Abhandlung über Perkussion und Auskultation / von Joseph Skoda.

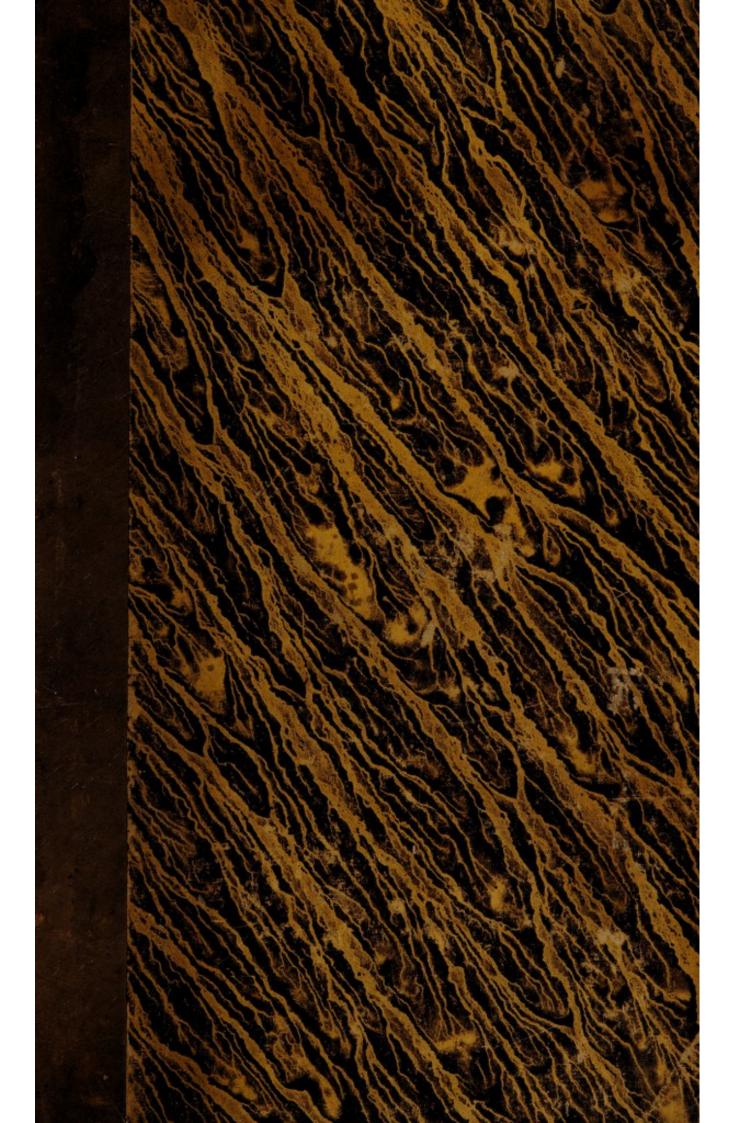
Contributors

Skoda, Joseph, 1805-1881.

Publication/Creation

Wien: Bei J.G. Ritter von Mösle's Wittwe & Braumüller, 1839.

Persistent URL


https://wellcomecollection.org/works/kaxybjyk

License and attribution

This work has been identified as being free of known restrictions under copyright law, including all related and neighbouring rights and is being made available under the Creative Commons, Public Domain Mark.

You can copy, modify, distribute and perform the work, even for commercial purposes, without asking permission.

848/8

Mus. Lam eser Jandan in fryliffer Mulberlaita. R. Landuce.

Digitized by the Internet Archive in 2018 with funding from Wellcome Library

Abhandlung

ii ber

Perkussion

u n d

Auskultation.

Von

Joseph Škoda,

Dr. der Medicin, Mitglied der medicinischen Fakultät und der k. k. Gesellschaft der Ärzte in Wien.

Wien, 1839.

Bei J. G. Ritter von Mösle's Witwe & Braumüller.

Graben Nr. 1144.

306317

RESTRICTED BELLDARY

Gedruckt bei A. Strauss's sel. Witwe.

Seiner Hochgeboren

d e m

Herrn

Ludwig Freiherrn von Türkheim,

k. k. wirklichem Hofrathe,

Beisitzer der k. k. Studien-Hofkommission, Ritter des königl.
ungar. St. Stephan-Ordens, Doktor der Medicin, erstem ViceDirektor des medicinisch-chirurgischen Studiums, Mitglied
mehrerer gelehrten Gesellschaften des In - und Auslandes
etc. etc.

Zeichen

seiner innigsten Verehrung

gewidmet

v o m

Verfasser.

Vorrede.

Das Perkutiren und Auskultiren lässt sich ohne Aufwand von Zeit und Mühe nicht erlernen. Die Angabe Lännec's, dass es hinreichend sey, eine Krankheit zwei- oder dreimal beobachtet zu haben, um sie mit Sicherheit erkennen zu lernen, und dass man sich aus diesem Grunde in einem Krankenhause binnen acht Tagen mit den gewöhnlichern Lungen- und Herzkrankheiten vertraut machen könne, wird noch Niemand bestätigt gefunden haben.

Wenn ungeachtet des Zeitaufwandes und der Mühe, die man auf die Erlernung dieser Untersuchungsmethoden verwenden muss, dieselben dennoch immer mehr in Aufnahme kommen, so ist diess ein hinreichender Beweis für den Werth der Erfindung Auenbrugger's und Lännec's.

Die reichhaltige Gelegenheit, die das hierortige allgemeine Krankenhaus darbietet, Kranke aller Art zu beobachten, setzte mich in den Stand, die sämmtlichen Erscheinungen, welche die Perkussion und Auskultation kennen lehrt, vielfältig selbst zu prüfen, und ich halte mich aus diesem Grunde für berechtigt, diese Abhandlung zu veröffentlichen, indem ich nicht eine Kompilation aus französischen und englischen Werken liefere, sondern mich auf eigene Erfahrungen stütze. In der That sind meine eigenen Beobachtungen über diesen Gegenstand so zahlreich, dass meine Ansichten sich nicht wesentlich anders gestaltet hätten, wenn mir die Werke Lännec's, Bouillaud's, Andral's etc. unbekannt geblieben wären.

Die Erscheinungen aus der Perkussion und Auskultation beziehen sich nie auf den Krankheitsprozess, sondern stets nur auf die durch denselben bewirkte materielle Veränderung der Organe. Sehr verschiedenartige Krankheitsprozesse und Produkte von Krankheitsprozessen können beim Perkutiren und Auskultiren dieselben Erscheinungen darbieten, und im Gegentheil kann man bei einem und demselben Krankheitsprozesse durch die Perkussion und Auskultation die verschiedenartigsten Erscheinungen erhalten, weil der Schall sich nicht nach dem chemischen, sondern nach dem mechanischen Verhalten der Organe richtet. Die Erscheinungen aus der Perkussion und Auskultation sind dem zu Folge zur Bestimmung des Krankheitsprozesses nie hinreichend, und sie können als Zeichen nur von dem verwendet werden, welcher die durch die Krankheitsprozesse bedingten materiellen Veränderungen der Organe genau kennt, also in der pathologischen Anatomie unterrichtet ist. Ohne diese Kenntniss ist es unmöglich, von der Auskultation und Perkussion Gebrauch zu machen, und es ist jedem

anzurathen, keine Zeit und Mühe auf die Erlernung dieser Untersuchungsmethoden zu verwenden, wenn er sich nicht bequemen will, die Pathologie in den Leichen zu studieren.

Der Erfinder der Auskultation hatte keine andern Ansichten über den Werth und die Art der Benützung der auskultatorischen Erscheinungen. Dessenungeachtet stellte er für bestimmte Krankheitsprozesse und für bestimmte Krankheitsprodukte charakteristische auskultatorische Zeichen auf. So gibt er ein charakteristisches auskultatorisches Zeichen des Beginns und der Lösung der Pneumonie, des Lungenödems, des Blutergusses in das Lungenparenchym etc.; Flüssigkeiten in der Brusthöhle, verhärtetes und verdichtetes Lungenparenchym, Exkavationen in der Lunge etc., haben nach ihm bestimmte auskultatorische Zeichen, durch die man jede dieser krankhaften Affektionen von jeder andern unterscheiden kann. Obgleich den Angaben Lännec's bereits vielfach widersprochen worden ist, so blieben seine Ansichten bezüglich der auskultatorischen Erscheinungen der Respirationsorgane doch die herrschenden. Es fällt schwer, sie mit andern zu vertauschen, da durch einen Tausch die Auskultation an Werth zu verlieren scheint, oder vielmehr, da dadurch die Diagnose der Krankheiten der Respirationsorgane wieder schwieriger zu werden droht. Ich konnte die Ansichten Lännec's und anderer über mehrere auskultatorische Zeichen für die Respirationsorgane nicht als richtig anführen, ohne gegen meine Ueberzeugung zu reden; es blieb nichts übrig, als dieselben zu bekämpfen, und ihnen, wo es mir möglich war, andere zu substituiren. Ich habe, wie man sehen

wird, zur Feststellung einer Thatsache, jedesmal zahlreiche Beobachtungen an Gesunden und Kranken mit
Sektionsbefunden verglichen, Versuche an Leichen gemacht, und die bekannten Gesetze des Schalles zu
Rathe gezogen.

Eben so ging ich bei den Erscheinungen der Zirkulationsorgane zu Werke. Die Taschen an der zwei- und dreispitzigen Klappe, die durch die besondere Vertheilung und Anheftung der sehnigen Fäden an diesen Klappen gebildet werden, sind meines Wissens noch von Niemand beachtet worden. Ich habe diesen eigenthümlichen Bau der zwei- und dreispitzigen Klappe bereits in den medicinischen Jahrbüchern Oesterreichs—Band XIII. Stück 2. — beschrieben, und glaube dargethan zu haben, dass die benannten Klappen den Rückfluss des Blutes gegen den Vorhof während der Kammersystole nicht zu hemmen im Stande sind, sobald die Taschen an ihrem freien Rande fehlen.

Bouillaud nimmt an, es sey in Bezug auf die Diagnose fast gleichgültig, ob man ein — abnormes — Geräusch mit der Systole oder Diastole der Kammern, gegen die Spitze des Herzens, oder gegen die Basis dieses Organs, mehr nach links, oder mehr nach rechts vernehme, und er zieht aus diesen Verschiedenheiten nur muthmassliche Schlüsse. Ich bin darüber einer andern Meinung, und glaube hier — so viel sich davon aufnehmen liess — besonders aber in den medicinischen Jahrbüchern Oesterreichs — Band XVIII. Stück 4. — eine vollkommenere Methode, das Herz zu untersuchen, geliefert zu haben, als sie sich aus den Werken Bouillaud's entnehmen lässt.

Die Bedingungen der Verschiedenheiten im Perkussionsschalle habe ich zu wiederholten Malen geprüft. Nicht unwichtig ist die Feststellung der Thatsache, dass komprimirte oder infiltrirte, jedoch lufthältige Lungenparthien einen mehr tympanitischen, zuweilen auch einen helleren und lauteren Perkussionsschall geben, als die von Luft stark ausgedehnte Lunge, und dass eben so die Gedärme und der Magen im erschlaften Zustande einen helleren und lauteren Perkussionsschall geben, als wenn sie durch die Luft straff gespannt sind.

Diese Abhandlung beschäftigt sich bloss mit der Perkussion und Auskultation der Brust und des Unterleibes. Ich habe die Anwendung der Auskultation bei Krankheiten des Gehirns, der Gehörorgane, bei Knochenbrüchen etc. nicht aufgenommen, weil ich darüber keine eigene Erfahrung habe, und also die Beobachtungen anderer hätte anführen müssen, ohne sie bestätigen zu können. Die verschiedenen Ansichten über den Grund und die Bedeutung mancher auskultatorischen Zeichen glaube ich ziemlich vollständig gegeben zu haben. Das Citiren von Werken wurde möglichst gemieden, weil die Werke, die zu citiren wären, ohnehin fast allgemein bekannt sind. Ich glaube keinen Widerspruch zu erfahren, wenn ich behaupte, dass die Auffindung der richtigen Ausdrücke und eine klare Darstellungsweise in dem von mir behandelten Gegenstande keine leichte Aufgabe ist. Indem ich jetzt meine Arbeit gedruckt lese, muss ich bekennen, dass dieselbe in dieser Beziehung manches zu wünschen übrig lässt.

Ich würde mich der Versäumniss der Erfüllung einer Pflicht schuldig machen, wenn ich es unterliesse, dem a. o. Professor der pathologischen Anatomie, Med. Dr. Rokitansky, und seinem Assistensten Med. Dr. Kolletschka meinen wärmsten Dank für ihre freundschaftlichen Belehrungen hier öffentlich abzustatten. Indem ich in der Auskultation und Perkussion von Niemand eine Anleitung erhielt, so wären meine Bemühungen, mit diesen Untersuchungsmethoden vertraut zu werden, ohne ihren unvergleichlichen Unterricht in der pathologischen Anatomie ganz fruchtlos geblieben. Ich erfülle diese Pslicht der Dankbarkeit um so freudiger, da ich überzeugt bin, dass wenigstens diese Stelle in meiner Schrift überall mit Wohlgefallen aufgenommen werden wird; denn nicht bloss in Oesterreich, in allen Ländern Europa's finden sich Kollegen, welche mit Vergnügen an den vom Professor Rokitansky und Doktor Kolletschka genossenen Unterricht zurückdenken. Eben so fühle ich mich den Herrn Direktoren des k. k. allgemeinen Krankenhauses und den Herren Primarärzten für das Wohlwollen verpflichtet, womit mich dieselben zur Fortsetzung meiner Untersuchungen der Brustkranken im allgemeinen Krankenhause auch nach meinem Austritte aus dem Spitalsdienste aufgemuntert haben.

Wien, im Juni 1839.

Der Verfasser.

Inhalt.

I. Abtheilung:

1. Abthenung:	
Erklärung der Erscheinungen, welche man durch	Pag.
die Perkussion und Auskultation erhält	
Erster Abschnitt: Perkussion	1
A. Über den Perkussionsschall	3
Die Verschiedenheiten im Perkussionsschalle und ihre	
Bedingungen	3
Der volle und leere Schall	6
Der helle und dumpfe Schall	8
Der tympanitische und nicht tympanitische Schall .	10
Der hohe und tiefe Schall	16
Der metallisch klingende Schall - Piorry's Wasser-	
ton, son humorique	16
Das Geräusch des gesprungenen Topfes	16
Piorry's Hydatidenton	17
B. Über den beim Perkutiren fühlbaren Widerstand .	18
Zweiter Abschnitt: Auskultation	21
Erstes Kapitel: Von den auskultatorischen Erschei-	
nungen der Respirationsorgane	25
I. Auskultation der Stimme	. 25
S. 1. Über die Stärke der am Thorax hörbaren	
Stimme	25
a. Die verschiedene Stärke der Stimme am	
Thorax lässt sich nach den Gesetzen der	
Schallleitung nicht erklären	26
b. Erklärung der verschiedenen Stärke der	
Stimme am Thorax nach Gesetzen der	
Konsonanz	31
c. Angabe der krankhaften Zustände der Re-	
spirationsorgane, welche der gegebenen Erklärung zu Folge eine Verstärkung der	
Stimme am Thorax bedingen können	35
the state of the s	00

d. Experimente zur Begründung der gegebe-	Pag.
nen Erklärung, die Verschiedenheit in der	
Stärke der Stimme am Thorax betreffend	40
S. 2. Über die Helligkeit der konsonirenden	H 8 1
Stimme	43
S. 3. Über das Timbre (den Klang) der konso-	
nirenden Stimme	44
S. 4. Über die Höhe der konsonirenden Stimme	46
S. 5. Über die Artikulation der konsonirenden	
Stimme	46
S. 6. Lännec's Eintheilung der am Thorax	
hörbaren Stimme	47
a. Lännec's Pektoriloquie und Bron-	12 7
chophonie	47
b. Lännec's Egophonie	51
S. 7. Eigene Eintheilung der am Thorax hör-	
baren Stimme	63
1. Die starke Bronchophonie	65
2. Die schwache Bronchophonie	66
3. Das undeutliche Summen ohne oder	
mit unmerklicher Erschütterung	
des Ohres	69
II. Von den Geräuschen, welche die durch-	
strömende Luft beim Ein- und Ausathmen	
macht	69
A. Über die Respirationsgeräusche	70
S. 1. Bestimmung der Unterschiede der Respi-	
rationsgeräusche	72
a. Charakter des respiratorischen Ge-	10
räusches im Larynx, in der Trachea	
und in den grossen Bronchien	73
b. Charakter des respiratorischen Ge-	112.02
räusches in den Luftzellen und in	
den feinen Bronchien	74
S. 2. Bestimmung der Veränderungen, welche	
die respiratorischen Geräusche durch	
die Fortpflanzung in die Ferne erleiden	74
S. 3. Angabe der Bedingungen, unter welchen	
das Laryngeal - , Tracheal - und	
Bronchialgeräusch innerhalb der	
Lunge durch Konsonanz verstärkt	
wird, und des Unterschiedes zwi-	

IV. Über das gleichzeitige Vorkommen der Re-	Pag.
spirations - Rassel- und schnurrenden Ge-	
räusche	111
V. Über die Auskultation des Hustens	113
VI. Über das Reibungsgeräusch, das bei Rau-	
higkeiten an der Pleura während der Ath-	
· mungsbewegungen verursacht wird	114
Zweites Kapitel. Auskultatorische Erscheinungen der	
Organe der Cirkulation	117
1. Über den Herzstoss.	
A Colorella the western	
S. 1. Ursache des Herzstosses	117
Ansicht des Doktor Hope	117
Ansicht Bouillaud's	120 121
Erklärung des Herzstosses nach Doktor Gutbrot	122
S. 2. Über die Stärke des Herzstosses	127
S. 3. Über die Richtung, nach welcher das	148
Herz während der Kammersystole be-	
wegt wird, also über den Ort, wo	
der Herzstoss zu fühlen ist	129
S. 4. Eintheilung des Herzstosses	131
II. Über die Pulsation der Arterien	133
III. Über die Tone und Geräusche, welche in	
Folge der Herzbewegungen in der Gegend	
des Herzens und an verschiedenen Arte-	
rien gehört werden	134
A. Über die Töne.	
S. 1. Ursache der Töne	135
1. Ansicht Hope's	135
2. Ansicht Magendie's	135
3. Ansicht Burdach's	136
4. Ansicht Rouanet's und Bouillaud's	139
5. Charles Williams Versuche zur Ausmittlung	
der Bewegungen des Herzens und der sie	
begleitenden Töne	140
6. Auszug aus dem in der british association zu	
Dublin am 11. August 1835 abgestatteten Be- richte eines zu Versuchen über die Bewe-	
gungen und die Töne des Herzens niederge-	
setzten Komité's	143
7. Eigene Ansicht über die Ursache der Töne	148

S. 2. Uber die Verschiedenheiten in den	Pag.
Tőnen	164
B. Über die Geräusche	167
S. 1. Von den Geräuschen, die innerhalb der	
Herzhöhlen entstehen	168
S. 2. Von den Geräuschen, die in den Arte-	
rien entstehen	170
S. 3. Über die Geräusche, die am Pericar-	
dium entstehen	175
C. Regeln zur Auffindung und Bestim-	
mung der Töne und Geräusche im	
Herzen, am Pericardium, in der	
Aorta und Pulmonalarterie	178
D. Bedeutung der Töne und Geräusche	
in den Kammern, in der Aorta,	
und Pulmonalarterie	183
IV. Über den Rhythmus der Herzbewegungen .	195
II. Abtheilung:	
1. Abthenung.	
Angabe der jedem besondern Zustande der	
Brust- und Unterleibsorgane zukommenden	
Erscheinungen, die sich mittelst der Per-	
kussion und Auskultation erhalten lassen	197
Erster Abschnitt: Normaler Zustand der Brust- und	
Bauchorgane	197
A. Erscheinungen aus der Perkussion :	
a. Verschiedenheiten im Perkus-	
sionsschalle und in der Resistenz	
am Thorax:	
1. nach den verschiedenen Gegen-	
den des Thorax	197
2. bei verschiedenen Individuen .	199
b. Perkussion des Unterleibes	200
B. Erscheinungen aus der Auskulta-	
tion.	
1. Auskultation der Respirations-	
organe	201
2. Auskultation des Herzens und	
der Arterienstämme	203
Auskultation des schwangern Ute-	
rus	00=
lus	205

Zweiter Abschnitt: Abnormer Zustand der Brust- und	Pag.
Unterleibsorgane:	
A Abusama Taga dan Bungt und Baughangana	206
A. Abnorme Lage der Brust- und Bauchorgane B. Abnormitäten im Baue des Brustkorbes	207
C. Krankhafte Zustände der Brust- und Bauchor-	
gane:	
A TOTAL OF THE PROPERTY OF THE PARTY OF THE	
I. Krankheiten der Bronchien	208
II. Krankheiten des Lungenparenchyms:	
1. Pneumonie	212
a. Erscheinungen der Lungenentzündung, so lange	
der entzündete Theil noch Luft enthält — Be-	010
ginn und Lösung der Lungenentzündung —	213
b. Erscheinungen der Lungenentzündung, wenn der entzündete Theil keine Luft enthält —	
Hepatisation	216
c. Erscheinungen der auf einen kleinen Umfang	~10
beschränkten Entzündung	220
d. Erscheinungen der in Folge der Lungenent-	
zündung zuweilen zurückbleibenden Indura-	
tion des Lungenparenchyms, der darin sich	
bildenden Exkavationnen, oder Erweiterun-	
gen der Bronchien	221
e. Die auskultatorischen Erscheinungen bei Pneu-	
monien nach Lännec	222
2. Brand der Lunge	227
3. Länne c's Lungenschlagfluss	227
4. Lungenödem	229
5. Lungenemphysem	230
6. Hypertrophie der Lunge	233
7. Atrophie der Lunge	234
8. Tuberkeln in der Lunge	234
a. Isolirte Tuberkeln	235
b. Zu grössern Massen konglomerirte Tu-	
berkeln und tuberkulöse Infiltration .	237
c. Tuberkulöse Exkavationen	239
d. Markschwamm, Melanose etc	242
III. Krankheiten der Pleura.	
1. Pleuritis	940
2. Seröse Flüssigkeit in der Brusthöhle nicht	242
durch Pleuritis bedingt - hydrothorax -	249
3. Pneumothorax	
4. Tuberkeln, Markschwamm etc.	250
	251

	A 1 1
IV. Krankhafte Zustände des Herzbeutels.	Pag
1. Pericarditis	252
2. Flüssigkeiten im Pericardium nicht durch	
Pericarditis bedingt	255
3. Gas im Pericardium	255
4. Verwachsung des Herzens mit dem Herz-	
beutel	256
5. Tuberkeln am Herzbeutel	256
6. Markschwamm am Herzbeutel	256
V. Abnorme Zustände der Herzsubstanz.	
1. Hypertrophie mit Dilatation beider Ventrikel	257
2. Hypertrophie beider Ventrikel mit normaler	
Weite der Kammern	257
3. Dilatation beider Ventrikel ohne Hypertrophie	257
4. Hypertrophie mit Dilatation des rechten Ven-	
trikels bei normaler Weite und Stärke des linken	258
5. Hypertrophie mit Dilatation des linken Ven-	435
trikels bei normaler Stärke und Weite	
des rechten	258
6. Verkleinerung des rechten Ventrikels mit	
Hypertrophie, normaler Stärke, oder Atro-	
phie seiner Wandung	259
7. Verkleinerung des linken Ventrikels mit nor-	
maler Stärke, Hypertrophie, oder Atrophie seiner Wandung	259
8. Entzündung der Muskelsubstanz des Herzens	259
9. Erweichung, Verhärtung der Herzsubstanz,	200
kalkartige Konkremente in derselben, Os-	
sifikationen der Kranzarterien	260
VI. Abnorme Zustände am Endocardium.	
1. Endocarditis	260
2. Klappenfehler	261
II. Abnorme Zustände der Aorta, der Pulmo-	
nalarterie etc.	
	001
1. Entzündung der aufsteigenden Aorta	264
an der innnern Fläche der Aorta	264
3. Erweiterung der außteigenden Aorta	265
4. Verengerung der aufsteigenden Aorta	265
5. Erweiterung der absteigenden Aorta	265
	W 10 10

VIII. Krankhaste Zustände de	r Organe im	Un- Pag
terleibe.		
1. Vergrösserung der Leb	er	. 266
2. Verkleinerung der Leh	er	267
3. Vergrösserung der Mil	z	267
4. Krankhafte Zustände d	les Magens, der	Ge-
därme und des Perite	onäums	267
5. Krankhafte Zustände de	es Pankreas	269
6. Vergrösserung der Nier	ren	. 269
7. Aneurysmen der Bau	chaorta, der	Cö-
liaca etc	1 4 4	. 269
8. Vergrösserung des Uter	rus und der Ovan	rien 270
9. Ausdehnung der Harnh	olase und Vergrös	sse-
rung derselben in Fo	dge der Verdick	ung
. 10. Steine in der Harnblase	T	. 271

Abhandlung

ii ber

Perkussion

u n d

Auskultation.

2 nulhandd A

FA AND A SHOW AS AND TO VALUE OF

noligitum and

I. Abtheilung.

Erklärung der Erscheinungen, welche man durch die Perkussion und Auskultation erhält.

Erster Abschnitt.

Perkussion.

Den Unterleib hat man bekanntlich seit jeher perkutirt, wenn man vermuthete, dass sich viel Gas in den Gedärmen befand.

Auenbrugger lehrte den Nutzen der Perkussion zur Erkenntniss der Brustkrankheiten, und legte dadurch den Grund zu den schönen Entdeckungen, womit seitdem die Diagnostik der Brust- und Unterleibsorgane bereichert worden ist.

Auenbrugger, Corvisart, Lännee perkutirten ohne Plessimeter mit den in eine Fläche gebrachten vereinten Fingerspitzen.

Piorry lehrte der erste das Perkutiren mittelst des Plessimeters, und erkannte zugleich, dass nicht bioss der durch das Perkutiren erregte Schall Verschiedenheiten darbiete, sondern dass diess auch von dem Widerstande gelte, den der perkutirende Finger empfindet, dass man somit sowohl aus dem Perkussionsschalle, als aus dem Widerstande Zeichen entlehnen könne.

Das Plessimeter macht die Perkussion dem Kranken viel weniger lästig, die Schallunterschiede treten viel deutlicher hervor; man bemerkt desshalb beim Perkutiren mittelst des Plessimeters Verschiedenheiten im Schalle, die ohne Plessimeter ganz verschwinden, und diess erleichtert die Erlernung dieser Explorationsmethode; endlich kann man mittelst des Plessimeters auch am Unterleibe, und zwar in beliebiger Tiese,

perkutiren, und die etwa zu dicke Lage der Weichtheile am Thorax und am Bauche, welche die Erschütterung der tiefer gelegenen Organe hindert, komprimiren, was ohne Plessimeter nicht möglich ist.

Piorry wählte das Plessimeter von Elfenbein, und man hat in der That keine Ursache, ein anderes zu gebrauchen. Es stellt eine runde Platte von anderthalb oder zwei Zoll im Durchmesser dar, die so dick seyn muss, dass sie sich nicht biegt, um beim Anschlagen nicht zu scheppern, und die zur leichteren Fixirung mit einer zwei bis drei Linien hohen Randleiste, oder bloss mit zwei einander gegenüberstehenden eben so hohen Vorsprüngen versehen ist.

Beim Perkutiren wird dieses Plessimeter an die zu perkutirende Stelle genau angelegt, nach Bedarf bald gar nicht, bald stärker angedrückt, jedesmal aber so fixirt, dass es sich beim Anschlagen nicht verschiebt. Das Anklopfen geschieht auf die Mitte desselben mit der Spitze des halbkreisförmig gebogenen Zeige - oder Mittelfingers allein, oder mit diesen beiden Fingern zugleich, wobei man das Anschlagen oder Anstreisen mit den Nägeln zu vermeiden hat. Zum Behuse dieses Anklopfens geschieht die Bewegung bloss im Handgelenke, nicht aber im Schulter- und Ellenbogengelenke, oder in den Gelenken der Finger. Durch dieses Verfahren wird der lauteste Schall hervorgebracht, und dem Kranken der geringste Schmerz verursacht, indess die Bewegung im Schulter - oder Ellenbogengelenke viel weniger rasch geschieht, folglich einen weniger lauten Schall erzeugt, und dem Kranken die ganze Schwere des Armes empfinden lässt. Die Bewegung in den Fingergelenken dürfte zur Erzeugung eines lauten Schalles nur selten kräftig genug seyn.

Louis bedient sich eines Plessimeters aus Kautschuk, Die Kautschukplatte muss zu diesem Behufe vier bis sechs Linien dick seyn. Der Perkussionsschall ist weniger hell und begränzt, als bei Anwendung des Plessimeters von Elfenbein.

Manchen Ärzten ist das Tragen des Plessimeters lästig, oder sie wollen die Kranken durch das elfenbeinerne Plättchen nicht schrecken. Sie bedienen sich darum der eigenen Finger statt eines Plessimeters. Man erhält den Schall fast eben so hell, als mittelst der elfenbeinernen Platte. Wer aber viel zu perkutiren hat, wird lieber das Plessimeter gebrauchen; denn das oft wiederholte Anklopfen an die eigenen Finger macht diese schmerzhaft. Wo wegen Unebenheiten die elfenbeinerne Platte nicht gut angebracht werden kann, muss man sich der Finger bedienen.

A. Über den Perkussionsschall.

Der Schall entsteht in der organischen wie in der unorganischen Materie, im lebenden wie im todten Körper nach denselben Gesetzen. Nach der bisherigen Kenntniss der Schallgesetze sind wir jedoch nicht im Stande, die Verschiedenheiten im Perkussionsschalle der Brust und des Unterleibes jedesmal richtig zu deuten, und sind darum genöthigt, neue Erfahrungen zu Rathe zu ziehen, wenn wir über diesen Gegenstand Aufschluss erhalten wollen. Wir müssen alle möglichen Verschiedenheiten des Perkussionsschalles kennen lernen; wir müssen die Bedingungen zu erfahren suchen, von welchen jede einzelne Schallverschiedenheit abhängig ist, und endlich das Beobachtete mit den bekannten Gesetzen des Schalles in Zusammenhang zu bringen trachten. Man sieht leicht ein, dass zur Lösung dieser Aufgabe zahlreiche Beobachtungen an gesunden und kranken Individuen, zahlreiche Leichenuntersuchungen, Experimente an Kadavern etc. erforderlich sind.

Die Verschiedenheiten im Perkussionsschalle und ihre Bedingungen.

Alle sleischigen, nicht lufthältigen organischen Theile—
gespannte Membranen und Fäden abgerechnet — so wie
Flüssigkeiten, geben einen ganz dumpfeß, kaum wahrnehmbaren Perkussionsschall, den man sich durch Anklopfen an
den Schenkel versinnlichen kann. Es lassen sich darum die
sleischigen, nicht lufthältigen Organe — Leber, Milz, Niere,

eine hepatisirte oder durch Compression vollständig luftleer gewordene Lunge — und die Flüssigkeiten durch den Perkussionsschall von einander nicht unterscheiden. Die harte Leber gibt keinen andern Schall als die weiche Leber, die harte Milz keinen andern als die weiche Milz — ausser wenn sich in diesen Organen Knochen – oder Kalkkonkremente befinden, — das Blut keinen andern als Eiter, Wasser etc.

Will man sich hievon überzeugen, so nehme man die Leber, die Milz, die Nieren, das Herz, eine hepatisirte, und eine durch Kompression vollständig luftleer gewordene Lunge aus dem Kadaver heraus, bringe diese Organe auf eine Unterlage, die beim Anschlagen an dieselben nicht mitschallt, und perkutire nun ein Organ nach dem andern, entweder unmittelbar, oder mittelst eines Plessimeters. Eine Flüssigkeit bringt man in beliebiger Quantität ebenfalls auf eine nicht schallende Unterlage, und perkutirt mittelst des Plessimeters, der die Obersläche der Flüssigkeit genau berühren muss.

Der von allen diesen Körpern so erhaltene Schall ist kaum hörbar, hat keinen Klang, keine bestimmbare Höhe — Schallhöhe, — kein Timbre etc.

Die Knochen und Knorpel geben beim unmittelbaren Anschlagen einen eigenthümlichen Schall. Beim Perkutiren durch fleischige Theile ist der Schall der Knochen wenig vernehmlich, und verschwindet ganz, wenn die Fleischlage nur etwas dick ist.

Jeder Schall, den man durch Perkutiren des Thorax oder des Bauches erhält, und der von dem Schalle des Schenkels oder eines Knochens abweicht, rührt von Luft, Gas oder Dünsten in der Brust- oder Bauchhöhle her.

Die sleischigen Theile der Brustwand müssten ungemein gespannt werden, um einen andern Schall, als die sleischigen Theile überhaupt, zu geben; dasselbe gilt von den Bauchwandungen, wie man sich leicht an Leichen überzeugt. Den Schall der Rippen hört man nur sehr selten bei magern Individuen, öfter den Schall des Brustbeines und der Schlüsselbeine. Die Leber, die Milz, das Herz, die Nieren, das Blut, das Wasser etc., die beim unmittelbaren Perkutiren den ganz dumpfen, oder was eben so viel ist, keinen Schall geben, werden innerhalb der Brust- und Bauchhöhle auch nicht schallen, wenn man an die Brust- oder Bauchwand klopft. Die Häute der Gedärme und des Magens müssten ungewöhnlich gespannt seyn, um beim Anschlagen einen Schall zu geben; eben dasselbe gilt vom Lungenparenchym.

Die Verschiedenheiten im Schalle der Leber-, Milz-, Herz-, Lungen-, Magengegend etc. sind also nicht in dem eigenthümlichen Schalle dieser Organe begründet, sondern entspringen aus den Verschiedenheiten in der Menge, Vertheilung, Spannung etc. der enthaltenen Luft, und aus der Verschiedenheit in der Stärke des Stosses, der durch die Perkussion auf die Luft ausgeübt werden kann.

Es gibt keinen eigenthümlichen Leber-, Milz-, Herz-, Lungen-, Magenton etc.; der Schall der Lungengegend kann dem Schalle der Lebergegend ganz gleichen, obgleich sich an der Stelle der Lunge nicht die Leber befindet.

Die Verschiedenheiten im Perkussionsschalle der Brustund Bauchhöhle lassen sich nicht sämmtlich in Eine Reihe vom mehr zum weniger zusammenstellen; man ist vielmehr genöthigt, vier verschiedene Reihen vom mehr zum weniger anzunehmen*), nämlich:

^{*)} Lännec unterscheidet im Perkussionsschalle nur eine Reihe vom hellen zum matten; eben so Piorry. Letzterer stellte vom matten zum hellen folgende Gradation auf: Schenkelton, Leberton, Herzton, Milzton, Nierenton, Lungenton, Darmton, Magenton. Ausser diesen beschreibt er den Knochenton, den Wasserton, den Hydatidenton und das Geräusch des gesprungenen Topfes. Wie bereits bewiesen, geben der Schenkel, die Leber, das Herz, die Milz, die Niere etc. sämmtlich einen gleichen Schall, und von Graden ist hier keine Rede. Die Lunge gibt in der Regel einen andern Schall als der Darm; es kann aber der Schall des Darmes dem der Lunge vollkommen gleichen. Der Schall der Lunge, der Gedärme und des Magens ist sehr verschiedenartig, und wird, wie eben gezeigt worden ist,

- 1. vom vollen Schalle zum leeren;
- 2. vom hellen zum dumpfen;
- 3. vom tympanitischen zu dem nicht tympanitischen;
- 4. vom hohen zum tiefen.

Ein voller Perkussionsschall kann hell oder gedämpft, tympanitisch oder nicht tympanitisch, hoch oder tief seyn; eben so verhält es sich mit einem leeren Schalle, wie sich diess bei näherer Betrachtung deutlich ergeben wird.

Erste Reihe: Vom vollen zum leeren Perkussionsschalle. — Es ist nicht die Stärke des Schalles, woraus wir die Grösse des schallenden Körpers durch das Gehör beurtheilen. Eine grosse Glocke lässt uns auch durch das leiseste Summen ihre Grösse ahnen, während wir durch das lauteste und stärkste Klingen einer kleinen Glocke über ihre Kleinheit nicht getäuscht werden. Auch nach der Schallhöhe schliessen wir nicht auf die Grösse des schallenden Körpers.

Man hat bisher keinen allgemein gültigen Ausdruck, um die Schallverschiedenheit zu bezeichnen, welche wir auf die Grösse des schallenden Körpers beziehen. Ich glaube, dass man bei der Stimme und bei musikalischen Instrumenten zur Bezeichnung dieser Schallverschiedenheit gewöhnlich das Wort voll oder volltönend — sonor — gebraucht, und wende daher dieses Wort im gleichen Sinne für den Perkussionsschall an. Wenn man verschiedene Stellen des Thorax oder des Unterleibes mit gleicher Stärke perkutirt, so wird man finden, dass an einigen Stellen der Schall länger anhaltend und wie über einen grössern Raum verbreitet erscheint, als

nicht durch das Lungenparenchym, durch die Magen- oder Darmhäute, sondern stets nur durch die enthaltene Lust erzeugt. Die von Piorry gebrauchte Bezeichnung der Schallunterschiede erscheint somit ganz grundlos und unpraktisch. In dieser Bezeichnungsart liegt die Ursache, dass viele Ärzte, welche nicht die Gelegenheit haben, die Grundsätze der Perkussion selbst zu prüfen, die Angaben Piorry's ganz missverstanden haben.

an andern. Die erste Art des Schalles nenne ich den vollen, die zweite den weniger vollen oder leeren Perkussionsschall.

Eine oberstächlich gelegene, nicht grosse Exkavation in der Lunge, die vom verdichteten Parenchym umgeben ist, gibt einen Perkussionsschall, der recht deutlich vernehmlich, aber doch leer ist. Der lufthältige Magen gibt einen vollen, ein dünner Darm einen leeren Schall. Doch erhält man bei verschiedenen Individuen auf der Brust nicht einen gleich vollen Schall, wenn auch die Ausdehnung der Lungen und die Menge der enthaltenen Lust vollkommen gleich wäre. Es kommt nämlich überdiess auf die Beschassenheit der Brustwand an. Je biegsamer diese ist, desto stärker wirkt der Stoss auf die enthaltene Lust, und diese wird in einer grossen Ausdehnung erschüttert, während bei unnachgiebiger Brustwand kaum die nächste Lustschichte zum Schallen gebracht wird.

Wenn man aus dem Kadaver herausgenommene Lungenoder Darmparthien perkutirt, so überzeugt man sich, dass es unmöglich sey, aus dem verschieden vollen Schalle annäherungsweise die Grösse der Lunge, oder die Weite des Darmes zu bestimmen. Nur die grössern Unterschiede zwischen dem vollen und leeren Schalle gestatten einen sichern Schluss. Eben so muss sich die Sache verhalten, wenn diese Organe innerhalb des Körpers den Schall geben. Ein voller Schall am Thorax oder am Unterleibe bedeutet, dass unter der perkutirten Stelle in einem Raume, der wenigstens mehrere Zoll in jedem Durchmesser beträgt, Luft enthalten sey. Ein ganz leerer Schall, der dem Perkussionsschalle am Schenkel gleich ist, zeigt, dass der Raum unter der perkutirten Stelle keine Luft, kein Gas und keinen Dunst enthalte, sondern von Flüssigkeiten, von luftleeren fleischigen Theilen etc. ausgefüllt sey.

Die Menge der Flüssigkeit etc., die erforderlich ist, um den Schall an einer bestimmten Stelle der Brust oder des Bauches dem Schenkelschalle gleich zu machen, richtet sich nach der Biegsamkeit der Brust - oder Bauchwand an der perkutirten Stelle, und nach der Beschaffenheit des hinter der Flüssigkeit etc. befindlichen Raumes. Ist die perkutirte Stelle biegsam, so ist bis auf sechs Zoll in die Tiefe keine Luft enthalten.

Man überzeugt sich hievon auf folgende Art: Taucht man einen lufthältigen Lungentheil, oder ein lufthältiges Darmstück unter Wasser, und perkutirt mittelst des Plessimeters auf der Oberfläche des Wassers, so wird man den Schall der Lunge oder des Darmes noch vernehmen, wenn dieselben mehr als sechs Zoll tief eingetaucht sind. Je näher sie der Oberfläche des Wassers kommen, desto voller erscheint ihr Schall.

Zweite Reihe: Vom hellen zum dumpfen Perkussionsschalle. - Hell und dumpf oder dunkel wird in der gewöhnlichen Bedeutung genommen. Der Schall der Trommel wird dumpfer, wenn dieselbe mit Tuch überzogen wird. Je dünner und biegsamer die Brust - oder Bauchwand ist, desto heller ist der Schall, den die darunter enthaltene Luft gibt. Wenn sich unter einer dünnen und biegsamen Stelle der Brustwand in einem Raume von einem Zoll in der Länge und Breite, und nur einige Linien in der Tiefe, Luft befindet, während der übrige Brustraum mit Flüssigkeit oder mit infiltrirtem luftleeren Lungenparenchym ausgefüllt ist, so ist an dieser Stelle der Perkussionsschall vollkommen hell, aber sehr leer. Ist im Gegentheil unmittelbar unter einer Stelle der Brustwand ein nicht lufthältiges Lungenstück, das wenigstens die Ausdehnung des Plessimeters und einen halben Zoll Dicke hat, vorhanden, während den übrigen Brustraum die lufthältige, normal ausgedehnte Lunge ausfüllt, so ist an dieser Stelle der Perkussionsschall zwar voll, aber schon gedämpft. Liegt im Unterleibe nur eine kleine, mit Luft gefüllte, Darmparthie an der Bauchwand an, indess eine grosse Menge Flüssigkeit in der Bauchhöhle aus den übrigen Gedärmen alle Luft verdrängt hat, so erhält man an der Stelle, die dem lufthältigen Darm entspricht, einen vollkommen hellen, aber leeren Schall. Liegt ein lufthältiges Darmstück zum Theil unter der Leber, während der andere Theil die Bauchwand berührt, so erhält man beim Perkutiren auf den Leberrand einen gedämpften Schall des Darmes, der sogleich vollkommen hell wird, sobald das Plessimeter unterhalb des Leberrandes angelegt wird.

Man kann durch Versuche am Kadaver sich leicht von dem Gesagten überzeugen. Perkutirt man auf eine aus dem Kadaver herausgenommene hepatisirte Lunge, so erhält man den Schall des Schenkels; ist aber nur eine kleine Lungenparthie noch daran, die Lust enthält, so gibt diese, wenn man auf sie klopft, einen hellen Schall, der aber ganz kurz ist, und sehr wenig Resonanz hat, also nach der von mir gewählten Bezeichnung leer heissen muss. Perkutirt man ausserhalb des Kadavers eine lufthältige Lunge, an deren Oberstäche ein infiltrirter luftleerer Theil sich befindet, so gibt dieser Theil schon einen dumpferen Schall als die übrigen Stellen, wenn er dem Plessimeter an Grösse gleichkömmt. Je dicker die luftleere Parthie ist, desto dumpfer erscheint der Perkussionsschall. Doch kann der hepatisirte Lungentheil über sechs Zoll dick seyn, bevor der Schall des darunter befindlichen lufthältigen Lungentheiles gänzlich unhörbar, bevor also der Schall vollkommen dumpf, also dem Schenkelschalle gleich wird. Taucht man ein lufthältiges Darmstück so unter Wasser, dass dabei eine kleine Fläche mit dem Niveau des Wassers gleich steht, und davon unbedeckt bleibt, so gibt diese Stelle einen eben so hellen Schall, als ob der Darm nicht in Wasser getaucht wäre. Der Schall des unter den Wasserspiegel getauchten Darmtheils, auf den man durch das Wasser perkutiren muss, ist gedämpft, und zwar um so mehr, je tiefer der Darm eingetaucht wird.

Man sieht aus dieser Darstellung, dass die Ausdrücke voll und hell, dumpf und leer, eine verschiedene Bedeutung haben. Der Perkussionsschall kann voll und hell, aber auch voll und dumpf; leer und hell, und leer und dumpf seyn. Ganz dumpf und ganz leer hat natürlich eine und dieselbe Bedeutung, es ist diess der Schenkelschall. Wenn der Schall gedämpft wird, so wird er jedesmal zugleich auch leerer. Der weniger voll werdende Schall wird aber nicht nothwendig dumpf, der Schall kann sehr leer und doch vollkommen hell seyn.

Aus dem Grade der Dämpfung des Perkussionsschalles lässt sich nicht immer die Dicke des unter der perkutirten Stelle befindlichen nicht schallenden Körpers genauer angeben, indem der Grad der Dämpfung zugleich von der Dicke und Biegsamkeit der perkutirten Wandung und von der Beschaffenheit des hinter den nicht schallenden Theilen gelegenen lufthältigen Raumes abhängt.

Dritte Reihe: Vom tympanitischen zu dem nicht tympanitischen Perkussionsschalle. Der tympanitische Perkussionsschall geht eben so stufenweise in den nicht tympanitischen über, als der volle in den leeren, der helle in den dumpfen, und es lässt sich zwischen beiden keine bestimmte Gränze angeben.

Nicht tympanitisch ist der Schallan den Stellen des Thorax, unter welchen eine normal ausgedehnte lufthältige Lungenparthie sich befindet. Die über das normale ausgedehnte, lufthältige Lunge - Emphysema pulmonis vesiculare - gibt zuweilen einen tympanitischen, zuweilen einen nicht tympanitischen Schall. Ein partielles von infiltrirtem luftleeren Parenchym umgebenes Emphysem, wie es bei Pneumonien vorkömmt, wo nicht selten die an die Hepatisation gränzenden Stellen, insbesonders die Ränder, emphysematös sind, gibt gewöhnlich einen tympanitischen Schall; indess das über die ganze Lunge verbreitete von grosser Dyspnoe begleitete Emphysem den Perkussionsschall nur selten deutlich tympanitisch macht. Lännec's interlobuläres Emphysem macht den Schall nie tympanitisch. Enthält die Lunge weniger Luft als im Normalzustande, so gibt sie einen Schall, der sich dem tympanitischen nähert, oder selbst deutlich tympanitisch ist. Rührt der geringere Luftgehalt von vermehrter Quantität flüssiger oder fester Theile in der Lunge, wobei dieselbe ihr normales oder selbst ein grösseres Volumen hat, so pflegt

der Perkussionsschall nicht so deutlich tympanitisch zu seyn, als wenn die Lunge durch Kompression auf ein kleineres Volumen reducirt wird.

Dass die Lunge bei einem geringeren Luftgehalte einen tympanitischen Schall gibt, während derselbe bei vermehrter Luftmenge nicht
tympanitisch ist, scheint mit den Gesetzen der
Physik im Widerspruche. Die Thatsache ist
aber begründet, und nebst den Versuchen an
Kadavern, die bald angeführt werden sollen,
spricht dafür die konstante Erscheinung, dass
bei Exsudaten in der Brusthöhle, die den untern Theil der Lunge ganz komprimiren und
den obern auf ein kleineres Volumen zusammendrängen, der Perkussionsschall in der obern
Gegend des Thorax deutlich tympanitisch wird.

Die Luftmenge in der Lunge kann sehr gering seyn, und dennoch bleibt der Perkussionsschall tympanitisch, wenn die Brustwand dünn und biegsam ist. Diess zeigt die Beobachtung zuweilen bei Pneumonien und bei tuberkulöser Infiltration. Bei so beschaffener Brustwand gibt nämlich die der verdichteten Lungenparthie entsprechende Stelle des Thorax in seltenen Fällen einen deutlich tympanitischen obgleich sehr leeren und nicht sehr lauten Schall. Bei dicker und unbiegsamer Brustwand ist der Perkussionsschall seltener tympanitisch.

Luft enthalten, in welchen folglich Gruppen stärker ausgedehnter Luftzellen mit andern abwechseln, welche weniger ausgedehnt sind oder gar keine Luft enthalten, geben bald einen tympanitischen, bald einen nicht tympanitischen Schall.

Bei Exkavationen in der Lunge, die von infiltrirtem luftleeren Parenchym umgeben sind, und Luft enthalten, erhält man, falls sie der Obersläche näher liegen, und der Grösse des Plessimeters gleich kommen, an den ihnen entsprechenden Stellen des Thorax stets einen tympanitischen Schall. Ist die Exkavation von normalem Lungengewebe umgeben, so ist der Perkussionsschall weniger oder gar nicht tympanitisch.

Bei Pneumothorax ist der Schall tympanitisch, wenn die Brustwand nicht zu sehr gespannt ist; bei grosser Spannung der Brustwand ist der Perkussionsschall fast jedesmal nicht tympanitisch.

Am Unetrleibe ist der Schall immer tympanitisch, wenn die Gedärme Gas enthalten, aber nicht zu sehr aufgetrieben sind, und durch die Bauchdecken nicht komprimirt werden. Bei zu grosser Auftreibung der Gedärme durch Gas, und besonders beiKompression derselben durch die gespanntenBauchdecken wird der Perkussionsschall weniger oder gar nicht tympanitisch.

Von allem, was hier über die Verhältnisse gesagt ist, unter welchen der Perkussionsschall tympanitisch oder nicht tympanitisch erscheint, kann man sich durch Versuche an Leichen überzeugen. Bläst man eine normale Lunge ausserhalb des Kadavers vollständig auf, und perkutirt auf dieselbe mittelst des Plessimeters, so erhält man einen hellen, vollen, nicht tympanitischen Schall. Perkutirt man auf eine aus dem Kadaver herausgenommene normale Lunge, ohne sie vorher aufgeblasen zu haben, - wo sie also weniger Luft enthält, und zusammengezogen ist, so erhält man einen hellen, vollen und ziemlich deutlich tympanitischen Schall. Treibt man in die zusammengefallene oder aufgeblasene Lunge Wasser durch die Trachea, so erhält man, so lange die Lunge nicht stark gespannt ist, einen tympanitischen Schall, selbst wenn dieselbe sehr viel Wasser enthält; nur wird mit der Zunahme des Wassers der Schall leerer und weniger hell. Eine emphysematöse Lunge, die auch ausserhalb des Kadavers ausgedehnt bleibt, gibt, wenn sie sonst nicht verändert ist, denselben Schall, als eine normale Lunge, welche man aufgeblasen hat. Das Interlobularemphysem gibt einen ganz und gar nicht tympanitischen Schall, der überdiess weniger hell als bei der aufgeblasenen normalen Lunge ist.

Eine von Serum oder Blut, Tuberkelmaterie etc. infiltrir-

te Lungenparthie, aus der die Luft nicht gänzlich verdrängt ist, gibt einen tympanitischen, und nach der Menge der enthaltenen Luft, mehr weniger leeren und gedämpften Schall. Lungen, in denen solitäre Tuberkeln in nicht sehr grosser Menge vorhanden sind, geben denselben Perkussionsschall als normale Lungen.

Eine aufgeblasene Lunge, durch ein Stück Leber perkutirt, gibt einen nicht tympanitischen, eine zusammengezogene lufthältige Lunge einen tympanitischen Schall, der in beiden Fällen der Dicke der Leber entsprechend gedämpft und leerer erscheint. Erst bei bedeutender Dicke des übergelegten Leberstückes lässt sich nicht mehr unterscheiden, ob der Schall noch tympanitisch sey. Man erhält dieselben Resultate, wenn man statt der Leber eine hepatisirte Lungenparthie gebraucht, oder wenn man die Lunge unter Wasser taucht, und auf die Obersläche des Wassers perkutirt.

Bläst man an einem Kadaver eine normale Lunge innerhalb der Brusthöhle so stark auf, dass dieselbe überall an die Brustwand gedrängt wird, so gibt ein solcher Thorax an allen Stellen, wo die Lunge anliegt, einen vollen hellen jedoch nicht tympanitischen Schall. Man muss, um ein solches Aufblasen der Lunge möglich zu machen, und sich zugleich überzeugen zu können, ob die aufgeblasene Lunge an der Brustwand anliege, eine oder mehrere Öffnungen in die Brusthöhle machen. Ist nämlich den nach dem Tode in der Brusthöhle fast immer entwickelten Gasen kein Ausgang gestattet, so lässt sich die Lunge nicht hinreichend aufblasen, und nicht überall an die Brustwand drängen.

Treibt man in eine Lunge, die im Kadaver auf die angegebene Weise aufgeblasen ist, oder nachdem sie sich wieder zusammengezogen und einen Theil der Luft abgegeben hat, Wasser durch die Trachea, so erhält man bei diesen nachgemachten Lungenödem den Perkussionsschall erst bei sehr grosser Wassermenge etwas gedämpft; früher aber dem Perkussionsschalle der ganz wasserlosen Lunge fast gleich. Ganz dumpf wird der Perkussionsschall nie, wenn man noch

so viel Wasser einzutreiben sich bemüht. Treibt man Luft in die Pleurahöhle, so dass dadurch die Lunge komprimirt und der Thorax ausgedehnt wird, so ist der Perkussionsschall jedesmal voll und hell, dabei zuweilen wenig, zuweilen ausgezeichnet tympanitisch. Treibt man Wasser in die Pleurahöhlen, so findet man an allen Stellen des Thorax, wo die lufthältige Lunge die Brustwand berührt, den Perkussionsschall hell, dem tympanitischen nahe, oder deutlich tympanitisch. Wo das Wasser die Brustwand berührt, ist der Perkussionsschall der Dicke der Wasserschichte entsprechend gedämpft, und wenn diese nicht beträchtlich ist, nicht selten tympanitisch.

Bläst man den Magen oder ein Stück Darm so stark auf, dass die Häute straff gespannt sind, so erhält man einen dumpfen und fast nicht tympanitischen Perkussionsschall. Wird dagegen der Magen oder ein Darmstück mit Lust gefüllt, ohne dass die Häute dabei straff gespannt sind, so erhält man beim Perkutiren mittelst des Plessimeters einen hellen tympanitischen Schall. Man darf in diesem Falle das Plessimeter nicht so sest andrücken, dass die Häute straff gespannt würden. Füllt man den Magen oder Darm zum Theil mit Lust und zum Theil mit Wasser, so verhält sich der Perkussionsschall gerade so, als ob der Darm bloss Lust enthielte; es müssen nämlich auch da die Darmhäute nicht straff gespannt seyn, wenn man einen hellen tympanitischen Schall erzeugen will.

Wenn man den Darm durch nicht schallende organische Theile — durch die Leber, Milz — oder durch Wasser perkutirt, so verhält sich der Schall ganz so, wie es bei demselben Verfahren mit der Lunge angegeben wurde. Perkutirt man den Darm durch eine normale Lunge, so erhält man einen aus dem Schalle der Lunge und aus dem Schalle des unterliegenden Darmes zusammengesetzten, gewöhnlich tympanitischen Schall.

Wenn die Bauchdecken nach dem Tode erstarren, und die Gedärme stark komprimiren, so ist der Perkussionsschall am Unterleibe auch bei grosser Gasmenge in den Gedärmen dumpf, und wenig oder gar nicht tympanitisch; da er doch während des Lebens, so lange die Bauchdecken nicht so gespannt waren, hell und deutlich tympanitisch war. Sind die Bauchdecken erschlaft, so gibt der Unterleib auch am Kadaver einen tympanitischen Schall. Es kann sich in der Peritonäalhöhle eine beträchtliche Quantität Flüssigkeit befinden, und dennoch lässt sich der tympanitische Schall der Gedärme vernehmen, wenn die Bauchdecken erschlaft sind, so wie man denselben auch beim Perkutiren durch die Leber erhält, falls hinter diesem Organe ein lufthältiger Darm liegt.

Aus den angeführten Beobachtungen an Lebenden, und aus den Versuchen an Leichen ergibt sich fast ohne Ausnahme, dass der Perkussionsschall tympanitisch ist, wenn die Wandungen, welche die Luft einschliessen, nicht gespannt sind, dass aber bei grösserer Spannung dieser Wandungen der Perkussionsschall weniger oder gar nicht tympanitisch, und auch dumpfer erscheint. So gibt der stark gespannte Magen, die stark aufgetriebene Lunge, die stark gespannte Brustwand bei Pneumothorax, die straff angezogene Bauchwand einen nicht tympanitischen, oder doch nur undeutlich tympanitischen Schall, indess der erschlaffte Magen, die zusammengezogene Lunge, die erschlaffte Bauchwand einen deutlich tympanitischen Schall gibt. Forscht man nach dem Grunde dieser auffallenden Erscheinung, so dürfte sich Folgendes anführen lassen: Der tympanitische Perkussionsschall nähert sich dem Klange, indess der nicht tympanitische dem Geräusche näher steht. Zur Erzeugung des tympanitischen Schalles ist demnach eine grössere Gleichartigkeit der Schallschwingungen erforderlich, als zur Erzeugung des nicht tympanitischen Schalles. Perkutirt man auf einen Magen, dessen Häute nicht gespannt sind, so ist es die Luft allein, welche den Schall gibt. Perkutirt man aber auf einen Magen mit straff gespannten Häuten, so schwingt auch die Haut selbstständig. Die Schwingungen der Magenhaut scheinen die Schwingungen der enthaltenen Luft zu stören, und

diess dürfte der Grund des nicht tympanitischen dumpferen Schalles seyn.

Vierte Reihe: Vom hohen Perkussionsschalle zum tiefen. Die Unterschiede in der Schallhöhe sind, wenn der Schall hell ist, am leichtesten aufzufassen. Sie haben den geringsten praktischen Werth. Man überzeugt sich davon leicht durch Versuche an Kadavern. Ein enger Darm kann einen tiefern Schall geben, als ein weiter, und mit jeder veränderten Lage des Darmes kann sich die Schallhöhe ändern. Dasselbe bemerkt man beim Perkutiren der Lunge.

Der metallisch klingende Perkussionsschall und das Geräusch des gesprungenen Topfes. — Unter keine der angeführten Reihen gehört der metallisch klingende Perkussionsschall und das Geräusch des gesprungenen Topfes.

Den metallisch klingenden Perkussionsschall nennt Piorry den Wasserton - son humorique, hydropneumatique -; indem er sich vorstellt, dass zu seiner Erzeugung Luft und Wasser sich berühren müssen. Es ist diess der metallisch klingende Nachhall, den man beim Anschlagen an ganz oder grossentheils leere Fässer erhält. Versuche an Kadavern zeigen, dass zum Hervorbringen des sogenannten Wassertons kein Wasser erforderlich sei. Beim Perkutiren auf einen mit Luft gefüllten Magen, der keinen Tropfen Flüssigkeit enthält, erhält man jedesmal den Wasserton, und zwar leichter, wenn die Magenhäute weniger straff gespannt sind. Die Perkussion kann mittelst des Plessimeters, oder ohne Plessimeter geschehen. Füllt man den Magen mit Wasser und Luft, so lässt sich der Wasserton gleichfalls erhalten. Auch in etwas weitern und selbst in engen Barmstücken kann man auf die Art, wie im Magen, den amphorischen Schall hervorbringen. Er erscheint nicht selten am Thorax bei grösseren Exkavationen, die Luft enthalten, und wenn Luft, Gas oder Dünste in der Pleurahöhle sich befinden.

Das Geräusch des gesprungenen Topfes lässt sich am vollständigsten dadurch nachahmen, dass man einen Darm

mit Luft füllt, durch Andrücken mit dem Plessimeter die obere Wand des Darmes der untern nähert und dann perkutirt.
Legt man die beiden Handteller über einander, und schlägt
den einen Handrücken gegen das Knie, so erhält man gleichfalls einen dem Geräusche des gesprungenen Topfes nahe
kommenden Schall.

Das Geräusch des gesprungenen Topfes findet man am Thorax über etwas grössern nicht sehr tiefgelegenen Exkavationen, die Luft enthalten und mit Bronchien kommuniciren, Perkutirt man etwas stark, oder ist die Brustwand biegsam, so wird mit jedem Schlage die Exkavation comprimirt, und ein Theil der Luft schnell aus der Exkavation in die Bronchien getrieben. Das zischende Geräusch, das die entweichende Luft macht, vermischt sich mit dem gewöhnlichen Perkussionsschalle der Exkavation, und diesen gemischten Schall hat man das Geräusch des gesprungenen Topfes genannt. Zuweilen stösst die durch das Anklopfen aus der Exkavation getriebene Luft auf Flüssigkeiten, oder die in der Exkavation vorhandene Flüssigkeit wird durch das Anklopfen bewegt. Die bewegte Flüssigkeit macht ein Geräusch, wie der im Munde bewegte Speichel.

Es wird angegeben, dass das Geräusch des gesprungenen Topfes bei Kindern auch ohne vorhandene Exkavationen in der Lunge vorkommt. Ich habe diess noch nicht gefunden. Dieses Geräusch soll ferner nur dann entstehen können, wenn der Perkutirte den Mund offen hält. Bei geschlossenem Munde, und noch mehr, wenn auch die Nase geschlossen ist, soll es sich nicht hervorbringen lassen. Man müsste somit im Stande seyn, durch Verschliessen des Mundes und der Nase die geringe Depression zu verhindern, welche die perkutirte Stelle mit jedem Schlage erleidet.

Piorry beschreibt überdiess den Hydatidenton. Dieser Hydatidenton ist aber kein Schall; er besteht in der Wahrnehmung von Vibrationen mittelst der aufgelegten Hand, oder mittelst der Fingerspitzen. Perkutirt man auf einen mit Wasser vollständig gefüllten Magen, den man in freier Luft hält,

so erhält man die klarste Vorstellung von dem, was Piorry unter Hydatidenton versteht. Klopft man auf eine Taschen-Repetiruhr, die man in der Hand hält, so erhält man gleichfalls den Hydatidenton Piorrys; man empfindet nämlich die nachhaltenden Vibrationen der Schlagfeder. Piorry und Brian con behaupten, dass dieses Vibriren nur beim Perkutiren auf einen Hydatidensack gefunden werde, und leiten es von dem Zittern der Hydatiden ab. Ich weiss nicht, ob ausser Piorry und Briançon jemand diese Erfahrung gemacht hat. Der Versuch mit dem Magen zeigt, dass zur Erzeugung des Hydatidentons keine Hydatiden nöthig sind. Bei starker Spannung der Bauchdecken durch Flüssigkeit in der Peritonäalhöhle erhält man fast immer den Hydatidenton, wenn die Bauchdecken nicht dick sind. Bei Wassersucht des Eierstockes finden sich die Bedingungen zur Erzeugung des Hydatidentons viel seltener vereinigt, als bei Ascites, und ein Hydatidensack, in dem sich der Hydatidenton erzeugen liesse, muss zu den sehr grossen Seltenheiten gerechnet werden.

B. Über den beim Perkutiren fühlbaren Widerstand.

Dass man beim Perkutiren verschiedener Organe einen verschiedenen Widerstand gegen den perkutirenden Finger empfinde, hat zuerst Piorry hervorgehoben, und es hat den Anschein, als ob er die Verschiedenheiten in der Resistenz beim Perkutiren für wichtiger hielte, als den Perkussionsschall selbst.

Man kann an Kadavern die verschiedenen Grade des Widerstandes, den die verschiedenen Organe beim Perkutiren geben, kennen lernen. Eine normale lufthältige Lunge gibt beim Perkutiren keinen Widerstand, wenn man das Plessimeter so hält, dass es die Lunge berührt, aber nicht drückt. Der Widerstand macht sich erst fühlbar, wenn die Lunge durch Infiltration von Serum, Blut, Tuberkelmaterie etc. schwerer und konsistenter geworden ist. Je grösser die Menge dieser Stoffe, und je geringer die Menge der Luft ist,

desto grösser wird die Resistenz. Eine harte Lunge leistet eine grössere Resistenz, als eine weiche.

Beim Perkutiren der Gedärme und des Magens ist nur dann eine Resistenz möglich, wenn ihre Häute gespannt oder starr sind. Die Resistenz wächst mit der Spannung der Häute.

Die Resistenz nicht lufthältiger Organe richtet sich nach dem Grade ihrer Härte. Die Resistenz der Brustwand für sich ist desto stärker, je dicker und unbiegsamer die Rippen, und je enger die Zwischenräume der Rippen sind. Die Resistenz der Bauchwand wird durch straffes Anspannen und Härte vermehrt. Je dicker und steifer die Rippen, je enger die Zwischenräume der Rippen, und je straffer die Bauchwände sind, desto geringer wird der Unterschied zwischen dem Grade der, am Thorax und Unterleibe, im normalen Zustande der enthaltenen Organe fühlbaren Resistenz, und der Veränderung, welche in dieser Resistenz durch abnorme Zustände der enthaltenen Organe verursacht wird.

Die normale Lunge leistet keinen Widerstand; derselbe hängt darum an allen Stellen des Thorax, wo die normale Lunge die Brustwand berührt, ganz allein von der Brustwand selbst ab. Die in Exkavationen, oder in der Pleurahöhle enthaltene Luft leistet, wenn sie die Brustwand nicht stärker spannt, gleichfalls keinen Widerstand.

Werden durch Pneumothorax, oder bei allgemeinem Lungenemphysem die Zwischenräume der Rippen erweitert, so fühlt man während des Perkutirens, dass bei jedem Schlage die Brustwand bedeutender deprimirt wird, worauf sie sich schnell wieder hebt. Der Thorax ist elastischer, als gewöhnlich. Dasselbe bemerkt man bei dünnen Rippen und breiten Zwischenrippenräumen, auch bei normaler Beschaffenheit der Lunge, nur ist der Widerstand im letztern Falle geringer, als bei Pneumothorax, oder bei Lungenemphysem. Sind bei Pneumothorax, oder, was seltener vorkömmt, bei allgemeinem Lungenemphysem, die Zwischenräume der Rippen nicht erweitert, oder sind trotz der Erweiterung der

Zwischenrippenräume die Rippen steif, so erhält man nicht die Empfindung des Wogens.

Die mit Blut, Tuberkelmaterie, Serum etc. infiltrirte Lunge leistet Widerstand, aber man ist nicht stande, genauer zu bestimmen, bei welcher Ausdehnung und bei welchem Grade von Konsistenz der infiltrirten Lungenparthie sich die Resistenz der Lunge durch den Thorax fühlbar zu machen anfange, da diess so sehr nach der Biegsamkeit der Brustwand varirt. Ist ein ganzer Lungenflügel oder doch eine grössere Lungenparthie von vorne nach hinten durchaus hepatisirt oder tuberkulös infiltrirt und dabei hart, so ist, die Resistenz an den entsprechenden Stellen eben so gross oder grösser, als in der Lebergegend bei gewöhnlicher Ausdehnung der Leber.

Die grösste Resistenz leistet der Thorax bei Exsudaten in der Brusthöhle, durch welche die Thoraxwände gespannt, und somit die Zwischenräume der Rippen auseinandergedrängt werden. Exsudate, welche die sie einschliessenden Wandungen nicht spannen, leisten weniger Widerstand.

Das Herz, die Leber, die Milz, leisten durch die Thoraxwand einen um so grösseren Widerstand, je mehr sie an die Brustwand gepresst, und je härter sie sind.

Ob die Ausdehnung des Unterleibes durch Gas in den Gedärmen, oder durch Flüssigkeit in der Peritonäalhöhle bewirkt werde, lässt sich durch die verschiedene Resistenz beim Perkutiren unterscheiden. Eingesackte Flüssigkeiten, welche die sie einschliessenden Wände stark spannen, geben durch die Bauchdecken beim Perkutiren denselben Widerstand, als sleischige Körper von einiger Härte.

Zweiter Abschnitt.

Auskultation.

Die Geräusche, welche im Innern der Brust durch die Bewegungen der enthaltenen Organe hervorgebracht werden, sind nur in seltenen Fällen so laut, dass man sie vernehmen kann, ohne das Ohr an die Brust selbst anzulegen. Die sehr vereinzelten Fälle, in welchen man Geräusche in der Brust auf weitere Distanzen vernahm, blieben unbeachtet, und es konnte diess kaum anders seyn, so lange man bei Erklärung der Krankheitserscheinungen nicht auf speciellere Untersuchungen über das Verhalten der verschiedenen Organe des menschlichen Körpers einging. Die Ausbildung der pathologischen Anatomie machte die Mängel der Zeichenlehre fühlbar, und zeigte die Nothwendigkeit neuer Erforschungsmittel zur Bestimmung gewisser Abnormitäten innerer Organe. Diesem Umstande ist es zuzuschreiben, dass Corvisart Auenbruggers inventum novum, das früher von niemand gewürdigt, und bereits ganz in Vergessenheit gerathen war, mit Enthusiasmus zur Kenntniss der Ärzte brachte. Corvisart kannte die Krankheiten des Herzens und der Respirationsorgane anatomisch genau; aber es mangelten ihm die Zeichen, die verschiedenen krankhaften Zustände der so verborgenen Organe · jedesmal zu unterscheiden. Was konnte ihm demnach willkommener seyn, als die Erfindung Auenbruggers, durch welche die Zeichenlehre der Krankheiten der Brustorgane um ein Wesentliches erweitert wurde.

Corvisart pflegte in Fällen, wo die Herzbewegungen durch Auflegen der Hand nicht deutlich wahrgenommen werden konnten, das Ohr an die Herzgegend zu legen, und bediente sich somit schon der unmittelbaren Auskultation. Seine Schüler thaten dasselbe. Diese neue Methode, die Herzbewegungen zu untersuchen, scheint aber durch längere Zeit, wahrscheinlich wegen der seltenen Anwendung wenig Nu-

tzen gebracht zu haben, bis Lännec ihre Wichtigkeit begriff und nach dreijähriger Forschung dadurch Resultate erlangte, die ihm einen unsterblichen Namen verschafft haben. Lännec hat durch seine grossen Leistungen dem Forschungsgeiste der Ärzte in Frankreich, und nachträglich fast in allen Ländern eine neue Richtung und einen neuen Impuls gegeben. Alle seine Erfahrungen und Ansichten wurden und werden unzählige Male immer wieder einer neuen Prüfung unterworfen, und fast ein jeder Arzt, der Gelegenheit dazu hat, findet sich aufgefordert, das Sichere von dem weniger Sichern oder Unwahren zu scheiden.

Lännec glaubte anfangs, das Auskultiren mit dem Stethoskope sey eine ganz andere Explorationsmethode, als das unmittelbare Anlegen des Ohrs an den Thorax. Später scheint er zwar diese Meinung geändert zu haben, indess stellte er sich vor, dass derjenige, der das Stethoskop nicht benütze, und bloss mit dem Ohre auskultire, nie eine hinreichende Sicherheit in der Diagnose erlangen könne. Dessenungeachtet wurde die Auskultation ohne Stethoskop — die unmittelbare Auskultation — von vielen Ärzten in Anwendung gebracht, und es wurden allerhand Vorzüge derselben vor der Auskultation mit dem Stethoskope — der mittelbaren Auskultation — angeführt.

Ich halte es für überflüssig, hier sämmtliche Vortheile und Nachtheile, die einer jeden der beiden Methoden zugedacht und vorgeworfen wurden, zu wiederholen. Man hört mit dem blossen Ohre stärker, als durch das Stethoskop; man kann aber das blosse Ohr nicht an jede Stelle des Thorax anlegen, die Krankheit oder das zu untersuchende Individuum können von der Art seyn, dass das Anlegen des Ohrs an die Brust des Kranken, selbst wenn man dieselbe mit reiner Wäsche bedeckt, dennoch wenigstens eine grosse Überwindung von Seite des Arztes erfordert.

Ich glaube also, dass man das Stethoskop nicht entbeh ren kann, und dass es darum nothwendig ist, sich mit dem Instrumente vollkommen vertraut zu machen; dass man aber auch die Auskultation ohne Stethoskop verstehen müsse, weil bei gewissen Lagen des Kranken und Stellungen des Bettes das unmittelbare Anlegen des Ohres leichter möglich ist, als die Applikation des Stethoskops.

Das Hören mit dem Stethoskope muss gelernt werden, selbst wenn man ohne Stethoskop fertig auskultirt, und eben so muss derjenige, der gewohnt war, stets das Stethoskop zu gebrauchen, mit dem blossen Ohre erst deutlich unterscheiden lernen.

Ich finde durchaus nicht, dass die auskultatorischen Zeichen, die man aus der Stimme entlehnt, durch das Stethoskop deutlicher hervortreten, als ohne dasselbe, wie Lännec meinte; ich finde aber auch nicht, dass die Kranken vor dem Stethoskope mehr erschrecken, als wenn man den Kopf auf die Brust legt, und dass ihnen das letztere jedesmal angenehmer ist, als die Applikation des Stethoskops. Wenn der Kranke im Bette liegt, wird man mit seltenen Ausnahmen es bequemer finden, das Stethoskop zu gebrauchen. Sitzt, oder steht der Kranke, so ist besonders der Rücken mit dem blossen Ohre sehr leicht zu untersuchen.

Die beste Form des Stethoskops, und das Materiale, woraus es zu verfertigen, ist für die mit der Auskultation noch nicht Vertrauten gewöhnlich ein Gegenstand von besonderer Sorge. In Bezug auf das Hören ist die Wahl des Holzes ganz gleichgültig; denn der Schall geht nur wenig durch das Helz der Röhre, sondern grösstentheils durch die Luft. Je leichter das Holz, desto bequemer ist das Stethoskop für den Arzt, und selbst für den Kranken. Ob das Stethoskop kurz oder lang ist, aus einem oder zwei zusammengeschraubten oder zusammengeschobenen Stücken besteht, ist in Bezug auf das Hören ganz gleich. Das zum Aufsetzen auf die Brust bestimmte trichterförmige Ende darf nicht zu umfänglich seyn; denn ein solches Ende kann schwerer so applicirt werden, dass es genau aufliegt, auch kann der zu weite höhlenartige Raum manches Geräusch modificiren. Es reicht hin, wenn der Trichter etwas über einen Zoll im Durchmesser hat. Das Ohrstück des Stethoskops kann man konvex oder konkav oder plan haben, wenn die Scheibe nur gross genug ist, um das Ohr genau zu schliessen. Die Applikation des Piorry'schen Stethoskops scheint mir der Kürze des Instrumentes wegen häufig unbequem und zuweilen auch unmöglich. Man wird diess dann finden, wenn man Kranke zu untersuchen hat, die sich schwer bewegen können. Ich gebrauche aus diesem Grunde ein Stethoskop, das einen Schuh lang ist.

