought however, to be such as to satisfy the conditions
that the total action on points sensibly remote, may be insen-
sible ; their motions would however, be restricted by the co-
ercive powers exerted on them, by the material molecules of
which the substance is composed.

The elementary system of electrical distribution repre-
sented by a,P,, produces by Art. 20, an action on exceed-
A
ingly near points represented by 2wxa,P e «; and that this
may be a finite force, a, must be of the order ni, since P, is
| : :
of the order —, there will also be % neutral circles on the
L
sphere in this system, the distance between two such conse-

: : a 1 .
cutive circles being of the order —; and therefore, the elec-

7"
tri{:it}' of one kind which is accumulated on the intermediate
g 1 1 g : 1
annulus is of the order n! x o that is, of the order —,
n: n n

therefore the whole quantity of either kind of electricity in the
entire indefinitely thin shell, is finite, and consequently the
whole quantity of latent electricity in any solid sphere, is
infinitely great; and if it be such for a sphere, it will obvi-
ously be also infinite in any body whatsoever, hence, all bodies
may be conceived in their natural state, as containing an inex-
haustible quantity of both clectricities in a state of neutraliza-
tion; and therefore, the simultaneous addition of equal but
finite quantities of both electricities, will cause no difference in
such phanomena as are due to the action of latent electricity.



CHAPTER 1V.

ON ELECTRICITY IN A TFREE STATE.

 (28). Definition of Free Electvicity.

Wauexn electricity of either kind, (as for instance positive),
is produced by any of the methods mentioned in Art. 1, and
communicated to a perfectly conducting body, the total quan-
tities of electricity, positive and negative, will be rendered
unequal ; but we may abstract from the consideration of the
latent electricity, by conceiving the communicated electricity
so distributed that the action on any internal point may be
zero; this ewcess of either kind of electricity in bodies per-
fectly conducting, is called free, and will be equally shared
by two perfectly conducting bodies of exactly the same form,
when one of them is electrised and made to touch the other,
so that the point of contact is similarly situated in both.
Hence, free electricity differs from latent, in being continu-
ous; that is, it does not at infinitely small distances pass
from positive to negative, and as the action of the latter on
all external points must be zero, in order that it may Dbe
latent, the action of the former on all internal points must
also be zero, that its equilibrium may be permanent.

(24). If X, Y, Z represent the total forces in the
direction of the co-ordinate axes, evercised by a system of free
electricity on any point P where the electrical density is p,
and of which the co-ordinates arve X, y, z, then shall

dX dY dZ
do * dy  d=

+4-'?;|"I£}=ﬂ+

Let a plane be drawn parallel to that of 2y at a very small
distance =, from P, and another in the same direction at a distance
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a from the former, so that the point P lies in the solid bounded
by both planes; if we suppose @ exceedingly small, the parts
of this solid in the vieinity of P, may be regarded as having
the same density p, and the actions of this solid parallel to
the bounding planes, is infinitely small compared with that
which is perpendicular to them, since the force varies inversely
as the square of the distance, and the density may be regarded
as uniform for an extent along either of the bounding planes
indefinitely greater than #,, denote therefore by Z,, the whole
force of this solid tending to increase x; then since 27 p ex-
presses the attraction of a plane of which the density is p,
therefore the point P is attracted towards one plane with a
force 2mwpx,, and towards the other with a force 27 p (2 — 2) ;
we get hence

7y = 2wp (e —2%)),

dZ,

and e 49 Preonsensas(l)s

since ¥ =b + 2, b being the distance of the lower plane from
the origin.

Let now a, (3, v be the co-ordinates of any point in the
solid below the lower plane, o’ the corresponding density which
is a function of those co-ordinates, and X', V', Z' the forces
resulting from this solid ;

. i o' (v — a) .
hence, X _L-flf;j;{(m—a)3+{{y—ﬁ)z-l-(ﬁ'—*}f)f:}*j

dX'_ ¢ fi=2@=af + G -BF+ (-7}
" Tda _fj[;‘[*;— f(@—a)+ (=B + -y

dY'’ dZ
similar formule will be found for Ti? and e and none

of these integrals will pass through <o, since this solid does
not contain the point P; and adding the three differential

coefficients thus obtained, we have
X’ d¥t dZ
+ + =0, aeeas (2).
de  dy dw
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In like manner if X", ¥, Z” be the forces on P, due
to the solid above the upper plane, and tending respectively
to increase a, %, &, we have

L g ey b e

dw 5 dy +_d::.:

having thus considered separately the three portions into which
the solid has been divided, it is evident that
11.? T =F + XH'.'
}"" = 1'; + 1.".’.’1
Z=27"+2"+ Z;
and adding the equations (1), (2), (3), we have
dX .dY .  dZ
e
dai b dy- de

Corollary. When the point acted on is without the system,
it follows that
d X ndl¥ dZ
-~ FEE + + JE—
de dy dx

since in this case, the density of the solid enclosed by the
parallel planes, is zero.

(25). Al the free electricity with which a conducting
body is charged, resides on the surface only.

For if there were free electricity at any internal point P,
if we represent its density by p, we have by the preceding
article,

aX dY dZ
_!:fT + d_{,-' + r!; +4mp=0.

But for all internal points, X, ¥, Z must be each zero;
therefore, p =0, that is, the whole free electricity resides upon
the surface, where its escape is prevented by the atmosphere,
which when dry, is a non-conductor, and against which the
electricity exercises a pressure,

1
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(26). When an electrised body is surrounded by any
non-conducting medium, the pressure sustained by that me-
dium, ts proportional to the square of the electrical accumu-
lation, at each point of the surface of the body.

The electrical stratum which is prevented from escaping
by the surrounding medium, lies on the surface of the body,
and may be conceived as extending through an exceedingly
small breadth into the interior; and since its interior surface
is free, the resultant of all the forces which act on any point
on that surface, must be directed in the normal ; but with
respect to the exterior surface, the tangential forces acting on
a very small canal taken arbitrarily along that surface, make
equilibrium with the difference of the pressures at the extremi-
ties of that canal, which being very small, the tangential force
at any point is evidently a very small quantity of the second
order, these forces in estimating the normal pressure, may
therefore be disregarded.

Take therefore the normal at any point of the interior
surface as axis of @, and the point at which it meets the ex-
terior surface as origin, and representing by p the electrical
density, and neglecting very small quantities of the second
order, we have by Art. 24,

d.rY
—— + 47p = 0;
dax f :
and by the equation for the equilibrium of fluids, if p represent

the pressure at any point at a distance a from the origin,
we have '

dp <
ﬁ —'0‘1,
; [d X
Hence, =X [p = [{7 1y}

but at the interior surface X =0, and at the exterior from

which the integrals commence, [, p = 0: therefore, between the
limits
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- [d X .
p=- [{55 Lo}
-.’f.c'f,

its value — 47 p, and integrating, we have

putting now for
LT

p=2x.{Lp}®;
but j:.p taken between the proper limits, is the accumulation

of eléctricity on that point of the surface, therefore the pres-
sure is proportional to the square of the accumulation.

(52“-'}, To ﬁm.l the electrical distribution on a conducting
body of a spherical form.

Let E be the whole quantity of free electricity communi-
cated, then, since the body is perfectly symmetrical, the elec-
tricity will be spread uniformly on the surface, and will then
be in a state of permanent equilibrium, since the total action
on any particle of the latent electricity in the interior will then
be evidently zero: hence, if a be the radius of the sphere, the
surface is 47a’, and consequently, the accumulation of elec-

st irumals
tricity at each point is s and the pressure against the
Ta
surrounding medium is

-

Swa'
and therefore, for equal spheres, it is proportional to the
square of the total electrical charge.

(28). Do find the distribution of free electricity on the
surface of a paraboloid of indefinite extent.

Conceive an interior paraboloid exactly equal to the
former, and having its axis in the same direction with the
axis of the first, but its vertex at a distance a below it, if
the intermediate space be filled up with homogeneous matter,
the particles of which attract with forces varying inversely
_as the square of the distance, the total attraction on any in-
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ternal point £, will be zero, for if we draw any chord through
P, terminated at both sides by the exterior paraboloid, the
diametral plane passing through this chord, intersects both
surfaces in parabolas, which are respectively equal to the
generating parabolas, and therefore also to each other; the
chord which lies in the plane of these parabolas, is the doubie
ordinate with reference to a common diameter in either, there-
fore the portions of the chord intercepted at opposite sides
between both surfaces, are equal; if therefore, an indefinite
number of such chords be drawn through P, forming two
opposite conical surfaces containing a very small vertical angle,
the attractions of the opposite intercepted frusta are equal
and in contrary directions, and therefore mutually destroy
each other; thus the effect on P of any element of the solid
intercepted between the two surfaces, is destroyed by the
action of an opposite element, neglecting the action of the
element which is at the extremity of the diameter passing
through P, and being of the same order as that element is
infinitely small,

Hence, when the electrical accumulation at each point
of the given paraboloid is proportional to the normal breadth
of the stratum between both surfaces, there will be no ac-
tion on any interior point P: now this breadth is inversely
proportional to the perpendicular from the focus on the tangent
plane; the pressure against the surrounding atmosphere is
therefore inversely proportional to the square of this perpen-
dicular, that is, the pressure at any point varies inversely
as the distance of that point from the focus, and is therefore
greatest at the vertex.

(29). 7o find the distribution of free electricity on the
surface of an ellipsoid.

Conceive another ellipsoid similar and concentric with the
former, and having its principal axis in the same directions
with those of the given ellipsoid, to be inscribed, and let the
intermediate space be filled up with homogeneous matter, the
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particles of which exert forces varying inversely as the square
of the distance; then it is easily proved as in the preceding
article, that the total attraction on an internal point is zero,
and consequently the proper distribution of electricity must be
such that the accumulation at each point is as the normal
breadth of this stratum, that is, as the projection of the part
of the radius vector drawn from the centre, and intercepted
between the surfaces, on the normal; now, by similar figures,
this will be proportional to the projection of the radius vector
itself, on the normal, that is, to the perpendicular from the
centre on the tangent plane, and the pressure against the
atmosphere is therefore as the square of this perpendicular,
and consequently at the extremities of the principal axes, it
is as the squares of the axes themselves.

Cor. 1. Let the ellipsoid be a prolate spheroid, and di-
minish indefinitely its axis minor, the axis major remaining
constant, it will then be a rod of which the breadth is every
where inconsiderable, but at different points varies as the mean
proportional between the distances from both extremities; the
tangent plane at any point not very near the extremities, is
very little inclined to the axis major, the electrical accumula-
tion, therefore, on points near the middle of the rod, is very
small, and nearly uniform; but the pressure against the at-
mosphere at either extremity, is to that at the middle of the
rod, as the square of the axis major to the square of the
axis minor, it is therefore incomparably greater at the ex-
treme points of the rod than at the middle, and consequently
when the rod is surcharged with electricity, the spark will
proceed from one of the extreme points, and the least cir-
cumstance will be sufficient to decide from which extremity
of the rod the spark will emanate.

Con. 2. But if the axis minor remain constant and the
axis major be indefinitely increased, the form of the spheroid
tends to become cylindrical, hence the accumulation and pres-
sure may be regarded as uniform on a cylinder, of which the
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length is great compared with the breadth, except at points
situated near the extremities of the cylinder.

Con. 3. If the ellipsoid be an oblate spheroid, and while
the axis major remains constant, the axis minor be indefinitely
diminished, 1t becomes a circular dise, the thickness of which
is every where inconsiderable, and at different points, varies
as the mean proportional between the greatest and least dis-
tances from the circumference of the disec, and the pressure
at the border of the disc is to that at its middle, as the square
of the axis major to the square of the axis minor; if on the
other hand the axis minor remain constant while the axis major
i1s indefinitely increased, the spheroid becomes a solid, com-
prised between two parallel planes of indefinite extent, and
the electrical distribution becomes uniform ; in fact, the attrac-
tion of the upper plane, on points within the solid, is constant,
and that of the lower is also constant, and equal to the former,
and consequently the opposite and equal actions of both planes
on interior points destroy each other, and will not therefore
separate the latent electricities of the solid.

(80). Do find the distribution of free electricity, on any
body of which the form is nearly spherical.

Make the centre of gravity of the body, (considered homo-
geneous) the origin, and let « be the radius of the sphere
equal in capacity to the body: let » be the radius vector
of any point in the surface, 6 the angle included between
» and a fixed axis, and ¢ the inclination of the plane in
which @ lies to a fixed plane passing through that axis; and
since 7 differs but little from «, we may put r=«a (1 + af),
where ¢ is a quantity proportional to the thickness of the
stratum intercepted between the surface of the sphere, and
that of the body, (and may be positive or negative), and «
is a very small quantity of which the squares and higher
powers may be neglected.

Put cos@ =+, and let # be expanded in a series

t=T,+T,+ T, + T; + &c.
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the general term (77,)) of which, satisfies the equation,

ff ﬂ!T" 1 d?T'n Y
E{U-nf) r.fq,-}+ ———4n.(n+1). T, =0,

R ']" d'q);
the first term 7', will in this case vanish ; for the content of the
whole solid considered homogeneous, is

JI: JIIP Jlrjj r* sin H} or ,Jlr' fffﬂ;‘:'}ﬂ:
r being extended from the origin to the surface, ~ from — 1
to +1, and ¢ from 0 to 2m; the sign of the integral re-
mains positive in the second expression, for the limits of 6

are 0 and m, and that order is inverted in the limits assigned
dy

to ~, at the same time sinf = — —=-

de

Integrate with respect to #, from » =0 to r =a (1 + at),
neglecting powers of « above the first; hence, the content
is expressed by

E
(:— f._, j:b{l + Saf)

:aﬁf},ﬁp (;I—; +ﬂ-Tu -+ !’LT, + a T: 4 E:'ﬂ]'

now since [ [, 7%, =0 in all cases except when n =0, (for T,

is constant by Prop. x1., and [ [, 77", =0 by Prop. x11.)

hence the content is 47wea® (L + a7,): but the content of the
4 a’

equicapacious sphere is s hence T, = 0.