Sowohl beim Auskultiren mit, als ohne Stethoskop muss man den Kranken so wenig als möglich belästigen, was ohnebin von jeder Untersuchung gilt. Das Ohr und das Stethoskop darf demnach nie angedrückt werden; es muss nur so anliegen, dass die Luft im Ohre oder Stethoskope von der äussern völlig abgeschlossen ist.

Anfänger in der Auskultation können sich vor dem zu starken Andrücken nicht genug in Acht nehmen. Bei der Aufmerksamkeit auf das Geräusch vernachlässigen sie ihre Haltung, und sinken mit der ganzen Schwere des Kopfes auf die Brust des Kranken, welche Last selbst einen Gesunden im Athmen hindert, um so mehr aber dem Kranken beschwerlich seyn muss. Das Stethoskop verursacht überdiess Schmerz, indem der Druck nur auf eine geringe Fläche wirkt. Wer aber auf seine Haltung aufmerksam ist, der wird selbst dem empfindlichsten Kranken durch das Ansetzen des Stethoskops oder durch das Anlegen des Ohres fast keine Belästigung machen, falls dieser nicht von Vorurtheilen, oder Furcht befangen ist.

Von einer oder auch von mehreren Stellen des Thorax kann man nicht die Beschaffenkeit der ganzen Lunge und des Herzens beurtheilen, man muss also, wenn man die Aufklärung, welche die Auskultation über die im Thorax befindlichen Organe geben kann, erlangen will, nach einander alle Stellen des Thorax untersuchen, und die auf den einzelnen Stellen gewonnenen Resultate vergleichen.

Erstes Kapitel.

Von den auskultatorischen Erscheinungen der Respirationsorgane.

Die auskultatorischen Erscheinungen der Respirationsorgane sind die am Thorax hörbare Stimme, die Geräusche, welche die durchströmende Luft während der In - und Exspiration in den Respirationsorganen verursacht, und endlich das Geräusch, das durch Reibung der rauhen Pleurasiächen verursacht wird.

I. Auskultation der Stimme.

Man braucht keine sehr bedeutende Zahl gesunder und brustkranker Individuen zu auskultiren, um sich zu überzeugen, dass die Stimme am Thorax bei einigen Individuen sehr stark gehört wird, indess sich bei andern, wenn sie noch so laut sprechen, am Thorax nur ein undeutliches schwaches Summen oder gar keine Spur der Stimme vernehmen lässt. Man erfährt eben so leicht, dass die Stimme bei einem und demselben Menschen sowohl im gesunden Zustande als bei Krankheiten der Brustorgane nicht an allen Stellen des Thorax gleich stark gehört wird.

Nach einiger Übung in der Auskultation gelangt man zu der Überzeugung, dass die Stimme am Thorax in den verschiedensten Graden von Stärke, bis zu dem, wo es dem Auskultirenden scheint, als werde ihm unmittelbar ins Ohr gesprochen, gehört werden kann, und dass sich mancherlei Abweichungen in der Helligkeit, im Timbre etc. der Stimme bemerken lassen.

S. 1. Über die Stärke der am Thorax hörbaren Stimme.

Forscht man nach dem Grunde der Verschiedenheit in der Stärke der Stimme am Thorax, und befragt darüber die Beobachtungen an Kranken und die Leichenuntersuchungen, so ergibt sich im Allgemeinen, dass die Stimme an Stellen des Thorax, unter welchen Exkavationen in der Lunge, Hcpatisation, Infiltration des Lungenparenchyms mit Tuberkelmaterie etc., Exsudate in der Pleurahöhle sich befinden, verstärkt angetroffen wird, wiewohl diess nicht bei jedem solchen Krankheitsfalle, und nicht während der ganzen Dauer
der krankhaften Beschaffenheit der Respirationsorgane der
Fall ist. In einer Menge anderer Krankheiten, so wie oft
bei den aufgezählten Veränderungen, und im gesunden Zustande der Respirationsorgane hört man am Thorax entweder
gar keine Stimme, oder man hört bloss ein undeutliches
Summen.

Wenn man die Stärke der Stimme an den verschiedenen Stellen des Thorax vergleicht, so ergibt sich, dass bei gesunden Individuen die Stimme am stärksten zwischen den Schulterblättern und dem Rückgrathe, weniger stark unter den Schlüsselbeinen, noch schwächer in der Achselhöhle und an den übrigen Stellen des Thorax gehört wird. Bei Krankheiten lässt sich durchaus keine Regel feststellen.

a. Die verschiedene Stärke der Stimme am Thorax lässt sich nach den Gesetzen der Schallleitung nicht erklären.

Da die Stimme im Larynx entsteht, und nie in der Brust gebildet werden kann, so muss man die schwache sowohl als die starke Stimme am Thorax vom Larynx herleiten, und es hat den Anschein, als ob die schwache Stimme am Thorax durch eine schlechte, die starke Stimme dagegen durch eine bessere Schallleitungsfähigkeit der, zwischen dem Larynx und der Thoraxwand gelegenen Theile bedingt sey.

Länne e erklärte die verschiedene Stärke der Stimme am Thorax nur zum Theil aus der verschiedenen Schallleitungsfähigkeit des Lungenparenchyms; er hielt das normale Lungenparenchym für einen schlechten Schallleiter, dem verhärteten luftleeren, infiltrirten Lungenparenchym, Flüssigkeiten im Thorax schrieb er dagegen eine verstärkte Schallleitungsfähigkeit zu, indem er die Ansicht hatte, dass feste Körper den Schall besser leiten, als die atmosphärische Luft.

Späterhin wurde die Verstärkung der Stimme am Thorax in vielen Fällen ganz auf Rechnung des stärkeren Schallleitungsvermögens der verhärteten oder komprimirten Lunge, und der Flüssigkeiten gebracht, und meines Wissens hat nur Raciborsky diese Erklärungsweise nicht angenommen.

Wenn man im Verlause einer Pneumonie — bei Lungenhepatisation — wiederholt auskultirt, so geschieht es, dass man einmal die Stimme sehr verstärkt, das andere Mal aber ganz schwach hört, ohne dass nach allen übrigen Zeichen, insbesondere nach den Zeichen aus der Perkussion, eine Veränderung in der Hepatisation vorgegangen wäre. Das Verschwinden und Wiedererscheinen der Stimme an derselben Stelle bei Hepatisation des Lungenparenchyms ist nicht etwa eine selten vorkommende, sondern, wie allgemein bekannt ist, eine sehr gewöhnliche Erscheinung, und ein jeder, der mehrere Pneumoniker auskultirt hat, wird ersahren haben, dass die verstärkte Stimme am Thorax — Bronchophonie — innerhalb einiger Minuten mehrmal erscheinen und wieder verschwinden kann.

Dieses Verschwinden und Wiedererscheinen der verstärkten Stimme beim Unverändertbleiben der hepatisirten Lungenparthie ist im Widerspruche mit der Erklärung der Verstärkung der Stimme durch das grössere Schallleitungsvermögen der härteren Lunge, und man müsste diesen Widerspruch beseitigen können, wenn die Erklärung als richtig bestehen sollte.

Man weiss allgemein, dass die Stimme, wenn sie verschwunden ist, nach einem stärkeren Athemzuge, noch leichter aber nach dem Husten wieder erscheint, und dass sie gerne wieder verschwindet, wenn der Kranke einige Zeit nicht gehustet und nicht ausgeworfen hat. Es scheint nach diesem so ziemlich sicher, dass die Stimme durch die hepatisirte Stelle sich dann hören lässt, wenn die in der Hepatisation verlaufenden Bronchien durch Flüssigkeiten nicht obliterirt sind, also Luft enthalten; dass sie dagegen bei Obliteration der Bronchien durch Schleimverschwindet. Diese Erklärung des Verschwindens und Wiedererscheinens der Stimme bei Lungenhepatisation beseitigt die Zweifel gegen

das stärkere Schallleitungsvermögen der hepatisirten Lunge keineswegs; denn wäre dieses wirklich vorhanden, so müsste es gleichgültig seyn, ob die Bronchien Luft oder Flüssigkeit enthalten.

So wie bei dem hepatisirten Lungengewebe muss man das stärkere Schallleitungsvermögen auch bei Exsudaten in der Brusthöhle bezweifeln, wenn man bedenkt, dass die Stimme mit der Zunahme des Exsudates immer schwächer wird, da doch gerade das Gegentheil erfolgen müsste, wenn das Exsudat den Schall besser zu leiten im Stande wäre.

Die Widersprüche in den Erscheinungen mit der allgemein als wahr angenommenen Erklärung erheischen eine wiederholte Prüfung des Gegenstandes. Wenn man das über die verschiedene Schallleitungsfähigkeit der Körper in der Physik bisher Bekannte erwägt, so wird man finden, dass sich dadurch der in Frage stehende Punkt nicht beantworten lässt. Die Schallleitungsfähigkeit ist nur sehr im Allgemeinen dargestellt. Man geht darum ohne Zweifel am Sichersten, wenn man Experimente anstellt, ob die hepatisirte oder die normale Lunge, die Luft oder das Wasser den Schall besser leitet.

Zur bessern Verständigung über diese sehr einfachen Experimente glaube ich noch einiges vorher anführen zu müssen. Die menschliche Stimme, und jeden andern Schall, der in der Luft gebildet wird, oder in der Luft fortgeht, hört man in der Luft am weitesten. Wer unter Wasser taucht, hört den ausserhalb des Wassers hervorgebrachten Schall entweder gar nicht oder sehr dumpf. Man hört den Schall aus einem Zimmer in das andere schwach, oder gar nicht, weil die Wände die Schallleitung unterbrechen. Man verstopft den äussern Gehörgang, wenn man weniger hören will.

Dagegen hört man das leiseste Kratzen an dem Ende einer langen Stange, wenn man das Ohr an das andere Ende anlegt, während man, ohne das Ohr an die Stange anzulegen, also durch die Luft, auch bei bedeutender Nähe an der Entstehungsstelle des Schalles nichts vernimmt. Man hört un-

ter Wasser das Zusammenschlagen zweier Steine sehr stark, und der Schall verursacht eine unangenehme Empfindung; indess man ausserhalb des Wassers nur eine Andeutung dieses Schalles hat.

Diese Erfahrungen zeigen, dass der Schall aus dichten Körpern nur wenig in die Luft, und aus der Luft nur wenig in dichte Körper übergeht, und die Physik lehrt weiter, dass der Schall beim Übergange aus einem Medium in ein anderes jedes Mal reflektirt wird, und dass das neue Medium weniger Schall aufnimmt, als in denselben Raum sich fortpflanzen würde, wenn er dasselbe Medium enthielte, in welchem der Schall bis dahin fortgegangen war. Es wird um so mehr Schall reflektirt, also um so weniger in das neue Medium aufgenommen, je ungleicher die beiden Medien rücksichtlich ihrer Konsistenz und Kohärenz sind.

Dass man durch einen Stab das Tippen einer Uhr weiter hört, als durch die freie Luft, erklärt sich dem zu Folge daraus, dass der Stab den aufgenommenen Schall der umgebenden Luft nicht mittheilt, dass der Schall im Stabe koncentrirt bleibt; während der Schall, der aus der Uhr in die freie Luft übergeht, sich in dieser nach allen Richtungen zerstreut, also auf eine viel grössere Masse wirkt. Der Versuch mit dem Stabe beweist somit noch gar nicht, dass das Holz den Schall besser leitet, als die atmosphärische Luft, und man muss, um über den Grad der Schallleitungsfähigkeit der Luft, des Holzes und anderer Körper ins Klare zu kommen, andere Versuche machen. Diese werden darin bestehen, dass man einen und denselben Schall auf zwei, oder mehrere Medien, die sämmtlich dieselbe Form und dasselbe Volumen haben, wirken lässt, wobei die Medien in ein gleiches Verhältniss zur Umgebung gebracht werden müssen, und dann die Distanzen vergleicht, auf welche der Schall durch jedes der Medien gehört wird, oder die Stärke, mit welcher er sich in einer bestimmten Distanz vernehmen lässt.

Legt man z. B. eine hölzerne Röhre mit dem einen Ende auf eine Uhr, so dass die Uhr den ganzen Umkreis der Röhre berührt, und horcht am andern Ende derselben, so hört man das Tippen gleichzeitig durch das Holz und durch die Luft der Röhre. Schiebt man darauf einen genau passenden soliden Holzcylinder in die Röhre, und legt dieselbe wie zuvor an, so hört man das Tippen durch das Holz der Röhre und durch den soliden Holzcylinder. Würde das Holz den Schall stärker leiten, als die Luft, so müsste man im zweiten Falle das Tippen der Uhr stärker hören als im ersten. Es ist aber gerade das Gegentheil wahr, wie sich ein jeder leicht überzeugen kann. Es ist sonderbar, dass man sich beim Auskultiren einer Röhre und nicht eines soliden Cylinders bedient, und dennoch behauptet, der Schall werde durch feste Körper besser, als durch die Luft geleitet.

Die bisherigen Betrachtungen über die Verschiedenheit im Schallleitungsvermögen der Körper und deren Bedingungen sprechen nicht dafür, dass man die Verstärkung der Stimme am Thorax aus der bessern Schallleitungsfähigkeit des verhärteten Lungenparenchyms und der Flüssigkeiten erklären könne. Die Stimme gelangt ins Lungenparenchym ohne Zweisel durch die Lust in der Trachea und in den Bronchien; denn würde sie durch die Wand der Trachea geleitet, so müsste sie sich eben so gut durch die allgemeinen Bedeckungen über die Brustwand verbreiten. In der gesunden Lunge, wo die Luft bis in die Luftzellen ein Kontinuum bildet, wird somit die Stimme bis in die Luftzellen, also weiter geleitet werden, als in einer hepatisirten oder von Flüssigkeit komprimirten Lunge, in welcher die Luftzellen und feinen Bronchien keine Lust mehr enthalten. Je dichter ein Körper ist, desto schwerer tritt der Schall aus der Luft in denselben über; es muss somit der Schall aus der Luft der Luftzellen und Bronchien einer normalen Lunge vollständiger auf die Lungensubstanz selbst übergehen, als der Schall aus der Luft der grössern Bronchien einer hepatisirten Lunge in das dichtere Gewebe derselben.

Einen direkten Versuch über die Schallleitungsfähigkeit des normalen und hepatisirten Lungengewebes, der Flüssigkeiten etc. wird man der gegebenen Regel entsprechend auf die leichteste Weise etwa folgender Massen anstellen können: Man nimmt eine normale Lunge aus dem Kadaver heraus, und spricht in ein darauf gesetztes Stethoskop, während jemand an derselben Lunge durch ein Stethoskop auskultirt. Indem man die beiden Stethoskope nach und nach in verschiedenen Distanzen aufsetzt, erfährt man nach einigen Versuchen, bis auf welche Distanz die Stimme durch diese Lunge vernommen wird. Eben so verfährt man mit einer gleich grossen hepatisirten, oder durch Flüssigkeit komprimirten Lunge etc.

Sehr oft wiederholte Versuche der Art haben mir immer gezeigt, dass man durch die lufthältige Lunge den Schall etwas weiter hört, als durch die hepatisirte. Der Unterschied ist aber so unbedeutend, dass man, wenn sich die Sache auch umgekehrt verhielte, aus der verschiedenen Schallleitungsfähigkeit der normalen, der hepatisirten Lunge und der Flüssigkeiten die sehr bedeutenden Abweichungen in der Stärke der Stimme am Thorax durchaus nicht erklären könnte. Nach all dem ist es nicht das verschiedene Schallleitungsvermögen des gesunden und durch Krankheiten veränderten Lungenparenchyms, was man als Grund zur Erklärung der auskultatorischen Erscheinungen der Respirationsorgane gebrauchen kann.

b. Erklärung der verschiedenen Stärke der Stimme am Thorax nach den Gesetzen der konsonanz.

Dass man einen Schall entfernt eben so stark hört, als an der Entstehungstelle, lässt sich nur daraus begreifen, dass der Schall verhindert wird, sich zu verbreiten, dass er also im Fortschreiten koncentrirt bleibt, oder aber daraus, dass sich der Schall auf dem Wege durch Konsonanz wieder erzeugt, und so verstärkt. Hört man einen Schall in der Entfernung stärker als an der Ursprungstelle, so muss er sich durch Konsonanz verstärkt haben.

Das Konsoniren — Mittönen — ist eine bekannte Erscheinung. Eine gespannte Guitarre-Saite tönt, wenn derselbe Ton in ihrer Nähe auf einem andern Instrumente, oder durch die menschliche Stimme hervorgebracht wurde. Eine Stimmgabel tönt in der Luft gehalten viel schwächer, als wenn man sie auf einen Tisch, auf einen Kasten etc. aufsetzt. Es muss somit der Tisch den Ton verstärken, also dieselben Schwingungen machen, als die Stimmgabel, er muss konsoniren. Der Ton der Maultrommel ist in freier Luft kaum vernehmbar, er erscheint viel stärker, wenn man dieselbe innerhalb der Mundhöhle in Bewegung setzt. Es muss daher die Luft in der Mundhöhle den Schall der Maultrommel verstärken, also mit der Maultrommel konsoniren.

Es geschieht zuweilen, dass man die Stimme am Thorax stärker hört, als am Larynx, und diess beweist schon eine Verstärkung der Stimme durch Konsonanz innerhalb der Brusthöhle. Die verschiedene Stärke der Stimme am Thorax dürfte sich demnach durch Veränderungen in der Stärke der Konsonanz innerhalb der Brusthöhle erklären lassen. Zu dem Ende ist es nothwendig zu erforschen, was innerhalb der Brusthöhle mit der Stimme konsonirt, und durch welche Umstände die Konsonanz verändert werden kann.

Die Stimme, wie sie aus dem Munde hervortritt, ist aus dem ursprünglichen Schalle im Larynx, und aus dem konsonirenden Schalle im Schlunde, in der Mund- und Nasenhöhle gebildet. Diess zeigen die Veränderungen, welche die Stimme bei derselben Haltung des Kehlkopfes durch Verschliessen und Öffnen der Nasenlöcher, durch Schliessen und Öffnen des Mundes erleidet. Bekanntlich wird die Höhe der Stimme durch den Kehlkopf bestimmt, und das Schliessen oder Öffnen des Mundes und der Nasenlöcher hat keinen Einfluss auf dieselbe; dagegen hängt die Artikulation der Stimme und ein Theil der Modifikationen im Timbre von den Mund- und Nasenlöchern ab.

Weil es gewiss ist, dass der im Kehlkopfe gebildete Schall in der Luft des Rachens, des Mundes und der Nasenhöhle konsonirt, so kann es nicht zweiselhaft seyn, dass auch die Luft in der Trachea, in den Bronchien etc. in konsonirende Schwingungen versetzt werden kann, wenn im Larynx ein Schall entsteht. Demnach ist die Luft in der Brusthöhle das mit der Stimme Konsonirende, und nicht das Lungenparenchym, was ohnehin zum Mittönen nicht besonders geeignet scheint, da es weder starr, noch hinreichend gespannt ist. Zum Konsoniren taugen nämlich hauptsächlich solche Körper, die zum Selbsttönen geeignet sind, also die Luft, gespannte Saiten, Membranen, Stäbe, Platten etc.

Die Luft kann bekanntlich nur dann konsoniren, wenn sie in einem begränzten Raum sich befindet. Im Freien ist die menschliche Stimme und jeder andere Schall viel schwächer als in einem Zimmer. Die innerhalb des Resonanzkastens einer Guitarre, Violine, eines Klaviers etc. befindliche Luft konsonirt mit den Tönen der Saiten, während die freie Luft den Ton dieser Saiten nicht verstärkt.

Die Stärke des Mittönens hängt von der Gestalt und Grösse des eingeschlossenen Luftraumes und von der Beschaffenheit der begränzenden Wandungen ab. Es scheint, dass der konsonirende Schall des eingeschlossenen Luftraumes desto stärker wird, je vollständiger die begränzende Wandung den in der Luft fortgehenden Schall reflektirt. Von Mauern begränzte Lufträume geben die grösste Konsonanz, indess unter einem Zelte von Leinwand der Schall nur wenig verstärkt wird. Bekannt ist die Ursache der Verstärkung des Schalles im Sprachrohre etc.

Die in einem bestimmten Raume eingeschlossene Luft konsonirt nicht mit jedem Schalle, und falls mehrere Töne oder Geräusche darin konsoniren, so geschieht diess nicht mit gleicher Stärke und Helligkeit. Jeder mitklingende Körper kann nämlich nur jene Töne begleiten, die er entweder selbst zu geben im Stande ist, oder deren Schwingungen ein aliquoter Theil von jenen sind, welche am mittönenden Körper statt finden können. — Baumgartners Physik IV. Ausgabe I. Band pag. 276.

Die erwähnten Sätze aus der Physik in Betracht gezogen, liesse sich über das Mittönen der Stimme in der Brusthöhle etwa Folgendes festsetzen. Die in der Trachea und in den Bronchien enthaltene Luft kann mit der Stimme so weit konsoniren, als die sie begränzenden Wandungen, rücksichtlich der Fähigkeit, den Schall zu reflektiren, eine, den Wandungen des Larynx, der Mund-und Nasenhöhle gleiche, oder analoge, Beschaffenheit haben. In der Trachea, deren Wandung aus Knorpelringen besteht, konsonirt die Stimme fast eben so stark, als sie im Larynx schallt. In einem nicht viel geringeren Grade muss das Konsoniren in den beiden Luftröhrenästen statt haben, in welche die Trachea übergeht.

Mit dem Eintritte ins Lungenparenchym haben die Bronchien bekanntlich nicht mehr an einander stossende Knorpelringe, sondern die Knorpel bilden unregelmässige dünne Plättchen, die in einem Fasergewebe liegen. Die Plättchen werden mit der weitern Verzweigung der Bronchien immer kleiner, dünner und seltener. Die feinen Bronchien endlich stellen bloss dünnhäutige Kanäle dar. Innerhalb der Bronchien, die im normalen Lungenparenchym verlaufen, konsonirt demnach die Stimme ungleich weniger stark, als in der Trachea, und zwar um so schwächer, je mehr sich die Knorpel darin verlieren.

Die Bedingungen, unter welchen die Stimme in der Luft der innerhalb des Lungenparenchyms verlaufenden Bronchien stärker konsoniren kann, sind: Die Wände dieser Bronchien müssen entweder aus Knorpeln bestehen, oder falls sie häutig bleiben, müssen sie sehr dick, oder das sie umgebende Lungengewebe muss luftleer geworden seyn — in allen diesen Fällen restektiren die Wände den Schall stärker, als die häutigen Wände des normalen Bronchus, — und es muss die Luft in diesen Bronchien mit der Luft im Larynx in Kommunikation stehen.

Wenn die Luft in einem begränzten Raume in selbsttönende — ursprüngliche oder mitgetheilte — Schwingungen versetzt wird, so gerathen nicht selten auch die begränzenden Wandungen in dieselben Vibrationen, und zwar um so leichter, je weniger starr und hart sie sind. Die Orgelpfeise vibrirt, wenn die in ihr enthaltene Lust tönt. Ein gleiches bemerkt man am Sprachrohre. Der Kehlkopf vibrirt bei jedem Laute, und seine Vibrationen lassen sich selbst durch, mehrere Zolle dicke, Fleischlagen empfinden. Die Wandungen der, innerhalb des Lungenparenchyms verlausenden Bronchien werden, wenn in der enthaltenen Lust die Stimme konsonirt, eben so in Vibrationen gerathen, als der Kehlkopf, und diese Vibrationen werden sich durch mehrere Zolle dicke Fleischlagen oder Flüssigkeitsschichten bis auf die Brustwand verbreiten können, und man wird auf der Brustwand den in den Bronchien konsonirenden Schall vernehmen.

c. Angabe der krankhaften Zustände der Respirationsorgane, welche der gegebenen Erklärung zu Folge eine Verstärkung der Stimme am Thorax bedingen können.

Dahin gehören: .

1. Alle Krankheitsprozesse, durch welche das Lungenparenchym durch Infiltration mit fremdartiger Materie luftleer — derb, dicht, solid — wird. — Die Wände eines Bronchus, der von so beschaffenem Parenchym umgeben ist, müssen den Schall eben so stark, oder selbst noch stärker reslektiren, als die Wände der Trachea. Die Reslexion des Schalles, also die Stärke der Konsonanz wird um so grösser seyn, je dichter das Parenchym geworden ist.

Die Krankheitsprozesse, die das Lungenparenchym durch Infiltration eines fremdartigen Stoffes solid machen, sind: Entzündung des Lungenparenchyms, Infiltration desselben mit Tuberkelmaterie, und die Infiltration desselben mit Blut — hämorrhagischer Infarktus, apoptexia pulmonum nach Lännec. — Bei allen diesen Krankheitsprozessen muss, wenn die Stimme am Thorax verstärkt erscheinen soll, die ins Lungenparenchym infiltrirte Substanz alle Luft aus den Luftzellen verdrängt haben, und der dadurch solid ge-

wordene Lungentheil muss so umfänglich seyn, dass er wenigstens einen der grössern Bronchialzweige enthält, welcher Luft enthalten und mit dem Larynx in Kommunikation
stehen muss. Je voluminöser der solid gewordene Lungentheil
ist, desto leichter erscheint eine Verstärkung der Stimme an
der entsprechenden Stelle des Thorax.

Die Pneumonie im Beginnen, oder die auf einzelne Läppchen beschränkte Entzündung - lobuläreHepatisation das Lungenödem, ein Bluterguss ins Lungenparenchym, der nur einen kleinen Umfang hat, erzeugen theils keine, theils eine nur unbeträchtliche Verstärkung der Stimme am Thorax. Solitäre Tuberkeln geben, wenn sie noch so zahlreich sind, keine Verstärkung der Stimme, so lange das zwischenliegende Parenchym lufthältig bleibt. Da der Bluterguss in das Lungenparenchym - Lännec's Lungenapoplexie ein nur selten vorkommender krankhafter Zustand ist, so hat man nicht oft Gelegenheit, durch denselben die Stimme am Thorax verstärkt zu finden, um so mehr, als er gewöhnlich auf einen kleinen Umfang sich beschränkt. Desto häufiger aber bemerkt man die Verstärkung der Stimme am Thorax in Folge einer ausgebreiteten Hepatisation und Infiltration der Lungensubstanz mit Tuberkelmaterie. Die nach nicht gelösten Hepatisation zurückbleibende Verhärtung der Lungensubstanz etc. bedingt die Verstärkung der Stimme am Thorax so wie die Hepatisation. Bei Lungenödem habe ich die Lungensubstanz noch nie völlig luftleer gesehen, wenn nicht gleichzeitig Kompression von aussen vorhanden war.

2. Die krankhaften Zustände, durch welche das Lungenparenchym in Folge von Kompression luftleer wird. Die Wände eines Bronchus, der vom komprimirten luftleeren Parenchym umgeben ist, werden den Schall eben so stark reflektiren, als die Weichtheile des Mundes. Durch Kompression allein erlangt aber die Lungensubstanz nie den Grad von Solidität, den sie durch Infiltration von plastischer Materie — bei Pneumonie — und durch Infiltration von Tuberkelmaterie erhält, daher wird die Ver-

stärkung der Stimme am Thorax in den Fällen, wo sie allein durch Kompression des Lungenparenchyms bedingt ist, nie so bedeutend seyn, als da, wo sie durch Hepatisation oder Infiltration von Tuberkelmaterie erzeugt wird.

Damit durch Kompression des Lungenparenchyms eine Verstärkung der Stimme am Thorax möglich sey, muss der komprimirte Lungentheil einen solchen Umfang haben, dass darin wenigstens ein Bronchus verläuft, der durch die Menge seiner Knorpel der völligen Obliteration widersteht. Die bloss häutigen Bronchien werden nämlich bei der Kompression des Lungenparenchyms ebenfalls völlig komprimirt.

Das Lungenparenchym wird durch Flüssigkeiten, oder festes Exsudat, oder Luft, Gas in der Pleurahöhle, durch daselbst vorhandene Geschwülste aller Art, durch Vergrösserung des Herzens, Exsudat im Herzbeutel, Aneurysmen der Aorta etc. durch Verkleinerung des Brustraumes in Folge des zu hohen Standes der Baucheingeweide, in Folge von Verkrümmungen des Rückgraths, oder sonstigen Missstaltungen des Brustkorbes komprimirt; aber unter diesen krankhaften Zuständen gibt das Vorhandenseyn von Flüssigkeit oder Luft in der Pleurahöhle am häufigsten, und fast ausschliesslich Veranlassung zur Verstärkung der Stimme am Thorax. In der grossen Zahl von Leichen, die seit vielen Jahren im hierortigen allgemeinen Krankenhause eröffnet wurden, fand sich die Kompression grösserer Lungenparthien bis zur völligen Luftleere fast nur bei Flüssigkeiten oder Luft in der Pleura. Bei Verkrümmungen des Rückgraths findet man zwar die Kompression nicht selten auf einen ganzen Lappen und selbst auf einen ganzen Lungenflügel ausgedehnt; doch enthält der komprimirte Lungentheil, falls er nicht anderweitig krankhaft verändert ist, kleinere Parthien abgerechnet, immer Luft. Bei grosser Ausdehnung des Unterleibes, wobei das Zwerchfell in die Höhe getrieben, und der Brustraum beengt wird, erscheinen fast durchgehends nur die Spitzen der verkleinerten untern Lungenlappen völlig luftleer, indess in dem übrigen Theile dieser Lappen immer noch Luft enthalten ist.

Eben so wird man selbst bei enormer Vergrösserung des Herzens, bei der grössten Erweiterung des Herzbeutels durch Flüssigkeit, und bei grossen Aneurysmen der Aorta fast nie, oder doch nur in äusserst seltenen Fällen eine grössere Lungenparthie durch die Kompression allein vollkommen luftleer antreffen. Bei Verkleinerung des Brustraumes in Folge von Resorption grosser Exsudate in der Pleurahöhle, enthält die Lunge, selbst wenn sie auf ein bedeutend kleines Volumen reducirt ist, immer Luft, falls ihr Parenchym nicht verhärtet etc. ist.

Es wirft sich nun von selbst die Frage auf, wie viel Flüssigkeit oder Luft erforderlich ist, um eine so grosse Lungenparthie zu komprimiren, dass dadurch eine Verstärkung der Stimme am Thorax möglich wird. Diese Frage lässt sich im Allgemeinen nicht beantworten. Zuweilen ist ein Lungenlappen nur auf drei Viertheile seines Umfanges reducirt, und doch schon vollkommen luftleer, zuweilen aber kann er auf ein Drittheil, und selbst noch darunter verkleinert seyn, und noch etwas Luft enthalten. Diese Verschiedenheit hängt offenbar davon ab, ob das Lungenparenchym schütter ist, und nur wenig Flüssigkeiten enthält, oder aber dicht, und reichlich mit Flüssigkeiten versehen ist. Dieser Umstand und die verschiedene Weite des Thorax macht, dass bald schon ein halbes Pfund Flüssigkeit hinreicht, um Verstärkung der Stimme am Thorax zu erzeugen, bald aber dazu mehrere Pfunde erforderlich sind.

Ist die Lunge mit der Brustwand nicht verwachsen, so sammelt sich jede Flüssigkeit in dem untersten Theile des Brustraumes, komprimirt die untere Lungenparthie, und gibt daselbst am häufigsten Veranlassung zur Verstärkung der Stimme. Der luftleer gewordene untere Lungenlappen sinkt nämlich wegen seines grössern specifischen Gewichtes in der Flüssigkeit unter, die in ihm verlaufenden grössern Bronchialzweige erhalten zwar ein kleineres Volumen, sie werden aber anfänglich nicht vollständig obliterirt und nicht schief gedrückt, und die darin enthaltene Luft bleibt in Kommunikation

mit der Luft in den übrigen Bronchien, falls nicht Schleim etc. diese Kommunikation unterbricht. Die obern Lungentheile sind zur Erzeugung einer verstärkten Stimme in Folge von Kompression des Lungenparenchyms nicht so gut geeignet, als der untere Lungenlappen. Insbesonders gilt diess von der vordern obern Lungenparthie. Der mehr gekrümmte Lauf der Bronchien der obern Lungenparthien macht, dass dieselben bei Kompression des Lungenparenchyms häufiger obliterirt werden. Dessenungeachtet trifft man, wenn die Menge der Flüssigkeit so gross ist, dass der ganze Lungenflügel komprimirt wird, die Verstärkung der Stimme zuweilen eben so gut an der vordern Brustfläche, als rückwärts unterhalb des Schulterblattes. Es lässt sich nicht ganz genau angeben, wie weit der Bronchus, in dem die Stimme stärker konsonirt, von der Brustwand entfernt seyn kann, damit sich der Schall aus diesem Bronchus auf der Brustwand noch vernehmen lässt. Es ist aber keinem Zweifel unterworfen, dass diese Entfernung ziemlich beträchtlich seyn kann. Man trifft die Verstärkung der Stimme selbst in Fällen, wo die Menge des Exsudates den Brustraum erweitert.

Wenn die Flüssigkeit wegen Verwachsung der Lunge mit der Brustwand in den untern Brustraum sich nicht begeben kann, sondern an einer bestimmten Stelle abgesackt ist, so dürfte sie nur in seltenen Fällen Verstärkung der Stimme veranlassen. Ich habe diese bei, über den obern Lungentheilen abgesackten, Exsudaten noch nie gefunden. Um die untern Lungenlappen dergestalt abgesackte Exsudate, dass die Flüssigkeit wenigstens mehr als die Hälfte der Oberstäche des Lungenlappens berührt, und in hinreichender Menge vorhanden ist, um den Lungenlappen entweder ganz, oder doch bis jenseits eines grössern Bronchialastes vollkommen luftleer zu machen, bedingen zuweilen eine verstärkte Stimme.

3. Verdickung und Vergrösserung (Hypertrophie) der Knorpel in den innerhalb der
Lunge verlaufenden Bronchien. — Dass die Stimme.
am Thorax bei ältern Leuten gewöhnlich stärker gehört wird,

als bei jüngern Personen, hat seinen Grund hauptsächlich in Zunahme der Bronchialknorpel an Grösse und Härte. Diese Knorpel können überdiess sowohl bei jungen als bei ältern Individuen durch Krankheiten verdickt und vergrössert werden. Eine solche Entartung der Knorpel in den Bronchien, die jedesmal von vermehrter und gewöhnlich von eiterartiger Sekretion der Bronchialschleimhaut begleitet wird, ist ein nicht oft vorkommender Krankheitsprozess, und dürfte nur äusserst selten zu einem so hohen Grade sich entwickeln, dass dadurch eine auffallende Verstärkung der Stimme erzeugt würde.

4. Exkavationen im Lungenparenchym und Erweiterungen der Bronchien (der Bronchus mag in seiner ganzen Länge gleichförmig, oder aber sackartig erweitert seyn) erzeugen eine Verstärkung der Stimme am Thorax ebenfalls nur dann, wenn die Wandungen derselben den Schall reslektiren, also in einer Dicke von mehreren Linien insiltrirt, verdichtet und lustleer sind. Sind Exkavationen oder erweiterte Bronchien von lusthältigem Parenchym umgeben, so veranlassen sie niemals eine Verstärkung der Stimme am Thorax.

d) Experimente zur Begründung der gegebenen Erklärung, die Verschiedenheit in der Stärke der Stimme am Thorax betreffend.

Man kann an Leichen, wo die Lungen hepatisirt, oder tuberkulös infiltrirt sind, oder Exkavationen enthalten, auf die Art experimentiren, dass man in den Kehlkopf eine hölzerne Röhre einbringt, und in diese spricht. Man mag die Lunge dabei innerhalb des Thorax lassen, oder aber sammt der Trachea und dem Larynx unverletzt aus der Brusthöhle nehmen, so geschieht es doch nur selten, dass man an den hepatisirten, tuberkulös infiltrirten, oder mit Exkavationen durchzogenen Theilen der Lunge die Stimme so hört, als es während des Lebens der Fall war. Gewöhnlich ist in der Leiche bei diesem Experimente die Stimme an den normalen Lungenparthien deutlicher als an den krankhaft veränderten. Experimentirt man mit der Lunge ausserhalb der Brusthöle, so kann die Stärke der Stimme an der normalen Lunge der Stärke der

Stimme nahe kommen, die man während des Lebens an der dem krankhaften Lungentheile entsprechenden Stelle des Thorax wahrgenommen hat. Man erzielt keine bessern Resultate, wenn man, statt in den Larynx durch eine Röhre hineinzusprechen, im Larynx selbst mittelst Blasens bei verengerter Stimmritze einen der menschlichen Stimme analogen Schall hervorruft. Diess erklärt sich daraus, dass nach dem Tode die Bronchien nur in den seltensten Fällen keine Flüssigkeit enthalten; fast immer ist die Kommunikation der tiefern Bronchien oder der Exkavationen mit dem Larynx durch Schleim, Blut, Serum etc. ganz oder theilweise unterbrochen. Dieser Umstand erschwert die Erlangung der gewünschten Resultate durch Experimente an Lungen, indem es ungemein schwierig und mühsam, ja gewöhnlich unmöglich ist, die Flüssigkeiten aus den Bronchien zu entfernen.

Man kann auf eine leichtere Weise die Modifikationen in der Stärke der Stimme, wie sie im normalen und kranken Zustande der Lungen statt finden muss, durch Versuche bestimmen. Die Häute des Dünndarmes stehen rücksichtlich der Fähigkeit, den Schall zu reflektiren, dem mehr häutigen Theile der Bronchien nahe; indess die Leber oder die Herzsubstanz in dieser Beziehung der hepatisirten Lunge gleichkommt.

Spricht man durch ein an einem Ende des mit Luft gefüllten Darmstückes aufgesetztes Stethoskop, so kann am andern Ende des Darmes durch ein Stethoskop wahrgenommen werden, dass die Stimme in der Luft des Darmes mittönt. Das Mittönen ist bei starker Spannung der Darmhäute weniger deutlich, als wenn dieselben weniger straff gespannt sind. Setzt man das Stethoskop nicht unmittelbar auf den Darm, sondern auskultirt man durch eine Zwischenlage, z. B. durch ein Stück Leber oder Lunge, oder durch eine mit Wasser gefüllte Darmparthie, die man auf den Darm legt, so nimmt man das Mittönen der Stimme in der Luft des Darmes schon nicht mehr, oder sehr unbedeutend wahr, wenn die Zwischenlage auch nur einen halben Zoll dick ist, und bloss die Mündung des Stethoskops deckt.

Bohrt man in eine Leber einen Gang, ohne jedoch auf der entgegengesetzten Seite durchzukommen, und spricht in denselben mittelst eines an die Öffnung angesetzten Rohres, das diese genau verschliesst, so wird man durch ein auf die Leber angesetztes Stethoskop nach der ganzen Länge des Ganges, und auf eine ziemliche Entfernung zu beiden Seiten desselben die Stimme so stark vernehmen, dass sie bei weitem jene Stimme übertönt, die aus dem Munde des Sprechenden durch das freie Ohr gehört wird. Man kann durch eine Zwischenlage von einigen Zollen Leber- oder Lungensubstanz, oder durch Knochen und Knorpel auskultiren, und noch immer lässt sieh die Stimme aus dem künstlichen Gange in der Leber vernehmen, obwohl sie mit Zunahme der Dicke der Zwischenlage immer schwächer, und zuletzt ganz unhörbar wird.

Taucht man die Leber unter Wasser, so hört man, falls man den Gang vor dem Eindringen des Wassers verwahrt, die Stimme in demselben mittelst des Stethoskops selbst durch eine, bis zwei Zoll und darüber dicke Wasserschichte.

Noch leichter als mit der Leber ist dieser Versuch mit einem Herzen zu bewerkstelligen. Entleert man die linke Herzkammer von Blut, und unterbindet den linken Vorhof, so lässt sich, nach Zerstörung der Aortaklappen, mittelst einer Röhre durch die Aorta in die Höhle des linken Ventrikels sprechen. Man hört dann beim Ansetzen des Stethoskops an das Herz das Mittönen der Stimme in der Herzhöhle, und kann sowohl durch Zwischenlagen von Lungen- und Lebersubstanz, als unter Wasser auskultiren.

Nimmt man den Larynx sammt der Trachea und den beiden Bronchialstämmen, welche letztern man unterbinden muss, und spricht durch eine Röhre in den Larynx, so verhält sich alles gerade so, wie bei dem Versuche mit der Leber und mit dem Herzen.

Taucht man einen mit Luft gefüllten Darm ganz unter Wasser, und setzt an denselben in einer beliebigen Entfernung zwei Stethoskope mit der Vorsicht an, dass in die Stethoskope kein Wasser dringt, (was sich leicht bewerkstelligen lässt) so hört man, wenn in das eine Stethoskop gesprochen wird, durch das andere das Mittönen der Stimme in der Luft des Darmes viel lauter, als wenn man diesen Versuch ausserhalb des Wassers macht. Gelangt ein Theil der Darmwand über die Obersläche des Wassers, so nimmt die Stärke des Mittönens sogleich ab.

Diese Versuche zeigen, wie ich glaube, ziemlich deutlich, wie sich die Stärke der Stimme am Thorax in den verschiedenen Zuständen der Lunge verhalten müsse. Wenn die Stimme in der Luft des Darmes, sobald dieser nicht unter Wasser getaucht ist, nur so schwach mittönt, dass sie durch eine, einen halben Zoll dicke, Zwischenlage von Lunge, Leber oder Flüssigkeit unhörbar wird, so wird die Stimme in den häutigen Bronchien ebenfalls nur so schwach konsoniren, dass man sie am Thorax wenig oder gar nicht hören kann, Gleichwie aber die Stimme in dem Lebergange, in der Herzkammer und in der Trachea so stark mittönt, dass sie sich durch Zwischenlagen von einigen Zollen Dicke vernehmen lässt, eben so wird die Stimme in den Bronchien einer hepatisirten, oder innerhalb der Exkavationen einer tuberkulös infiltrirten Lunge so stark konsoniren, dass sie am Thorax lauter ertönt, als die gleichzeitig aus dem Munde kommende durch das freie Ohr vernommen wird.

S. 2. Über die Helligkeit der konsonirenden Stimme,

Die konsonirende Stimme am Thorax erscheint bald heller bald dumpfer als die Stimme, die gleichzeitig aus dem Munde kommt. Der Grad der Helligkeit der Stimme geht nicht parallel mit dem Grade der Stärke derselben. Die Stimme kann hell und schwach, oder hell und stark, oder dumpf und stark seyn. Nicht minder als die Stärke ändert sich auch die Helligkeit der konsonirenden Stimme bei einem und demselben Kranken, und in eben so kurzen Zeitmomenten. So wie man nämlich ein Wort stark, das andere schwach vernehmen kann, eben so kann ein Wort hell, das andere dumpf gehört werden.

Ich habe durch Versuche an Leichen nicht bestimmen können, wovon der Unterschied in der Helligkeit der konsonirenden Stimme abhängt. Ich mochte an Gedärmen, an der Leber, oder an Lungen selbst, ausserhalb oder unter Wasser die Versuche machen, sie führten zu keinem Resultate. Ein verschiedener Druck, oder nur die Verrückung des Stethoskops kann in der Helligkeit der Stimme eine Abweichung hervorbringen, und man ist nicht immer im Stande, denselben Grad von Helligkeit der Stimme, wie man ihn einen Augenblick zuvor gehört hatte, zu erzeugen, selbst wenn man scheinbar sämmtliche Bedingungen, wie zuvor, erfüllt.

Den Gesetzen der Physik zu Folge erklärt sich die verschiedene Helligkeit der konsonirenden Stimme theils aus der Entfernung des Raumes, in welchem die Stimme konsonirt, von der Brustwand, theils aus der Vollkommenheit der Konsonanz selbst, die wieder von der Gestalt und Grösse des Luftraumes, und von der Beschaffenheit der begränzenden Wandung abhängig ist. In einem bestimmten Raume konsonirt nämlich nicht jeder Schall, und unter den darin konsonirenden Lauten nicht ein jeder mit gleicher Helligkeit.

S. 3. Über das Timbre (den Klang) der konsonirenden Stimme.

Die Stimme eines Menschen unterscheidet sich von der Stimme eines andern, und eben so der Schall eines musikalischen Instrumentes von dem Schalle anderer Instrumente nicht allein durch die Stärke, Helligkeit oder Höhe, sondern hauptsächlich durch eine Verschiedenheit in der Qualität, welche Verschiedenheit noch keine allgemein angenommene Bezeichnung hat, und Laut, Klang, oder Timbre des Schalles benannt wurde.

Das Timbre der konsonirenden Stimme am Thorax gleicht nie dem Timbre der Stimme, die man aus dem Munde hört, oft auch nicht dem Timbre, welches man beim Aufsetzen des Stethoskops an den Kehlkopf vernimmt.

Man kann die Stimme am Thorax als Nasenstimme, oder als die Stimme, die durch ein Sprachrohr, oder durch eine enge Röhre (Kindertrompetchen) geht, hören, oder sie erschallt, als ob sie aus einem Kruge käme, und ist dabei in seltenen Fällen von einem metallischen Echo begleitet; oder man hört einen zitternden Schall, gleich dem, welchen man beim Sprechen gegen ein ganz nahe an die Zähne eines Kammes gehaltenes Papier erzeugt. Endlich lässt sich die Stimme am Thorax zuweilen als blosses Lispeln vernehmen.

Die Modifikationen im Timbre der Stimme, die verschiedene Grade zulassen, können sich unter einander vielfach verbinden, so dass z. B. das Timbre einer engen Röhre zugleich das Timbre der Nasenstimme an sich trägt, wobei noch der Schall zitternd seyn kann. Die Nasenstimme, die Sprachrohrstimme etc. kann von einem Nachhalle, wie ihn das Sprechen in einen Krug hervorbringt, begleitet seyn; der zitternde Schall ist entweder allein hörbar, oder es lässt sich gleichzeitig eine andere Modifikation der Stimme vernehmen; der zitternde Schall, oder die Nasenstimme, oder der amphorische Klang (Krugklang) kann auch als ein Echo, erst einen Moment nach der Stimme am Munde vernommen werden.

Aus diesen vielfachen Verbindungen geht die grosse Mannigfaltigkeit im Timbre der konsonirenden Stimme hervor. Den Grund des verschiedenen Timbre's in der konsonirenden Stimme konnte ich durch Versuche an Kadavern nicht finden. Bei Versuchen mit Gedärmen unter- und ausserhalb des Wassers hört man gewöhnlich nicht das Timbre des Sprachrohrs; sehr häufig die Nasenstimme, den amphorischen Klang oder metallischen Nachklang. Bei Versuchen mit hepatisirten Lungen, mit der Leber, oder mit dem Herzen hört man das Timbre des Sprachrohrs, wenn die Schichte, durch die man auskultirt, nicht gar zu dick ist. Die Zwischenschichte kann übrigens Leber, Milz, Muskel, Wasser oder eine nicht sehr lufthältige Lunge seyn.

Besteht die Zwischenschichte aus einem, mit Luft gefüllten Darme, so geht das Timbre des Sprachrohrs in die Nasenstimme, oder selbst in den amphorischen Wiederhall über.

Mehrere Male hörte ich bei Versuchen mit Lebern nebst

dem gewöhnlichen, gleichzeitig auch einen zitternden Schall oder die Stimme als Nachklang. Diese Erscheinungen kamen aber immer ganz zufällig, und verschwanden eben so wieder, wesshalb ich nie im Stande war, zu ermitteln, wodurch dieselben bedingt waren.

Das Timbre bleibt sich, wie die Stärke und Helligkeit der konsonirenden Stimme bei demselben Kranken nicht gleich. Ein Wort kann das Timbre des Sprachrohres haben, das andere wie Nasenstimme lauten, eine Sylbe zitternd, die andere nicht zitternd erscheinen etc. Man bemerkt dasselbe bei Versuchen an Kadavern, und man ist oft nicht im Stande, irgend eine Ursache — nicht bloss nicht die nächste — der Veränderung im Timbre anzugeben.

S. 4. Über die Höhe der konsonirenden Stimme.

Die Höhe der Stimme am Thorax scheint zuweilen von der Höhe der Stimme, die aus dem Munde kommt, verschieden zu seyn. Bei genauerer Prüfung findet man, dass eine solche Abweichung in der Höhe der konsonirenden Stimme nur beim amphorischen Wiederhalle vorkommt. Bei der Nasenstimme, beim Timbre des Sprachrohres etc. findet sich keine Verschiedenheit von der Höhe der Stimme, die aus dem Munde kommt. Ich zweisle, dass Lännec unter dem Ausdrucke "voix plus aiguë" eine höhere Stimme verstanden hat, wie diess in Meissner's Übersetzung der zweiten Auslage Lännec's gegeben ist ").

S. 5. Über die Artikulation der konsonirenden Stimme.

Die Artikulation lässt sich am Thorax immer nur unvollkommen vernehmen. In dieser Beziehung lautet die Stimme so, als ob man mit fast unbeweglicher Zunge spräche. Doch gibt es auch da Gradationen. Die sehr starke Stimme kann weniger artikulirt erscheinen als die schwache, und am Lispeln lässt sich nicht selten die Artikulirung besser wahrnehmen, als an

^{*)} Lännec's Abhandlung von den Krankheiten der Lunge und des Herzens, übersetzt von Meissner. I. Theil pag. 56.

der Stimme selbst. Die Nasenstimme, die Röhrenstimme etc. kann mehr weniger artikulirt seyn.

§. 6. Lännec's Eintheilung der am Thorax hörbaren Stimme.

Lännec unterschied:

- 1. Den Wiederhall der Stimme im gesunden Lungengewebe, und in den kleinen Bronchien.
- 2. Den Wiederhall der Stimme in den grossen, an den Wurzeln der Lunge gelegenen Bronchien, bei normaler Beschaffenheit des Lungengewebes Bronchophonie. —
- 3. Den Wiederhall der Stimme in den Bronchien bei dichterem, verhärteten Lungengewebe zufällige Bronchophonie, bronchophonie accidentelle. —
- 4. Den Wiederhall der Stimme in einer, innerhalb des Brustraumes befindlichen, lufthältigen Höhle Bruststimme, Pektoriloquie. —
- 5. Den zitternden meckernden Wiederhall, durch Flüssigkeit in der Pleura bedingt Egophonie, meckernde Stimme. —

Ich stimme in Bezug auf die Pektoriloquie, accidentelle Bronchophonie und Egophonie den Ansichten Lännec's nicht bei, und werde bei der nähern Auseinandersetzung dieser Erscheinungen meine Gründe beibringen.

a. Lännec's Pektoriloquie und Bronchophonie.

Lännec bedient sich zur Feststellung der Unterschiede zwischen Pektoriloquie, Bronchophonie etc. der Ausdrücke: "Die Stimme geht ganz durch das Stethoskop; die Stimme geht nicht ganz durch den Cylinder; die Stimme dringt nicht in die Röhre etc." Sobald man die Stimme durch das Stethoskop hört, muss dieselbe immer durch dasselbe gedrungen seyn. Der Unterschied, den Lännec bezeichnen will, besteht darin, dass man in einem Falle bloss hört, in einem andern Falle aber gleichzeitig das Anschlagen der Schallwellen an das Ohr fühlt. Die Stimme geht vollständig

durch das Stethoskop, heisst demnach: Man hört die Stimme und empfindet dabei Vibrationen gleich denen, die das Sprechen unmittelbar ins Ohr verursacht.

Man kann aus den Werken Lännec's die Pektoriloquie nicht anders definiren, als den Wiederhall der Stimme in Exkavationen. Es wird nämlich nirgends eine Eigenthümlichkeit, ein Kennzeichen an der Stimme selbst, angegeben, wodurch diese sich als Pektoriloquie charakterisirt. Die Pektoriloquie wird nach Lännec eingetheilt in die vollkommene, in die unvollkommene und in die zweifelhafte. "Sie ist vollkommen, wenn man sie vermöge des offenbaren Durchganges der Stimme durch das Stethoskop, der genauen Umschreibung der Erscheinung, so wie derer, welche der Husten, das Rasseln und die Respiration zu gleicher Zeit darbieten, auf keine Weise mit der Bronchophonie verwechseln kann. Sie ist unvollkommen, wenn eines dieser Kennzeichen fehlt, und vorzüglich, wenn der Durchgang der Stimme nicht offenbar ist. Sie ist zweilfelhaft, wenn der Wiederhall sehr schwach ist, und von der Bronchophonie nur mittelst der Zeichen, die von der Stelle, wo er statt hat, entnommen werden, so wie durch die allgemeinen Symptome und den Verlauf der Krankheit unterschieden werden kann.«

Von der Bronchophonie heisst es: "Die Stimme geht selten durch den Cylinder, ihr Timbre hat etwas ähnliches mit dem eines Sprachrohres; ihr Wiederhall ist diffuser, und verbreitet sich offenbar weit hin. Der Husten, so wie die sonore Inspiration, welche ihm vorausgeht, und folgt, beseitigen übrigens die Ungewissheit, in der man sich in dieser Hinsicht befinden könnte; sie haben nicht den kavernösen Charakter, man bemerkt, dass diese Erscheinungen in ausgedehnten Röhren und nicht in einem umschriebenen Raume vor sich gehen."

Welches ist nach dieser Beschreibung der Pektoriloquie und Bronchophonie das Unterscheidungszeichen der beiden Erscheinungen?

Der vollkommene Durchgang der Stimme durch das Ste-

thoskop ist nur der vollkommenen Pektoriloguie eigen, und selbst diese vermag man, nach der Schilderung Länne c's, von der Bronchophonie nur dadurch zu unterscheiden, dass man den Ort, wo diese Erscheinung statt findet, und die Ausdehnung der Stelle, an welcher sie sich hören lässt, und endlich die Zeichen, welche gleichzeitig der Husten, das Rasseln und die Respiration geben, berücksichtigt. Das Timbre der Bronchophonie wird als dem eines Sprachrohrs ähnlich angeführt, während bei der Pektoriloquie vom Timbre keine Erwähnung geschieht; es muss aber das Timbre der Pektoriloquie sich vom Timbre der Bronchophonie nach Lännec's Überzeugung nicht unterscheiden, denn wäre diess der Fall, so wäre es nicht nöthig, den Ort und die Ausbreitung des Wiederhalles, die Erscheinungen des Hustens, der Respiration etc. zur Unterscheidung der Pektoriloquie von der Bronchophonie zu benützen.

Man sieht, dass Lännec zwischen der Stimme, die er Pektoriloquie nennt, und zwischen jener, die als Bronchophonie angeführt wird, kein Unterscheidungszeichen kennt, dass eine und dieselbe Stimme von ihm bald als Pektoriloquie, bald als Bronchophonie erklärt wird, je nachdem sie sich an verschiedenen Orten und in verschiedener Ausdehnung hören lässt, und von verschiedenen Zeichen aus der Respiration, dem Rasseln, aus den Funktionsstörungen etc. begleitet wird. Eine und dieselbe Stimme muss aber mit demselben Namen belegt werden, wenn sie auch in verschiedenen Räumen gebildet wird. Die Aufgabe wäre, aus der Beschaffenheit der Stimme zu erkennen, ob sie in Exkavationen oder in Bronchien wiedertönt. Diese Aufgabe wird nicht dadurch gelöst, dass man den Wiederhall der Stimme in Exkavationen Pektoriloquie, den Wiederhall der Stimme in Bronchien aber Bronchophonie nennt, ohne zwischen diesen beiden einen Unterschied festsetzen zu können.

So wenig als Lännec haben seine Schüler und alle übrigen Ärzte, die sich mit der Auskultation beschäftigen, einen Unterschied zwischen dem Wiederhalle der Stimme in

Exkavationen und zwischen dem Wiederhalle derselben in den Bronchien bisher aussindig machen können; vielmehr führen fast alle Schriftsteller Beispiele an, dass Lännec's Pektoriloquie auch ohne Exkavationen vorkomme. Dessenungeachtet wurde Lännec's Unterscheidung der Stimme in Pektoriloquie und Bronchophonie in allen über die Auskultation bisher erschienenen Schriften beibehalten, und man steht nicht an, die Pektoriloquie als ein charakteristisches Zeichen für die Exkavationen noch immer anzuführen.

Durch Versuche an Kadavern kommt man zwar nicht zur völligen Überzeugung, dass die Stimme in den Exkavationen auf gleiche Weise wiederhalle als in den Bronchien; doch wird das Gegentheil äusserst unwahrscheinlich. Hat man in die Leber auf die oben angegebene Weise einen Gang gebohrt, so hört man längs desselben die Stimme gerade so, als wenn man zu diesem Experimente das Herz anwendet, also den Wiederhall in einer Höhle hört.

Zieht man die früher als zur Entstehung einer verstärkten Stimme am Thorax erforderlich angegebenen Bedingungen in Betracht, so geht daraus kein bestimmter für jeden Fall passender Unterschied zwischen dem Wiederhalle der Stimme in Exkavationen und zwischen jenem in den Bronchien hervor. Käme die Grösse des Luftraumes bei der Bildung der konsonirenden Stimme allein in Rechnung, so würde sich zwischen dem Schalle im Bronchus, und zwischen jenem in der Exkavation wahrscheinlich ein Unterschied aufweisen lassen. So aber wird, wie gezeigt wurde, die Stärke etc. der konsonirenden Stimme durch die Grösse des Luftraumes, durch die Form desselben, durch die Beschaffenheit der begränzenden Wandungen, und durch die Art der Kommunikation mit der Luft im Kehlkopfe bestimmt, und der konsonirende Schall wird überdiess durch die geringere oder grössere Entfernung seiner Entstehungsstelle von der Brustwand, so wie durch die Beschaffenheit des zwischen der Entstehungsstelle und der Brustwand befindlichen Lungenparenchyms oder sonstiger daselbst befindlicher Materien modificirt. Nach allen diesen Gründen glaube ich annehmen zu dürfen, dass man aus dem vollkommenen, oder weniger vollkommenen Durchgange
der Stimme durch das Stethoskop auf das Vorhandenseyn oder Nichtvorhandenseyn von Exkavationen im Lungenparenchym nicht schliessen kann, dass folglich die Unterscheidung
zwischen Pektoriloquie und Bronchophonie
überflüssig sey, und zu Irrthum führen müsse.

b. Lännec's Egophonie.

Mehr noch als die Unterscheidung der Pektoriloquie von der Bronchophonie hat das Erkennen der Egophonie alle Ärzte, die die Auskultation zu Rathe ziehen, beschäftigt.

»Die einfache Egophonie« sagt Lännec, »besteht in einem besondern Wiederhalle der Stimme, welcher die Artikulation der Worte begleitet, oder ihr nachfolgt; es scheint, als ob eine Stimme, die schärfer, greller, als die des Kranken und gewisser Massen silberhell ist, an der Obersläche der Lunge wiederhallt; sie scheint mehr ein Echo der Stimme des Kranken zu seyn, als die Stimme selbst; sie dringt selten in die Röhre, und geht fast niemals durch. Sie hat übrigens ein konstantes Kennzeichen, von dem ich ihren Namen entlehnen zu müssen glaubte; sie ist nämlich zitternd und abgestossen, wie die einer Ziege, und ihr Timbre ähnelt, nach der von uns gegebenen Beschreibung ebenfalls der Stimme des nämlichen Thieres.«

»Wenn die Egophonie in der Nähe eines grossen Bronchialstammes, und vorzüglich an der Wurzel der Lunge vorhanden ist, so verbindet sie sich oft mit einer mehr weniger deutlichen Bronchophonie.«

»Die Verbindung beider Erscheinungen bietet zahlreiche Varietäten dar, von denen man sich einen genauen Begriff machen kann, wenn man die Wirkungen berücksichtigt, welche 1. das Durchgehen der Stimme durch ein metallenes Sprachrohr, oder durch ein mit einem Riss versehenes Schilfrohr; 2. das Sprechen eines Menschen, der eine Spielmarke zwischen den Zähnen und Lippen hält; 3. die Nasensprache der Possenspieler, welche den Polichinelle redend einführen, hervorbringt. Diese letztere Vergleichung passt oft am allergenauesten, vorzüglich bei Menschen mit einer etwas tiefen Stimme. Gewöhnlich findet man bei dem nämlichen Subjekte, welches an der Wurzel der Lunge diese Vereinigung der beiden Erscheinungen darbietet, die einfache Egophonie am untern Theile des äussern Randes des Schulterblattes.*

»Das Meckern, welches die Egophonie ausmacht, scheint meistentheils von der Artikulation der Worte selbst herzurühren, obschon die aus dem Munde des Kranken hervorgehende Stimme nichts ähnliches darbietet. Manchmal aber ist es ganz und gar von ihr unterschieden, und man hört, obschon in einem und demselben Augenblicke, von einander gesondert, die wiederhallende Stimme und den meckernden silberartigen Wiederhall, so dass dieser letztere sich an einer vom Ohre des Beobachters entfernteren oder näheren Stelle, als der Wiederhall der Stimme, kund zu geben scheint. Manchmal lässt sich das Meckern, wenn der Kranke langsam und in abgebrochenen Worten redet, unmittelbar nach der Stimme und nicht mit ihr hören, so dass es wie ein unvollkommenes Echo am Ende der Worte vernommen wird. Diese beiden letzten Nuancen schienen mir nur in solchen Fällen statt zu haben, wo der Erguss nicht sehr beträchtlich war.«

»Um das Meckern gut zu hören, muss man das Stethoskop fest auf die Brust des Kranken aufsetzen, und das Ohr leicht auf das Instrument auslegen. Wenn man das letztere fest aufdrückt, so hört man das Meckern nur halb so stark, und es ähnelt dann die Egophonie weit mehr der Bronchophonie.«

"Die Egophonie wird immer in einer gewissen Ausdehnung, und nicht wie die Bruststimme, an einer einzigen Stelle wahrgenommen. Meistentheils hört man die Egophonie zu gleicher Zeit in dem ganzen Raume zwischen dem innern Rande des Schulterblattes und in einem, ein bis drei Querfinger breiten Streifen, der in der Richtung der Rippen von der Mitte des Schulterblattes bis zur Brustwarze verläuft.«

In sehr wenigen Fällen habe ich beim Beginn einer Brustfellentzündung die Egophonie in der ganzen Ausdehnung der leidenden Seite wahrgenommen. Zweimal habe ich es durch die Leichenöffnung bestätigt gefunden, dass diese Erscheinung davon abhing, dass die Lunge, welche hie und da durch einige Brücken mit dem Rippenbrustfelle verwachsen war, nicht gegen das Mittelfell hatte zurückgedrängt werden können, und folglich in ihrer ganzen Ausdehnung von einer nicht sehr dicken Lage Serum umgeben war.«

Ȇbrigens ist eine scharfe, etwas meckernde oder wie rissig klingende — à timbre fêlé — Bronchophonie nicht hinreichned, um die Verbindung der Egophonie mit der Bronchophonie zu charakterisiren, weil, wie wir gesagt haben, die Egophonie als Zeichen nur dann wahr und sicher ist, wenn sie in einem schwachen und silberhellen meckernden Wiederhalle an der Oberstäche der Lunge besteht. « —

Die Egophonie soll nach Lännec nur bei vorhandener Flüssigkeit im Thorax — also gewöhnlich bei Pleuritis mit flüssigem Exsudate und bei Hydrothorax — vorkommen, und zwar darf die Menge der Flüssigkeit nicht beträchtlich seyn. Er will die Egophonie selbst in Fällen gehört haben, wo nicht mehr als drei bis vier Unzen Serum im Brustfelle vorhanden waren; sie verschwand aber jedesmal, wenn der Erguss sehr reichlich, und insbesonders, wenn er so stark wurde, dass eine Erweiterung der Brust eintrat.

Nach der Ansicht Lännec's ist die Egophonie der natürliche Wiederhall der Stimme in den durch die Flüssigkeit in der Pleurahöhle plattgedrückten Bronchialverzweigungen, der durch eine dünne erzitternde Lage der ergossenen Flüssigkeit geht, und wegen der Kompression des Lungenparenchyms, wodurch dasselbe dichter als im natürlichen Zustande wird, und sich folglich mehr zum Fortpflanzen der Töne eignet, wahrnehmbarer wird.

Für diese Ansicht führt Lännec folgende Gründe an:

»Die Stellen, wo sich die Egophonie am konstantesten hören lässt — die Umgebungen des untern Winkels des Schulterblattes, und der Raum zwischen dem innern Rande dieses Knochens und der Wirbelsäule — entsprechen den Theilen der Lunge, wo die Bronchialzweige am umfänglichsten sind, und am dichtesten an einander liegen, und unter diesen Stellen befindet sich der obere Theil des Ergusses, wo er die geringste Dicke hat, wenn nämlich der Kranke sitzt oder auf dem Rücken liegt.«

»Lässt man den Kranken sich auf den Bauch, oder auf die dem Ergusse entgegengesetzte Seite legen, so behält auch die Egophonie ihre Stelle nicht, sondern wird an einem andern Orte deutlicher. Wird der Erguss sehr reichlich, so hört die Egophonie auf, weil die Luftröhrenzweige, eben so wie das Lungengewebe, ganz zusammengedrückt werden; nimmt der Erguss wieder ab, so kommt die Egophonie wieder, denn die Luftröhrenzweige nehmen wegen ihrer grössern Elasticität nothwendiger Weise früher, als das Lungenparenchym, ihr Volumen wieder ein.«

»Lännec hat durch einen direkten Versuch den Einfluss, den die Dazwischenkunft der Flüssigkeit bei der Hervorbringung des meckernden Tones, welcher den eigenthümlichen Charakter der Egophonie ausmacht, haben kann, zu bestimmen gesucht. Er hat demgemäss eine halb mit Wasser gefüllte Blase auf die Zwischenschultergegend eines jungen Menschen, bei dem sich an dieser Stelle eine ganz deutliche natürliche Bronchophonie wahrnehmen liess, gelegt. Die durch diese Flüssigkeit gehende Stimme schien ihm, so wie mehreren

Personen, die dem Versuche beiwohnten, schärfer zu werden und schwach zu erzittern, wiewohl nicht so deutlich, wie bei der Egophonie, welche sich bei einem pleuritischen Ergusse hören lässt. Der nämliche Versuch, am Kehlkopfe angestellt, hat ihm dasselbe Resultat gegeben.«

»Fagott und Oboë verdanken bekanntlich ihren meckernden Ton der Form des Mundstückes, welches aus einer dünnen und zusammengedrückten Röhre besteht, dem geringsten Drucke der Lippen nachgibt, und bei dem Durchgange der Luft erzittert. Die Lunge kann durch einen pleuritischen Erguss nicht gegen die Wirbelsäule gedrängt werden, ohne dass die Bronchien beinahe wie ein Fagott - oder Oboë-Mundstück zusammengedrückt und abgeplattet werden. Der Bronchialbaum wird dadurch eine Art Blasinstrument, welches in eine Menge Mundstücke ausgeht, in denen die Stimme beim Wiederhallen erzittert. Die Kompression des Lungengewebes, wodurch es dichter und folglich ein besserer Leiter des Schalles wird, so wie die dazwischen befindliche Flüssigkeit, welche einen noch besseren Leiter abgibt, tragen ebenfalls dazu bei, dass die Stimme zum Ohre gelangt.«

»Die Abplattung der Bronchien kann aber nicht als die einzige Ursache der Egophonie angesehen werden. Die Ausdehnung, in welcher sie statt findet, die Art Gürtel, welche man beschreibt, wenn man ihr um den untern Theil des Schulterblattes folgt, und der sich oft bis zu den Umgebungen der Brustdrüse verbreitet, scheinen darzuthun, dass die Dazwischenkunft einer dünnen Lage Flüssigkeit, die durch die Vibrationen der Stimme in Bewegung gesetzt werden kann, zur Hervorbringung dieser Erscheinung wenigstens viel beiträgt, wenn sie auch nieht ganz nothwendig dazu wäre. Man kann ausserdem noch hinzufügen, dass, wenn die einfache Kompression der Bronchien zur Hervorbringung

der Egophonie hinlänglich wäre, diese jederzeit nach der Verengerung der Brust, welche auf die Beseitigung der Brustfellentzündung in Fällen von sehr reichlichen Ergüssen folgt, fortdauern würde.«

Ein festes Exsudat im Brustfelle gibt, nach Lännec, zu keiner Egophonie Veranlassung, eben so wenig die Pneumonie, tuberkulöse Infiltration, oder Exkavationen im Lungenparenchym. Wenn mit der Pneumonie auch Pleuritis mit flüssigem Exsudate vorhanden ist, so soll sich die Bronchophonie mit der Egophonie verbinden, und es kann bald die eine, bald die andere dieser Erscheinungen deutlicher seyn. Auch die Bruststimme kann, jedoch in einem sehr seltenen Falle, etwas von dem zitternden Charakter der Egophonie annehmen; nämlich bei einer Höhle mit abgeplatteter Form, deren Wandungen eine gewisse Festigkeit haben; endlich sollen die Egophonie, die Bronchophonie und die Bruststimme zusammen vorkommen können, wenn eine Brustfell-Lungenentzündung mit Lungenabseess zugegen ist. —

Nach der gegebenen Schilderung ist Lännec's einfache Egophonie allerdings ein so eigenthümlicher Schall, dass er von der Bronchophonie und Pektoriloquie sich jedesmal mit Bestimmtheit unterscheiden liesse. Dagegen sind die Modifikationen in der Stimme, welche Lännec als aus der Verbindung der Egophonie und Bronchophonie hervorgehend beschreibt, durchaus nicht von jenen zu unterscheiden, welche er als blosse Bronchophonie annimmt, die aber doch etwas von dem meckernden Charakter hat. Wie soll man nämlich die scharfe, etwas meckernde und wie rissig klingende (à timbre félé) Bronchophonie, die keine Verbindung der Egophonie mit der Bronchophonie seyn soll, von dem Wiederhalle der Stimme in einem metallenen Sprachrohre, oder in einem mit einem Riss versehenen Schilfrohre, oder von der Polichinelle-Stimme etc. unterscheiden, welche letztern Modifikationen die Verbindungen der Bronchophonie und Egophonie darstellen!

Ob also die Verbindungen der Bronchophonie und Ego-

phonie die Bedeutung haben, die ihnen Lännec beilegt, ob sie nämlich das Zeichen von Pneumonie mit gleichzeitigem serösen Ergusse in der Pleurahöhle sind, und nicht auch bei Pneumonien ohne alles pleuritische Exsudat vorkommen können, diese Frage beantwortet sich aus der Abhandlung Lännec's selbst verneinend; denn wäre dem so, wie Lännec angibt, so wäre es nicht nothwendig gewesen, eine Bronchophonie mit meckerndem Charakter anzunehmen, in der doch keine Egophonie ist.

Wenn man aber nach Lännec's Darstellung annehmen muss, dass die Verbindung der Bronchophonie und Egophonie auch ohne Flüssigkeit in der Pleurahöhle vorkommen könne, so ist es nicht sehr wahrscheinlich, dass die einfache Egophonie ohne Flüssigkeit in der Pleura nicht vorkommen kann.

Vor allem muss es jedermann auffallen, dass, während Lännec lehrte, die Egophonie komme nur bei Flüssigkeit im Thorax vor, viele seiner ausgezeichneten Schüler sie auch ohne alle Flüssigkeit in der Pleura bei blossen Pneumonien gefunden haben wollen. Lännec schiebt die Schuld davon immer auf eine Verwechslung mit der Bronchophonie. Was aber Lännec die einfache Egophonie nennt, wäre nicht so leicht mit der einfachen Bronchophonie zu verwechseln, und in allen den Fällen, wo die Verwechslung statt gefunden haben soll, müsste darum wenigstens eine Verbindung der Egophonie mit der Bronchophonie vorhanden gewesen seyn; woraus ebenfalls zu ersehen ist, dass eine Verbindung der Egophonie mit der Bronchophonie ohne alle Flüssigkeit in der Pleura vorkommen kann.

Allein die nicht unbeträchtliche Anzahl beobachteter Fälle, in denen man auch die einfache Egophonie ohne alle Flüssig-keit in der Pleurahöhle gefunden haben will, machte es doch unwahrscheinlich, dass überall eine Verwechslung mit der Bronchophonie statt gefunden habe, und die Egophonie wurde desshalb trotz der grossen Auktorität Länne c's fast durchgehends als ein nicht ganz sicheres Kennzeichen des Vorhandenseyns von Flüssigkeit in der Pleura erklärt.

Charles Williams ist meines Wissens der einzige Schriftsteller über Auskultation, der sich ganz für Länne e's Ansicht in Bezug auf die Bedeutung der Egophonie erklärt.

Dr. Reynaud, ein Schüler Lännec's, gibt an, die Erfahrung gemacht zu haben, dass die Egophonie sich in Bronchophonie verwandle, wenn der Kranke, bei dem man sie in aufrechter Stellung in dem Raume zwischen den Schulterblättern hört, sich auf den Bauch legt, oder sich sehr stark vorwärts neigt. Die dadurch wahrnehmbar gewordene Bronchophonie soll nur schwach seyn, wenn die Lunge gesund, stark dagegen, wenn die Lunge hepatisirt ist. Im letzteren Falle soll in dem Augenblicke, als die Egophonie verschwindet, das bronchiale Athmen und das krepitirende Rasseln erscheinen. Dr. Reynaud zieht daraus den Schluss, die Egophonie sey nur eine entfernte Bronchophonie, nämlich eine solche, die man durch eine mehr weniger dicke Schichte von Flüssigkeit hört.