Now if the solid were an exact sphere, the accumulation
at each point would be uniform, and in the present case, as
the body is nearly spherical, we may conceive the electrical
action similar to that of a homogeneous stratum of nearly
uniform thickness, its accumulation therefore at any point of
the surface may be represented by p=e¢(1 + av), since « is
very small; » is a function of # and ¢, which it remains
to determine.
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|
ko

Using the notation of Art. 14, we have

o [ st e Mo {1 )
Vo Vi 3"’2 — 271 [cosBcosh +sin@sing cos (p— q)’)] i ?,zE P’

¥, @', @' being the polar co-ordinates of any point P taken
within the body, and measured in the same manner that
ry, 0, ¢ are for any point in the surface.

Now since the whole action on an internal point must
vanish, ¥ must be constant for all such points, but using the

notation of Prop. viir, and expanding the denominator ac-
L
" " ljl
cording to the ascending powers of —, we have also
1.
T.ﬂﬂ .J'3

. .;..’ p
V=c [ [or(1+a.v) $14 Ql;+QE,F +Q3.F+E.;c_*;

and sinee this must be independent of #', we must have
™ i .,'-"E'J'rull G 1
j"}" "'“-IJ Qu o (J— +' (H‘} — ”1

which condition will also render it independent of 6" and 1;5’.

Put for »~=", its approximate value ¢~V { 1—(n—1).at},
and observing that [, [, Q, = 0; since n is here different from
unity, we have

Jy Jp jp = (n = 1) £} Q, = 0.
Put for ¢ its value, and observing that when m and =
are different, then [ [, 7, Q, =0, we have
Lfpfo—(m=1).T,}.Q =0;
this equation is evidently satisfied by making
p=T+2T, 48T, + &e.;

hence, when the equation to the surface of the body is known,
and the radius vector at any point is expanded in a form

r=afl+a(T\ +To+ Ts+...&e)};
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then the corresponding electrical accumulation will be

p=cil+a(T:+2Ts + 8T + &)},

Note. 1If the given body is a solid of revolution, then two
polar co-ordinates 7 and @ will be sufficient to express the equa-
tion of the surface, f being measured from the axis of revolu-
tion to the radius vector; and instead of taking 7, to satisfy
the equation of Prop. x1, it will be then simpler to expand
the thickness ¢ in a series of quantities of the same nature as
P, (Prop. 11.) ;

First, if » is expressed in terms of the powers of cos#,
put cos@ = u, it will be then necessary to expand u*in a series
of the form a, P, + a, P, + a, P, + &c.

If % is an even number as 2m, then let
p = ayPy+ ay Py + @3 Py + .o+ 83 Py 5

now P, P,, &c. change their signs without altering their mag-

nitudes when — u is put for u; but since »*" remains the same,

we have @, = 0, a, = 0, &c., the general term 1s therefore of the

form a,, P,,, it remains to determine a,,, which by Prop. vr.
(4n

1 ; .
_____,; ) Juen - u"5 the integral being taken from u=-1 to

||u'=+]"

Now since P,, contains only the even powers of u, if we
represent it by 4 + Bu®*+ Cu'+ ...... Nu®, the integral
fu Py will be

A B N
E +I-I-I
Em+1+2m+3 2m+2n+1 -

and this ought to vanish when m is any number of the series
0, 1,2...(n=1) by Prop. 1, this integral is therefore of the form

2m(2m —2) (2m —4)...(2m - 2n + 2)
(2m+1)(2m +3)...2m +2n+1) ’

¢ being a constant which it remains to determine.
K
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Multiply by 2m + 1, and then put 2m = — 1, we get thus

1.8.5...(2n-1)

24 = o(=1)". B 4.0...0n

But by the third expansion of Prop. vi, we also have

1.8.5...(4n~1) 2n.(2n—1)...... 1

= "“]ﬂ-l
b 28N ( )(m-—l)(mn—s}_,,(mul):-cfa.+...f.::w.

=(=-1)".

1.5.5...(2n—-1
.( ), hence e =2;
El4lbl.‘.ﬂﬂ

hence generally,

f,l.LPEm'-"'Em =4

2m.(2m —2) (2m—4)...(2m —-2n +2)
“(em+1)(2m+3)(2m+5)...(em+2n+1)

therefore,

am(2m —2) (2m —4),..(2m — 2n + 2)
(@m+1)(2m+3) (2m+5)...(2m+2n+1)"

ﬂ2“= (""1'ﬂ+ 1}-

which gives

Piase 2m. P, 2m (2m—2). P,
= +5. 0 +&ec.
2m+1 (2m+1)(2m+3) “(2m+1)(2m+3)(2m+5)

2

[

But if & is odd as 2m + 1, then we have
lu'!m‘!.l = IT]_P!_ = H3I}H +"'H'."?.IE+IP.'.-."M i,
where generally, the coefficient

41 4 8
2

oy = ¥ —’; Pﬂﬂ+l _p_ﬂm+l_

Now P,,,;, is the form 4’y + B'u’® + C'p’® +...&c. N/ u2n+!,
and the above integral vanishes if m be any of the numbers
0, 1, 2, 8...(n—1), hence, as before, we get

2m(2m—2)...(2m—2m+2)

Ir ‘P -#ﬁm'l'l =, .
Jp t el (2m+8)(2m+5)...(2m+2n +3)°
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multiply by 2m + 3 and make 2m = — 3, hence

54l b (=), 8.5...(2n + 1) )
2.4...2n
But by Prop. vi.

1.8.5...(4n+1)
1.2.5...(2n+1)

(2n+1)2n(2n-1)...2

e . =
(4n+1)(4n—1)...(27+3).2.4...2n

(1)

_8.5...(2n+1)

=(=1)". '=2;
(=1) i , therefore ¢ £

hence in general
2m(@m—2)...2m—2n +2)

Ju Pons prtl=2 ’
(2m +3)(2m+5)...(2m+2n 4+ 8)
therefore,
g P, * 2m. Py

. <+ 7.
Am 4+ 3 ! {&Em+3}(2m+5]

: 2m.(2m—2). P,
“(2m+3) (2m+5) (2m+T)’

+1

Secondly, if » is expressed in terms of the cosines of the
multiples of 6, put

cosn@ =a,P, + a‘n—zpn—z - an—«ip - + &c.,

the general term of which is @, s Pysm3 and @,_,, may be
determined by a similar process applied to the fourth expansion
of Prop. v1., but in this case it will be generally simpler to
assume for » a series of the form a P, + @, P, +...a,P,, n being
the highest number by which the arc 8 is multiplied, then sub-
stituting for P,, P, P,, &ec. their values given by the fourth
expansion, equate the resulting formula with the given ex-

pansiun of r.




CHAPTER V.

ON ELECTRICAL INFLUENCE.

(81). To find the influence of a very remote electrised
body, on a sphere also charged with electricity.

LET a be the radius of the sphere, draw a diameter in the
direction of the influencing body, as axis of @, and let that
extremity of the diameter, be made origin, which is most
remote from the influencing body; and let a point (p) be
taken in the same diameter, at a distance 3 from the centre.

The action of the remote body may be considered uniform,
both in magnitude and direction throughout the extent of the
sphere; let this action be represented by 4mre, tending to impel
a particle of (suppose) positive electricity towards the origin,
and let p be the electrical accumulation on any point of the
annulus bounded by two plane sections of the sphere made at
the respective distances 2a#, 2a(f + d¢) from the origin, then
expanding p in a series of the form

p=aP, +a P+ a, P, +a, P, + &c.;
the total action of the electricity of the sphere on the point p,
will be by Art. 19. Cor. 3.,
oy {f.!l 2ay; B 8a; B }:

__.-_‘_-l_+—_.i___&c

3 oo o 7T a
which tends also towards the origin; and since the particle
remains in equilibrium, we have
a 2a 3 3a (3

e-—+—.= === 4 &c. =0;
3 5§ a R ’
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hence a, = 8¢, . =0, a, =0, &c.; and therefore, the accumu-
1 3 = 2 3 -
lation is expressed by
p=a,P,+ ScP,.
Let £ be the total quantity of electricity with which the
sphere is charged, we have
E =ﬁ-‘1~1ra2.,o, from £=0 to t=1;
put for p its value, and observing that P, =0, we get
E =4wa’a,

Hence the required law is expressed by

£l

p= 4-71--:1""!]"_'_ SclP,,

E
or, p= ( +3c) - Oct.

47 a*

Corollary. If there is a neutral line, its distance from the
origin is given by the equation

3
-

bet = + 3e;
4ra”

therefore the distance, 2af = —— + a;

12mac
there will therefore be no neutral line if the sphere be charged
either positively or negatively with a greater quantity of elec-
tricity than that which is expressed by 127a”. c.

When the sphere possesses only its natural electricities,
E =0, and then p=3¢P,=3¢(1—2¢); the neutral line is then
a great circle perpendicular to the axis of », and the two
hemispheres are charged in a similar manner with the opposite
electricities.

(82). If any body mot charged with electricity, but in-
fluenced by a rvemote electrised body, is capable of being
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divided symmetrically by a plane perpendicular to the direc-
tion of the electrical action, this plane will contain the
neutral line. -

Let the parts into which the body is divided by the plane,
be named 4 and B, and let the influencing force be supposed
to act horizontally, it is evident that the neutral line cannot
lie in any horizontal section of the body, for there would then
be no force to prevent the opposite electricities above and
below this line combining ; hence if the body be turned round,
so that B may come into the position which 4 before oceupied,
the meutral line ought to occupy the same position in space
which it did before; thus, if in its former position it lay ex-
clusively on the portion 4, it would now lie on the portion B ;
if in this last position we suppose the influencing force to
change from positive to negative, or conversely, the neutral
line would still evidently remain in the same position on B, the
only difference that would thus occur, being solely that the
electricities at the opposite sides of the neutral line would
change their names.

Now, the change in the nature of the influencing action,
has the same effect as if the force proceeded from the oppo-
site direction without changing its nature, and the neutral
line is in that case, by supposition, on 4; it lies therefore,
entirely on 4, and also entirely on B, which is impossible
unless it is the line of junction of 4 and B.

It is easily seen that the same reasoning would apply, if
we supposed the line to lie partially on both 4 and B.

(33). Any number of concentric spherical shells, the
thicliness of each being wuniform, are separated by non-
conducting media ; to find the effect of their mutual in-
fluences when they are electrised.

Let the respective quantities of electricity with which the
shells are charged, be represented by E,, E,, E;...E,, com-

mencing with that nearest the common centre; then since
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no free electricity can veside in the space included between
the interior and exterior surfaces of any given shell, (as is
evident from the proof of Art. 25.) the total charge is distri-
buted on the surfaces of the shells, and uniformly on a given
shell, in consequence of the spherical forms of all the surfaces.

Let P,, P,, P,...P, be a series of points taken arbitra-
rily in the substance of the shells, commencing as before with
the inmost shell.

Now, since all the surfaces interior as well as exterior
of the shells, except the interior surface of the first shell,
include the point P, within them, their total action on that
point, is zero, but the action of the electricity on the in-
terior surface of the first shell is the same as if it were col-
lected in the centre: now since the total force on P, must be
zero, (Art. 23.) therefore there can be no Eluutricit}-‘ on this
interior surface, consequently the charge E, is uniformly dis-
tributed on the exterior surface of the first shell.

Again, the effective force on P,, results only from the
exterior surface of the first shell and the interior of the
second, and is the same as if all the electricity on those sur-
faces were collected at the centre, but since this total foree
must be zero, it follows that the interior surface of the second
shell contains an electrical charge represented by — E,, and
therefore the exterior surface of the same shell must contain
an electrical charge represented by K, + FE..

In like manner it appears that the respective quantities
of electricity on the inner and outer surfaces of the third
shell, are — (E, + E,), and E, + E, + E;; and in general the
quantity of electricity on the inner surface of the m™ shell, is
—(E,+E,+E,...E,_)), and on the outer (E, + E.+ Es...E,);
that is, the quantity of electricity accumulated on the outer
surface of any shell i1s the sum of the total charges on all
the interior shells inclusive, and on the inner surface it is the
same sum exclusive of the particular charge of that shell.
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(84). Two parallel plates the surface of each of which
is great compared with its thickness, are separated by a thin
non-conducting plate, and made to communicate, the lower
with the ground, the wpper with the conductor of an elec-
trical machine ; to find the effects of their mutual influences.

Suppose, for a first approximation, that the extent of the
surfaces is extremely great, and the thickness extremely small;
and let a vertical right line be drawn intersecting the superior
and inferior surfaces of the upper plate respectively in the
points P, Q, and of the lower, in the points Q', P'; and let
ps o> a5 p represent the corresponding electrical accumula-
tions; then, since the extent of the plates is very great,
ps O o, may be regarded as constant, except for points situ-
ated near the edges; and p’ =0, since the lower plane is in
communication with the ground.

In this vertical line which is normal to all the surfaces,
take any two points p, p', the first being between the surfaces
of the upper plate, the second between those of the lower;
the total actions on those points must be zero.

Now, in general the action of an indefinite plane surface,
of which the density is P and the particles of which attract
with forces which vary as the inverse square of the distance,
is normal to that surface, and is represented in quantity by
Lar p.

Hence, we must have,
for the equilibrium of p, 27 (¢ + ¢’ — p) =0,
and for p', 27 (o +0" +p) =0;
adding and subtracting these equations, we get
c+ao =0, :
p= 0;

that is, the total charge of electricity communicated to the
upper plate, is distributed over its lower surface, which is in
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contact with the non-conducting plate; and produces by its
influence, an equal quantity of the opposite electricity, dis-
tributed in like manner over the upper surface of the plate
which communicates with the ground.

This result is only approximative, since the plates are not
of infinite extent; to obtain a nearer approximation, we must
not consider p as zero, but only small compared with ¢; ¢
will be no longer equal to — ¢, but may be represented by
— mg where m is a quantity nearly equal to unity, and which
is constant for the same system of plates, since the values of
fs Oy o'y which are necessary for the equilibrium of p, p’, may
be doubled, trebled, &c., without disturbing the latent elec-
tricities at those points; let the whole charge communicated to
the upper plate be represented by L.

Now since p’ is in equilibrium, the action of the electrical
stratum on the upper surface of the non-conducting plate,
across that plate, is equivalent to the action of a stratum on
the lower surface of the non-conductor, of which the accu-
mulation would be + mg; for we may here neglect the action
of the stratum of which the accumulation is p, because of its
greater distance from p’ and the extremely small ratio of
? to o.

Conversely, in considering the equilibrium of p, the action
of the electrical stratum of which the accumulation is —ma,
will be equivalent to that of another on the upper surface
of the non-conductor, of which the accumulation would be
— ma x m, m being a little less than unity, since the force
increases when the distance diminishes in plates of which the
extent is not indefinitely great.

We have now for the equilibrium of p, the equation
29 o — mia —p} =0;
hence, p=+ (1 —m*) g ;
and if .S be the surface of the plate, we have
S.(p+0o)=E;
L.
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1 E
hence, ¢ = —— . —
2—-m* S8

1 —m" K

= et et

f 2 —m S

: -m E
g = ——

2 —m* 8§

Corolliary. 1f we suppose the upper plate charged until
the resistance of the air just suffices to confine it to the plate,
) A

i-_h{-.]] O = —-III:—--';, 'ﬂ“{I E’: = Srﬂ T ——
] = = 1 —

But if when uninfluenced by the upper plate, the extreme
charge which the resistance offered by the air will admit of,
be represented by E’, we have

E; = E:S'P-
E 2-2mf

Hence S R -
i ST s P

and putting m =1 —a where @ is very small, we get by neg-
lecting the squares and higher powers of a,

1'l.I
-

E

which shews that E is much greater than E’, in the ratio of
1 : 4a, it is on this principle that condensers for accumulating
great quantities of electricity are constructed ; the Leyden Jar
is an instance of its application.

= 4 i,

(35).  Two opposite hyperboloids are isolated and charged
with equal quantities of opposite electricities ; to find the law
of distribution,

Let a pair of hyperboloids, concentric with the former and
similar to them, be described, and let the intermediate space
be occupied by homogeneous matter, that which lies at one
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side of the centre attracting, and at the other, repelling all
points with forces varying inversely as the square of the
distance, the absolute forces at either side being alike; then
if we take a point P, in the unoceupied space interior to either
hyperbolical stratum, and form a cone, the vertical angle of
which at P is extremely small, the portions of its axes inter-
cepted by both strata, are equal, in consequence of the simi-
larity of the bounding surfaces, and the parts which are cut
out of the two strata by the cone, have therefore equal actions
on P; and since one of them 1is attractive while the other
is repulsive, the total effect on P resulting from both, is zero;
and in like manner for any portion on one hyperboloid, another
may be found, the force of which counteracts that of the
former, thus the total action on any internal point is always
Zero.

If now we make both strata indefinitely thin and sub-
stitute the opposite electricities for the attractive and repul-
sive matter, there will be no action tending to separate the
latent electricities, and this will therefore be the proper law
of distribution.

It is readily seen as in the case of the ellipsoid, that the
normal breadth of the stratum is as the perpendicular drawn
from the centre on the tangent plane, and the pressure, as the
square of this perpendicular ; they are therefore greatest at
the vertices of the opposite hyperboloids.

(36). o find the influence of a non-conducting sphere,
charged symmetrically with respect to its cenire, on an elec-
trised conducting sphere.

Let O, O be the respective centres of the conducting and
non-conducting spheres, the influence of the latter is the same
as if its total electrical charge (E'), were condensed in its
centre, and under this influence the electrical charge (F)
of the former will be arranged on its surface symmetrically
with respeet to the right line 00" which joins the centre.
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Let a be the radius of the conducting sphere, p the elec-
trical accumulation in the section made by a plane perpendicu-
lar to OO, at a distance 2af from the point at which 0’0 pro-
duced, meets the sphere a second time, and let 3 be the distance
of a point P, in 00, and within the conducting sphere ; and
lastly, let ¢ represent the mutual distance of the centres.

Then since OP =¢ — (3, the total action of the non-con-
ducting sphere on

Er
g T BT
é’;{ 3 alnghet 3

1+2—+3'—_'+4—,+&C. .
e c P o g"‘

—
—

and this being neutralized by the action of the c-::-nducting
sphere, the latter will be represented by

I & :
,_{1+GE_Q+‘5 E-q-at—r:.@;—r-&'c.f.
¢ a ¢ o o

But if the required law of electrical accumulation expressed
by p, be expanded in a form,
PZGOPD+ ﬂ"lP] = ﬂ-gPa-l—ﬂ'H;Pg;

then by Cor. 3. Art. 19., the action of the mnducting sphere
on P is also expressed by

i 20 ,8 Sa. !32 da, ’H"
-—‘]-':'I'—--"-F—.—'*l-'—'---—_dt ——-'—+E\‘T
3 5 a o el 9w
and equating with the former value, we get
g B
i = — . —
1 11‘7' c-_, 3
5 a E
”2 [ — B Tl ——= ! )
i ¢ o
T Y
Gy = — — _ —:
4 2 o
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=

therefore, p = —— 313P, -
werefore, p ﬂ“P“+4W.5#{ P,

e

a _ay :
E'P?£+"E‘IJ3_&E‘£'

(]

E
-y

ar e

D

= a, P, +

; {HE.P,-.:? P -—I — &e.}.
e

ﬁmrﬂ-
=

The total electrical charge on the conducting %phere =47d fip,
this integral being taken from #=0 to {=1, is 47waa, = E;

o

hence, a,P,=a, = -3 and

dra

their values given by Prop. 1. we get

Lo ol o 9 o : :
,o=-~{ +_}— {1—33P1+5§P2—?§P3+&n.}

deare (i drac

1 B BY Eéd a’ '
2ma la c 2rade S ot ¢
But by Prop. 11.

F- 3"

-4
{14—2 (1—ﬂf}+“} =SPSSep e S Py
[ c

c c®

] L} - - -
multiply by e and take the differential coefficients with re-
e

spect to ¢, the left hand member of this equation will thus give

2 2

c” o L B) —
""I-E'Ta;— e + 2ac (1 —E.f)+a‘} LF

whence by substitution,
1 o L ) E =t

-n:T-‘_ c -ifrﬂ.{ﬂ?+ﬂaﬂ(l—ﬁﬁ}+a3zi'
E E F(@@-ad)

or; 4re.p=—+ ——
A P a ¢ r

P=

4T a

a3 3

where r represents the distance from the centre of the influencing
to the annulus at which the accumulation is p.
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Cor. 1. 7o find the neutral line make p = o0,

(@ - a*) a r-;-?'}* :

IIEI]CE, Tl — {—‘I_"_‘;ﬁf
L i L

thus if the conducting sphere had no free electricity when
uninfluenced, then
E=0 and = {c.(c—a) (c +a)it,

r, being the distance of the neutral line from the centre of
the influencing sphere ;

3
e
and therefore, — dracp . = ) (.L_ 1) ;
W

Cor. 2. To find the quantity of electricity evolved by

influence.
d E Er P‘l_
Since p = ——d— =13,

4 dmac |1

where 7, represents the distance of any point in the neutral
line from the centre of the influencing sphere when E = 0, and

+

the first term — is due to the eleetrical charge of the
dra

conducting sphere, therefore if p’ be the part of p dependent
on the influence, the opposite electricities produced by influ-
ence on both sides of the same neutral line, are respectively
represented by

d S
_,Ir;.]ﬂ" E, from r=¢—a to =T,

d.S
and ,r; p’ — from r=7 to r=c+a;

S representing the surface of the sphere.

But »*=¢* +a*+ 2ac(1 —21),

dr
hence, — = —4ac;

dif
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also E{éf =dmTa
Yt 2
hence, g R LT
dr ¢

the respective quantities of Eler:tri-::il;}' evolved are therefore

B et '-"13)
——= r——1,

darct J, ( 7
taken between the same limits, and if we integrate, and put
for »? its value ¢ (¢* — &%), they are respectively

T I O - ¥ [ e
—— {— (ry=¢") - :} and —— {— (¢" = 7)) + ;} ;

4t |2 4t |2

which quantities are exactly equal and of contrary signs, as it
1s easily seen they ought to be. And since r, is evidently less
than ¢, the former is of an opposite kind to £’, and the latter
of a like kind.

Cor. 3. To find the quantity of electricity expelled when
the conducting sphere is put in contact with the ground.

Let " be the value of the electrical accumulation, at that
point of the sphere which is afterwards made to communicate
with the ground, the relative positions of both spheres re-
maining unaltered ; the effect of this communication is to render
the electricity at that point latent, but the same effect would
be produced if we supposed a uniform stratum, of which the
accumulation at every point is represented by — p", and this
stratum on account of its uniform breadth, would not disturb -
the latent electricities in the interior of the conducting sphere ;
the total quantity of electricity thus superposed, is — 4ma®p”,
which is equivalent to the abserice or expulsion of a quantity
represented by 4ma®p”, the latter is therefore the quantity
required.

Thus if we suppose the sphere to contain only its natural
electricities before contact, and that the point on its surface



88 ON ELECTRICITY.

most remote from the influencing sphere, communicates with
the ground, we have

s — {c (¢ — a”) }
p’ = By

a drac _-(r' e a)‘

the quantity therefore, which is expelled, is

= I o 3¢ + H}
g lle+ay ¢ 3

(37). To find the influence of a non-conducting sphe-
rical shell, on a conducting sphere, the electrical arrange-
ment being supposed symmetrical with respect to the line
Joining the centres.

Let O, O, and a, «' be the centres and radii of the con-
ducting and non-conducting spheres respectively, and let 4, 4’
be the points in which OO" produced both ways, meets the
respective spheres a second time ; let p be the electrical aceumu-
lation on a section of the conducting sphere made at a distance
2at, from A4, by a plane perpendicular to 44"; and in like
manner let p” be the accumulation on a similar section of the
other sphere, at a distance 24t from A4', let ¥, V' denote the
same quantities as in Art. (14), with reference to both spheres,
when points P, P' are taken in 00, at the respective distances
OP=[3, OP =3 ; the integrals in both spheres are taken
from £{=0 to £=1.

Let 3=ha, 3 =h'a’, then we have for points within
the non-conducting sphere,

F

' = 4 = P :
e [3&’”+,@”+2a’ﬁ’{l—ﬂt”#

4‘11_&@ f P.F
S/ R Ay e Tl
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the actual value of which may be found by expanding p’ n
functions of the same nature as P,, and putting for the de-
nominator its value 1 — P&" + P,A" — P,A'°, &ec., and then
integrating ; representing this integral by q;(,i}_.’}, we get

Fin
dara”

when P’ is within the sphere, V'= @' (A,

(4]

g s dra” 1
when P’ is without the sphere, V' = ,B’_ QP (}T) :
)
Make P’ to coincide with P, and to lie within the conducting

sphere, and therefore, without the non-conducting ; and putting
e for the distance 00’, we have then 3 + 3’ = ¢;

hence at the point P,
tra’ o
Py g
ﬂ—ﬁ¢(ﬂ—ﬁ)
Now the force on P tending from O, by Art. (14), is

dv dv. AV +V)

iy S e b r —e— ;

ag " dp’ > ~ dp

and since the latent electricities must not be separated when
the electrical state is permanent, we get

V4V =a,
@ being a constant quantity ; hence for points within the
conducting sphere,

dra’ o
34 Hvss)
i ﬂ—ﬁ3¢ T

4#{12-}‘ P Al dma’® ,( a )
g 1%1—!—!&’34—24&(1—23)};_‘ c-ﬂmqﬁ e —hal’

and representing the integral by ¢ (), we have for points
within the conducting sphere,

4qra”

I":—-;— .qb{f._t];
M
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and for points without the same sphere,

k5 Tﬁ % (;)

, 4dmTa 7
Py T
8 i fget |
h h

to determine «, suppose P at an infinite distance, the value
is then the same as if the total electrical charge (F) of the
conducting sphere, were collected at the centre ; making there-
fore, h = 25, and multiplying by 3, we get

4o a
= adae i gl
e ey
whence,

R

in which expression = is substituted for 7.
o

]

Knowing thus the value of V for external points, suppose

it expanded in a form
4ra’ o a
V=‘? gﬂu—%ﬂwEJF%sz-Ef&mf;

then by Art. 19, we have
p=a,P +a P +aP,+ a, Py + &e.

Corollary.

i DR 4 .
bt .[{: +h+ 20 (1 —23}_‘}5(!"’]’

then for external points,
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and comparing this with the value of V already found, we

have
1 E anstituila 1 i
9’)(?&): sl (_:.)_ s a b

Y a f

and therefore for internal points,

V=4mrap (k)

[

E 1 a 1 o
= gl SV * i
a i {E(P (-:,) r:—afs('b (n—uﬁ. }

(38). To find the electrical arrangement of two elec-
trised conducting spheres which mutually influence each
other.