Der Ansicht Reynaud's sind, wie ich glaube, jetzt die meisten Auskultatoren in Frankreich beigetreten, und Meriadec Lännec bemerkt, die Erfahrung Reynaud's gebe ein sicheres Mittel an die Hand, die eigentliche Egophonie von der Bronchophonie, oder vielmehr die Flüssigkeit im Thorax bei normaler oder hepatisirter Lunge von der Lungenhepatisation ohne Flüssigkeit im Thorax in jedem Falle zu unterscheiden.

Ich habe die Egophonie Lännec's in dem Artikel über das Timbre der konsonirenden Stimme unter dem Namen zitternder Schall bereits erwähnt. Ich muss hier wiederholen, dass mir die einfache Egophonie Lännec's sowohl bei Flüssigkeit in der Pleura, als auch ohne alle Spur von Flüssigkeit in derselben, bei Pneumonien, und auch bei Infiltration des Lungenparenchyms mit Tuberkelmaterie, mit und ohne Exkavationen im Lungenparenchym, vorgekommen ist, dass ich häufig Flüssigkeit in der Pleura gefunden habe, wo die konsonirende Stimme am Thorax das Zittern oder Meckern nicht an sich hatte, dass sowohl bei Flüssigkeiten im Thorax, als bei Pneumonien ohne Flüssigkeit in der Pleura einzelne Worte oder

Sylben der konsonirenden Stimme das Zittern oder Meckern darbieten können, indess andere Worte davon gar nichts wahrnehmen lassen.

Wenn man auf den Kehlkopf eines Sprechenden eine mit Wasser gefüllte Blase legt, so hört man die Stimme durch diese Blase nicht anders, als durch ein Stück Leber etc. von gleicher Dicke mit der Wasserblase. Macht man die schon mehrmal erwähnten auskultatorischen Versuche mit lufthältigen Darmstücken, mit Lebern, in die ein Gang gebohrt wurde etc. unter Wasser, so wird die im Darm etc. konsonirende Stimme durch die Wasserschichte nicht zitternd oder meckernd wahrgenommen. Ich habe den zitternden Schall beim Experimentiren mit Lebern ausser- und innerhalb des Wassers mehrere Male zufällig erhalten, konnte ihn aber nie willkürlich hervorbringen. Ich kann daher meinen Erfahrungen zu Folge die Egophonie Lännec's nicht für ein charakteristisches Zeichen von Flüssigkeit in der Brusthöhle halten; ja ich muss bemerken, dass dieselbe bei Kindern und Frauenzimmern in dem Raume zwischen den Schulterblättern zuweilen bei völlig normaler Beschaffenheit des Lungenparenchyms erscheint, wie diess auch schon von andern angeführt ist.

Wenn es wahr ist, dass Lännec's Egophonic auch ohne Flüssigkeit in der Brusthöhle vorkommen kann, so ist natürlich die Erklärung Lännec's, dieselbe entstehe durch Erzittern einer dünnen Lage Flüssigkeit wenigstens nicht für alle Fälle richtig.

Ohne die Wahrheit der Erfahrungen des Dr. Reynaud über die Umwandlung der Egophonie in Bronchophonie durch veränderte Lage des Kranken in Zweifel zu ziehen, erlaube ich mir nur folgende Bemerkungen zu machen: Dr. Reynaud nimmt in Folge seiner Erfahrungen an, die hepatisirte, oder die durch die Flüssigkeit komprimirte Lunge sey bei aufrechter Stellung des Kranken durch eine Schichte Flüssigkeit von der hintern Brustwand entfernt. Lege sich der Kranke auf den Bauch, oder neige er sich sehr stark nach vorwärts, so werde die Lunge der hintern Brustwand genähert, indem die Flüs-

sigkeit sich mehr in den vordern Theil des Brustraumes begibt. Bekanntlich ist die hepatisirte oder die durch Kompression luftleer gewordene Lunge specifisch schwerer als die Flüssigkeiten im Thorax, und dennoch müsste sie, der Vorstellung Reynaud's gemäss, in diesen Flüssigkeiten in die Höhe steigen, wenn sie bei der Lage des Kranken am Bauche sich der hintern Brustwand nähern soll. Ich würde glauben, dass die hepatisirte oder durch Kompression luftleer gewordene Lunge der hintern Brustwand am nächsten liegt, wenn der Kranke in der Rückenlage sich befindet, dass sie bei aufrechter Stellung des Kranken von der hintern Brustwand sich etwas entfernen kann, dass sie aber davon am meisten entfernt ist, wenn der Kranke sich nach vorwärts beugt, oder auf den Bauch legt. Ich habe den Versuch Reynaud's mehrere Male angestellt, ohne je ein ähnliches Resultat erlangt zu haben. Es ist mir vorgekommen, als liesse sich auf die Weise nur mit solchen Kranken experimentiren, bei denen die Flüssigkeit abgesackt war, und darum ihren Ort nicht verändern konnte. Kranke mit flüssigem, nicht abgesackten Exsudate in der Brusthöhle in der Menge, dass dessen Vorhandenseyn eine Verstärkung der Stimme am Thorax hervorbrachte, konnten die zu den Versuchen des Dr. Reynaud erforderliche Lageveränderung entweder gar nicht, oder doch nur auf we nige Augenblicke ertragen.

Erzeugung des zitternden Wiederhalles etwas beitragen kann, wie Länne e angenommen hat. Ein zitternder Schall kann, wie es mir scheint, durch Schwingungen der Luft gar nicht erzeugt werden, sondern wird durch Stösse eines festen Körpers auf einen andern festen, oder tropfbar flüssigen, oder luftförmigen Körper hervorgebracht. Die musikalischen Instrumente, welche einen meckernden Ton geben, sind entweder Zungenwerke, in welchen die sogenannte Zunge Stösse auf die Luft ausübt, oder es ist die Zunge durch eine andere Vorrichtung ersetzt.

Nimmt man eine Scheibe aus Holz, Metall, oder Elfen-

bein so in den Mund, dass sie zwischen die Lippen und Zähne zu liegen kommt, und dass dabei die Luft nur wenig aus dem Munde entweichen kann, so wird ein jeder Ton, den man im Kehlkopfe hervorbringt, von einem zitternden, gleich hohen Tone begleitet, der durch die Stösse der Platte gegen die Zähne hervorgebracht wird, und der auf die vollkommenste Weise die Egophonie Lännec's darstellt. Dieselbe Ursache, nämlich Stösse eines festen Körpers gegen einen andern, hat der zitternde Schall, der beim Sprechen gegen ein an die Zähne eines Kammes anliegendes Papier hervorgebracht wird.

Wenn man in das ausgehöhlte Ende des Stethoskops auf die Art spricht, dass die Lippen zwar die Öffnung des Stethoskops vollkommen schliessen, aber nur locker anliegen, so bemerkt man, dass fast jeder Laut, der im Kehlkopfe entsteht, von einem zitternden gleichhohen, an den Lippen selbst, oder zwischen den Lippen und dem Stethoskope ertönenden Schalle begleitet wird.

Alles dieses in Betracht gezogen, ist es mir sehr wahrscheinlich, dass Lännec's Egophonie gleichfalls nur durch Stösse eines festen Körpers gegen einen andern festen, flüssigen oder luftförmigen Körper entsteht. Diese Stösse können aber innerhalb der Brust nicht statt finden, wenn nicht die Stimme darin in einem lufterfüllten Raume konsonirt; denn das Lungengewebe wird, wie schon früher gezeigt worden, vom Kehlkopfe aus durch die Wandung der Trachea und der Bronchien nicht in Vibrationen versetzt. Es ist darum wahrscheinlich, dass in den meisten Fällen die Wandung des Bronchus, innerhalb dessen die Luft konsonirt, durch Stösse auf die enthaltene Luft zurückwirkt, und so zu dem zitternden Schalle Veranlassung gibt. Es ist aber auch möglich, dass zuweilen eine Parthie Schleim etc., welcher die Einmündung in den Bronchus unvollkommen abschliesst, das Plättchen im Mundstücke der Zungenwerke nachahmt, und den zitternden Schall erzeugt.

Die Sache mag sich übrigens wie immer verhalten, so ist

doch gewiss, dass drei bis vier Unzen Flüssigkeit in der Pleura für sich die Egophonie niemals erzeugen können.

Ist nämlich die Egophonie nicht schon im normalen Zustande der Brustorgane vorhanden, — was, wie bereits erwähnt, in seltenen Fällen bei magern Kindern und Frauenzimmern vorkommt —, so kann sie durch Flüssigkeit in der Pleura erst dann erzeugt werden, wenn die Menge der Flüssigkeit so gross ist, dass dadurch ein Lungentheil, innerhalb dessen ein knorpelhältiger Bronchus verläuft, völlig luftleer geworden ist.

Dr. Raciborsky gibt folgende Erklärung der Egophonie: "Wenn die Menge der Flüssigkeit nicht hinreicht, um die Schichte der Luftzellen völlig zusammenzudrücken, sondern bloss die Pleura inniger an die Wandungen der Luftzellen drängt, so dass dieselbe dadurch mit den Zellenwandungen eine mehr weniger gespannte, an den äussersten Enden der Luftwege befindliche Membran bildet, wird der Wiederhall der Stimme einen sehr merkwürdigen Charakter zeigen. Es ist diess ein abgestossener Schall oder ein Schnarren, ähnlich der Stimme eines Polichinelle oder dem Tone einer Rohrpfeife. Man hat ihn auch mit dem Meckern einer Ziege verglichen, und desshalb Egophonie genannt."

Davon abgesehen, dass nach meiner Überzeugung die Egophonie auf diese Weise nicht entstehen kann, weil eine Verstärkung, oder ein grösserer Grad von Helligkeit der Stimme am Thorax nur bei vollkommener Luftleere einer grössern Lungenparthie möglich ist, finde ich die Vorstellung, dass durch wenig Exsudat die Pleura inniger an die Lungenzellen gedrängt und mehr gespannt wird, irrig. Die Lungenzellen resistiren nicht der Kompression; sie werden durch den Druck der atmosphärischen Luft der Erweiterung des Thoraxraumes entsprechend ausgedehnt, und kontrahiren sich sogleich, sobald ein Theil des Thoraxraumes durch irgend etwas ausgefüllt wird. Die Lungenpleura ist somit um so mehr gespannt, und um so inniger an die Wandungen der Luftzellen gepresst, je mehr die Lunge ausge-

dehnt ist. Mit der Verkleinerung der Luftzellen bekommt die Pleura Falten, und von einem stärkern Andrücken derselben gegen die Lungensubstanz kann erst die Rede seyn, wenn alle Luft aus den Lungenzellen entfernt ist.

S. 7. Eigene Eintheilung der am Thorax hörbaren Stimme.

Ich glaube gezeigt zu haben, dass Länne c's Pektoriloquie und Bronchophonie eine und dieselbe Erscheinung darstellt, und dass Länne c's Egophonie ein die konsonirende Stimme zuweilen begleitender Schall sey, der mit dem Vorhandenseyn von Flüssigkeit in der Pleura nicht im wesentlichen Zusammenhange stehe, und der an sich keine besondere Bedeutung habe.

Es frägt sich, ob nicht dennoch bestimmte Modifikationen der konsonirenden Stimme an bestimmte Veränderungen der Respirationsorgane geknüpft sind. Ich habe bisher durch Beobachtungen an Lebenden und durch Versuche an Leichen nur das Folgende ermittelt:

- 1. Die Stimme, die sich nicht bloss hören lässt, sondern gleichzeitig eine Erschütterung des Ohres bewirkt,—oder nach Lännec's Bezeichnung: die Stimme, welche vollkommen durch das Stethoskop geht, kann bloss durch Flüssigkeitin der Brusthöhle nicht erzeugt werden.
- 2. Die Stimme, welche man durch das Stethoskop wahrnimmt, ohne gleichzeitig die Vibrationen am Ohre zu empfinden, kann durch Flüssigkeit allein, aber auch durch jede andere Krankheit, die zur Verstärkung der konsonirenden Stimme Veranlassung geben kann, hervorgebracht werden.
- 3. Bloss in grossen Exkavationen oder bei Pneumothorax entsteht der amphorische Wiederhall der Stimme, oder das metallische Echo.
- 4. Im normalen Zustande der Respirationsorgane hört man am Thorax — mit Ausnahme

einiger Stellen, die gleich benannt werden sollen — statt der Stimme bloss ein dumpfes Summen, oder es ist gar kein Schall daselbst wahrnehmbar. Ein eben so undeutliches Summen oder gar kein Schall kann aber auch bei allen möglichen Krankheiten der Respirationsorgane vorkommen.

- 5. In dem Raume zwischen den Schulterblättern lässt sich im normalen Zustande der Respirationsorgane entweder bloss ein dumpfes Summen vernehmen, oder man hört daselbst die Stimme verschieden deutlich, und kann nebstdem auch eine mässige Erschütterung des Ohres empfinden. In einem geringeren Grade kann die Stimme und die Erschütterung auch unter den Schlüsselbeinen wahrgenommen werden.
- 6. Die Stimme, welche man im Normalzustande der Respirationsorgane in dem Raume zwischen den Schulterblättern hört, erreicht zwar nie den Grad von Stärke und Helligkeit, der bei Hepatisation oder tuberkulöser Infiltration an jeder Stelle des Thorax möglich ist. Nicht immer ist aber eine so grosse Verstärkung der konsonirenden Stimme bei den Krankheiten, die sie erzeugen können, vorhanden; es kann vielmehr auch bei Hepatisation etc. und um so öfter bei Flüssigkeit in der Pleura die Stimme nicht stärker oder selbst schwächer konsoniren, als sie im normalen Zustande der Respirationsorgane sich in dem Raume zwischen den Schulterblättern hören lässt.

Diesen Erfahrungen zufolge unterscheide ich:

1. Die Stimme mit gleichzeitiger Erschütterung des Ohres, — die vollständig durch das Stethoskop dringende Stimme,—starke Bronchophonie.

- 2. Die Stimme ohne oder mit unmerklicher Erschütterung des Ohres,— die unvollständig durch das Stethoskop dringende Stimme schwache Bronchophonie.
- 3. Das undeutliche Summen, ohne oder mit unmerklicher Erschütterung des Ohres, und das Fehlen alles Schalles.
- 4. Den amphorischen Wiederhall und das metallische Echo der Stimme. Von diesem letztern wird erst später in einem eigenen Artikel die Rede seyn.

1. Die starke Bronchophonie.

Die Stimme ist so stark oder noch stärker, oder etwas schwächer, als ob man am Larynx auskultiren würde. An welcher Stelle des Thorax sie sich hören lässt, unter dieser muss sich nothwendiger Weise eine solid gewordene Lungenparthie von einer beträchtlichen Ausdehnung befinden. Diese Lungenparthie kann entweder unmittelbar an der Thoraxwand anliegen, oder aber von derselben durch eine Schichte lusthältigen Lungengewebes, oder durch eine Schichte lusthältigen Lungengewebes, oder durch eine Schichte festen oder flüssigen Exsudates in der Pleura getrennt seyn, welche Zwischenschichte indess nie bedeutend dick werden darf. Durch blosse Flüssigkeit im Thorax kann die starke Bronchophonie nicht hervorgebracht werden.

Man wird darum aus der starken Bronchophonie auf vorgerückte Pneumonie oder Pleuropneumonie — Hepatisation ohne oder mit nicht sehr beträchtlichem pleuritischen Exsudate —, auf Infiltration der Lungensubstanz mit Tuberkelmaterie, auf hämorrhagischen Infarktus von bedeutender Ausdehnung, auf Verdickung der Bronchialwände mit völligem Schwund der Lungensubstanz, auf Karnifikation der Lungensubstanz, oder auf einen sehr hohen Grad von Lungenödem mit gleichzeitig vorhandener Flüssigkeit im Thorax, wodurch die ödematöse Lunge vollständig luftleer geworden ist, schliessen können. Unter diesen krankhaften Veränderungen sind es die Hepatisation und die Infiltration mit Tu-

berkelmaterie, welche gewöhnlich durch die starke Bronchophonie angezeigt werden; denn der hämorrhagische Infarktus hat nur ungemein selten eine hinreichende Ausdehnung, und die Verdickung der Bronchialwände mit Schwund des Lungenparenchyms nur selten den hinreichenden Grad; die Karnifikation der Lungensubstanz ist eine nicht besonders oft vorkommende Veränderung, und wenn bei derselben, so wie bei Lungenödem, durch ein gleichzeitig vorhandenes Exsudat in der Pleura oder durch andere Umstände alle Luft aus einem grössern Lungentheile verdrängt worden, so erscheint gewöhnlich nicht die starke, sondern bloss die schwache Bronchophonie.

Ob die hepatisirte, oder in Folge der Hepatisation indurirte, oder mit Tuberkelmaterie infiltrirte Lunge Höhlen
oder erweiterte Bronchien enthalte, lässt sich aus dem Vorhandenseyn der starken Bronchophonie nicht entscheiden. Da
man aber weiss, dass Abscesse bei Pneumonien äusserst selten vorkommen, Vomicae dagegen bei tuberkulöser Infiltration nur selten nicht vorhanden sind, so wird man nicht oft
fehlen, wenn man bei tuberkulöser Infiltration an jenen Stellen, wo die Stimme sich am stärksten hören lässt, Exkavationen annimmt, bei Pneumonien dagegen auch aus der stärksten Stimme auf keinen Abscess schliesst.

2. Die schwache Bronchophonie.

Um den Wiederhall der Stimme am Thorax mit diesem Namen belegen zu können, muss derselbe als Stimme, nicht als blosses Summen, hörbar, also hell, und von wenig oder keiner Erschütterung des Ohres begleitet seyn. Die schwacheBronchophonie kann ausser den krankhaften Zuständen, die bei der starken Bronchophonie angeführt wurden, auch Pleuritis mit beträchtlichem Exsudate und Hydrothorax bedeuten.

Mit Hülfe der Zeichen, welche die Perkussion liefert, ist es bisweilen möglich, zu unterscheiden, ob die schwache Bronchophonie durch Flüssigkeit im Thorax, oder aber durch eine solidgewordene Lungenparthie bedingt ist. Damit nämlich Flüssigkeit allein eine Verstärkung der konsonirenden

Stimme bedingen könne, muss sie in der Quantität vorhanden seyn, dass dadurch eine Lungenparthie, innerhalb welcher ein mit Knorpeln versehener Bronchus verlauft, vollständig luftleer gemacht wird. Die Perkussion muss demnach um den Lungenlappen in einer Ausdehnung, die wenigstens mehr als die Hälfte seines Umfanges beträgt, ganz dumpf seyn. Findet man also an der Stelle, wo sich die schwache Bronchophonie hören lässt, den Perkussionsschall nicht ganz dumpf, oder nicht in einem, nach dem eben gesagten, hinreichenden Umfange dumpf, so kann man mit Gewissheit sagen, dass die schwache Bronchophonie nicht durch Flüssigkeit im Thorax allein bedingt sei, sondern solid gewordenes Lungenparenchym zum Grunde habe.

Ist bei vorhandener schwacher Bronchophonie gleichzeitig auch der Perkussionsschall in einem grössern Umfange vollkommen dumpf, so lässt sich ohne andere Zeichen nicht bestimmen, ob Flüssigkeit im Thorax oder solid gewordenes Lungenparenchym die schwache Bronchophonie verursache. Man hat vorgegeben, dieses durch Lageveränderung des Kranken entscheiden zu können. Ich habe Kranke mit frisch entstandenen und lange bestehenden Exsudaten häufig in verschiedenen Lagen untersucht, und dadurch nie ein Zeichen erhalten, das zur Entscheidung des fraglichen Punktes hätte dienen können.

Kann ich durch die Zeichen aus der Perkussion und aus der Stimme nicht unterscheiden, ob Flüssigkeit in der Pleura, oder aber solid gewordenes Lungenparenchym den Erscheinungen zu Grunde liege, so suche ich diess, wo möglich, aus den übrigen auskultatorischen Zeichen, hauptsächlich aber aus der Lage der angränzenden Organe zu bestimmen.

Ist nämlich das flüssige Exsudat in grösserer Quantität vorhanden, was vorausgesetzt werden muss, wenn dadurch der Perkussionsschall im weiten Umfange dumpf werden soll, so drängt es die angränzehden Organe aus ihrer Lage, indess dieselben bei Lungenhepatisation oder tuberkulöser In-

filtration ohne Flüssigkeit im Thorax fast immer in der normalen Lage verbleiben. Finde ich z. B. den Stoss des Herzens in der Herzgrube, und dabei den Perkussionsschall in der Herzgrube gegend und in der linken Seitengegend vollkommen dumpf, so bin ich überzeugt, dass in der linken Brusthöhle eine bedeutende Menge flüssigen Exsudates vorhanden ist.

Die starke sowohl als die schwache Bronchophonie geht unmerklich in das undeutliche Summen ohne oder mit schwacher Erschütterung des Ohres über, und es lässt sich zwischen diesen drei Graden des Wiederhalles der Stimme am Thorax keine bestimmte Gränze angeben. Die Extreme sind nicht schwer von einander zu unterscheiden, die Mittelglieder aber gehen in einander über.

Man darf demnach aus dem Wiederhalle der Stimme am Thorax allein nur dann einen Schluss ziehen, wenn derselbe unbestreitbar als Bronchophonie hervortritt. Ist die Stimme weder hinreichend stark noch hell, um einen sichern Schluss zuzulassen, so kann man zuweilen durch Vergleichung derselben an mehreren Stellen des Thorax, insbesonders an den gleichnamigen Stellen der beiden Seiten ziemlich sichere Resultate bekommen. Man wird aber immer gut thun, erst nach Berücksichtigung aller übrigen Erscheinungen aus der Auskultation und Perkussion den Schluss zu machen.

Diese Vorsicht ist um so nothwendiger bei Untersuchung des Raumes zwischen den Schulterblättern, und der unmittelbar unter den Schlüsselbeinen liegenden Stellen.

Indem nämlich insbesonders in dem Raume zwischen den Schulterblättern eine ziemlich starke Bronchophonie schon im normalen Zustande der Respirationsorgane vorkommen kann, so lässt sich daselbst aus der Bronchophonie im Allgemeinen noch nicht auf Krankheit schliessen. So stark und hell als am Larynx lautet die Stimme bei normaler Beschaffenheit der Respirationsorgane am Thorax an keiner Stelle. Diese Stärke und Helligkeit der konsonirenden Stimme bedeutet darum auch in dem Raume zwischen den Schulterblättern solid ge-

wordenes Lungenparenchym. Wenn man ferner die Stimme am Thorax als helles Lispeln vernimmt, so kann man gleichfalls überzeugt seyn, dass eine krankhafte Veränderung in den Respirationsorganen vorhanden sey.

Die übrigen Grade der schwachen Bronchophonie aber geben in dem Raume zwischen den Schulterblättern und unter den Schlüsselbeinen für sich kein Resultat. Man muss dann jede einzelne Stelle der rechten Seite mit der gleichnamigen der linken Seite, und alle Stellen unter einander rücksichtlich der Stärke und Helligkeit der konsonirenden Stimme vergleichen, und zur Vermeidung von Irrthum die übrigen Erscheinungen aus der Auskultation und Perkussion zu Rathe ziehen.

3. Das undeutliche Summen ohne oder mit unmerklicher Erschütterung des Ohres.

Dieser Wiederhall der Stimme, so wie das gänzliche Fehlen eines Wiederhalles hat keine bestimmte Bedeutung. Er findet sich nicht bloss bei normaler Beschaffenheit der Respirationsorgane, sondern kann in jeder Art von Erkrankung derselben angetroffen werden. Der Grund davon liegt darin, dass das Vorhandenseyn der Verstärkung der konsonirenden Stimme nicht von einer einzigen Bedingung, sondern von mehreren abhängt. So kann z. B. das Lungenparenchym in einer grossen Ausdehnung vollkommen hepatisirt seyn, und dennoch nimmt man keine Bronchophonie wahr, weil die Bronchien in dem hepatisirten Lungentheile keine Luft sondern Schleim enthalten.

II. Von den Geräuschen, welche die durchströmende Luft beim Ein- und Ausathmen macht.

Diese Geräusche zerfallen im Allgemeinen in solche, welche vorzugsweise Respirationsgeräusche heissen, und in die verschiedenen Arten von Rasseln, Pfeifen, Schnurren etc. Die eigentlichen Respirationsgeräusche finden statt, wenn die in den Luftwegen strömende Luft auf keine Flüssigkeit

und auf keine verengerte Stelle trifft. Das Rasseln, Pfeisen, Schnurren etc. wird durch vorhandene Flüssigkeiten in den Luftwegen, durch Verdickung der Schleimhaut der Bronchien, durch partielle Verengerung und Kompression der Bronchien etc. verursacht.

A. Über die Respirationsgeräusche.

Bekanntlich verursacht die Luft während des Respirirens in der Nase und im Munde ein Geräusch. Durch Ansetzen des Stethoskops überzeugt man sich, dass auch im Larynx und in der Trachea die In- und Exspiration mit Geräusch verbunden ist. Man kann darum mit vollem Grunde annehmen, dass bei der Respiration durch die ganzen Luftwege hindurch, Geräusche entstehen.

An jeder Stelle des Thorax, unter der die Lunge liegt, sollte man vor allem das Geräusch aus der nächsten Lungenparthie wahrnehmen, und da gegen die Oberstäche der Lunge nur Lustzellen und seine Bronchien besindlich sind, so dürste am Thorax vorzüglich jenes Geräusch hörbar seyn, welches in den seinen Bronchien und in den Lustzellen gebildet wird. Jedes Geräusch psanzt sich aber seiner Intensität gemäss auch in die Entsernung sort, und so lässt sich a priori nicht in Abrede stellen, dass an jeder Stelle des Thorax nebst dem Geräusche aus den Lustzellen und seinen Bronchien der nächstgelegenen Lungenparthien auch die Geräusche aus entsernteren Lungenparthien, und aus den grössern Bronchien, ja vielleicht selbst aus der Trachea und dem Larynx vernommen werden können.

Sollte sich die Sache wirklich so verhalten, sollte man am Thorax auch Respirationsgeräusche hören können, die an entfernten Stellen entstehen, so liesse sich aus dem an einer bestimmten Stelle der Brustwand hörbaren Respirationsgezräusche die Beschaffenheit der unter dieser Stelle befindlichen Lungenparthie nur in dem Falle beurtheilen, wenn wir im Stande sind, ein nahes Geräusch von einem entfernten, das Geräusch in den Lustzellen und seinen Bronchien von dem

Geräusche in den grossen Bronchien, im Larynx und in der Trachea zu unterscheiden. Die Sache scheint beim ersten Anblick nicht so schwierig. Wir sind gewohnt, den nahen Schall von einem entferntern zu unterscheiden. Durch das Auskultiren selbst lernt man aber erst die Schwierigkeit des Gegenstandes kennen. Unser Urtheil über die Entfernung des Schalles und dessen Ursprungsstelle ist nur dann ziemlich richtig, wenn der Schall von der geraden Richtung nicht abgelenkt wird, und durch keine andern Medien als durch die Luft geht.

Die Erfahrung lehrt zur Evidenz, dass an jeder Stelle des Thorax auch entfernte Respirationsgeräusche gehört werden können. So hört man sehr häufig an Stellen des Thorax, unter denen sich eine grosse Lungenparthie vollständig hepatisirt befindet, in die folglich durchaus keine Luft strömt, ein sehr starkes Respirationsgeräusch. Es ist demnach die Aufgabe zu lösen, wie sich am Thorax das nahe von dem entfernten Respirationsgeräusche, das Geräusch aus den Luftzellen und feinen Bronchien von jenem in den grossen Bronchien, in der Trachea und im Larynx entstandenen unterscheiden lässt.

Dazu wird erfordert, dass man erstens die Geräusche im Larynx, in der Trachea, in den grossen Bronchien und in den Luftzellen isolirt, d. h. jedes dieser Geräusche für sich allein, nicht mit den übrigen vermischt, behorcht, und den Charakterjedes einzelnen feststellt; zweitens, dass man die Veränderungen ermittelt, welche diese Geräusche bei ihrer Fortpflanzung in die Ferne erleiden; und drittens, dass man die Fälle bestimmt, in welchen das Laryngeal-Tracheal- oder Bronchial-Geräusch in den innerhalb der Lunge verlaufenden Bronchien oder in Exkavationen durch Konsonanz verstärkt wird, und den Unterschied zwischen dem konsonirenden Tracheal-etc. Geräusche

und dem durch Konsonanz nicht verstärkten auffindet.

Im Larynx und in der Trachea lässt sich das respiratorische Geräusch während des Lebens isolirt behorchen. Das Geräusch der grossen Bronchien kann man isolirt dadurch erhalten, dass man dieselben im Kadaver von der Trachea und den Lungen trennt, und Luft durchtreibt. Das respiratorische Geräusch der Luftzellen und feinen Bronchien lässt sich im Kadaver nicht nachahmen, denn die Luftwege enthalten nach dem Tode immer Flüssigkeit, und man erhält desshalb beim Eintreiben der Luft in todte Lungen immer Rasselgeräusche.

Zur Kenntniss des respiratorischen Geräusches der Luftzellen und feinen Bronchien gelangt man bloss durch Vergleichung des respiratorischen Geräusches am Thorax bei vielen Individuen. Man weiss z. B. dass in der Regel bei Kindern das respiratorische Geräusch am Thorax viel lauter und deutlicher ist, als bei Erwachsenen, obgleich das Geräusch im Larynx die Differenz in der Stärke nicht zeigt. Bei einem und demselben Individuum kann das respiratorische Geräusch am Thorax sich aus verschiedenen Ursachen verstärken, und dem normalen respiratorischen Geräusche bei Kindern gleich werden, wenn auch das Geräusch im Larynx sich gleich bleibt. Man schliesst darum mit Grund, dass das bei Kindern am Thorax hörbare Respirationsgeräusch den Charakter des Geräusches der Luftzellen und feinen Bronchien am deutlichsten und genauesten darstellt. Es frägt sich nun, welche Unterschiede sich zwischen den Respirationsgeräuschen im Larynx, in der Trachea, in den grossen Bronchien, in den feinen Bronchien und in den Luftzellen festsetzen lassen.

§. 1. Bestimmung der Unterschiede der Respirationsgeräusche.

Sämmtliche Respirationsgeräusche lassen sich mit dem Munde nachahmen; und zwar entweder durch Einziehen, oder Ausstossen der Luft. Indem man bei Nachahmung dieser Geräusche die Lippen und die Zunge in verschiedene Stellungen bringt, bemerkt man, dass die Stellung der Lippen und der Zunge jedesmal eine solche ist, welche zur Verwandlung des unartikulirten Kehlkopflautes in einen artikulirten erfordert wird, kurz man bemerkt, dass jedes Geräusch die Verbindung eines Konsonanten mit einem Vokale ist, wobei aber der Schall nicht im Kehlkopfe, sondern bloss im Munde gebildet werden darf. Die Stellung des Mundes für einen bestimmten Konsonanten und Vocal gibt jedesmal dasselbe Geräusch. Man kann demnach die Unterschiede der verschiedenen respiratorischen Geräusche genau dadurch festsetzen, dass man sie mit dem Munde nachahmt, und die zur Produktion irgend eines Geräusches erforderliche Stellung der Lippen und der Zunge durch Angabe des Konsonanten und Vokals bestimmt.

Die Differenzen, die in den Geräuschen durch Änderung der Vokale entstehen, sind den Differenzen in der Schallhöhe der Kehlkopflaute, überhaupt der Töne analog. Ich nehme darum keinen Anstand von verschiedenen Höhen der Geräusche zu sprechen, und bestimme diese nach dem zur Hervorbringung des Geräusches erforderlichen Vokale. Die grösste Schallhöhe der Geräusche gibt I. die geringste U.

a. Charakter des respiratorischen Geräusches im Larynx, in der Trachea und in den grossen Bronchien.

Wenn man die respiratorischen Geräusche aus dem Larynx, aus der Trachea und den grossen Bronchien mit dem Munde nachahmt, so findet man, dass diese Geräusche denselben Konsonanten beibehalten, und dass die Differenz, die etwa vorkommt, nur den Vokal betrifft. Der Konsonant dieser respiratorischen Geräusche ist Ch, oder fällt zwischen H und Ch. Man ahmt das Geräusch des Larynx, der Trachea und der Bronchien dadurch nach, dass man die Luft gegen den harten Gaumen treibt. Während des Keuchens wird es daselbst unwillkührlich hervorgebracht. Nach der verschiedenen Weite der Öffnung, die man der durchstreifenden Luft lässt, richtet sich die Höhe des Geräusches, d. h. das Ch erscheint

mit einem verschiedenen Vokale in Verbindung. Das Laryngeal-Geräusch ist in der Regel höher, als das Lungen-Respirationsgeräusch.

b. Charakter des respiratorischen Geräusches in den Luftzellen und den feinen Bronchien.

Das respiratorische Geräusch der Luftzellen und feinen Bronchien ahmt man dadurch nach, dass man die Luft bei verengerter Mundöffnung einzieht, also die Luft schlürft. Der Konsonant dieses Geräusches ist Woder B. Dieser Charakter gilt aber nur für das Geräusch der Inspiration. Die Exspiration verursacht bei normaler Beschaffenheit der Respirationsorgane in den Luftzellen und feinen Bronchien entweder kein, oder ein nur sehr wenig merkbares Geräusch, das vom Inspirationsgeräusche verschieden ist, und sich als ein leichtes Hauchen oder Blasen darstellt. Mit dem Munde kann man es ebenfalls nur während des Exspirirens nachahmen, und der Konsonant d. h. die dabei erforderliche Stellung der Lippen und der Zunge fällt zwischen F und H.

S. 2. Bestimmung der Veränderungen, welche die respiratorischen Geräusche durch die Fortpflanzung in die Ferne erleiden.

Die angegebenen Charaktere haben die respiratorischen Geräusche nur, wenn man sie in der Nähe hört; in der Entfernung können diese Charaktere unkenntlich werden, wenn sieh auch das Geräusch noch ziemlich stark wahrnehmen lässt. Jedes Geräusch und selbst jeder Schall verliert durch die Entfernung mehr weniger von seiner Eigenthümlichkeit. In der Nähe unterscheiden wir den Lärm einer Mühle sehr gut von dem Rollen eines Wagens, das Brausen eines Wasserfalles von dem Heulen eines Sturmes. In der Entfernung werden sich diese Geräusche fast sämmtlich gleich; man ist nicht mehr im Stande, zu bestimmen, was dem Geräusche zum Grunde liegt.

Wie sich das respiratorische Geräusch des Larynx bei normaler Beschaffenheit der Respirationsorgane am Thorax — also durch das Lungenparenchym hindurch — hören las-

se, erfährt man durch folgenden Versuch: Man lässt einen gesunden Menschen den Athem anhalten, und auskultirt an verschiedenen Stellen seiner Brust, indess ein dritter durch Blasen in eine Röhre, die so weit wie möglich in den Schlund desjenigen, an dem das Experiment vorgenommen wird, gebracht ist, in dessen Schlunde ein starkes Geräusch macht. Das Geräusch, das die durch die Röhre strömende Luft macht, gleicht dem Respirationsgeräusche des Larynx, und da es sehr nahe dem Larynx und stark erregt wird, so pflanzt es sich durch die Lungensubstanz eben so fort, als das eigentliche Laryngealgeräusch. Bei diesem Versuche hört man insbesonders in dem Raume zwischen den Schulterblättern ein Geräusch, das mit dem Geräusche des Larynx keine Ähnlichkeit hat; es ist tief, und lässt sich mit dem Munde schwer nachahmen, indem dessen Konsonant schwerer zu bestimmen ist. Am nächsten kommt man diesem Geräusche während des Exspirirens mit dem Konsonanten F.

Es geschieht zuweilen, dass man bei Exsudaten in der Pleura, die wegen ihrer Grösse die ganze Lunge zu einem bandartigen Streifen zussammendrücken, und demnach gewiss jedes Eindringen der Luft in die Lungensubstanz unmöglich machen, an der mit Flüssigkeit erfüllten Thoraxhälfte, insbesondere in dem Raume zwischen der Wirbelsäule und dem Schulterblatte und unter den Schlüsselbeinen, ein respiratorisches Geräusch hört. Dieses Geräusch hat nothwendiger Weise in der Trachea oder in einem Luftröhrenstamme seinen Ursprung, und man kann daraus beurtheilen, wie das Geräusch der Trachea verändert werde, wenn es durch eine dicke Schichte Flüssigkeit geht. Es gleicht ebenfalls nicht dem Trachealgeräusche, ist tief, und wenn man es mit dem Munde nachahmen will, kommt man demselben während des Exspirirens mit dem Konsonanten F am nächsten.

Wie sich das respiratorische Geräusch der Luftzellen und feinen Bronchien in die Ferne hören lasse, erfährt man dadurch, dass man an solchen Stellen des Thorax auskultirt, unter denen die Lunge dem Perkussionsschalle zu Folge nicht mehr liegt, die aber der Lunge noch nahe genug sind, dass man das Respirationsgeräusch hören kann. Man bemerkt auf diese Art, dass das Geräusch der Luftzellen in einiger Ferne nicht mehr dem Geräusche des Schlürfens gleicht, sondern in ein schwerer nachzuahmendes, das zwischen Hauchen und Blasen steht, übergeht, das demnach wieder während des Expirirens mit dem Konsonanten Fam leichtesten nachgemacht werden kann.

Bei vielen vollkommen gesunden Menschen, wo demnach die Luft sicher in die Luftzellen eindringt, hört man
dessenungeachtet das Inspirationsgeräusch fast gar nicht,
oder es hat nicht den früher für das Luftzellengeräusch angegebenen Charakter. Es gleicht im Gegentheil einem entfernten Luftzellen- oder Trachealgeräusche — ist weder dem
Geräusche des Schlürfens noch dem des Keuchens ähnlich —
und kann darum weder für das eine noch für das andere mit
Sicherheit erklärt werden.

§. 3. Angabe der Bedingungen, unter welchen das Laryngeal-Tracheal- und Bronchialgeräusch innerhalb der Lunge durch Konsonanz verstärkt wird, und des Unterschiedes zwischen dem konsonirenden und nicht konsonirenden Trachealgeräusche, wie sich dieser am Thorax wahrnehmen lässt.

Wenn es erwiesen ist, dass die Stimme bei bestimmten Veränderungen der Respirationsorgane innerhalb des Brustraumes durch Konsonanz verstärkt, und dadurch am Thorax deutlicher hörbar wird, so kann es keinem Zweifel unterliegen, dass auch das respiratorische Geräusch des Larynx, der Trachea und der beiden Luftröhrenäste innerhalb der Brust konsoniren, und dadurch am Thorax stärker und deutlicher hörbar werden kann. Die Bedingungen sind begreißlicher Weise für das respiratorische Geräusch dieselben, als für die Stimme, und ich werde sie darum hier nicht mehr anführen.

Wie sich am Thorax das konsonirende Laryngeal - Tracheal - und Bronchialgeräusch von dem nicht konsonirenden und bloss durch Schallleitung dahin verpflanzten unterscheiden müsse, ergibt sich von selbst, wenn man den Unterschied zwischen der durch Konsonanz verstärkten und nicht konsonirenden Stimme in Betrachtung zieht. Sind die Bedingungen der Konsonanz vorhanden, so hört man die Stimme am Thorax als Stimme; im entgegengesetzten Falle aber lässt sich bloss ein Summen hören. Das konsonirende Laryngealgeräusch wird dem zu Folge, mit Ausnahme der Fälle, wo bei grossen Exkavationen oder bei Pneumothorax sich amphorischer Wiederhall, oder metallischer Klang dazu gesellt, am Thorax als Laryngealgeräusch hörbar seyn, indess das nicht konsonirende den bereits angegebenen Charakter hat.

§. 4. Lännec's Eintheilung der respiratorischen Geräusche.

Lännec unterschied:

- 1. Das Lungenrespirationsgeräusch.
- 2. Das Bronchialrespirationsgeräusch.
- 3. Die kavernöse Respiration.
- 4. Die hauchende Respiration und den verschleierten Hauch.

1. Lännec's Lungenrespirationsgeräusch.

Lännec determinirt es als ein, während der In - und Exspiration hörbares, schwaches, aber ausnehmend deutliches Murmeln, welches das Eindringen der Lust ins Lungengewebe und ihre Austreibung anzeigt. Seiner Ansicht nach kann das Geräusch aus dem Larynx, der Trachea und den Luströhrenstämmen am Thorax nur in dem Raume zwischen den Schulterblättern und unter dem Brustbeine vernommen werden, und wird selbst da durch das Geräusch der Lustzellen fast völlig verdeckt. Er gibt also, wie man sieht, zwischen dem In- und Exspirationsgeräusche keinen Unterschied an, und scheint jedes Geräusch am Thorax, das nicht bronchial, kavernös, hauchend oder amphorisch ist, als Lungenrespirationsgeräusch angesehen zu haben.

Ich glaube aus den früher angeführten Gründen, dass sich die Sache anders verhalte, und bin darum der Meinung, dass die Bedeutung, die Lännee seinem Lungen-Respirationsgeräusche gibt, nicht in allen Fällen richtig seyn kann. »Wenn man, « sagt Lännec, "die Respiration deutlich und mit einer beinahe gleichen Stärke an allen Stellen der Brust hört, so kann man behaupten, dass weder ein Erguss in den Brustfellen, noch eine Anschoppung von irgend einer Beschaffenheit im Lungengewebe vorhanden ist. Wenn man dagegen findet, dass die Respiration an einer gewissen Stelle nicht gehört wird, so kann man behaupten, dass der entsprechende Theil der Lunge aus irgend einer Ursache für die Luft undurchgängig geworden ist. Dieses Zeichen ist eben so charakteristisch, und eben so leicht zu unterscheiden, als das Vorhandenseyn oder Fehlen des, durch die Perkussion nach der Auenbrugger'schen Methode, gegebenen Tones, und es zeigt ganz das Nämliche an. Wenn man einige besondere Fälle ausnimmt, bei denen die Vergleichung der beiden Methoden die Quelle von ganz pathognomonischen Zeichen wird, so fällt das Fehlen des Tones immer mit dem der Respiration zusammen.«

»Die Auskultation hat, wie wir sehen werden, den Vortheil, dass sie auf eine getreuere Weise die Intensitätsverschiedenheiten der mannigfaltigen Arten von Lungenanschoppungen angibt. Sie hat den Nachtheil, dass sie etwas mehr Zeit verlangt; allein sie erfordert weniger Sorgfalt und Aufmerksamkeit als die Perkussion, und kann in allen Fällen, selbst wo die Auenbrugger'sche Methode kein Resultat gibt, angewendet werden.«

Nach meiner Überzeugung kann das Respirationsgeräusch am ganzen Thorax dieselbe Stärke und Deutlichkeit zeigen, wenn auch die Lunge ziemlich ausgedehnte, angeschoppte Lungenparthien enthält, und es kann an einer Stelle stark, an der andern schwach und undeutlich seyn, wenn auch in der Lunge keine in die Sinne fallende Abnormität vorhanden ist. Ich bin somit nicht der Meinung, dass die Auskultation auf eine getreuere Weise die Intensitätsverschiedenheiten der mannigfaltigen Arten von Lungenanschoppungen angibt, als die Perkussion, und halte es für nothwendig, in allen Fällen nebst den auskultatorischen auch die Zeichen aus der Perkussion und aus den Funktionsstörungen zu Rathe zu ziehen.

2) Lännec's Bronchial - Respirationsgeräusch.

Unter Bronchial-Respiration versteht Lännec das Geräusch, welches die Luft während der Respiration im Kehlkopfe, in der Luftröhre, in den grössern, an der Wurzel der Lunge gelegenen, Luftröhrenästen, und in den kleinen Luftröhrenzweigen hervorbringt. Man kann es seiner Ansicht zu Folge im normalen Zustande der Respirationsorgane aus den kleinen Luftröhrenzweigen, also am Thorax, desshalb nicht hören. weil es sich mit dem Lungen-Respirationsgeräusche vermischt. Man hört es darum bloss am Larynx und in dessen Nähe, nicht selten an der ganzen Halssläche, und nur bei einigen, insbesondere magern, Subjekten bietet das unter dem Brustbein und an der Wurzel der Lunge, d. h. in der Gegend zwischen den Schulterblättern, hörbare Geräusch noch etwas von dem Charakter der Bronchial-Respiration dar, obgleich es auch da schwer zu unterscheiden ist, indem es sich mit dem gleichzeitig hörbaren und ähnlichen Lungen-Respirationsgeräusche vermischt.

Wenn aber das Lungengewebe durch irgend eine Ursache z. B. durch einen pleuritischen Erguss, durch eine intensive peripneumonische oder hämoptysische Auschoppung verhärtet oder verdichtet, wenn das Lungen-Respirationsgeräusch verschwunden, oder beträchtlich vermindert worden ist, so höre man oft deutlich die Bronchial-Respiration nicht bloss in den grossen Luftröhrenästen, sondern auch in den kleinern Verzweigungen; und dieses Erscheinen der Bronchial-Respiration am Thorax erklärt Lännec auf folgendo Art: Wenn die Kompression, oder die Anschoppung des Lungengewebes das Eindringen der Luft in ihre Bläschen verhindert, so kann

bloss noch die Bronchial-Respiration Statt finden; sie ist um so geräuschvoller und leichter wahrzunehmen, als das dichter gewordene Lungengewebe ein besserer Leiter des Schalles wird.

Die Bronchial-Respiration soll in Folge dieser krankhaften Veränderung des Lungenparenchyms nur in der Gegend der Lungenwurzel und an der obern Spitze der Lunge vollständig deutlich vorkommen; an den übrigen Stellen des Thorax aber selten so deutlich ausgesprochen seyn, und zwar desshalb, weil an der Lungenwurzel die Bronchien die grösste Weise haben, und jene des obern Lungentheils am häufigsten der Erweiterung ausgesetzt sind.

Die Ansicht Lännec's über den Grund des Erscheinens der bronchialen Respiration am Thorax halte ich nicht für richtig. Die bronchiale Respiration ist nicht selten in Fällen, wo das Lungenparenchym komprimirt oder vollständig hepatisirt ist, wo also in das Lungenparenchym keine Luft eindringen kann, ungemein laut, so dass zu seiner Erzeugung nothwendiger Weise ein starker Luftstrom erfordert wird. Die Luft dringt bei der Inspiration in die Bronchien eines Lungentheiles mit um so grösserer Gewalt und Schnelligkeit ein, einer je grössern Erweiterung dieser Lungentheil fähig ist, und strömt durch diese Bronchien bei der Exspiration mit um so grösserer Gewalt zurück, je mehr der Lungentheil sich zusammenzieht oder zusammengedrückt wird. Je weniger ein Lungentheil sich während der Inspiration expandiren lässt, und während der Exspiration verkleinert wird, desto geringer ist die Strömung der Luft in den Bronchien dieses Lungentheiles. Sie wird fast null, wenn dass Lungengewebe vollkommen komprimirt oder vollkommen hepatisirt ist.. In einer vollkommen hepatisirten Lunge findet während der Respiration keine Volumsveränderung Statt, es kann demnach vom Einströmen und Austreten der Luft keine Rede seyn. Die geringe Verengerung der Bronchien während der Exspiration durch Druck der Thoraxwände auf die hepatisirte Lunge, und die eben so geringe Erweiterung derselben während der Inspiration, wie

sich dieselbe als möglich denken lässt, kann in diesen Bronchien wohl einigen Austausch der Luft, nie aber eine solche Strömung unterhalten, wie sie zur Erzeugung eines so starken Geräusches, als welches das bronchiale Athmen am Thorax nicht selten sich kund gibt, erforderlich wäre.

Aus den eben angeführten Gründen kann ich auch der Ansicht Andral's über die Ursache des bronchialen Athmens am Thorax nicht beitreten. Sie ist folgende: "Wenn die Luft am Eintreten in die Luftzellen verhindert wird, so dringt sie mit um so grösserer Gewalt in die Bronchien, und erzeugt desshalb in ihnen ein stärkeres Geräusch." Ich glaube das Erscheinen des bronchialen Athmens am Thorax aus den Gesetzen der Konsonanz erklären zu müssen. Wenn nämlich die im Lungenparenchym verlaufenden Bronchien, oder darin vorhandene nicht grosse Exkavationen, solide Wände bekommen, um den Schall zu reflektiren, konsonirt das respiratorische Geräusch des Larynx, der Trachea und der beiden Luftröhrenstämme in der Luft, die in den genannten Bronchien oder Exkavationen enthalten ist.

3. Lännec's kavernöses Athmen.

»Ich verstehe darunter, « sagt L änne c, » das Geräusch, welches das Ein – und Ausathmen in einer, innerhalb des Lungengewebes, entweder durch erweichte Tuberkeln, oder durch den Brand, oder durch einen peripneumonischen Abscess gebildeten Höhle veranlasst. Dieses respiratorische Geräusch hat den nämlichen Charakter, wie die Bronchialrespiration; man nimmt aber deutlich wahr, dass die Luft in eine weitere Höhle dringt, als die der Luftröhrenzweige ist; und wenn in dieser Hinsicht einige Zweifel Statt finden können, so heben andere, von dem Wiederhalle der Stimme, oder des Hustens entlehnte Erscheinungen schnell jede Ungewissheit auf. «

Aus dieser Schilderung lässt sich kein Unterschied zwischen dem bronchialen und kavernösen Athmen entnehmen. Die Luft bringt beim Eindringen in einen weitern begränzten Raum verschiedenartige Geräusche hervor, wie die tägliche Erfahrung lehrt. Unter diesen Geräuschen ist blos der Schall für eine Höhle charakteristisch, welchen Lännec den amphorischen Wiederhall und den metallischen Klang genannt hat. Soll also ein respiratorisches Geräusch eine Höhle im Lungenparenchym charakterisiren, so muss es vom amphorischen Wiederhalle oder metallischen Klange begleitet seyn, was aber hier nicht Lännec's Ansichtist, indem er über den amphorischen Wiederhall bei der Respiration und dessen Bedeutung an einem andern Orte abgesondert spricht.

Wäre Lännet im Stande gewesen, zwischen seinem kavernösen und dem bronchialen Athmen einen konstanten Unterschied zu finden, so hätte er diesen Unterschied gewiss durch Vergleichung mit bekannten Geräuschen darzustellen gesucht, und nicht etwas als Kennzeichen des kavernösen Athmens aufgestellt, was unmöglich ein Kennzeichen abgeben kann.

Die Angabe nämlich, man nehme deutlich wahr, dass die Luft in eine weitere Höhle dringt als die Luftröhrenzweige, kann als kein Kennzeichen betrachtet werden, denn es fehlt eben die Bestimmung der Eigenthümlichkeit in dem Respirationsgeräusche, aus der man wahrnehmen könnte, dass die Luft in einen grössern Raum eindringt.

Die Exkavationen im Lungenparenchym können, wie man bei näherer Überlegung zugeben muss, nicht immer ein und dasselbe Geräusch geben. Diess varirt nach der Grösse der Exkavation, nach der Zahl und der Weite der einmündenden Bronchien, und nach der Beschaffenheit der Wände der Exkavation. Endlich wird das Geräusch auch nach der Entfernung der Exkavation von der Brustwand bald mehr bald weniger deutlich seyn. Es gibt Exkavationen im Lungenparenchym, die so starre und feste Wandungen haben, dass sie sich während des Respirirens unmöglich oder nur äusserst wenig vergrössern und verkleinern können. Solche Exkavationen können folglich beim Inspiriren keine Luft aufnehmen, und beim Exspiriren keine ausstossen. Dessenungeachtet lässt sich in ihnen, wenn sie mit Bronchien kommuniciren und Luft

enthalten, während des Respirirens ein Geräusch hören, das überdiess gewöhnlich noch sehr laut ist. Dieses Geräusch entsteht offenbar durch Konsonanz. Die Luft in der Exkavation geräth in gleiche Vibrationen, als die Luft im nächsten Bronchus, mit dem die Exkavation kommunicirt, und in welchem die durchströmende Luft ein Geräusch macht. Dieses durch Konsonanz in einer Exkavation erregte Geräusch ist also bronchial, den Fall ausgenommen, dass die Höhle zur Erzeugung des amphorischen Wiederhalles oder metallischen Klanges weit genug ist.

Exkavationen, welche zwar solide Wände haben, aber dennoch durch Zusammendrücken verkleinert werden können, nehmen bei der Inspiration Luft auf, und stossen sie bei der Exspiration wieder aus. Den Gesetzen der Konsonanz zu Folge wird man in solchen Exkavationen das respiratorische Geräusch aus dem nächsten oder selbst aus einem entfernten Bronchus hören können, zugleich aber wird das Geräusch, das die Luft beim Ein- und Ausströmen in der Höhle macht, Statt finden, falls die Volumsveränderung der Höhle gross genug ist. Das durch Konsonanz erregte Geräusch ist abermals bronchial oder amphorisch, und das durch Ein- und Austreten der Luft bewirkte Geräusch kann wegen der Solidität der Wände gleichfalls keinen andern Charakter darbieten, wenn es sich nicht etwa wegen der Engigkeit des einmündenden Bronchus in ein zischendes oder pfeifendes oder schnurrendes Geräusch verwandelt.

In Exkavationen, welche bloss häutige Wandungen haben, an die unmittelbar lufthältiges Lungenparenchym gränzt, findet keine oder fast keine Konsonanz, also kein bronchiales Athmen, kein amphorischer Wiederhall und kein metallischer Klang Statt. Die ein- und ausströmende Luft verursacht, wenn die Kommunikation weit genug ist, ein schwaches Geräusch, das nicht dem Luftzellengeräusche gleicht, sondern zwischen Hauchen und Blasen in der Mitte steht; bei engerer Kommunikation aber entstehen zischende, pfeifende, schnurrende Geräusche. Ist die Höhle gross, und die Kommunikation eng,

und insbesonders, wenn mehrere solche Höhlen vorhanden sind, so hört man bei vorhandener Dyspnoe während der Inspiration ein starkes Zischen, auf das mit Ende der Inspiration ein ein- oder mehrmaliges Klacken folgt; — ein Schall gleich dem, den man durch schnelles Anspannen eines Papierstreifes bekommt, und der weiterhin unter dem Namen trockenes grossblasiges knisterndes Rasseln vorkommen wird.

4. Lännec's hauchende Respiration (respiration soufflante.)

Wenn das Respirationsgeräusch dem Auskultirenden die Empfindung verursacht, als werde bei der Inspiration die Luft aus seinem Ohre gezogen, während der Exspiration aber in sein Ohr geblasen, so stellt diess Geräusch die hauchende Respiration Lännec's dar. Nach Lännec kommt das Hauchen nur bei dem bronchialen und kavernösen Athmen vor, und zwar dann, wenn die Bronchialzweige oder Exkavationen der Brustwand sehr nahe liegen. Ich finde, dass das Lungenrespirationsgeräusch eine gleiche Täuschung machen kann, wenn nämlich sowohl das Inspirations- als das Exspirationsgeräusch hinreichend stark ist. Die bronchiale Respiration wird ebenfalls nur durch die Stärke hauchend.

Der Grad der Stärke des Respirationsgeräusches wird aber nicht einzig durch die Entfernung des Bronchus oder der Exkavation, worin das Geräusch Statt findet, von der Brustwand bedingt, sondern hängt von der Schnelligkeit und Grösse der Respirationsbewegung, von der mehr weniger vollkommenen Konsonanz etc. ab. Die hauchende bronchiale Respiration bedeutet somit nicht immer eine der Brustwand ganz nahe Kaverne oder einen ganz oberslächlichen Bronchus.

Lännec schildert noch eine Modifikation der hauchenden Respiration: den verschleierten Hauch, (souffte voilé) im Folgenden: "Es scheint, als wenn jede Vibration der Stimme, des Hustens oder der Respiration eine Art beweglichen, zwischen einer Lungenhöhle und dem Ohre des Beobachters gelegenen Schleiers bewegte. Diese Erscheinung findet Statt:

1) bei den Tuberkelhöhlen, deren an einigen Stellen sehr

dünne Wandungen zu gleicher Zeit geschmeidig und ohne Adhärenzen, oder beinahe mit denen der Brust verwachsen sind. 2) Wird sie ebenfalls wahrgenommen, wenn die Wandungen eines peripneumonischen Abscesses sich in einem Zustande von ungleicher entzündlicher Verhärtung befinden, und noch an einigen Stellen eine Anschoppung darbieten. 3) Sie ist vorzüglich gewöhnlich in den Fällen von Bronchophonie, die in den grössten Luftröhrenästen entsteht, und durch Lungenentzündung bedingt wird, wenn irgend ein Theil des afficirten Luftröhrenastes von einem noch gesunden, oder eine leichte Anschoppung darbietenden Lungengewebe umgeben wird, welches zwischen ihm und dem Ohre des Beobachters liegt. 4) Manchmal werden die Erweiterungen der Luftröhrenäste und die Brustfellentzündung von der nämlichen Erscheinung unter ähnlichen Umständen begleitet, d. h. wenn die Höhle, in welcher der Wiederhall der Respiration, der Stimme, oder des Hustens Statt findet, einige Stellen in ihren Wandungen darbietet, die weit weniger dicht sind, als der übrige Theil.«

»Man darf diese Erscheinungen nicht mit dem Schleimrasseln mit grossen Blasen verwechseln, welches sie manchmal begleitet. Die Unterscheidung ist übrigens leicht, wenn man nur einige Übung in der Auskultation besitzt."

Da Lännec bei seiner Beschreibung des verschleierten Hauches keinen Vergleich mit einem Geräusche wählt, so ist es unmöglich, aus der Beschreibung mit Bestimmtheit zu erkennen, welches Geräusch er mit diesem Namen bezeichnet haben will. In den nach Lännec über Auskultation erschienenen Werken wird der verschleierte Hauch fast gar nicht erwähnt. Ich habe kein Athmungsgeräusch kennen gelernt, das mit den, von Lännec für den verschleierten Hauch angegebenen Bedingungen konstant zusammenträfe, und sich in keinem andern Falle vorfände. Ich glaube, Lännec habe mit dem Namen: verschleierter Hauch, die Erscheinung belegt, wenn das Respirationsgeräusch im Beginn der Inspiration undeutlich ist, plötzlich aber stark bronchial, also zu

bronchialem Blasen wird, während der Exspiration aber stark bronchial beginnt, und undeutlich endet. Diese Modifikation des bronchialen Athmens bedeutet nichts weiter, als dass im Beginne der Inspiration und am Ende der Exspiration die Kommunikation des Bronchus oder der Exkavation, aus welcher man das bronchiale Athmen hört, mit den andern Bronchien vollständig oder grösstentheils unterbrochen ist, während der Inspiration aber wieder hergestellt wird.

\$.5. Eigene Eintheilung der Respirationsgeräusche.

Ich halte die bronchiale und kavernöse Respiration Länn ec's für ein und dasselbe Geräusch, die hauchende Respiration für eine starke bronchiale, und den verschleierten Hauch
für eine bedeutungslose Modifikation des bronchialen Athmens.
Ich glaube ferner die Überzeugung zu haben, dass man am
Thorax Respirationsgeräusche hört, die man weder als Lungenrespirationsgeräusch, noch als bronchiales Athmen determiniren kann. Ich unterscheide demnach:

- 1. Das Lungen-Respirationsgeräusch, oder vesikuläres Athmen nach Andral.
 - 2. Das bronchiale Athmen.
- 3. Den amphorischen Wiederhall und den metallischen Klang beim Athmen, der jedoch erst später besprochen werden wird, und
 - 4. unbestimmte Athmungsgeräusche.

a) Das vesikuläre Athmen.

Ich verstehe unter vesikulärem Athmen nur das Respirationsgeräusch, das dem beim Schlürfen von Luft an den Lippen hervorgebrachten Geräusche gleicht. Ein Inspirationsgeräusch, das diesen Charakter nicht deutlich zeigt, belege ich nicht mit diesem Namen, auch wenn es bei ganz gesunden Menschen vorkommt. Ich glaube nämlich überzeugt zu seyn, dass nur ein solches Inspirationsgeräusch auf keine andere Weise, als durch Eindringen der Luft in die Lungenzellen hervorgebracht werden kann. Das Exspirationsgeräusch ge-

hört ganz und gar nicht zum vesikulären Athmen; es kann ganz fehlen, stark oder schwach seyn, diess hat keinen Einfluss auf das Urtheil, ob vesikuläres Athmen vorhanden sey oder fehle.

Ich erkläre das vesikuläre Athmen, wie Lännec, aus der Reibung der Luft gegen die Wände der seinen Bronchien und Luftzellen, deren Kontraktionskraft sie überwinden muss. Aus dem Umstande, dass in den Luftzellen die eindringende Luft einen Widerstand - die Kontraktionskraft der Luftzellen - zu überwinden hat, beim Austreten aber im normalen Zustande keinen findet, erklärt es sich, dass das Athmungsgeräusch in den Lungenzellen während der Inspiration ungleich stärker ist, als während der Exspiration. In den grössern Bronchien, insbesonders aber in der Trachea und im Larynx verhält sich die Sache anders. Die Luft hat daselbst bei der Inspiration keinen Widerstand zu überwinden, sie wird vielmehr verdünnt; bei der Exspiration dagegen, wo sie aus einem grossen Raume — aus den Lungenzellen — in einen kleinern gedrängt wird, wird sie in den grössern Bronchien und besonders im Larynx komprimirt. Im Larynx, in der Trachea und in den grossen Bronchien ist darum in der Regel das Exspirationsgeräusch stärker, als die Inspiration.

Schon diese Thatsache ist beinahe im Stande, die Theorie von Beau über die Ursache des vesikulären Athmens zu widerlegen. Beau erklärt, wie Baciborsky anführt, das vesikuläre Athmen dadurch, dass längs der ganzen Säule der ein- und ausgeathmeten Luft der Schall, welcher durch das Anschlagen der Luft an die Gaumensegel oder die Nachbargebilde entsteht, fortgepflanzt wird. Ich glaube schon früher gezeigt zu haben, dass das am Gaumensegel, am Kehlkopfe, in der Trachea und den grossen Bronchien Statt findende Respirationsgeräusch bei normaler Beschaffenheit der Respirationsorgane am Thorax nie als vesikuläres Athmen, in gewissen krankhaften Zuständen aber als bronchiales Athmen erscheint. Beau scheint auf die Erklärung der Athmungsgeräusche durch die Beobachtung des bronchialen Athmens am Thorax geführt worden zu seyn.

Das vesikuläre Athmen zeigt an, dass die Luft in die Luftzellen des Lungentheiles, der sich unter der auskultirten Stelle befindet, eindringt. Sein Vorhandenseyn schliesst demnach alle krankhaften Zustände aus, die das Eindringen der Luft in die Luftzellen dieses Lungentheiles unmöglich machen. Diese krankhaften Zustände sind: Kompression durch ein Exsudat, durch Geschwülste in der Brusthöhle, durch Vergrösserung des Herzens etc., Infiltration des Lungenparenchyms mit plastischer oder tuberkulöser Materie, durch Blut, Serum etc., Schwund der Luftzellen, Obliteration der zugehörigen Bronchien durch Schleim, Blut, Anschwellung der Schleimhaut.

Es kann aber bei solitären Tuberkeln, wenn sie noch so häufig sind, und bei, auf einzelne kleine Läppchen beschränkter, Entzündung — lobuläre Hepatisation — sehr wohl bestehen, und findet sich auch ziemlich häufig bei diesen krankhaften Veränderungen.

Das vesikuläre Athmen ist desto stärker, je grösser der Widerstand — die Kontraktionskraft — der Luftzellen, und je schneller und grösser die Inspiration ist. Die verschiedene Beschaffenheit der Auskleidung der Luftzellen und feiner Bronchien muss die Stärke des vesikulären Athmens gleichfalls beträchtlich modificiren. Man bemerkt, dass das vesikuläreAthmenjedesmal viel lauter ertönt, wenn es rauher wird. Das rauhe vesikuläre Athmen bedeutet den geringsten Grad von Anschwellung der Auskleidung der feinen Bronchien und Luftzellenschwellung der

Das vesikuläre Athmen geht stuffenweise in das unbestimmte Athmen, und das rauhe vesikuläre Athmen überdiess stuffenweise in Zischen, Pfeisen und Schnurren über.

Das vesikuläre Athmen ist fast immer tiefer, als das Athmungsgeräusch im Larynx. Bei alten Leuten, bei Lungenödem und sehr zahlreichen solitären Tuberkeln wird es insbesonders in den obern Theilen der Lunge zuweilen höher als gewöhnlich, und in seltenen Fällen eben so hoch, als das Athmungsgeräusch im Larynx. Ein so hohes vesikuläres Athmen steht dem Zischen am nächsten.

Das vesikuläre Athmen kann fast ohne alles Exspirationsgeräusch vorkommen, oder aber es ist das letztere in verschiedener Stärke vorhanden; zuweilen ist die Exspiration viel lauter, als die Inspiration. Das Exspirationsgeräusch bedeutet jedesmal ein Hinderniss in den Bronchien, das sich der ausströmenden Luft entgegenstellt. Diess Hinderniss ist in den meisten Fällen eine Anschwellung der Auskleidung der Bronchien. Das Exspirationsgeräusch ist mit sehr seltenen Ausnahmen tiefer, als die vesikuläre Inspiration; es ist um so tiefer, je weiter der Bronchus, in dem es Statt findet, von der Oberfläche der Lunge entfernt ist. Es kommt der vesikulären Inspiration an Höhe nur in dem Falle nahe, wenn die Luft schon in den sehr feinen Bronchien ein Hinderniss findet.

b) Bronchiales Athmen.

Damit man am Thorax ein Respirationsgeräusch als bronchial bestimmen könne, muss dasselbe den Charakter des Laryngeal- oder Trachealgeräusches haben, und darf von diesem Geräusche nur in der Höhe abweichen. Man ahmt das bronchiale Athmen durch Blasen in eine Röhre nach; will man es mit dem Munde hervorbringen, so muss man die Zunge so stellen, als es der Konsonant Ch erfordert, und dann aus- oder einathmen. Das bronchiale Athmen am Thorax kann höher, stärker, tiefer, schwächer, oder eben so hoch und stark als das Laryngealgeräusch seyn. Diese Verschiedenheiten sind darin begründet, dass das bronchiale Athmen am Thorax nicht immer ein konsonirendes Geräusch der Laryngealrespiration ist, sondern nicht selten aus dem untern Theile der Trachea, oder aus einem Luftröhrenstamme, oder selbst aus einem der stärksten Luftröhrenzweige herrührt. Die verschiedene Stärke und Höhe des bronchialen Athmens am Thorax zeigt nichts Bestimmtes an, indem nicht eine, sondern viele Ursachen in der Höhe und Stärke Modifikationen erzeugen.

Der verschiedene Grad von Stärke und Höhe des Respirationsgeräusches im Larynx, der Trachea und den grössern Bronchien, welcher theils von der Schnelligkeit und Grösse der Respirationsbewegungen, theils von der Beschassenheit der innern Auskleidung der Athmungswege abhängt, und die mehr weniger vollkommene Konsonanz dieses Geräusches innerhalb des krankhaft veränderten Lungentheils, die sich nach den früher erörterten Umständen richtet, bedingen eine verschiedene Stärke und Höhe des bronchialen Athmens am Thorax.

Das bronchiale Athmen am Thorax wird in der Regel während der Exspiration lauter gehört, als während der Inspiration. Diess hat seinen Grund darin, dass, wie bereits erwähnt wurde, das Exspirationsgeräusch in den grösseren Bronchien, in der Trachea und im Larynx in der Regel lauter ist, als die Inspiration. Doch gibt es von dieser Regel Ausnahmen. Es kann auch die Inspiration lauter seyn, oder es ist bloss die Inspiration, oder bloss die Exspiration hörbar, oder die Inspiration beginnt mit einem undeutlichen Athmungsgeräusche, das erst in ein bronchiales übergeht.

Alle diese Modifikationen sind ganz zufällig, sie hängen in der Regel von der Unterbrechung der Kommunikation der Luft in den Bronchien durch Schleim, Blut etc. ab, und können alle Augenblicke verändert werden.

Das bronchiale Athmen hat genau dieselbe Bedeutung, als die schwache Bronchophonie, und ich verweise desswegen auf das bereits Gesagte. Es kommt aber nicht, wie die schwache Bronchophonie, auch im normalen Zustande der Respirationsorgane vor. Es bedeutet somit auch in dem Raume zwischen den Schulterblättern jedesmal einen krankhaften Zustand; nur in der Umgebung der obersten Brustwirbel wird es in seltenen Fällen auch bei Gesunden gehört.

Das bronchiale Athmen geht stuffenweise in das unbestimmte Athmungsgeräusch, in den amphorischen Wiederhall und metallischen Klang, und in das konsonirende Zischen, Pfeisen und Schnurren über.

c) Unbestimmte Athmungsgeräusche.

Unter dieser Benennung begreife ich das respiratorische Geräusch am Thorax, das sich weder als vesikuläres noch als bronchiales Athmen charakterisirt, vom amphorischen Wiederhalle oder metallischen Klange nicht begleitet ist, und auch keines von den noch später zu beschreibenden von der Respiration abhängigen Geräuschen, — Rasseln, Pfeifen, Schnurren, Reibungsgeräusche der Pleura, — darstellt.

Das Respirationsgeräusch der Luftzellen ist zuweilen so wenig markirt, dass es sich durchaus nicht von dem Geräusche unterscheiden lässt, das in den tiefer gelegenen Bronchien oder selbst am Larynx vor sich geht, und ohne zu konsoniren, durch das Lungenparenchym bis an die Brustwandung fortgepflanzt wird. Ein entferntes schwaches Rasseln kann am Thorax gleichfalls so gehört werden, als ein nicht markirtes Respirationsgeräusch der Luftzellen. Da also ein solches Respirationsgeräusch mehrere Ursachen haben kann, lässt sich aus dem Geräusche selbst nicht erkennen, aus welcher Ursache es in einem bestimmten Falle entstehe; man kann es mit Sicherheit weder dem Eintritte von Luft in die Luftzellen, noch dem Strömen der Luft in den grossen Bronchien, noch einem entfernten schwachen Rasseln, sondern nur überhaupt einer dieser Ursachen, oder mehreren derselben zugleich zuschreiben.

Das Geräusch aus den grössern Bronchien kann ferner, ohne zu konsoniren, also ohne den Charakter des bronchialen Athmens zu haben, so stark am Thorax hörbar seyn, dass man sicher weiss, es entstehe nicht in den Luftzellen. Dessenungeachtet aber weiss man daraus nicht, ob die Luft in die Luftzellen einströmt, oder nicht, denn es ist beides möglich. Man erhält folglich aus einem solchen Geräusche keinen Aufschluss über die Beschaffenheit des Lungenparenchyms. Das Exspirationsgeräusch gibt, wenn es nicht bronchial oder amphorisch ist, gleichfalls keinen Aufschluss über die Beschaffenheit des Lungenparenchyms.

Alle diese respiratorischen Geräusche, welche über die Beschaffenheit des Lungenparenchyms keinen Aufschluss geben, nenne ich unbestimmte Athmungsgeräusche, indem mir eine Unterabtheilung derselben von keinem Nutzen scheint.

Jedes stärkere unbestimmte Athmungsgeräusch bedeutet ein Hinderniss für den Lnftstrom in den Bronchien. Man kann aus der Stärke und Höhe des unbestimmten Athmens beiläufig auf die Weite der Bronchien schliessen, in denen das Hinderniss vorhanden ist. Das unbestimmte Athmungsgeräusch geht stuffenweise in Zischen, Schnurren, Pfeifen und Rasseln über.

Ich habe mich bemüht, die Charaktere der Respirationsgeräusche so bestimmt als möglich anzugeben. Wenn ein Respirationsgeräusch nicht ein solches ist, welches den Übergang von einem Geräusche zum andern darstellt, so ist, wie ich glaube, die Unterscheidung desselben nicht sehr schwierig. Je feiner das Gehörorgan unterscheidet, und je geübter es ist, desto leichter wird es auch die Übergangsgeräusche richtig bestimmen. Man geht aber immer sicherer, wenn man die nicht deutlich charakterisirten Respirationsgeräusche vor der Hand als unbestimmte Geräusche ansieht, keinen Schluss aus ihnen macht, erst alle übrigen Zeichen zu Rathe zieht, und mit der möglichen Bedeutung des Respirationsgeräusches zusammenstellt. Bei dieser Methode wird selbst ein in der Auskultation nicht besonders Geübter selten fehlen.

B. Über die Rasselgeräusche.

S. 1. Ursachen des Rasselns und Verschiedenheiten desselben.

Die Rasselgeräusche werden beim Respiriren gewöhnlich dadurch erzeugt, dass die Luft die in den Bronchien oder Lungenexkavationen vorhandene Flüssigkeit—Schleim, Blut, Serum etc. — durchbricht. Eine Art Rasseln kann aber auch durch feste Körper z. B. eine Schleimhautfalte erzeugt werden, wenn nämlich der feste Körper den Luftstrom unvollständig hemmt, und von diesem in Vibration versetzt wird; und ein besonderes Rasselgeräusch wird dadurch erzeugt,

dass die Luft in ausdehnbare Lungenparthien einströmt, die ihre Kontraktionskraft verloren haben.

Durch Rasselgeräusche kann das Athmungsgeräusch vollkommen verdeckt werden, oder es ist mit dem Rasseln auch das Athmungsgeräusch hörbar.