Retaining the same notation as in the last article, let
the respective spheres be represented by 4 and A4, and let
47ag (k) be the value of V for points within 4; the effect
of the influence of 4 on 4’, is the same as if 4 were suddenly
to become a non-conductor; therefore by the 111‘(rc:{:{1ing Corol-
lary, we have

Er 1 P 1 e \'||.
Pl Fopbr RaN: T g B —)——*ﬁ—f-—, ("_r— 5
resrd 6= im0 () - ()

Conversely, A may be suppcsed to become a non-conductor ;
therefore,

’

L

o )t (22
V:@Trafﬁ(-’&)—;'l'l'“'“ {Pti) :) {:—uh’i‘ c—ahll’

but by means of the former equation, the function q‘;' is given
in terms of the function ¢b; thus

il ﬂ-r .Ej 2 1 ik i / o
twa ¢ —] =< +4Ta ‘l}‘) (_) A lf-' 3 8l
o & W el G

R i
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and

J'

it () =7 erdles G
wagb ¢c—al _u’+ i f:';b r.*)

¢ —alt ( uf‘—a.& )}
ﬁ—u'”—cakq} & —a*=cahl|’

hence,
)

I E ad o aa ar
Pl =15 & e (") e (Cg )

Ta dac i e - -

s

Ny

b

aa ac—cd' h

s ‘1-1-1:;:-(:::::}1) e(e -ak}qb ( ) ¥ c”-a”—-::ah(’b (ﬂ"'—a'}"-cufz) '

Put for abridgment,

. E f':’ {lu" (i ur_f ac
PO ST W R

dqra 4 I ¢ —-a c—a
EI ﬂﬂ"i' L

,l_jil‘=— ----- — - 5
& (4 o

the equatinn becomes

(]

(2 X

ac —a h &
PO - () = s

o v —a- —cah c—ahl

from this equation the form of ¢ is to be determined, and the
value of V being thus known, that of p will be determined
by Art. 19.

Whatever may be the form or number of the electrised
bodies, it is obvious from the preceding investigation, that
the equation for determining the value of FV in the interior
of any of the bodies, will be a functional equation, the reso-
lution of which even in the simplest cases, would offer very
great analytical difficulties; the following principle will assist
in resolving the question after an easier manner.
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30).  Principle of successive influences.
- P . i

Suppose two conducting bodies 4 and B to be electrised,
but that the power by which they influence each other ema-
nates per saltwm, at finite and equal intervals of time; let
a and b represent the electrical systems on the respective bodies
when they undergo no influence, then by the first influence,
a and b are changed into @’ and &', the system « being equi-
valent to the superposition of a system a, due solely to influence,
on the original system a; and in like, b being equivalent to
the superposition of a system (3 on the system b, /3 being pro-
duced solely by influence.

The systems @ and & may be now supposed to exercise a
second influence, and since a' is equivalent to @ and a, and »'
to b and (3, and by the first influence the action of @ on b is
counteracted by that of 3 on b; and the action of & on @ by
that of a on a, this second influence is equivalent merely to
the influence of the systems « and [3 on each other; the altera-
tion by this second influence may be regarded as equivalent
to the superposition of two other systems «” and 3'; the second
electrical systems ¢” and ", are vespectively equivalent to the
systems @, a, &' and b, 3, ', when each is condensed into one
system by superposition.

Using the sign + to denote in this case superposition, and
the sign = for the equivalent or resultant system, we have in
general

g8 Mg tato ta Fioaata U

b= bl BB e B gl o BtE=Y),

Now supposing the bodies 4 and B exterior to each other,
the system « on the body A4 is produced by the influence of b,
in the same manner as if B were suddenly to become a non-
conductor, the system @ is in equilibrium by the combined
actions of @ and b, and since the former is on the same body A.
while the latter system is on a different body, it is evident that
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a must be much less in quantity than b, and of a contrary sign,
that is, of an opposite kind of electricity ; for the same reason,
(3" which is produced by the influence of @, must be much less
than a, and of a contrary sign, a fortiori (3" is much less than
b, but of the same sign; we have, therefore,

ﬁl{:B’ ,E'FH = Br’ ,G{ﬂ {__er’ EIE-
B<a, B'<B, p¥<f’, &

thus when n 1s \'er}' great, the systems o -1 BR=1) B
duced by the n™ act of influence, are almost insensible: but
the (n + 1)" influence of the total systems, is exactly the same
as the influence of the partial systems a »=land B7¢-1; the
alteration produced therefore in the total systems would be
insensible ; hence the systems when n becomes infinite, are in
permanent equilibrium, the same observations apply to any
number of bodies.

This principle may be applied :

First. To obtain numerical approximations to the state
of electrised bodies influencing each other, by calculating the
effects of 4 or 5 successive acts of influence.

Secondly. To obtain the analytical expression for that
state ; for the consideration of a few successive influences will
shew what the form of the quantity V is, and assuming a cor-
responding form with indeterminate coefficients, we may get
the form for the state of B due to the influence of A4, and then
the state due to the influence of B or its own reflected influ-
ence, comparing the form thus obtained with that assumed,
the indeterminate coefficients may be found.

ExamrLeE. Let two equal conducting spheres, the radius
of each being a unit, and the distance of their centres 100,
be charged with equal quantities of electricity which may like-
wise be taken for units, to find the eftfects of their mutual

influence.
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Let 4 and 4" be the two spheres, then since a=a =1,
and F=F =1, and ¢=100, we have when there is no influence

P =1y P W)=

After the first influence exercised by B on 4,

1 1 1

b t) =

4 S 4007 A (100 — k)’

which also expresses ¢’ (k) when A first influences B.

After the second influence,

1 1 1 1 1 1

i gl i gt ol

4 4004 10000 <4 4007 1

. 4 (lﬂﬂ - ———)
1K)
1 1 1 1
- e
9999 147 4007 1040
dqr | 100 —

9999

1 1 1 1 1

— — +-_—__ —
4 (100 =70) 100(100—=Hh)4 4 400 7+ ]
TSR TR e smf100- 1)

1 1 1 1

— - -
99 — 100k 4 4 400
9999 = S (mn e

100 — A ) :
9999 — 100/
where the terms which are added by the second exercise of

influence are not sensible before the ninth place of decimals,
and the first influence gives

_— Ir= - — - ———
V=d4mwg(h)=1.01 S

=1 = nearly ;
10000 y
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but when p=a, P, +a, P, + &, P, +...
a,
then V=47 {aq, - - h+ &c.} by Art. 19;

- L] - I 3 ].
hence in this instance, ¢)= — ;= —. ——
b rl-'.l'r lﬂ'm)ﬂ
1 5

5t
and therefore, p=— "= =& ——— =
4 4-'[](}!']{] T 20000
thus the accumulation at that point of 4 which is nearest B,
is less than at that point which is most remote, by a quantity

i

o R b1 -
which 1s only the s part of the mean accumulation.
= 5000

A little attention to this example or to the formula for the
influence of a non-conducting on a conducting sphere, (Art. 57,)
will shew that in the general case of any two spheres, the suc-
cessive influences introduce only constant quantities and frac-

tions of the form , where 4, a, b are quantities inde-

a+bh
pendent of /%, and that the first of those fractions is of the form

g
- ‘ h Bl %
T oj We may therefore put generally
A A, A,
¢ () f'l" — 4 . — + &e.;

ah a, + bk a2+hzfa ﬂ;—l-—ﬂ{;fl

where 4,, a,, b,, &c. must be determined, so that ¢ (&) may
satisfy the equation

g aa! e—ah)
t.r')(h’)="-‘F+t!:*—1:nﬁ-+.t:"t Lahqb(f' —a”* —La.&)

and giving ¢ in the right-hand member of this equation, the
form above assumed, we thus have

_}"n:uc".jr gua'

h) = ; = 7 o o ’ i : 7
Ay i PR Lol LB TR c(c*—a*—a®)—ah(c'—a’)
Ayad

+ —
a,(c’ —d*) +byac —al(ca, +ab,)

+ &c.;
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and equating the corresponding terms, we get
4, =fad, 4, =gad, 4;=f(aa)’, 4, =g (ad)’,

{n-; =¢ -~ q”

L

2

=

c(c’ —a* = a”)

—a(@®-a) °

I
b

L
1

Il

=

3
[ #
i =ay (¢ —a®) + b.ca

i,
E

{
{a_ =a,(—a?®)+b.ca
{

&e. &c.

these quantities are formed by a simple law from each other,
and the general term may easily be found explicitly by a linear
equation to finite differences; the value of V for internal points
1s therefore

4’ auj aa’ cu:tj #
V= L+ S f + g +'f( ) +
i ﬂ—ﬁ !'3'| b, b,
a+—.53 a+-—. ag+—.[3
o (s o

&c.} .

where each term except the first has the same form as when
a point or non-conducting sphere symmetrically electrised
with respect to its centre, influences the conducting sphere;
hence by Art. 36,

z e(* = a’)
i R

fad . aya (e’ a* — ba’) g
[a2c* + 2atac(l —28) + a*d’ |

and a similar expression for the accumulation on 4" may be
obtained by changing « into «', in the quantities a,, b,, &e.:
N
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and since the total quantity of electricity on 4 is given by
the equation FE = -i-vraﬂ_!;p, from £=0 to £=1, the quantities
f and g are determined when E and E’ are given.

(40). If two electrised bodies touch each other, and are
symmetrical with respect to the common normal passing
through the point of contact, there will be no free elec-
tricity at that point.

Make the common normal the axis of x, let X, X re-
present the forces along this line, at two points within the
electrical stratum (on the supposition that there is electricity
at the point of contact), ¥ and @’ being the distances of those
two points from the origin; and since the bodies are sup-
posed conducting, the electricity is distributed in the same
manner as if the two constituted but one body; we have,
therefore, by Taylor’s theorem,

; ax . EX (o ~ @)®
A =X+ — (v - i .
& o @ ki L da* 1.2 i
And by Art. 24,
dX dY dZ
-+ 4"31"{) = (),

dw © dy T

But in consequence of the symmetrical figure of the bodies,
there is no force except X, on points taken along the normal,
d X

h y =i y —==1D0 o
ence 5= TP g3 , &c

therefore, (X' — X) + 47p (2’ — @) = 0.

Now, at the surfaces which bound the electrical stratum
within either body, X =0, X’ = 0, because the total action
on any point within an electrised body, even when infinitely
near the electrical stratum, is zero;
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hence, @ — @ = 0,

that is, the breadth of the electrical stratum is zero, at the
point of contact.

Corollary. 'The same reasoning will apply when the tan-
gential forces ¥, Z may be neglected in comparison of the
normal force X.

Remark. 'The motions of electrised bodies when they
are non-conductors, may be calculated on the same princi-
ples as the motions of any bodies of given form, the particles
of each of which exert on the others forces varying inversely
as the square of the distance.

When any of the electrised bodies are conductors, the
free electricity flies, partly by its own repulsion and partly
by the influence of the other bodies, to its surface, where
the pressure of the air is diminished at each point, by a quan-
tity proportional to the square of the breadth of the electrical
stratum, the effect is the same as if a system of forces acted
normal to the surface, and tending at each point from within
to without; the equations for the motion of the centre of
gravity, and of the body round that point, may be formed
therefore by the common principles of dynamics.

When two spheres influence each other, they produce no
motion of rotation, for the forces tending to turn either sphere
round its centre of gravity, in this case will evidently destroy
each other.

But in other cases, the effect of the rotation as well as
translation, is to make a different distribution of electricity,
so that the general expression for the normal forces becomes
complicated, and the exact integration of the equations of
motion is much more difficult,
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The action of a large electrised body on very small light
substances, may be more easily computed from the circum-
stance that the influence of the small bodies on the larger
one may be neglected.

Examrre, To determine the motion of a small pith
ball, charged with electicity, influenced by a large electrised
sphere.

Representing (as in Art. 36.) the electrical charge of the
ball by E, and of the sphere by E’, and observing that the
influence of the ball on the sphere is so inconsiderable, that
it may be neglected, the latter acts as a non-conducting sphere,
and therefore, by the same article, the accumulation at any
point of the ball, is given by the equation

drala o *.r

I{F E E’(c”—aﬁ)}
R e e

Let the radius drawn through the point at which the
accumulation is p, make an angle 6, with the right line ¢,
which joins the centres of both spheres ;

then »* = ¢ — 2ac cos@ + o

dr
Hence r— =+ acsinf,
: dd
Ctat =1 dr
™ '3"— w
Qe o* d e

and sinf cosf =

Now the normal force on each point of the annulus on which
the accumulation is p, is 27 p® (by Art. 26,) the surface of the
same annulus is 27ra’sinf. 6, and resolving all the forces in
the direction of ¢, the whole moving force is expressed by

17ia’ fyp* sinB cosf

taking 6 between the limits 0 and
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The accelerating force on the centre of the ball, is there-
fore equal to

o’

M e
M being the mass of the ball.

f,*rp” (& + o - 7),

Put §+£=u, E (¢t -a°) =0,

(7] c
and let f be this accelerating force ; hence,
A A kil b
E;Wfa”f: j: {’." (1'3'2 +a’ — Tg) (ﬂ' 3 T—s +;‘T)} ’

taken fromr=¢c—-a to r=a +¢c.

The part of this integral which is independent of b,
vanishes; for when E'=0, =0, and the charge is then uni-
formly distributed over the ball, and therefore the pressures
would produce no effect; hence,

C+a C+a 1
Fop = - 2 e
o Mc*a* f = mb_[( o) e (S5 ﬁ)

r

1 1
=—2ab {(c*+a”) (c—a s a) - 2a}

it {ﬂE -If_l-mE ({c —1 a)t X (e -: a)‘)

=4 ((c—la)ﬂ'{c:a)ﬂ)}

Sabed® b’ e’
F-d  @-d)

8 E2a’¢’
@ -a)

=-8aF o +
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Hence,
tall o +E ac

pe + (ﬂ'.e = ﬂﬂ}:.!

Mf=-

4 EE 4FE%q 4+ FE%qe
_— i —— o — —
c* ¢? (¢* = a*)*

e
=

Let v represent the velocity of the ball, then

i EE oF% " Pox
Jlfv':—flﬂfj;f=ﬁf{ Zntia —(cg_aﬂ)g}s

M C BE ab® E%q
or, —. =0« = o=
’ 8 I 2 ¢* -’

C being determined by the condition’ that v = 0, when e has its
initial value, and the motion is understood to occur in a hori-
zontal plane.




CHAPTER VI

ON ELECTRICITY DEVELOPED BY CHEMICAL ACTION.

(41). Continued production of Electricity.

Tue chemical compositions and decompositions of sub-
stances are in general attended with a development of elec-
tricity, consequently when continued chemical action can be
maintained, a continuous flow of electricity will be produced.

"

Thus when a metallic substance is immersed in a saline
solution, the metal is found to be negatively, the solution
positively electrised.

The contact of the air with substances easily susceptible
of oxidation continually develops electricity of very feeble
intensity, but which may be accumulated by artificial means
so as to produce all the ordinary electrical phenomena.

As chemical action produces a continuous flow of electri-
city, conversely, a continuous flow of electricity will produce
chemical actions which would not have otherwise occurred ;
the following experiment due to Wollaston will exhibit this.

Let a piece of zinc be partially immersed in very diluted
muriatic acid; chemical action immediately takes place, the
zinc dissolves, and hydrogen is disengaged from the water
of the solution.

Let now a piece of silver be also partially immersed in
a different part of the vessel containing the solution, the acid
not acting on the silver, the latter disengages no hydrogen
from the water.



104 ON ELECTRICITY.

Suppose now that the continued flow of electricity pro-
duced by the chemical action on the zinc, is communicated to
the silver, by bringing the metals into contact outside the
solution, or by means of an interposed conductor, the silver
will then act on the solution, and hydrogen will be disen-
gaged at its surface.

The decomposition of water has been also effected by the
same philosopher, by means of a series of electrical sparks,
when a wire isolated in its length communicates at its ex-
tremity with that fluid. (Vid. Art. 9.)

The quantity of electricity produced by chemical action
between given substances, will in general be proportional to the
extent of surface throughout which that action occurs.

Though Volta ascribed the production of a continued flow
of electricity to a different cause, yet as the construction of
piles for increasing its intensity was his invention, it has in
this state been denominated Voltaic electricity.

(42). Accumulation of Voltaic electricity.

Let a plate of zinc be placed in a horizontal trough of
baked wood, which is a good non-conductor, and also a plate
of copper near the former and parallel to it, but not touching
it, and let the intermediate space be filled with a solution of
nitric acid ; the zine which is the more oxidable metal, will be
acted on by the acid, and become negatively electrised; the
acid becoming positively electrised, will communicate by con-
tact, positive electricity to the copper.

Let another plate of zine be placed beyond that of copper,
and soldered to it, and then a second plate of copper commu-
nicating, as before, with the zine plate, by means of an acid
solution in the intermediate cell ; the contact of the second
zine plate with the first plate of copper, permits the latter to
communicate its positive electricity to the zine, this positive
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electricity would be communicated to the second plate of
copper, if the intermediate solution acted wmerely as a con-
ductor, but that liquid has also a chemical action on the zine,
which independently of the first pair of plates would be a
source of positive electricity to the acid, and therefore also
~to the copper, with reference to which the acid may be re-
garded almost in the exclusive sense of a conductor; on the
other hand, the same chemical action producing negative elec-
tricity for the second zine plate, reduces the eclectrical state
of that plate and of the copper which is soldered to it, to
zero, and the acid in its capacity of a conductor, serves to
double the quantity of negative electricity in the first zine
plate, the whole system being isolated by means of the trough
of baked woed. It is evident that by soldering to the second
plate of copper, a third zinc plate, and then putting a third
copper plate, forming with the the third zinc a cell filled
with acid, the quantity of pesitive electricity on the third
plate of copper and the first of zine will be trebled, and if
we suppose the conducting power of the acid and the non-
conducting powers of the trough and the atmosphere perfect,
the quantities of the respective electricities developed on the
final plates of zinc and copper, are proportional to the number
of cells containing the acid solution: the system of plates is
then denominated an electrical pile.

If sheets of paper a little moistened were interposed in-
stead of acid, the same results would be produced but in a
much lower degree; the action of the air is necessary for dry
piles, for when enclosed in an air-tight vessel, they lose their
power of acting when the oxygen of the enclosed air has
chemically combined with the metals.

(43). Electrical currents.

Suppose two metallic rods are attached respectively to the
plates of zinc and copper which terminate the electrical pile
described in the preceding article, the rod communicating with
the zinc will be perpetually in a state of positive eleetrieity, the

0



1[]6 ON ELECTRICITY.

other will be permanently negative, and in either case the elec-
trical charges are equal; bring the ends of the two rods into
contact, the opposite electricities combine, when they are again
developed by the action of the pile, and again combined by the
contact of the rods; instead of the two rods, 1in this case, it 1s
manifest that one conductor communicating at once with both
ends of the pile, will equally answer the purpose of permitting
the electricities which are continwually produced by the action
of the pile, to recombine continually ; it is this peculiar state
of electricity in Voltaic conductors, which is denominated a
current, a direction is also attributed to the current; for the
action of the acid supplying continually the zine end of the pile
with positive electricity, and the copper end with negative,
which are permitted to combine by the interposition of the
conductor, the current of positive electricity in the conductor -
is said to be from the zinc to the copper, the terms current
and direction of a current being merely conventional, and
adopted simply for convenience of language in considering the
phenomena of Voltaic electricity.

(44). General effects of the Pile.

. When a shock is received from a Leyden Jar, the opposite
electricities being permitted to recombine by the interposition
of the conducting parts of-the body, the sensation produced is
instantaneous, but when the body forms a part of the Voltaic
circuit, (for instance, by immersing the fingers of each hand in
vessels containing solutions in which are also immersed metallic
rods communicating with the ends of the pile,) the sensation
is then continuous, remaining as long as the communication
of the body with the ends of the pile is uninterrupted.

When Voltaic electricity is applied to produce chemical
decompositions, hydrogen and the bases are found at the ne-
gative pole, (or at the extremity of the rod communicating with
the negative end of the pile), while oxygen and the acids are
collected round the positive.
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The physiological effects of the pile are peculiarly striking,
and were those which first attracted the attention of Galvani,
and afterwards of Volta, to this branch of science.

The muscular contractions in the limbs of frogs, when
denuded and forming part of a Voltaic circuit, (for instance,
when interposed between two plates of different metals which
are brought into contact,) led to the construction of the pile,
by which the most violent muscular actions may be produced
in the largest animals recently killed ; the process of digestion
can also be maintained for some time after death, by the action
of Voltaic currents, and many other remarkable effects of a
similar kind are produced by the same cause. (Vid. Cumming’s
Eleetro-dynamics, and drt. Galvanism, Encycl. Met.)

(45). Aetions of Voltaic Conductors.

When a metallic rod or wire is made to communicate by
its extremities with the. ends t?f a Voltaic pile, the rod ceases
to act in the manner of the electrised bodies considered in
the former chapters, however, two such conductors of any
forms, in general, act upon each other; a few of the simplest
pheenomena of this kind established experimentally by Ampere,
form the basis from whence Veltaic actions in the most com-
plicated cases may be computed; for the description of the
apparatus and the mode of making experiments, we must. refer
to Professor Cumming’s Electro-dynamics.

By those experiments it appears :

First. That two currents, the directions of which are
mutually at right angles, exert no actions on each other.

Secondly. That an undulating conductor may be sub-
stituted for a rectilineal one which has the same extremities,
provided the deviations of the former from the latter, however
numerous, may be of only small extent.

Thirdly. "The actions of similar conductors on points
similarly situated, are equal.
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Fourthly. A closed conductor exerts no action on a cir-
cular conductor, moveable round an axis passing through
its centre, perpendicularly to its plane.

From the second case, it follows that we may substitute
for a small portion of a conductor, three other portions which
form in continuation the three edges of a parallelipiped, of which
the given portion is the diagonal, a principle analogous to the
resolution of forces.

The terms closed and indefinife currents are used according
as the conductor forms a closed figure as an oval, or extends
indefinitely as a straight line or helix.

(46). To determine the law of force tending to or from
any element of an electrical current, when points are taken
at different distances but in a given direction.

Let és, ¢s', be the elements of two electrical currents, of
which the intensities are p, p’ respectively; let the right line
which joins their middle points be made a unit of length, and
form an angle « with any fixed right line, for instance, the
axis of #, and let f be the force with which these elements act
on each other, the direction of which may be regarded as being
in the right line forming their middle points, then the total
action of the eurrents on each other when resolved in the direc-
tion of the same axis, is represented by pp'f [ fcosa, both
integrals being taken throughout the entire lengths of the
eurrents.

Conceive now two currents similar and similarly situated
to the former, but of which the linear dimensions are r times
as great as in the former case; let ooy 6g be the elements in
the latter which correspond to the elements és ds” of the former,

that is, éo = réds
oo =rés,

the mutual distance of do o’ will be now = r, and if ¢ be the
force with which these elements act on each other, q‘:r will only
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differ from f in consequence of the change of distance, for the
angular position of the elements do dg’ with respect to the
right line joining their middles, is the same as the position of
ds ds' with respect to the corresponding line; the total action
in this case taken in the direction of the axis of &, is
PP ls fyrpeosa, or pp'r* [[ [ pcosa, the limits of this inte-
gral being the same as before.

‘But by Art. 45, the mutual action of the former currents
1s equal to that of the latter, hence

|
fife @ cosa = f—zﬁj;-fcnsa,

the latter integral is a numerical quantity, hence, it is evident
A :

that ¢ must be of the form —, A depending only on the
r

angular positions of the elements do do’, with respect to the
right line joining their middles, therefore, the law of force in
a specified direction, is the inverse square of the distance.

(47).  To determine the law of force tending to or from
any element of a current when points are taken at a given
distance, but situated in different directions with respect to
the element.

Let the right line » which joins the middles of the ele-
ments &8, ¢s, be inclined to those elements at the respective
angles 6, 6, the planes of which angles are mutually inclined
at an angle ¢.

By Art. 45, we may substitute for the element 0%, three
other elements forming the sides of a parallelipiped, of which
Js' is the diagonal, and let one of the sides be taken in the
direction of r, one perpendicular to » in the plane of 6, and
one perpendicular to this plane, the current o5 will thus be
resolved into the three rectangular currents

o5’ cos @', ds sin@ cosgp, 05 sinf sing ;
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and if we substitute in like manner for d&s, the sides of a
parallelogram of which it is the diagonal one in the direction
of r, the other per peudlculttr to it aml in the plane of 0, thL-
current ds will be resolved into the two currents

ds cosO, dssind.

In considering the mutual actions of the latter currents
and the former, we may neglect those of which the directions
are at right angles, (Art. 45), and observing that the direct

A

mutual action of &s, d¢ is pp —» where 4 depends only on
e

the angular position of the elements, that is on 6, ¢ and ¢,
if we represent it by f(a) when the elements are parallel and
inclined to the right line joining their middles at an h:mgfle ay
we have

©)

?#

mutual action of s cosf, o5 cosf =

and the action of dssinf, and &s sin6' cos ¢

7(3)

= —pp dsds' sin @ sin@' cos ¢p,
? )

because the former are in the same direction as 7, and the

™

. : : T
latter perpendicular to it; let the latter quantity f (3) be

-

taken as a unit, then, £(0) will be a certain numerical constant
which may be represented by k&, the total action therefore
which is the sum of the above two, is

PP _3*‘* 08’

e

$ I cosf cosB’ + sin @ sin 6 cosgp{ .

(48). To determine the value of the numerical constant
k in the preceding article.

By Art. 45, it is evident that the action of any closed
conductor on a circular one in its own plane, moveable round
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a fixed axis passing through its centre, is always destroyed by
the resistance of that axis, consequently, the total action of the
first circuit on any element of the second when resolved in the
direction of that element, must be zero.

Let és" be any element of the circular conductor, and s
any element of the given circuit, 7 the mutual distance of these
elements, and 8, 8 the respective inclinations of the same ele-
ments to the right line », which joins their middle points; and
lastly, ¢ the mutual inclination of the planes in which the
angles €', 0 respectively lie.

Hence by the preceding article, the direct mutual action

of ds and 8¢/, is

PP—SE S-S- (sinf sin@’ cos¢p + k cos@ cosh).
P

Suppose now that o8 is projected on the tangent to 08,
the part of this tangent between the point of contact and the
foot of the perpendicular from the middle of &+, is

dr
reosf =r—;
s
and if another perpendicular to the same right line be drawn
from the extremity of ds’, this intercepted portion will be
increased by the small quantity
B of

d 08
d_sj {1’ QUSG) : ? ’

L il - w . w i {?lg’
this increment is manifestly the projection of the semi-arc —

2

on the tangent to 33, and therefore the cosine of the inclination

dr
1| r—
: (? ds)

ds’

of the elements ds, &s’, is
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But the same cosine is also expressed by

cosf cosf' + sinf sing’ cosgp ;

o= r dr dr
hence, » - 4 . — = cosl cos@ + sinf sin@ cos ¢ ;
’ dsds’ s ds 5
& r
therefore, r —— = sin@ sin @ cosdg ;
> " dsds' ¢

which bel ng substituted in the expression for the mutual action
of ds, 08, it becomes
pp’gsgﬂl ( a*r kd‘r di')

P — —
dsds ds ds

=
I & ¢ 1

_PF"'}"’“ES_(T" ; kk—l‘i_rcjf:)

it T Qi e e R v

ppdsds @ (» ‘“’)‘ |

rF+tl T ds ds’

The resolved part of this action in the direction of the
element 8¢, is

PEY ol &L (o cost)).

Therefore the total force tending to turn this element
round the fixed axis is

cnviipensl d o
PP 35 HT‘"‘ +{E{T.kﬂﬂﬁe)

1 fa I =28 4 1) d Tk 9? 2
=Lpp os ) .ETE‘( cost'y,

integrate by parts, and observing that since the given circuit
is closed, the initial and final values of » and € are equal,
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and that the total action on Js" ought to be zero, we have

nsﬂﬂ'

(Ek+1)f

this equation cannot be generally true unless 2k + 1 =0,
because the form of the closed circuit is perfectly arbitrary,
whence we obtain %k = — %

Corollary. The expression for the mutual action of two
elements of currents, is now

s i {51119 sinfl' cosp — & cosf cos@)
_pp osds ( d'r _‘bd? ch)
N r” dsds' ds d

f i
pp’gsﬁs' 4 5 (r‘i 5:5)

&

sool Seder peb I
dsds

I

(49). To determine the action of any given current on
an element of another, in the direction of the length of that
element.