Das Rasseln gleicht dem Sprudeln des kochenden Wassers, oder des kochenden Fettes, dem Geräusche, welches das Springen der Blasen auf der Obersläche einer gährenden Flüssigkeit macht, dem Knistern der zerspringenden seinen Bläschen im Beginn des Siedens des Wassers oder beim Rösten des Fettes, dem Knistern des auf glühenden Kohlen zerspringenden Salzes, dem Prasseln des trockenen Holzes, wenn es gebrochen wird, dem Knarren hartgefrornen Schnees, oder des Leders etc.; es kann endlich vom amphorischen Wiederhalle und metallischen Klange begleitet seyn. Das Rasseln ist dem zu Folge sehr verschieden; es bedeutet mit seltenen Ausnahmen Flüssigkeiten in den Bronchien oder Exkavationen.

Die meisten Arten von Rasseln kommen dem Geräusche gleich, welches das Zerspringen von Blasen einer Flüssigkeit macht. Andere gleichen dem Knarren des Leders etc. Die erstern hat man feuchtes Rasseln, die letztern trockenes Rasseln genannt. Es gibt keine bestimmte Gränze zwischen dem feuchten und trockenen Rasseln; das eine geht stuffenweise in das andere über. Es frägt sich aber, ob man aus dem Rasseln bestimmen kann, ob die Flüssigkeit in den Luftzellen, in den kleinen oder grossen Bronchien, oder in Exkavationen vorhanden; wie die Flüssigkeit beschaffen, und in welcher Menge sie vorhanden sey, und in welchem Zustande sich das Lungenparenchym befinde. Diese Frage lässt sich nur dadurch beantworten, dass man sämmtliche Verschiedenheiten auffindet, die das Rasseln zeigt, und den Grund dieser Verschiedenheiten zu bestimmen sucht.

Das Geräusch, welches vom Zerspringen der Blasen einer Flüssigkeit verursacht wird, ist verschieden nach der Grösse dieser Blasen. Das feuchte Rasseln ist demnach grossklein- sehr feinblasig. In dem Knarren des Leders, des Schnees, in dem Prasseln des Holzes, etc. sind die einzelnen Absätze des Geräusches grösser oder kleiner. Man hat auch das trockne Rasseln gross- klein- feinblasig genannt, und bezeichnet dadurch die Grösse der Absätze des Geräusches. Das feuchte sowohl, als das trockne Rasseln von jeder möglichen Grösse der Blasen kann selten oder häufig, stark oder schwach, hell oder dumpf gehört werden; es kann ferner eine verschiedene Schallhöhe haben, und amphorisch oder metallisch wiederhallen.

a) Feuchtes und trockenes Rasseln.

Ob das Rasseln feucht oder trocken erscheint, hängt höchst wahrscheinlich von dem verschiedenen Grade der Zähig-keit der in den Bronchien oder Exkavationen befindlichen Flüssigkeit ab. Feste Körper können auf die schon angegebene Weise immer nur trockenes Rasseln geben. Man erhält also dadurch, dass man das Rasseln als trocken erkennt, keinen weitern Aufschluss, als dass muthmasslich die enthaltene Flüssigkeit mehr zähe ist, als wenn dasselbe feucht erscheint.

b) Grösse der Blasen.

Grosse Blasen sind nur in grossen Bronchien und in Exkavationen möglich; kleine Blasen dagegen können in kleinen und grossen Bronchien und Exkavationen vorkommen. Die Grösse der Blasen in den grössern Bronchien und Exkavationen hängt von der Menge und Beschaffenheit der enthaltenen Flüssigkeit, und von der Schnelligkeit des Luftstromes ab. Obgleich aber in den grössern Bronchien und Exkavationen auch kleine und selbst sehr feine Bläschen möglich sind, so sind doch immer grössere damit vermengt, das Rasseln ist nie gleichblasig. Das feinblasige, gleichblasige Rasseln kann bloss in den feinen Bronchien und in den Luftzellen sich bilden; es bedeutet das Vorhandenseyn von Flüssigkeit, Schleim, Blut, Serum, in den feinen Bronchien und Luftzellen. Es setzt aber das Eindringen der Luft in die Luftzellen voraus, desshalb schliesst es alle krankhaften Zustände der Respirationsorgane aus, welche das Eindringen der Luft in die

Lungenzellen unmöglich machen; es hat also in Bezug auf das Lungenparenchym dieselbe Bedeutung als das vesikuläre Athmen.

c. Häufigkeit des Rasselns.

Diese hängt von der Menge der Flüssigkeit, von dem Vorhandenseyn derselben in vielen Bronchien, und von der Stärke der Respiration ab. Hört man nur wenig Rasseln - einzelne Blasen - und dabei vesikuläres oder bronchiales Respirationsgeräusch, so ist gewiss nur wenig Flüssigkeit in den Luftwegen; falls nicht Exkavationen vorhanden sind, in denen der Luftstrom die Flüssigkeit nicht berührt. Viel Rasseln ohne alles Respirationsgeräusch oder mit unbestimmtem Athmen bedeutet häufig Obliteration vieler Bronchien durch Schleim, Blut, Serum etc. Hier kann auch erwähnt werden, dass das Rasseln entweder bloss während der Inspiration, oder bloss während der Exspiration oder während der In- und Exspiration zugleich vorkommen kann. Diese Verschiedenheit ist ganz zufällig, und höchstens bei dem feinen gleichblasigen Rasseln dürfte es sich ereignen, dass es durch längere Zeit selbst nach dem Husten bloss während der Inspiration sich vernehmen liesse.

d) Stärke der Rasselgeräusche.

Die Rasselgeräusche sind bisweilen so stark, dass sie sowohl aus dem Munde des Kranken, als durch die Brustwand ohne Anlegen des Ohres oder Stethoskops an dieselbe gehört werden können. In andern Fällen sind sie schwach, und haben eine eben so grosse Aufmerksamkeit zu ihrer Wahrnehmung nöthig, als zum Vernehmen schwacher Respirationsgeräusche erfordert wird. Die verschiedene Stärke der Rasselgeräusche hängt hauptsächlich von der Grösse und Schnelligkeit der Respirationsbewegungen ab.

Unter die stärksten Rasselgeräusche gehört das Röcheln der Sterbenden. Dieses aus dem Munde hörbare Geräusch entsteht hauptsächlich im Larynx, in der Trachea und den Luftröhrenstämmen; doch sind dabei auch Rasselgeräusche in den Bronchien. Durch die Brustwand kann man, ohne das Ohr oder Stethoskop anzulegen, Rasselgeräusche hören, die in einer sehr oberflächlichen Lungenhöhle entstehen, selbst wenn das Athmen nicht sehr schnell und angestrengt ist. In diesem Falle hört man das Rasseln gewöhnlich auch aus dem Munde des Kranken, wenn auch im Larynx und in der Trachea kein Rasseln Statt hat. Starke Rasselgeräusche, die im Larynx oder der Trachea entstehen, werden am ganzen Thorax vernommen, und können die Wahrnehmung jedes andern auskultatorischen Zeichens, das die Respiration geben könnte, so wie selbst das Auskultiren des Herzens, und der Arterienstämme innerhalb der Brusthöhle, unmöglich machen.

e) Helligkeit oder Deutlichkeit des Rasselns.

Indem der Schall in der Brusthöhle oft von der geraden Richtung abweicht, indem man ferner, sobald der Schall durch andere Medien, als die Luft, geht, nicht so leicht erkennt, woher er kommt, so ist die Bestimmung der Ursprungsstelle des Rasselns in der Brust oft sehr schwierig, und man muss auch die Deutlichkeit oder Helligkeit des Rasselns berücksichtigen, um daraus wo möglich, die grössere oder geringere Entfernung des Rasselns von der Brustwand zu beurtheilen.

Das nahe Rasseln ist heller als das entfernte; das starke entfernte Rasseln kann aber heller als das schwache nahe seyn; endlich kann das im Larynx und in der Trachea oder in den Luftröhrenstämmen entstehende Rasseln, ebenso als die Stimme oder das Respirationsgeräusch, bei den bereits bekannten krankhaften Veränderungen des Lungenparenchyms innerhalb desselben konsoniren, und auf diese Weise sehr hell am Thorax hörbar seyn, obgleich dessen Ursprung im Larynx etc. ist.

Ist das kleinblasige gleichblasige Rasseln hell, so muss es nothwendiger Weise an der Stelle entstehen, an welcher man auskultirt. Die nahe Lungenparthie muss somit der Luft zugängliche Lungenzellen enthalten, und hat keine, wenigstens nicht etwas grössere, Exkavationen.

Das ungleichblasige oder grossblasige Rasseln aber kann entweder in Exkavationen entstehen, die der Oberstäche nahe liegen, oder es kann bei vorhandener Dyspnoe selbst aus entserntern Exkavationen, oder aus grössern Bronchien gehört werden; oder aber es ist ein konsonirendes Rasseln, und kann selbst bei schwachem Athmen aus der Trachea abzuleiten seyn.

Das dumpfe Rasseln entsteht in einer unbestimmbaren Entfernung von der Brustwand, und kann im Larynx, in der Trachea, in den Bronchien, Luftzellen, oder Exkavationen seinen Sitz haben.

f. Schallhöhe des Rasselns.

Lougementer by a staich besternoon

Ich bestimme die Schallhöhe beim Rasseln, so wie bei den Respirationsgeräuschen; nämlich nach dem Vokale, der bei der Nachahmung des Rasselgeräusches mit dem Munde oder eines mit demselben gleich hohen Respirationsgeräusches erforderlich wäre.

Die Höhe des Rasselgeräusches entspricht häufig der Höhe des Respirationsgeräusches, das durch das Rasseln ersetzt, oder gleichzeitig mit dem Rasseln gehört wird. So ist das Rasseln im Larynx und in der Trachea höher, als das Rasseln im Lungenparenchym, weil das Laryngealgeräusch in der Regel höher, als das vesikuläre Athmen ist. Wenn aber schon bei den Athmungsgeräuschen Ausnahmen von der Regel vorkommen, so sind sie noch häufiger bei den Rasselgeräuschen, indem die verschiedene Beschaffenheit der Flüssigkeit auch auf die Höhe des Rasselns einen Einfluss hat. Das Rasseln mag nun in den grössern Bronchien wie immer hoch oder tief erzeugt werden, so verliert es bei der Fortpflanzung gegen die Brustwand um so mehr an Höhe, je entfernter davon es entsteht, und je schwächer es ursprünglich ist,

den Fall ausgenommen, wenn es durch Konsonanz innerhalb der Brustwand verstärkt wird.

Ein hohes Rasseln in den grossen Bronchien erscheint somit, wenn es konsonirt, auch am Thorax hoch, während es, wenn es sich durch blosse Schallleitung zur Brustwand verbreitet, tiefer gehört wird. Das grossblasige oder ungleichblasige Rasseln kann darum am Thorax nur in dem Falle hoch gehört werden, dass die Bedingungen zur Konsonanz vorhanden sind, oder dass sich nahe an der Brustwand Exkavationen befinden. In den letztern entsteht ein hohes Rasseln in der Regel auch nur dann, wenn die Wände der Exkavation den Schall restektiren.

Das hohe grossblasige oder ungleichblasige Rasseln am Thorax ist dem zu Folge in Bezug auf die Beschaffenheit des Lungenparenchyms gleichbedeutend mit der Bronchophonie und mit der bronchialen Respiration. Weil sich Rasseln überhaupt ungleich häufiger bei hepatisirter oder tuberkulös infiltrirter Lunge, als bei Exsudaten in der Pleura vorfindet, so kann man aus dem hohen grossblasigen Rasseln in der Regel auf Hepatisation oder Infiltration des Lungenparenchyms mit Tuberkelmaterie schliessen. Man muss jedoch, um sicher zu gehen, jedesmal die Perkussion und die sonstigen Zeichen in der Art, als es bei der Bronchophonie angeführt wurde, zu Rathe ziehen.

Das tiefe dumpfe Rasseln zeigt Schleim, Blut, Serum etc. in den Bronchien oder Exkavationen an, gibt aber über die Beschassenheit des Lungenparenchyms keinen Aufschluss. Das tiefe helle grossblasige Rasseln kommt entweder durch Konsonanz aus der Tiefe zur Obersläche, oder es entsteht auf der Obersläche der Lunge, also in oberslächlich gelegenen Exkavationen, oder sehr erweiterten Bronchien. Mit Berücksichtigung der Zeichen aus der Perkussion wird man gewöhnlich entscheiden können, ob das tiefe helle grossblasige Rasseln ein konsonirendes sey, oder oberslächlich gebildet werde.

rasiwand am so mehr an libbe, for current

§. 2. Lännec's Eintheilung der Rasselgeräusche.

Lännec begriff unter der Benennung Rasseln auch die schnurrenden und pfeifenden Geräusche, und unterschied fünf Hauptarten des Rasselns:

- 1. Das feuchte knisternde Rasseln oder Knistern le râle crépitant humide, ou crépitation. —
- 2. Das Schleimrasseln oder Gegurgel le râle muqueux, ou gargouillement. —
- 3. Das trockene sonore Rasseln oder Schnarchen le râle sec sonore, ou ronflement. —
- 4. Das trockene oder pfeisende Rasseln oder Pfeisen le râle sibilant sec ou sifflement. —
- 5. Das trockene knisternde Rasseln mit grossen Blasen, oder Knattern le râle crépitant sec à grosses bulles, ou craquement. —

Ich verstehe unter Rasseln nur die Geräusche, die gleichsam durch Zerspringen der Wasserblasen zu entstehen scheinen, oder die dem Prasseln gleichen, und werde desshalb das trockene sonore und das trockene pfeifende Rasseln Lännec's abgesondert abhandeln.

a. Lännec's feuchtes knisterndes Rasseln.

Da es nach Länne c eines der wichtigsten auskultatorischen Zeichen ist, so werde ich die Beschreibung desselben wörtlich nach Länne c anführen: »Das feuchte knisternde Rasseln ist ein Geräusch, welches offenbar in dem Lungengewebe vor sich geht, man kann es mit dem vergleichen, welches Salz hervorbringt, das man bei einer gelinden Hitze im Kessel abknistern lässt, ferner mit dem, welches eine trockene Blase gibt, wenn man sie aufbläst, oder noch besser mit dem, welches das Gewebe einer gesunden und mit Luft angefüllten Lunge hören lässt, wenn man es zwischen den Fingern drückt. Es ist bloss etwas stärker, als dieses letztere, und gibt ausser dem Knistern eine sehr deutliche Wahrnehmung von Feuchtigkeit. Man hört offenbar, dass die Lungenzellen eine beinahe eben so

dünne Flüssigkeit, wie das Wasser ist, enthalten, die das Durchgehen der Luft nicht verhindert. Die Blasen, welche sich bilden, scheinen ausserordentlich klein zu seyn. Diese Art des Rasselns, welche übrigens eine der merkwürdigsten ist, lässt sich sehr leicht unterscheiden, und man braucht sie nur einmal gehört zu haben, um sie jederzeit wieder zu erkennen. Es ist das pathognomonische Zeichen der Lungenentzündung im ersten Stadium; es wird nicht mehr wahrgenommen, sobald die Lunge die leberartige Härte erreicht hat, und kommt wieder zum Vorschein, wenn Zertheilung Statt findet. Man beobachtet es ebenfalls bei Oedem der Lunge und manchmal bei Hämoptyse. In diesen beiden letzten Fällen scheinen die durch die Ortsveränderungen der Luft gebildeten Blasen etwas dicker und feuchter zu seyn, als bei dem knisternden Rasseln der Lungenentzündung. Ich bezeichne diese Varietät mit dem Namen Rale sous-crépitant, - fast knisterndes Rasseln - . * Thrum alberta name adolette do

Später hat man das knisternde Rasseln von dem fast knisternden bestimmter zu unterscheiden gesucht. Dan de glaubt den Unterschied darin gefunden zu haben, dass das knisternde Rasseln nur während der Inspiration hörbar ist, und nach der Expektoration nicht verschwindet; indess das fast knisternde Rasseln beim In- und Exspiriren gehört wird, und nach der Expektoration verschwindet.

Es ist nicht in Abrede zu stellen, dass Lännec's knisterndes Rasseln zuweilen bloss bei der Inspiration erscheint,
und durch die Expektoration nicht aufgehoben wird; allein
dieser Umstand charakterisirt es nicht als pathognomonisches
Zeichen der Pneumonie. Andral, Chomel, Cruveillhier etc. führen zahlreiche Thatsachen an, die beweisen,
dass Lännec's knisterndes Rasseln nicht als pathognomonisches Zeichen der Pneumonie gelten könne, und dass es zwischen dem knisternden, fast knisternden und Schleimrasseln
keine Gränze gebe; dessenungeachtet ist die von Lännec
aufgestellte Ansicht über die Bedeutung des knisternden
Rasselns die vorherrschende, und man trägt grosse Sorge,

dieses eigenthümliche Zeichen ja von allen übrigen recht gut unterscheiden zu können.

Mir ist das Knistern Lännec's, nämlich ein feinblasiges gleichblasiges Rasseln, ein Zeichen, dass sich in den feinen Bronchien und Luftzellen Flüssigkeit vorfindet, und dass die Luft in die Luftzellen eindringt. Durch welchen Krankheitsprozess diese Flüssigkeit producirt sey, das beurtheile ich nie nach dem Knistern, sondern aus andern Erscheinungen. Ich habe das Knistern Lännec's bei Pneumonien nicht nur nicht konstant, sondern, wenn man sich streng an Lännec's Beschreibung desselben hält, sogar ziemlich selten gefunden.

b. Lännec's Schleimrasseln.

Dieses zerfällt in das eigentliche Schleimrasseln — râle muqueux —, oder nach Andral râle bronchique humide, und in das kavernöse Rasseln — râle caverneux —. Das Schleimrasseln unterscheidet Lännec von dem Knistern durch die bedeutendere und ungleiche Grösse der Blasen, durch die es gebildet scheint; und das kavernöse von dem Schleimrasseln dadurch, dass es reichlicher und grösser ist, und in einem umschriebenen Raume vor sich geht, wo sich gewöhnlich auch der kavernöse Husten, die kavernöse Respiration, und die kavernöse Stimme hören lässt.

Man sieht schon aus dieser Beschreibung des kavernösen Rasselns, dass dieses kein genaueres Zeichen der Kavernen ist, als es die Bruststimme und das kavernöse Athmen war. Die Grösse und Reichlichkeit der Blasen hängt von der Menge und Beschaffenheit der in den Bronchien oder Exkavationen enthaltenen Flüssigkeit, und von der Stärke des Luftstromes ab. Die Beschränktheit des Rasselns auf eine kleinere Stelle ist ein ganz ungewisses Zeichen. Wenn sich Exkavationen durch einen ganzen Lungenflügel vorfinden, wie wird man in diesem Falle das Rasseln nach der Beschreibung Lännec's als kavernöses erkennen? Und wenn in einem

einzigen stärkern Bronchus, der oberflächlich liegt, reichliches Rasseln verursacht wird, wodurch wird sich dieses von dem kavernösen Rasseln Lännec's unterscheiden?

Nach meiner Überzeugung zeigt das Rasseln in Exkavationen keinen Unterschied von dem Rasseln in den Bronchien, ausser wenn es mit amphorischem Wiederhalle odet
metallischem Klange verbunden ist. Es kann in den Exkavationen ehen so wie in den Bronchien gross - und kleinblasig,
feucht und trocken, reichlich und selten, hell und dumpf, hoch
und tief seyn. Das Rasseln kann in den Exkavationen eben so,
als in den Bronchien, konsoniren. Es können Exkavationen
ganz mit Flüssigkeit gefüllt in der Lunge existiren, ohne dass
sie, selbst durch längere Zeit, ein Rasselgeräusch verursachen,
wie diess auch von den Bronchien gilt. In den Exkavationen
entsteht nur dann ein Rasseln, wenn sie sich während des
Respirirens vergrössern und verkleinern können, und wenn
der Eintritt und Austritt der Luft nicht vollkommen gehindert ist.

c. Lännec's trockenes knisterndes Rasseln mit grossen Blasen, oder Knattern.

Dieses Geräusch ist nach Lännec dem ähnlich, welches eine trockene Schweinsblase macht, wenn man sie aufbläst. Es soll ein pathognomonisches Zeichen des Lungenemphysems und des Interlobularemphysems der Lunge darstellen. Es kommt aber nur in den Fällen vor, wo eine Lungenparthie aus bedeutend erweiterten — erbsen- bis bohnengrossen — Luftzellen besteht, die mit Bronchien kommuniciren. In allen übrigen Fällen von Lungenemphysem ist es nicht vorhanden. Es kommt ferner bei sackförmig erweiterten Bronchien und bei Lungenexkavationen vor, deren Wandungen nur häutig sind, und die durch eine nicht zu weite Öffnung mit den Bronchien kommuniciren.

Man hat Lännec's Knattern sogar von dem Zerreissen des Lungenparenchyms abgeleitet. Auf die Kenntniss des Geräusehes, welches beim Zerreissen der Luftzellen entsteht, müssen wir nach meiner Ansicht sehon Verzicht leisten. Ich glaube, dass das Knattern durch die in Folge der Inspiration bewirkte Anspannung der Wandungen der Luftzellen, Bronchien und Exkavationen verursacht werde, welche Wandungen während der Exspiration nicht zusammengezogen, sondern zusammengefallen waren.

Es ist möglich, oder vielmehr es ist gewiss, dass die Lunge ihre Kontraktionskraft verlieren kann, ohne dass einzelne Luftzellen bedeutend erweitert werden können, weil alle gleichmässig erweitert werden. Die Luftzellen einer solchen Lunge werden zu Ende der Inspiration ein knisterndes, trockenes, kleinblasiges Rasseln geben können, weil sie während der Exspiration sich nicht zusammenziehen, sondern erschlaffen, und während der Inspiration angespannt werden. Ich weiss aber bisher nicht, ob es möglich ist, dieses Rasseln von dem durch zähen Schleim in den Luftzellen und feinen Bronchien verursachten zu unterscheiden.

S. 3. Eigene Eintheilung der Rasselgeräusche.

Ich theile die Rasselgeräusche so wie die Stimme und das Athmen nur in so ferne ein, als ich glaube, dass die Eintheilung einen praktischen Werth hat. Diesem Princip zu Folge unterscheide ich:

- 1) Das vesikuläre Rasseln, in santalitarione leito siinel
- 2) Das konsonirende Rasseln.
- 3) Das trockene knisternde Rasseln mit grossen Blasen oder Knattern, das eben im vorhergehenden besprochen wurde.
 - 4) Unbestimmte Rasselgeräusche.
- 5) Das Rasseln mit amphorischem Wiederhalle und metallischem Klange, von welchem weiter unten die Rede seyn wird.

a) Das vesikuläre Rasseln,

Ich verstehe darunter, so wie Andral und Lännec, das Rasseln in den feinen Bronchien und Luftzellen. Dass ein Rasselgeräusch in den Luftzellen und feinen Bronchien entsteht, erkennt man dadurch, dass die Bläschen sehr klein und von gleicher Grösse sind. Es zeigt das Vorhandenseyn von Schleim, Blut, Serum etc. in den feinsten Bronchien und in den Luftzellen, und das Eintreten der Luft in die Lungenzellen; schliesst demnach alle krankhaften Zustände aus, bei denen der Eintritt der Luft in die Lungenzellen unmöglich ist. Um aber aus diesem Rasseln auf die nächste Lungenparthie schliessen zu können, muss dasselbe sich ganz deutlich hören lassen.

b) Das konsonirende Rasseln.

Man erkennt es daran, dass es hell, hoch und ungleichblasig ist. Ein hohes und helles Rasseln kann nämlich, wie bereits auseinandergesetzt wurde, am Thorax nur dann vorkommen, wenn die Bedingungen zur Konsonanz vorhanden sind. Das konsonirende Rasseln ist dem zu Folge gleichbedeutend mit dem bronchialen Athmen und mit der Bronchophonie, und da das Rasseln bei Exsudaten in der Pleura nur selten vorkommt, so bedeutet das konsonirende Rasseln gewöhnlich eine Pneumonie oder Infiltration mit Tuberkelmaterie.

c) Unbestimmte Rasselgeräusche.

Dahin gehören alle Rasselgeräusche, die nicht vesikulär, nicht konsonirend, und nicht vom amphorischen Wiederhalle oder metallischen Klange begleitet sind. Sie zeigen
rücksichtlich der Beschaffenheit des Lungenparenchymsnichts
Bestimmtes an, und bedeuten somit im allgemeinen das Vorhandenseyn von Flüssigkeit in den Luftwegen. Was sich aus
den Rasselgeräuschen in Bezug auf die Menge und Beschaffenheit der in den Luftwegen enthaltenen Flüssigkeiten, so
wie auf den Ort, wo diese sich befinden, entnehmen lässt,
ist bereits bei der Betrachtung der Unterschiede der Rasselgeräusche angegeben.

C. Über das Schnurren, Pfeifen und Zischen.

Lännec hat, wie bereits erwähnt, diese gleichfalls unter dem Namen Rasselgeräusche begriffen. Wenn sich in

den Luftwegen verengerte Stellen befinden, so verursacht die durchströmende Luft die verschiedenartigsten Geräusche, die wir mit Schnurren, Pfeisen, Zischen etc. zu bezeichnen pflegen. Aus der Stärke des Geräusches, und aus der Erschütterung, die man gleichzeitig fühlt, beurtheilt man die Grösse des Bronchus, in dem das Geräusch vorkommt. Doch ist das Urtheil immer nur ein beiläufiges. In den grossen Bronchien ist das Schnurren gewöhnlicher, in den feinern das Pfeisen, und in den seinsten das Zischen. Von dieser Regel gibt es jedoch zahlreiche Ausnahmen. Aus der Deutlichkeit des Pfeifens und Schnurrens lässt sich nicht auf den nahen Ursprung desselben schliessen. Nicht selten hört man diese Geräusche in grosser Ausdehnung oder am ganzen Brustkorbe mit gleicher Stärke, oder sie sind ohne Anlegung des Ohres oder Stethoskops durch die Brustwand auf bedeutende Entfernungen hörbar.

Das Schnurren, Pfeisen und Zischen kann bei der normalsten Beschaffenheit des Lungenparenchyms, und bei jeder krankhaften Veränderung desselben vorkommen; es zeigt somit nicht an, wie das Lungenparenchym beschaffen ist, ausser wenn man es als konsonirend erkennt. So wie nämlich die Stimme, das Athmen und das Rasseln, kann auch das Schnurren, Pfeisen und Zischen konsoniren. Wer das bronchiale Athmen gut kennt, für den ist die Unterscheidung des konsonirenden Schnurrens, Pfeifens und Zischens von dem nicht konsonirenden nicht schwierig; ich kann aber für diesen Unterschied bisher keine Ausdrücke finden. Das konsonirende Schnurren, Pfeisen und Zischen hat für das Lungenparenchym dieselbe Bedeutung, als das bronchiale Athmen, die Bronchophonie etc. Das Schnurren, Pfeifen und vielleicht auch das Zischen kann ferner vom amphorischen Wiederhalle und metallischen Klange begleitet seyn. Das Schnurren hat zuweilen ebenfalls Absätze, so dass es in das trockene Rasseln übergeht. a tamping sellades sel neixeliell aux ababW

melicing in branken bestätiget dies verlikenenen. Matt har den amphibischen bine being den metattischen bines

III. Über den amphorischen Wiederhall, und metallischen Klang, — bourdonnement amphorique et tintement mé-tallique —.

Diese beiden Erscheinungen kann man durch Sprechen in einen Krug nachahmen. Beim Sprechen in einen Krug nimmt man nebst der Stimme ein eigenthümliches Summen wahr, und dieses Summen ist Lännec's amphorischer Wiederhall. Die Stimme selbst kommt aus dem Kruge gewöhnlich verstärkt, doch nur bei einer bestimmten Schallhöhe ertönt die Stimme sehr stark aus dem Kruge, Das begleitende Summen hat nicht immer die Schallhöhe der Stimme, und kann in derselben Höhe bleiben, wenn man auch in der Höhe der Stimme wechselt.

Zuweilen lässt sich neben dem Summen auch ein metallischer Nachklang gleich einem Flageoletton einer Guitarresaite hören. Er stellt vollkommen das metallische Klingen Lännec's dar, wenn es die Stimme begleitet. Mankann dasselbe als metallisches Echo in vielen Zimmern, und noch häufiger in Gewölbern hören, wenn man in einer gewissen Schallhöhe und nicht zu leise spricht. Sowohl beim Sprechen in einen Krug als bei Hervorrufung des metallischen Echo in einem Zimmer überzeugt man sich, dass der amphorische Wiederhall und metallische Klang Erscheinungen sind, die unter gleichen Bedingungen entstehen, und dass der metallische Klang sich zum amphorischen Wiederhalle verhält, wie ein tiefer, zu einem hohen Flageoletton einer Guitarresaite.

In einer nicht sehr weiten Röhre ist man nie im Stande, einen amphorischen Wiederhall oder den metallischen Klang zu erzeugen.

Diese Erfahrungen sind fast hinreichend, zu beweisen, dass der amphorische Wiederhall und der metallische Klang auch innerhalb der Brusthöhle nur dann entstehen kann, wenn sich daselbst ein grösserer lufthältiger Raum befindet, dessen Wände zur Reslexion des Schalles geeignet sind. Die Beobachtung an Kranken bestätiget diess vollkommen. Man hat den amphorischen Wiederhall und sen metallischen Klang

nur bei grossen Exkavationen im Lungenparenchym und bei Pneumothorax angetroffen.

Lännec stellte sich vor, es müsse eine Höhle Luft und Flüssigkeit enthalten, um zur Erzeugung der besprochenen Erscheinungen tauglich zu seyn, und es hat dieser Ansicht meines Wissens noch niemand widersprochen. Ich glaube, dass die Flüssigkeit dabei ganz überflüssig ist. Ein Krug kann ganz trocken seyn, oder etwas Flüssigkeit enthalten, man bringt die beiden Erscheinungen darin gleich leicht hervor; zur Erzeugung des metallischen Echo im Zimmer ist keine Flüssigkeit nöthig. Wenn man in ein an einen mit Luft gefüllten Magen angesetztes Stethoskop spricht, so ertönt innerhalb des Magens der metallische Klang und auch der amphorische Wiederhall; der Magen möge keinen Tropfen Flüssigkeit enthalten, oder zum Theil mit Wasser gefüllt seyn,

Lännec glaubte ferner, die Kaverne, oder die lufterfüllte Pleurahöhle müsse nothwendig mit einem Bronchus kommuniciren, damit darin der amphorische Wiederhall oder der metallische Klang durch die Stimme erzeugt werden könne. Bei Pneumothorax bleibt in den seltensten Fällen die Kommunikation zwischen der Luft in der Pleura und jener in den Bronchien frei, und dennoch findet sich nicht oft ein Pneumothorax, ohne dass man metallischen Klang oder amphorischen Wiederhall zuweilen wahrnimmt. In dem eben erwähnten Versuche mit dem Magen kommunicirt die Luft im Magen ebenfalls nicht mit der Luft im Stethoskope, und dennoch gibt sie den metallischen Klang. Man begreift durch diesen Versuch, wie durch die Stimme im Kehlkopfe die Luft in der Pleura zu Vibrationen angeregt wird. Konsonirt nämlich die Stimme in einem Bronchus, der von der Luft in der Pleurahöhle durch keine dicke Schichte Lungensubstanz getrennt ist, so geht der Schall aus dem Bronchus noch mit hinreichender Kraft in die Lust der Pleurahöhle über, um darin abermals kon sonirende Schwingungen anregen zu können. Annan Anthen

Exkavationen in der Lungensubstanz kommuniciren,

wenn sie nur einigermassen gross sind, jederzeit mit den Bronchien. Welches die geringste Grösse der Exkavation oder der Pleurahöhle seyn kann, dass sich darin amphorischer Wiederhall oder metallischer Klang erzeugt, weiss ich noch nicht anzugeben. Ich habe diese Erscheinung noch in keiner Kaverne gefunden, die kleiner als eine mittelmässige Mannsfaust ist.

Damit bei Pneumothorax, wo die in der Pleura befindliche Luft nur selten mit der Luft in den Bronchien kommunicirt, während der Respiration sich der amphorische Wiederhall oder der metallische Klang hörbar machen könne, muss das Athmungsgeräusch des Larynx, oder der Trachea in einem Bronchus konsoniren, der von der Pleurahöhle durch keine dicke Schichte Lungensubstanz geschieden ist.

Die Lungenhöhlen erzeugen den amphorischen Wiederhall und metallischen Klang durch Einziehen und Ausstossen der Luft. Bei der Respiration lässt sich der Übergang des amphorischen Wiederhalles in den metallischen Klang am leichtesten beobachten. Zuweilen stellt nämlich das Respirationsgeräusch ein tiefes Summen dar, wie man es beim Blasen in einen Krug hört. In einem andern Falle, oder bei demselben Kranken zu einer andern Zeit hört man allein, oder mit dem eben erwähnten Summen in Verbindung, einen Ton ähnlich dem tiefen Pfeifen, das man bei erweiterter Mundhöhle mit verengerter Mundöffnung durch Einziehen oder Ausstossen der Luft erzeugt. Statt dieses tiefen Pfeifens, das offenbar schon ein Klang ist, kann sich ein höheres, und endlich auch der eigentliche metallische Klang, nämlich ein, dem Flageoletton einer Guitarresaite gleicher, die ganze Dauer der In- und Exspiration anhaltender Ton einstellen.

Häufiger als durch die Stimme und durch das Athmungsgeräusch wird das metallische Klingen bei Pneumothorax
und in grossen Exkavationen durch Rasselgeräusche angeregt, und es ist, damit ein Rasseln metallisch wiederhalle,
die Kommunikation des Pneumothorax mit den Bronchien, und
das gleichzeitige Vorhandenseyn von Luft und Flüssigkeit in

einer Exkavation oder in der Pleurahöhle ebenfalls nicht erforderlich.

Dr. Dance hegt, wie man aus Baciborsky's Handbuch der Auskultation und Perkussion ersieht, über die Entstehung des metallischen Klingens folgende Ansicht: "Wenn das Niveau der in dem Lungensacke enthaltenen Flüssigkeit höher, als die Öffnung der Lungenhöhle steht, so drängt sich die Luft, bei jedesmaligem Einathmen, aus der Lunge in die Pleurahöhle, steigt ihrer specifischen Leichtigkeit zu Folge durch die Flüssigkeit in Blasenform in die Höhe, und kommt bis an die Oberstäche, wo die Blase springt, und hierdurch das metallische Klingen verursacht."

Bei dieser Erklärung wird keine Rücksicht darauf genommen, was mit derüber das Niveau der Flüssigkeit emporgelangten Luft geschieht. Man könnte annehmen, dass sie, wie die Luft in einer normalen Lunge aufgenommen. und statt ihr eine andere Luft ausgeschieden wird; oder sie wird vielleicht gar nicht, oder nur sehr langsam aufgenommen. In jedem dieser Fälle ist es schwerbegreiflich, wie nach einigen, oder selbst nach einmaligem Athemzuge das metallische Klingen wieder erscheinen könnte. Die Exkavation oder die Pleurahöhle nimmt nämlich mit einem Athemzuge so viel Luft auf, als sie fassen kann. Ist das Niveau der im Lungensacke enthaltenen Flüssigkeit höher als die Öffnung der Lungenhöhle, so kann die über die Flüssigkeit emporgestiegene Luft bei der Exspiration aus der Lungenhöhle nicht wieder heraus. Die Lungenhöhle bleibt entweder während der Exspiration vollständig ausgedehnt, und kann darum bei erneuerter Inspiration keine Lust weiter aufnehmen; oder sie wird komprimirt, und es wird ein Theil der enthaltenen Flüssigkeit in die einmündende Öffnung gedrängt, woher sie bei erneuerter Inspiration wieder in die Lungenhöhle zurückweicht. Man sieht, dass nach der Erklärung des Dr. Dance das metallische Klingen nur selten, nur in grössern Zwischenräumen, und vorzüglich nur bei der Inspiration nach Hustenanfällen erscheinen könnte. Wie es bei

der Exspiration entstehen sollte, ist daraus gar nicht begreiflich.

Dr. Be au, der die Ansicht des Dr. Dance theilt, glaubt auch dafür eine Erklärung gefunden zu haben. »In der Mehrzahl der Fälle, sagt er, sind die Lungenhöhlen von verhärtetem Parenchym umgeben, und kehren während der Exspiration nicht auf ihren frühern Umfang zurück. Aus diesem Grunde drängt sich die bei der Exspiration, beim Husten, beim Sprechen, oder bei der Expektoration aus der übrigen Lunge getriebene Luft von der Trachea in die klaffenden Bronchien, und verhält sich nun gleich der eingeathmeten Luft.«

Ob in die so beschaffenen Lungenhöhlen auch während der Inspiration Luft dringe, wird zwar von Beau nicht gesagt, doch muss man es voraussetzen, weil das metallische Klingen auch während der Inspiration gehört wird. Die von verhärtetem Lungenparenchym umgebenen Lungenhöhlen nehmen also nach Beau sowohl während der Inspiration, als während der Exspiration Luft auf, und können eben darum nie welche ausstossen!!

Das metallische Klingen kann meiner Ansicht nach in grossen Exkavationen, nebstdem, dass es als Wiederhall der Stimme, des Athmens und des Pfeisens gehört werden kann, als Wiederhall eines Rasselgeräusches in einem entsernten kommunicirenden Bronchus entstehen; oder es ist der Wiederhall eines Rasselgeräusches, das an der in die Höhle einmündenden Öffnung, oder, wenn mehrere Höhlen unter einander kommuniciren, an der Kommunikationsöffnung innerhalb der Höhlen seinen Ursprung hat, — wobei nämlich die Luft bei der Inspiration einströmen und bei der Exspiration ausströmen muss, also nicht durch Flüssigkeit abgesperrt seyn kann —; oder es ist der Wiederhall des Rasselns, das in den Exkavationen durch die hestige Bewegung der ganzen enthaltenen Flüssigkeit in Folge von Husten etc. erzeugt wird.

Bei Pneumothorax entsteht das metallische Klingen auf gleiche Weise. Da aber die in der Pleura enthaltene Luft nur äusserst selten mit den Bronchien kommunicirt, so ist ein starkes, oder auch nur konsonirendes Rasselgeräusch in einem nahen grössern Bronchus, und die Konquassation der Flüssig-keit im Thorax bei starkem Husten etc. die gewöhnliche Ursache des metallischen Klingens bei Pneumothorax.

Wenn zufällig in dem von Luft erfüllten Pleuraraume ein Tropfen Flüssigkeit, oder auch ein fester Körper zu Boden fällt, so entsteht dadurch ohne Zweifel ein metallisches Klingen. Das Herabfallen von Tropfen muss aber gewiss unter die seltensten Ursachen dieser Erscheinung gestellt werden.

Wenn das metallische Klingen als Wiederhall eines pfeifenden Geräusches gehört wird, so ähnelt es dem schönsten Tone einer Zittersaite, wenn diese mit dem Bogen gestrichen wird.

IV. Über das gleichzeitige Vorkommen der Respirations-Rassel—und schnurrenden Geräusche.

Von den verschiedenen Geräuschen, welche durch das Ein- und Ausströmen der Luft während der Respiration in den Luftwegen erzeugt werden können, kommen nicht selten mehrere gleichzeitig vor. So kann sich mit einem eigentlichen Respirationsgeräusche Rasseln, Schnurren und Pfeifen kombiniren. Man kann mehrere Arten des Rasselns, Pfeifens und Zischens gleichzeitig vernehmen. Doch können nicht mit jedem einzelnen Geräusche alle übrigen ohne Unterschied verbunden vorkommen.

Mit dem vesikulären Athmen kann man gleichzeitig jede Art von nicht konsonirendem Rasseln, von nicht konsonirendem Schnurren, Pfeifen und Zischen hören, nur dürfen die genannten Geräusche begreiflicher Weise nicht so reichlich, und nicht so stark seyn, dass sie das vesikuläre Athmen ganz verdecken. Mit dem vesikulären Athmen kommt aber amphorischer Wiederhall und metallischer Klang nie vor. Vesikuläres Athmen erscheint nur sehr selten gleichzeitig mit bronchialem Athmen, und zwar nur dann, wenn die oberflächliche Schichte der Lunge noch Luft aufnimmt, indess in der tiefern die Bedingungen zur Konsonanz vorhanden sind. Diess

findet fast nur bei Pneumonien und insbesonders bei solchen Statt, wo die Entzündung eine Lungenparthie nach der andern ergreift und wieder verlässt, also von einer Stelle zur andern wandert.

Etwas häufiger als das bronchiale Athmen lässt sich neben dem vesikulären das nicht durch Konsonanz verstärkte Geräusch aus den grössern Bronchialstämmen, welches ich unter die unbestimmten Athmungsgeräusche zähle, vernehmen. Mit dem bronchialen Athmen können alle Arten des konsonirenden und nicht konsonirenden Rasselns, Schnurrens, Pfeifens und Zischens, so wie auch die unbestimmten Athmungsgeräusche verbunden vorkommen.

Das bronchiale Athmen kann ferner vom amphorischen Wiederhalle und metallischen Klange begleitet seyn, ohne davon ganz verdeckt zu werden.

Die unbestimmten Athmungsgeräusche können alle Arten von Rasseln, Pfeisen, Schnurren und Zischen in ihrem Gefolge haben. Dasselbe gilt vom amphorischen Wiederhalle, und dem metallischen Klange.

Das gleichzeitige Vorkommen mehrerer Geräusche zusammen erschwert die Erkenntniss jedes einzelnen, und nur
durch eine längere Übung kann das Ohr gewöhnt werden,
nicht auf den Totaleindruck zu achten, sondern entweder die
vielen gleichzeitigen Geräusche als einzelne Geräusche mit
einem Male zu distinguiren, oder aber immer nur ein Geräusch nach dem andern zu berücksichtigen, die übrigen völlig
zu überhören, und so zur Kenntniss aller zu gelangen.

Die grössten Schwierigkeiten bietet das gleichzeitige Vorkommen von Geräuschen dar, deren Unterscheidung schon einige Übung erfordert, selbst wenn sie geschieden vorkommen. Hieher gehört insbesondere das gleichzeitige Vorkommen des vesikulären und bronchialen Athmens. Diese beiden Geräusche verschmelzen in eines, und lassen sich häufig selbst bei der genauesten Aufmerksamkeit nicht trennen.

Gibt in einem solchen Falle die Exspiration keinen sichern Außechluss über den Zustand der Lunge; ist nämlich das Exspirationsgeräusch nicht deutlich bronchial, so muss man das Respirationsgeräusch als unbestimmt betrachten, und den Zustand der Lunge durch andere Zeichen zu ermitteln suchen. Ein solches Geräusch nämlich, wie es durch Kombination des vesikulären und bronchialen Athmens entsteht, kann auch durch andere Ursachen herbeigeführt werden, als die zum gleichzeitigen Vorkommen des vesikulären und bronchialen Athmens erforderlich sind.

Die Verbindung des Rasselns mit dem Pfeisen und Zischen erschwert die Wahrnehmung des Grades der Helligkeit und Höhe des Pfeisens kann man nicht die Schlüsse machen, die sich aus dem so beschaffenen Rasseln ergeben. Ist also das Rasseln mit Pfeisen oder Zischen verbunden, so muss man bei der Beurtheilung der Schallhöhe und Deutlichkeit des Rasselns von dem Pfeisen oder Zischen ganz abstrahiren, und falls diess nicht angeht, das Rasseln als ein solches betrachten, welches über die Beschaffenheit des Lungenparenchyms keinen Aufschluss gibt. Wer die Schallhöhe des Pfeisens auf das Rasseln überträgt, der wird eine Menge Rasselgeräusshe für konsonirend halten, die es nicht im geringsten sind.

V. Über die Auskultation des Hustens.

Die Auskultation des Hustens gibt keine anderen Erscheinungen, als die bereits beschrieben wurden; aber der Husten kann diese Erscheinungen wahrnehmbar machen, wenn sie sonst nicht vorhanden sind. In allen Fällen nämlich, wo wegen Anhäufung von Flüssigkeiten in den Bronchien die Zeichen aus der Stimme, aus den Respirations-Rassel- oder schnurrenden Geräuschen undeutlich sind, oder gänzlich fehlen, kann ein Hustenanfall dieselben deutlich machen. Durch den Husten wird im Larynx entweder der bekannte eigenthümliche Schall erzeugt, oder im geringen Grade bloss ein solches Geräusch, das die Exspiration gibt, oder es entsteht zugleich ein verschiedenartiges Rasseln. In den übrigen Bronchien oder den vorhandenen Exkavationen erzeugt

sich während des Hustens gleichfalls entweder bloss das gewöhnliche Exspirationsgeräusch, oder es entstehen zugleich Rasselgeräusche, Schnurren, Pfeisen etc.

Den eigenthümlichen Hustenschall sowohl als die übrigen im Larynx und den sämmtlichen Luftwegen durch den Husten erregten Geräusche hört man am Thorax in verschiedener Stärke, Deutlichkeit etc., den auseinandergesetzten Gesetzen der Schallleitung und Konsonanz gemäss. Man kann also den Hustenschall gleichsam als Bronchophonie, oder als ein undeutliches Summen, das durch den Husten verursachte Respirationsgeräusch als bronchiales oder unbestimmtes Athmen, und das Rasseln als konsonirend oder als unbestimmt vernehmen; und bei Pneumothorax so wie bei grossen Exkavationen im Lungenparenchym kann durch den Husten der amphorische Wiederhall oder das metallische Klingen angeregt werden. Nach einem Hustenanfalle inspirirt der Kranke viel tiefer, als gewöhnlich, und dadurch werden gewöhnlich auch die Zeichen, welche die Inspiration geben kann, viel deutlicher.

Lännec unterschied den Röhren- und kavernösen Husten, und den dumpfen Schall des Hustens bei normaler Beschaffenheit der Brustorgane. Das, was über Lännec's Eintheilung der Stimme gesagt wurde, muss auch hier bemerkt werden.

VI. Über das Reibungsgeräusch, das durch Rauhigkeiten an der Pleura während der Athmungsbewegungen verursacht wird.

Der Brustraum erweitert sich bekanntlich durch die Kontraktion des Zwerchfells während der Inspiration nach abwärts, die Lunge wird durch den Druck der Luft erweitert, und in den gebildeten Raum gedrängt; sie rückt also nach abwärts. Sobald am Zwerchfell die Kontraktion nachgelassen hat, zieht sich die Lunge auf ihr früheres Volumen zurück, treibt die aufgenommene Luft aus, und steigt in die Höhe. Das erschlafte Zwerchfell bewegt sich mit der Lunge nach aufwärts, indem der Druck der Atmosphäre keinen luftleeren Raum in der Brusthöhle, also auch keinen Zwischenraum

zwischen Zwerchfell und Lunge gestattet, falls dieser nicht mit Luft, Gas, Flüssigkeit ausgefüllt ist. Die Bewegung des Zwerchfells nach aufwärts wird überdiess häufig durch die Renitenz der Baucheingeweide, und durch Kontraktion der Bauchmuskeln unterstützt.

Diese auf- und absteigende Bewegung der Lunge bedingt eine Reibung zwischen der Kostal- und Lungenpleura, und zwar um so mehr, als während der Inspiration, indess die Lunge nach abwärts gezogen wird, der vordere Theil des Brustkorbes in die Höhe steigt; beim Aufsteigen der Lunge während der Exspiration aber wieder abwärts geht. Die geringe Ausdehnbarkeit einzelner Lungenparthien gibt Veranlassung zur grösseren Bewegung eines andern Lungentheils, und dadurch zur grösseren Reibung der Kostal- und Lungenpleura. Lässt sich nämlich eine Lungenparthie nicht ausdehnen, so muss während jeder Inspiration die angränzende in den Raum rücken, der von dem unausdehnbaren Theile eingenommen werden sollte, und während der Exspiration an die frühere Stelle zurückkehren.

Die Reibung der Kostal- und Lungenpleura verursacht kein Geräusch, so lange die Obersläche derselben glatt und feucht ist. Wird sie aber rauh, so entsteht ein Geräusch; das gewöhnlich sowohl die In- als Exspiration begleitet, das aber bald bei der Inspiration, bald bei der Exspiration deutlicher hervortritt, oder zuweilen selbst nur bei der Inspiration vorhanden seyn, beym Exspiriren aber fehlen kann, und umgekehrt. Dieses Geräusch gleicht dem Knarren des Leders; besteht also aus Absätzen, und lässt sich von einem trockenen Rasselgeräusche nur dadurch unterscheiden, dass es zugleich das Gefühl des Reibens, des Anstreifens hervorbringt. Es lässt sich in den meisten Fällen mittelst der Finger als Reibung eben so gut wahrnehmen, als durch das Ohr, und gewöhnlich empfindet der Kranke sehr genau; dass innerhalb seiner Brust eine Reibung statt findet. Lännec hat dieses Geräusch das auf- und absteigende Reiben - frottement ascendant et descendant - genannt. Es ist gewöhnlich, doch nicht immer auf- und absteigend; es kann nämlich bei verhinderter Ausdehnung einer Lungenparthie auch horizontal empfunden werden, wenn ein Lungentheil aus der erwähnten Ursache horizontal verschoben wird.

Lännec glaubte das auf- und absteigende Reiben in den meisten Fällen durch das oberslächlich gelegene Emphysema interlobulare, — Lustblasen unterhalb der Pleura — bedingt. Er vermuthete nur, dass es auch in den Fällen vorkommen könnte, wenn die Lunge eine knorplichte, knöcherne, tuberkulöse oder skirrhöse Geschwulst von einem gewissen Umfange an ihrer Obersläche hervorspringend enthielte.

Dr. Reynaud hat später gezeigt, dass das auf- und absteigende Reiben am häufigsten durch Rauhigkeiten an der Pleura erzeugt werde, und diess hat sich seitdem vollkommen bestättiget. Die Pleuritis ist die häufigste Ursache des Reibungsgeräusches an der Pleura. Es erscheint, zuweilen schon im Beginne der Pleuritis, sobald sich plastisches Exsudat an der Pleuraobersläche abgelagert hat, und die Berührung der Kostal- und Lungenpleura durch flüssiges Exsudat nicht gehindert ist. Allein nicht immer hat das plastische Exsudat in diesem Zeitraume schon eine hinreichende Konsistenz. Viel häufiger und stärker tritt das Reibungsgeräusch ein, wenn nach Resorption des serösen Exsudats die mit konsistentem plastischen Exsudate überzogene Lungenpleura die Kostalpleura wieder berührt. In diesem Falle dauert die Reibung fort, bis entweder die Lunge mit der Brustwand verwächst, oder aber bis die sich reibenden Flächen vollkommen glatt geworden sind.

An der Oberfläche der Lunge vorspringende knorplige, knöcherne, tuberkulöse, oder skirrhöse Geschwülste, so wie das Emphysema interlobulare erzeugen ein Reibungsgeräusch nur dann, wenn ihre Oberfläche nicht glatt ist.

Das Reibungsgeräusch kann ohne Zweifel auch durch Reibung der einzelnen Lungenlappen unter einander entstehen, In diesem Falle kann es von einem trockenen Rasselgeräusche nicht leicht unterschieden werden. Das Reibungsgeräusch zeigt Verschiedenheiten rücksichtlich der Grösse der Absätze, aus denen es besteht, und rücksichtlich seiner Stärke. Die verschiedene Stärke, die grösstentheils von der Grösse und Schnelligkeit der Respirationsbewegungen abhängt, macht es mehr weniger deutlich. Es kann auf eine kleine Stelle beschränkt, oder aber auf mehrere Zolle ausgedehnt seyn.

Zweites Kapitel.

Auskultatorische Erscheinungen der Organe der Cirkulation.

Diese sind vor allem die Töne und Geräusche, welche in Folge der Herzbewegungen in der Gegend des Herzens und an manchen Arterien gehört werden. Da man aber beim Auskultiren nicht bloss hört, sondern zugleich den Anschlag des Herzens gegen die Brustwand und zuweilen auch die Pulsationen der Arterien fühlt, so wird es gestattet seyn, auch den Herzstoss und die Pulsationen der Arterien, in so weit sie durch das Auskultiren ermittelt werden, zu den auskultatorischen Erscheinungen zu zählen. Endlich wird beim Auskultiren auch der Rhythmus der Herzbewegungen wahrgenommen.

I. Über den Herzstoss.

§. 1. Ursache des Herzstosses.

Unter Herzstoss wird das Anschlagen des Herzens gegen die Brustwand verstanden, das gewöhnlich an den Knorpeln der fünften oder sechsten wahren Rippe der linken Seite fast gleichzeitig mit dem Pulse der Carotis gefühlt wird.

Corrigan, Stokes, Pigeaux und Professor Burdach nehmen an, dass der Herzstoss nicht während der Kontraktion der Kammern, sondern während der Dilatation derselben statt finde. Professor Burdach gibt folgende Beweise für diese Ansicht:

1. Der Puls der Arterien erfolgt später, als der Herzstoss; der letztere kann darum mit der Kontraktion der Kammern nicht gleichzeitig seyn, sondern muss dieser vorangehen. Zwar ist der Puls der arteria subclavia oft gleichzeitig mit dem Herzstosse; aber diess ist nur scheinbar, und kommt daher, weil sich die Kammern nach den Vorkammern sehr schnell zusammenziehen, wodurch dann der Zeitunterschied zwischen Herzstoss und Puls fast unmerklich seyn muss.

- 2. Bei erschwertem Durchgange des Blutes durch Herz und Lunge geht bei jeder Kontraktion des rechten Vorhofes ein Theil des Blutes in die Venen zurück, und diess bewirkt Pulsationen der Venen am Halse. Die Pulsationen der Halsvenen sind gleichzeitig mit dem Herzstosse, und da sie durch die Kontraktion des Vorhofes hervorgebracht werden, folglich mit dieser gleichzeitig seyn müssen, so ist auch der Herzstoss mit der Kontraktion des Vorhofes gleichzeitig.
- 3. Bei Vivisektionen hat sich Professor Burdach vollkommen überzeugt, dass während der Kontraktion der Vorkammern die Herzspitze vorwärts geschoben werde, und gegen die Brustwand stosse. Diese Bewegung der Herzspitze gegen die Brustwand bewirkt, nach Professor Burdach, das in die Kammern einströmende Blut, indem es, mit Gewalt hineingetrieben, dieselben erweitert, und die Herzspitze hebt.

Gegen diese Beweise wurde eingewendet, dass der Puls an den dem Herzen nahe gelegenen Arterien in den meisten Fällen mit dem Herzstosse nicht scheinbar, sondern wirklich synchronisch sey, in den vom Herzen entfernteren Arterien aber nothwendiger Weise später erfolgen müsse, weil die Arterien ausdehnbare Wandungen haben; dass ferner die Pulsation der Jugularvenen häufig mit dem Pulse der Karotiden gleichzeitig sey, und nicht, wie es nach den Angaben Burdach's seyn müsste, demselben vorangehe. Die Vivisektionen, die Hope, Charles Williams, Bouillaud, Johannes Müller etc. meist an grossen Thieren gemacht haben, zeigten das Gegentheil von dem, was Professor Burdach in Betreff des Herzstosses gesehen haben wollte.

Dasselbe Resultat gibt der Bericht eines, zur Erforschung der Herzthätigkeit, zu Dublin niedergesetzten Comité's *).

Man ist dem zu Folge jetzt allgemein der Ansicht, dass der Herzstoss während der Systole der Kammern zu Stande komme. Auf welche Weise diess geschehe, darüber sind mehrere Meinungen bekannt geworden:

A. Der Herzstoss wird dadurch erzeugt, dass die Herzkammern sich während ihrer Kontraktion verlängern —.

In neuerer Zeit hat bei Vivisektionen niemand eine Verlängerung des Herzens während der Kammersystole gesehen; im Gegentheil wird einstimmig behauptet, dass das Herz sich verkürze. Es ist auch ganz unbegreiflich, dass bei einer allseitigen Kontraktion der Muskelfasern des Herzens, wie sie die Austreibung des Blutes nothwendig macht, dennoch eine Verlängerung des Herzens statt haben sollte.

B. Der Bogen der Aorta streckt sich bei seiner plötzlichen Anfüllung gerade, und da er wegen der Wirhelsäule nicht nach hinten rückenkann, so drängt er nach vorne, und schiebt das Herz vor.

Die Aorta ist so befestigt, dass ihr Bogen sich nicht gerade strecken lässt. Wenn das Herz heftiger agirt, insbesonders aber bei Hypertrophie mit Dilatation beider Ventrikel wird der Bogen der Aorta, oder wenigstens die obere Hälfte der Wandung dieses Gefässtheiles, mit jeder Systole der Kammern durch den Andrang des Blutes oft um ein Bedeutendes in die Höhe getrieben, und man fühlt das Aufsteigen dieses Gefässtheiles zuweilen über dem Ausschnitte des Brustbeins am Halse. Durch diese Zerrung des Aortabogens, wobei derselbe nicht gerade gestreckt, sondern vielmehr in einen spitzern Winkel gekrümmt wird, kann aber die Lage des Herzens nicht die geringste Veränderung erfahren, wie man sich an Leichen überzeugen kann.

^{*)} Froriep's Notizen Dec. 1835, Nr. 1006.

C. Ansicht des Doktor Hope *). - »In grössern Thieren, wie auch im menschlichen Körper, befinden sich die Vorkammern, besonders die linke, an dem hintern Theile der Basis, die Aorta und Lungenarterie aber entspringen an ihrem vordern Theile. Nach diesen Gefässen hin ziehen sich die Fasern des Herzens während der Kammersystole zusammen, und erstere bilden einen um so festeren Anhaltspunkt, da sie während der Systole gefüllt und ausgedehnt werden. Die Sinus der Vorkammern dienen den Kammern während der Systole als Stütze; sie ermangeln der dazu erforderlichen Festigkeit durchaus nicht, da sie beständig, selbst während der Zusammenziehung der Herzohren, gefüllt sind, und ein Rücksluss ihres Inhaltes in die Venen theils durch die Elasticität der venösen Häute, theils durch den Druck der umliegenden Theile, durch die vis a tergo der kleinen Gefässe, und endlich durch den das Gewicht der Kammern übersteigenden Druck der Atmosphäre, unmöglich gemacht wird,«

»Bei diesem Baue der Theile ziehen nun die mittelst einer Zusammenziehung nach der Aorta und Lungenarterie hin gespannten Fasern den straffen und gerundeten Körper der Kammern gegen die Sinus der Vorderkammern hin. Dadurch wird die Spitze der Kammern, gleichsam der lange Arm des Hebels, dessen Stütze die Vorkammern bilden, und dessen Kraft an der Aorta und Lungenarterie wirkt, rasch heraufgeschnellt. Je mehr sich die Kammern zusammenziehen, desto mehr wird die Spitze durch die Ausdehnung der Vorkammern vorwärts gezogen. Wahrscheinlich trägt auch das Zurückdrängen der Vorkammerklappen zur Hebung der Spitze bei. Indem sie nämlich auf eine Flüssigkeitssäule wirken, deren Widerstandskraft das Gewicht des Herzens übersteigt, fällt die Wirkung auf das Herz selbst zurück, und stösst dasselbe vorwärts." —

^{*)} Dr. James Hope, von den Krankheiten des Herzens und der grossen Gefässe, übersetzt von Dr. Ferd. Wilh. Becker. Berlin 1833.

Ich glaube, dass die Vorhöse nie so viel Resistenz leisten können, um den Ventrikeln als Stütze zu dienen. Das Blut wird in ihnen durch keine Vorrichtung zurückgehalten. Wie sehr müssten die in die Vorkammern einmündenden Venen gespannt seyn, wenn sie das Zurückweichen des Blutes aus den Vorkammern bei einem Drucke auf die letztern verhindern sollten!

Im normalen Zustande sind die Jugularvenen in aufrechter Stellung des Körpers zusammengefallen; ein Beweis, dass vor dem rechten Ventrikel fortwährend nur so viel Blut angehäuft ist, dass es nicht über die Vena cava descendens steigt. Es ist somit bloss der Druck der Blutsäule in der Vena cava descendens, welcher die Vene und den rechten Vorhof in Spannung erhält, und es kann die Vis a tergo keinen Einfluss darauf haben. Die Atmosphäre kann, so lange die Jugularvenen zusammengefallen sind, auf die Blutsäule in der Vena cava descendens keinen Druck ausüben. Wenn man sich auf den Rücken legt, so wird der Druck der Blutsäule in der Vena cava descendens auf die untere Parthie dieser Vene und auf den rechten Vorhof höchst unbedeutend, und dennoch stösst das Herz auch in dieser Lage gegen die Brustwand. Der linke Vorhof und die Pulmonalvenen werden allerdings durch die Kontinuität der Blutsäule in der Pulmonalarterie und in den Pulmonalvenen in Spannung erhalten. Jedoch kann man sich diese Spannung nie so gross denken, dass die Last der Herzkammern dadurch getragen werden sollte. Und selbst dieses zugegeben, so scheint mir das Verhältniss der Lage der Herzkammern zu der der Vorkammern ein solches, dass sich daraus eine Bewegung der Herzspitze gegen die Brustwand während der Kammersystole kaum begreifen lässt.

D. Ansicht Bouillaud's und Filhos *). - »Die Muskelfasern des Herzens haben ihren fixen Punkt an den

^{*)} Traité clinique des maladies du coeur par J. Bouilland. Paris 1835.

schnigen Ringen der Basis, und verlaufen gewunden zur Spitze. Indem sie sich während der Kammersystole verkürzen, so muss die Herzspitze — gleichsam das bewegliche Ende des Hebels — sich aufrichten, und gegen die Brustwand emporheben. Doktor Filhos behauptet, dass nur die Kontraktion des linken Ventrikels den Herzstoss hervorbringt, indem die Muskelfasern des rechten Ventrikels nicht gewunden sind, und darum bloss die Kontraktion und Dilatation, aber keine weitere Bewegung des Ventrikels erzeugen können.«

Ich habe mich bisher vergeblich bemüht, aus der Anordnung der Muskelfasern des Herzens ein Emporheben der
Herzspitze gegen die Brustwand während der Kammersystole
begreislich zu sinden, doch bin ich weit entsernt, die Möglichkeit der Sache in Abrede stellen zu wollen. So viel aber
ist gewiss, dass ein blosses Emporheben der Herzspitze gegen die Brustwand sämmtliche Erscheinungen, die der Herzstoss darbietet, nicht erklärt.

Bei magern Individuen sieht man, wenn das Herz lebhaft agirt, an dem Hervortreten der Zwischenräume der Rippen, dass das Herz während der Systole auch abwärts bewegt wird, während der Diastole aber in seine frühere Lage
rückt. Der Herzstoss ist zuweilen in der Herzgrube zu fühlen, und mit jeder Kammersystole sieht man daselbst eine
Erhöhung entstehen, die mit der Kammerdiastole wieder
schwindet.

E. Erklärung des Herzstosses nach Doktor Gutbrod. — "Es ist ein bekanntes physikalisches Gesetz, dass beim Ausslusse einer Flüssigkeit aus einem Gefässe die Gleichmässigkeit des Druckes, den die Gefässwandungen durch die Flüssigkeit erleiden, aufgehoben wird, indem nämlich an der Ausslussöffnung kein Druck statt hat, an der der Ausslussöffnung gegenüberstehenden Wand des Gefässes aber derselbe fortbesteht. Dieser Druck bringt das Segner'sche Rad in Bewegung, er verursacht das Stossen der Schiessgewehre, das Zurückspringen der Kanonen etc. Bei der Zusam-

menziehung der Herzkammern verursacht der Druck, den das Blutauf die, der Ausflussöffnung gegenüberstehende, Wandung des Herzens ausübt, eine Bewegung des Herzens in der, der Ausflussöffnung entgegengesetzten Richtung, und diese Bewegung verursacht den Stoss gegen die Brustwand. Das Herz wird mit einer der Schnelligkeit und der Menge des ausströmenden Blutes proportionirten Kraft in der, den Arterien entgegengesetzten, Richtung gestossen.«

Ich habe diese Erklärung des Herzstosses in den medicinischen Jahrbüchern des österreichischen Staates - Band XIII. Stück 2 - mitgetheilt. So viel mir bekannt geworden, hat sich bisher nur Professor Johannes Müller*) dagegen erklärt. Er hält dieselbe für ein physikalisches Missverständniss. Bei der Fortbewegung des Blutes durch die Zusammenziehung des Herzens finden nach ihm nicht die Bedingungen statt, welche dem Stossen der Schiessgewehre und dem Zurückspringen der Kanonen zum Grunde liegen. Das Stossen der Schiessgewehre und Zurückspringen der Kanonen beruhe, gleichwie das Fortgehen der Kugel, auf der Ausdehnung der sich entwickelnden und explodirenden Gase. Kugel und Gewehr gehen in entgegengesetzter Richtung fort, vermöge der Ausdehnung des zwischen ihnen entwickelten Gases; wäre das Gewehr so leicht als die Kugel, so wäre die Bewegung beider eine gleiche. Im Herzen aber befinde sich kein ausdehnender Körper, der einen Stoss in der Richtung vom Herzen ab bewirken könnte.

Ich glaube, dass meine Vorstellung über den Grund des Stossens der Schiessgewehre von der, welche Professor Johannes Müller angegeben hat, in etwas abweicht. Ich halte nämlich dafür, dass bei der Erklärung des Stossens der Schiessgewehre die Kugel ganz überflüssig ist. In der That stossen die Schiessgewehre, auch wenn sie keine Kugel und keine Stoppel enthalten, wenn man Pulver einfüllt und entzündet.

^{*)} Jahresbericht über die Fortschritte der anatomisch-physiologischen Wissenschaften im Jahre 1836 pag. 120.

Das sich expandirende Gas drückt nach allen Richtungen gleich stark auf die Wände des Schiessgewehres. Der Druck auf den Theil der Wandung, welcher der Mündung des Laufes gegenüber liegt, findet keinen Gegendruck, mithin muss sich das Schiessgewehr zurückbewegen, und die Richtung dieser Bewegung ist durch die zwei Punkte, nämlich die Mündung des Laufes, und den dieser Mündung gegenüberstehenden Theil der Wandung des Schiessgewehres gegeben.

Bei dem Segner'schen Rade übt eine Wassersäule den Druck aus, und die Bewegung des Rades ist um so schneller, je grösser der Druck, also je höher die Wassersäule ist. Fände innerhalb des vertikalen cylindrischen Gefässes Gasentwicklung statt, und könnte das Gas nirgends, ausser durch die horizontalen Röhrchen entweichen, so würde sich das Rad gleichfalls bewegen, und zwar mit einer dem, durch das Gas ausgeübten, Drucke proportionirten Geschwindigkeit. Würde auf die Wassersäule im Segner'schen Rade überdiess ein Druck ausgeübt, so würde die Schnelligkeit der Bewegung des Rades der Summe des Druckes aus des Höhe der Wassersäule, und aus dem Drucke, der auf sie ausgeübt wird, proportional seyn.

Das Blut drückt während der Kammersystole auf jede Stelle der Herzwandung mit derselben Kraft zurück, mit welcher es von dieser gepresst wird. Da der Druck auf den Theil der Herzwandung, welcher der Ausslussmündung gerade gegenüber liegt, durch keinen Gegendruck aufgehoben wird, so muss das Herz in der der Ausslussmündung entgegengesetzten Richtung zurückweichen, falls der Druck so gross ist, dass er das Gewicht des Herzens überwinden kann. Ob dieser Druck wirklich so gross ist, das kann nur die Beobachtung lehren. Ein Schiessgewehr stosst nicht, wenn man nur wenig Pulver einfüllt, und das Segner'sche Rad dreht sich nicht, wenn die Reibung gross, und die Wassersäule klein ist.

Die Beobachtung zeigt, dass das Herz in manchen Fällen während jeder Kammersystole bedeutend nach abwärts rückt. Wie soll man dieses Herabrücken anders erklären als durch das erwähnte physikalische Gesetz? Die Erfahrung, dass ein hypertrophisches Herz jedesmal weiter nach abwärts liegt, als ein normales, erklärt sich aus dem beständigen Zuge, den das heftiger agirende Herz an seinen Befestigungspunkten ausübt. Wenn das horizontal gelagerte Herz heftiger agirt, so entsteht während jeder Kammersystole in der Herzgrube eine Vertiefung. Diese Erscheinung hat darin ihren Grund, dass das horizontal gelagerte Herz nach links hin — nämlich in der den Ausslussmündungen entgegengesetzten Richtung — sich bewegt, und dadurch die Befestigungsstellen des Herzbeutels zerrt.

Ich nehme darum keinen Anstand, zu wiederholen, dass Gutbrod's und meine Erklärung des Herzstosses sich auf ein wohlverstandenes physikalisches Gesetz gründet. So verschieden das Schiessgewehr, das Segner'sche Rad und das Herz sind, so liegt doch dem Stossen der Schiessgewehre, der Bewegung des Segner'schen Rades und dem Herzstosse wenigstens in den Fällen, wo das Herz sich während der Kammersystole nach abwärts bewegt, ein und dasselbe physikalische Gesetz zum Grunde.

Ich habe durch mehrere Jahre in einer sehr bedeutenden Zahl von Herzkrankheiten die Erscheinungen des Herzstosses mit diesem physikalischen Gesetze zusammengehalten, um auszumitteln, ob sich nicht welche vorfinden, die nach demselben sich nicht erklären lassen. Ich habe nur wenige vorgefunden. Sie sind: ein doppelter oder selbst dreifacher Herzstoss auf einen einzigen Pulsschlag*), und Schwäche des

^{*)} Bouillaud erzählt ebenfalls Fälle, woein zweifacher und selbst dreifacher Herzstoss auf einen einzigen Pulsschlag beobachtet wurde. Er schreibt aber den zweiten und dritten Stoss
nicht einer neuen Kammersystole, sondern der Diastole zu.
Wenn das Herz durch ein grosses Exsudat in der linken Brusthöhle weit nach der rechten Seite gedrängt ist, so geschieht
es zuweilen, dass man mit jeder Systole den Impuls an der
der Herzspitze entsprechenden Stelle des Thorax fühlt, und

Pulses bei starkem Herzstosse in Fällen, wo sämmtliche Klappen des Herzens eine normale Beschassenheit haben. Diese Erscheinungen zeigen, dass der Herzstoss auch ohne Austreibung von Blut aus den Kammern Statt sinden könne, und dass er zuweilen grösser sey, als er es nach der Menge des ausgetriebenen Blutes seyn sollte. Der Herzstoss muss dem zu Folge noch andere Ursachen haben, als den Druck des Blutes auf die Kammerwandungen während der Kammer-

mit jeder Diastole etwa 11/2 Zoll über dieser Stelle gleichfalls einen Stoss, oder vielmehr ein Heben der Brustwand empfindet. Dasselbe beobachtet man zuweilen bei grosser Hypertrophie mit Dilatation beider Ventrikel; es hebt sich nämlich mit jeder Systole jene Parthie der Brustwand, die der Herzspitze entspricht, und der über der Mitte des Herzens befindliche Theil der Brustwand sinkt etwas ein; mit der Diastole sinkt der Theil der Brustwand über der Herzspitze ein, und jener über der Mitte des Herzens wird gehoben. In manchen Fällen von Hypertrophie mit Dilatation beider Ventrikel verursacht die Systole den Stoss, die Diastole hebt die Brustwand gar nicht, aber man fühlt eine Erschütterung, und diese ist nicht durch das Anschlagen des Herzens gegen die Brustwand hervorgebracht, sondern scheint gleichsam von dem Zurücksinken dieses Organs gegen die Wirbelsäule herzurühren. Diese Erscheinung ist offenbar dieselbe; die Lännec den Stoss der Vorhöfe nannte. Einen eigentlichen Herzstoss, nämlich einen solchen, wie er mit der Kammersystole vorkommt; habe ich während der Kammerdiastole nie beobachtet. In den von mir gesehenen Fällen, wo ein doppelter oder dreifacher Herzstoss auf einen Pulsschlag kam, war es immer die Kammersystole, die den Stoss erzengte.

Einen Stoss durch die Kontraktion des Vorhofes hervorgebracht, habe ich gleichtalls noch nie beobachtet. Bouilland erzählt einen Fall, wo der linke Vorhof einen Stoss hervorgebracht haben soll. Es ist aber keineswegs gewiss, dass der Stoss durch den linken Vorhof erzeugt wurde. Bouilland hat keinen andern Grund dafür, als dass er die beobachtete Erscheinung auf keine andere Weise erklären zu können glaubte.

— Bouilland traité des maladies du coeur, Paris 1835; Tome 1, pag. 149.

systole. Ich bin über diese Ursachen noch nicht im Klaren. Es ist möglich, dass die Muskelfasern des Herzens so disponirt sind, dass die Herzspitze während der Kammersystole sich hebelartig gegen die Brustwand bewegt; es ist ferner wahrscheinlich, dass der Herzstoss auch dadurch zu Stande kommt, dass der Durchmesser des Herzens von vorne nach hinten während der Kammersystole grösserist, als während der Kammerdiastole, indem das Herz während der Kammerdiastole flach liegt, während der Kammersystole aber eine gerundete Gestalt annimmt.