Let &5 be the element acted on, and ds an element of the
given current, their mutual action in the direction of the line
joining their middle points, 1s

d
pp 8505 .14 T (#~%cos@), by Art. 48.

Multiply by cosf’ to obtain the part of this action in the
direction of ds"; and integrate with respect to s, the required
action becomes

%PPr ds (r~'cos®@ + const.);
P
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let the initial values of # and @' be R and O, and their final
values R, and ©,; the expression for the tangential action on
08" is therefore

C{]EEB’] EGEEH

1}-"“"’?35’(“}21 s R )

Cor. 1. An indefinite current of any form, exerts no
action in the direction of the length of a given element of
another current; for in this instance, B and R, are both
infinite.

Cor. 2. A closed current will also exercise no action in
this direction, for then B =R, and © = ©,; hence in both
these cases, the action must be normal to the element.

Cor. 3. The actions of currents terminated at the same
points, (whatever may be their forms), on any element, are
equal when estimated according to the direction of that
element.

Cor. 4. The total action of any fixed current on a move-
able rectilineal current, in the direction of its length, is

y cos’®, cos’O
%PP_[( R, T RB )

Let p, p, be the perpendiculars let fall from the extre-
mities of the fixed current on the rectilineal current,

dR pcosO
ine® =p; I —_— e .
then Rsin® =p;  therefore, 76 e
ds' ds P
el — - } 3 = .
WEs dR sk P dO sin*O
ds  p

similarly, a6 - qin"’ﬂ-;
1 ¥ 1
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hence the total action is in this case
: cos* 9, cos’ O
%—PP f ¥ E’ it f x .
o, SN O, o sinQ

Let 4, 4, be the angles which the right lines joining one
extremity of the given conductor make with the rectilineal con-
ductor, and B, B, the corresponding angles when the right
lines are drawn from the other extremity; then

1
tan —

cos" 6 1 ! 2
-[;;sin{:} = f;(sine —ﬁmE)) 21 : “£ + (cos 4, — cos A4).

$ 2

Similarly,

thn =2

cos® 9, b0
fglsin&}, - R O A~ ltﬂn 7 + (cos B; — cosB),

2

the difference between those formule when multiplied by % pla’,
is the action of the fixed conductor, whatever may be its form
on the moveable rectilineal conductors in the direction of its

length.,

When the rectilineal conductor extends indefinitely in one
direction, then 4 and B both become indefinitely great, and
the logarithmic parts in the preceding expressions are infinite,
but their difference is finite, for

B

tan —
P
A ;p:

tan —

oy

i

since p and p, are the tangents of the indefinitely small angles
A and B to radii which are indefinitely great, and differ but
by a finite quantity.
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The total action in this case is therefore,

[ E |
'*1*.”1” «{1 7 -ii + (cos 4, — L'UsBJ)}.

P

If the conductor extend indefinitely in both directions,
then 4, =, B, =, and it is casily scen that the value of

A,
AN =

2 L
.__?}.. ol
tan = Py

for a similar reason: the action 1s reduced In this case

; Bt 1 P e . th ot
to the simple expression pp' 1 —, there is therefore no action
/g

in this direction when the perpendiculars are equal.

(50).  The action of a closed currvent, on an element of
another current which is twrned in all positions round its
middle point, lies in an invariable plane.

Make the middle point of this element (&s') the origin of
three rectangular axes, and let », y, ¥ be the co-ordinates of
any point in the circuit of which the element is represented
by &s, let &, 3, o' be the inclinations of the given element &4’
to the axes of @, y, % respectively, and X, ¥, Z the forces on
0§ in the directions of the same axes; then if » be the mutual
distance of the elements s and ds', and 6 the angle which it
forms with the latter, we have

cosf = - cosa’ + = cosf3 + - cosw/.
r 7 r

- * & ':. [+ 9 £
Now the direct action of ¢s and ¢s', is represented by
cod

pp dsds r? e = }rnsﬂ'} :
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substitute for cos@ its value, and resolve the force in the

" . Ll " - L '1?

direction of @, multiplying it by -: the part of the force
- L 1-

in that direction is thus
, & & ] &
pp dsds. s {:-*3 cosa + &Lﬂ‘ﬁﬂ +5 LUHF}:}
hence,

N i’ !"I "TE o 4 ¥ EI
X =4pp'dsos {cusu sd_s'-ﬁ+cﬂsﬁ I!—;I&‘?—PE

4
(]
o
)

‘e'h

(“"“-:

| &

S

Ll %

2
al ¥

integrating by parts, and observing that in a closed circuit
the initial and final values of @, y, #, r are the same, we get

e v (Y d @ f d 2]
X Spp dsds’ {u}sﬁ f d&li +L{Jh'}r sy }?

T dy s

b |

or, putting for abridgement,

Tdy dax ~ da 11-:1',::
T | St B
sz : ) : -,t B=.,.t 5 : ;
r T

~ d dy

Yy— —F—

o di

A=.,/; ; :

e

where ¢ is any variable of which #, ¥ and » may be regarded as
functions ; it is evident that 4, B, C are independent of the
position of the element ds', when we suppose that element
turned round its middle point, but vary with the position of
that point, or with different forms of the closed circuit :
we thus obtain

= C'cos3' — Bcoswy';
similarly, ¥ = A4 cos~' — C cosa’,

L= }?l'n.‘i nF -— ,.-I I;'H.‘-i,lr'r;
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hence, 4X + BY + CZ = 0.

Now if R S T L e
and D= A* 4+ B* (3

Ao} P

— 4, — , — are the cosines of the angles which the re-
R'E'R &

sultant of all the forces on Js makes with the axes, and
A,

—, — , — are the cosines of the angles which an invariable
D' DD 8

right line drawn through the origin makes with the same axes;

then

hence, the resultant is always perpendicular to this invariable
right line, that is, it lies in an invariable plane of which the

equation is da + By + Cx = 0.
Cor. 1. Multiply the values of X, ¥, Z respectively,
by cosa’, cosf3, cos/', and add; hence
Xcosa + YVeosf3' + Zcosry =0,

which shews that the resultant is normal to the element {s’,
or lies in a plane of which the equation is

@ cosa’ +ycosf3 + x cosy’ = 0,

which also results from the preceding article, Cor. 1: the equa-
tions of the right line in which the resultant acts are therefore

Adr + By +Cz=0
weosa + ycosf3 + zeosy' = 0.

Cor. 2. Let ¢ be the mutual inclination of these planes,
or of the invariable right line to the given element o8’y then

A Pl i Aol 4
1'-'.1.~:th = n 05 4 I‘.ﬂ.‘:j‘)-' -t r—}- COsny .

D
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Now
R=X*1+ Y+ 2°
= (4 pp' 88). §4° (cos’ B +cos’~') + B® (cos’a’ + cos*')
+ C*(cos’a’ +cos*3') — 2 ABcosa’cos 3" — 2 ACcos a cosn'
—2BCcosf3 cosy'} ;
put for cos’8 + cos’/, its value 1 — cos’a’;
for cos’a’ + cos’~/, put 1 —cos®f3';
and for cos®d + cos®(3, put 1 — cos*~';
we thus get
R=(3pp 08 {4+ B*+ C* = (A cosd’ + Beosf3 + C cosy')*]
= (3pp 08V I D* — DPcos* i ;
hence, R = %PF‘: o8 . Dsin ¢ s

the resultant is therefore known both in magnitude and direc-
tion, and the value of R vanishing when ¢ = 0, shews that the
invariable right line is that position into which if the element
08 be turned, the closed circuit will exercise no action on it.

(01). To find the action of a plane closed conductor of
very small dimensions, on an element of another conductor.

Let the origin, as before, be placed at this element, it is
only necessary to calculate the values of 4, B, C in this case.

Let », be the projection of » on the plane of vy, forming
an angle ¢ with the axis of #; then

- d
ol ;
C AR / d.n LTS ?'|u
— & j¥1 El ;p 1'3 -

Now 7 and r, meet the closed conductor and its projection
on the plane of vy, respectively, in two points: let their second
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values be represented by r + Ar and », + A»y, where Ar, Aw,
are very small quantities of which all the powers higher than
the first may be neglected ; then observing that if ¢b be supposed
to increase through that part of the conductor which is convex
to the origin, it will decrease through the concave part;
we have
C = f {‘ (r + ﬂ?‘i} L f
7 (J + ﬂ‘-.?)" "

the limiting values of ¢ being those formed by the two tan-
gents drawn from the origin to the closed conductor.

1 T

{.’51'1*;_”_\.1' 29, &*rj}
3
r

Now #* =17+ %%, therefore, rAr=rAr, +zAx.

Let 2, be the distance of the point at which the plane of

. i Ax
the conductor cuts the axis of & from the origin, then =
r
is the tangent of the inclination of » to »,, and is therefore
o — .ﬁl
equal to 3
r,
-
hence Ax = Ar,, and
T
B —m 2 _ wm
Ar=Ar =+ ) —an
T rr, rr
- 8 (P —2z) 27
thurufurﬂ, { =_J':P ;'l-rl{ — —
r 7

l ;Rs'ﬁl
rpr] Q r] 5 L
r

Since the conductor is of very small dimensions, we may
regard 7 and ¥ as constant in this integral, and observing that
the area of the projection of the given conductor is represented
by [pmAr,, if X be the area of the closed conductor, and
@, b, ¢ the inclinations of a perpendicular p, drawn from the
origin on its plane, we have

= psece, and JCJ,PJ&T, = A COSC;
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hence we get C =}a{

osb 3
shﬂﬂh,ﬂ=hr% -j?}

cose  Spx
re 9

[ 7
COS L 3 px
4= }L{ B b } 4

where to @, y, * and r are to be attributed their mean values.

Cor. 1. When the clement acted on is in the plane of the
conductor,

then 4 =0, B =0, C=?—;,
=

the total action on the element ¢s', by Art. 50, is therefore

A
por
'slg' IGP 3-‘5 . 1—_; g
Cor. 2. If another very small closed conductor, of which
the area is \', be placed at the origin and in the same plane,
its action on any element ds will be

r

s
Ypp'ds =,

and to obtain the action on the whole of the given current, we
may resolve the current ds into the two rd¢ and ér, the latter
in the direction of the right line joining the two currents,
(which are both extremely small), the former perpendicular
to that line; the actions on these elements will be perpendi-
cular to their directions, and are respectively

o Aor
3PP ﬁ¢=mdépﬂ

2
?.3

the latter when integrated, vanishes, since the initial and final
values of r are equal, the former will be

[ r ]
%PPR_&;ﬂ
Q
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or distinguishing as before the convex and concave parts,

it is equal to
S 1 1
épp}" {-I;.THFJ,;,(T"!'&T)H}

=PP'?~'fT%T=

L] r

putting for [,r Ar its value X and attributing to 7 in the de-
nominator its mean value, we get for the mutual action, which
is in the same direction as the right line joining the two
: AN
currents, the expression PP_‘
.?1-

(52). A system of very small plane currents of equal areas
and intensities, are ranged at equal distances along the
surface of a canal of any form, the directriz of which in-
tersects their planes at right angles ; to find the total action
on any element of another current.

Let this element (és") be made the origin of co-ordinates,
as before, let X be the area of one of the given currents, and

A : - :
— the mutual distance of two which are consecutive ; let @, y, =
m

be the co-ordinates of the point at which the directrix intersects
the plane of the current, ds an element of this directrix, » the
mutual distance of ds, ds"; let p the perpendicular from the
origin on the plane of the current (which is parallel to the
tangent at ds), be inclined to the axes at the angles a, b, ¢;
let 4, B, C denote the same as in the preceding articles,
except that they are here extended for the entire system of
currents, the part of 4 due to one current (by Art. 51.) is
ajogEe gfi}

l .’.-‘:I- _r't
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o x

. P - " = Ll #
But cosa = —— and =, is the cosine of the inclination
& T

ke dr
of » to the tangent at Js, which is also expressed by 5’
&

the number of currents corresponding to the element Js, is

in L
_}:'SS; the part of 4 due to those currents is therefore,

da dr d
mas {T‘EES- - ST"LIS} MO (zr—%),

and the total value of A is the sum of all those parts taken
throughout the whole extent of the directions; hence, if the
currents are indefinitely near each other, we have

d
A=m f{ﬁ (xr-3).

Let the initial and final values of @, be @, and @,; and of
r, v, and 7,

and C‘=m{i-—ﬂ},

Tgﬁ '?']:‘

from whence by (Art. 50), the total action on ds' is known.

Cor. 1. If the canal be either closed or indefinitely ex-
tended in both ways, then 4 =0, B =0, C =03 and therefore,
there is no action on ds’.

Cor. 2. When the canal is indefinitely extended in only
one direction, then

i it T
A:_ .1'1?11 B=—'-_.-yg|- C=———"f

3 3 a b

) ry 7
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the resultant (by Art. 50), is perpendicular to a right line
drawn from the origin, forming angles with the axes of which

: A1t ,
the cosines are 2D’ D respectively, where
r ; T
D=V’A£+Bd+{:ﬁ=-ﬁi?'|!
1

which right line in this case is evidently #,, the resultant must
also be normal to ds', since the action of each of the closed
currents is so, the direction of the resultant is therefore per-
pendicular to the plane passing through », and és', and if ¢ be
the inclination of », to &s’, the magnitude of the resultant
(by Art. 50), is

%pp’ﬁs’ A A4 BY: C*sing, or, —%pp’gsr : ql:fb,
1

therefore, the action of a wuniform canal of currents inde-
Jfinitely extended in one way, varies inversely as the square
of the distance of its extremity from the element acted on,
and dirvectly as the sine of the angle which that distance
forms with the element, and is directed perpendicularly to
the plane passing through the element and the extremity
of the canal.

Cor. 3. Hence the action of any uniform canal of cur-
rents may be reduced to two forces known both in magni-
tude and position, for this canal may be regarded as the
difference of two canals, commencing respectively at the ex-
tremities of the given one and extending indefinitely in the
same direction.

(53).  To find the action of any conductor on a uniform
canal of currents, indefinitely extended in one direction.

Through the extremity of the canal, as origin, draw any
fixed right line which we may now regard as axis of a, let ds
be an element of the conductor, and 7 the distance of its
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middle point from the origin, this distance being inclined at
an angle a to the axis of @, and at an angle ¢ to the element,
the force of the canal on this element is

m " ‘sm(p
3 PP 08—

(abstracting from its sign), the direction of which is perpen-
dicular to the plane passing through » and ds: the moment
of this force round the axis of a will be obtained by resolving
it perpendicularly to the plane of the angle a, and multiplying
by »sine, which is the distance of ds from the axis of @; if
therefore, +» be the mutual inclination of the planes of the
angles a and ¢, this moment is expressed by

0 ! 48 sin ¢ cosy)r
= 3

= FP Sl e .

o8

Now —sing is the perpendicular from the extremity of
& . ; e :
ds on r; therefore, ?sm(pcusxib is the projection of this on

the plane of a, which is equal to » ? hence the moment of

the element tending to turn the canal, or to be turned by the

canal round the axis of @ (since action and reaction are equal),

becomes %EPP' sina . da; and therefore, if a,, «, be the values

of a at ;11(3 ends of the conductor, the whole moment is
0

E PP’ (EUEH| — ﬂﬂ$a2)_

In like manner the moments round the axes of y and » may
be determined.

Again, to find the whole force parallel to the axis of a,
we must multiply by the cosine of the inclination of the plane
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s

of » and és to the plane of gz, but —.rsincp is the sec-

Ly
torial area comprised by the radii drawn from the origin to
the extremities of &s, and when multiplied by this cosine, it is
the projected area on the plane of 5=z, or “;l,e (yéz — xdy); the
total force parallel to the axis of # is therefore

n ,]Tdt d‘»!
e 3 ’

¢ being any quantity of which y and x are functions ; and using
the notation of Art. 50, we have

; M.
the force parallel to the axis of v = 5 PP A,
e
fy=—pp
oLy =—pp B
fo=—pp C
S A

Cor. 1. If the given conductor form a closed circuit or
a series of such circuits, for instance if it forms a canal of
currents, the expression for the moment round the axis of @
vanishes, and this axis may be any right line drawn through
the extremity of the indefinite canal, hence this extremity must
be the point of application of the resultant, which will lie in a
direction inclined to the co-ordinate axes at angles of which the
cosines are

f_}, -g : % respectively, where D =4/ (4° + B* + C?),

and the magnitude of the resultant = 4/ (4* + B* + C*);

the action on a finite canal is easily estimated by regarding it
as the difference of two indefinite canals.
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Cor. 2. When two uniform and indefinite canals of cur-
rents act on each other, the resultant passes through the ex-

tremity of each canal, and is therefore the right line joining

m

those extremities; its magnitude is PF’I}, and D varies

oy
'

inversely as the square of this line, hence the force may be
{] - L
represented by = where R is the distance between the ex-

tremities of both canals.

When the canals are finite, there will be two forces, one
attractive and the other repulsive, acting at each extremity of
either canal, the directions of which respectively pass through
the two extremities of the other.

(54). General Observations.

In applying the preceding theory to calculate the pha-
nomena presented by Voltaic conductors, we must observe
that the nafure of the action (with respect to repulsion or
attraction) is determined by the direction of the current of
positive electricity, it is repulsive between those parts of two
currents which are in contrary directions, and attractive when
the directions of the currents are the same; thus, if we con-
ceive an element of a current to lie in a plane which bisects
perpendicularly an element of another current, in one half of
the latter the current approaches to, and in the other recedes
from the former, the two actions are in this case equal and
contrary, and therefore destroy each other; it is this perpen-
dicularity which is to be understood in Art. 45, an instance of
which for currents of finite extent, oceurs when one conductor
is a circular arc and the other rectilineal and passing through
the centre of the arc perpendicularly to its plane. The
expression

pp 08 3¢’

sin @ sinf’ cosgh — ! cosf cosf’ .
?'3 h
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when € is a right angle, vanishes, provided 8 =0 or ¢ =

3

1© | 3

that is, there will be no action between two elements és and (s,
if the former be in the perpendicular raised from the middle
of the latter, or in a plane which bisects the latter perpen-
dicularly.

From the preceding remarks it is evident that two cur-
rents passing with equal intensities through the same con-
ductor in opposite directions will produce no action on any
other conductor.

If we suppose a plane closed conductor to be divided into
small portions by right lines parallel to the axis of #, we may
conceive each portion to form a closed current, because each
right line will be then traversed in opposite directions, and there
will only remain as effective currents those which traverse the
curvilineal sides of the different portions; in like manner each
of these portions may be subdivided by right lines parallel to
the axis of v, and thus an indefinite number of small closed
currents may be substituted for the given one and the total
action calculated by Arts. 51 and 52. If two such conductors
act upon each other, we may subdivide each into small plane
areas, the peripheries of which are traversed by currents, the
mutual action is therefore the same as if each element of one
surface acted on each element of the other with a force varying
inversely as the fourth power of the distance, it is evident
that a force of this nature cannot produce a continued motion
of rotation in either circuit, round a fixed axis; the same
observation applies to the mutual action of two canals of
currents of any form or magnitude.

The simplest mode of observing the actions of a canal of
closed currents, is by twisting a wire in the form of a helix,
containing a great number of convolutions, succeeding each
other at very small intervals; for then the action of each
convolution is extremely nearly identical with that of a cir-
cuit absolutely closed.
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(35). Terrestrial Currents.

Since chemical actions, by which electricity is always de-
veloped, are continually occurring both on the surface and in
the interior of the earth, and sinee the action of heat (as ob-
served by Seebeck) produces currents in conducting bodies,
by rendering unequal the temperatures of their remote parts;
accordingly Voltaic conductors of which the centres of gra-
vity are supported, undergo terrestrial action, analogous to
that produced by a system of closed currents.

The directions of the currents due to the action of heat,
would like the course of the sun, be from east to west, but
modified by the heat propagated in the interior of the earth,
from the equator towards the poles; those attributable to
chemical action would depentd on the quantity and position
of the substances acted on, (as on the extent of the oceans
with respect to vaporisation) and would be combined in their
action with the thermo-electric currents. The effective Voltaic
actions indicate the direction of the terrestrial currents to be
nearly from east to west, having the north pole situated on
their right.

The action of a closed current on an element of a con-
ductor is always perpendicular to that element; hence, a rec-
tilineal conductor which is free to move in a horizontal plane,
will not be moved by the influence of the earth in the direction
of its length, but at right angles to that direction; but if one
extremity be fixed, a continued rotation will be produced.

It is also easily seen by Arts. 50 and 53, that the action of
terrestrial currents would bring a plane conductor freely sus-
pended by its centre of gravity, into an invariable plane, and
a straight canal of currents into a position perpendicular to
that plane.

R



CHAPTER VII.

ON ELECTRICITY IN MAGNETISED SUBSTANCES.

(56). Magnetic Properties.

THE term pa~ywns was applied by the Greeks, to designate
such substances as possessed permanently the power of at-
tracting iron; they are most commonly iron ores, but cobalt
and nickel when completely freed from ferruginous particles,
possess the same property; pure iron acquires the magnetic
power of attraction when in contact with magnetic substances,
which it entirely loses when they are withdrawn, in the same
manner that bodies electrised by influence return to their na-
tural state when the influencing body is removed; the com-
pounds of iron which permanently retain magnetic properties,
are generally oxides, carburets, phosphurets or sulphurets of
that metal: when found native, they are usually denominated
load-stones.

The faculty which magnets possess of refaining their
power to attract iron is attributed to a coercive force, this
force may be modified and even destroyed by molecular dis-
placements in the interior of the body, for instance, by in-
creasing its temperature to a white heat.

If two bodies of different material, but having the same
form and extent of surface, be electrised by the influence of
the same body, the powers of attraction or repulsion which
they acquire are exactly equal; but if pure iron and nickel
be magnetised by the influence of a magnetic body, as for
example, by contact with a magnetic bar, the powers which
they acquire in this state are unequal, and are therefore
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dependent not on the extent of surface but on the interior
structure of the bodies; the whole electrical churge of any
body may be carried off by covering it with an envelop of any
conducting surface which is afterwards removed, (Vid. Art. 7),
but nothing analogous occurs in magnets; these bodies are
therefore to be regarded as systems of particles, which possess
individually magnetic properties from whatever sources, but
which sources are prevented from mutual communication with
each other, or with external bodies by that power (depending on
the molecular structure of the body) called coercive.

This will be further illustrated by attending to another
remarkable property of magnets, namely, their polarity; if a
magnetic needle be suspended by its centre of gravity, it will
not like other bodies remain indifferently in any position, but
will acquire a determinate direction, the inclination of which
to the horizon is denominated the dip of the needle, and the
vertical plane passing through the needle is inclined to another
through the north and south points of the horizon at a deter-
minate angle called the variation, these angles are different
at different places, and even at any given plm_s: they undu;:,u
slow changes in the progress of time: the dip at London is
now about 70%° and the variation about 24} degrees; that
part of the needle which is turned towards the south or from
the morth, is called its north pole, and the other part the
south pole of the needle: if we try to invert the position of
the needle by turning the poles round, it will right itself by
turning through 180" of azimuth, into its original place; if
the needle be rolled in fine filings of iron, they will attach
themselves to it in great quantities at certain points situated
near the extremities which are more particularly called the
poles of the needle, and in very small quantity at the parts
situated near the middle of the needle; if two magnetic needles
be placed with their like poles near each other, they repel,
but with the unlike they attract; if the poles be dmded by
breaking the needle, eaLh of the halves will be found bmu]ml\
endowed with poles, unlike poles being found at the parts
where the fracture occurred: however small the fragments
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into which the needle is divided, the separate parts enjoy all
the same . properties with respect to polarity, as the whole
needle ; thus the magnetic Pha‘mumenu are compound, resulting
from indefinitely small portions of the magnetized body, which
are restrained by the coercive force from mutual communica-
tion in the same manner that electricity is retained at the
surface of bodies, by the resistance which the air offers to its
escape.

All iron would become permanently magnetic if it pos-
sessed this coercive power; place a bar of soft iron in the same
position into which the action of the earth would draw mag-
netic bodies, it will become a magnet by influence, having,
as the needle, north and south poles; but if we turn it round,
the poles do not turn with it as’in the magnetic needle, nor
will it tend to turn round to its original position, but always
acquires a new magnetic state corresponding to the new posi-
tion into which it is moved ; it only wants coercive power, to
retain the magnetic state which it once acquires, to be a com-
plete magnet.

(57). Electro-magnetic Phanomena.

The agitation of the compass needle during the appear-
ance of the Aurora Borealis, and the inversion of its poles
when struck with lightning, were the first natural phsenomena
which led to the belief that magnetism and electricity were
connected in their nature.

The electrical dischargc of a strong battery was found
capable of rendering ordinary steel needles magnetic, and of
inverting the poles of those already magnetised.

It was discovered by Oersted, that Voltaic conductors act
on magnets, and conversely that magnets act on Voltaic con-
ductors: if an electrical discharge be passed through a con-
ductor in the form of a helix, a steel needle placed parallel
to the axis of the helix and within it becomes strongly mag-
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netised ; lastly, a Voltaic conductor attracts iron ﬂ]iugs to its
surface while transmitting electricity, but when the transmission
is discontinued, the filings immediately drop off.

The magnetism of the earth induces no motion of transla-
tion in magnetised bodies, but merely furns them into a par-

ticular position; it acts In the same manner on a Voltaic
helix.

The action of a Voltaic conductor on a magnetic needle,
presents in general the same effects as if a uniform canal of
currents were substituted for the needle, and conversely : also
the mutual actions of magnetic needles are analogous to those
already demonstrated, to belong to canals of Voltaic currents.

A magnetic substance of which the form is annular, ceases
apparently to possess magnetic action; a closed canal of cur-
rents in like manner exhibits no Voltaic action. (Art. 52.
Cor. 1.)

If one magnet neither traverses nor is affixed to another,
it cannot produce continued rotation in it; the same is true
of any system of closed currents. (Art. 54.)

When the preceding conditions are not satisfied, continued
rotation may be produced either in conductors by the action
of magnets, or conversely ; the action of the terrestrial currents
produces continued rotation in magnetised bars or Voltaic con-
ductors properly disposed, and lastly, the electrical spark can
be drawn from magnets or magnetic ores; science is indebted
to Mr Faraday for most of the latter facts.

From the analogy between the actions of magnets and
Voltaic helices, M. Ampere to whom the theory of the action
of electrical currents is principally due, has adopted particular
views with respect to the nature of magnetised bodies, assign-
ing as the cause of their actions the existence of closed cur-
rents circulating round their molecules.
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However this may be, the preceding facts seem completely
to establish an identity between electricity and magnetism, with
this peculiarity, that in magnetised substances each magnetic
particle is to be regarded in itself as a magnet, (Vid. Art. 56).
Since a needle can be permanently magnetised merely by in-
fluence, (as by the electrical discharge through a helix), and
when unmagnetised it exerts no action, it follows that the
quantities of magnetism which respectively attract or repel a
given magnetic molecule must be equal, (Art. 15.) they are
denominated for the purpose of distinction, south and north
magnetisms, the latter being that which in an element of a
magnetic body, is repelled from the north by terrestrial mag-
netic action.

(58). To find the action of a system of magnetic par-
ticles composing a magnetised body of any form, on a point
containing north magnetism, and situated at any sensible
distance from that body.