S. 2. Über die Stärke des Herzstosses.

Wenn man als Ursache des Herzstosses vorerst bloss den Druck des Blutes auf die Kammerwandungen während der Kammersystole berücksichtiget, so muss der Herzstoss um so stärker seyn, je mehr Blut, und mit je grösserer Schnelligkeit dasselbe aus dem Herzen in die Arterien getrieben wird. Eine hypertrophische und zugleich erweiterte Herzkammer ist daher zur Erzeugung eines hestigen Herzstosses am meisten geeignet. Bei blosser Hypertrophie ohne Erweiterung, so wie bei Erweiterung der Kammern ohne Verdünnung der Wandungen ist der Herzstoss schwächer als bei Hypertrophie mit Erweiterung, aber stärker als bei normaler Beschaffenheit des Herzens; dagegen bei Erweiterung der Höhlen mit Verdünnung der Wandungen geringer als im letztern Falle, weil die bloss erweiterte Kammer das Blut nicht vollständig austreibt. Eine hypertrophische, jedoch verengerte Kammer bringt einen nur geringen Herzstoss hervor, und zwar wird dieser um so unmerklicher, je kleiner die Kammer ist.

Indess hängt die Schnelligkeit und Vollständigkeit der Zusammenziehungen einer Herzkammer nicht bloss von der Dicke der Wandung, sondern auch von der sonstigen Beschaffenheit der Muskelfasern des Herzens ab. Je fester diese sind, desto stärker ist ihre Kontraktion und desto grösser der Herzstoss, ist dagegen die Festigkeit der verdickten Herzwandungen durch Verdichtung und Hypertrophie des die Muskelfasern vereinigenden Zellstoffes herbeigeführt, oder

ist im Gegentheil die Herzsubstanz erweicht, so ist die Zusammenziehungskraft der Kammer und mithin der Herzstoss geringer.

Die linke Herzkammer kann nicht anhaltend viel Blut in die Aorta treiben, wenn nicht gleichzeitig aus dem rechten Herzen viel Blut in die Pulmonalarterie gelangt. Ist also die Hypertrophie und Dilatation auf den linken Ventrikel beschränkt, und der rechte Ventrikel dabei von normaler Weite, oder sogar verkleinert, so kann der linke Ventrikel nicht anhaltend mit jedem Stosse viel Blut in die Aorta treiben, weil er in derselben Zeit nicht so viel Blut aus dem rechten Ventrikel, der sich nur eben so oft kontrahirt, als der linke, erhalten kann. Ist demnach keine Insufficienz der Aortaklappen vorhanden, in welchem Falle mit jedesmaliger Kammerdiastole ein Theil des, während der Systole in die Aorta getriebenen, Blutes in den linken Ventrikel zurückkehrt, so kann bei auf den linken Ventrikel beschränkter Hypertrophie und Dilatation keine bedeutende Verstärkung des Herzstosses anhaltend vorkommen, und nur von Zeit zu Zeit können sich einzelne heftigere Stösse einstellen. Dasselbe gilt von der Hypertrophie und Dilatation des rechten Ventrikels bei Verkleinerung, oder normaler Weite mit Verdünnung der Wandung der linken, wenn nicht Insufficienz der dreispitzigen Klappe vorhanden ist; und die Stärke des Herzstosses nimmt um so mehr ab, je bedeutender das Missverhältniss ist, das in der Weite der beiden Kammern statt findet.

Das Verhältniss der Arterienmundung zur Menge des in der Kammer enthaltenen Blutes bestimmt gleichfalls die Stärke des Herzstosses. Ist die Arterienmundung einer weiten Kammer enge, so ist zwar die Schnelligkeit des Blutstromes gross; dagegen aber die der Arterienmundung entsprechende Stelle der Wandung nur klein, und darum der Herzstoss geringer, als wenn eine weite Kammer auch eine weitere Arterienmundung hat. Bei einer engern Arterienmundung dauert der Herzstoss, wenn sich die Kammer vollständig zusammenzieht, lange; ist dagegen das letztere Miss-

verhältniss zwischen Arterienmündung und Kammern gar zu gross, so kann sich das Herz nicht vollständig zusammenziehen, der Herzstoss ist dann kurz, und kann selbst bei Hypertrophie mit Erweiterung nur unbedeutend seyn. Wenn bei der Systole der Kammern das Blut nicht bloss in die Arterien, sondern auch in die Vorhöfe getrieben wird, so wird der Herzstoss jedesmal stärker, als wenn das Blut bloss in die Arterien ginge. Der Herzstoss kann durch Aufregung verstärkt werden; Ruhe dagegen, Blutmangel, Erlöschen der Kontraktionskraft des Herzens, Blutkoagula in den Kammern vermindern denselben.

So würde sich die Stärke des Herzstosses verhalten, wenn demselben keine andere Ursache zum Grunde läge, als der Druck des Blutes auf die Kammerwandungen.

Obgleich aber der Herzstoss noch eine andere Ursache hat, so finden sich doch nur wenig Fälle, wo die Stärke des Herzstosses eine andere ist, als sich aus der Berücksichtigung des erwähnten physikalischen Gesetzes ergibt, und es hat den Anschein, als ob die übrigen Ursachen des Herzstosses sich hauptsächlich nur dann wirksam zeigten, wenn das Herz seinen Inhalt austreiben kann.

§. 3. Über die Richtung, nach welcher das Herz während der Kammersystole bewegt wird, also über den Ort, wo der Herzstoss zu fühlen ist.

Pulsschlag entspricht, so müssen sich die beiden Herzkammern gleichzeitig zusammenziehen; denn wäre dem nicht so,
so müssten, da der Druck des Blutes auf die Kammerwandungen wenigstens zum Theil den Herzstoss bedingt, auf
einen Pulsschlag zwei Herzstösse kommen. — Die Kontraktion der rechten Kammer für sich allein würde das Herz in
einer andern Richtung bewegen, als die der linken. Bei der
Gleichzeitigkeit der Kontraktionen der rechten und linken
Kammer nimmt das Herz eine mittlere Richtung, die sich jedoch a priori, wie man leicht einsieht, nicht genauer be-

stimmen lässt. In der normalen Lage des Herzens fühlt man den Herzstoss in den Zwischenräumen der Knorpel der fünften oder sechsten Rippe der linken Seite. Hat das Herz eine vertikale Lage unter dem Brustbeine, so wird es bei jeder Systole nach abwärts und vorwärts getrieben, schlägt demnach gegen den untern Theil des Brustbeines, oder selbst in der Herzgrube. Im letztern Falle sieht man bei jeder Kammersystole in der Herzgrube eine Erhöhung entstehen, die bei der Diastole wieder zurücktritt.

Liegt das Herz horizontal von rechts nach links, so fühlt man den Herzstoss in den Zwischenräumen der untern wahren Rippen der linken Seite.

Die vertikale Lage hat das Herz nur bei grossem Exsudate oder bei Pneumothorax in der linken Brusthöhle, oder endlich bei vesikulärem Lungenemphysem, welches den untern Theil der linken Lunge, oder den ganzen linken Lungenflügel, oder die rechte und linke Lunge einnimmt.

Die horizontale Lage dagegen erlangt das Herz entweder dadurch, dass das Zwerchfell linkerseits höher in die Brusthöhle getrieben wird — bei grossen Exsudaten in der Bauchhöhle, Auftreibung der Gedärme durch Gas, Vergrösserung des linken Leberlappens; bei grossen Exsudaten, Pneumothorax in der rechten Brusthöhle, wodurch der rechte Leberlappen weiter nach abwärts, die Leber im ganzen mehr nach links, und der linke Leberlappen in die Höhe getrieben wird—oder bei normalem Stande des Zwerchfells durch eigene Vergrösserung, durch aneurysmatische Erweiterung der aufsteigenden Aorta, durch grössere sackförmige Aneurysmen, die sich rechts an der aufsteigenden Aorta bilden etc.; und je weiter nach links man die Herzspitze anschlagen fühlt, desto bedeutender ist der abnorme Zustand, der die abweichende Lage des Herzens bedingt.

Lännec und nach ihm viele Schriststeller, die über Auskultation geschrieben haben, behaupten, dass bei Hypertrophie der linken Kammer die verstärkten Herzstösse in der linken Seite, bei Hypertrophie der rechten Kammer

dagegen unter dem Brustbeine gefühlt werden. Diese Angabe ist keineswegs genau. Ist das Herz vertikal gelagert, so fühlt man die Schläge unter dem Brustbeine, es mag die linke oder die rechte Kammer hypertrophisch seyn; liegt dagegen das Herz horizontal, so lassen sich die Herzschläge auch bei Hypertrophie der rechten Kammer in der linken Seite fühlen, und bei sehr grossen Herzen kann der Stoss unter dem Brustbeine, in der Magengrube, und in der linken Seite gefühlt werden.

S. 4. Eintheilung des Herzstosses.

In der Stärke des Herzstosses lassen sich drei Grade festsetzen, die aber in einander übergehen.

- 1. Der Herzstoss hebt die Brustwand nicht, und erschüttert auch nicht den Kopf des Auskultirenden, oder der Herzstoss ist gar nicht fühlbar. Bei diesem Grade der Stärke des Herzstosses kann das Herz ganz normal, oder aber mehr weniger hypertrophisch und dilatirt, oder bloss dilatirt seyn; oder die Hypertrophie und Dilatation beschränkt sich auf eine Kammer, indess in der andern der entgegengesetzte Zustand vorhanden ist; endlich kann im Pericardium sich Exsudat in der verschiedensten Menge vorfinden, oder dasselbe gar kein Exsudat enthalten. Der schwache oder ganz fehlende Herzstoss ist also für sich eine ganz unbestimmte Erscheinung.
- 2. Der Herzstoss erzeugt eine starke Erschütterung des Kopfes des Auskultirenden, ohne dass dabei die Brustwand und somit der Kopf des Auskultirenden gehoben wird. Ein solcher Herzstoss zeigt Hypertrophie einer oder beider Herzhälsten mit normaler, oder nur wenig vermehrter Weite der Höhlen; oder es ist ein normal konstruirtes Herz vorhanden, dessen Aktion verstärkt ist. Ob das erste oder das zweite der Fall sey, lässt sich nur dadurch bestimmen, dass man die Grösse des Herzens auffindet. Hat nämlich das Herz die normale Grösse, so sind dessen Wandungen nicht hypertrophisch,

und der starke Herzstoss ist Folge einer verstärkten Thätigkeit. Ist dagegen das Herz grösser, so bleibt beim Vorhandenseyn eines erschütternden Stosses kein Zweifel, dass die Herzwandungen hypertrophisch sind.

3. Die Brustwand wird in der Gegend des Herzens während der Kammersystole gehoben, und sinkt während der Diastole wieder zurück. Der Kopf des Auskultirenden wird nothwendiger Weise auf gleiche Art bewegt. Das Heben der Brustwand erfolgt entweder rasch, und der Auskultirende empfindet dadurch zugleich eine Erschütterung des Kopfes, oder es erfolgt langsamer und ohne eine Erschütterung mitzutheilen. Im letztern Falle kann es geschehen, dass der Auskultirende das Heben fast gar nicht bemerkt. Desto deutlicher empfindet er aber das Zurücksinken der Brustwand, welches sehr rasch geschieht. Indem der mitsinkende Kopf eine Erschütterung empfindet, so kann es gar nicht auffallen, wenn ein im Auskultiren weniger Geübter das Sinken der Brustwand für den Herzstoss nimmt, und somit die Diastole der Ventrikel mit ihrer Systole verwechselt.

Der Herzstoss, welcher die Brustwand hebt, und den Kopf des Auskultirenden erschüttert, wird nur durch Hypertrophie mit Dilatation beider Ventrikel hervorgebracht. Die auf den linken Ventrikel beschränkte Hypertrophie mit Dilatation kann ihn nur dann erzeugen, wenn gleichzeitig eine bedeutende Insufficienz der Aortaklappen vorhanden ist. Der Herzstoss, welcher die Brustwand hebt, ohne den Kopf des Auskultirenden zu erschüttern, hat dieselbe Bedeutung. Die langsamere Kontraktion ist entweder die Folge engerer Herzmündungen, oder es ist die Dilatation der Höhlen über die Dicke der Wandungen überwiegend, oder es ist die Aktion des Herzens durch Blutmangel etc. herabgestimmt.

Sowohl der zweite als der dritte Grad des Herzstosses schliest ein Exsudat im Pericardium, oder die Verwachsung des Herzbeutels mit dem Herzen nicht aus. Nur, wenn das Exsudat im Verhältnisse zu der Hypertrophie des Herzens bedeutend ist, kann kein verstärkter Herzstoss mehr statt finden, und bei Verwachsung des Herzens mit dem Herzbeutel kann, wenn die Verwachsungsschichte dick ist, der Stoss eines hypertrophischen und dilatirten Herzens die Brustwand heben, das bloss hypertrophische Herz aber nie den erschütternden Stoss hervorbringen. —

Der Herzstoss zeigt überdiess Unterschiede nach der Ausdehnung, in welcher er gefühlt wird, und nach der Stelle der Brustwand, wo man denselben wahrnimmt. Diese lassen sich jedoch durch das Auskultiren weit weniger richtig bestimmen, als durch Befühlen mit den Fingern. Das normal grosse Herz stösst nur in einem oder höchstens in zwei Zwischenrippenräumen an. Macht sich der Herzstoss in mehreren Zwischenrippenräumen oder in einem Zwischenrippenraume auf mehr als 1½ Zoll fühlbar, so ist das Herz vergrössert. Der Grund und die Bedeutung des Herzstosses an verschiedenen Stellen der Brustwand und in der Magengrube ist bereits angegeben worden.

II. Über die Pulsation der Arterien.

Es kann hier nur von der Pulsation der Aorta und der Pulmonalarterie die Rede seyn. Wenn der aufsteigende Theil, oder der Bogen der Aorta so erweitert ist, dass er die Brustwand berührt, oder, wenn sich im vordern Mediastinum Geschwülste befinden, so empfindet man an den dem Verlaufe der Aorta entsprechenden Stellen der Brustwand beim Auskultiren mit jeder Kammersystole einen Stoss, der eben so heftig, oder noch heftiger seyn kann, als der Herzstoss selbst.

Um aber sagen zu können, dass man die Pulsationen der Aorta fühle, muss man ein wirkliches Heben der Brustwand wahrnehmen, denn die Erschütterung, in die der Herzstoss die Brustwand versetzt, macht sich nicht selten auf eine ziemlich grosse Entfernung, und insbesondere am ganzen Brustbein fühlbar. Ist man in Zweifel, ob man am obern Theile des Brustbeines die Pulsationen der Aorta, oder aber die Erschütterung der Brustwand durch den Herzstoss em-

pfindet, so muss man mit dem Stethoskope nach und nach weiter nach abwärts, und bis zu der Stelle rücken, wo sich der Herzstoss fühlen lässt, und die Stärke der Erschütterung an den einzelnen Stellen vergleichen. Ist die Erschütterung am obern Theile des Brustbeines stärker, als an einer Stelle, die der Herzspitze näher liegt, so fühlt man oben offenbar die Pulsationen der Aorta. In jedem Falle ist es überdiess rathsam, die Perkussionszeichen mit zu Rathe zu ziehen.

Die Pulsationen der Pulmonalarterie fühlt man am Thorax beim Auskultiren, wenn sich zwischen dem Stamme, oder einem der stärkern Zweige dieser Arterie, und der Brustwand ein verhärteter Lungentheil, oder sonst ein fester Körper befindet. Die Hepatisation oder die tuberkulöse Infiltration der obern Lungenlappen gibt am häufigsten Veranlassung zu dieser Erscheinung, welche Lännec sich durch Fortpflanzung des Herzstosses erklärte.

Die Pulsationen der absteigenden Aorta thoracica habe ich noch nie gefühlt. Die Pulsationen der Bauchaorta lassen sich bei magern Individuen mit eingezogenem Unterleibe besonders leicht wahrnehmen, und in solchen Fällen hat die Ausmittlung einer Erweiterung dieses Gefässes keine Schwierigkeit.

III. Über die Töne und Geräusche, welche in Folge der Herzbewegungen in der Gegend des Herzens und an verschiedenen Arterien gehört werden.

Ich glaube nicht, dass man das Tik-Tak ganz richtig das normale Herzgeräusch nennt, indem dieses Tik-Tak Abweichungen von der Norm hat, und dann krankhafte Zustände des Herzens anzeigen kann. Ich nenne aus diesem Grunde das Tik-Tak, welches man in der Herzgegend und nicht selten über der Carotis und Subclavia hört, die Töne, und bezeichne mit dem Ausdrucke Geräusch nie dieses Tik-Tak, sondern bloss das Blasebalg-, Raspel-, Säge-, Feilen- etc. Geräusch, das Geräusch des Schabens, des Kratzens, des neuen Leders etc.

A. Über die Tone.

S. 1. Ursache der Tone.

Über die Art der Entstehung der zwei Töne, welche man in der Herzgegend in dem Zeitmomente einer Kammersystole und Diastole hört, ist man noch keineswegs einig. Lännec behauptete, der erste längere Ton werde durch die Zusammenziehung der Kammern, der zweite durch die Zusammenziehung der Vorhöfe hervorgebracht, ohne die Art des Entstehens der beiden Töne näher zu bezeichnen. Gegen diese Angabe wurden nach einiger Zeit aus dem Grunde Zweifel erhoben, weil sich aus den Versuchen Haller's ergab, dass die Kontraktion der Vorhöfe der Systole der Kammern, wie ein Vorschlag, vorangehe, und die in der Herzgegend hörbaren Töne wurden von da an ein Gegenstand vielseitiger Untersuchungen, mit denen man bisher noch immer nicht zu Ende gekommen ist. Die Meinungen, welche über die Entstehung dieser Töne bis jetzt aufgestellt wurden, sind:

- 1. Die Herztöne entstehen durch Schwingungen des Blutes. Hope scheint der erste diese Erklärungsart gegeben zu haben. Er behauptet, der erste gedehntere Ton werde durch die Schwingungen hervorgebracht, in die das Blut durch die Kontraktion der Kammern versetzt wird, der zweite rühre aber von dem Anschlagen des Blutes gegen die Kammerwandungen während der Diastole des Herzens her. Man hat diese Erklärung bereits allgemein verlassen, indem, wie es anerkannt ist, die tropfbarflüssigen Körper zur Hervorbringung des Schalles am wenigsten geeignet sind.
- 2. Die Herztöne entstehen durch das Anschlagen des Herzens gegen die Brustwand. Professor Magendie behauptet, sich durch Vivisektionen überzeugt zu haben, dass der gedehnte Ton durch das Anschlagen der Herzspitze gegen die Brustwand während der Kammersystole, der kurze helle Ton dagegen durch das Anschlagen der vordern Fläche des rechten Ventrikels gegen das Sternum während der Kammerdiastole hervorgebracht werde.

Andere Physiologen haben dagegen bei Vivisektionen die Erfahrung gemacht, dass die beiden Töne auch dann hörbar sind, wenn das Herz nicht gegen das Brustblatt, überhaupt gegen keinen harten Körper anschlägt.

Die Beobachtungen der Töne bei Gesunden und Kranken sind der Theorie Magendie's ebenfalls nicht sehr günstig. Während nämlich der Herzstoss zuweilen gar nicht fühlbar ist, sind die Töne sehr laut, und im Gegentheil wird bei erschütterndem Herzstosse oft kein Ton wahrgenommen.

Obgleich diesem zu Folge der Herzstoss im Allgemeinen nicht als die Ursache der Herztöne angesehen werden kann, so bringt er doch, und wie es scheint, nicht gar selten einen Ton hervor. Die Entstehung des Tones in Folge des Herzstosses ist nur dann möglich, wenn das Herz während der Diastole entweder theilweise, oder ganz von der Brustwand entfernt ist, und durch die Systole plötzlich an dieselbe getrieben wird. Durch einen solchen plötzlichen Herzstoss entsteht ein in vielen Fällen metallisch klingender Ton, den man z. B. dadurch sich versinnlichen kann, dass man mit der Flachhand ein Ohr zuhält, und auf den Rücken derselben anklopft. Durch einen Herzstoss kann begreislicher Weise nur ein Ton hervorgebracht werden, und dieser lässt sich von dem Tone, der mit ihm gleichzeitig ist, und aus einer andern Ursache entsteht, leicht unterscheiden, so lange das metallische Klingen oder Klirren sich hören lässt.

3. Die Herztöne entstehen durch das Einströmen des Blutes in einen mit Luft gefüllten Raum. — Professor Burdach behauptet, dass nur da Schall möglich sey, wo ein lufthältiger Raum sich vorfindet, dass folglich auch zur Hervorbringung der Herztöne ein lufthältiger Raum nothwendig sey. Da in den Vorkammern ein lufthältiger Raum nicht möglich ist, weil diese an ihrem Eingange stets offen sind, und daher in demselben Masse, in welchem sie sich erweitern, auch Blut aus den Venenstämmen an sich ziehen; so kann in den Vorkammern auch nie ein Schall entstehen. Dagegen sollen die Herzklappen wäh-

rend der Zusammenziehung der Kammern den Eingang zu diesen, und während der Ausdehnung der Kammern den Eingang zu den Arterien-Stämmen verschliessen, so dass im ersteren Zeitpunkte die Kammern, in dem darauf folgenden aber die Anfänge der Arterien-Stämme blutleer und doch ausgedehnt, also lufthältig sind, so dass das nun darein sich ergiessende Blut rauschen kann. Sonach wird der erste Schall vom Einströmen des Blutes in die Herzkammern durch die Zusammenziehung der Vorkammern, und der zweite vom Einströmen des Blutes in die Anfänge der Arterien-Stämme durch Zusammenziehung der Herzkammern herrühren.

Die volle Bestätigung seiner Erklärung der Herztöne glaubt Burdach darin zu finden, dass erstlich die beiden Schalle zu einander in demselben Zeitverhältnisse stehen, wie die Zusammenziehung der Vorkammern und Kammern; dass zweitens der erste Schall in demselben Momente vernommen wird, in welchem das angelegte Ohr den Herzschlag fühlt, woraus folgt, dass der erste Schall auf demselben Grunde beruhe, als der Herzschlag, nämlich auf dem Einströmen des Blutes aus den sich zusammenziehenden Vorkammern in die Kammern; wodurch sich dann weiter ergibt, dass der zweite Schall nur durch das während der Zusammenziehung der Kammern erfolgende Einströmen in die Anfänge der Arterien verursacht werden könne; dass drittens der erste Schall dumpfer, stärker, anhaltender sey, wie es der grössere Durchmesser und die dickere fleischige Wandung der Kammern mit sich bringe, während der zweite hellere, schwächere und kürzere Schall den engen Arterien-Stämmen und ihren dünneren, mehr gespannten faserhäutigen Wandungen entspricht; dass endlich die Herztöne viel stärker, und ohne Anlegung des Ohres schon in einiger Entfernung hörbar werden, wenn eine gewisse Menge äusserer Lust in die Adern eingedrungen ist -.

Gegen die vom Professor Burdach gegebene Erklärung der Herztöne lassen sich eine Menge Gründe anführen: a) ist die Voraussetzung nicht richtig, dass Schall nur da möglich ist, wo ein lufthältiger Raum sich vorfindet, b) ist es nicht minder unrichtig, dass in gewissen Momenten in den Herzkammern und in den Anfängen der Arterien sich ein Raum findet, der kein Blut enthält, und demnach bloss vom Blutdunste erfüllt ist; nämlich in den Herzkammern mit Anfang der Diastole derselben, und in den Arterien mit Anfang der Systole der Kammern. In den Arterien könnte ein blutleerer Raum nur dann entstehen, wenn das Blut in ihnen von selbst weiter flösse, wodurch das ganze Herz überslüssig würde; und in den Kammern wäre ein blutleerer Raum im Anfange ihrer Diastole nur dadurch möglich, dass das Blut an dem Eintritte aus den Vorhöfen in die Kammern gehemmt würde, was bei normaler Beschaffenheit der Klappen durchaus nicht statt hat. Das Blut strömt aus den Vorhöfen in die Kammern in dem Masse, als diese erweitert werden, und bei der Behauptung Burdach's, dass die Erweiterung der Herzkammern durch das Einströmen des Blutes aus dem Vorhofe in dieselben bewirkt werde, ist ein blutleerer Raum in den Herzkammern schon ganz und gar unbegreißich.

Aus dem Herzen kann während der Diastole der Kammern kein Blut und kein Blutdunst in die Arterien getrieben werden; denn das in den letztern enthaltene Blut, durch die elastischen Wandungen derselben gepresst, übt auf die halbmondförmigen Klappen einen Druck aus, zu dessen Überwindung die Kontraktion der Herzkammern nöthig ist, und es wäre völlig überslüssig, wenn ein Blatt der zweispitzigen Klappe während der Diastole der Kammern sich vor die Aorta-Mündung lagern würde, um dem aus dem Vorhofe in die Kammern einströmenden Blute den Eintritt in die Aorta zu versperren, wie diess Burdach behauptet. Gesetzt aber, es käme auf was immer für eine Art Blutdunst in die Arterien, und derselbe widerstehe - was nicht möglich ist, weil der Dunst bei 32° R. fast keine Resistenz leistet - der Kompression durch die elastischen Arterien, so ist doch nicht abzusehen, warum er gerade in den Anfängen der Arterien kleben bleiben, und um so weniger, wie er von da wieder in die Herzkammern gelangen sollte. c) Wird von Burdach der erste Ton als gleichzeitig mit der Diastole der Herzkammern, der zweite als gleichzeitig mit der Systole derselben angenommen, welche Annahme mit der vom Professor Burdach gegebenen Erklärung des Herzstosses zusammenhängt, und eben so unrichtig, als diese ist.

4. Die Herztöne entstehen durch Schwingungen der Klappen. Diese Erklärunghat Dr. Rouanet
bekannt gemacht. Der erste Herzton entsteht nach seiner Ansicht durch die Anspannung der Vorhofsklappen während der
Systole der Kammern, der zweite durch die plötzliche Spannung der halbmondförmigen Klappen nach der Systole der
Kammern in Folge des Druckes, den das in den Arterien gepresste Blut gegen diese Klappen ausübt.

Als Beweis für seine Ansicht gibt Rouanet die Thatsache, dass Membranen und Fäden bei plötzlicher Spannung einen Ton geben, dass diess demnach auch von den Herzklappen, die durch die Systole und Diastole der Kammern abwechselnd in plötzliche Spannung gerathen, gelten müsse. Er suchte sich von der Richtigkeit seiner Erklärung auch durch Versuche zu überzeugen. Er befestigte zu diesem Ende an die Aorta oberhalb der Semilunarklappen eine vier Fuss hohe Glasröhre, und unterhalb der Semilunarklappen eine kurze Röhre nebst einer mit Wasser gefüllten Blase; drückte diese zusammen, um das Wasser in der Glasröhre oberhalb der Klappen steigen zu machen, und liess plötzlich vom Drucke wieder ab. Bei dem jedesmaligen Herabfallen der Flüssigkeit nahm er einen Stoss oder ein Geräusch wahr, das mit dem zweiten Herztone einige Ähnlichkeit hatte.

Professor Bouillaud tritt der Theorie Rouanet's bei, und nennt die gewöhnlichen Herztöne Klappengeräusche. Er fügt den Gründen, die Rouanet für seine Ansicht anführt, noch den gewichtigen bei, dass die Herztöne in keiner Krankheit des Herzens, so lange die Klappen normal funktioniren, bedeutend verändert werden, dagegen bei Klappenfehlern konstante und bedeutende Veränderungen er-

fahren, und in ganz andere Geräusche umgewandelt werden; nur glaubt er den ersten Ton nicht bloss von der Anspannung der Vorhofsklappen während der Kammersystole, sondern zum Theil auch von dem plötzlichen Anschlagen der halbmondförmigen Klappen gegen die Arterienwandungen, und den zweiten Ton nicht bloss von der Anspannung der halbmondförmigen Klappen durch das zurückdrängende Blut unmittelbar nach der Kammerdiastole, sondern auch von dem gleichzeitig erfolgenden Anschlagen der Vorhofsklappen gegen die Herzwandungen, indem nämlich das aus den Vorhöfen in die Kammern einströmende Blut die Klappen auseinanderdrängt, ableiten zu müssen.

- 5. Charles William's Versuche zur Ausmittlung der Bewegungen des Herzens und der sie begleitenden Töne.
- I. Versuch: Ein Esel wurde durch Woraragist in 15 Minuten getödtet. Beim künstlich unterhaltenen Athmen beobachtete man die Bewegungen des blossgelegten Herzens. Die Vorkammern zogen sich unmittelbar vor den Kammern zusammen; der doppelte Ton war gleichzeitig mit der Zusammenziehung und Erweiterung der Kammern.

Den ersten Ton hörte man an allen Theilen der Kammern gleich stark, den zweiten am deutlichsten nahe an den Wurzeln der grossen Arterien, und zwar hörte man ihn dort selbst dann, wenn er an andern Stellen gar nicht vernehmbar war. Beim Druck auf die Wurzeln der grossen Arterien verschwand der zweite Ton immer. Geringer Druck brachte ein pfeifendes oder Blasebalggeräusch mit dem ersten Tone hervor.

Wenn man die Vorhöfe mit dem Finger in die Öffnungen zwischen Vorhof und Kammer hineindrückte, so wurde die Zusammenziehung der Kammer schwach und unregelmässig, aber der erste Ton wurde, wenn auch nur schwach, doch deutlich gehört.

Bei jeder Zusammenziehung fühlte man mit dem Finger die plötzliche Spannung der Kammern, wie einen kurz abgebrochenen Stoss, mit welchem der erste Ton genau zusammensiel.

Nachdem der linke Vorhof aufgeschnitten und die Valvula mitralis theilweise zerstört war, ergoss sich das Blut in Stössen bei jeder Zusammenziehung der Kammern, aber der erste Ton begleitete noch immer die Systole. Den zweiten Ton hörte man nach dem Einschnitte in dem Vorhofe nicht mehr. Auch nach Eröffnung des rechten Vorhofes dauerte der erste Ton fort.

Durch das Orificium mitrale wurde ein Finger in die linke Kammer eingebracht, und durch gleichzeitigen Druck auf die rechte Kammer das Einströmen des Blutes in beide Kammern gehemmt. Diese führen dennoch fort, sich kräftig zusammenzuziehen — besonders wenn man mit dem Nagel des Fingers die linke Kammer etwas reizte — und der erste Ton war immer noch hörbar, aber nicht so hell, als wenn die Kammern mit Blut gefüllt sich zusammenzogen.

Dieselben Erscheinungen beobachtete man, wenn die beiden Arterien vom Herzen getrennt wurden. Nach der Eröffnung der Vorhöfe erfolgten noch gegen dreissig kräftige Schläge und zehn oder zwölf starke Zusammenziehungen nach der Einbringung des Fingers in die linke Kammer.

Der ganze Versuch dauerte vom Beginne der künstlichen Respiration an eine Stunde zwanzig Minuten.

II. Versuch: Ein Esel wurde durch Woraragist in 35 Minuten getödtet, das Athmen sogleich künstlich unterhalten, und die Brust erössnet.

Ehe der Herzbeutel offen war, hörte man den ersten und zweiten Ton sehr deutlich, obgleich das Herz mit den Wänden der Brust durchaus nicht in Berührung kam. Beide Töne wurden durch einen Lappen der Lunge, der zwischen dem Stethoskope und dem Herzen sich befand, deutlich hindurch gehört.

Als der Herzbeutel vollständig durchschnitten war, bemerkte man den zweiten Ton am deutlichsten am Ursprunge der Lungenarterie und der Aorta, wo er lauter, als der erste Ton, kurz, hell und klappend war. An den Kammern hörte man den zweiten Ton weniger deutlich, und er schien dumpfer und entfernter zu seyn.

Legte man das Stethoskop an die Aorta ungefähr drei Zoll von ihrem Ursprunge an, so hörte man den zweiten Ton — ohne den ersten — auf die Zusammenziehung der Kammern folgen, wie man diess mit den Fingern bemerkte.

Wurde die Aorta und die Lungenarterie auf einige Sekunden zwischen dem Finger und Daumen zusammengedrückt,
so war der erste Ton von einem Blasebalggeräusche begleitet, und der zweite Ton verschwand. Diess wurde mehrmals
wiederholt. Ein gewöhnlicher Sektionshaken wurde in die
Lungenarterie eingebracht und darauf angezogen, um die
Schliessung der halbmondförmigen Klappen zu verhindern.
Der zweite Ton war offenbar schwächer und ein zischendes
Geräusch begleitete ihn. Man brachte aus demselben Zwecke
eine gekrümmte Schusterahle in die Aorta ein. Der zweite
Ton verschwand ganz, und statt desselben vernahm man ein
zischendes Geräusch.

Nach der Entfernung des Hakens und der Ahle trat der zweite Ton wieder ein, und das Zischen hörte auf. Die Einbringung und Entfernung der Haken wurde öfters wiederholt. Die Lungenarterie wurde aufgeschnitten, und ein Finger in die rechte Kammer eingebracht; das Herz zog sich unregelmässig zusammen, und der erste Ton war dunkel. Die Kammern wurden geöffnet, die Zusammenziehungen wurden geringer; man sah, dass die Columnae carneae zu gleicher Zeit mit den Kammern sich zusammenzogen.

Die Beobachtungen dauerten eine Stunde und zehn Minuten nach dem Anfange des künstlichen Athmens; und bis
zu dem Augenblicke, wo die Arterie geöffnet wurde, waren
die Zusammenziehungen des Herzens im allgemeinen regelmässig und kräftig.

Charles Williams zieht aus diesen Versuchen folgende Schlüsse: I. Der erste Ton entsteht allein durch die Zusammenziehung der Muskelsubstanz. II. Der zweite Ton wird durch die Wirkung der arteriellen Blutsäule hervorgebracht, indem dieselbe bei der Diastole der Kammern die halbmondförmigen Klappen ausspannt.

6. Auszug aus dem in der british association zu Dublin am 11. August 1835 abgestatteten Berichte eines zu Versuchen über die Bewegungen und die Töne des Herzens niedergesetzten Komité's *).

Zu diesen Versuchen wurden junge Kälber genommen. Der Puls schlug vor den Versuchen 76 bis 80 Mal. Die Thiere wurden durch einen Schlag auf die Stirne gelähmt, und darauf das Athmen künstlich unterhalten. Das Herz schlug noch eine bis zwei Stunden fort.

Fünster Versuch **): Es wurde bei einem Kalbe, wo man ein künstliches Athmen bewerkstelligt hatte, ein Stethoskop über dem Herzen auf das Brustbein gesetzt, und es wurden beide Tone des Herzens deutlich gehört; der erste war lang gezogen und dumpf, der zweite kurz und hell. Das Brustbein und die Rippen wurden entfernt, so dass das Herz ausser aller Berührung mit irgend einem Theile der Brust schlug, und als man jetzt ein Stethoskop, welches mit einer biegsamen Röhre und einem Ohrstück versehen war, auf den Herzbeutel, über den Herzkammern, aufgesetzt hatte, so wurden beide Töne deutlich vernommen. Bei den Versuchen über die Töne des Herzens nach entferntem Brustbeine fand man, dass das biegsame Hörrohr dienen könne, die Übertragung des Stosses oder Impulses, wel cher gefühlt wurde, wenn man das gewöhnliche Stethoskop anwendete, und welcher der Beobachtung etwas hinderlich war, zu verhüten. Nun wurde das Ohr sehr nahe an das Herz gelegt, jedoch ohne dasselbe zu berühren, und es liessen sich beide Töne unterscheiden, jedoch nur schwach. Ein kleines Stück Bret

^{*)} Frorie p's Notizen December 1835. Nr. 1056.

^{**)} Die erstern Versuche beziehen sich nicht auf die Töne.

wurde über die Oberstäche der Ventrikel gelegt, und mit dem Herzbeutel in Berührung erhalten, und als man das gewöhnliche Stethoskop an die Oberstäche des Bretes ansetzte, so wurden beide Töne so deutlich, und fast eben so stark gehört, als wenn sie durch das Brustbein hindurch gehört würden. Als man das Hörrohr an die Ventrikeln, nahe an ihrer Spitze ansetzte, so wurde der erste Ton sehr deutlich, der zweite Ton aber undeutlich gehört. Als man aber die Röhre über der Ursprungsstelle der grossen Arterien ansetzte, so wurden beide Töne, besonders der zweite, deutlich gehört. Der Herzbeutel wurde mit lauwarmem Wasser ausgedehnt, und in diesem Zustande vernahm man beide Töne, aber nicht so hell als vor dem Einspritzen des Wassers.

Sechster Versuch: Bei einem Kalbe, welches auf die vorige Weise präparirt worden war, wurden das Brustbein und die Rippen, wie bei dem letzten Versuche, entfernt und der Herzbeutel ausgeschnitten, und man vernahm beide Töne mittelst des an die verschiedenen Theile der Ventrikel angelegten Hörrohrs mit demselben Erfolge als bei dem fünsten Versuche. Die grossen Arterien wurden dicht am Herzen zusammengedrückt, und der Charakter des zweiten Tones war verändert; und bisweilen schien es einigen von dem Komité, als gehe der zweite Ton verloren, indess der erste Ton unverändert blieb.

Eine feine gekrümmte Nadel wurde nun in die Aorta eingestossen und eine andere in die Lungenarterie unter der Ansatzstelle einer der halbmondförmigen Klappen in jedem Gefässe, und die Nadeln wurden ungefähr einen halben Zoll aufwärts und nach aussen wieder durch die respektiven Gefässe hindurchgeführt, so dass in jedem zwischen der Nadel und der Wand der Arterie eine Klappe eingeschlossen war. Als das Hörrohr über den Ursprungsstellen der Arterien angelegt wurde, fand man, dass der zweite Ton aufgehört hatte, dass aber noch ein Ton, dem ersten im Charakter ähnlich, und mit der Systole des Herzens zusammenfallend, hörbar war. Einige der Mitglieder des Komité's wa-

ren der Meinung, der eben erwähnte Ton halte über die gewöhnliche Dauer des ersten Tones an, so wie dieser vor der Einführung der Nadeln gehört worden sey; und gegen das Ende des Versuches wurde von einigen des Comité's die Bemerkung gemacht, es scheine der erste Ton wiederholt, oder zwei einander im Charakter ähnliche Töne, welche man rauschend nennen könne, noch fortgehört zu werden.

Als das Herz aus dem Körper genommen, und die halbmondförmigen Klappen untersucht wurden, fand es sich, dass
in jeder Arterie eine Klappe an die Wand des Gefässes anlag,
so dass das Herabtreten derselben ganz verhindert wurde.
Es ist zu bemerken, dass diese Operation mit grosser Leichtigkeit und meist mit sicherem Erfolge bewerkstelligt werden
kann.

Siebenter Versuch: Der vorige Versuch wurde an einem andern Kalbe wiederholt, und zwar mit demselben Erfolge, nämlich unter dem Aufhören des zweiten Tones. Während des Experiments hörte man den zweiten Ton wieder, jedoch etwas verändert; und bei der Untersuchung fand es sich, dass die Nadel, welche in die Aorta eingebracht worden, wieder herausgeschlüpft war. Als man sie wieder hineinbrachte, hörte der zweite Ton wieder auf. Als man dieses Herz auch herausnahm, fand man die Klappen eben so anliegend, wie beim letzten Versuche angegeben worden ist.

Achter Versuch: Es wurde ein Kalb durch einen Schlag betäubt, und nachdem unmittelbar das Herz herausgenommen worden war, dieses auf die Tafel gelegt. Das Hörrohr wurde an die Seite der Ventrikel angelegt, während sie noch klopften, und man vernahm bei jeder Systole einen Ton, ähnlich dem Tone, welcher der erste genannt worden; ein zweiter Ton war nicht zu hören. Als das Herz zu klopfen aufgehört hatte, wurden die halbmondförmigen Klappen zerstört, die Herzkammern mit Wasser ausgefüllt, hierauf das Herz aufrecht gehalten und das Hörrohr an die Ventrikeln gelegt, indem diese durch die Hand zusammengedrückt wurden, so dass dadurch ein Strömen des Wassers durch die Arterien-

stämme verursacht wurde, und man hörte einen dem ersten ähnlichen Ton; auf gleiche Weise wurde, wenn man die Hand mit Einem Male wegnahm, ein Ton von demselben Charakter gehört, als der vorige. Als man das Hörrohr an die Ventrikel legte, nachdem die Thätigkeit des Herzens ganz aufgehört hatte, und dasselbe ganz leer war, so dass die innern Flächen der Ventrikel sich an einander reiben konnten, so wurde ein dem ersten etwas ähnlicher Ton vernommen. Brachte man in den linken Ventrikel durch dessen venöse Öffnung den Finger ein, und rieb sanft gegen dessen innere Oberstäche, so wurde ein Ton, dem ersten ähnlich hervorgebracht, und mittelst des äusserlich an die Ventrikel gelegten Hörrohrs vernommen. Als man eine Glasröhre aus einer geringen Höhe auf die halbmondförmigen Klappen der Aorta noch vor Zerstörung derselben fallen liess, so wurde ein Ton hervorgebracht, welcher dem zweiten Tone ganz ähnlich war; und wenn die Röhre zwischen die Klappen gebracht, und gelind auf- und abwärts gerieben wurde, so vernahm man einen, dem Raspelgeräusche ähnlichen Schall.

Aus diesen Versuchen zog das Komité folgende Schlüsse:

- 1. Die Töne werden nicht durch die Berührung der Herzkammern mit dem Brustbeine hervorgebracht, sondern durch Bewegungen im Herzen und seinen Gefässen verursacht.
- 2. Das Brustbein und die Vorderseite des Thorax vermehren durch ihre Berührung mit den Ventrikeln die Vernehmlichkeit der Töne.
- 3. Der erste Ton ist mit der Systole der Ventrikel verbunden, und mit ihr von gleicher Dauer.
- 4. Die Ursache des ersten Tones beginnt und endet mit der Systole der Ventrikel, und ist während der Fortdauer der Systole in beständiger Wirksamkeit.
- 5. Der erste Ton ist nicht von dem Schliessen der zwei- und dreispitzigen Klappe ab-

hängig, da eine solche Bewegung der Klappen nur im Anfange der Systole statt findet, und von weit kürzerer Dauer ist, als die Systole.

- 6. Der erste Ton wird nicht hervorgebracht durch das Aneinanderreiben der innern Flächen der Ventrikel, da eine solche Reibung nicht eher statt haben kann, als bis das Blut aus den Ventrikeln herausgetrieben ist, da doch der erste Ton mit dem Beginne der Kammersystole anhebt.
- 7. Der erste Ton wird entweder durch das rasche Strömen des Blutes über die unregelmässigen Innenflächen der Ventrikel bei dem Laufe desselben nach den Arterienmündungen hin, oder durch das Muskelgeräusch der Ventrikel, oder wahrscheinlich durch diese beiden Ursachen zusammen, hervorgebracht.
 - 8. Der zweite Ton fällt mit dem Aufhören der Systole der Ventrikel zusammen, erfordert zu seiner Fortdauer die Integrität der halbmondförmigen Klappen der Aorta und Lungenarterie, und scheint durch die plötzliche Hemmung hervorgebracht zu werden, welche durch die Wirkung dieser Klappen auf die Bewegung der Blutsäulen verursacht wird, die nach jeder Zusammenziehung der Ventrikel vermöge der Elasticität der Arterienstämme statt findet.

Das Komité schloss den Bericht mit der Erklärung, dass, ungeachtet aller bisherigen Untersuchungen, der in Frage stehende Gegenstand nicht erschöpft ist, und dass es weiterer Beobachtungen bedarf, um die noch dunklen Punkte aufzuhellen.

7. Eigene Ansicht über die Ursache der Töne.

Die beiden Herzkammern, die Aorta und Pulmonalarterie bringen jede für sich sowohl den ersten als den zweiten in der Herzgegend vernehmbaren Ton hervor.

Ich glaube, dass zur Lösung der Frage über die Entstehung der in der Herzgegend hörbaren Töne Vivisektionen nicht hinreichen, und dass dazu Beobachtungen an Gesunden und Kranken, und sorgfältige Vergleichungen der während des Lebens beobachteten Erscheinungen mit Sektionsbefunden erforderlich sind.

Ist das Ohr im Auskultiren geübt, so wird man, wenn man Gelegenheit hat, viele Gesunde und Kranke zu untersuchen, folgende Angaben bestätigt finden: Die von den Herzbewegungen abhängigen Töne haben bei verschiedenen ganz gesunden Individuen nicht denselben Grad von Deutlichkeit und Stärke; sie sind bei dem Einen kaum zu vernehmen und nicht scharf begränzt, bei dem Andern dagegen sehr hell, selbst einiger Massen klingend; man kann sie in einem Falle kaum in der Herzgegend vernehmen, indess sie in einem andern fast an der ganzen vordern Fläche des Thorax deutlich gehört werden, und selbst bis auf den Rücken sich erstrecken; bei manchen Menschen hört man diese Töne besonders deutlich an der Stelle des Thorax, gegen welche das Herz anschlägt, indess bei andern diese Stelle nur undeutliche Töne gibt, welche dagegen viel deutlicher über der Pulmonalarterie und der Aorta sich vernehmen lassen.

Wenn man die Töne an der Stelle des Thorax, gegen welche das Herz schlägt, mit den Tönen vergleicht, welche sich oberhalb der Basis des Herzens an den Thoraxstellen, unter denen die Pulmonalarterie und die Aorta liegt, hören lassen, so bemerkt man nicht selten, dass in der Herzgegend der erste, d. h. der mit dem Herzstosse synchronische Ton länger ist, als der zweite, dass aber oberhalb der Basis des Herzens der Accent auf den zweiten Ton fällt.

Vergleicht man die Töne an der Stelle des Thorax, wo die Herzspitze anschlägt — die also dem linken Ventrikel entspricht — mit den Tönen, welche sich in gleicher Höhe rechts von dieser Stelle unter dem Brustbeine — also über dem rechten Ventrikel — vernehmen lassen, so bemerkt man zuweilen, dass die Töne an den beiden Stellen in Stärke und Helligkeit differiren. In einigen Fällen habe ich auch in der Schallhöhe Unterschiede angetroffen.

Auskultirt man endlich oberhalb der Basis des Herzens — etwas über der Mitte des Brustbeins — am rechten Rande des Brustbeins, unter welcher Stelle die Aorta verlauft, so wird man zuweilen die Töne in Stärke und Helligkeit, und in sehr seltenen Fällen auch in der Schallhöhe von jenen verschieden finden, welche man beim Ansetzen des Stethoskops in gleicher Höhe, aber etwa einen Zoll links vom Brustbeine erhält.

Die Unterschiede der Töne an den bezeichneten Stellen, welche sich nicht selten bei ganz gesunden Menschen wahrnehmen lassen, treten viel deutlicher hervor, wenn man Individuen untersucht, die an verschiedenen krankhaften Zuständen des Herzens leiden. Man muss daher diese Unterschiede zuerst bei Herzkranken suchen, und hat man sich einmal mit denselben vertraut gemacht, so wird man dieselben auch bei gesunden Individuen, wo sie viel weniger auffallend sind, wahrnehmen.

Hat man Gelegenheit, viele Herzkranke zu untersuchen, so stösst man auf Fälle, wo an der Thoraxstelle, gegen welche die Herzspitze anstösst — im linken Ventrikel — gar kein Ton — weder der erste noch der zweite — sich hören lässt, wo man vielmehr an dieser Stelle ein einfaches oder doppeltes Geräusch — Blasen, Sägen, Raspeln etc. — vernimmt, indess rechts von dieser Stelle, — dem rechten Ventrikel entsprechend — und oberhalb der Basis des Herzens — über der Aorta und Pulmonalarterie — beide Töne deutlich gehört werden. Gewöhnlich sind überdiess die Töne an den drei Stellen in Stärke, Helligkeit etc. nicht gleich.

In andern Fällen dagegen hat man im linken Ventrikel, in der Aorta und Pulmonalarterie die beiden Töne, die gewöhnlich ebenfalls von einander differiren, indess über dem rechten Ventrikel kein Ton, sondern ein Geräusch gehört wird, das mit der Kammersystole synchronisch ist.

Noch häufiger sind die Fälle, wo dem Verlaufe der Aorta entsprechend ein einfaches oder doppeltes Geräusch und kein Ton vernommen wird, da doch über dem rechten und linken Ventrikel und über der Pulmonalarterie beide Töne sich deutlich hörbar machen. Über der Pulmonalarterie allein habe ich erst in wenigen Fällen ein Geräusch vernommen, und zwar noch nie synchronisch mit der Kammerdiastole. Es geschieht aber auch, dass man über dem linken Ventrikel und über der Aorta ein einfaches oder doppeltes Geräusch hört, indess über dem rechten Ventrikel und über der Pulmonalarterie die Töne fortbestehen; oder man hört über dem linken und rechten Ventrikel, oder über dem rechten Ventrikel und der Aorta, oder über dem linken und rechten Ventrikel und über der Aorta Geräusche, indess an den Stellen, wo keine Geräusche sind, die Tone sich deutlich vernehmen lassen, oder aber bloss ein undeutlicher Schall fortbesteht, oder gar nichts gehört wird,

Sind diese Beobachtungen richtig — ich glaube es, weil ich sie unzählige Male gemacht habe, und weil andere, die mit mir untersuchten, dasselbe fanden — so geht daraus, wie es mir scheint, ziemlich sicher hervor, dass die beiden Herzkammern, die Pulmonalarterie und die Aorta jede für sich sowohl den ersten als den zweiten in der Herzgegend vernehmbaren Ton hervorbringen können.

Die Verschiedenheiten in den Tönen hängen häufig mit der verschiedenen Beschaffenheit der Herzklappen zusammen, und man muss darum bei Erklärung der Töne das Verhalten der Herzklappen während der Herzbewegungen in Betracht ziehen.

Hat man viele an Lebenden gemachte Beobachtungen mit Sektionsbefunden zusammengestellt, so kann man sich der Vermuthung nicht erwehren, dass die Verschiedenheiten

in den Tönen und Geräuschen wenigstens häufig mit der verschiedenen Beschaffenheit der Herzklappen zusammenhängen; denn man findet, wenn man bei einem Kranken Geräusche statt der Töne beobachtet hat, in der Regel abnorme Zustände der Klappen - Exkrescenzen, Verdickung, Verkleinerung, Verengerung der Ostien etc. - Doch kann nicht in Abrede gestellt werden, dass man zuweilen die Klappen in der Leiche nicht ganz normal findet, obgleich die Untersuchung während des Lebens keine, oder nur eine solche Veränderung in den Tönen zeigte, wie sie auch bei ganz normaler Beschaffenheit der Klappen möglich ist. Nicht ein jeder abnorme Zustand der Klappen kann dem zu Folge hinreichend markirte Veränderungen in den Tönen hervorbringen, sondern es kann diess nur bei gewissen Abnormitäten der Klappen der Fall seyn; oder es wirken zur Veränderung der Töne nebst den Abnormitäten an den Klappen noch andere Umstände mit.

Wenn man sich eine klare Vorstellung von dem zu verschaffen sucht, was während der Herzbewegungen an den Klappen sowohl im normalen als abnormen Zustande derselben vorgeht, so lassen sich daraus die Bedingungen ersehen, unter denen sich die Entstehung der Töne an den Klappen, die Veränderung dieser Töne, und die Umwandlung derselben in Geräusche als möglich denken lässt. Durch eine solche Übersicht der möglichen Bedingungen erhält man einen Leitfaden für die Beobachtungen, und kann durch die letztern, oder selbst durch direkte Versuche das Wirkliche von dem bloss Möglichen trennen.

Verhalten der zwei- und dreispitzigen Klappe bei den Bewegungen des Herzens.

Lännec behauptet, dass die Papillarmuskeln mit den Klappen in einer solchen Verbindung stehen, dass sie bei ihrer Kontraktion nothwendiger Weise die Klappen öffnen. Er ist darum auch der Meinung, dass die Papillarmuskeln sich mit der übrigen Substanz der Kammern nicht gleichzeitig kontrahiren, sondern, dass ihre Kontraktion während der Diastole der Kammern erfolge, damit dem Blute der Eintritt in die Kammern gestattet werde. Bouillaud dagegen hält es für ganz einleuchtend, dass durch die Kontraktion der Papillarmuskeln die Klappe geschlossen wird.

Man mag die Papillarmuskeln und dadurch die aus ihnen entspringenden Fäden in der Richtung, die sie im Herzen haben, so stark anziehen, als man will, so wird dadurch die Klappe doch nie geschlossen, und die Öffnung wird durch strafferes Anziehen eben nicht kleiner, als beim gelinden Zuge. Es wird darum auch die Verkürzung der Papillarmuskeln während ihrer Kontraktion die Schliessung der Klappe nicht bewirken. Man bemerkt auch nicht, dass im erschlafften Zustande der Papillarmuskeln das Blut am Einströmen aus den Vorkammern in die Kammern gehindert wäre, und es ist dem zu Folge die Funktion der Papillarmuskeln weder. so, wie sich dieselbe Lännec dachte, noch so, wie sie von Bouillaud angenommen wird. Da die Kontraktion der Papillarmuskeln die Schliessung der Klappe nicht bewirken kann; so bleibt nichts übrig, als dass der Blutstrom selbst durch den Andrang gegen die Klappe dieselbe schliesst. Die Fäden, die aus den Papillarmuskeln in die Klappen übergehen, sind offenbar dazu vorhanden, um das Umschlagen dieser Klappen zu verhindern; denn würde der freie Rand der zwei- und dreispitzigen Klappe nicht durch die sehnigen Fäden, die sich an ihm ansetzen, festgehalten, so würden die Klappen während der Kammersystole durch den Blutstrom theils in die Vorhöfe, theils gegen die Arterienmundungen hingetrieben werden, und es könnte vom Schliessen dieser Klappen keine Rede seyn.

Die sehnigen Fäden vertheilen sich an den Klappen auf eine Weise, die für die Funktion dieser Klappen von der höchsten Wichtigkeit ist, so dass ohne eine solche Disposition der sehnigen Fäden die zwei- und dreispitzige Klappe den Rücktritt des Blutes aus den Kammern in die Vorkammern während der Kammersystole nicht hindern könnte. Des-

senungeachtet findet man diese besondere Vertheilung der sehnigen Fäden an der zwei- und dreispitzigen Klappe nirgends genau beschrieben, und selbst Bouillaud, der sich mit der Untersuchung der Herzklappen so viel beschäftigte, hat sie nicht hinreichend gewürdigt, oder wenigstens ihren Zweck nicht erkannt.

Von jedem Papillarmuskel laufen mehrere stärkere Fäden gegen die Mitte derjenigen Klappenfläche, die der Herz-kammer zugekehrt ist, und inseriren sich alda, oder es laufen einige derselben bis zur Basis der Klappe, und inseriren sich an der Vereinigung der Klappe mit der Kammerwandung. Aus diesen stärkern Fäden — etwa in deren Mitte — und zum Theil auch aus Papillarmuskeln entspringen schwächere Fäden, die sich etwas näher gegen den freien Rand der Klappe inseriren. Diese schwächern Fäden dienen noch zarteren zum Anhaltspunkte, welche sich noch näher gegen den freien Rand der Klappe, und an diesem selbst, inseriren. An der dem Vorhofe zugekehrten Fläche der Klappe ist kein sehniger Faden befestigt.

Zieht man die Papillarmuskeln in der Richtung, die sie im Herzen haben, an, so sieht man, dass durch dieses Anziehen bloss die stärkern Fäden, die aus den Pappillarmuskeln selbst entspringen, gespannt werden: die schwächern Fäden, die nicht aus den Papillarmuskeln, sondern aus den stärkern Fäden ihren Ursprung nehmen, und sich näher gegen den freien Rand der Klappe, oder an diesem Rande selbst, inseriren, bleiben bei dem stärksten Zuge erschlafft. Durch ein solches Anziehen der Papillarmuskeln spannt man darum nie den freien Rand der Klappe; diese wird vielmehr bloss von ihrem Anheftungspunkte an bis dahin gespannt, wo sich die aus den Papillarmuskeln entspringenden sehnigen Fäden inseriren. Der ganze übrige Theil der Klappe — vom freien Rande bis zur Mitte derselben — bleibt schlaff.

Wenn man irgend einen Punkt dieses schlassen Theiles der Klappe in der Richtung gegen den Vorhof zurückdrängt, so dass die Fäden, die sich an dem Theile befestigen, gespannt werden, so sieht man daran eine Menge von Taschen, und indem man auf diese Weise die ganze Klappe untersucht, überzeugt man sieh, dass die gegen die Kammern gekehrten Flächen der zwei- und dreispitzigen Klappe nicht eben sind, sondern Taschen zeigen, die unmittelbar am freien Rande der Klappen beginnen, sich bis gegen die Mitte der Klappenfläche oder selbst noch weiterhin erstrecken, und offenbar durch die besondere Art der Insertion der sehnigen Fäden erzeugt werden.

Diese Taschen stellen gleichsam kleine Semilunarklappen dar, und die zwei- und dreispitzige Klappe erscheint als eine Zusammensetzung von sehr vielen kleinen Semilunarklappen, die sämmtlich durch die sehnigen Fäden in der gehörigen Richtung erhalten werden. Wenn man gegen den schlassen Theil der Klappe, in der Richtung gegen den Vorhof zu, bläst, so bläht sich derselbe wie ein Segel auf, und man kann auf diese Weise die Taschen in der ganzen Zirkumferenz des freien Klappenrandes auf einmal bemerken. Eben diess geschieht, wenn man Wasser gegen die Klappe giesst.

Wenn während der Kammersystole das Blut gegen den Vorhof zurückströmen will, so muss es sich nothwendiger Weise in den Taschen oder kleinen Semilunarklappen der zwei- und dreispitzigen Klappe fangen, und den schlaffen Theil der Klappe, gegen den Vorhof zu, so weit aufblähen, als es die sich daselbst inserirenden sehnigen Fäden gestatten. Durch eine solche Aufblähung der Klappe verschliesst das Blut sich selbst den Weg in den Vorhof, wenn die Klappe durch die Fäden in einer solchen Richtung gehalten wird, dass nach dem Aufblähen keine Öffnung zurückbleibt. Aus diesem Grunde können die sehnigen Fäden der zwei- und dreispitzigen Klappe nicht an willkürlichen Stellen der Kammerwandungen befestigt seyn, und sie können nicht eine willkürliche Länge haben.

Die Weite der Kammern ist im Beginne der Systole eine andere, als am Ende derselben, und die Insertionsstellen der Papillarmuskeln rücken den Befestigungsstellen der zweiund dreispitzigen Klappe im Fortgange der Kammersystole immer näher. Muss die Länge der sehnigen Fäden eine bestimmte seyn, damit die Klappe schliessen könne, so lässt sich leicht einsehen, dass die sehnigen Fäden, welche die Klappe in der gehörigen Richtung halten sollen, aus Papillarmuskeln entspringen müssen.

Würden sie nämlich unmittelbar aus der Herzwandung entspringen, so müssten sie, falls ihre Länge mit Beginn der Kammersystole gerade die richtige wäre, im Fortgange der Systole zu lang werden, und im Gegentheil würden sie der Kammerdiastole hinderlich seyn, wenn sie nur die Länge hätten, um die Klappe gegen das Ende der Kammersystole in der nöthigen Richtung zu erhalten. Weil ein Wechsel in der Länge der sehnigen Fäden nicht möglich ist, so müssen diese sehnigen Fäden mit Muskeln zusammenhängen, und der Zweck der Papillarmuskeln ist offenbar der, durch die abwechselnde Verkürzung und Verlängerung die Klappe in der gehörigen Richtung zu erhalten. So wie nämlich im Fortgange der Kammersystole die Insertionsstellen der Papillarmuskeln den Befestigungsstellen der zwei- und dreispitzigen Klappe immer näher rücken, verkürzen sich die Papillarmuskeln, und die aus ihnen entspringenden sehnigen Fäden würden, falls das Blut nicht gegen sie andrängen würde, in derselben Spannung bleiben, in welcher sie im Beginne der Kammersystole waren, und würden dieselbe Spannung auch bei der Kammerdiastole beibehalten, weil im Verhältnisse des Auseinandertretens der Herzwandungen die Papillarmuskeln sich verlängern.

Die Richtigkeit der hier auseinandergesetzten Ansicht über die Funktion der Papillarmuskeln scheint mir auch dadurch bestätigt zu werden, dass der am Septum gelegene Theil der dreispitzigen Klappe seine sehnigen Fäden nicht aus Papillarmuskeln, sondern unmittelbar aus der Herzwand erhält. Die Insertionsstellen dieser sehnigen Fäden am Septum rücken nämlich den Anheftungsstellen des zugehörigen Theiles der Klappe während der Kammersystole wenig oder gar nicht näher, und entfernen sich darum während der Kam-

merdiastole eben so wenig. Hier ist ein sehniger Faden zum Festhalten der Klappe hinreichend, indem kein Wechsel in der Länge dieses Fadens nothwendig ist *).

Nach allem bisher Gesagten bestehen die Bewegungen, die die zwei- und dreispitzige Klappe macht, in folgendem: Während der Kontraktion der Kammern wird durch die Verkürzung der Papillarmuskeln das Heraustreten der Klappe aus den Kammern, und deren Bewegung gegen das Ostium arteriosum verhindert. Die Papillarmuskeln und die aus ihnen entspringenden sehnigen Fäden werden zu gleicher Zeit einander genähert, somit auch die Fläche der Klappe, wo sich die Fäden ansetzen, gefaltet, und die Klappenöffnung verkleinert.

Die übrig bleibende Öffnung wird durch den Theil der Klappe, der durch die Verkürzung der Papillarmuskeln nicht angezogen wird, geschlossen. Dieser wird nämlich durch das andrängende Blut wie ein Segel aufgebläht, die einzelnen Punkte des freien Randes der Klappe kommen wechselweise in Berührung, und theils dadurch, dass sie sich gegen einander stützen, hauptsächlich aber durch die sehnigen Fäden, wird das Umschlagen des freien Randes verhindert. Da die zum freien Rande verlaufenden zarten, aus den stärkern sehnigen Fäden entspringen, welche von den Papillarmuskeln auslaufen, so werden durch den Druck des Blutes gegen den aufgeblähten Klappentheil sämmtliche, aus den Muskeln entspringende sehnige Fäden durch die sich an ihnen anheftenden feineren Fäden näher an einander gezogen, und dadurch in eine gekrümmte Richtung gebracht.

^{*)} Der Zweck der Papillarmuskeln ist bereits vom Professor Weber — Hildebrandt's Anatomie, Band III., Seite 137 — eben so bestimmt worden. Ich habe dieses erst vor Kurzem in Erfahrung gebracht, indem nämlich diese Ansicht in keinem mir bekannten physiologischen Werke berührt ist, und äusserte mich aus diesem Grunde in den medicinischen Jahrbüchern Österreichs — Band XIII. Stück 2 — so, als wäre der Zweck der Papillarmuskeln früher nicht bekannt gewesen.

Mit der Kammerdiastole verlängern sich die Papillarmuskeln und treten auseinander. Das aus dem Vorhofe andrängende Blut würde die Klappe gegen die Herzwandungen und zum Theil gegen die Arterienmündung drücken, wenn dieselbe durch die sehnigen Fäden nicht in ihrer bestimmten Lage gehalten würde. Die sehnigen Fäden, die aus den Papillarmuskeln entspringen, sind aus diesem Grunde auch während der Kammerdiastole nicht erschlaft; denn wären sie es, so könnte mit Beginn der Kammersystole die Klappe nicht schon in der zum augenblicklichen Schliessen erforderlichen Richtung seyn; es würde jedesmal ein grosser Theil des Blutes aus der Kammer in die Vorkammer zurückkehren, und die Klappe müsste durch die sich zusammenziehenden Papillarmuskeln, oft gegen den Blutstrom, in die gehörige Stellung gezogen werden.

Damit also die zwei- und dreispitzige Klappe ihre Funktion vollkommen verrichtet, muss der freie Rand derselben die beschriebenen Taschen zeigen, die sehnigen Fäden und die Papillarmuskeln müssen eine der Grösse der Kammern entsprechende Länge haben. Weicht die Klappe von ihrer normalen Konformation ab, so ist sie entweder nicht im Stande, den Rückfluss des Blutes aus der Kammer in die Vorkammer während der Kammersystole zu hemmen — die Klappe ist insufficient —, oder sie setzt dem Eintreten des Blutes aus der Vorkammer in die Kammer während der Kammerdiastole Hindernisse entgegen.

Das erste findet Statt bei Verdickung und Verkürzung des freien Randes der Klappe, oder bei Verwachsung desselben mit den aus der Mitte der Klappenfläche kommenden sehnigen Fäden, wodurch die Taschen der Klappe verschwinden, bei Verkürzung oder Verlängerung oder Zerreissung der sehnigen Fäden, bei Anlagerung von Excrescenzen, Blutcoagulum etc. am Klappenrande, bei Verwachsung der Klappenflächen mit der Wandung des Ventrikels; das letztere dagegen wird durch bedeutende Excrescenzen oder Blutcoagula oder Kalkkoncremente etc. an der gegen den Vorhof ge-

kehrten Klappensläche, oder dadurch hervorgebracht, dass durch Verwachsung der sehnigen Fäden unter einander, und mit dem freien Rande der Klappe, der letztere sich nicht aus einander drängen lässt.

Verhalten der Semilunarklappen.

Die Semilunarklappen an der Aorta und Pulmonalarterie werden bekanntlich während der Kammersystole durch das in die Arterie eingetriebene Blut gegen die Wand der Arterie gepresst, während der Kammerdiastole aber durch das in Folge der Elasticität der Arterien nach vor- und rückwärts, also auch gegen die Kammern hin getriebene Blut wieder aufgebläht.

Durch Exkrescenzen, Kalkkonkremente etc., die sich an den Aortaklappen entwickeln, oder durch Verwachsung der drei Klappen unter einander, werden dieselben zuweilen unbeweglich, lassen sich nicht gegen die Wand der Arterie drängen, und hemmen so den Eintritt des Blutes in die Aorta. Ist der freie Rand dieser Klappen verkürzt oder umgestülpt, oder mit Exkrescenzen besetzt, sind sie von ihren Anheftungsstellen theilweise losgerissen oder durchlöchert, so sind sie nicht im Stande, den Rückfluss des Blutes aufzuhalten, und das Blut stürzt während der Kammerdiastole aus der Aorta in die linke Kammer zurück.

Ob die Aortaklappen während des Lebens geschlossen haben, lässt sich in der Leiche sehr leicht nachweisen. Giesst man nämlich bei normaler Beschaffenheit der Aortaklappen Wasser in die Aorta, so gelangt dieses nicht in die linke Herzkammer, sondern bleibt in der Aorta stehen, indem die geschlossenen Klappen dessen Abfluss hindern; wogegen bei Insufficienz der Aortaklappen das Wasser in die linke Kammer herabsinkt.

Für die zwei- und dreispitzige Klappe hat man am Kadaver diese Probe nicht. Wenn man einen Ventrikel mit Wasser füllt, die Arterienmündung desselben zuhält, und dann den Ventrikel komprimirt, so wird die zwei- oder dreispitzige Klappe zwar aufgebläht, aber sie hemmt den Rückfluss des Wassers nicht vollständig, selbst wenn sie ganz normal ist. Der Grund davon ist offenbar der, dass die Kontraktion der Papillarmuskeln und die allseitige Verkleinerung der Herzhöhlen nicht nachgeahmt werden kann. Ob also die zwei- oder dreispitzige Klappe während des Lebens geschlossen habe, kann man im Kadaver nur aus der Konformation der Klappe, der sehnigen Fäden und der Papillarmuskeln, und nach den Veränderungen, welche die Insufficienz dieser Klappen in den Vorhöfen herbeizuführen pflegt, beurtheilen.

a) Erklärung der Töne in den Herzkammern.

Die Vergleichung der Beobachtungen an Lebenden mit Sektionsbefunden zeigt, dass über dem linken Ventrikel ein deutlicher erster Ton fast nie gehört wird, wenn die zweispitzige Klappe nicht im Stande ist, den Rückfluss des Blutes in die linke Vorkammer während der Kammersystole zu hemmen - wenn die zweispitzige Klappe insufficient ist. -Man hört in einem solchen Falle an der Stelle des Thorax, gegen welche die Herzspitze anschlägt, in der Regel ein Geräusch, das mit der Kammersystole gleichzeitig ist, indess sich an allen übrigen Stellen der Herzgegend der erste Ton deutlich vorfinden kann. Dasselbe gilt vom rechten Ventrikel, wenn die dreispitzige Klappe insufficient geworden ist. Man hört dann über dem rechten Ventrikel keinen deutlichen ersten Ton, - obgleich derselbe im linken Ventrikel, in der Aorta und Pulmonalarterie vernehmlich seyn kann -, und statt dessen in der Regel ein Geräusch.

Der erste Ton in den Ventrikeln entsteht demnach in der Regel durch die plötzliche Unterbrechung der Blutströmung gegen den Vorhof in Folge der Aufblähung der zwei- und dreispitzigen Klappe; also durch das Anschlägen des Blutes gegen diese Klappen. Jeder Stoss erzeugt bekanntlich einen Schall, der um so dumpfer erscheint, je weicher der stossende oder gestossene Körper ist. Dass der erste Ton in den Ventrikeln oft hell und klappend gehört wird, und zuweilen selbst einen Grad von Klang hat, kann man sich nur dadurch erklären, dass Fäden und Membranen, wenn sie plötzlich stark
gespannt werden, einen klappenden, oder mehr gedehnten
Schall geben, der zuweilen ziemlich klingend seyn kann.
Aber eben die Beobachtung, dass der erste Ton in den Ventrikeln nicht selten hell, klappend und einiger Massen klingend sich hören lässt, beweist, dass derselbe durch die Spannung der Klappen erzeugt wird; denn das Muskelgeräusch
hat nie die eben erwähnten Eigenschaften.

Ein erster Ton an der Stelle, wo die Herzspitze anschlägt - über dem linken Ventrikel - kann aber offenbar zuweilen auch durch das Anschlagen der Herzspitze gegen die Brustwand entstehen. Wenn man am Kadaver an der Innenfläche der Brustwand mit dem Finger oder mit einem Stück härterer Lebersubstanz etc. anschlägt, so hört man durch ein aussen angesetztes Stethoskop entweder ein Klirren, oder einen Schall, der von dem gewöhnlichen ersten Herztone in nichts abweicht. Wenn die Herzspitze während der Kammer-Diastole von der Brustwand etwas entfernt ist, während der Systole aber gegen dieselbe schlägt, oder selbst, wenn die Herzspitze während der Kammersystole gegen eine andere Stelle der Brustwand anschlägt, als da, wo sie während der Diastole anliegt, muss sich gleichfalls entweder ein klirrender Schall erzeugen, oder es entsteht ein dem gewöhnlichen ersten Herztone ganz gleicher Schall; denn die Herzsubstanz wird während der Kammersystole hart. Stösst die Herzspitze gegen dieselbe Stelle der Brustwand, an welcher sie während der Kammerdiastole anliegt, so kann der Herzstoss keinen, oder doch einen nur sehr dumpfen Schall erzeugen.

Das Muskelgeräusch des Herzens lässt sich, weil kein Muskel einen begränzten, klappenden oder gar klingenden Schall gibt, nie als ein klappender Ton, sondern immer nur als ein dumpfer gedehnter Schall annehmen, den ich nach der von mir gewählten Bezeichnung nie einen Ton nennen könnte, sondern als einen undeutlichen, dem Geräusch sich nähernden Schall anführen müsste. Ich weiss aus Beobachtungen an

Lebenden noch nicht, ob die Kontraktion der Herzsubstanz wirklich von einem solchen Schalle begleitet sey; denn es findet bei Hypertrophie mit Dilatation der Ventrikel und Verdickung der zwei- und dreispitzigen Klappe zuweilen ein heftiger Herzstoss — also eine heftige Kontraktion der Herzsubstanz — statt, ohne dass sich nur eine Spur eines Schalles dabei vernehmen lässt.

Die Erklärung des zweiten Tones in den Ventrikeln hat grössere Schwierigkeiten, als die des ersten. Man kann nicht behaupten, dass bei normaler Beschassenheit des Herzens der zweite Ton in den Ventrikeln immer gebildet wird; indem es häufig wahrscheinlich, nicht selten auch gewiss ist, dass der zweite Ton, den man über dem Herzen hört, in den Arterien entsteht, und wegen seiner Intensität sich auch in einiger Entfernung vernehmen lässt. Aber es gibt gewiss Fälle, wo man genöthigt ist, die Entstehung des zweiten Tones in der Gegend der Ventrikel selbst zuzugestehen. Es sind diess solche, wo man den zweiten Ton über der Basis des Herzens fast gar nicht, oder nur sehr schwach, dagegen an der Herzspitze sehr laut und hell vernimmt. Durch ein Anschlagen des Herzens gegen die Brustwand lässt sich ein solcher zweiter Ton in der Gegend der Herzspitze nicht begreisen, weil während der Kammerdiastole kein Anschlagen statt findet.

Durch ein Anschlagen des eindringenden Blutes gegen die Kammerwandung während der Kammerdiastole ist die Entstehung des zweiten Tones in den Kammern ebenfalls nicht wahrscheinlich; denn die Fläche, gegen die der Stoss geschieht, ist zu ausgedehnt, die Herzsubstanz während der Diastole weich, und der ausgeübte Stoss ist im rechten Ventrikel immer sehr schwach. Im linken Ventrikel kann er bei Insufficienz der zweispitzigen oder der Aortaklappen verstärkt seyn; aber eben in solchen Fällen hört man über dem linken Ventrikel keinen verstärkten zweiten Ton.

Ich habe früher angenommen, dass der zweite Ton in den Ventrikeln durch den plötzlichen Übergang der mit den Papillarmuskeln zusammenhängenden sehnigen Klappenfäden aus der gekrümmten Richtung, in der sie sich während
der Kammersystole befinden, in eine gerade Richtung mit
Eintritt der Kammerdiastole entstehen könnte; indem gespannte Saiten, wenn man sie seitwärts zieht und plötzlich
loslässt, einen Schall geben. Ich habe diese nicht sehr wahrscheinliche Ansicht durch Beobachtungen bis jetzt weder
bestätigen, noch widerlegen können.