Let @, y, = be the co-ordinates of the point () acted on,
and o', ¥, 2 of a point (I”') taken within one of the magnetic
elements (M), and let e represent the side of a very small cube
of the same magnitude as M, then &' +ea, ¥ +ef3, &' +evy
may be taken to represent the co-ordinates of any other point
(p") in the same element (M), and a, 3, ~ will be finite.

Suppose that the excess of north magnetism at the point
(p) above south is represented by p, the respective distances
of the points P' and p’ from the given point P by R and r,
that as in electricity generally, the law of force is the inverse
square of the distance, magnetisms of the same name repelling,
and of different names attracting, then the action of p’ on P

d G)

da

in the direction of the axis of @ will be expressed by —

multiplied by the quantity of free electricity at p', that is, by
pe’ da éf3 dvy s consequently the action of the complete element
M on P in that direction will be
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the integral being extended throughout the whole of that

element.
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neglecting the powers of e which are higher than the first;

av

5115(], _Ll'r. j;g j,;r Q- 10 = {0,

since the quantities of north and south magnetisms in the
element are equal; hence, the force of the element M on the

point P hecomes

1 1 1

& dak P
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SIS e el e e ot e

1
di
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To sum this expression throughout the whole extent, con-
ceive a parallelipiped of which the sides da’, dy, 6%/ parallel
to the axes are very small compared with the dimensions of
the body, but which itself contains a very great number of
magnetic elements such as M, the sum of all which elements
within it may be represented by &' da’dy' 6%, that is, in the
proportion of K : 1 to its entire bulk ; the preceding ex-
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pression will still apply for the whole parallelipiped, only
putting k'da’ dy’dz" instead of M, and substituting for the
triple integrals their mean values throughout its extent, which
may be regarded as functions of «', ¥, &', and be represented
respectively by @', ¥, ¢'; the action of this parallelipiped on
P estimated in the direction of @, is therefore

1 1 1
l!.._ dq_ d._
& Eéa' éy é '.f&'{ i ' B B
el ﬂ'-l., ﬁ .
d ] P T d

da

hence if X, ¥, Z be the total magnetic forces exercised by the
whole magnetised body on P, and making

1 1 1
d. = d.— d.—
¥ ¥ IE I | R R
— {0 S e k ———— i.'!.“ e e B :f—_— s
Q=L fy | |Ka ==tk D == e ==
this integral being taken throughout the entire body, we have
d d
T 52 it Lo 2
da dy dz

(59). To determine the action of a system of particles
magnetised solely by influence, and incapable of retaining
their magnetic state when the influencing force is with-
drawn.

The quantities a', b, ¢’ evidently depend on the action
of the influencing force which we first suppose constant in
magnitude and position, and vanish at the same time with it ;
also In passing from one system of co-ordinates to another,
it is manifest (from the forms of the integrals of which they
are the mean values,) that they undergo changes of form ex-
actly similar to those of the components of a given force;
hence if we represent in this case the components at any given
instant by f’, g, & parallel respectively to @, y and =, it
follows that @" must be a function of these forces of the form

a = Cf' ks C'g‘r i Ch;
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Suppose now that the point P is taken in the right line
drawn from P’ parallel to the axis of y, and that the force acts
in the same direction, that is, f =0, ¥’ =0, ¢’ = C"g’; now
the action of the small magnetic system at P on P by the
preceding article, is

1 | 1
d T d R e— d [ e
—r.-’s’t?t"g?’ﬁ"f’-d— a R+h’ R+(" i
2 ¥yox d.]’? dm.ﬂ dyr . l'i-'::’l' 3

putting in the present case 2" = @ and %" = » after the differen-
tiations are performed, this becomes

’
[/

F:

r

ok'oa’ oy 2" .

which ought to be zero, since the whole action is in the direc-
tion of y, hence a’=0 when ' and 2’ vanish, which requires
(' = 0; similarly, it may be shewn that C” =0, therefore we
get @' = Cf', and consequently b = Cg’, ¢'=Ch', since the
quantities a’, ¥, ¢ are susceptible of the same changes relative
to the axes as the forces ', &', &'

But when the point considered (F) is in the influenced
body, suppose @, b, ¢ to be what o', ¥, ¢/ become when @, y,
are put for &', ¥, 2'; conceive a very small sphere, having P
for centre, and containing a very great number of magnetic
elements, throughout which we may put for &', &, ¥, ¢ their
mean values as k, a, b, ¢, then the forces (f, g, #) result from
all the extraneous forces which influence the whole system, and
also from that part of the system itself, which is beyond this
sphere : the part of the former forces in the direction of x, will

dVv

be represented by s using ¥V in the same sense as in
@
Art. 14, and by the preceding article, the corresponding foree

T . 1 -
arising from the latter source is — —, Q, representing the
5 o x G

5



138 ON ELECTRICITY.

value of Q, taken for the whole magnetic system except the
small sphere,

dV d
hence, f=_.d_m_._a Bic) ”='C(a+ﬁ%)*

{iil differs from :T? by a quantity due to the small

sphere, namely, by

Now

a —-a - a - a

d . ..

Ii:‘i k;! : R}l k’ ; ; R3
T — e i ——

ar. dy' ¥ d ' d

d.

LEL¥e

where the differentiations with respect to » have been per-
formed under the signs of integration, since the integrals
commence from o' =, ¥ =y, & =2, and extend throughout
the entire sphere; then performing the integration with respect
to @' in the first term, %' in the second, and 2’ in the third, and
taking any two variables % and v, with respect to which the
2
f é; .duov; lastly,

element of the surface of the sphere is
2w

putting 6, €', 8” for the inclinations of the radius passing
through that element to the axes, observing that

oz 8y = i . 6 0w cosB,
duduv
this expression becomes
a -a &
k [, f. §acos® + beos® + ecos”} . TR; 'dui-v :

where to @’ and R we are to assign their values at the surface

of the sphere.

Let for instance, % be the angle (0) which R makes with
the axis of @, and » the inclination of the plane of this angle to

that of @, then
X - a &S

= ¢cosf

— = R%sn@;
R dwedr
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also cosf = sinf sine, cos@”’ = sinf cosv;

substitute and perform the integrations, and the expression is
reduced to

4k dQ, dQ 4wk
—— . a, thus = - &
3 de da 3
bl
hence, f—iﬁ a -—(V+ Q) ;
Yl
similarly, g= —ﬂ;-r D= ;j'; (V + Q)
4l d
k={;+mnT(F+Q}

Put V + Q = U and observing that f, g, & are respectively
proportional to @, b, ¢, it is easily seen that these equations
may be put under the form
F d U

dU

| e s —_— = ]
(1) J+de

dU "

¢c+p——=0;

P dz
and integrating the value of Q by parts and representing now

d? .8

by

dudyv
as before of the sphere, so that 8, 8, 8" are now the inclinations
of the normal of that surface to the axes, we have

d*§

(2)eeeeea Q= [, f; (@' cos O + b cos 8' + ¢’ cos 0" T e P>

\

. dudv the element of the surface of the whole body,

putting for abridgment

= .[ff}i'{-:h {.l'ﬂ;,fr j;:}1

and &', ¥, ¢, for K'a', 'V and &'¢.
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Let U', p', denote the values of U, p, when &', 3/, 2’ are
respectively substituted for x, y, %, then by the equation (1)
we have

au odLr L dr iy

F ¥ Ff
—_— —ien ] = = —_— 0 = = _—
L1 4 P d:il'.?’ ’ ?-" dyﬁ ) P dﬁr ]

from whence equation (2) becomes.

v av
(8) s @+ L J (maﬂ 7 ——+ cos 0 — =7
a0\ p'&s
b ) Bavide P

au Al At
i(p3y) 2lFgy) P )
where ¢ = f f f 7 e 77 T,
and U'=Q + V',

Q' and V' denoting the values of Q and V when 2, ¥/, 2" replace
@, ¥, & in those functions.

The equation (3) serves to determine @, and then the re-
quired forces are known by the preceding article.

Cor. 1. The value of Q= U~V is immediately deducible
from ‘that of U, which may be expressed by an equation
to partial differences, thus;

By the known property of the function V, (Arts.14.and 25),
we have
d* V d V &V L3
d Tay Tae "

or, denoting by A the operation here performed on V,
A.V=0,
hence A.@=4A.1.
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Also A E=|[:l; R being supposed never to vanish as in

the double integral of equation (3), where R is the distance
from any point in the surface of the body to one within it;
that equation thus becomes

A.Q+A.¢p=0.
But when R vanishes it is easily seen as in Art. 25. that if P!

be any function of &', ¥, 2, which becomes p when they are
changed into @, ¥, %;

then, & [ [ [ (E) =smp,

now this case happens in the function ¢, whence we have

dlr dlr d U7
d|p— d|p— —
( dm) " ( dy) d( dr)

d T T T I

ﬂ.(}'):—iqur

putting for A.Q, A.¢ in the preceding equation their re-
spective values, we get

LT o Al oAl
d?U PU {:FU e TR dy . B e
ay S Ee - g ax )

Cor. 2. If the body is homogeneous and of uniform tem-

perature, p will be constant and ¢ = 0, since the last equation
becomes in this case

U &FU d&#U o
da® dy?-i- gt

hence by equation (3),

-LhP o

d* 8 dU’ » AT dU’
Rdudo {LD sf - = + cos @' Frd + cos )’ -, }
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hence, the magnetic actions of the system are exactly pro-
portional to those that would be produced if the surface of
the body were covered with a thin electrical stratum, the law
of the accumulation of which at each point is expressed by
the quantity between brackets in the value of Q.

(60). To find the action of the same magnetic system
in motion and under the influence of any forces ; the body
being supposed homogeneous and of uniform temperature.

Retaining the notation and following the steps of the
preceding article, if we suppose the forece f to retain during
the time # its initial value I, the equation a'= Cf’, or a = Cf
becomes in this case @ = C'. F' at any given time, C being a
function of the time which vanishes when # = 0, and represent-
ing it by v (#), we have a=+(#).F as the value which
e would acquire on this supposition after the time 7.

But since f is here variable, we must add to this primitive
value the quantities similar to @ which are generated from

moment to moment by the increments of f, that is, if + be
the time corresponding to the variable force f;

: d
then, ﬁ=F.\Ir(f)+_f;\P(t—T)-£, from =0 tor=1¢

—

=Jlf1-1P'(!f—*rL

/' denoting the derived function from /.
Similarly, b= [ fi .\ (¢ - 7),

c= Ll Y (t-7),

and putting

da db dﬂ

30" ay dy’ d,., s
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we get as before (since k is here constant),

; R e N F (1)
= ; ; fegils Ty _k o T
Q=k [, [, («'cosB+ b cost + ¢ cos )Hdndv f,g,_[ e

£

hence A.Q =47k F (1),

F(#) being the value of F'(f) when &', 4, 2, are changed
into #, ¥, =.
47k

d
Also from the equations f= &= (V+ Q),

&e.
df dg dh 47wk
— — s = L Y= N
we get i + dy + e 3 (] Q ;
8
ooy

But from the values of @ b and e, we have

da db de : df, dg, dh|
dm+d—y+a—ﬁ-1&(f*ﬂ'){ﬁ+ﬁ+aa
Swk

hence, F (#) = LF(T) V' (f-7), fromT=0 toT =14,

3

which it is easily seen can only be satisfied by F () =0;

dia 1inddby de

e have thus, — + — + — = 0.
we have thus, 7 b P -+ 3=
da db .
Again, if we put e = I'; (¢), we get in like manner
af d 47k
g ug - Awh Fé:
dy da 3

bl ;
and therefore, \ (£) = -{;i LR () 7).
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da db
] § F Ii = D — 3
whence, F', () or 35 i
da de

s mllarlv Ecaert 1 Rl

dz @
db & de ;
dz E"TJ :

therefore, @, b, ¢ must be the partial differential coefficients
of a certain function U, the equation

da db de

At g gl

de dy dz
U FU dU

becomes o G =0:
do?  dy?  ds2® X

and we get

Q=k .} =

d* § dL P dl]’ o+ dlr 0"
Rdudv | da g dy’ ks dz A

also, if a,, V;, Q, be the values of @, V, Q when ¢ = +, we have

bl

o= 0 - L @) v -,

and corresponding equations for & and ¢; these equations are
evidently the same as those derived by differentiating with
respect to @, ¥ and x the equation

U+ [V, +Q1—4—W;. T (t=7)=0.

Remark. 'T'he evaluation of the magnetic actions on ex-
ternal points, whether the system be at rest or in motion,
depends on the solution of the equations of this and the pre-
ceding article; M. Poisson to whom this theory is due, has
made applications in his third memoir on Magnetism, to the
case of a homogenecous sphere, hollow or solid, turning round
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its axis, and influenced by terrestrial magnetism, and has
shewn that the effect of the rotation is very nearly equivalent
to that produced by a force normal to the plane passing
through the axis in the direction of the influencing action of
the earth, as observed previously by Mr Barlow ; another ap-
plication has been made to revolving plates, which illustrates
the great difference between the actions of magnetic systems
“when in rest and motion, for M. Arago had previously dis-
covered that bodies which have no magnetic power when at rest,
yet when made rapidly to rotate round an axis, strongly influ-
enced the magnetic needle in the direction of their motion.

It is also worthy of observation that the magnetic actions
of bodies, whether at rest or in motion, may be assimilated
to that of an electrical stratum, distributed solely on the sur-
face, with a particular law of thickness, as appears from the
value of Q@ In Arts. 58 and 59; Mr Barlow has made several
experiments on the action of iron globes influenced by terres-
trial magnetism, and has observed that the tangent of the dip
of a small needle submitted to that action, is twice the tangent
of the magnetic latitude of that needle with respect to an equa-
toreal circle drawn on the globe at right angles to the direc-
tion of terrestrial action, and that the law of force was the
inverse cube of the distance. Now it is extremely easy to
shew that a sphere under the influence of a remote body, and
having originally equal quantities of positive and negative
electricity, would produce exactly the same actions. (Vid.
Arts. 19 and 31.)

END OF PALRT 1.