Wenn man mit dem Finger oder sonst einem festeren organischen Theile im Kadaver an der Innensläche der Brustwand klopft, und durch ein aussen angesetztes Stethoskop auskultirt, so hört man nicht bloss einen Schall beim Anschlagen, sondern auch einen zweiten mit der jedesmaligen Entfernung des Fingers etc. Der zweite Schall folgt plötzlich auf den ersten — wenn man nämlich den Finger nach dem Anschlagen sogleich entfernt — und gleicht genau dem zweiten Herztone. Es ist mir wahrscheinlich, dass der zweite Ton in der Gegend der Herzspitze zuweilen ebenfalls durch das Losreissen der am Pericardium etwas klebenden Herzspitze, oder durch Losreissen des durch die Herzspitze während der Kammersystole gegen die Brustwand gedrückten Theils des Pericardiums während der Kammerdiastole entstehen kann.

β) Erklärung der Töne in den Arterien.

In jeder grössern Arterie kann man in seltenen Fällen gleichzeitig mit dem Pulse der Arterie einen Schall hören, der genau einem gewöhnlichen Herztone gleicht. Ich glaube nicht, dass es jemanden beifallen kann, Töne, die sich in der arteria cruralis oder brachialis hören lassen, durch Fortpflanzung aus dem Herzen zu erklären; nicht minder muss man die Töne in der Gegend der Carotis und Subclavia als durch diese Arterien hervorgebracht ansehen, wenn in der Herzgegend entweder keine Töne vernehmbar sind, oder doch schwächer, als am Halse gehört werden. Die letztere Beobachtung ist besonders häufig zu machen; aber man hat

diese Erscheinung gewöhnlich einem besondern Schallleitungsvermögen zugeschrieben, oder gar nicht erklärt. Dass der Schall sich nach der verschiedenen Beschaffenheit der Brustorgane verschieden in ihnen fortpflanze, ist eine unbezweifelbare Sache. Man wird aber Fälle genug finden, wo sich die Stärke der Töne unter, oder über den Schlüsselbeinen bei der Schwäche derselben in der Herzgegend durch Schallleitung gar nicht erklären lässt, weil die Lungen sich im vollkommen gesunden Zustande befinden. Auch Bouillaud schreibt den Arterien einen Schall zu, den er aber nicht als gleichartig mit einem Herztone angibt, sondern mit dem Schalle vergleicht, den man mit den Fingern hervorbringt, wenn man einen Nasenstüber gibt. Allerdings geben die vom Herzen entferntern Arterien ungleich häufiger einen bloss so klanglosen Schall, als ihn Bouillaud beschreibt; die nähern dagegen - die Carotis, Subclavia, die Aorta und Pulmonalarterie - geben in der Regel eben so laute Tone, als diese in der Herzgegend hörbar sind, und im Gegentheil sind die in der Herzgegend hörbaren Töne zuweilen ebenfalls klanglos.

Der in den Arterien synchronisch mit der Pulsation hörbare Ton lässt sich aus der plötzlich vermehrten Spannung der Arterienhäute begreifen. Der zweite Ton ist in der Aorta und Pulmonalarterie, und gewöhnlich auch in der Carotis und Subclavia hörbar. In den übrigen Arterien hört man mit ungemein seltenen Ausnahmen keinen mit der Systole der Arterie zusammenfallenden Schall.

Der zweite Ton in der Aorta und Pulmonalarterie entsteht offenbar durch den Stoss der in den Arterien enthaltenen Blutsäule gegen die Semilunarklappen nach der Systole der Herzkammern. Das in die elastischen Arterien durch die Kammersystole getriebene Blut wird durch dieselben gepresst, und sobald der Trieb vom Herzen aufgehört hat, nothwendiger Weise auch gegen das Herz schnell zurückgedrängt.

Die Strömung des Blutes gegen das Herz wird durch

die halbmondförmigen Klappen plötzlich gehemmt. Der Stoss, den diese erleiden, theilt sich den Arterienwänden mit, und nicht bloss die Aorta und Pulmonalarterie geben dadurch einen Ton, sondern dieser wird auch nicht selten in der Carotis und Subclavia gehört, und zwar selbst dann, wenn die Aorta die zur Erzeugung eines Tones nöthige Beschaffenheit verloren hat. Diese Erklärung des zweiten Tones in der Pulmonalarterie und Aorta ist durch Beobachtungen an Gesunden und Kranken ausser allen Zweifel gesetzt, und der besagte zweite Ton scheint auf keine andere Weise zu entstehen.

Sind die Semilunarklappen der Aorta insufficient geworden, so hört man über der Aorta keinen zweiten Ton, sondern statt dessen ein Geräusch; über der Pulmonalarterie dagegen bleibt der zweite Ton deutlich hörbar. Sind die Häute der Pulmonalarterie über das normale gespannt, was jedesmal bei Überfüllung des kleinen Kreislaufes mit Blut erfolgen muss, so wird der zweite Ton über der Pulmonalarterie sehr verstärkt gehört, während er über der Aorta schwach, oder unhörbar, oder durch ein Geräusch ersetzt seyn kann. Die stark gespannte Pulmonalarterie drückt mit grösserer Kraft auf das enthaltene Blut, und der Stoss der Blutsäule gegen die Semilunarklappen der Pulmonalarterie wird aus diesem Grunde heftiger.

§. 2. Über die Verschiedenheiten in den Tönen.

An den Herz- und Arterientönen bemerkt man Unterschiede in der Dauer, Stärke, Helligkeit, Reinheit und Höhe, und darin, ob diese Töne scharf abgegränzt sind, und dem Tik-Tak einer Uhr genau gleichen, oder aber gedehnter erscheinen, und so mehr ein Murmeln darstellen. Der zweite Ton der Aorta und Pulmonalarterie zeigt, besonders bei etwas verstärkter Herzthätigkeit, so lange die halbmondförmigen Klappen normal sind, die scharfe Abgränzung am deutlichsten, und ist dem Klappen eines Ventils ganz gleich. Je schärfer begränzt, also je mehr klappend,

und somit dem zweiten Tone der Arterien ähnlich, der erste Ton an den Ventrikeln wird, desto gewisser ist er durch das Anschlagen des Blutes gegen die Klappen entstanden. Je weniger scharf begränzt, je diffuser, dagegen der erste Ton an den Ventrikeln wird, desto weniger Gewissheit hat man, dass er durch das Anschlagen des Blutes gegen die zweioder dreispitzige Klappe entsteht, er kann auch auf eine andere Weise erzeugt werden. Ich nenne darum einen gedehnten, über den Ventrikeln gleichzeitig mit der Systole hörbaren, mehr einem Murmeln gleichenden Schall, nicht einen Ton, und nicht ein Geräusch, sondern einen unbestimmten Schall, und diess aus dem Grunde, weil ein solcher Schall für sich über die Beschaffenheit der zwei- oder dreispitzigen Klappe keinen Aufschluss gibt. Der mit der Systole über den Ventrikeln hörbare Schall ist nicht selten aus einem klappenden Tone, und aus dem diffusen unbestimmten Schalle zusammengesetzt. Der klappende erste Herzton ist um so sonorer, je umfangreicher die Klappe, und je zarter sie ist. Mit der Verdickung des freien Randes der zwei- oder dreispitzigen Klappe verliert sich das Klingende im ersten Tone über den Ventrikeln, der Ton wird noch kürzer, und gleicht dem Schalle, der durch das Zusammenschlagen zweier harter, nicht klingender Körper erzeugt wird. Er kann bedeutend stark seyn, und hat häufig eine hervorstechende Höhe. Der erste Ton über den Ventrikeln kann tief anfangen, und -höher enden, so dass man nicht Tik, sondern Tuik hört; er ist in sehr seltenen Fällen so zart und klingend, als der Ton, den man durch plötzliches Spannen eines Seidenfadens erhält. Es scheint, dass in solchen Fällen bloss die sehnigen Fäden der Klappen tönen.

Noch eine Verschiedenheit des ersten Tones über den Ventrikeln besteht darin, dass derselbe gleichsam gespalten, und aus zwei oder selbst drei schnell auf einander folgenden, und zu einem einzigen verbundenen Tönen bestehend, gehört wird. Diess scheint durch die nicht ganz momentan erfolgende Aufblähung der Klappe hervorgebracht.

Der zweite Ton über den Ventrikeln ist immer klappend; er kann jedoch auch Resonanz haben, und etwas länger dauern; er kann ferner auch gespalten seyn.

Ich habe einige Male statt des zweiten Tones über den Ventrikeln zwei Töne gehört; statt des gewöhnlichen Tik Tak, hörte man Tik Tak Tak. Bei einem phthisischen Knaben hatten sich die zwei Töne statt des einen zweiten einige Tage vor dem Tode eingefunden, und die Erscheinung dauerte bis zum Tode an. Das Herz zeigte bei der Sektion nicht die geringste Abnormität. Das Vorkommen zweier Töne statt des zweiten Tones über den Ventrikeln lässt sich nach keiner der bisherigen Ansichten über die Ursache des zweiten Herztones erklären, und scheint von dem Losreissen des Herzens vom Pericardium, oder des letztern von der Brustwand während der Kammerdiastole herzurühren. Wenn beim Vorhandenseyn zweier Töne statt des zweiten die Herzbewegung beschleunigt, und der mit der Kammersystole zusammenfallende - erste - Ton laut ist, so ahmen diese Tone das Getose entfernter Trommeln nach.

Der erste Ton in der Pulmonalarterie und Aorta hat gewöhnlich wenig Klang, und zwar um so weniger, je dicker die Häute dieser Arterien, und je schwächer die Herzthätigkeit ist. Der zweite Ton der Pulmonalarterie und Aorta kann auch gespalten seyn, und es scheint diess von der nicht momentan erfolgenden Aufblähung aller Semilunarklappen herzurühren.

In den Kammern ist der erste Ton der längere, in der Aorta und Pulmonalarterie ist der erste Ton kürzer, der Accent fällt auf den zweiten. Das letztere ist vorzüglich leicht zu bemerken, wenn die Töne lauter sind. In den Herzkammern ist somit das Zeitmass der Töne nach Art des Trochäus, in der Aorta und Pulmonalarterie nach Art des Jambus. Wenn der Accent über den Herzkammern auf den zweiten Ton fällt, so ist es wahrscheinlich, dass dieser zweite Ton nicht in den Ventrikeln gebildet wird, sondern sich an den Klappen

der Aorta oder Pulmonalarterie erzeugt, und wegen seiner Intensität auch in einiger Entfernung hörbar ist.

Der erste und zweite Ton kann über den Ventrikeln und auch über den Arterien eine gleiche Länge haben, so dass der Accent weder auf den einen, noch auf den andern fällt. Die Pause zwischen dem zweiten Tone, und dem neuen ersten ist bedeutend länger, als die Pause zwischen dem ersten und zweiten Tone. Die letztere ist zuweilen so kurz, dass der zweite Ton über den Ventrikeln gleichsam das accentuirte Ende des ersten Tones, und der erste Ton über den Arterien gleichsam nur ein Vorschlag des zweiten Tones scheint. In andern Fällen ist aber die Pause zwischen dem ersten und zweiten Tone fast eben so lang, oder genau so lang, als die Pause zwischen dem zweiten Tone und dem neuen ersten. Es ist diess besonders bei beschleunigter Herzbewegung der Fall. Diese Verschiedenheiten haben keine besondere Bedeutung.

Lännec hielt es für ein Zeichen von Erweiterung des Herzens mit Verdünnung der Wandungen, wenn der erste Ton über den Ventrikeln hell und dem zweiten Tone ähnlich war, und wenn er sich weithin am Brustkorbe hören liess. Die entgegengesetzte Beschaffenheit des ersten Tones dagegen, wenn dieser nämlich sehr dumpf, schwach, oder gar nicht hörbar war, galt ihm für ein Zeichen von Hypertrophie des Herzens. — Es ist schwer, unter sehr vielen Fällen nur einen aussindig zu machen, der sich zu Gunsten dieser Ansicht auslegen liesse.

B. Über die Geräusche.

Die von den Herzbewegungen abhängenden Geräusche entstehen entweder innerhalb der Herzhöhlen, innerhalb der Arterien oder in deren Häuten, oder sie entstehen am Pericardium. §. 1. Von den Geräuschen, die innerhalb der Herzhöhlen entstehen.

Diese sind: das Blasebalg-Schabe-Säge-Feilen-Rasspel-Spinnrad-Geräusch, das pfeifende, das stöhnende Geräusch etc. Lännec glaubte nach seinen Beobachtungen
annehmen zu müssen, dass diese Geräusche an keine organische Veränderung des Herzens gebunden, und einzig und
allein das Produkt eines Krampfes sind. Diese Ansicht blieb
lange die herrschende. Man wollte endlich die physikalische
Bedingung der Geräusche erfahren, und indem man in dieser
Beziehung die Erfahrung zu Rathe zog, fand man in den meisten Fällen, wo derlei Geräusche beobachtet wurden, solche
organische Veränderungen am Herzen, aus denen die Entstehung der Geräusche sich leicht begreifen lässt.

Gegenwärtig ist man allgemein der Ansicht, dass die Geräusche innerhalb der Ventrikel durch Reibung des Blutes an den Kammerwandungen oder Klappen entstehen. Ich glaube hinzufügen zu müssen, dass Geräusche innerhalb der Herzhöhlen auch durch das schnellere Einströmen eines kleinen Blutstromes in eine ruhende, oder langsamer, oder entgegengesetzt bewegte Blutmasse entstehen können. Dass ein kleiner Strom einer Flüssigkeit, wenn er schnell in eine ruhende Flüssigkeit getrieben wird, ein Geräusch erzeugt, davon kann man sich durch direkte Versuche mit Wasser, Blut etc. überzeugen.

Die organischen Veränderungen am Herzen, die zu Geräuschen innerhalb der Herzhöhlen Veranlassung geben, sind:

- 1. Insufficienz der zwei und dreispitzigen Klappe, oder der Aortaklappen.
- 2. Verengerung des linken Ostium venosum, oder der Aortamündung.
- 3. Rauhigkeiten Exkrescenzen, Knorpel-Kalk- und Knochenkonkremente, Blutcoagula am Endocardium gegen die Arterienmündung hin, an den untern Flächen der

Semilunarklappen der Aorta oder Pulmonalarterie, oder an der dem Vorhofe zugekehrten Fläche der zwei- und dreispitzigen Klappe. Exkrescenzen, Knorpel- und Kalkkonkremente, Blutcoagula etc., die sich in der untern Hälfte der Herzkammern befinden, geben zu keinem Geräusche Veranlassung, weil der Blutstrom daselbst keine hinreichende Geschwindigkeit hat.

Bouillaud will Geräusche in einigen Fällen beobachtet haben, wo nichts vorhanden war, als Hypertrophie mit Dilatation des linken Ventrikels, oder eine engere Aortamündung. Ich könnte mit Gewissheit keinen ähnlichen Fall antühren.

Andral glaubt, dass bei allgemeiner Plethora Geräusche in den Herzhöhlen entstehen können, und will dieselben dadurch erklären, dass die Herzhöhlen im Verhältnisse zu der Blutmenge, die in einer bestimmten Zeit durch dieselben gehen müsse, zu klein seyen. Ich habe ein auf diese Weise entstandenes Geräusch nie beobachtet, und kann die Ansicht Andral's nicht theilen, indem, wie ich glaube, der Durchgang des Blutes durch die Herzhöhlen nicht vom Blute, sondern von der Thätigkeit des Herzens abhängt.

Nach grossem Blutverluste, und überhaupt bei Blutmangel sollen in den Herzhöhlen Geräusche entstehen, wenn die Herzthätigkeit lebhaft ist. Ich habe sehr oft Kranke untersucht, bei denen theils in Folge von Blutentziehungen, theils in Folge von Krankheiten, ein nicht zu verkennender Blutmangel eingetreten, und die Thätigkeit des Herzens sehr lebhaft war, ich glaube auch Kranke untersucht zu haben, die in Folge des Blutmangels gestorben sind; ich habe aber noch nie einen Fall gefunden, wo ein Geräusch innerhalb der Herzhöhlen bloss durch Blutmangel bedingt gewesen wäre. Derlei Fälle müssen zu den Seltenheiten gerechnet werden.

Bei Chlorotischen finde ich die Geräusche gleichfalls nicht im Herzen, sondern gewöhnlich nur in den Halsarterien. In der Aorta ist das Geräuch bei Chlorotischen, wenn nicht organische Veränderungen dieses Gefässtheiles demselben zum Grunde liegen, nur selten laut, und dann kann man es bisweilen auch über dem Herzen, wiewohl nur dumpf vernehmen.

Ich habe bisher keinen Grund zu glauben, dass es von Nutzen sey, die verschiedenen Geräusche genau von einander unterscheiden zu lernen. Ich glaube vielmehr gefunden zu haben, dass es rücksichtlich des Schlusses, den man aus dem Beobachteten machen kann, gleichgültig sey, ob man ein Blasebalg- Säge- oder Raspelgeräusch hört. Nicht selten findet man bei einem und demselben Kranken in einem Momente ein Blasebalggeräusch, und in dem nächsten, wenn die Herzbewegung energischer wird, ein Säge- oder Raspelgeräuch, und umgekehrt. Überhaupt werden sowohl die Geräusche innerhalb der Herzhöhlen, als auch die Geräusche der Arterien bei grösserer Heftigkeit der Herzbewegungen nicht bloss lauter, sondern sie erleiden noch andere Veränderungen; sie werden rauher, schärfer, höher, wogegen bei schwacher Herzbewegung das Gegentheil eintritt, so dass man zuletzt bloss einen dumpfen, ganz undeutlichen Schall, oder ganz und gar nichts vernimmt. Nicht selten ist es ganz willkürlich, wie man ein Geräusch benennt, und wenn mehrere ein und dasselbe Geräusch auskultiren, so hat es für den einen die meiste Ähnlichkeit mit dem Geräusche des Feilens, für den andern mit dem Geräusche des Sägens, für einen dritten mit dem Geräusche des Spinnrades etc. Wichtig ist es aber zu wissen, ob das Geräusch im linken oder rechten Ventrikel entsteht, und ob es mit der Systole oder mit der Diastole zusammenfällt; denn nach diesen Umständen richtet sich die Bedeutung des Geräusches.

S. 2. Von den Geräuschen, die in den Arterien entstehen.

In der Aorta können alle Arten von Geräuschen entstehen, welche innerhalb der Ventrikel vorkommen. Sie entstehen in der Aorta, wenn die innere Membran dieses Gefässes mit Rauhigkeiten — Exkrescenzen, Knorpel- Kalkkonkrementen etc. — besetzt ist; die Aorta kann dabei eine normale Weite haben, verengert, oder erweitert seyn. An den Aortaklappen entstehen Geräusche, wenn die untere Fläche derselben rauh ist, wenn sich an deren freiem Rande Exkrescenzen etc. befinden, wenn diese Klappen rigid, oder mit einander verwachsen sind, so dass sie sich von dem aus den Ventrikeln eingetriebenen Blute nicht gegen die Wand der Arterie drängen lassen, und wenn die Klappen insufficient sind.

In der Pulmonalarterie kommen Geräusche nur sehr selten vor. Am häufigsten findet man Geräusche in der Subclavia und Carotis. Diese Arterien geben nicht bloss dann Geräusche, wenn die innere Haut derselben rauh ist, sondern auch bei ganz normaler Beschaffenheit aller ihrer Häute.

Bei Chlorotischen findet sich konstant, gewöhnlich an beiden Seiten des Halses, ein mit dem Pulsiren der Carotis und Subclavia zusammenhängendes Geräusch. Es zeigt bei verschiedenen Individuen, und bei einem und demselben Individuum die grössten Verschiedenheiten. Es ist entweder intermittirend, indem es nicht von einer Pulsation zur andern anhält, oder aber es ist kontinuirlich, und wird mit jeder Pulsation verstärkt. Es ist entweder ein blasendes Geräusch, oder es gleicht dem Summen der Fliegen etc. und ahmt überhaupt die Geräusche nach, welche die Luft macht, wenn sie durch enge Spalten getrieben wird. Die verschiedene Haltung des Kopfes, die Spannung der Halsmuskeln, der Grad des Druckes, den man beim Auskultiren mit dem Stethoskope auf die Arterie ausübt, ändern das Geräusch mannigfaltig. Wenn man es bei einer Chlorotischen auf einer Seite des Halses nicht findet, so darf man nur den Kopf stärker auf die entgegengesetzte Seite halten lassen, und das Geräusch erscheint fast jedesmal augenblicklich.

Das anhaltende Geräusch an den Halsarterien wird von Bouillaud bruit de diable — Kreiselgeräusch, Nonnengeräusch — genannt, wenn es mit dem Schallen dieses Spielzeuges Ähnlichkeit hat. Lännec hob besonders das musikalische Pfeifen, oder den Gesang der Arterien hervor, der in nichts anderem, als in einem pfeifenden Geräusche besteht, dessen Höhe — wie fast bei jedem Geräusche in den Halsarterien — rhythmisch mit den Pulsationen der Arterie steigt und fällt. Es ist allerdings überraschend, die mannigfaltigsten, nicht selten sehr starken Geräusche in den Arterien zu hören; aber es hat keinen Nutzen, wenn man diese Geräusche weiter eintheilen wollte. In der Aorta findet man bei Chlorotischen nur selten ein stärkeres Geräusch, wenn nicht eine organische Veränderung demselben zum Grunde liegt.

Ausser der Chlorosis gibt es noch andere krankhafte Zustände des Organismus, in denen sich in der Subclavia und Carotis stärkere Geräusche hören lassen. Man will gefunden haben, dass sämmtliche krankhafte Zustände, in denen diese Erscheinung statt hat, darin übereinstimmen, dass das Blut entweder in zu geringer Menge vorhanden, oder zu wässrig sey. Diese Ansicht ist bisher nur wahrscheinlich, keineswegs aber vollkommen begründet.

Bei Hypertrophie mit Dilatation beider Ventrikel, insbesonders aber bei Insufficienz der Aortaklappen, hört man gleichzeitig mit jeder Kammersystole, also gleichzeitig mit der Pulsation der Arterie an der Subclavia oder auch an der Carotis ein starkes, rauhes Säge-Raspel- oder stöhnendes Geräusch, auch wenn die innere Haut dieser Arterien ganz glatt ist. In seltenen Fällen lässt sich bei Insufficienz der Aortaklappen, und noch mehr bei Aneurysmen der Aorta auch während der Kammerdiastole ein Geräusch in der Subclavia und Carotis vernehmen.

Bei sehr vielen ganz gesunden Menschen entsteht bei verstärkter Herzthätigkeit, insbesondere aber bei gleichzeitiger Anspannung der Halsmuskeln in der Carotis und Subclavia ein Blasen.

In den übrigen Arterien erscheinen die Geräusche viel seltener als in der Subclavia und Carotis. Je weiter entfernt vom Herzen, und je enger die Arterie ist, desto seltener findet sich darin ein Geräusch. Rauhigkeiten an der inneren Haut der Arterien verursachen gewöhnlich, besonders in den grössern Arterien, Geräusche. Bei Erweiterung einer Arterie wird die innere Haut derselben nicht selten rauh, und diess bedingt das Erscheinen von Geräuschen in erweiterten Arterien. Bei etwas grössern Aneurysmen scheint überdiess das Eindringen eines Blutstromes in eine grössere Blutmasse zur Erzeugung des Geräusches beitragen zu können.

Wenn eine nicht ganz kleine Arterie mit einer Vene kommunicirt, so entsteht an der Einmündungsstelle ein gewöhnlich sehr starkes kontinuirliches Geräusch, das sich mit jeder Pulsation der Arterie verstärkt, und auf eine mehr weniger grosse Entfernung in der Umgebung seiner Entstehungsstelle hörbar ist. Dieses Geräusch entsteht theils durch Reibung innerhalb des kommunicirenden Kanals, theils durch den Stoss des aus der Arterie gegen das Blut in der Vene getriebenen Blutstromes.

Bouillaud gibt an, dass beim Andrücken mit dem Stethoskope die Pulsation einer jeden etwas grössern Arterie ein kurzes dumpfes Blasen verursache. Ich habe dieses oft, aber nicht immer beobachtet, und man kann zuweilen selbst beim Andrücken gegen die starkpulsirende Bauchaorta kein Blasen hören. In manchen Fällen dagegen erhält man fast an allen Arterien auch in den kleinern—, wie in der Radialis—, bei dem leichtesten Drucke ein Blasen.

Einmal habe ich in der Vena subclavia ein dumpfes Geräusch gehört. Die Vene war sehr ausgedehnt, und pulsirte gleichzeitig mit der Diastole der Kammern so heftig, dass man ihre Pulsationen mit den Fingern sehr stark, und fast so, wie die einer Arterie, empfand.

Über die Ursache jener Geräusche in den Arterien, die nicht durch Rauhigkeiten an der innern Haut, oder durch das Eindringen eines Blutstromes in eine grössere, weniger oder anders bewegte Blutmasse bedingt sind, lässt sich bis jetzt nichts mit Gewissheit sagen. Ich glaube, dass manche Geräusche in der Carotis und Subclavia durch Schwingungen der Häute dieser Arterie entstehen, in welche dieselben durch

den Stoss des eingetriebenen Blutes versetzt werden. Es ist mir diess insbesonders von den Geräuschen wahrscheinlich, welche dem Summen der Fliegen etc. gleichen. Andere Geräusche dagegen, insbesondere das Blasen, lassen sich kaum anders, als durch eine Reibung entstanden, begreifen, deren Grund jedoch eben so, wie der des von mir angenommenen Vibrirens der Arterienhäute bis jetzt nicht genauer bekannt ist.

Warum die Geräusche sich ohne Vergleich häufiger in der Subclavia und Carotis hören lassen, als in den übrigen Arterien, darüber lässt sich für jetzt auch nichts Bestimmtes sagen. Bouillaud schreibt es der Nähe des Larynx zu. Er stellt sich den Larynx als einen Resonanzkasten vor, und gibt an, mehrmals die Erfahrung gemacht zu haben, dass das Geräusch sogleich verschwand, wenn man den Larynx etwas zur Seite schob. - Man hört aber die Geräusche nicht im Larynx, und zudem kann in einem Resonanzkasten ein Geräusch wohl verstärkt werden, der Resonanzkasten kann jedoch als solcher keinen Grund abgeben, dass in seiner Nähe ein Geräusch zu Stande kommt. Ich glaube, dass diese Erscheinung darin ihren Grund haben könnte, dass sich die Blutmasse am Bogen der Aorta in mehrere Ströme theilt, und dass der Stoss des Blutstromes auf die Subclavia und Carotis wegen der Nähe des Herzens heftiger wirkt, als auf die entferntern Arterien.

Zu den Geräuschen, die in Arterien entstehen, gehört auch das Placentargeräusch. Es wird bekanntlich in den letzten Monaten der Schwangerschaft, nicht bei allen, doch bei vielen Individuen gehört. Man vernimmt es entweder bloss an einer Stelle über dem Uterus, oder aber an mehreren Stellen; es erscheint am häufigsten an den Seitentheilen; doch kommt es auch über der Mitte, und überhaupt an jeder Stelle über dem Uterus vor. Es ist synchronisch mit dem Pulse der Mutter, und kann alle Varietäten des Geräusches an den Halsarterien bei Chlorotischen — vielleicht mit Ausnahme des musikalischen Pfeifens — zeigen. Es steht keineswegs, wie

man anfangs glaubte, und woher auch der Name kommt, mit der Anheftungsstelle der Placenta im Zusammenhange.

Bouillaud will es durchaus nur von dem Drucke des schwangern Uterus auf die Iliaca externa und Hypogastrica ableiten. Ich zweißle nicht, dass durch den Druck des Uterus auf die genannten Arterien das Placentargeräusch entstehen kann; ich bin aber überzeugt, dass es auch in den Arterien des Uterus selbst entsteht. Man findet Fälle, wo man das Placentargeräusch nur über der Mittellinie des Uterus und keineswegs an den Seitengegenden desselben hört. Die Feinheit und Zartheit des Geräusches, wie es zuweilen vorkommt, ferner seine Beschränkung auf einen sehr kleinen Umfang in manchen Fällen widerspricht ebenfalls der Ansicht, dass dieses Geräusch nur durch Druck auf die grössern Arterien im Becken erzeugt werde.

S. 3. Über die Geräusche, die am Pericardium entstehen.

Wenn die innere Fläche des Herzbeutels durch plastisches Exsudat, Tuberkeln, Knorpel - oder Kalkkonkremente etc. rauh geworden ist, so entsteht, wenn sich eine solche rauhe Stelle während der Herzbewegungen reibt, ein Geräusch, das die Herzbewegungen begleitet. Es ist entweder sowohl während der Systole, als während der Diastole der Kammern vorhanden; oder es lässt sich nur während der Systole, oder nur während der Diastole hören.

Lännec kannte dieses Geräusch noch nicht, und er berücksichtigte es fast gar nicht, nachdem Doktor Collin eine Art desselben, das Neuledergeräusch, als ein Zeichen der Pericarditis aufgestellt hatte. Professor Bouillaud unterscheidet drei Arten des Reibungsgeräusches am Pericardium; nämlich das Geräusch des Anstreifens — bruit de frölement —; das Geräusch des neuen Leders — bruit de cuir neuf, bruit de tiraillement et de craquement —; und das Geräusch des Kratzens — bruit de raclement —.

Das erstere — bruit de frôlement — hat nach Bouilland die grösste Ähnlichkeit mit dem Reibungsgeräusche der Pleura, und man kann sich dasselbe durch Knittern von Taffet oder Pergament versinnlichen. Es soll stets die Kammersystole und die Diastole begleiten, aber während der erstern stärker seyn. Es soll ferner, falls die Reibung stärker wird, ziemlich genau das Raspel- oder Sägegeräusch, das bei gewissen organischen Veränderungen im Innern des Herzens vor sich geht, nachahmen, und von diesem sich nur dadurch unterscheiden, dass es ganz oberstächlich, disfus, und mehr ausgebreitet ist.

Das zartere Reibungsgeräusch soll statt haben, wenn die entgegengesetzten Blätter des Pericardiums trocken und etwas klebrig, aber noch nicht mit falschen Membranen überzogen sind, oder sich erst damit zu bedecken anfangen, wie es bei beginnender Pericarditis geschieht. Das oberflächliche Raspel- oder Sägegeräusch aber soll sich einfinden, wenn sich bereits dicke und unebene Pseudomembranen gebildet haben.

Das Neuledergeräusch soll unendlich seltener erscheinen, als das Geräusch des Anstreisens oder Rauschens, und zwar nur in den Fällen, wenn die Pseudomembranen dicht, resistent und elastisch sind, vielleicht auch zum Theil Adhärenzen bestehen, die einer fortwährenden Zerrung durch die Herzbewegungen ausgesetzt sind. Das Geräusch des Kratzens endlich soll die Folge von knöchernen oder kalkartigen oder fibrös-knorpligen Konkrementen oder Flecken seyn, die während der Herzbewegungen sich an einander, oder gegen einen andern Theil des Perikardiums reiben —.

Man findet allerdings alle die beschriebenen Arten des Reibungsgeräusches am Perikardium; man findet aber noch mehrere, und ich glaube die Erfahrung gemacht zu haben, dass das Reibungsgeräusch am Perikardium alle Arten von Geräuschen, die im Innern des Herzens entstehen können, mit Ausnahme des pfeifenden Geräusches, nachahmen kann, und dass im Gegentheil im Innern des Herzens alle Variationen des Reibungsgeräusches am Perikardium vorkommen können.

Nach meiner Ansicht lässt sich das Reibungsgeräusch am Perikardium von einem Geräusche innerhalb des Herzens nicht dadurch unterscheiden, dass das erstere oberstächlicher, ausgebreiteter, und dissuser ist, als das letztere. Ein Geräusch, das wir nicht aus der Lust, sondern aus einem sesten Körper hören, scheint uns oberstächlich, wenn es stark und hell ist, und es erscheint entsernt, wenn es die entgegengesetzten Eigenschaften hat. Die Geräusche innerhalb des Herzens können ungemein laut, hell und hoch — zischend — seyn, und erscheinen aus diesem Grunde ganz oberstächlich; solche Geräusche können serner über der ganzen Herzgegend und weiterhin gehört werden; indess ein Reibungsgeräusch am Pericardium zuweilen ganz schwach und dumpf ist, und darum aus der Ferne zu kommen scheint. Wie wird endlich das Reibungsgeräusch des Pericardiums erscheinen, das nicht vor, sondern hinter dem Herzen entsteht?

Ich kann für die Unterscheidung eines Reibungsgeräusches am Pericardium von einem Geräusche innerhalb der Herzhöhlen kein anderes Zeichen angeben, als dass die Geräusche innerhalb der Herzhöhlen genau dem Rhythmus des Herzstosses und der Herztöne entsprechen, das Reibungsgeräusch am Pericardium aber sich den Herzbewegungen gleichsam nachzuschleppen scheint. Man kann diesen Unterschied nur dann bemerken, wenn das Geräusch nicht ganz kurz ist; im letztern Falle bleibt es für mich unentschieden, ob das Geräusch am Pericardium, oder innerhalb der Herzhöhlen entsteht.

Ich bin ferner nicht der Ansicht, dass am Pericardium ein Geräusch entstehen kann, so lange noch kein plastisches Exsudat dasselbe überzieht, so lange überhaupt keine rauhe Stelle am Pericardium sich gebildet hat; ich habe wenigstens nie einen solchen Fall gefunden. Die Pseudomembran kann sehr dick, fest, uneben und elastisch seyn, und es können sich bereits Adhärenzen gebildet haben, ohne dass man ein anderes Geräusch hört, als das eines leichten Anstreifens oder Schabens, das von Blasen gar nicht viel, oder gar nicht verschieden ist. Das Pericardium kann auch mit rauhen dicken Pseudomembranen ganz überzogen seyn, und man bemerkt, obgleich die Menge des serösen Exsudates nicht beträchtlich ist, gar kein Rei-

bungsgeräusch, weil die Herzbewegungen zu schwach sind. Die Stärke des Reibungsgeräusches und die Rauhigkeit desselben hängt nicht bloss von der Beschaffenheit der Pseudomembranen, sondern auch von der Stärke der Herzbewegungen ab.

Ich habe schon mehrmal ein Reibungsgeräusch beobachtet, das nicht durch Rauhigkeiten innerhalb des Pericardiums, sondern durch Rauhigkeiten an dem äussern, von der Pleura kommenden Überzuge des freien Blattes des Herzbeutels bedingt war. Solche rauhe Stellen reiben sich, indem das freie Blatt des Herzbeutels durch das Herz bewegt wird, entweder an der Brustwand, oder an der Obersläche der Lunge, und bringen so ein mit den Herzbewegungen eben so synchronisches Geräusch hervor, als wenn die Rauhigkeit innerhalb des Herzbeutels befindlich ist. Das Geräusch, das äusserlich am Pericardium entsteht, unterscheidet sich durch nichts von jenem, das innerhalb des Pericardiums sich bildet. Ich habe anfangs geglaubt, dass das äusserlich am Pericardium entstehende Reibungsgeräusch sich von dem innerhalb des Pericardiums entstandenen dadurch unterscheiden lasse, dass das erstere durch die Athmungsbewegungen modificirt-bald verstärkt, bald vermindert - werde. Ich habe aber bald gefunden, dass auch das innerhalb des Pericardiums stattfindende Reibungsgeräusch nicht selten durch die Athmungsbewegungen verstärkt oder vermindert wird.

Das durch Rauhigkeiten an der äussern Fläche des Pericardiums bedingte und mit den Herzbewegungen synchronische Reibungsgeräusch wird, so viel mir bekannt ist, bisher nur von Stokes erwähnt. — Stokes Abhandlung über die Brustkrankheiten übersetzt von Gerhard von dem Busch, Bremen 1838. Pag. 724 —.

C. Regeln zur Auffindung und Bestimmung der Töne und Geräusche im Herzen, am Pericardium, in der Aorta und Pulmonalarterie.

1) Man auskultire an allen Stellen der ganzen Herzgegend, und an den Stellen der Brust, welche dem Verlaufe der Aorta und Pulmonalarterie entsprechen. Die Untersuchung gibt entweder an allen diesen Stellen das Tik-Tak, und man hört nirgends ein Geräusch, das mit den Herzbewegungen synchronisch wäre, oder man hört das Tik-Tak nicht an allen den genannten Stellen, aber auch kein Geräusch dafür, oder endlich, man hört nur an einigen Stellen oder nirgends das Tik-Tak, statt dessen aber an einer oder an mehreren, oder an allen Stellen ein oder mehrere Geräusche.

2) Die Töne sowohl, als die Geräusche werden stets an jenen Stellen des Thorax, welche der Erzeugungsstelle des Tones oder Geräusches am nächsten gelegen sind, am deutlichsten und stärksten gehört; die Fälle abgerechnet, wo der Ton oder das Geräusch sich durch Resonanz verstärkt, oder durch verminderte Schallleitung gedämpft wird. Durch Resonanz verstärken sich die Herztöne und Geräusche nur in einer nahe liegenden, lufthältigen, grössern Exkavation, oder bei Pneumothorax; durch verminderte Schallleitung werden dieselben gedämpst, wenn zwischen dem Herzen und der Brustwand ein Lungentheil, ein Exsudat etc. sich befindet. Man muss daher mit Berücksichtigung des eben Gesagten die Töne und Geräusche, die sich am deutlichsten an der Stelle des Thorax, wo die Herzspitze anstösst, hören lassen, der linken Kammer zuschreiben; die Töne und Geräusche, die am deutlichsten an der, der rechten Kammer entsprechenden Stelle des Thorax, also gewöhnlich am untern Theile des Brustbeines vernehmbar sind, wird man im rechten Ventrikel annehmen; die Töne und Geräusche, die nach dem Verlaufe der aufsteigenden Aorta, also etwas nach rechts von der Mitte des Brustbeines, und von da nach aufwärts am stärksten gehört werden, entstehen in der Aorta; die Tone, die man am deutlichsten nach dem Verlaufe der Pulmonalarterie, also links von der Mitte des Brustbeines hört, werden in der Pulmonalarterie gebildet; wobei jedoch zu erwägen ist, dass an allen den genannten Stellen auch im Pericardium Geräusche erzeugt werden können.

Unter den hier bezeichneten Punkten lässt sich die Stelle des linken Ventrikels in der bei weitem grössten Zahl von Fällen am leichtesten mit Sicherheit determiniren. Die am meisten nach links gelegene Stelle der Brustwand, an welcher man mittelst der Fingerspitzen das Anstossen des Herzens — nicht etwa bloss die der Brustwand mitgetheilte Erschütterung, die sich weit über den Ort des Anstosses verbreiten kann — fühlt, muss darum als fixer Punkt zur Bestimmung der übrigen Stellen dienen. Diese Stelle entspricht nur dann dem linken Ventrikel nicht, wenn eine sehr grosse Dilatation des rechten mit Verkleinerung des linken Ventrikels verbunden vorkommt.

Die aufsteigende Aorta liegt immer vor der Wirbelsäule etwas nach rechts. Man wird darum ihre Töne und Geräusche jedesmal etwas nach rechts und über der Mitte des Brustbeines suchen müssen. Die Basis des Herzens — also auch die Klappen der Aorta und Pulmonalarterie — liegt fast immer unter der Mitte des Brustbeines, und rückt nur bei Hypertrophie mit Dilatation des Herzens tiefer herab. Die Stelle des rechten Ventrikels ist veränderlich, hat für sich kein Kennzeichen, und kann darum immer nur erst nach Bestimmung der Stelle des linken Ventrikels und der Aorta erkannt werden. Dasselbe gilt von der Stelle, wo man die Pulmonalarterie auskultirt.

3) Da an allen den genannten Stellen nicht bloss die Geräusche aus dem Herzen und den Arterien, sondern auch jene gehört werden können, die am Pericardium entstehen, so ist es, wenn man ein Geräusch hört, vor allem nothwendig, dass man zu bestimmen sucht, ob dasselbe am Pericardium, oder im Innern des Herzens oder der Arterien entstehe. Ist die Dauer des Geräusches zu kurz, oder sind die Herzbewegungen dem Gefühle zu undeutlich, oder so unregelmässig, dass man nach dem oben angegebenen Kriterium diese Unterscheidung nicht machen kann, so lässt sich der Ursprung des Geräusches häufig noch durch Vergleichung aller Zeichen, wo nicht mit voller Gewissheit, doch mit grosser Wahrscheinlichkeit ermitteln. Die Geräusche im Innern des Herzens und der Aorta sind nämlich durch Veränderungen der innern Aus-

kleidung dieser Organe, insbesonders aber durch Veränderungen an den Klappen bedingt, welche Veränderungen wegen ihres Einflusses auf die Cirkulation und wegen der Folgen, die dadurch im Herzen und der Aorta auftreten, gewöhnlich noch durch andere Zeichen, als durch die Geräusche erkennbar sind. Das plastische Exsudat dagegen, das zu Geräuschen am Pericardium Veranlassung gibt, ist sehr häufig mit serösem Exsudate in einer solchen Quantität vergesellschaftet, dass sich dieses durch den Perkussionsschall erkennen lässt.

- 4) Wenn man sich auf irgend eine Art überzeugt hat, dass das Geräusch am Pericardium entsteht, so frägt es sich, ob es innerhalb des Pericardiums statt findet, oder aber an der Aussenfläche desselben erzeugt wird; ob also die krankhafte Veränderung, die dasselbe bedingt, innerhalb oder ausserhalb des Pericardiums sich befindet. Aus dem Geräusche selbst lässt sich diess, wie bereits angegeben wurde, nicht entscheiden; und man muss die Zeichen aus der Perkussion und die Lage des Herzens dabei zu Rathe ziehen. Zeigt die Perkussion ein Exsudat in der Gegend des Herzens, und ist dabei das Herz aus seiner Lage nicht verdrängt, so ist das Exsudat innerhalb des Herzbeutels, und dann ist es ebenfalls sehr wahrscheinlich, dass das Geräusch innerhalb des Herz-. beutels zu Stande kommt. Ist dagegen bei konstatirtem Exsudate in der Herzgegend das Herz aus seiner Lage gedrängt, so ist das Exsudat ausserhalb des Herzbeutels - in der Pleura - und das Geräusch entsteht sehr wahrscheinlich an der Aussenfläche des Herzbeutels. Zeigt die Perkussion kein Exsudat an, so bleibt es völlig unentschieden, ob die krankhafte Veränderung innerhalb oder ausserhalb des Herzbeutels besteht.
- 5) Hat man das Geräusch, als im Innern des Herzens oder der Aorta entstanden, konstatirt, und auch schon bestimmt, in welcher Gegend es am stärksten gehört wird, so frägt es sich, falls man es in einer grössern Ausdehnung hört, ob es an einer Stelle allein, oder aber an mehreren

Stellen zugleich erzeugt wird. Diese Frage lässt sich nur durch Vergleichung aller übrigen Zeichen beantworten. Zu den Geräuschen geben nämlich, wie bereits erwähnt, Veränderungen der Auskleidung der Herzhöhlen und der Aorta, insbesondere aber Veränderungen an den Klappen Veranlassung, durch welche Veränderungen bestimmte Störungen in der Cirkulation verursacht werden. Die Störungen in der Cirkulation rufen verschiedene Erscheinungen hervor, und haben häufig Abnormitäten in Form, Grösse, Ernährung etc. des Herzens zur Folge, welche wieder ihre Zeichen haben, so dass sich ein Zeichen durch das andere kontrolliren lässt, und erst aus der Vergleichung aller das richtige Resultat hervorgeht.

6. Nach der genauen Bestimmung des Ortes, wo der Ton oder das Geräusch erzeugt wird, bleibt noch zu erforschen, ob der Ton oder das Geräusch mit der Systole, oder mit der Diastole des Herzens synchronisch sey. Diess ergibt sich häufig schon aus dem Rhythmus der Töne oder Geräusche; denn die Pause zwischen dem zweiten Tone oder Geräusche und dem neuen ersten ist in der Regel länger, als die Pause zwischen dem ersten und zweiten Tone oder Geräusche. Der im Auskultiren weniger Geübte thut jedoch gut, wenn er beim Auskultiren zugleich mit den Fingern den Herzstoss untersucht. Der Ton oder das Geräusch, welches synchronisch mit dem Herzstosse ist, ist das mit der Systole des Herzens zusammenfallende — das erste — der Ton oder das Geräusch, welches nach dem Herzstosse gehört wird, ist mit dem Beginne der Diastole synchronisch - das zweite -. Das gleichzeitige Auskultiren der Töne oder Geräusche und Befühlen des Herzstosses ist hauptsächlich bei Untersuchung der Töne oder Geräusche in der Aorta und Pulmonalarterie nöthig. Man findet übrigens nicht selten eine so grosse Unregelmässigkeit im Rhythmus der Herzbewegungen, dass selbst der Geübteste aus dem Rhythmus der Töne und Geräusche nicht entnehmen kann, welcher Ton oder welches Geräusch das erste oder zweite ist, und dass er nothwendiger Weise dabei den Herzstoss zu Rathe ziehen muss. Dasselbe ist der Fall, wenn sich nur ein Ton oder nur ein Geräusch hören lässt.

- D. Bedeutung der Töne und Geräusche in den Kammern, in der Aorta und Pulmonalarterie.
- 1. a. In der linken Kammer während der Systole:
- a. Ton ohne Geräusch erster Ton bedeutet, dass die zweispitzige Klappe schliesst, also den Rücksluss des Blutes aus der linken Kammer in die linke Vorkammer hemmt.
- β. Geräusch allein erstes Geräusch bedeutet entweder das unvollkommene Schliessen der zweispitzigen Klappe, wird also durch Reibung des während der Kammersystole durch die Klappe in den linken Vorhof zurückgetriebenen Blutes an einer rauhen Stelle des Klappenrandes, oder durch das schnelle Eindringen eines Blutstromes aus dem linken Ventrikel in das in entgegengesetzter Richtung gedrängte Blut des linken Vorhofes verursacht; oder es entsteht durch Reibung des Blutes an rauhen, gegen das Ostium arteriosum gelegenen, Stellen der innern Auskleidung des linken Ventrikels, wobei die zweispitzige Klappe vollkommen schliessen kann; oder es entsteht durch die erste und zweite Ursache zugleich.

Wenn die zweispitzige Klappe nicht schliesst, so wird mit jeder Systole aus dem linken Ventrikel etwas Blut in den linken Vorhof zurückgetrieben. In ganz kurzer Zeit entsteht dadurch Überfüllung mit Blut und grössere Ausdehnung des linken Vorhofes, der Pulmonalvenen und der Pulmonalarterien, und das rechte Herz muss grössere Anstrengungen machen, um in die überfüllten Gefässe das Blut einzutreiben. Die stark gespannte Pulmonalarterie drückt mit vermehrter Kraft auf die enthaltene Blutsäule, und treibt dieselhe plötzlicher und stärker gegen die Semilunarklappen während der

Diastole des Herzens, wodurch der zweite Ton in der Pulmonalarterie lauter wird. Man wird demnach aus einem während der Systole im linken Ventrikel gehörten Geräusche nur dann auf Insufficienz der zweispitzigen Klappe schliessen, wenn dabei der zweite Ton in der Pulmonalarterie verstärkt erscheint. Ist der zweite Ton der Pulmonalarterie nicht verstärkt, so bedeutet das während der Systole im linken Ventrikel hörbare Geräusch Rauhigkeiten an der Klappenfläche, oder an der innern Auskleidung des Ventrikels gegen das Ostium arteriosum hin. Der Blutstrom erhält nämlich erst in dieser Gegend die Geschwindigkeit, dass die Reibung ein Geräusch verursacht, während alle Rauhigkeiten an der Spitze und gegen die Mitte des Ventrikels kein Geräusch verursachen.

Die Insufficienz der zweispitzigen Klappe bringt nur in sehr seltenen Fällen keine Verstärkung des zweiten Tones der Pulmonalarterie hervor. Ich glaube, dass diess nur dann statt haben kann, wenn die Häute der Pulmonalarterie ihre Elasticität verloren haben, und sich nach jeder Extension nicht plötzlich kontrahiren. —

Bei Entzündung der Auskleidung des linken Ventrikels — Endocarditis — findet sich ein Geräusch in diesem Ventrikel während der Kammersystole, wenn entweder durch Anschwellung des freien Randes der Bicuspidalis, oder durch Verlängerung oder Verkürzung der sehnigen Fäden, oder durch Exkrescenzen an den Fäden oder an der Klappe, oder durch Ablagerung von Faserstoff aus dem Blute, die Klappe insufficient geworden, oder aber, wenn sich Rauhigkeiten gegen das Ostium arteriosum hin gebildet haben. Ein Geräusch während der Systole im linken Ventrikel bedeutet demnach nur dann Endocarditis, wenn es im Gefolge von Funktionsstörungen erscheint, welche die Endocarditis zu begleiten pflegen, und wenn es vor diesen Funktionsstörungen nicht vorhanden war.

γ. Ton und Geräusch ist gleichbedeutend mit Geräusch ohne Ton. Es kann nämlich der Ton durch das vollständige Schliessen der Klappe, und das Geräusch durch rauhe Stellen gegen das Ostium arteriosum hin bedingt seyn; oder es entsteht der Ton durch Aufblähung einiger normal gebliebenen Taschen der Bicuspidalis, während der übrige durch Krankheit veränderte Klappenrand das vollkommene Schliessen unmöglich macht, folglich zu einem Geräusche Veranlassung gibt; oder es könnte der Herzstoss einen Ton, die Insufficienz der zweispitzigen Klappe aber das Geräusch geben.

δ. Fehlen des Tones sowohl als eines Geräusches ist eine rücksichtlich der Bestimmung der Beschaffenheit der zweispitzigen Klappe bedeutungslose Erscheinung, und man muss durch Zusammenstellung aller übrigen Erscheinungen zu ermitteln suchen, ob diese Klappe schliesst oder nicht. Der Ton kann nämlich bei vollkommener Fähigkeit der Klappe, den Rückfluss des Blutes zu hemmen, dennoch fehlen, wenn die Bedingungen, die denselben dumpf machen, in einem höhern Grade vorhanden sind.

Bei Insufficienz der zweispitzigen Klappe kann aber auch das Geräusch fehlen, wenn der Blutstrom beim Durchgange durch die Klappenöffnung auf keine rauhe Stelle trifft, und wenn er keine bedeutende Schnelligkeit besitzt. Das Fehlen des Geräusches bei Insufficienz der Klappe ist seltener, als das Fehlen des Tones bei vollständigem Schliessen derselben. Man wird, im Falle man im linken Ventrikel während der Systole weder Ton noch Geräusch hört, hauptsächlich den zweiten Ton in der Pulmonalarterie, und das etwaige Vorkommen eines Tones oder Geräusches im linken Ventrikel während der Diastole des Herzens in Betracht ziehen. Ist z. B. der zweite Ton in der Pulmonalarterie nicht verstärkt, und im linken Ventrikel der zweite Ton hörbar, so kann ich nach der bisherigen Erfahrung für fast gewiss erklären, dass die zweispitzige Klappe schliesst; ist dagegen der zweite Ton in der Pulmonalarterie verstärkt, und erscheint im linken Ventrikel statt des zweiten Tones ein Geräusch, so ist es

mehr als wahrscheinlich, dass die zweispitzige Klappe nicht schliesst. Lässt sich beim Mangel alles Tones und Geräusches im linken Ventrikel während der Systole eine Verstärkung des zweiten Tones in der Pulmonalarterie bemerken, wobei im linken Ventrikel der zweite Ton ohne Geräusch oder gar nicht gehört wird, so ist man zur Annahme von Insufficienz der zweispitzigen Klappe nur dann berechtigt, wenn sich ausser dem in Frage stehenden Klappenfehler keine Ursache zur Entstehung einer Hypertrophie des rechten Herzens auffinden lässt. Derlei die Hypertrophie des rechten Ventrikels bedingende Momente sind insbesonders: Verkrümmungen des Rückgraths, grössere und länger bestehende Exsudate in der Brusthöhle, ohne dass dabei Tubescenz eintritt etc.

- E. Man kann im linken Ventrikel einen Schall während der Systole vernehmen, der so undeutlich ist, dass man nicht im Stande ist, zu bestimmen, ob man einen Ton oder ein Geräusch hört. Zur Bestimmung der Beschaffenheit der Bicuspidalis in diesem Falle gelten dieselben Regeln, die beim Fehlen alles Tones und Geräusches angeführt wurden.
- b. In der linken Kammer während der Diastole:
- a. Ton ohne Geräusch zweiter Ton bedeutet, dass das linke Ostium venosum nicht verengert ist, und dass das Blut aus dem linken Vorhofe in die linke Kammer nicht über rauhe Stellen strömt.
- β. Geräusch mit Ton, oder Geräusch allein, bedeutet entweder eine Verengerung des linken Ostium venosum mit rauher Obersläche des verengten Kanals, oder rauhe, bedeutend hervorspringende Stellen an der gegen den linken Vorhof gekehrten Fläche der zweispitzigen Klappe ohne Verengerung des Ostiums. Bei Verengerung des linken Ostium venosum häuft sich das Blut im linken Vorhofe, in den Pulmonalvenen und Arterien, und es bildet sich noch

rascher als bei Insufficienz der zweispitzigen Klappe eine Hypertrophie mit Dilatation des rechten Ventrikels, und der zweite Ton der Pulmonalarterie erscheint verstärkt. Bei Rauhigkeiten an der gegen den linken Vorhof gekehrten Fläche der zweispitzigen Klappe ohne Verengerung des Ostium venosum fehlt die Verstärkung des zweiten Tones, wenn sie nicht zufällig aus andern Ursachen vorhanden ist. Je bedeutender die Verengerung des linken Ostium venosum wird, desto mehr Zeit braucht das Blut zum Einströmen in den Ventrikel, desto länger und sonorer wird das Geräusch. Es ist vorzüglich in diesem Falle, dass man beim Auflegen der Hand auf die Herzgegend Vibrationen des Thorax empfindet, welche Erscheinung Lännec das Katzenschnurren genannt hat.

Diese Vibrationen sind häufig selbst sichtbar, und das Geräusch gleicht dann dem Summen einer entfernten Glocke. Das Geräusch bei Verengerung des linken Ostium venosum kann so gedehnt seyn, dass es, besonders bei etwas schneller auf einander folgenden Herzbewegungen, nur momentan während der Systole, oder fast gar nicht unterbrochen wird. In einem solchen Falle wird es dem weniger Geübten schwer, durch das Gehör zu entscheiden, ob das Geräusch während der Systole oder Diastole gebildet werde, und er wird sich mittelst des Gefühls, durch Wahrnehmung des Katzenschnurrens während der Diastole, leichter zurecht finden.

γ. Fehlen des Tones sowohl als des Geräusches hat keine bestimmte Bedeutung, und man muss hauptsächlich den zweiten Ton in der Pulmonalarterie, und den ersten Ton oder das erste Geräusch, überhaupt das Verhalten der zweispitzigen Klappe während der Kammersystole in Betracht ziehen, um über ihr Verhalten während der Diastole ins Klare zu kommen. Ist im linken Ventrikel der erste Ton ohne Geräusch, und in der Pulmonalarterie der zweite Ton nicht verstärkt hörbar, so ist kein Grund vorhanden, an der zweispitzigen Klappe etwas Abnormes anzuneh-

men. Ist im linken Ventrikel bei der Systole ein Geräusch, und der zweite Ton der Pulmonalarterie verstärkt, so erklärt sich das Fehlen des zweiten Tones im linken Ventrikel aus der Insufficienz der zweispitzigen Klappe.

Das Vorhandenseyn eines Geräusches im linken Ventrikel während der Systole mit Fehlen des Tones und Geräusches während der Diastole und die Verstärkung des zweiten Tones in der Pulmonalarterie sind Zeichen, die in der Mehrzahl der Fälle Insufficienz der zweispitzigen Klappe ohne Verengerung des linken Ostium venosum bezeichnen, die jedoch die genannte Verengerung nicht ausschliessen. Bei Verengerung des linken Ostium venosum, die fast immer mit Insufficienz der zweispitzigen Klappe verbunden vorkommt, ist in der Mehrzahl der Fälle das Geräusch während der Diastole stark und gedehnt, indess sich das Geräusch der Systole schwächer, kürzer, oder gar nicht wahrnehmen läst. Doch hat diese Regel auch Ausnahmen, und umgekehrt erscheint das Geräusch der Systole stark und gedehnt, während das Geräusch der Diastole schwach, kurz, oder gar nicht hörbar ist. Es hängt diese Verschiedenheit aller Wahrscheinlichkeit nach von der Form und Richtung des verengten Kanales und von der Richtung ab, welche die rauhen Stellen in diesem Kanale haben.

Endlich kann bei schneller Herzbewegung das Geräusch der Systole mit dem Geräusche der Diastole so zusammenschmelzen, dass man nur ein einziges gedehntes Geräusch hört, das mit der Systole beginnt, beim Eintritte der Diastole noch fortdauert, und nur in den sehr kurzen Zwischenräumen der Ruhe der Ventrikel unterbrochen wird. Dieses zusammensliessende doppelte Geräusch ist von einem einsachen gedehnten durch nichts unterscheidbar, und löst sich erst bei langsamerer Herzbewegung in zwei Geräusche auf. —

Beim Fehlen des Tones und Geräusches im linken Ventrikel sowohl während der Systole, als auch während der Diastole, kann man, wie schon erwähnt, eine, die Funktion des Herzens beeinträchtigende, Abnormität der Bicuspidalis
—Insufficienz oder Verengerung des linken Ostium venosum—
nur dann annehmen, wenn der zweite Ton der Pulmonalarterie auffallend verstärkt ist, und wenn sich dessen Verstärkung aus keiner andern Ursache erklären lässt.

- δ. Eben so wie bei der Systole, kann auch bei der Diastole im linken Ventrikel ein undeutlicher Schall gehört werden, den man weder als Ton, noch als Geräusch bestimmen kann. Man muss in einem solchen Falle dieselben Schlüsse machen, als wenn gar kein Ton und gar kein Geräusch sich vernehmen lässt.
- 2. a. In der rechten Kammer während der Systole:
- a. Ton ohne Geräusch erster Ton bedeutet, dass die dreispitzige Klappe schliesst, also den Rückfluss des Blutes aus der rechten Kammer in die rechte Vorkammer während der Kammersystole hemmt.
- β. Geräusch allein, oder Ton mit Geräusch bedeutet entweder das unvolkommene Schliessen der dreispitzigen Klappe mit rauhen Stellen an ihrem freien Rande, oder es kann bei volkommenem Schliessen der Klappe durch rauhe Stellen im Conus arteriosus erzeugt werden, was aber unter die selteneren Fälle gehört. Häufiger als durch Rauhigkeit im Conus arteriosus scheint bei volkommenem Schliessen der dreispitzigen Klappe ein Geräusch bei der Systole durch Rauhigkeiten an dem Schnenfaden, der zunächst des Conus arteriosus sich am Septum ventriculorum inserirt, erzeugt zu werden.

Die Insufficienz der dreispitzigen Klappe erzeugt Anhäufung des Blutes im rechten Vorhofe, in den Hohlvenen, u. s. w. Dadurch schwellen die Halsvenen an, die ohne diese Überfüllung zusammengefallen, und kaum, oder gar nicht sichtbar sind, so lange der Kopf und Hals höher liegt, als die Brust, der Unterleib und die untern Extremitäten. Das mit jedesmaliger Systole des rechten Ventrikels in den rechten Vorhof getriebene Blut erzeugt ein Aufsteigen der Blutsäule in der Hohlvene; die Jugularvenen werden mehr gefüllt, also ausgedehnt, indess sie mit jeder Diastole des Herzens zusammensinken, oder sich zusammenziehen. — Diese Erscheinung stellt das Pulsiren der Jugularvenen dar, das aber gewöhnlich nur sichtbar, nicht mit dem Finger fühlbar ist. Nur bei grosser Spannung der Venen fühlt man auch die Blutwelle in denselben, und insbesonders ist das an der Subclavia der Fall, wenn sie über den Schlüsselbeinen hervorragt.

Die Insufficienz der dreispitzigen Klappe wird somit durch ein Geräusch im rechten Ventrikel während der Systole und das gleichzeitige Pulsiren der Jugularvenen erkannt. Dasselbe Geräusch ohne Pulsiren und ohne Ausdehnung der Jugularvenen bedeutet nicht Insufficienz der Klappe. Beim Vorhandenseyn dieses Geräusches mit gleichzeitiger Ausdehnung der Halsvenen, jedoch ohne Pulsiren derselben kann die dreispitzige Klappe insufficient seyn, doch setzt diess eine schwache Herzthätigkeit oder den benannten Klappenfehler nur im geringen Grade, so dass jedes Mal nur wenig Blut zurückgedrängt wird, oder aber eine sehr grosse Ausdehnung der obern Hohlvene, voraus.

γ. Kein Ton und kein Geräusch, oder ein so undeutlicher Schall, der sich weder als Ton, noch als Geräusch charakterisirt, ist eine nichts bestimmende Erscheinung, und man muss, um die Beschaffenheit der dreispitzigen Klappe in solchen Fällen wenigstens mit Wahrscheinlichkeit angeben zu können, auf die Weise verfahren, die beim Fehlen des Tones und Geräusches während der Systole im linken Ventrikel zur Erforschung der Beschaffenheit der zweispitzigen Klappe angegeben ist, mit dem Unterschiede, dass man dort die Stärke des zweiten Tones der Pulmonalarterie berücksichtigen musste, während hier die Beschaffenheit der Jugularvenen das Zeichen liefert.

b. In der rechten Kammer habe ich bisher

während der Diastole nie ein Geräusch gehört. Die Möglichkeit einer Verengerung des rechten Ostium venosum lässt sich zwar nicht bestreiten; doch muss diess eine ausserordentlich seltene Abnormität seyn, da sie im hierortigen pathologisch – anatomischen Musäum sich nicht vorfindet. Die Bedeutung des zweiten Tones in der rechten Kammer so wie die Bedeutung des Fehlens des Tones ist aus dem Vorhergehenden ersichtlich.

- 3. a. In der Aorta während der Systole des Herzens:
- a. Ton ohne Geräusch —, erster Ton bedeutet nicht nothwendig einen ganz normalen Zustand der Aorta. Er ist am stärksten während heftiger Aktion eines vergrösserten Herzens bei normaler Beschaffenheit der Aortahäute, und bei, der Grösse des Herzens, angemessener Weite der Aorta. Er wird dumpf, wenn die Aortahäute sich verdicken, weniger elastisch werden, wenn die Aktion des Herzens schwach ist, wenn das Lumen der Aorta im Verhältnisse zur Grösse des Herzens zu klein oder zu gross ist.
- β. Geräusch allein, oder Ton mit Geräusch bedeutet rauhe Stellen an der innern Fläche der Aorta, oder an der untern Fläche der Semilunarklappen. Bei Chlorotischen pflanzen sich die Vibrationen der Carotis oder Subclavia zuweilen nach abwärts bis auf die Aorta fort, und man kann bei denselben in der Aorta ein gwöhnlich nur dumpfes—Geräusch hören, ohne dass die innere Haut der Aorta oder die untere Fläche der Aortaklappen rauhe Stellen hat.
- γ. Das Fehlen des Tones und Geräusches, und ein so undeutlicher Schall, der sich weder als Ton noch als Geräusch charakterisirt, wird durch dieselben Ursachen, die den ersten Ton der Aorta dumpf machen, bedingt, wenn sie im höheren Grade vorhanden sind.
- b. In der Aorta während der Diastole der Ventrikel:
 - a. Ton ohne Geräusch zweiter Ton bedeutet

das Schliessen der Aortaklappen. Er ist stark und laut bei normaler Beschaffenheit der Häute der Aorta und Aortaklappen, und gleichzeitiger heftiger Aktion des Herzens. Er wird dumpf, wenn die Aortaklappen und die Häute der Aorta dicker, weniger elastisch werden, wenn die Herzthätigkeit abnimmt, und wenn Insufficienz der zweispitzigen Klappe oder Verengerung des linken Ostium venosum vorhanden ist.

- β. Geräusch ohne Ton, wenn es gedehnt ist, und sich bis über die Basis des Herzens hin hören lässt, bedeutet Insufficienz der Aortaklappen mit rauhen Stellen an ihren freiern Rändern. Ist das Geräusch nur kurz, und bloss höher an der Aorta hörbar, so kann es allein durch rauhe Stellen an der innern Fläche der Aorta erzeugt werden, wobei es also, wenn man das Geräusch allein in Betracht zieht, unentschieden bleibt, ob die Aortaklappe schliesse, oder nicht.
- γ. Geräusch, das mit einem Ton endigt Geräusch vom Tone begränzt entsteht durch rauhe Stellen an der innern Fläche der Aorta, wenn die Aortaklappen vollkommen schliessen. Die während der Diastole gegen die Aortaklappen getriebene Blutsäule erzeugt durch Reibung an den rauhen Stellen der innern Fläche der Aorta ein Geräusch, das jedoch nur so lange anhalten kann, als die Strömung dauert, also mit dem Schliessen der Klappen, das einen Ton erzeugt, aufhört.
- δ. Geräusch und Ton, wobei das Geräusch sich über den Ton verlängert. Die Aortaklappen werden durch die Blutsäule aufgebläht; aber sie sind insufficient, und das in den linken Ventrikel zurückstürzende Blut erzeugt ein gedehntes Geräusch.
- e. Fehlen des Tones und Geräusches, und ein so dumpfer Schall, dass er sich weder als Ton noch als Geräusch charakterisirt, ist eine nichts bestimmende Erscheinung. Man kann beim Vorhandenseyn dieses unbestimmten Symptoms mit einiger Wahrscheinlichkeit auf die Beschaffenheit der Aortaklappen

schliessen, wenn man die Folgen der Insufficienz der Aortaklappen in Betracht zieht. Bei Insufficienz der Aortaklappen wirkt während der Diastole der Kammern die Kraft, mit welcher die Arterien das Blut forttreiben, auf den linken Ventrikel zurück, und dieser wird dadurch erweitert und hypertrophisch. Findet man demnach Zeichen von Vergrösserung des linken Ventrikels, so hat man, wenn die Erscheinungen an den Aortaklappen es zweiselhaft lassen, ob diese Klappen schliessen, mehr Wahrscheinlichkeit, dass dieselben nicht schliessen; ist aber die Grösse des linken Ventrikels normal, so ist man gewiss, dass die Aortaklappen gut schliessen, selbst wenn der zweite Ton in der Aorta ganz fehlt, oder sehr undeutlich ist.

4. a. In der Pulmonalarterie habe ich bisher während der Systole der Kammern in drei Fällen einen so gedehnten Schall gehört, dass man ihn für ein Geräusch hätte nehmen können. In allen drei Fällen war sehr grosse Hypertrophie mit Dilatation des rechten Ventrikels, in Folge von Verengerung des linken Ostium venosum entstanden, vorhanden. Die innere Fläche der Pulmonalarterie war nicht rauh; die Arterie, wie jedesmal in solchen Fällen, erweitert, und ihre Häute dicker. Ich glaubte, dass dieser Schall nur ein sehr gedehnter unreiner Ton sey, der durch unregelmässige Schwingungen der sehr gespannten Arterie erzeugt werde. —

Bei einer Kranken, die Erscheinungen eines leichteren entzündlichen Fiebers darbot, über Herzklopfen, Schmerz in der Herzgegend und Beklemmung klagte, fand ich ein deutliches Blasen in der Pulmonalarterie während der Kammersystole, und den zweiten Ton derselben Arterie sehr kurz und sehr wenig sonor. Sonst war in der Brust, so wie auch in allen übrigen Organen, nichts Krankhaftes zu entdecken. Nach einigen Tagen verloren sich mit Ausnahme des Blasens in der Pulmonalarterie alle krankhaften Erscheinungen; später verschwand auch dieses gänzlich, und statt dessen erschien der gewöhnliche erste Ton. Ich glaube, dass eine

Entzündung der innern Haut der Pulmonalarterie das Blasen, so wie die übrigen krankhaften Erscheinungen verursacht habe.

b. Während der Diastole habe ich in der Pulmonalarterie noch nie ein Geräusch gehört. Der Ton ist stark, und der Accent fällt auf denselben bei Insufficienz der zweispitzigen Klappe, bei Verengerung des linken Ostium venosum, und auch ohne diese Klappenfehler, wenn der rechte Ventrikel hypertrophisch und dilatirt ist, und das Herz lebhaft agirt.

Professor Bouillaud führt Fälle an, wo in dem Zeitmomente einer Kammersystole und Diastole mehr als zwei Töne und Geräusche hörbar waren. Diese Erscheinung kam ihm nur bei Kranken vor, die an Verengerung irgend einer Mündung des Herzens mit Verhärtung der Klappen litten, und wo gleichzeitig auch die Produkte einer Pericarditis vorhanden waren. Ich habe im früheren schon erwähnt, dass ich einen doppelten zweiten Herzton, also in dem Zeitmomente einer Kammersystole und Diastole drei Töne - Tik Tak Tak bei einem Phthisiker gehört habe, bei dem nach kurz darauf erfolgtem Tode die Leichenuntersuchung das Herz, sämmtliche Klappen, und den Herzbeutel ganz normal zeigte. Ich habe ferner drei Tone einige Mal bei Menschen angetroffen, wo die übrigen Erscheinungen eine Abnormität des Herzens ganz und gar ausschlossen. Ich habe aber den dreifachen Ton auch bei Menschen gefunden, die an organischen Krankheiten des Herzens litten.

Wenn sich bei einem Kranken zugleich Pericarditis und Endocarditis, oder Abnormitäten der Klappen und Rauhig-keiten am Pericardium vorfinden, so kann man von einer Kammersystole zur andern allerdings mehr als zwei Geräusche von Tönen begleitet, oder ohne alle Töne hören; denn die Geräusche am Pericardium sind nicht ganz synchronisch mit den Geräuschen im Innern des Herzens. Man muss sich aber bestreben, die Töne und Geräusche einzeln aufzufassen,

und zu bestimmen, — was nach den gegebenen Regeln immer möglich ist, wenn die Herzbewegungen nicht gar zu schwach, und nicht zu schnell sind —; und hat man dieselben richtig bestimmt, so hat es weiter keine Schwierigkeit, ihre Bedeutung zu finden.

Man trifft überdiess auf Fälle, wo man an einem und demselben Punkte zwei verschiedene Geräusche gleichzeitig hört, die entweder beide an einer Stelle z. B. bloss im linken Ventrikel entstehen, oder wo ein Geräusch z. B. in der Aorta, das andere im linken Ventrikel producirt wird. Solche Fälle sind gleich allen übrigen zu beurtheilen. Es handelt sich immer darum, zu bestimmen, wo das Geräusch entsteht, und ob es mit der Kammersystole oder Diastole synchronisch ist.

IV. Über den Rhythmus der Herzbewegungen.

Die Abweichungen vom Normalen im Rhythmus der Herzbewegungen sind überaus mannigfaltig. Entweder ist die Zahl der Bewegungen, die das Herz in einer bestimmten Zeit macht, zu gross oder zu klein; oder es sind die einzelnen Bewegungen ungleich in ihrer Dauer oder in ihrer Grösse, oder es ist das Verhältniss der Dauer der Kammersystole zur Dauer der Kammerdiastole ein abnormes. Mehrere oder alle diese Abweichungen des Rhythmus vom Normalen können mit einander verbunden vorkommen, und dann zeigen diese Abweichungen zusammen entweder wieder eine Regel, oder aber es lässt sich ganz und gar keine Ordnung feststellen, in welcher die Herzbewegungen erfolgen.

Wir erkennen die Herzbewegungen und ihre Abwelchungen von der Norm aus dem Herzstosse, aus den Herztönen und Geräuschen, und aus dem Pulse der Arterien. Nach der verschiedenen Vorstellung, die man sich über die Ursache des Herzstosses, der Töne und Geräusche macht, wird auch das Urtheil über die Art der Herzbewegungen in jedem besondern Falle verschieden ausfallen. So sagt Lännec, in gewissen Fällen von Herzklopfen zwei oder mehrere Kon-

traktionen der Vorhöfe auf jede einzelne Kontraktion der Ventrikel beobachtet zu haben, weil er den zweiten Ton durch die Kontraktion des Vorhofes hervorgebracht ansah; Bouillaud dagegen zählte zuweilen auf eine Kammersystole eine doppelte oder selbst dreifache Kammerdiastole. Ich habe ähnliche Erfahrungen gemacht; nämlich, ich habe auf eine einzige Pulsation der Arterien zwei und selbst drei Herzstösse — vier und sechs Herztöne — und von einem Herzstosse zum andern drei, und wie ich mich zu erinnern glaube, auch vier Herztöne beobachtet.

Der Herzstoss ist ein sicheres Zeichen der Kammersystole, aus den Tönen dagegen läst sich für jetzt noch nicht mit Sicherheit auf die Art der Herzbewegungen schliessen, da man bis jetzt wohl mehrere, aber nicht alle Ursachen der Herztöne genau kennt. Ich glaube aus diesem Grunde, dass es noch voreilig wäre, aus einem doppelten zweiten Tone auf eine doppelte Kammerdiastole zu schliessen. In den Fällen wo von einem Arterienpulse zum andern vier Herztöne sich vernehmen liessen, schien mir diese Erscheinung aus der ungleichzeitigen Kontraktion und Dilatation des linken und rechten Ventrikels erklärbar.

Die Abnormitäten im Rhythmus der Herzbewegungen mögen allerdings häufig in organischen Veränderungen des Herzens ihren Grund haben; es ist aber gewiss, dass die grösste Unregelmässigkeit im Rhythmus der Herzstösse und Töne bei anscheinend ganz normal beschaffenen Herzen vorkommen kann, und dass es im Gegentheil fast keine organische Veränderung des Herzens und seiner Klappen gibt, bei deren Vorhandenseyn nicht ein ganz regelmässiger Rhythmus der Herzbewegungen vorkommen könnte. Aus der Unregelmässigkeit im Rhythmus der Herzbewegungen, wie gross sie auch seyn mag, kann man desshalb nie den Schluss ziehen, dass eine organische Krankheit des Herzens vorhanden sey.

II. Abtheilung.

Angabe der jedem besondern Zustande der Brust- und Unterleibsorgane zukommenden Erscheinungen, die sich mittelst der Perkussion und Auskultation erhalten lassen.

Die Erscheinungen, welche die Perkussion und Auskultation in jedem besondern Zustande der Brust- und Bauchorgane geben kann, lassen sich aus der gegebenen Erklärung dieser Erscheinungen ableiten. Zur bessern Verständigung über den behandelten Gegenstand werde ich diese Ableitung hier geben.

Erster Abschnitt.

Normaler Zustand der Brust- und Bauchorgane.

Der Perkussionsschall und die Resistenz istim normalen Zustande der Brust- und Bauchorgane an den verschiedenen Stellen der Brust und des Bauches sehr verschieden, und wenn man bei mehreren gesunden Individuen die Perkussion an gleichartigen Stellen macht, so finden sich ebenfalls Verschiedenheiten. Dasselbe läst sich rücksichtlich der auskultatorischen Erscheinungen bemerken.

A. Erscheinungen aus der Perkussiou.

a. Verschiedenheiten im Perkussionsschalle und in der Resistenz am Thorax:

1. Nach den verschiedenen Gegenden des Thorax. Die rechte Hälfte der vordern Fläche des Thorax gibt vom Brustbeine bis zur rechten Seitengegend, und vom Schlüsselbeine bis zur fünsten Rippe einen beinahe durchaus gleichen, vollen, hellen, nicht tympanitischen Schall, und den geringsten Widerstand. Von der sechsten Rippe bis an den untern Rand des Thorax ist der Perkussionsschall wegen der daselbst befindlichen Leher fast durchaus ganz dumpf, dem Schall des Schenkels gleich, und die Resistenz ist bedeutend. Nach oben geht der dumpfe Schall der Leher stuffenweise in den hellen Schall der Lunge über, am untern Rande des Thorax lässt sich nicht selten ein gedämpfter oder auch heller, tympanitischer Schall der Gedärme vernehmen. Das Brustbein gibt an seiner obern Hälfte gewöhnlich einen eben so vollen und hellen Schall, als die angränzende rechte Thoraxparthie; weiter abwärts wird der Schall am Brustbeine durch das darunter gelegene Herz besonders nach links hin dumpf; unter den Schwertknorpel reicht die Leber.

Die Fläche links vom Brustbeine bis zur Seitengegend, und vom Schlüsselbeine bis zur vierten Rippe gibt denselben Schall und dieselbe Resistenz, als die gleichnamige Fläche rechterseits. Die Fläche von der vierten linken Rippe bis einen Zoll vom untern Thoraxrande, oder selbst bis an den Thoraxrand, und vom Brustbeine bis zur linken Seitengegend gibt einen gedämpsten, weniger vollen Schall und eine grössere Resistenz.

Die Verminderung des Schalles ist an der Stelle, wo das Herz die Brustwand berührt, am stärksten, beschränkt sich aber nicht auf diese allein, sondern erstreckt sich einen halben Zoll und darüber rings um dieselbe. Der Schall ist in der Herzgegend nicht vollkommen dumpf. Unterhalb des Herzens trägt der linke Leberlappen zur Dämpfung des Schalles bei, und auf einen Zoll, oder noch höher oberhalb des untern Thoraxrandes beginnt gewöhnlich der gedämpfte, oder schon vollkommen helle, tympanitische Schall des Magens, der zuweilen vom metallischen Klange — Piorry's Wasserton — begleitet ist. In der rechten Seitengegend ist der Perkussionsschall hell, aber weniger voll, als unter den Schlüsselbeinen; er wird von der Achselgrube nach abwärts nach und nach immer leerer, bis er in der Gegend der sechsten Rippe auch gedämpft, und von da bis an den Rand des

Thorax vollständig dumpf wird. In der linken Seitengegend ist der Schall weniger leer, als in der rechten. Von der sechsten Rippe nach abwärts wird daselbst gewöhnlich der durch die Milz gedämpfte tympanitische Schall des Magens vernommen, der am Thoraxrande vollkommen hell wird. Oberhalb der sechsten Rippe bis in die Achselgrube erscheint entweder bloss der nicht tympanitische Schall der Lunge, der zuweilen eben so voll als unter den Schlüsselbeinen ist; oder man hört eine Verbindung des Lungenschalles mit dem Schalle des Magens, was einen noch lauteren Schall geben kann, als derselbe unter den Schlüsselbeinen sich vorfindet.

Am Rücken ist der Perkussionsschall viel weniger deutlich, und die Resistenz grösser, als auf der Vorderseite des Thorax. Den am meisten gedämpften Schall, und die grösste Resistenz geben daselbst die Schulterblätter. Nicht minder dumpf erscheint der Schall an der Wirbelsäule, ausser wenn sehr stark perkutirt wird. Die Fläche zwischen der Wirbelsäule und den Schulterblättern, welche man durch Verschieben der Schulterblätter vergrössern kann, gibt einen mehr gedämpften und leeren Schall, und eine grössere Resistenz, als die Stelle unter der rechten Achselgrube, und zwar nimmt die Dämpfung des Schalles nach aufwärts immer zu. Unterhalb der Schulterblätter bis zur dritten oder vierten falschen Rippe ist der Perkussionsschall voller, als zwischen den Schulterblättern, ja um die sechste und siebente wahre Rippe selbst voller, als in der rechten Achselhöhle, wiewohl weniger hell.

2. Bei verschiedenen Individuen. Wenn man den Perkussionsschall bei vielen Individuen, deren innerhalb des Brustkorbes gelegene Organe im normalen Zustande sich befinden, vergleicht, so wird man bedeutende Verschiedenheiten wahrnehmen. Dieselbe Stelle gibt bei dem einen, selbst durch sehr schwaches Perkutiren, einen lauten Schall, während man bei dem andern stark klopfen muss, um einen höchst mittelmässigen Schall zu erhalten. Man wird finden, dass bei magern, nicht muskulösen Personen, und bei solchen, deren

Rippen dünn und biegsam sind, der Perkussionsschall ohne Vergleich lauter ist, als bei Menschen, deren Brustwand die entgegengesetzte Beschaffenheit hat. Es braucht kaum erinnert zu werden, dass der Perkussionsschall durch die weibliche Brust beeinträchtigt wird, und dass man diese verschiedentlich verschieben müsse, um wo möglich die eigentliche Beschaffenheit des Perkussionsschalles an der von der weiblichen Brust eingenommenen Stelle zu erhalten.

Bei Kindern ist wegen der Zartheit der Muskeln, und wegen der Biegsamkeit der Rippen der Schall des Thorax heller, als bei Erwachsenen. Bei Greisen findet man den Perkussionsschall des Thorax häufig lauter, als bei Erwachsenen. Dr. Raciborsky erklärt die Zunahme des Perkussionsschalles bei Greisen nach den Ansichten der Herren Hourmann und Dechambre aus der Rarefaktion des Lungenparenchyms, und aus der grössern Starrheit der Brustwände. Ich glaube, dass die Abmagerung, das Schwinden der Muskeln, das Dünnerwerden der Rippen, und die Vergrösserung des Brustraumes durch das Herabsinken des Zwerchfelles die Ursache davon abgibt, und zwar aus dem Grunde, weil bei nicht abgezehrten muskulösen Greisen der Perkussionsschall sich wie im Mannesalter verhält, und weil auch bei jugendlichen Personen der Perkussionsschall des Brustkorbes eben so laut, als bei Greisen wird, wenn durch Krankheiten die Rippen und die sie bewegenden Muskeln tabesciren.

b. Perkussion des Unterleibes.

Im normalen Zustande der Unterleibsorgane findet man den Perkussionsschall am Bauche bald deutlich tympanitisch und hell, bald undeutlicher und fast gar nicht tympanitisch, und diese Verschiedenheit hängt offenbar theils von der Menge Luft, die in den Gedärmen enthalten ist, theils von dem Drucke ab, welchen die Gedärme durch die Bauchwand erleiden. Je weniger nämlich die Bauchgegend gespannt ist, desto heller und tympanitischer wird der Schall der Gedärme, wenn sie Luft enthalten. Nicht an allen Stellen des Unterlei-

bes ist der Perkussionsschall derselbe; er varirt um so mehr, je leichter beweglich die Gedärme liegen.

Die Gegend des Magens gibt gewöhnlich den lautesten und hellsten tympanitischen Schall, der zuweilen vom metallischen Klange begleitet ist. Die rechte Seitengegend gibt meist einen lauteren Schall als die linke, die Lumbargegenden schallen gewöhnlich ganz dumpf, oder man hört daselbst den tympanitischen Schall einer nahe gelegenen Darmparthie.

B. Erscheinungen aus der Auskultation.

1) Auskultation der Respirationsorgane.

Wenn der Untersuchte spricht, lässt sich am Thorax entweder gar nichts, oder ein dumpfes verworrenes Summen vernehmen, aus dem man nicht im entferntesten weiss, was gesprochen wurde. In dem Raume zwischen den Schulterblättern ist entweder das Summen viel stärker, als an allen übrigen Stellen, oder man versteht selbst einiges, was gesprochen wird; man hört die Bronchophonie. Diese ist um so stärker und deutlicher, je höher nach oben man auskultirt. Bei tiefer Stimme des Sprechenden ist die Bronchophonie stärker, bei hoher Stimme dagegen deutlicher.

Ein stärkeres Summen, also der Übergang zur Bronchophonie, findet sich nicht selten auch unmittelbar unter den Schlüsselbeinen. An den übrigen Stellen des Thorax ist die Stärke des Summens nicht überall gleich, es wird immer schwächer, je weiter man sich von grössern Bronchien entfernt. Oberhalb der Schlüsselbeine hört man aus dem nahen Larynx fast immer eine starke Bronchophonie.

Das Inspirationsgeräusch ist am Thorax entweder vesikulär, oder es ist unbestimmt, oder es ist gar nicht hörbar. Das vesikuläre Athmen ist bei Kindern sehr laut, unter den Erwachsenen bieten diejenigen das lauteste vesikuläre Athmen dar, welche schwache Muskeln und einen sehr beweglichen Thorax haben. Wenn das vesikuläre Athmen sehr laut ist, so wird es auch an Stellen des Thorax gehört, unter denen sich die Lunge nicht mehr befindet. Man kann es über dem

ganzen Herzen, über einem Theile der Leber, des Magens etc. recht deutlich vernehmen.

Bei Männern mit starker Muskulatur ist das Athmungsgeräusch im normalen Zustande selten laut genug, um den Charakter des vesikulären darbieten zu können; es ist ein unbestimmtes Athmungsgeräusch, oder man vernimmt bei dem gewöhnlichen Athmen gar kein Geräusch. Durch tieferes und schnelleres Einathmen wird zuweilen das Athmungsgeräusch so deutlich, dass es als vesikuläres erkannt werden kann; es ist diess aber nicht immer der Fall. Die tiefern und schnellern Inspirationen, die man während des Sprechens zu machen genöthigt ist, oder die dem Husten vorangehen, oder auf denselben folgen, geben das lauteste Inspirationsgeräusch; doch trifft man gesunde Individuen, wo auch dieses Mittel das Athmungsgeräusch nicht sehr deutlich macht. Das Inspirationsgeräusch der Greise ist gewöhnlich ein unbestimmtes; es ist mehr weniger laut, je nachdem sich mit dem Geräusche der feinen Bronchien und Luftzellen auch jenes aus den grössern Bronchien vermengt. Bei Greisen findet sich zuweilen eine besondere Modifikation des vesikulären Athmens. Es ist dasselbe sehr hoch, und gränzt dadurch an Zischen.

Das Inspirationsgeräusch kann im normalen Zustande der Respirationsorgane entweder an allen Stellen gleich gehört werden, oder es ist an einzelnen Stellen deutlicher als an andern, oder es fehlt an manchen Stellen, indess man es an andern mehr weniger deutlich vernimmt. Das vesikuläre Athmen wird immer am reinsten und deutlichsten an den Stellen gehört, welche von den grössern Bronchien entfernter liegen. Ist das Inspirationsgeräusch überhaupt schwach, so wird es am lautesten, wiewohl gewöhnlich als unbestimmtes Athmungsgeräusch, in dem Raume zwischen den Schulterblättern wahrgenommen.

Die Exspiration macht im normalen Zustande der Respirationsorgane fast kein Geräusch; man hat kaum eine Andeutung eines sehr kurzen schwachen Geräusches; nur in dem Raume zwischen den Schulterblättern lässt sich bei manchen

Menschen während der Exspiration ein unbestimmtes Geräusch hören.

Das bronchiale Athmen wird im normalen Zustande der Respirationsorgane am Thorax nur in der Umgebung der obersten Brustwirbel, und auch da nur in selteneren Fällen gehört.

2) Auskultation des Herzens und der Arterienstämme.

Der Herzstoss wird an den Knorpeln der fünften oder sechsten Rippe empfunden. Er kann bei körperlicher und geistiger Ruhe fast unmerklich seyn. Bei verstärkter Aktion des normalen Herzens kann der Stoss desselben den Kopf des Auskultirenden bedeutend erschüttern; er wird jedoch nie in einem solchen Umfange empfunden, als wenn er durch ein vergrössertes Herz erzeugt wird. Dem Verlaufe der Aorta und Pulmonalarterie entsprechend empfindet man zuweilen mit jeder Systole des Herzens eine Erschütterung, die besonders bei Individuen, deren vordere Brustwand den Wirbelkörpern näher liegt, hervortritt.

Die Töne in den Ventrikeln sowohl als in den Arterien können sehr deutlich und laut, oder aber sehr schwach und nur wenig hörbar seyn. Man findet ferner die Töne über dem Herzen und über den Arterien entweder gleich, oder es finden sich Unterschiede vor. So sind manchmal die Tone der Ventrikel, in andern Fällen die Töne der Arterien lauter. Häufig unterscheiden sich die Töne der Ventrikel dadurch von den Tönen der Arterien, dass der Accent in den Ventrikeln auf den ersten Ton, in den Arterien auf den zweiten Ton fällt. In beiden Ventrikeln, oder nur in einem derselben kann der erste Ton sehr laut, der zweite schwach, oder fast unhörbar seyn; indess in den Arterien beide Töne schwach, oder beide Töne laut sind, oder ein Ton schwach, der andere laut gehört wird. Auch die Töne der beiden Arterien können rücksichtlich der Stärke differiren. Aber nicht bloss in der Stärke kommen Differenzen zwischen den Tönen der beiden Ventrikel und der beiden Arterien vor; es lassen sich auch Unterschiede in der Helligkeit, Höhe etc. bemerken.

Gewöhnlich folgt der zweite Ton schnell auf den ersten, worauf eine Pause kommt, die vom ersten Tone wieder unterbrochen wird. In seltenen Fällen ist aber der Zeitmoment zwischen dem ersten und zweiten Tone etwas länger, und die Pause nach dem zweiten Tone sehr kurz, so dass sich durch das Gehör allein schwer, oder gar nicht erkennen lässt, welches der erste, und welches der zweite Ton sey.

Geräusche lassen sich im normalen Zustande des Herzens in den Ventrikeln nicht hören, in den grossen Arterien am Halse aber, besonders in der Carotis, entsteht bei beschleunigtem Kreislaufe vorzüglich bei reizbaren, schwächlich gebauten Individuen sehr leicht ein blasendes, oder zischendes Geräusch, das jede Pulsation der Arterie begleitet. Es geschieht nur selten, dass man das blasende Geräusch in der Aorta vernimmt, wenn es auch in den Halsarterien recht deutlich ist; und es erscheint, wenn es in der Aorta vorkommt, darin immer nur sehr dumpf und schwach. Bei Chlorotischen hört man fast ohne Ausnahme in den Halsarterien ein Geräusch, das entweder nicht viel länger anhält, als die Pulsation der Arterie, oder aber sich fast bis zu der neuen Pulsation erstreckt, oder selbst kontinuirlich ist, und nur durch seine Verstärkung während jeder Pulsation seine Abhängigkeit von dem Arterienpulse zeigt. Das Geräusch in den Halsarterien der Chlorotischen hat sehr grosse Variationen, und eine veränderte Stellung des Kopfes der Auskultirten, oder ein veränderter Druck mit dem Stethoskope ist im Stande, ein bedeutend verschiedenes Geräusch hervorzurufen. Auch bei Chlorotischen findet man in der Aorta nur selten ein Geräusch, und in den Ventrikeln fast nie. Nebst der Chlorosis gibt es noch andere, bisher aber nicht hinlänglich determinirte krankhafte Zustände des Organismus, wo ohne sichtbare Abweichung des Herzens und der Arterien von der Norm in der Carotisund Subclavia Geräusche entstehen.

Auskultation des schwangern Uterus.

Die auskultatorischen Erscheinungen am Uterus bei Schwangerschaft wurden durch Doktor Le Jumeau de Kergaradec bekannt. Sie bestehen in den Tönen des Herzens des Fötus, und in dem bereits erwähnten sogenannten Placentargeräusche. Die Töne des Herzens des Fötus können vom sechsten Monate der Schwangerschaft an am Uterus gehört werden, und werden um so deutlicher, je älter der Fötus wird. Sie sind gewöhnlich auf einer nicht sehr ausgedehnten Stelle hörbar, doch kommen auch Fälle vor, wo man sie über einem grossen Theile des Uterus vernimmt. Diese Tone sind ein sicheres Zeichen des Lebens des Kindes. Es bedarf nur einer geringen Übung in der Auskultation, um die Tone des Herzens des Fötus zu erkennen, und von jedem andern zufälligen Schalle zu unterscheiden, und es verräth eine vollkommene Unerfahrenheit in der Auskultation, wenn man behauptet, dass der sogenannte Fötalpuls durch zufällige Geräusche nachgeahmt werden kann. Man hat nach den Tönen des Fötusherzens die Lage des Kindes bestimmen zu können geglaubt, ist aber später von dieser Ansicht abgekommen. Zuweilen ist es möglich, durch den Fötalpuls Zwillinge zu erkennen, nämlich in dem Falle, wenn die zwei Herzen nicht gleich schnell pulsiren. Die Abwesenheit des Fötalpulses ist kein bestimmtes Zeichen der nicht vorhandenen Schwangerschaft, oder des Todes des Kindes, wenn die Untersuchung nur einmal vorgenommen wird. Hat man aber zu wiederholten Malen und mit hinreichender Genauigkeit untersucht, und nie den Fötalpuls gefunden, so ist es kaum denkbar, dass eine weit vorgerückte Schwangerschaft vorhanden seyn, oder das Kind leben sollte.

Das Placentargeräusch ist für die Erkenntniss der Schwangerschaft von keinem solchen Werthe als der Fötalpuls, da man dasselbe auch ohne Schwangerschaft bei Vergrösserung des Uterus und der Ovarien beobachtet haben will. Es sind jedoch die Fälle, wo es ohne Schwangerschaft am Uterus vorkommt, dennoch nicht sehr zahlreich, und

darum gibt das Vorhandenseyn des Placentargeräusches am Uterus immer eine grosse Wahrscheinlichkeit für die Schwangerschaft. Ob abnorme Zustände des Fötusherzens, und die Schwangerschaft ausserhalb des Uterus durch die Auskultation ausgemittelt werden können, kann erst die Zukunft lehren.

Zweiter Abschnitt.

Abnormer Zustand der Brust- und Unterleibsorgane.

A. Abnorme Lage der Brust- und Bauchorgane.

Erscheinungen aus der Perkussion. — Die Brust- und Bauchorgane können normal beschaffen seyn, und normal funktioniren, aber durch ihre ungewöhnliche Lage Abweichungen im Perkussionsschalle hervorbringen. So liegt die Leber zuweilen ungewöhnlich hoch, und der Perkussionsschall wird durch sie schon in der rechten Achselhöhle gedämpft, während der tympanitische Schall der Gedärme einen Zoll, und noch höher über dem untern Rande des Thorax gehört wird.

Der hochgelagerte lufthältige Magen erzeugt in der ganzen Herzgegend, und in der linken Seite bis zur vierten Rippe, einen tympanitischen Schall. Liegt das Herz nicht an der Brustwand an, so wird die Lunge in den Zwischenraum gedrängt, und man bemerkt in der ganzen Herzgegend kaum eine Dämpfung des Schalles. Die Leber und der Magen können tiefer sinken, und dadurch den Perkussionsschall am Unterleibe auffallend verändern. Endlich kann die Leber im linken, die Milz im rechten Hypochondrium, das Herz in der rechten Brusthöhle liegen etc. Durch den Perkussionsschall wird man in der Regel unterscheiden können, ob in einem Bruchsacke sich Darmparthien befinden.

Erscheinungen aus der Auskultation. — Nur für die Lageveränderung des Herzens gibt die Auskultation ein Zeichen; die Lageveränderungen der Leber, des Magens etc. werden dadurch nicht angezeigt. Bei hohem Stande der Leber lässt sich zwar das Athmungsgeräusch in der rechten Seitengegend weniger weit nach abwärts hören; aber es ist in dieser Gegend gewöhnlich schwach, wenn auch die Leber keine hohe Lage hat; es kann ferner in der ganzen Brust schwach oder fast unhörbar seyn. Ist das Athmungsgeräusch überhaupt laut, so kann es auch bei hohem Stande der Leber ziemlich weit nach abwärts gehört werden. Ist das Athmungsgeräusch in der obern Lungenparthie deutlich, in der rechten Seitengegend aber unhörbar oder doch sehr schwach, so zeigt diess wohl eine Abnormität, aber nicht nothwendig eine hohe Lage der Leber.

B. Abnormitäten im Baue des Brustkorbes.

Erscheinungen aus der Perkussion. — Abweichungen in der Form des Brustkorbes bringen gleichfalls
Abweichungen im Perkussionsschalle hervor. Je flacher die
Rippe verlauft, desto weniger Resistenz kann sie leisten,
und desto lauter wird der Perkussionsschall. Durch Wölbung
der Rippen nach aussen wird ihre Resistenz vermehrt, und
an Stellen, wo die Rippen geknickt sind, und nach aussen
Vorsprünge bilden, erscheint der Perkussionsschall bedeutend
geschwächt. Darnach kann man die Veränderungen des Perkussionsschalles bei Depressionen oder Hervortreibungen,
wie sie am Thorax durch Verkrümmungen des Brustbeines,
oder Biegung der Rippen hervorgebracht werden, beurtheilen.

Die grössten Abweichungen in der Form des Thorax und seiner Kavitäten werden jedoch durch Verkrümmungen der Wirbelsäule verursacht. Dadurch erhalten nicht bloss die Rippen eine verschiedene Krümmung, sondern es wird nicht selten der Raum einer ganzen Brusthälfte sehr bedeutend verkleinert, oder es ist in der einen Brusthälfte der obere Raum gross, der untere sehr klein, während in der andern Brusthälfte das Umgekehrte Statt hat etc. Die veränderte Form des Thorax und seiner Höhle bedingt nothwendig eine veränderte Lage der enthaltenen Organe. Die Lungenparthien in den verengerten Räumen des Thorax sind komprimirt, in-

dess die in den erweiterten Räumen befindlichen sich stärker expandiren. Die jedesmal vergrösserte Leber reicht hoch hinauf, und weit nach links unter den Brustkorb, und das in seiner rechten Hälfte vergrösserte Herz nimmt gewöhnlich einen grössern Raum ein.

Erscheinungen aus der Auskultation. - Die in Folge von Abnormitäten in der Form des Thorax verkleinerten Lungenparthien geben entweder ein vesikuläres, oder nur ein unbestimmtes Athmungsgeräusch, je nachdem sie nämlich nur wenig, oder bedeutend komprimirt sind. Die ausgedehnten Lungenparthien geben gewöhnlich ein sehr deutliches vesikuläres Athmen, zuweilen ist aber das Athmungsgeräusch auch nur unbestimmt. Bei bedeutenden Abweichungen in der Form des Thorax bleibt das Athmungsgeräusch selten rein, in den komprimirten Lungenparthien entsteht gewöhnlich Zischen, Pfeisen oder Schnurren. Ich kenne keinen Fall, wo bei Verkrümmung des Rückgrats, in Folge der dadurch bedingten Kompression der Lunge allein, bronchiales Athmen, oder eine stärkere Bronchophonie vorgekommen wäre. Die bei Rückgratsverkrümmungen fast immer vorkommende Hypertrophie und Erweiterung des rechten Ventrikels bedingt in der Regel, die jedoch auch Ausnahmen hat, die Verstärkung der Tone an der dem rechten Ventrikel entsprechenden Stelle des Thorax. Noch konstanter findet sich der zweite Ton der Pulmonalarterie sehr laut, und bedeutend lauter, als derselbe Ton in der Aorta.

C. Krankhafte Zustände der Brust- und Bauchorgane.

I. Krankheiten der Bronchien.

Erscheinungen aus der Perkussion. — Die Krankheiten der Bronchien bedingen, so lange sie ohne Veränderungen im Lungenparenchym bestehen, keine Veränderungen im Perkussionsschalle. Bei der katarrhalischen und plastischen Entzündung der Bronchien, bei suffokativem Katarrh, bei chronischen Schleimslüssen, bei Erweiterung

der Bronchien, bei Blutungen aus denselben etc. ist der Perkussionsschall nicht anders, als bei ganz gesunden Lungen.

Erscheinungen aus der Auskultation. — Die katarrhalische Entzündung der auskleiden den Membran der Luftwege bedingt verschiedene auskultatorische Erscheinungen, je nachdem sie in den feinern oder grössern Bronchien, oder in beiden zugleich ihren Sitz hat, und je nachdem sie bloss eine Anschwellung herbeiführt, oder aber mit Sekretion in die Athmungswege verbunden ist.

Der niederste Grad von Anschwellung der auskleidenden Membran macht das Respirationsgeräusch stärker hörbar, und rauher. Im Beginne der katarrhalischen Entzündung, die in den feinen Bronchien ihren Sitz hat, hört man nicht selten sehr starkes rauhes vesikuläres Athmen; hat die Entzündung die grössern Bronchien ergriffen, so wird das etwa vorhanden gewesene vesikuläre Athmeu durch ein rauhes unbestimmtes Geräusch nicht selten verdeckt. Das rauhe vesikuläre, und das unbestimmte Athmungsgeräusch geht weiter in Schnurren, Pfeisen, oder Zischen über. Ist der Katarrh nicht mit beschleunigtem Athmen verbunden, so hört man zuweilen auch gleich im Anfange der Erkrankung an manchen Stellen gar nichts. Hat sich Sekretion in die Athmungswege eingestellt, so erscheint, wenn diese bloss in den Luftzellen und feinen Bronchien vorhanden ist, feinblasiges Rasseln, Zischen, oder Pfeisen, und falls das Sekretum weniger zähe ist, auch das feinblasige Rasseln allein.

Mit dem Rasseln, Zischen und Pfeisen wird entweder noch das vesikuläre Athmen gehört, und dann ist nur wenig Sekretum vorhanden, oder man hört kein Athmungsgeräusch, und diess bedeutet, falls die Respiration verstärkt ist, eine grössere Menge der secernirten Flüssigkeit. Endlich kann bei grösserer sowohl, als bei geringerer Menge von Sekretum in den Luftzellen und feinen Bronchien, alles Geräusch fehlen; im letztern Falle aber nur dann, wenn die Respiration schwach und langsam ist.

Befindet sich die secernirte Flüssigkeit in den grössern

Bronchien, so lässt sich, nach dem verschiedenen Grade ihrer Zähigkeit entweder bloss ungleichblasiges nicht hohes Rasseln, oder zugleich auch Pfeifen, oder Schnurren hören; oder man hört nur die letztern Geräusche. Nebst dem verschiedenen Rasseln, Pfeifen und Schnurren kann man aber auch das Athmungsgeräusch — das vesikuläre oder unbestimmte Athmen — vernehmen. Befindet sich die secernirte Flüssigkeit in der Trachea oder im Larynx, so lässt sich das dadurch verursachte Rasseln, Schnurren, oder Pfeifen zuweilen am ganzen Thorax hören, wobei das Athmungsgeräusch — das vesikuläre, oder unbestimmte Athmen — entweder noch hörbar, oder aber völlig verdeckt ist.

Die Stärke aller dieser in Folge der katarrhalischen Entzündung der auskleidenden Membran der Luftwege entstandenen Geräusche richtet sich hauptsächlich nach der Schnelligkeit und Grösse der Respirationsbewegungen. Das Rasseln bildet auch grössere Blasen, wenn die Respiration beschleunigt und stark ist.

Die Exspiration, die im normalen Zustande fast kein Geräusch macht, ist bei der katarrhalischen Entzündung der Bronchien hörbar, und zwar lässt sich dem Inspirationsgeräusche entsprechend entweder bloss das unbestimmte Athmen, oder verschiedenartiges Rasseln, Zischen, Pfeisen und Schnurren vernehmen. Die Exspiration kann selbst stärkere Geräusche machen als die Inspiration. Das Rasseln, Pfeisen und Schnurren wird auf ziemlich weite Distanzen gehört; man kann es aus einem einzigen grössern Bronchus auf einer ganzen Hälfte des Thorax, und aus der Trachea über dem ganzen Thorax fast gleich stark hören. Die Stimme lässt sich bei der katarrhalischen Entzündung der Bronchien nicht anders hören, als im normalen Zustande der Respirationsorgane.

Der ehronische Katarrh der Bronchien — der muköse sowohl, als der pituitöse, und der trockene — bringt dieselben auskultstorischen Erscheinungen hervor als der akute, und diese richten sich stets nach dem Grade der An-.

schwellung der Bronchien, und nach der Menge und Zähigkeit der secernirten Flüssigkeiten.

Dasselbe gilt von allen krankhaften Prozessen, wobei die auskleidende Membran der Bronchien anschwillt, oder Flüssigkeiten in den Luftwegen sich befinden. Hieher gehören der Keuchhusten, der Stickkatarrh, die Entzündung der Luftwege mit plastischem, oder eiterartigem Exsudate, die Bronchialblutung und die Blutung aus den Luftzellen.

Alle akuten Exantheme — Blattern, Masern, Scharlach etc. — der Abdominaltyphus, die Lungenentzündung, die schnellere Entwicklung, und insbesonders die Erweichung der Tuberkeln sind fast immer mit Bronchialkatarrh, d. h. mit Anschwellung der auskleidenden Membran der Bronchien und vermehrter Absonderung derselben, verbunden, und bieten aus diesem Grunde die auskultatorischen Zeichen des Lungenkatarrhs dar. Nicht so konstant erscheinen diese bei Pericarditis, Endocarditis, Carditis und Pleuritis. Dagegen sind sie bei organischen Fehlern des Herzens, bei länger bestehenden Exsudaten im Pericardium oder in der Pleura fast immer vohanden. —

Die Erweiterung der Bronchien ist von zweifacher Art; entweder ist der Bronchus in seiner ganzen Länge,
oder auch nur auf eine bestimmte Strecke gleichmässig erweitert, oder aber der Bronchus erweitert sich zu Höhlen von
verschiedener Grösse. Die erste Art der Bronchialerweiterung
bietet, so lange das umgebende Lungenparenchym lufthältig
ist, für die Auskultation keine andern Erscheinungen dar, als
der Bronchialkatarrh. Die zweite Art der Bronchialerweiterung
— die sackförmige — gibt zuweilen, und besonders wenn mehrere sackförmige Erweiterungen vorhanden sind, ein besonderes
auskultatorisches Zeichen, nämlich das grossblasige trockene
knisternde Rasseln — Knattern —; und in dem Falle, wenn die
Höhle gross und die einmündende Öffnung klein ist, geht dem
grossblasigen trockenen knisternden Rasseln ein sehr starkes

Zischen vorher. Die Exspiration ist entweder von Zischen, Pfeisen, Schnurren begleitet, oder lässt kein Geräusch vernehmen. Wenn sich der zu einem Sacke erweiterte Bronchus bis an die Oberstäche der Lunge erstreckt, so kommt zu dem Knattern gewöhnlich auch das Reibungsgeräusch an der Pleura.

Die Vergrösserung und Verdickung — Hypertrophie — der Knorpel der Bronchien, so wie die Verknöcherung dieser Knorpel habe ich, ohne gleichzeitigen völligen Schwund der Lungensubstanz, nie in dem Grade entwickelt gesehen, dass dadurch das bronchiale Athmen bedingt gewesen wäre. Diese krankhafte Veränderung erzeugt keine andern auskultatorischen Erscheinungen, als die des Katarrhs, von dem sie stets begleitet ist.

II. Krankheiten des Lungenparenchyms. 1. Pneumonie.

Die Entzündung des Lungenparenchyms bringt sowohl im Perkussionsschalle, als in den auskultatorischen Erscheinungen mannigfaltige Veränderungen hervor. Die Verschiedenheiten, die in dieser Beziehung wahrgenommen werden, haben ihren Grund in den verschiedenartigen Veränderungen, die das entzündete Lungenparenchym eingeht, in dem verschiedenen Grade der katarrhalischen Affektion, die die Lungenentzündung jedesmal begleitet, und in der verschiedenen Stärke und Schnelligkeit der respiratorischen Bewegungen.

Nicht jede besondere durch die Lungenentzündung bewirkte Veränderung des Lungenparenchyms bringt eigenthümliche Veränderungen im Perkussionsschalle und in den
auskultatorischen Erscheinungen hervor, vielmehr bietet die
entzündete Lunge, rücksichtlich der Auskultation und Perkussion nur zwei Verschiedenheiten dar; nämlich die, ob das
Lungenparenchym Luft aufnimmt, oder aber für diese unzugänglich ist. Das erstere findet im Beginn der Lungenentzündung und bei ihrer Lösung statt, das letztere bei der
vollkommenen Hepatisation.

a. Erscheinungen der Lungenentzündung, so lange der entzündete Theil noch Luft enthält. — Beginn und Lösung der Lungenentzündung. —

Erscheinungen aus der Perkussion. So lange in das Lungenparenchym keine Exsudation geschehen ist, weicht der Perkussionsschall vom normalen nicht ab; die Blutgefässe der Lunge mögen noch so sehr von Blut überfüllt seyn. Den Beweis dafür gibt nicht bloss die Beobachtung des Beginnes der Pneumonien, sondern noch auffallender und sicherer das Fortbestehen des normalen Perkussionsschalles der Brust bei Personen, welche an Verengerung des linken Ostium venosum leiden. Bei diesen hat nämlich der höchste Grad von Überfüllung der feinsten und grössten Blutgefässe der Lungen statt.

Erst mit der Ausschwitzung in das Lungenparenchym beginnen die Veränderungen im Perkussionsschalle. Sie hängen allein von dem Verhältnisse der im Lungenparenchym enthaltenen Lust zu der Menge der insiltrirten Masse ab, und richten sich durchaus nicht nach der Intensität des entzündlichen Prozesses, oder nach dessen Dauer. Die Stelle des Thorax, an welcher die durch die exsudirte Masse insiltrirte Lungenparthie anliegt, gibt, so lange diese noch Lust enthält, häusig einen mehr tympanitischen Schall, wenn die perkutirte Stelle der Brustwand nicht zu wenig biegsam ist; die Resistenz aber ist vermehrt. Der tympanitische Schall erscheint sast immer nicht ganz hell, bleibt bis zu einem nicht genau zu bestimmenden Grade der Insiltration voll, und wenn er bereits leerer wird, so kann man mit Sicherheit auf das Nahen der Hepatisation schliessen.

Das Tympanitische im Perkussionsschalle verliert sich in seltenen Fällen nicht, selbst wenn er bereits sehr leer geworden ist; in andern Fällen aber wird es sehr bald unhörbar, und man hat nur einen dumpfen, leeren Perkussionsschall. Damit aber diese Veränderungen im Perkussionsschalle eintreten, muss der infiltrirte Lungentheil wenigstens

gegen einen Zoll dick seyn, und das Plessimeter an Grösse übertreffen. Es ist mir nach Versuchen an Kadavern sehr unwahrscheinlich, dass sich von einer entzündeten Lungenparthie, welche die angegebene Grösse nicht übertrifft, Veränderungen im Perkussionsschalle und in der Resistenz unterscheiden lassen.

Das umgebende nicht infiltrirte Lungenparenchym gibt den normalen Perkussionsschall. Wenn dieser nicht besonders hell und voll ist, so kann der Schall von der infiltrirten Lungenparthie bedeutend sonorer seyn, und man erfährt nur durch die Vergleichung des Perkussionsschalles an vielen Stellen, insbesonders an den gleichartigen der beiden Seiten, welches der normale, und welches der abnorme Schall ist.

Berührt die infiltrirte Lungenparthie keine Stelle der Brustwand, so zeigt der Perkussionsschall und die Resistenz keine Abweichung vom normalen. Diese wäre nur in dem Falle denkbar, dass die ganze innere Parthie der Lunge infiltrirt, und nur von einer dünnen Lage normalen Gewebes umgeben wäre.

Erscheinungen aus der Auskultation. — Der verschiedene Grad der katarrhalischen Affektion, und die verschiedene Grösse und Schnelligkeit der respiratorischen Bewegungen kann begreißlicher Weise nur in den auskultatorischen Erscheinungen Verschiedenheiten bedingen.

Die Überfüllung der Lungengefässe mit Blut ohne Infiltration ins Parenchym, und ohne flüssiges Sekretum in die Luftwege gibt entweder die auskultatorischen Erscheinungen der normalen Beschaffenheit der Respirationsorgane, oder die einer Anschwellung der Bronchialschleimhaut.

Die Infiltration ins Lungenparenchym mit gleichzeitiger Sekretion von Flüssigkeiten in die Luftwege gibt, so lange die Luft in die entzündete Lungenparthie noch einströmen kann, dieselben auskultatorischen Erscheinungen, als der Bronchialkatarrh mit flüssigem Sekretum. Die Art des Rasselnshängt also bei der beginnenden, oder in Zertheilung begriffenen Lungenentzündung davon ab, ob die secernirte

Flüssigkeit sich bloss in den Luftzellen und seinen Bronchien besindet, oder aber sich auch in die grössern Bronchien ergossen hat, oder ob sie etwa bloss in den letztern vorhanden ist; ob serner diese Flüssigkeit mehr weniger zähe, und die Respiration mehr weniger stark und beschleunigt ist. Bei der beginnenden und in Zertheilung begriffenen Lungenentzündung kann man dem zu Folge alle Arten des Rasselns, Schnurrens, Pseisens und Zischens, mit Ausnahme der konsonirenden, und diese Geräusche verschieden mit einander in Verbindung hören, und sie beschränken sich zuweilen nicht bloss auf die Stelle des Thorax, unter welcher die entzündete Lungenparthie liegt, sondern werden auch über diese hinaus gehört, und können sich selbst über den ganzen Brustkorb ausdehnen.

Diese verschiedenen Rassel- etc. Geräusche können, wie es bei blossem Katarrh derselbe Fall ist, das Athmungsgeräusch — das vesikuläre oder unbestimmte — völlig verdecken; oder es wird dasselbe neben dem Rasseln gehört. Bei schwacher und langsamer Respiration können endlich alle Geräusche unhörbar bleiben.

Die beginnende Pneumonie erzeugt in seltenen Fällen bloss eine Infiltration in das Lungenparenchym, ohne von einer Sekretion in die Luftwege begleitet zu seyn, und in noch selteneren Fällen wird während der Abnahme der Pneumonie die in das Lungengewebe infiltrirte Substanz resorbirt, ohne dass dabei eine Sekretion in die Luftwege statt findet. In solchen Fällen hört man durchaus kein Rasselgeräusch, das Athmen ist entweder unbestimmt, oder vesikulär, oder es lässt sich Zischen, Pfeisen, oder Schnurren vernehmen. Bei vorhandener Dyspnoe sind diese Geräusche ungemein laut, das vesikuläre Athmen insbesonders kann die Respiration der Kinder an Stärke übertressen, und ist entweder rauher, als das normale, oder es ist sehr hoch, und nähert sich dadurch dem Zischen. Ist aber die Respiration langsam und schwach, so geschieht es nicht selten, dass man von der entzündeten Lungenparthie weder ein Respirationsgeräusch, noch die zischenden pfeifenden etc. Geräusche vernimmt.

b. Erscheinungen der Lungenentzündung, wenn der entzündete Theil keine Luft enthält. - Hepatisation -.

Erscheinungen aus der Perkussion. - Die Stelle der Brustwand, an welcher der hepatisirte Lungentheil anliegt, gibt einen gedämpften Perkussionsschall, und die Resistenz ist vermehrt, falls der hepatisirte Lungentheil gegen einen Zoll dick ist, und vom Plessimeter nicht bedeckt werden kann. Je dicker und ausgedehnter die hepatisirte Stelle ist, desto mehr ist der Schall gedämpft, und eine desto grössere Resistenz empfindet der perkutirende Finger. Doch kommt dabei auch die verschiedene Biegsamkeit der Brustwand in Betracht, und aus diesem Grunde lässt der Grad der Dämpfung des Perkussionsschalles und der Resistenz keine genauere Schätzung der Dicke der Hepatisation zu. Sobald der gedämpfte Perkussionsschall leer wird, lässt sich mit Sicherheit eine bedeutende Dicke der hepatisirten Lunge annehmen. Ist der Perkussionsschall an biegsamen Stellen der Brustwand vollkommen dumpf, also dem Schenkelschalle gleich, so ist die darunter liegende Lungenparthie in ihrer ganzen Dicke hepatisirt.

- Die an den hepatisirten Lungentheil gränzende Lunge ist entweder infiltrirt, aber dabei noch lufthältig; oder sie ist nicht infiltrirt, und normal ausgedehnt, oder aber sie ist über das Normale von Luft ausgedehnt, also emphysematös. Das letztere geschieht insbesonders häufig an den Rändern der Lappen. Die von der Hepatisation entfernten Lungentheile können ebenfalls emphysematös oder ganz normal, oder aber in Folge der Entzündung mit einer verschieden konsistenten Flüssigkeit oder mit blossem Serum infiltrirt, und dabei noch lufthältig seyn. Von diesen verschiedenen Umständen hängt die Verschiedenheit des Perkussionsschalles an den Stellen des Thorax ab, unter welchen der hepatisirte Lungentheil nicht liegt. Der unmittelbar an die Hepatisation

gränzende emphysematöse Lungentheil gibt gewöhnlich einen tympanitischen Schall, während das Emphysem, das entfernt von der Hepatisation liegt, den Perkussionsschall nicht tympanisch macht. Die infiltrirten, jedoch noch lufthältigen Lungenparthien machen, wie bereits gesagt, den Perkussionsschall da, wo sie an der Brustwand liegen, häufig ebenfalls tympanitisch; die normalen Lungenparthien geben den gewöhnlichen Schall.

Indem aber der normale Perkussionsschall kein bestimmter ist, und nach den verschiedenen Gegenden des Thorax und bei verschiedenen Individuen sehr variirt, so folgt daraus, dass man auch bei Lungenhepatisation gewöhnlich den Perkussionsschall an vielen Stellen des Thorax insbesonders an den gleichnamigen der beiden Seiten vergleichen muss, um das Normale von dem Abnormen zu unterscheiden, und dass man, ohne einen Vergleich zu machen, nur den ganz dumpfen Perkussionsschall an solchen Stellen, die im normalen Zustande der Respirationsorgane nie einen solchen geben können, als abnorm sicher erkennen kann.

Erscheinungen aus der Auskultation. - Ist die hepatisirte Stelle so gross, dass sie wenigstens einen der grössern Bronchialzweige enthält; ist dieser Bronchialzweig nicht mit Flüssigkeit, oder einem festen Exsudate oder Blutcoagulum gefüllt, also nothwendiger Weise lufthältig; ist ferner die Kommunikation dieser Luft mit der Luft in der Trachea nicht abgesperrt, so konsonirt die Stimme des Kranken in dem Bronchus, und lässt sich an der Stelle des Thorax, die dem Bronchus am nächsten liegt, als Bronchophonie stark oder schwach - hören. Die Erscheinungen während der Respiration sind verschieden, je nachdem im Larynx, in der Trachea, oder in einem Bronchus, der die Luft auf dem Wege von der Trachea bis zur Einmündung in den von der Hepatisation umgebenen Bronchus durchstreichen muss, das blosse Respirationsgeräusch, oder aber nebst diesem auch Rasseln, Pfeifen, Zischen oder Schnurren, oder endlich nur eines dieser letztern Geräusche, oder mehrere derselben zugleich vorhanden sind. Alle diese Geräusche können nämlich in dem, vom hepatisirten Gewebe umgebenen Bronchus eben so, als die Stimme, konsoniren, und aus diesem Grunde an derselben Stelle des Thorax, wo sich die Bronchophonie hören lässt, deutlich hörbar seyn, obgleich sie entfernt davon entstehen. Man wird also bei der Hepatisation unter den früher bezeichneten Umständen entweder bloss bronchiales Athmen, oder nebst diesem auch konsonirendes Rasseln, Pfeifen, Zischen, Schnurren, oder eines der letztern Geräusche allein, oder mehrere derselben zugleich hören können, und alle diese Geräusche werden um so stärker und deutlicher seyn, je stärker, tiefer und schneller die Respiration selbst ist.

Dass die Stimme, das Athmungsgeräusch, das Rasseln Pfeisen, Schnurren etc. konsonirt, beruht zwar auf einem und demselben Grunde, doch ist bei vorhandener Bronchophonie nicht nothwendig bronchiales Athmen, oder hohes helles konsonirendes - Rasseln, oder konsonirendes Pfeifen, Schnurren etc. zugegen, und umgekehrt hört man bei vorhandenem bronchialen Athmen etc., nicht immer Bronchophonie. Der Grund davon ist, dass in einem bestimmten Raume nicht jeder. Schall konsoniren kann. Man hört somit zuweilen selbst bei starker Bronchophonie ein unbestimmtes - nie ein vesikuläres - Athmen; oder man hört dumpfes Rasseln, oder Schnurren und Pfeisen etc.; in andern Fällen dagegen ist das bronchiale Athmen, oder das konsonirende Rasseln, Pfeifen, Schnurren etc. sehr deutlich, obgleich keine Bronchophonie gehört wird. Nicht minder kann bei vorhandener bronchialer Respiration sich ein dumpfes Rasseln etc. und beim konsonirenden Rasseln ein unbestimmtes Athmen hören lassen.

Ist die hepatisirte Stelle nicht so gross, dass sie wenigstens einen der grössern Bronchialzweige enthält; oder sind
bei hinreichender Ausdehnung der Hepatisation die darin verlaufenden grössern Bronchien mit Flüssigkeit, oder festen
Stoffen gefüllt, oder ist die Kommunikation der in diesen
Bronchien enthaltenen Luft mit der Luft in der Trachea durch
Schleim, Blut etc. abgesperrt, so kann innerhalb der Hepati-

sation keine Konsonanz statt finden; man kann weder Bronchophonie, noch bronchiales Athmen, noch hohes helles Rasseln, noch konsonirendes Schnurren, Pfeifen, Zischen vernehmen. Die Stimme des Kranken ist in einem solchen Falle an der dem hepatisirten Lungentheil entsprechenden Stelle des Thorax entweder ganz unhörbar, oder nur als dumpfes Murmeln zu vernehmen, das Athmungsgeräusch hört man entweder nicht, oder unbestimmt, das etwa vorhandene Rasseln ist nicht hell, und das etwa vorhandene Schnurren, Pfeifen, Zischen nicht konsonirend.

Durch Husten, oder auch durch eine ohne Husten erfolgende, Expectoration können die in den, innerhalb der Hepatisation verlaufenden, Bronchien enthaltenen Flüssigkeiten, oder festen Stoffe weiter befördert, oder es kann die, durch Schleim unterbrochene Kommunikation der genannten Bronchien mit der Trachea, hergestellt werden. Daher kommt es, dass man nicht selten nach einem Hustenanfalle, oder nach der Expectoration die Bronchophonie, das bronchiale Athmen, das konsonirende Rasseln, Pfeifen etc. hört, da doch einen Augenblick zuvor gar nichts von allen diesen zu hören war.

Die auskultatorischen Erscheinungen sowohl, als die, welche die Perkussion gibt, bleiben sich gleich, die Hepatisation mögerothbraun oder grau, die Lunge dabei hart oder weich, zähe oder mürbe seyn. Ich habe mehrere Male an Lungenentzündung Erkrankte untersucht, bei denen nach dem Tode frisch gebildete Abscesse in den Lungen sich vorfanden. Ich habe durch die Auskultation und Perkussion in keinem einzigen Falle einen solchen Abscess erkannt. In allen Fällen waren die Abscesse, obgleich sie mit Bronchien kommunicirten, mit Eiter oder Jauche gefüllt. Es dauert immer längere Zeit, und die Wandung des Abscesses muss vorher hart geworden seyn, bevor die Sekretion im Abscesse sich so beschränkt, dass er, einmal entleert, sich nicht sogleich wieder füllt.

Es muss hier noch erwähnt werden, dass rücksichtlich der Erscheinungen aus der Auskultation und Perkussion zwischen dem Zustande der entzündeten Lunge, wo sie noch etwas Luft enthält, und zwischen dem, wo sie keine Luft mehr aufnehmen kann, keine bestimmte Gränze festzusetzen ist; sondern dass in vielen Fällen die Perkussion und Auskultation, oder bloss eine dieser Untersuchungsmethoden die Zeichen der Hepatisation zeigt, obgleich noch etwas Luft in die entzündete Lungenparthie eintritt. Dieses erklärt sich leicht, wenn man bedenkt, dass zur Hervorbringung der Konsonanz nur ein, oder einige grössere Bronchien auf mehrere Linien vom hepatisirten Lungenparenchym umgeben seyn müssen, und dass der Perkussionsschall an den Stellen des Thorax, die schon im normalen Zustande denselben gedämpft geben, bei Infiltration des unterliegenden Lungentheils vollkommen dumpf werden kann, wenn auch dieser Lungentheil nicht ganz luftleer ist.

An den Stellen des Thorax, unter denen die hepatisirte Lungenparthie nicht befindlich ist, gibt die Auskultation nicht immer dieselben Erscheinungen, aus dem Grunde, weil die nicht hepatisirten Lungentheile entweder ganz normal, oder in verschiedenem Grade infiltrirt, und die in denselben verlaufenden Bronchien entweder gesund, oder aber vom Katarrh, mit und ohne Absonderung, befallen seyn können, und weil die Respiration in den mannigfaltigsten Graden schnell und tief, oder langsam und klein vor sich gehen kann. Man kann darum an den Stellen des Thorax, unter denen die hepatisirte Lunge nicht liegt, ein sehr lautes, oder ein schwaches vesikuläres Geräusch, das unbestimmte Athmen, gross- und kleinblasiges nicht konsonirendes Rasseln, Pfeifen, Schnurren und Zischen hören. Die Stimme gibt keine Bronchophonie.

c. Erscheinungen der auf einen kleinen Umfang beschränkten Entzündung.

Die Entzündung des Lungenparenchyms, die sich auf einen kleinen Umfang beschränkt — die lobuläre Pneumonie — macht im Perkussionsschalle keine Abweichung vom nor-

malen, sie mag übrigens bloss eine Stelle, oder aber sehr zahlreiche Stellen befallen. Die Auskultation gibt fast jedesmal die Erscheinungen des Katarrhs, bald auf einzelne Stellen beschränkt, bald über den ganzen Thorax ausgedehnt, weil dieser stets eine solche Entzündung begleitet.

d. Erscheinungen der in Folge der Lungenentzündung zuweilen zurückbleibenden Induration des Lungenparenchyms, der darin sich bildenden Exkavationen, oder Erweiterungen der Bronchien.

Die indurirte Stelle gibt für die Auskultation und Perkussion dieselben Erscheinungen, als die Hepatisation, und es gilt hier alles, was dort über die Umstände gesagt wurde, durch welche diese Erscheinungen so bedeutende Modifikationen erleiden. Haben sich in der indurirten Parthie Exkavationen gebildet und entleert, so wird bei einiger Grösse derselben der Perkussionsschall wieder voller, und weniger dumpf, und wenn die Exkavation der Grösse des Plessimeters sich nähert, und von der Brustwand nicht sehr entfernt ist, so lässt sich ein tympanitischer leerer Schall vernehmen, der bei der Zunahme der Grösse der Höhle immer deutlicher und voller wird. In seltenen Fällen gibt die Perkussion das Geräusch des gesprungenen Topfes, und nur bei sehr grossen Exkavationen den metallischen Klang.

Die Auskultation gibt an den Stellen, welche den exulcerirten Lungenparthien entsprechen, bald Bronchophonie,
bald nur ein dumpfes Murmeln, oder gar keine Spur der
Stimme; das Respirationsgeräusch kann bronchial, oder unbestimmt, oder ganz unhörbar seyn; es ist entweder rein, oder
mit Rasseln, Pfeifen und Schnurren aller Art verbunden; in
sehr grossen Exkavationen kann als Wiederhall der Stimme,
des Athmens, des Rasselns, des Pfeifens metallisches Klingen, oder amphorisches Sausen sich hören lassen. Wenigstens
eben so häufig, als in einer nach Pneumonie zurückbleibenden Verhärtung sich Exkavationen durch Exulceration bilden, entsteht darin Dilatation der Bronchien. Diese Veränderung hat keine andern auskultatorischen Erscheinungen,

als die, welche der Induration des Lungenparenchyms zukommen.

e. Die auskultatorischen Erscheinungen bei Pneumonien nach Lännece

Lännec gibt eine von den hier angeführten sehr abweichende Schilderung der auskultatorischen Erscheinungen bei Pneumonien. - Das knisternde Rasseln ist nach ihm das pathognomonische Zeichen der entzündlichen Anschoppung der Lunge, es ist von dem ersten Augenblick der Entzündung an vorhanden, und lässt neben sich das respiratorische Geräusch vernehmen. Die Ausdehnung, in welcher das Stethoskop das knisternde Rasseln hören lässt, soll die des entzündeten Lungentheiles angeben, der oft kaum grösser als der Durchmesser des Stethoskops ist. In der Umgebung der entzündeten Stelle wird das Knistern dunkler, und wie aus der Ferne gehört, und zwei oder drei Zoll entfernt gar nicht mehr. In dem Masse, als die Anschoppung zunimmt, und sich dem Hepatisationsgrade nähert, soll das knisternde Rasseln feuchter, ungleichblasiger und seltener werden, wobei zugleich auch das respiratorische Geräusch sich vermindert, und zuletzt schwindet. Mit dem Eintritt der Hepatisation soll das Knistern ganz aufhören.

Lännec will durch das knisternde Rasseln nicht bloss die ausgedehnteren, und an der Obersläche der Lunge besindlichen Entzündungen, sondern auch die centralen und auf einen kleinen Umfang beschränkten — von der Grösse einer Mandel — erkannt haben, und zwar glaubte er überdiess bestimmen zu können, dass sie central und klein sind. Er gibt an, dass bei einer centralen nicht umfänglichen Pneumonie das knisternde Rasseln tief, und an einer umschriebenen Stelle, oberslächlich aber das Respirationsgeräusch rein, und zuweilen selbst kindlich gehört werde, und dass in dem Masse, als die Pneumonie sich der Obersläche nähere, das Respirationsgeräusch an Dicke verliere. Lännec will endlich das knisternde Rasseln selbst durch das geräuschvollste

Schleimrasseln der Agonie, oder des suffokativen Katarrhs hindurch gehört, und dadurch centrale auf einen kleinen Umfang beschränkte Pneumonien erkannt haben.

Die auskultatorischen Erscheinungen der Hepatisation sind nach Lännec das Fehlen des respiratorischen Geräusches und des Knisterns, in manchen Fällen die Bronchophonie. Die Bronchophonie soll aber bei centralen Lungenentzündungen entweder ganz fehlen, oder undeutlich seyn, und erst dann zum Vorschein kommen, wenn die Hepatisation sich der Lungenobersläche nähert. Mit der Bronchophonie soll gleichzeitig auch immer die Bronchialrespiration und der Bronchialhusten vorkommen, nur die Fälle der centralen Lungenentzündung ausgenommen, wo man die Bronchialrespiration und den Bronchialhusten zwar in der Tiefe hört, die Bronchophonie aber nicht vernehmen kann, indem die Obersläche der Lunge noch für die Lust durchgängig, oder bloss angeschoppt ist, also den Schall nicht gut leiten kann. Wenn Rasseln in den Bronchien gleichzeitig mit der Bronchialrespiration etc. vorkommt, so wird es durch die Hepatisation weit stärker, und weit wahrnehmbarer. An der Wurzel und der Spitze der Lunge soll die Bronchophonie der Bruststimme beinahe gleich kommen, und dann oft von dem Gefühle, als werde in das Ohr geblasen, unter den geeigneten Umständen von dem verschleierten Hauche, begleitet seyn.

Endlich soll, so lange die Entzündung zunimmt, das knisternde Rasseln täglich in den Umgebungen der hepatisirten Parthie, oder an neuen Stellen gehört werden, und so den Zeichen der Hepatisation als Vorläufer dienen.

Die Infiltration des Eiters in das Lungengewebe gibt nach Lännec keinneues Zeichen, so lange dieser Eiter fest ist; bei der Erweichung desselben hört man in den Bronchien ein mehr weniger deutliches schleimiges Rasseln, die kavernöse Respiration und Bruststimme. Ist der Abscess in der Oberstäche der Lunge, so hat man das Gefühl, als werde ins Ohr geblasen, und wenn irgend eine Parthie der Wandung des Abscesses dünn oder weich ist, das Gefühl des

verschleierten Hauches. Es bedarf nach Lännec nur einiger Übung, um die rein bronchialen Wiederhalle von den kavernösen zu unterscheiden. Die letztern finden in einem offenbar umschriebenen Raume statt, der weiter erscheint, als die grössten Bronchialstämme. Die Intensität des Rasselns, welches sich mit allen den andern Zeichen verbindet, wenn der Abscess noch halb voll ist, die Polichinelle-Sprache, die im nämlichen Falle die Bruststimme begleitet, und die geringe Ausdehnung der Lungenentzünduug, die immer partiell war, oder es in Folge der im übrigen Theile der Lunge eingetretenen Zertheilung geworden ist, sollen ebenfalls lauter Zeichen seyn, die in den meisten Fällen keinen Zweifel übrig lassen.

Über die Zeichen der Zertheilung liest man Folgendes: Wenn die Zertheilung beginnt, bevor die Lungenentzündung in den Zustand der Hepatisation übergegangen ist, so wird das knisternde Rasseln täglich weniger bemerkbar, und das natürliche Respirations- oder Lungengeräusch wird immer deutlicher, und endlich nur allein wahrgenommen. Die Zertheilung der bis zum Hepatisationsgrade gediehenen Lungenentzündung kündigt sich durch die Wiederkehr des knisternden Rasselns an; dieses Zeichen gewährt volle Gewissheit. Ich habe es bei keinem Pneumoniker, den ich Tag für Tag beobachtet habe, fehlen sehen, ich bezeichne es gewöhnlich mit dem Namen zurückgekehrtes knisterndes Rasseln (Râle crépitant de retour). Mit diesem knisternden Rasseln verbindet sich allmälig das Geräusch der Lungenausdehnung, was täglich deutlicher wird, und endlich nur noch allein vorhanden ist.

Das knisternde Rasseln kündigt ebenfalls die Zertheilung der bis zum Grade von eitriger Infiltration gestiegenen Lungenentzündung an, allein es geht ihm gewöhnlich ein schleimiges, oder fast schleimiges Rasseln als Anzeichen der Erweichung eines Theils des Eiters, voraus. Das Geräusch der Lungenausdehnung verbindet sich in diesem Falle weit später, als in dem vorigen, mit dem knisternden Ras-

seln. Nach wenigen Tagen und manchmal nach wenigen Stunden wird das knisternde Rasseln fast knisternd (sous-crépitant), und kündiget das Erscheinen des Oedems an, welches gewöhnlich die Zertheilung der Lungenentzündung in diesem Grade begleitet. Das Nämliche geschieht, wenn das Oedem während der Zertheilung der beiden andern Grade der Lungenentzündung eintritt. —

Über die Bedeutung der auskultatorischen Erscheinungen, die Lännee als pathognomonisch für die Pneumonie aufstellt, habe ich bereits meine Ansicht geäussert; hier soll nur noch die Folgenreihe, in welcher Lännec die auskultatorischen Erscheinungen der Pneumonie anführt, berücksichtigt werden. Ich habe vergeblich mich bemüht, diese Aufeinanderfolge der auskultatorischen Erscheinungen wenigstens in der Mehrzahl der Fälle zu finden. Wenn man den Begriff des knisternden Rasselns nach Lännec nimmt, der es als ein feinblasiges gleichblasiges Rasseln beschreibt, so wird man den Anfang mehrerer Pneumonien beobachten müssen, bevor man einmal ein solches Rasseln trifft. Viel häufiger ist gleich anfangs in der Pneumonie ein ungleichblasiges Rasseln, also Lännec's Schleimrasseln, oder auch Schnurren und Pfeisen vorhanden. In selteneren Fällen beginnt die Pneumonie ohne alles Rasselgeräusch. Die entzündete Stelle gibt unbestimmtes oder vesikuläres, selbst sehr lautes Athmen, das endlich in bronchiales sich verwandelt.

So lange die Hepatisation fortbesteht, kann man das bronchiale Athmen ohne alles Rasseln, oder mit konsonirendem Rasseln, Pfeisen und Schnurren, oder mit diesen Geräuschen, ohne dass sie konsonirend sind, hören; oder man vernimmt ein unbestimmtes Athmen mit und ohne Rasseln, Pfeisen etc.; oder man hört gar kein Inspirationsgeräusch, kein Rasseln. Das konsonirende Rasselgeräusch kann ziemlich kleinblasig seyn, und ahmt, wenn es trockener erscheint, das Knistern nach, oder vielmehr die Benennung Knistern würde nicht selten für konsonirende Rasselgeräusche sehr passend gewählt seyn. Es wäre schwer zu sagen, ob das

Rasseln, welches vor der Hepatisation gehört wird, oder aber konsonirende Rasselgeräusche bei vollkommener Hepatisation häufiger für das Knistern Lännec's genommen worden sind.

Die Lösung der Pneumonie, weit entfernt, mit einem knisternden Rasseln zu beginnen, ist vielmehr in der Mehrzahl der Fälle von dem verschiedenartigsten Rasseln, oder auch Schnurren, Pfeifen etc. begleitet. In seltenen Fällen geht die Lösung der Pneumonie vollkommen zu Ende, ohne dass ein Rasselgeräusch sich hören lässt; die bronchiale Respiration wird unbestimmt, und endlich vesikulär.

Das knisternde Rasseln, oder wenigstens ein Rasseln, das diesem nahe kommt, lässt sich hauptsächlich bei der Lösung nicht heftiger Pneumonien hören, und erscheint zuweilen auch in heftigeren Fällen bei weit vorgeschrittener Lösung, nachdem die Sekretion sparsamer geworden ist. Das vesikuläre Athmen kommt in der bei weitem grössern Zahl der Fälle nicht sogleich mit der Lösung der Pneumonie vor. Gewöhnlich hört man noch lange Zeit, nachdem alle Funktionen vollkommen zur Nerm zurückgekehrt sind, und der Perkussionsschall nichts Krankhaftes mehr zeigt, entweder bloss ein unbestimmtes Athmen, oder Zischen, Schnurren, Pfeifen, Rasseln. Die Auskultation gibt aber auch keine andern Erscheinungen, wenn die Lösung nur unvollkommen erfolgt ist.

Aus dieser Darstellung geht hervor, dass die auskultatorischen Erscheinungen für sich allein nie im Stande sind, die Pneumonie erkennen zu lassen, dass ferner die Auskultation in der Pneumonie nicht selten ganz indifferente Erscheinungen gibt, und dass nur die Bronchophonie, das bronchiale Athmen, und die übrigen konsonirenden Geräusche, so wie anderntheils das vesikuläre Athmen, und das feinblasige gleichblasige Rasseln die Erscheinungen sind, welche über die Beschaffenheit des Lungenparenchyms einen nähern Aufschluss ertheilen können, als man ihn nach der Zusammenstellung aller übrigen Erscheinungen erlangen könnte.

2. Brand der Lunge.

Er kann sich, wie bekannt, in einer entzündeten Lunge entwickeln, oder er tritt ein, ohne dass eine Lungenentzündung vorausgegangen ist, und kann sich zu verschiedenen Zuständen der Lunge gesellen. Im ersten Falle gibt die Perkussion und Auskultation die Erscheinungen der Lungenentzündung, im letztern die eines Katarrhs, oder des krankhaften Zustandes, zu dem der Brand hinzu kam. Für den Brand der Lunge gibt die Auskultation und Perkussion kein Zeichen.

Lännec behauptet, die Zeichen aus der Auskultation und Perkussion seyen für den Brand der Lunge fast dieselben, als für die Lungenabscesse, nur werde das knisternde Rasseln seltener, als in der gewöhnlichen Lungenentzündung gehört, und diess unstreitig desshalb, weil man, da der Beginn der Krankheit gewöhnlich sehr hinterlistig ist, nicht immer in den ersten Tagen an die Erforschung der Brust denkt. Er will ferner beobachtet haben, dass das knisternde Rasseln erst nach der Ertödtung des Schorfes zum Vorschein kam, und folglich die Bildung des entzündlichen Kreises, der ihn lösen musste, andeutete. Später soll das kavernöse Rasseln kommen, und mit der Entleerung der Höhle die Bruststimme wahrzunehmen seyn. Diese soll sich in den brandigen Höhlen weit reiner und stärker hören lassen, als in den Lungenabscessen. Sie soll nichts von einer Art Flattern, wie es in den Wandungen der Lungenabcesse statt zu finden scheint, und ihre Zerstörung beurkundet, zeigen; sie soll eben so selten vom verschleierten Hauche begleitet seyn, wie dieser bei den Lungenabscessen gewöhnlich ist.

3. Lännec's Lungenschlagfluss - apoplexie pulmonaire -.

Ich glaube nicht, dass dieser Name passend gewählt ist, indem das, was er bezeichnen soll, eine anatomische Veränderung der Lunge ist, das Wort apoplexie aber von jeher nur zur Bezeichnung eines Komplexes von Funktionsstörungen gebraucht wurde, ohne dass man dabei auf die organischen Veränderungen reslektirte. Unter Lännec's Apoplexie der Lunge werden also nicht etwa ähnliche Funktionsstörungen der Lunge, wie sie bei Apoplexie in der alten Bedeutung in den Funktionen des Gehirns statt fanden, verstanden. Man begreist unter diesem Namen einen Erguss von Blut in das Lungenparenchym, in Folge dessen dasselbe so dicht und schwer, wie eine hepatisirte Stelle geworden ist, an der Schnittsläche ein körniges Ansehen hat, und eine rothbraune Farbe, oder ganz die Farbe des venösen Blutes zeigt.

Diese krankhafte Veränderung des Lungenparenchyms kommt nicht oft vor, und die bei weitem wenigsten Fälle von Bluthusten haben ihren Grund in einem Blutaustritte ins Lungenparenchym. Zuweilen hat der Blutaustritt ins Lungenparenchym statt gefunden, ohne dass sich Bluthusten zeigt. Die mit gestocktem Blut infiltrirten Stellen haben in den wenigsten Fällen einen solchen Umfang, dass der Perkussionsschall eine Veränderung erleiden könnte.

Die auskultatorischen Erscheinungen sind Rasseln, oder Pfeifen, Schnurren, und nur in dem äusserst seltenen Falle von grosser Ausdehnung der blutig infiltrirten Lungenparthie kann Bronchophonie, bronchiales Athmen etc. gehört werden.

Nach Lännee gibt die Auskultation zwei Hauptzeichen für die hämoptoische Anschoppung des Lungenparenchyms. Das erste ist das Fehlen der Respiration in einem nicht sehr ausgedehnten Theile der Lunge; das zweite ein knisterndes Rasseln, welches in der Umgebung der Stelle, wo die Respiration nicht gehört wird, vorhanden ist, und welches eine leichte blutige Infiltration andeutet. Dieses knisternde Rasseln soll nur im Beginn der Krankheit statt finden, und später verschwinden. Durch die beiden Zeichen soll man im Stande seyn, die Blutung aus dem Lungengewebe von einer Bronchialblutung zu unterscheiden. Ich habe unzählige Male bei Hämoptysis nach dem knisternden Rasseln

geforscht, ich habe nur wenige Kranke gefunden, wo es vorkam. Einige davon starben, und man hatte kurz vor dem Tode an verschiedenen Stellen dieses knisternde Rasseln gehört. Nie fand sich in der Leiche eine Spur von Lungenschlagsluss. Es ist möglich, dass beim Blutaustritt ins Lungenparenchym knisterndes Rasseln zuweilen erscheint, ich habe aber bisher immer ein anderes Rasseln, oder Pfeisen und Schnurren bei dieser Assektion angetrossen.

4. Lungenödem.

Das Lungenödem findet sich bei Leichenöffnungen überaus häufig. Es kann keinem Zweifel unterliegen, dass das Lungenödem nicht immer erst in der Agonie sich bildet, obgleich es in der Mehrzahl der Fälle doch nur kurz vor dem Tode zu entstehen scheint. Wenn das infiltrirte Serum nicht alle Luft aus den Luftzellen verdrängt hat - was der gewöhnliche Fall ist so ist der Perkussionsschall mehr tympanitisch, als im normalen Zustande der Lunge. Die Auskultation zeigt verschiedenartiges Rasseln-jedoch kein konsonirendes-, Schnurren, Pfeisen, Zischen, etc. Ich habe einige Male in Fällen, wo die Leichenöffnung keinen Zweifel übrig liess, dass das Lungenödem schon längere Zeit vor dem Tode bestanden hatte, noch wenige Stunden vor dem Tode das Respirationsgeräusch deutlich vesikulär, sogar sehr laut, ohne alles Rasseln, Pfeifen und Schnurren gehört. Das vesikuläre Geräusch war aber höher, und näherte sich dem Zischen. Völlig luftleer glaube ich die ödematöse Lunge nie gesehen zu haben, ausser wenn sie gleichzeitig komprimirt war.

Lännec gibt für das Lungenödem zwei auskultatorische Zeichen: Die Respiration wird weit weniger gehört, als man es vermöge der Anstrengungen, mit denen sie vor sich geht, und der grossen Erweiterung des Brustkastens, wovon sie begleitet ist, erwarten sollte. Zugleich hört man, wie bei der Lungenentzündung im ersten Grade, ein leichtes Knistern, was dem Rasseln ähnlicher ist, als dem natürlichen Geräusche der Respiration. Dieses knisternde, oder fast

knisternde Rasseln ist nicht so trocken, wie bei der Lungenentzündung im ersten Grade. Die Blasen desselben scheinen
grösser zu seyn, und geben dem Ohre eine deutlichere Empfindung von Feuchtigkeit. Diese beiden von Länne cangeführten Erscheinungen können zuweilen bei Lungenödem
vorkommen, sind aber weit entfernt, dasselbe zu charakterisiren.

5. Lungenemphysem.

Lännec unterscheidet das vesikuläre oder eigentliche Lungenemphysem, und das Interlobularemphysem. Das erste besteht in einer Vergrösserung der Lungenzellen, ohne dass dieselben zerreissen, das letztere wird aber durch den Austritt der Luft aus gerissenen Luftzellen oder Bronchien in den, die Luftzellen verbindenden, Zellstoff erzeugt, und stellt Luftblasen von verschiedener Grösse dar, die sich innerhalb der Lunge, oder an der Oberfläche derselben befinden. Dass eine Lustblase im Lungenparenchym durch Berstung einer Luftzelle, oder eines sehr feinen Bronchus entstanden sey, kann man, wie ich glaube, nur in dem Falle mit Bestimmtheit sagen, wenn die Luftblase mit Luftzellen oder Bronchien nicht kommunicirt, wenn sich also die Luft aus ihr nicht herausdrängen lässt. Eine, wenn auch beträchtlich grosse, Luftblase, die mit einem Bronchus kommunieirt, kann durch Ausdehnung einer Luftzelle entstanden seyn, indem die Wandungen derselben gleichzeitig dicker geworden sind. Es ist sogar unwahrscheinlich, dass die durch Berstung in das Zellgewebe der Lunge ausgetretene Luft mit Bronchien wieder in Verbindung tritt. Das vesikuläre oder eigentliche Lungenemphysem kann sich über beide Lungenflügel erstrecken, oder es ist nur in einem Lungenflügel, oder es beschränkt sich auf einen Lappen, oder auf eine Parthie des Lappens, oder endlich, es sind nur einzelne Luftzellen stärker ausgedehnt. Das Interlobularemphysem bildet Bläschen von der Grösse eines Hirsekorns, und Blasen von der Grösse eines Ganseies und darüber.

Bei dem vesikulären Lungenemphysem erscheint entweder die Zahl der Lungenzellen nicht vermindert, oder aber die Vergrösserung der Luftzellen ist die Folge der Verminderung derselben an der Zahl. Der erste Fall, nämlich Vergrösserung der Luftzellen ohne Verminderung derselben an der Zahl, kann in einer ganzen Lunge, oder in einem ganzen Lungenflügel nicht vorkommen, wenn nicht der Brustraum über das Normale erweitert ist, und umgekehrt, die Erweiterung des Brustraumes über das Normale bedingt jedesmal Lungenemphysem, wenn sie nicht durch Vorhandenseyn von Luft, Gas, Flüssigkeit, oder festen Körpern in der Pleurahöhle oder im Herzbeutel hervorgebracht ist. Der Brustraum kann nur durch stärkere Wölbung des Brustkorbes, hauptsächlich aber durch das Herabtreten des Zwerchfells über das Normale erweitert werden. Zeigt also die Perkussion, dass sich die Lunge nach abwärts nahe an den Rand des Thorax erstreckt, so ist gewiss vesikuläres Lungenemphysem vorhanden; und dieses erstreckt sich über den ganzen Lungenflügel, wenn der Perkussionsschall in der ganzen Brusthälfte gleichmässig sehr voll ist; es findet sich nur in der untern Lungenparthie vor, wenn am obern Theile des Brustkorbes der Perkussionsschall weniger voll etc. wahrgenommen wird. Das vesikuläre Lungenemphysem macht den Perkussionsschall nur in dem Falle tympanitisch, wenn die stärker ausgedehnte Lungenparthie an ein völlig luftleeres Lungenparenchym gränzt, wie diess bei Hepatisation und Infiltration mit Tuberkelmaterie nicht selten vorkommt, und wenn die emphysematöse Lunge ihre Kontraktionskraft völlig verloren hat.

Diese Fälle abgerechnet, erhält man vom Lungenemphysem keinen tympanitischen Perkussionsschall, es mag übrigens bei Vergrösserung, oder bei normaler Grösse des Brustraumes, oder bei Verkleinerung desselben vorkommen. Der Perkussionsschall ist dann zuweilen sehr voll und hell, zuweilen nicht mehr, als im normalen Zustande, und diese Verschiedenheit ist zum Theil in der verschiedenen Beschaffenheit der Brustwand begründet. Die stark ausgedehnte und gespannte

Brustwand — wie sie jedesmal seyn muss, wenn die Luft am Austreten aus der Lunge gehindert, und dadurch die Lunge an die Brustwand gepresst ist — gibt eine grössere Resistenz, zeigt jedoch eine grössere Biegsamkeit, erscheint also elastischer, als im normalen Zustande.

Die Auskultation kann bei vesikulärem Lungenemphysem, es mag weit verbreitet, oder partiell seyn, vesikuläres, oder unbestimmtes Athmen ohne jedes andere Geräusch geben. Diess findet dann statt, wenn die über die Norm ausgedehnte Lunge ihre Kontraktionskraft nicht verloren hat, also am häufigsten bei frisch entstandenem Lungenemphysem, wie es z. B. die hepatisirten Stellen umgibt, wobei überdiess die einmündenden Bronchien vom Katarrh nicht befallen seyn dürfen. Es ist diess aber nicht der gewöhnliche Fall; man hört vielmehr beim vesikulären Lungenemphysem wegen des fast konstant vorhandenen Katarrhs die verschiedensten Arten von Rasseln, Pfeifen, Schnurren etc., die konsonirenden ausgenommen. Nur dann, wenn einzelne Blasen sehr bedeutend - bis zur Grösse einer Bohne - ausgedehnt sind, vorzüglich aber in Fällen, wo eine ganze Lungenparthie aus übermässig ausgedehnten - linsen - bis bohnengrossen etc. - Luftzellen besteht, lässt sich ein besonderes trockenes grossblasiges Rasseln - dem Schall ähnlich, den man durch Schnalzen mit der Zunge hervorbringt - gegen das Ende der Inspiration vernehmen. Diesem Klacken geht entweder ein Zischen, oder Pfeisen, oder ein anderes Rasseln vorher, oder man hört gar kein anderes Geräusch. Die Exspiration kann unhörbar seyn, oder sie gibt Zischen, Pfeifen, Schnurren, Rasseln etc.

Das interlobuläre Emphysem — nämlich Luftblasen, welche im Lungenparenchym, oder auf der Oberstäche der Lunge sich besinden, und mit keinem Bronchus kommuniciren — bringt im Perkussionsschalle keine Abweichung vom Normalen hervor. Die Auskultation liesert ebenfalls keine Erscheinung, die diesen Luftblasen eigenthümlich wäre. Die innerhalb der

Lunge befindlichen Luftblasen können kein Geräusch verursachen, weil sie sich nirgends reiben; die an der Oberstäche der Lunge sitzenden sind von der Lungenpleura bedeckt, und nur in dem Falle, als diese weniger glatt ist, kann bei den Bewegungen der Lunge durch Reibung an der Costalpleura ein Geräusch — Lännec's auf- und absteigendes Reiben — verursacht werden, und zwar um so leichter, je mehr die Lustblasen über die Lungenoberstäche erhaben sind. Lännec legt bei dem noch nicht sehr weit gediehenen Lungenemphysem viel Gewicht auf den Umstand, dass der Perkussionsschall sehr hell, dabei aber das Athmungsgeräusch sehr schwach, oder völlig verschwunden ist. Ich habe weder die eine noch die andere Erscheinung konstant gefunden.

6. Hypertrophie der Lunge.

Die Lunge ist hypertrophisch, wenn die Wandungen der Luftzellen dicker geworden sind, ohne an Zahl abgenommen zu haben. Die Luftzellen einer hypertrophischen Lunge können weniger Luft aufnehmen, als die einer normalen Lunge, wenn der Brustraum sich nicht erweitert. Durch Erweiterung des Brustraumes kann die hypertrophische Lunge eben so viel, oder mehr Luft fassen, als eine normale. Es ist kein Zeichen von Hypertrophie der Lunge, dass dieselbe in der Leiche nach Eröffnung des Brustkorbes nicht zusammengesunken ist, sondern die Brusthöhle vollkommen ausfüllt, oder sich sogar noch über den Brustraum ausdehnt. Diese Erscheinung beweist nur, dass der Austritt der Luft aus der Lunge gehindert ist. Die noch so sehr hypertrophische Lunge zieht sich in der Leiche zusammen, so wie die normale, wenn sie im Stande ist, die in den Luftzellen enthaltene Luft zum Theil auszutreiben. Die Lunge hat in sich selbst keine ausdehnende Kraft, sie strebt fortwährend sich zusammenzuziehen, und ist durch den Druck der Atmosphäre jedesmal so weit ausgedehnt, als es der Brustraum erfordert. Die hypertrophische Lunge kann für sich den Brustraum nicht erweitern, und die atrophische

nicht verengern. Das anatomische Zeichen der Hypertrophie der Lunge ist die grössere Dichtigkeit, und gewöhnlich auch Festigkeit des Lungenparenchyms, ohne dass die erste durch infiltrirtes Serum oder Blut etc. bedingt wäre, und wobei das Lungenparenchym Luft enthält. Der Perkussionsschall ist bei der hypertrophischen Lunge derselbe, als bei der normalen; er weicht nur dann ab, wenn die hypertrophische Lunge stärker ausgedehnt, also emphysematös geworden ist. Ist bei der Hypertrophie der Lunge kein Bronchialkatarrh vorhanden, so ist das Athmungsgeräusch jedesmal sehr laut vesikulär.

7. Atrophie der Lunge.

Die atrophische Lunge fasst bei normaler Ausdehnung des Thorax eine grössere Menge Luft, als die normale; ihre Luftzellen sind grösser, ohne dass der Brustraum weiter geworden ist. Die Atrophie der Lunge hat sehr verschiedene Grade, und im äussersten finden sich keine Luftzellen mehr, sondern bloss dickhäutige erweiterte Bronchien. Bei Atrophie der Lunge ist der Perkussionsschall gewöhnlich lauter; es ist diess aber nur in Folge der gleichzeitigen Abmagerung und grössern Biegsamkeit der Brustwandungen. Die Auskultation gibt die Zeichen des Katarrhs, und falls die Luftzellen sehr erweitert sind, oder falls sich sackförmig erweiterte Bronchien vorfinden, lässt sich das trockene knisternde Rasseln mit grossen Blasen vernehmen.

8. Tuberkeln in der Lunge.

Die tuberkulöse Materie entwickelt sich in der Lunge, wie in allen übrigen Organen, in einer doppelten Form; sie bildet nämlich entweder isolirte Knötchen, oder sie stellt eine zusammenhängende, in das Lungenparenchym infiltrirte Masse dar. Die isolirten Tuberkeln können so klein seyn, dass man in ihrer Erkenntniss sehr geübt seyn muss, um sie im Kadaver nicht zu übersehen. Wie gross ein Tuberkel anwachsen kann, lässt sich nicht bestimmen. Die isolirten Tuber-

keln können entweder dadurch, dass sie durch Vergrösserung an einander stossen, oder dadurch, dass in den Zwischenräumen immer wieder neue Tuberkeln aufkeimen, ganze Lungenparthien der Luft vollkommen unzugänglich machen.

Die Erscheinungen, welche die Perkussion und Auskultation bei Tuberkeln gibt, sind nicht immer dieselben. Die Verschiedenheiten sind eben dadurch bedingt, dass die isolirten Tuberkeln durch lufthältiges Parenchym geschieden sind, dass folglich eine Lungenparthie, in der sie noch so zahlreich sind, dennoch eine bestimmte Quantität Luft enthält, dass aber der von Tuberkelmaterie infiltrirte, oder von aneinander stossenden Tuberkeln erfüllte Lungentheil keine Luft aufnehmen kann. Die Höhlen, welche sich in Folge von Erweichung der Tuberkelmaterie im Lungenparenchym bilden, bringen zuweilen ganz besondere Erscheinungen hervor. Endlich ändert das rücksichtlich seiner Menge und Zähigkeit sehr verschiedene Secretum der Bronchien oder Lungenhöhlen, welches bei Tuberkeln in der Lunge nur sehr selten fehlt, die Erscheinungen bedeutend ab, und diese werden durch die verschiedene Grösse und Schnelligkeit der Respirationsbewegungen bald deutlicher, bald weniger in die Sinne fallend.

a. Isolirte Tuberkeln.

Erscheinungen aus der Perkussion. — Die isolirten Tuberkeln ändern für sich allein den Perkussionsschall nicht im geringsten, selbst wenn sie in sehr bedeutender Menge in der ganzen Lunge sich wie eingesäet befinden. Die verschiedene Beschaffenheit des interstitiellen Lungengewebes ändert den Perkussionsschall bei vorhandenen isolirten Lungentuberkeln, und dieser ist gewöhnlich tympanitisch, wenn das interstitielle Parenchym serös infiltrirt, jedoch lufthältig ist; er ist dumpf und leer, wenn Serum, Blut etc. alle Luft aus dem interstitiellen Parenchym verdrängt hat; er kommt dem normalen gleich, wenn das interstitielle Gewebe normal ist.

Erscheinungen aus der Auskultation. - Das

Inspirationsgeräusch kann deutlich, und selbst sehr laut vesikulär, oder unbestimmt, oder ganz unhörbar seyn; ohne dass sich an dessen Stelle ein Rasseln, oder Pfeisen oder Schnurren hören lässt. Das vesikuläre oder unbestimmte Inspirationsgeräusch kann aber auch mit dem verschiedenartigsten Rasseln, Pfeisen, Zischen etc. — mit Ausnahme der konsonirenden — verbunden vorkommen; oder endlich es sind nur die rasselnden pfeisenden Geräusche hörbar. Die Exspiration kann ganz unhörbar seyn, oder aber ein so starkes und selbst stärkeres Geräusch machen, als die Inspiration, oder eben so, wie die Inspiration vom Rasseln, Pfeisen, Schnurren begleitet seyn.

Die Tuberkeln können sich in nicht unbeträchtlicher Anzahl entwickeln, und einige Zeit fortbestehen, ohne das die Bronchialschleimhaut gereizt erscheint und secernirt. Diess findet häufiger bei langsamer Entwicklung der Tuberkeln statt. Wenn es bei schneller Entwicklung von Tuberkeln vorkommt, so dauert es stets nur wenige Tage. In solchen Fällen hört man die Inspiration entweder vesikulär oder unbestimmt, und die Exspiration fast gar nicht, nämlich gerade so, als im normalen Zustande.

Bei der weitern Entwicklung der Tuberkeln, und in manchen Fällen gleich im Beginne der Tuberkelbildung tritt Reizung und Anschwellung der Bronchialschleimhaut, ohne, oder mit Sekretion in die Bronchien ein, und bedingt die Verschiedenheit der angegebenen auskultatorischen Erscheinungen, welche dieselben sind, wie sie beim Katarrh angeführt wurden. Es ist bekannt, dass die Tuberkeln bei langsamer Entwicklung fast immer in den obersten Theilen der Lunge beginnen, und aus diesem Grunde finden sich bei langsamer Entwicklung von Tuberkeln in den obern Theilen der Lunge sehr häufig die auskultatorischen Zeichen des Katarrhs permanent, obgleich die übrige Lunge das normale Respirationsgeräusch gibt. Die schnell sich entwickelnden Tuberkeln keimen aber nicht zuerst in der Spitze der Lunge, sondern sind

nicht selten in der ganzen Lunge, oder in einem Lungenlappen gleichmässig vertheilt.

b. Zu grössern Massen konglomerirte Tuberkeln und tuberkulöse Infiltration.

Erscheinungen aus der Perkussion. — So wie die Tuberkeln sich bei langsamer Entwicklung zuerst in den obern Theilen der Lunge ausbilden, so nehmen sie auch daselbst zuerst am Umfang zu, fliessen zusammen, und bilden umfängliche Konglomerate.

Die tuberkulöse Infiltration beginnt bei langsamerer Entwicklung gleichfalls in den obern Lungenparthien. Aus diesem Grunde findet sich in der bei weitem grössten Zahl der Fälle von Tuberkelbildung in den Lungen, wenn diese einige Zeit bestanden hat, der Perkussionsschall unter der Clavicula auf einer oder auf beiden Seiten dumpfer, leerer, oder ganz dumpf. An den übrigen Stellen des Thorax kann er normal, oder lauter, oder ebenfalls dumpf seyn. Gewöhnlich wird der Perkussionsschall, wenn er unter dem Schlüsselbeine in Folge von Tuberkelbildung dumpfer geworden ist, in der Seitengegend lauter, als im normalen Zustande. Diess hat seinen Grund darin, dass bei Unfähigkeit des obern Lungentheils zum Athmen, der untere aus verschiedenen Ursachen stärker ausgedehnt werden kann. Die akute tuberkulöse Infiltration findet zwar gewöhnlich, doch nicht immer · in den obern Lungenlappen statt. Sie verändert den Perkussionsschall an den entsprechenden Stellen des Thorax eben so, als die Hepatisation.

Erscheinungen aus der Auskultation. — So lange die tuberkulösen Konglomerate, oder die tuberkulöse Infiltration nicht eine solche Ausdehnung haben, dass in ihnen wenigstens ein grösserer Bronchus verläuft, bringen sie keine Verstärkung der Stimme, keine bronchiale Respiration, überhaupt kein konsonirendes Geräusch hervor. Man kann, wenn sich auch ziemlich grosse Konglomerate von Tuberkeln in den obern Lungenlappen befinden, unter der Clavicula dennoch vesikuläres Athmen hören, sobald noch hin-

reichend normales Lungengewebe vorhanden ist, und die Bronchialschleimhaut dieses Theiles nicht geschwollen, und nicht mit Schleim bedeckt ist. Es ist aber nicht der gewöhnliche Fall, dass man bei in den obern Lungentheilen vorhandenen tuberkulösen Konglomeraten, oder nicht sehr grossen tuberkulösen Infiltrationen unter den Schlüsselbeinen vesikuläres Athmen hört, vielmehr lässt sich fast konstant ein unbestimmtes Inspirationsgeräusch von verschiedener, oft sehr bedeutender Stärke, gewöhnlich von Rasseln, oder Pfeifen, Schnurren und Zischen begleitet hören; die Exspiration ist fast durchgehends eben so, oder stärker hörbar, als die Inspiration, und lässt ebenfalls verschiedenartiges Rasseln, Pfeifen und Zischen vernehmen. Haben die tuberkulösen Konglomerate, oder die tuberkulöse Infiltration die Grösse erreicht, dass in den innerhalb derselben verlaufenden Bronchien die Stimme und die durch die Respiration verursachten Geräusche konsoniren können, so hört man, falls diese Bronchien durch Flüssigkeiten oder feste Exsudate nicht obliterirt sind, unter der Clavicula Bronchophonie, bronchiales Athmen, und wenn in der Trachea, oder in einem grössern Bronchialzweige Rasseln, Schnurren, oder Pfeifen statt hat, auch konsonirendes Rasseln, Pfeisen, Schnurren. Sind aber die betreffenden Bronchien obliterirt, so ist weder Bronchophonie, noch bronchiales Athmen, noch ein anderes konsonirendes Geräusch zu hören, sondern man vernimmt entweder unbestimmtes Athmen, ohne, oder mit dumpfem Rasseln etc. oder gar kein Geräusch. Weil die Bronchien sich durch Schleim häufig obliteriren, und durch Husten oder Expektoration öfters wieder frei werden, so hört man nicht selten innerhalb weniger Minuten abwechselnd die Bronchophonie, und wieder einen nur sehr dumpfen Wiederhall der Stimme; das bronchiale Athmen, und wieder das unbestimmte; ein helles, hohes Rasseln, und wieder ein tiefes, dumpfes etc. Man kann übrigens auch gleichzeitig die konsonirenden und die nicht konsonirenden Geräusche hören.

Hat sich das tuberkulöseKonglomerat, oder die tuberkulöse

Infiltration nicht in den obern Lungenparthien entwickelt, so kann unter den Schlüsselbeinen die Respiration ganz normal seyn, indess sich an andern Stellen des Thorax die dem krankhaften Zustande der Lungen entsprechenden auskultatorischen Erscheinungen darstellen.

Die gesund gebliebenen, oder bloss von isolirten Tuberkeln durchwebten Lungenparthien geben entweder schwaches
oder lautes vesikuläres, oder unbestimmtes Athmen, oder
die verschiedensten Arten von Rasseln, Pfeisen, Schnurren
etc., je nachdem nämlich die Bronchien normal, oder von Katarrh ergriffen sind. Die auskultatorischen Erscheinungen
geben also keine eigenthümlichen Zeichen für Tuberkeln in
den Lungen, und man kann aus ihnen nie mit Sicherheit angeben, ob keine Tuberkeln in einer Lunge, oder in irgend
einem Lungentheil vorhanden sind.

c. Tuberkulöse Exkavationen.

Diese bilden sich sowohl durch Erweichung von infiltrirten Tuberkeln, als durch Erweichung von Konglomeraten, und durch Erweichung von tuberkulöser Infiltration. Man findet sie darum von der Grösse eines Stecknadelkopfes bis zu der Grösse einer Mannsfaust und darüber. Ihre Wandungen bestehen entweder aus tuberkulös infiltrirtem Gewebe, das eine mehr weniger dicke Schichte ringsherum bildet, und so fest seyn kann, dass es bei einiger Dicke die Erweiterung oder Verkleinerung der Höhle nicht gestattet; oder die Wandung ist nicht tuberkulös infiltrirt, sie ist gleichsam eine, zuweilen sehr dünne, Membran, so dass die Höhle einen häutigen äusserlich ringsum mit dem normalen Lungenparenchym verwachsenen Sack darstellt. Die Tuberkelhöhlen kommuniciren in der Regel mit Bronchien, und sind nur selten ganz ohne Schleim, Eiter etc. Durch alle diese Verschiedenheiten, so wie noch durch andere Umstände werden die Erscheinungen aus der Perkussion und Auskultation mannigfaltig abgeändert.

Erscheinungen aus der Perkussion. -

Der Perkussionsschall erleidet keine Abweichung vom normalen, wenn sich Exkavationen innerhalb eines lufthältigen
Lungenparenchyms ausgebildet haben. Diess gilt nicht etwa
bloss von kleinen, sondern selbst von beträchtlich grossen
Exkavationen. Das einzige Zeichen aus der Perkussion,
welches die innerhalb des normalen Lungenparenchyms gelegenen Exkavationen in seltenen Fällen geben, ist das Geräusch des gesprungenen Topfes. Anders verhält sich die
Sache, wenn die Exkavation bis an die Brustwand sich erstreckt, Luft enthält, und eine Grösse hat, die der des Plessimeters nahe kommt. In diesem Falle wird der Perkussionsschall mehr tympanitisch, als an den übrigen Stellen des
Thorax.

Sind die Exkavationen innerhalb eines tuberkulös infiltrirten Lungenparenchyms, so erhält man, wenn sie Luft enthalten, selbst bei tieferer Lage derselben einen tympanitischen Schall. Die Exkavation muss aber wenigstens die Grösse einer Wallnuss haben, oder es müssen viel kleinere beisammen seyn. Je biegsamer die Stelle der Brustwand ist, unter der die Exkavation liegt, desto leichter erhält man den tympanitischen Schall. Dieser ist desto heller, je näher an der Obersläche die Exkavation liegt, und desto voller, je grösser sie ist. Grössere, oberflächlich gelegene Exkavationen geben am leichtesten das Geräusch des gesprungenen Topfes. Damit der Perkussionsschall vom metallischen Klange begleitet seyn könne, muss die Exkavation schon sehr bedeutend, meiner Erfahrung zu Folge, faustgross seyn. Nicht jede so grosse Exkavation gibt aber beim Perkutiren den metallischen Klang.

Erscheinungen aus der Auskultation. — Grössere mit nachgiebigen Wandungen versehene Exkavationen, die also durch die Inspiration ausgedehnt, und während der Exspiration zusammengedrückt werden, geben häufig das trockene grossblasige knisternde Rasseln. Es erzeugt sich um so leichter, je mehr Exkavationen von der Grösse einer Erbse oder Bohne in einem einzigen Lappen

vorhanden sind. Man hört aber das grossblasige knisternde Rasseln nie allein, sondern nebenbei wegen der stets statt findenden Absonderung von Schleim etc. jedesmal mancherlei anderes Rasseln, Pfeisen, Schnurren, Zischen etc. Wenn die übrigen Rasselgeräusche vorwaltend sind, so ist es unmöglich, das grossblasige trockene knisternde Rasseln herauszusinden.

Sind nur wenige Exkavationen in einem sonst gesunden Lungenlappen vorhanden, und tief gelegen, so kann man vesikuläres Athmen hören, das durch einige wenige Blasen eines dumpfen Rasselgeräusches unterbrochen wird. Häufig aber hört man in solchen Fällen nicht vesikuläres, sondern unbestimmtes Athmungsgeräusch. Exkavationen mit häutigen Wandungen, die innerhalb eines lufthältigen Parenchyms liegen, geben, wenn sie auch gross sind, nie Bronchophonie, bronchiales Athmen, oder ein konsonirendes Rasseln.

Exkavationen, deren Wandungen wenigstens mehrere Linien dick sind, können Bronchophonie, bronchiales Athmen, konsonirendes Rasseln, Pfeifen, Schnurren etc., und wenn sie eine bedeutende Grösse haben, auch den amphorischen Wiederhall und metallischen Klang bei der Stimme, beim Athmen etc. geben. Exkavationen mit dicken starren Wandungen lassen sich nicht vergrössern, und nicht verkleinern; sie nehmen während der Inspiration keine Luft auf, und stossen während der Exspiration keine Luft aus. In solchen Exkavationen selbst entstehen keine Geräusche, es können nur anderswo entstandene Geräusche darin konsoniren. In Exkavationen mit nicht starren Wandungen, die also während der Inspiration erweitert, während der Exspiration aber komprimirt werden, können durch Ein- und Ausströmen der Luft Geräusche erzeugt werden. Rasseln und Pfeifen kann in solchen Exkavationen selbst dann statt finden, wenn das Ein- und Ausströmen der Luft wegen unterbrochener Kommunikation durch Schleim etc. verhindert ist. Die Ortsveränderung, die der in der Exkavation enthaltene Schleim während der Inspiration und insbesondere durch Husten erleidet, ist von Rasseln, oder Pfeisen begleitet, wenn in der Höhle nebst Flüssigkeit auch Lust enthalten ist.

Man sieht aus dieser Darstellung, dass für Exkavationen häufig weder die Perkussion, noch die Auskultation ein sicheres Zeichen gibt, und dass selbe darum nicht oft erkannt, und zuweilen nicht einmal vermuthet werden können.

Markschwamm, Melanose, Cysten, Akephalokysten, steinigte, knorplichte und kreideartige Konkremente innerhalb der Lunge geben für die Perkussion und Auskultation dieselben Erscheinungen, als Tuberkeln von gleicher Grösse.

-ostonome III. Krankheiten der Pleura. 1. Pleuritis.

Erscheinungen aus der Perkussion. - Der Perkussionsschall wird durch die Verdickung der Pleura und durch eine mehrere Linien dicke Schichte flüssigen, oder festen Exsudates nicht verändert. Die Schichte des Exsudates kann selbst ziemlich beträchtlich - gegen einen Zoll dick seyn, ohne im Perkussionsschalle eine auffallende Veränderung zu erzeugen. Es kommt alles darauf an, in welchem Zustande sich der hinter dem Exsudate befindliche Lungentheil befindet, und wie die Stelle des Thorax, an der das Exsudat anliegt, beschaffen, ob sie nämlich biegsam, oder aber resistent ist. Die Lunge gibt, wenn sie auf ein kleineres Volumen sich zusammengezogen hat, oder komprimirt wurde, aber dabei noch Luft enthält, einen mehr tympanitischen - zuweilen einen deutlich tympanitischen -, und nicht selten lauteren Schall, als die normal ausgedehnte Lunge. Ist alle Luft aus einem Lungentheile verdrängt, so gibt dieser den Perkussionsschall des Schenkels. Perkutirt man also auf eine biegsame Stelle des Thorax, an welcher ein Exsudat anliegt, so gibt diese Stelle einen tympanitischen Schall, wenn die hinter dem Exsudate gelegene Lungenparthie durch die Verkleinerung nicht luftleer geworden ist.

Die Dicke der Exsudatschichte, welche erforderlich ist, um den Perkussionsschall der darunter liegenden Lungenparthie deutlich tympanitisch zu machen, ist nicht immer dieselbe, und lässt sich gar nicht näher bestimmen. Je mehr Luft, und je weniger feste und flüssige Bestandtheile eine Lungenparthie im ausgedehnten Zustande enthält, auf ein desto kleineres Volumen muss sie reducirt werden, um einen tympanitischen Schall zu geben; desto dicker muss somit die Exsudatschichte seyn; wogegen bei einem serös oder wie immer infiltrirten Lungenparenchym eine dünnere Exsudatschichte schon hinreicht, um im Perkussionsschalle die besprochene Veränderung hervorzubringen. Je dicker aber die Exsudatschichte wird, desto dumpfer wird der Perkussionsschall, und so geschieht es nicht selten, dass man den bedeutend gedämpften Perkussionsschall nicht mehr als tympanitisch erkennen kann. Liegt das Exsudat unter unbiegsamen Stellen des Thorax, so tritt die Dämpfung viel früher, nämlich bei einer geringeren Dicke der Exsudatschichte ein, und an solchen Stellen bedeutet ein ganz dumpfer und leerer Perkussionsschall nicht nothwendig eine so dicke Schichte Exsudats, als an biegsamen Stellen der Brustwand.

Wenn die Lungenpleura mit der Costalpleura nicht verwachsen ist, so sammelt sich das flüssige Exsudat, den Gesetzen der Schwere gemäss, zuerst in dem hintern Brustraume oberhalb des Zwerchfells. Der daselbst besindliche Lungentheil zieht sich, der Menge des Exsudates entsprechend, auf ein kleineres Volumen zusammen, oder er wird komprimirt. So lange der komprimirte Lungentheil Lust enthält, ist er leichter, als die Flüssigkeit, und bleibt darum so lange auf der Obersläche derselben, bis die obern Lungenparthien sein Aufsteigen hindern. Diess geschieht, wenn sie selbst durch das Aufsteigen des untern Lungenlappens einen Grad von Kompression erlitten haben, oder aber, wenn sie durch insiltrirtes Serum, Blut etc. dichter und schwerer geworden sind. Ist einmal ein Lungentheil in die Flüssigkeit eingetaucht, so wird er, wie es scheint, durch Kom-

pression bald völlig luftleer. Die luftleere Lunge ist specifisch schwerer, als jede exsudirte Flüssigkeit, sie nimmt daher immer die möglichst tiefste Lage ein, und kommt nicht früher über die Oberstäche der Flüssigkeit, bis nicht nach Verminderung des Exsudates oder nach Vergrösserung des Brustraumes die Resistenz, welche die obern Lungenparthien dem Eindringen der Luft darbieten, so gross geworden ist, dass dadurch die eingetauchte Lungenparthie emporgehoben wird. Mit der Zunahme der Menge des Exsudates wird die noch lufthältige Lungenparthie immer kleiner, und es wird nicht selten der ganze Lungenflügel völlig komprimirt. Die völlig luftleer gewordene Lunge ist gegen die Wirbelsäule an die Stelle gedrängt, wo die Bronchien und die grossen Gefässe in dieselbe eintreten. Sie kann die Hälfte, oder mehr, oder weniger des normalen Volumens haben, je nachdem sie nämlich mehr, oder weniger feste, oder flüssige Stoffe enthält. The will be the bear and the soling and the soling

Bei einiger Dauer des Druckes der in der Pleurahöhle befindlichen Flüssigkeit auf die völlig luftleer gewordene Lungenparthie kann diese sich verkleinern, indem das in ihr befindliche Blut, Serum etc. ausgedrückt wird, oder indem ihre Ernährung abnimmt. Dadurch kann es geschehen, und geschieht auch häufig, dass die Flüssigkeit, die einige Zeit hindurch den einen — rechten, oder linken — Brustraum vollkommen auszufüllen schien, nun tiefer steht, obgleich sich ihre Menge gar nicht vermindert hat. Diess hat zur Folge, dass in den obern Theil der Lunge wieder Luft eintritt, und dass dieser über das Niveau der Flüssigkeit sich erhebt. Eine Vergrösserung des Brustraumes, durch Auseinandertreten, oder grössere Wölbung der Rippen, oder durch Herabsinken des Zwerchfells in den Unterleib, hat dieselbe Wirkung, als die Verkleinerung des komprimirten Lungentheiles.

Bei theilweiser Verwachsung der Lungenpleura mit der Costalpleura kann sich die Flüssigkeit nicht immer in den hinteren Brustraum oberhalb das Zwerchfell begeben. Abgesackte Exsudate finden sich an allen Stellen des Brustraumes zwischen der Lunge und der Brustwand, zwischen der Lunge und dem Zwerchfell, zwischen der Lunge und dem Herzbeutel, dem Mediastinum, der Wirbelsäule, endlich zwischen den Lungenlappen.

Der Perkussionsschall des Thorax kann also bei intensiver Pleuritis ganz normal, und bei einer anscheinend leichten Pleuritis sehr abnorm seyn. In vielen, aber nicht in allen Fällen beginnt bei Pleuritis die Dämpfung des Perkussionsschalles am Rücken unterhalb des Schulterblattes, erstreckt sich, wenn sie höher steigt, auch auf die gleichnamige Seitengegend, und selbst auf die vordere Brustwand, reicht aber vorn nicht so weit hinauf als rückwärts. Während der Perkussionsschall in dem untern Theile des Thorax völlig dumpf wird, kann er in der obern Brusthälfte der kranken Seite völlig tympanitisch erscheinen, und diess geschieht in dem Falle, wenn das Exsudat bloss den untern Lungentheil vollständig luftleer gemacht, den obern aber nur etwas komprimit hat.

Die Anfüllung einer ganzen Brusthälfte mit Exsudat gibt einen an allen Stellen dieser Brusthälfte vollständig dumpfen Perkussionsschall. Dieser kann nach einiger Zeit unter der Clavicula, und noch tiefer hinab heller, und selbst deutlich tympanitisch und voll werden, ohne dass das Exsudat an Menge abgenommen hat, wenn nämlich der Brustraum sich erweitert, oder der untere Theil der komprimirten Lunge sich verkleinert. Verändert der Kranke die Lage, so findet selbst bei nicht abgesackten pleuritischen Exsudaten im Perkussionsschalle häufig keine solche Veränderung statt, als man in vorhinein zu glauben geneigt ist. Die Kompression der Lunge macht, dass diese innig an der Brustwand anliegt, und dass sie nicht leicht sich verschieben lässt. Überdiess ist bei Pleuritis die das flüssige Exsudat begränzende Lungenparthie jedesmal mit einer plastischen Schichte überzogen, und durch diese mit den Wänden verklebt. In diesen Umständen scheint der Grund zu liegen, dass das seröse Exsudat bei Pleuritis seinen Ort erst nach längerer Zeit verändert, wenn auch der Kranke eine andere Lage annimmt; ja gewöhnlich dürfte die Ortsveränderung des serösen Exsudates bei Pleuritis ganz unmöglich seyn, wenn nicht die Respirationsbewegungen dieselbe begünstigten.

So lange die Menge des Exsudates nicht so gross ist, dass dadurch eine Lungenparthie bedeutend, oder bis zur völligen Luftleere komprimirt wird, dürfte der Kranke, falls ihn nicht Schmerz daran hindert, die veränderte Lage so lange beibehalten können, bis das flüssige Exsudat seinen Ort verändert hat. Hat aber das Exsudat eine etwas grössere Lungenparthie bis zur völligen Luftleere komprimirt, so dürfte ein Kranker nur selten eine solche Lageveränderung aushalten, welche in Folge der Ortsveränderung des flüssigen Exsudates die Kompression einer neuen Lungenparthie herbeiführen würde. Die Kompression einer neuen Lungenparthie bis zur völligen Luftleere, die doch statt finden muss, wenn in die früher komprimirte Lunge die Luft eindringen soll, erfordert eine längere Zeit, und muss nothwendig Dyspnoe erzeugen, welche überdiess durch die dabei statt findende Veränderung in der Cirkulation gesteigert werden dürfte. Bei abgesackten flüssigen Exsudaten dagegen, und selbst dann, wenn die Flüssigkeit eine ganze Brusthälfte ausfüllt, kann der Kranke, wenn nicht Schmerz vorhanden ist, seine Lage ändern, ohne so bedeutende Beschwerden zu erfahren; ja zuweilen ist ihm jede Lage gleich.

Auf diese Weise erkläre ich es mir, dass ich bei vorhandener Pleuritis durch das Perkutiren in verschiedenen
Lagen des Kranken noch nie einen näheren Aufschluss erhielt, als wenn ich bloss in einer Lage perkutirte. Entweder
wurde die Lageveränderung gar nicht, oder nur sehr kurze
Zeit vertragen, oder der Perkussionsschall blieb sich gleich,
wenn auch der Kranke längere Zeit eine veränderte Lage
beibehielt.

Hat das slüssige Exsudat in der Pleura durch längere Zeit bestanden, so wird die Lunge häusig in ihrer Ernährung beeinträchtiget, sie verliert seste und slüssige Theile, lässt sich leichter in einen kleineren Raum zusammendrängen, und leistet somit, falls sie nicht durch Verwachsung fixirt ist, der Ortsveränderung der Flüssigkeit in der Pleura nur wenig Widerstand. Aber derlei Kranke dürften ihre Lage, ohne von heftiger Dyspnoe befallen zu werden, nur so weit verändern können, als durch die Ortsveränderung der Flüssigkeit kein neuer Lungentheil komprimirt, und die Luft nicht in früher komprimirte Parthien getrieben wird. In solchen Fällen, die übrigens nicht häufig sind, weil das pleuritische Exsudat gewöhnlich abgesackt wird, habe ich durch die Perkussion die Ortsveränderung der Flüssigkeit wahrgenommen.

Erscheinungen aus der Auskultation. - So lange die Lunge durch das Exsudat nicht völlig luftleer geworden ist, hört man an den Stellen des Thorax, die dem Exsudate entsprechen, die Stimme entweder gar nicht, oder man hört nur ein undeutliches Summen; das Respirationsgeräusch ist entweder vesikulär, oder unbestimmt, oder gar nicht hörbar. Dieselben auskultatorischen Erscheinungen können, falls kein anderer Krankheitszustand vorhanden ist, auch an den Stellen des Thorax vorkommen, unter welchen sich das Exsudat nicht befindet. Das Reibungsgeräusch findet nur statt, wenn eine mit plastischem Exsudate überzogene Stelle der Lungenpleura an eine eben so beschaffene Stelle der Costalpleura während der Respirationsbewegungen anstreift. Das Reibungsgeräusch ist somit ein Zeichen, dass sich an der Stelle, wo es entsteht, kein seröses Exsudat in der Pleura befindet, und dass die Costal - mit der Lungenpleura nicht innig verwachsen ist.

Das Reibungsgeräusch kommt selten im Beginn der Pleuritis vor, wahrscheinlich desshalb, weil das frisch gebildete plastische Exsudat nur selten eine hinreichende Konsistenz hat; viel häufiger hört man das Reibungsgeräusch in einer spätern Periode. Hauptsächlich gibt die Resorption eines Theiles des serösen Exsudates dazu Veranlassung. In einem solchen Falle kommt nämlich eine Parthie Lungenoberfläche mit der Brustwand in Berührung, die früher davon

durch das seröse Exsudat getrennt war. Da sie fast jedesmal mit einer Schichte plastischen Exsudates überzogen, und anfänglich mit der Brustwand nicht verwachsen ist, so erzeugt sich bei stärkeren Respirationsbewegungen fast immer ein Reibungsgeräusch.

Hat das Exsudat einen Lungentheil völlig luftleer gemacht, so hört man an der dem Exsudate entsprechenden
Stelle des Thorax entweder die schwache Bronchophonie und
das bronchiale Athmen, oder nur eine dieser Erscheinungen,
oder man hört die Stimme nicht verstärkt, oder gar nicht,
und das Athmungsgeräusch unbestimmt, oder gar nicht. Das
bronchiale Athmen und die schwache Bronchophonie hört
man in den meisten Fällen zwischen dem untern Winkel des
Schulterblattes und der Wirbelsäule, und etwas oberhalb und
unterhalb dieser Linie. Man kann indess diese beiden Erscheinungen auch an allen übrigen Stellen der Brust vernehmen.

Die Bronchophonie und die Bronchialrespiration kann nicht statt finden, wenn die innerhalb des komprimirten Lungentheiles verlaufenden stärkern Bronchien durch Schleim, Blut, Serum, etc. oder zu starken Druck völlig obliterirt sind. Je dicker ferner die Exsudatschichte ist, desto schwächer gelangt die in den Bronchien konsonirende Stimme, oder das konsonirende Athmungsgeräusch zur Brustwand, und es können diese beiden Erscheinungen durch die Dicke der Exsudatschichte völlig undeutlich werden. Endlich verursacht ein Exsudat, das den obern Lungentheil allein komprimirt, nur selten bronchiales Athmen und Bronchophonie, weil die Bronchien im obern Lungentheile mehr gekrümmt verlaufen, und durch Druck leichter obliterirt werden.

Diess sind die Gründe, warum nicht bei allen Exsudaten, welche einen beträchtlichen Lungentheil vollständig luftleer machen, das bronchiale Athmen und die verstärkte hellere Stimme sich hören lässt, sondern zuweilen bloss unbestimmtes, oder gar kein Athmungsgeräusch, ein dumpfes schwaches Summen beim Sprechen, oder gar nichts wahrgenommen wird. An den Stellen des Thorax, welche den nur etwas komprimirten Lungenparthien, oder der gar nicht komprimirten Lunge entsprechen, lässt sich die Stimme nur als dumpfes Summen hören, das Athmungsgeräusch kann sehr laut, oder nur schwach, vesikulär, oder unbestimmt, oder fast unhörbar seyn; welche letztere Verschiedenheit hauptsächlich davon abhängt, ob der Kranke schnell und tief, oder aber langsam athmet.

In den Bronchien vorhandenes Serum, Blut, Schleim etc. erzeugt auch bei Pleuritis Rasseln, und die Anschwellung der Bronchialschleimhaut, plastisches Exsudat, oder sehr zäher Schleim in den Bronchien etc. erzeugt Pfeifen, Schnurren, Zischen. Man findet aber die Rasselgeräusche bei Pleuritis viel seltener, als bei den Krankheiten des Lungenparenchyms, und ein Rasseln mit zahlreichen Blasen gibt eine ungleich grössere Wahrscheinlichkeit für das Vorhandenseyn von Pneumonie, als von Pleuritis, wenn die übrigen auskultatorischen und Perkussionszeichen nicht entscheidend sind.

Das Rasseln kann bei Pleuritis alle Verschiedenheiten in der Grösse der Blasen, in der Helligkeit, in der Höhe darbieten; es kann in den Fällen, wo das bronchiale Athmen statt findet, oder statt finden könnte, die Zeichen des konsonirenden Rasselns haben, oder aber dumpf hörbar seyn. Rasselgeräusche können sowohl an der Stelle der Brustwand, wo das Exsudat anliegt, als an allen übrigen Stellen gehört werden. Weniger selten, als das Rasseln, kommt bei Pleuritis das Pfeifen, Schnurren und Zischen vor. Es findet gewöhnlich in den vom Exsudate nicht komprimirten Lungentheilen statt, und verhindert die Wahrnehmung des vesikulären Athmens.

2. Seröse Flüssigkeit in der Brusthöhle nicht durch Pleuritis hedingt. - Hydrothorax. -

Die Perkussion gibt genau dieselben Erscheinungen, als bei dem durch Pleuritis entstandenen flüssigen Exsudate, wenn selbes durch längere Zeit bestanden hat. Ist nämlich die seröse Flüssigkeit nicht durch Verwachsungen der Lunge an einem Orte festgehalten, so verändert sie denselben bei Lageveränderung des Kranken, und man kann diese Ortsveränderung der Flüssigkeit in der Brusthöhle aus den Veränderungen im Perkussionsschalle entnehmen. Blut in der Brusthöhle — haemothorax — verändert den Perkussionsschall eben so als Eiter, Serum etc.

3. Pneumothorax.

Darunter ist das Vorhandenseyn von atmosphärischer Luft, oder von Gas, oder auch von Dunst in der Pleurahöhle zu verstehen. Atmosphärische Luft, Gas, oder Dunst findet man in der Pleurahöhle fast nie allein, gewöhnlichist zugleich auch Flüssigkeit darin vorhanden. Die atmosphärische Luft scheint nämlich, wenn sie bei Menschen in die Pleurahöhle gelangt, fast jedesmal exsudative Pleuritis erzeugen zu müssen; wahrscheinlich tragen dazu auch die Flüssigkeiten, die gewöhnlich mit der atmosphärischen Luft in die Pleura dringen, - der Inhalt der Tuberkelhöhlen, Brandjauche, Blut etc. bei -. Gase entbinden sich in der Pleurahöhle nur durch Zersetzung von Flüssigkeiten, die daselbst enthalten sind, und Dünste entwickeln sich nur dann, wenn die Lunge, nachdem ein Theil der im Brustraume enthaltenen Flüssigkeit durch Resorption entfernt wurde, der Ausdehnung durch die atmosphärische Luft einen grössern Widerstand leistet, und in den frei gewordenen Raum nicht eindringt.

Erscheinungen aus der Perkussion. — Der Perkussionsschall ist bei Pneumothorax gewöhnlich deutlich tympanitisch. Ist jedoch die Brustwand sehr gespannt, so ist der Perkussionsschall wenig, oder gar nicht tympanitisch. In den meisten Fällen vernimmt man aber nebstbei den metallischen Klang. Er ist häufig nicht so laut, dass man ihn aus der Entfernung hören könnte, und man muss aus diesem Grunde während des Perkutirens auch auskultiren. Die mit der atmosphärischen Luft, oder dem Gase, oder den Dünsten gleichzeitig in der Pleurahöhle vorhandene Flüssigkeit

nimmt immer die tiefste Stelle ein, und verändert somit ihren Ort mit jeder Längeveränderung des Kranken. Aber die Flüssigkeit muss in beträchtlicher Quantität vorhanden seyn, wenn sie bei Pneumothorax sich durch den Perkussionsschall zu erkennen geben soll. Der Perkussionsschall ist nämlich selbst unter dem Niveau der Flüssigkeit noch tympanitisch, und wird durch eine nicht ziemlich dicke Schichte der Flüssigkeit fast gar nicht verändert.

Erscheinungen aus der Auskultation. - Durch die Auskultation vernimmt man bei Pneumothorax entweder den amphorischen Wiederhall, oder metallischen Klang bei der Stimme, oder während des Athmens - das Geräusch des Athmens, das Rasseln, Schnurren, Pfeisen von metallischem Klange begleitet -; oder man hört keinen amphorischen Wiederhall und metallischen Klang, sondern nur ein unbestimmtes Athmungsgeräusch, dumpfes Rasseln, Pfeifen, Schnurren, einen dumpfen Wiederhall der Stimme; oder endlich man hört gar nichts von der Stimme, kein Athmungsgeräusch, kein Rasseln etc. Diese Verschiedenheit in den auskultatorischen Erscheinungen ist nicht dadurch bedingt, dass in einem Falle die Luft in der Pleurahöhle mit den Bronchien kommunicirt, im andern aber vollkommen abgeschlossen ist. Mir ist noch kein Fall von Pneumothorax vorgekommen, wo die Kommunikation der Luft in der Pleurahöhle mit den Bronchien fortbestanden hätte. Ich fand diese theils durch Kompression der Lunge, theils durch Exsudat jedesmal verschlossen. Die Verschiedenheit in den auskultatorischen Erscheinungen bei Pneumothorax ist vielmehr, wie bereits auseinandergesetzt wurde, darin begründet, dass die lufthältige Pleurahöhle bald durch eine dünnere, bald durch eine dickere Schichte Lungenparenchyms von einem Bronchus getrennt ist, in welchem die Stimme, das Athmungsgeräusch etc. konsonirt.

4. Tuberkeln, Markschwamm etc. auf der Pleura bringen im Perkussionsschalle keine auffallende Veränderung hervor, ausgenommen, wenn sie zu einer ungewöhnlichen Grösse anwachsen. Die Auskultation gibt gleichfalls keine Erscheinung, die diesen Entartungen eigenthümlich wäre.

IV. Krankhafte Zustände des Herzbeutels.

1. Pericarditis.

Erscheinungen aus der Perkussion. — Der Perkussionsschall weicht vom normalen nicht ab, so lange das Exsudat im Pericardium nicht in einer grössern Menge vorhanden ist. Die Quantität des Exsudates im Pericardium, die eine wahrnehmbare Veränderung im Perkussionsschalle herbeiführt, lässt sich im Allgemeinen nicht näher angeben. Zuweilen erscheint der Perkussionsschall in der Herzgegend in einer bedeutenden Ausdehnung ganz dumpf, wenn auch nur einige Unzen Exsudates im Pericardium vorhanden sind; in andern Fällen aber findet man ein halbes Pfund Exsudats und darüber im Herzbeutel, ohne dass der Perkussionsschall in der Gegend des Herzens in einer grössern Ausdehnung als gewöhnlich gedämpft war. Diese Verschiedenheit hat ihren Grund in der Lagerung der Lunge, welche bald mehr, bald weniger zwischen das Herz und die Brustwand gedrängt ist.

Indem das Herz specifisch schwerer, als jede exsudirte Flüssigkeit ist, so nimmt es in dem, durch das Exsudat ausgedehnten Herzbeutel, die, seiner Befestigung nach, möglichst tiefste Stelle ein, die Flüssigkeit dagegen steigt in den höher gelegenen Raum. Aus diesem Grunde findet man sie, wenn sie in nicht bedeutender Menge vorhanden ist, um die Basis des Herzens und um den Ursprung der Aorta und Pulmonalarterie angesammelt, während das Herz den übrigen Raum des Herzbeutels ausfüllt. Eine Ausnahme davon könnte nur in dem Falle vorkommen, wenn der Herzbeutel partiell, oder im Ganzen relaxirt wäre, oder Ausbeugungen hätte, so dass er durch seinen Inhalt — das Herz und die Flüssigkeit — nicht in Spannung versetzt wäre; oder wenn an der Aorta und Pulmonalarterie, oder an der Basis des Herzens eine Verwachsung des Herzbeutels bestände.

Ist das flüssige Exsudat in grösserer Menge vorhanden,

Ursprung der Arterien. Das Herz sinkt, wenn der Kranke auf dem Rücken liegt, während der Diastole in der Flüssigkeit nach rückwärts, und entfernt sich somit von der Brustwand; während der Systole wird es nach vor- und abwärts getrieben, nähert sich also der Brustwand, und die Flüssigkeit sinkt zum Theil in den hintern Raum des Herzbeutels. Man ersieht aus dem Angeführten, dass bei flüssigem Exsudate im Pericardium die Dämpfung des Perkussionsschalles fast konstant über dem Ursprunge der Aorta und Pulmonalarterie, also im Längendurchmesser des Herzens beginnen müsse, dass eine grössere Dämpfung in der Breite des Herzens erst bei grösserer Menge der Flüssigkeit im Pericardium vorkomme, und dass Ausnahmen von dieser Regel nicht häufig angetroffen werden können.

Wenn die Menge der Flüssigkeit im Pericardium an zwei Pfund beträgt, so erscheint der Perkussionsschall in der Regel von dem zweiten linken Rippenknorpel bis zum untern Thoraxrande, und in der Breite von dem rechten Rande des Mittelstückes des Brustbeines bis in die Mitte der linken Seite vollkommen dumpf. Die Resistenz ist dabei so, wie bei einem grossen Exsudate in der Pleura, nämlich eine sehr bedeutende.

Erscheinungen aus der Auskultation. — Die Aktion des Herzens ist im Beginn der Pericarditis in der Regel verstärkt, der Herzstoss aus diesem Grunde lebhafter, und die Töne heller. Im weitern Verlause wird gewöhnlich die Bewegung des Herzens schwächer, ja ost sehr schwach; der Herzstoss ist wenig oder gar nicht fühlbar, und die Töne des Herzens und der Arterien lassen sich schwach, oder gar nicht vernehmen. Die Schwäche der Herzbewegung kann sowohl bei geringer als bei grosser Menge des Exsudates eintreten. Ist ein grosses Exsudat im Herzbeutel vorhanden, so ist das Herz, wenn der Kranke auf dem Rücken liegt, während der Diastole weiter von der Brustwand entsernt als gewöhnlich, indem der vordere Raum durch die Flüssigkeit ausgefüllt wird. Wenn es sich während der Systole gegen die vordere

Brustwand bewegen will, so wird diese Bewegung durch den Widerstand der Flüssigkeit, die gleichzeitig in den hinternRaum absliessen muss, gehemmt. Das Herz kann aus diesem Grunde innerhalb der Flüssigkeit keine so grosse Bewegung machen, wenn es sich auch mit Kraft zusammenzieht und ausdehnt.

Der Herzstoss ist somit bei grössern Exsudaten im Herzbeutel in der Regel schwächer, als im normalen Zustande, oder er ist fast gar nicht wahrnehmbar, und die Töne erscheinen, weil das Herz und die Arterien durch Flüssigkeit von der vordern Brustwand geschieden sind, weniger hell und stark, oder sie sind gar nicht zu vernehmen. Indess kann ein hypertrophisches, oder überhaupt heftig agirendes Herz selbst innerhalb einer grossen Menge Flüssigkeit einen bedeutenden Stoss geben, und die Töne können recht laut sich hören lassen; überdiess ist auch ohne alle Flüssigkeit im Herzbeutel der Herzstoss nicht selten sehr schwach, oder ganz unfühlbar, und die Töne sind sehr dumpf, oder gar nicht zu hören.

Der Herzstoss und die Töne geben also kein sicheres Zeichen für das Vorhandenseyn, oder Fehlen der Flüssigkeit im Herzbeutel. Wenn plastisches und schon konsistenteres Exsudat die Herzobersläche bedeckt, und das Herz während seiner Bewegung an den Herzbeutel streift, so gibt diess zu einem von den Herzbewegungen abhängigen Reibungsgeräusch Veranlassung, welches gewöhnlich dem Geräusche des Schabens, des Anstreifens, des Kratzens, oder dem Knarren des Leders gleicht, welches aber auch als Blasebalg-, Säge-, oder Raspelgeräusch erscheinen kann.

Das Reibungsgeräusch im Herzbeutel zeigt sich von den Herzbewegungen abhängig, zugleich aber mit den Herzbewegungen nicht übereinstimmend, so dass es mit dem Stosse und mit den Tönen der Zeit nach nicht vollständig kongruirt. Dadurch unterscheidet sich das Reibungsgeräusch im Pericardium von den Geräuschen, die innerhalb des Herzens und der Arterien entstehen. Das Reibungsgeräusch innerhalb des Pericardiums unterscheidet sich aber durch nichts von dem Geräusche, welches bei, an der äussern Fläche des Herz-

beutels vorhandenem, plastischen Exsudate durch Reibung des Herzbeutels an der Lunge, oder an der Brustwand in Folge der Herzbewegungen hervorgebracht wird.

Das Reibungsgeräusch kann sowohl im Beginn der Pericarditis, als auch im weitern Verlaufe derselben vorkommen, es kann fortdauern, wenn der entzündliche Prozess im Pericardium schon längst beendigt ist. Es kommt nicht bei jeder Pericarditis vor, und der Grad seiner Stärke ist von der Heftigkeit der Entzündung gar nicht abhängig. Es ist kein Zeichen für eine geringere Menge flüssigen Exsudates, indem es auch bei sehr kopiöser Flüssigkeit im Pericardium erscheinen kann. Die Pericarditis ohne konsistenteres plastisches Exsudat — mit überwiegend serösem oder eiterartigem Exsudate im Pericardium — ist nie von einem Reibungsgeräusch begleitet.

2. Flüssigkeiten im Pericardium nicht durch Pericarditis bedingt.

Wasseransammlung — hydrops pericardii. — Die Erscheinungen aus der Perkussion und Auskultation sind dieselben, wie bei Exsudaten in Folge von Pericarditis, nur kann kein Reibungsgeräusch vorkommen. Dasselbe gilt vom Blutergusse ins Pericardium, wenn er jemals Gegenstand der Beobachtung werden sollte.

3. Gas im Pericardium.

Ich habe noch nie ein Pneumopericardium beobachtet. Der Perkussionsschall dürfte zuweilen tympanitisch seyn, hauptsächlich aber müsste die Auskultation besondere Zeichen liefern. Es ist nämlich die Entwicklung von Gas im Pericardium kaum anders, als durch Zersetzung von darin vorhandenen Flüssigkeiten begreislich. Die enthaltene Flüssigkeit würde aber durch die Herzbewegungen hestig geschüttelt, und müsste aus diesem Grunde ein solches Geräusch geben, wie man es durch Schütteln von Flüssigkeit in nicht ganz gefüllten Gefässen erhält.

4. Verwachsung des Herzens mit dem Herzbeutel.

Die Perkussion und Auskultation gibt meines Wissens keine Erscheinung, welche man der Verwachsung des Herzens mit dem Herzbeutel zuschreiben könnte. Dr. Hope führt an, dass sich bei Verwachsung des Herzens mit dem Herzbeutel mit dem ersten Herztone ein Blasebalggeräusch verbinde, das auch in der Aorta hörbar sey, und bei starker Aktion eines solchen Herzens nicht leicht fehle. Die am meisten charakteristische Erscheinung soll aber in einer plötzlichen polternden Bewegung des Herzens bestehen, die durch das Stethoskop leicht wahrgenommen werden könne, und insbesondere bei Hypertrophie mit Dilatation des Herzens deutlich sey, in welchem Falle das Poltern mit der Systole und Diastole der Kammern zu korrespondiren pflege. Weder die erste, noch die zweite Erscheinung steht in irgend einer Beziehung zur Verwachsung des Herzens mit dem Herzbeutel. Das Blasebalggeräusch entsteht im Innern des Herzens, oder der Aorta durch Insufficienz der Klappen, und durch rauhe Stellen an der Auskleidung der Ventrikel, oder der Aorta, und die plötzliche polternde Bewegung des Herzens ist eine Unregelmässigkeit im Rhythmus, die bei den verschiedensten Abnormitäten des Herzens, und selbst bei anscheinend ganz normaler Beschaffenheit desselben vorkommen kann.

5. Tuberkeln am Herzbeutel

haben wahrscheinlich nie eine solche Grösse, dass dadurch der Perkussionsschall eine Modifikation erleiden sollte. Wenn das Herz nicht mit dem Herzbeutel verwachsen ist, findet man mit Tuberkeln am Pericardium fast konstant seröses Exsudat, und zwar in beträchtlicher Menge. Die Tuberkeln können eben so wie das konsistentere plastische Exsudat zu einem Reibungsgeräusche Veranlassung geben.

6. Markschwamm am Pericardium

kann in seltenen Fällen so gross werden, dass dadurch der Perkussionsschall in einem grössern Umfang gedämpft wird.

V. Abnorme Zustände der Herzsubstanz.

1. Hypertrophie mit Dilatation beider Ventrikel.

Der Perkussionsschall ist, sowohl der Länge als der Breite des Herzens entsprechend, in einer grössern Ausdehnung gedämpft. Diess erleidet nur dann eine Ausnahme, wenn das Zwerchfell einen tiefen Stand hat, und der Thoraxraum über das Normale erweitert, die Lunge mithin emphysematös ist. In einem solchen Falle ist nicht selten in der Gegend, wo das Herz im normalen Zustande liegt, der Perkussionsschall selbst bei beträchtlicher Hypertrophie und Dilatation des Herzens gar nicht gedämpft, und wird es erst tiefer gegen den untern Rand des Thorax.

Der Herzstoss ist mit wenigen Ausnahmen verstärkt, und nicht selten so bedeutend, dass dadurch die dem Herzen entsprechende Stelle der Brustwand sichtbar und fühlbar emporgehoben wird. Die Töne der beiden Ventrikel und der Arterien sind entweder sehr laut, oder nur schwach, dumpf, oder ganz unhörbar, oder es werden ein oder mehrere Töne durch Geräusche ersetzt, welche Verschiedenheiten durch die Beschaffenheit der Klappen und der Auskleidung der Herzhöhlen be dingt sind.

2. Hypertrophie beider Ventrikel mit normaler Weite der Kammern.

Die Erscheinungen aus der Perkussion und Auskultation sind für diesen Zustand dieselben, als für die Hypertrophie mit Dilatation beider Ventrikel, und nur dem Grade nach verschieden. Der Herzstoss hebt gewöhnlich nicht die Brustwand, sondern erschüttert das Ohr des Auskultirenden gleich einem Hammerschlage.

3. Dilatation beider Ventrikel ohne Hypertrophie.

Die Perkussion gibt dieselben Erscheinungen, als bei Hypertrophie mit Dilatation beider Ventrikel. Der Herzstoss erschüttert den Kopf des Auskultirenden nicht, hebt die Brustwand wenig, oder gar nicht, und kann selbst beinahe unfühlbar werden. Bei Aufregung, bei Pericarditis, und überhaupt bei jedem Zustande, wo die Herzthätigkeit sehr vermehrt ist, kann der Stoss des nicht hypertrophischen dilatirten Herzens dem Stosse bei Hypertrophie mit Dilatation
an Stärke gleichen. Die Töne oder Geräusche sind wie bei
Hypertrophie mit Dilatation entweder laut, oder schwach,
oder ganz unhörbar; sie können bloss in der Herzgegend,
oder an allen Stellen der Brust sich vernehmen lassen, oder
sie werden durch Geräusche ersetzt.

4. Hypertrophie mit Dilatation des rechten Ventrikels bei normaler Weite und Stärke des linken.

Der Perkussionsschall ist der Breite des Herzens entsprechend in einer grössern Ausdehnung gedämpft. Der Bau des Thorax, insbesondere aber die Lage der Lunge bedingt Ausnahmen. Der Herzstoss ist zuweilen verstärkt, in andern Fällen vom normalen fast nicht abweichend. Der zweite Ton der Pulmonalarterie ist in der Regel verstärkt, und bedeutend lauter, als der zweite Ton der Aorta. Am ersten Tone der Pulmonalarterie ist eine Verstärkung viel seltener zu bemerken. Im rechten Ventrikel sind die Töne entweder verstärkt, oder normal, oder selbst schwächer; im linken Ventrikel sind die Töne entweder normal, oder schwächer, oder es ist statt des ersten oder zweiten Tones ein Geräusch hörbar. In der Aorta kann statt des zweiten Tones kein Geräusch vorkommen.

5. Hypertrophie mit Dilatation des linken Ventrikels bei normaler Stärke und Weite des rechten.

Der Perkussionsschall ist der Länge des Herzens entsprechend in einer grössern Ausdehnung gedämpft, ausser wenn die grössere Ausdehnung der Lunge den Schall heller macht. Der Herzstoss ist etwas verstärkt, oder er ist dem normalen an Stärke gleich; oder es sind einzelne Stösse sehr stark, andere schwach; oder endlich der Herzstoss ist bedeutend verstärkt, und selbst so stark als bei Hypertrophie mit Dilatation beider Ventrikel, welches letztere nur dann statt finden kann, wenn

die Hypertrophie mit Dilatation des linken Ventrikels durch Insufficienz der Aortaklappen bedingt ist. Jeder der Töne der beiden Ventrikel und der Aorta ist entweder von normaler Stärke, oder er ist dumpfer, oder ganz unhörbar, oder er wird durch ein Geräusch ersetzt.

6. Verkleinerung des rechten Ventrikels mit Hypertrophie, normaler Stärke, oder Atrophie seiner Wandung.

Wenn dieser abnorme Zustand des rechten Ventrikels mit Hypertrophic und Dilatation des linken besteht, so verhältsich der Perkussionsschall fast eben so, als bei Hypertrophie mit Dilatation des linken Ventrikels und normaler Stärke und Weite des rechten. Der Herzstoss kann nur bei gleichzeitiger Insufficienz der Aortaklappen verstärkt seyn, sonst ist er schwächer, als im normalen Zustande. Ist bei Verkleinerung des rechten Ventrikels der linke von normaler Weite und Stärke, oder ebenfalls verkleinert, so ist der Herzstoss wenig, oder gar nicht fühlbar.

7. Verkleinerung des linken Ventrikels mit normaler Stärke, Hypertrophie, oder Atrophie seiner Wandung.

Ist damit Hypertrophie mit Dilatation des rechten Ventrikels verbunden, so kann der Perkussionsschall der Breite des Herzens entsprechend in einer grössern Ausdehnung gedämpft seyn. Der Herzstoss ist nur in dem Falle etwas verstärkt, wenn gleichzeitig Insufficienz der dreispitzigen Klappe vorhanden ist, sonst immer schwach, oder gar nicht fühlbar. Ist der rechte Ventrikel von normaler Weite, oder ebenfalls verkleinert, so ist der Herzstoss immer sehr schwach, oder gar nicht fühlbar. In der Aorta kann statt des zweiten Tones nie ein Geräusch vorkommen.

8. Entzündung der Muskelsubstanz des Herzens.

Weder die Perkussion noch die Auskultation gibt eine Erscheinung, welche die Entzündung der Herzsubstanz charakterisiren könnte. Der Perkussionsschall weicht vom normalen nicht ab, ausser wenn in Folge der Entzündung Er-

weiterung der Kammer, oder Verdickung der Wandung eingetreten ist, was immer erst nach längerer Dauer der Fall seyn kann.

Der Herzstoss ist entweder verstärkt, und dem Stosse eines hypertrophischen Herzens gleich; oder er ist nicht stärker, oder selbst schwächer, als gewöhnlich. Die Töne können laut, oder schwach, oder fast unhörbar seyn. Geräusche kommen bei Entzündung der Muskelsubstanz des Herzens nicht vor, ausser wenn gleichzeitig Pericarditis oder Endocarditis vorhanden ist. Der Rhythmus der Herzbewegungen ist in der Regel unregelmässig, sie sind beschleunigt, und die einzelnen Bewegungen sind in der Grösse ungleich: daher einzelne Herzstösse stark, andere schwach, einzelne Tone laut, andere dumpf erscheinen etc., welche Unregelmässigkeiten sich in vielen andern abnormen Zuständen des Herzens, und selbst bei anscheinend normaler Beschaffenheit desselben finden, und bei Entzündung der Herzsubstanz zuweilen gar nicht, oder nur in einem geringen Grade vorhanden sind.

9. Erweichung, Verhärtung der Herzsubstanz, kalkartige Konkremente in derselben, Ossifikationen der Kranzarterien.

Alle diese krankhaften Zustände geben keine Erscheinung, die sie charakterisiren könnte.

VI. Abnorme Zustände am Endocardium.

1. Endocarditis.

Der Perkussionsschall weicht vom normalen nicht ab, ausser wenn in Folge der Endocarditis — am gewöhnlichsten durch Klappenfehler — eine, oder beide Herzkammern dilatirt und hypertrophisch geworden sind. Die Zunahme des Herzens an Grösse kann binnen einigen Tagen bemerkbar werden. Die Herzbewegungen sind in der Regel heftiger und mehr beschleunigt, zuweilen unregelmässig, daher der Herzstoss stärker etc.

• Die Töne können in allen Gegenden ganz normal seyn, oder sie sind lauter, oder im Gegentheil dumpfer, oder fast

gar nicht hörbar, oder man hört an einigen Stellen Geräusche, an andern Töne. Ist nämlich die von Entzündung ergriffene Stelle des Endocardiums keiner stärkern Strömung des Blutes ausgesetzt, wie diess mit der untern Hälfte der Herzhöhlen der Fall ist, so hört man kein Geräusch, auch wenn sich daselbst Exkrescenzen bilden. Geht dagegen über die entzündete Stelle ein schneller Blutstrom, so erzeugt sich ein Geräusch, das man am Thorax an jener Stelle, die dem Ursprunge des Geräusches am nächsten liegt, am deutlichsten vernehmen muss. Sind die Klappen der Sitz der Entzündung, so können sie zum Schliessen unfähig - insufficient werden, oder es kann eine Verengerung des betreffenden Ostiums eintreten. Man kann also bei der Endocarditis ein Geräusch mit der Systole hören, das sich allein auf den linken, oder rechten Ventrikel, oder allein auf die Aorta, oder Pulmonalarterie beschränkt, indess an den übrigen Stellen Töne vernommen werden, oder das Geräusch kann zugleich an mehreren Stellen vorkommen. Mit der Diastole kommt ein Geräusch im Beginn der Endocarditis viel seltener vor, es kann aber in der Aorta sich nach wenigen Tagen einstellen, wenn in Folge der Entzündung die Aortaklappen die Fähigkeit, den Rücksluss des Blutes zu hemmen, verloren haben.

2. Klappenfehler.

a. Insufficienz der zweispitzigen Klappe. — Der Perkussionsschall ist in der Regel der Breite des Herzens entsprechend in einer grössern Ausdehnung gedämpft, da die Insufficienz der zweispitzigen Klappe fast jedesmal Hypertrophie mit Dilatation des rechten Herzens zur Folge hat.

An der Stelle der Brustwand, wo die Herzspitze anstösst, und zuweilen auch in deren Umgebung in mehr weniger grossem Umfange, ist mit der Kammersystole ein Geräusch hörbar; der zweite Ton der Pulmonalarterie ist verstärkt, und es fällt deutlich der Accent auf denselben. Zuweilen, insbesondere bei schwächern Herzbewegungen, ist im linken Ventrikel bei der Systole nur ein undeutlicher Schall zu vernehmen, der sich weder als Ton, noch als Geräusch bestimmt erkennen lässt. Mit der Diastole hört man im linken Ventrikel in der Regel einen undeutlichen Schall, oder gar nichts; nur selten findet sich ein ziemlich deutlicher Ton. Ist die Insufficienz der zweispitzigen Klappe gross, so werden die Töne der Aorta schwach; der Herzstoss ist in der Regel verstärkt.

b. Verengerung des linken Ostium venosum. — Der Perkussionsschall ist, wie bei der Insufficienz
der zweispitzigen Klappe, der Breite des Herzens entsprechend in einer grössern Ausdehnung gedämpft, indem sich
bei Verengerung des linken Ostium venosum noch schneller
Vergrösserung des rechten Ventrikels einstellt.

Im linken Ventrikel vernimmt man statt des zweiten Tones ein Geräusch, das nicht selten so gedehnt ist, dass es nur während der Kammersystole auf einen Augenblick unterbrochen wird. Der zweite Ton der Pulmonalarterie ist verstärkt. Während der Systole hört man im linken Ventrikel entweder gar nichts, oder man hört einen undeutlichen Schall, oder man vernimmt ein Geräusch, weil nämlich mit Verengerung des linken Ostium venosum gewöhnlich auch Insufficienz der zweispitzigen Klappe verbunden ist. Die Töne der Aorta sind in der Regel schwach, der Herzstoss etwas verstärkt, und über eine grössere Fläche ausgedehnt.

c. Insufficienz der dreispitzigen Klappe. — Die Insufficienz der dreispitzigen Klappe bedingt nur die Erweiterung des rechten Vorhofes, und aus diesem Grunde ist der Perkussionsschall an der dem rechten Vorhofe entsprechenden Stelle des Thorax zuweilen merkbar gedämpft. Im rechten Ventrikel erscheint mit der Systole ein Geräusch, und gleichzeitig steigt das Blut in den Halsvenen, an welchen also eine Pulsation sichtbar ist. Doch kann bei schwacher Herzbewegung das Geräusch im Ventrikel in einen undeutlichen Schall übergehen, oder ganz unhörbar werden. Mit der Diastole ist im rechten Ventrikel entweder ein un-

deutlicher, oder gar kein Schall zu vernehmen, nur selten bemerkt man einen noch deutlichen Ton.

- d. Verengerung des rechten Ostium venosum. — Diese Abnormität habe ich nie beobachtet, und es findet sich selbst im hierortigen pathologischen Musäum kein Beispiel davon.
- e. Insufficienz der Aortaklappen. Der Perkussionsschall ist fast konstant in der Längenrichtung des Herzens in einer grössern Ausdehnung gedämpft, da die Insufficienz der Aortaklappen jedesmal eine Vergrösserung des linken Ventrikels - gewöhnlich Hypertrophie und Dilatation - herbeiführt. Doch kann eine grössere Ausdehnung der linken Lunge die Dämpfung des Perkussionsschalles aufheben. Der Herzstoss ist fast jedesmal verstärkt, und erschüttert entweder gleich einem Hammerschlage den Kopf des Auskultirenden, oder er hebt die Brustwand. Statt des zweiten Tones erscheint in der Aorta ein gedehntes Geräusch, das an der Ursprungsstelle der Aorta die grösste Intensität hat. Dieses Geräusch ist gewöhnlich auf eine grössere Entfernung hörbar, und falls die Insufficienz bedeutend ist, so hört man das Rauschen des herabstürzenden Blutes noch sehr intensiv an der Spitze des Herzens - also auch im linken Ventrikel statt des zweiten Tones ein Geräusch -.

Während der Systole ist in der Aorta gewöhnlich ein Geräusch zu vernehmen, indem bei der Insufficienz der Aortaklappen fast jedesmal auch rauhe Stellen in der Aorta selbst, oder an der untern Fläche der Aortaklappen vorkommen. Zuweilen ist aber mit der Systole dennoch ein Ton hörbar, oder man vernimmt einen undeutlichen, oder gar keinen Schall. Der Puls der Schlüsselbeinarterie und Carotis ist von einem starken Raspelgeräusche begleitet.

f. Verengerung der Aortamündung in Folge von Fehlern der Aortaklappen. — Im linken Ventrikel bildet sich Hypertrophie mit Dilatation aus, wiewohl nicht in dem Grade, als bei Insufficienz der Aortaklappen. Der Perkussionsschall zeigt also die der Hypertrophie und Dilatation des linken Ventrikels entsprechende Abweichung. Der Herzstoss ist nicht, oder nur wenig verstärkt, wenn nicht gleichzeitig Insufficienz der Aortaklappen vorhanden ist. Statt des ersten Tones in der Aorta vernimmt man ein Geräusch, das nur bei schwacher Aktion des Herzens undeutlich wird, gewöhnlich aber auf eine grosse Entfernung sich vernehmen lässt. Der zweite Ton in der Aorta ist entweder sehr schwach, oder ganz undeutlich, oder er wird durch ein Geräusch ersetzt, wenn nämlich die Aortaklappe zugleich insufficient ist.

g. Eine Insufficienz der Klappen an der Pulmonalarterie oder eine Verengerung der Einmündung der Pulmonalarterie in Folge von Fehlern ihrer Klappen habe ich noch nie gefunden.

VII. Abnorme Zustände der Aorta, der Pulmonalarterie etc.

- 1. Entzündung der aufsteigenden Aorta. Der Perkussionsschall zeigt keine Abweichung, ausser wenn in Folge der Entzündung die Aorta sich so sehr erweitert, dass sie die Brustwand berührt. An der ganzen obern Hälfte des Brustbeines, und zuweilen auch in der ganzen Umgebung hört man mit der Systole des Herzens ein Geräusch, zuweilen bloss einen undeutlichen, oder gar keinen Schall, in seltenen Fällen ist der Ton der Aortaklappen deutlich hörbar. Die Herzbewegung kann sehr verschieden seyn, und darum gibt die Beschaffenheit des Herzstosses und der Herztöne keine Zeichen für die Entzündung der Aorta.
- 2. Unebenheiten Exkrescenzen, Kalkablagerungen etc. an der innern Fläche der aufsteigenden Aorta. Der Perkussionsschall kann keine
 Abweichung zeigen. Mit der Systole des Herzens lässt sich,
 so wie bei der Entzündung der Aorta ein Geräusch hören.
 Zuweilen ist an der obern Hälfte des Brustbeines auch die
 Diastole von einem Geräusche begleitet, das entweder von
 einem Tone begränzt wird, wenn die Aortaklappen schlies-

sen —, oder aber als Geräusch endet, — bei Insufficienz der Aortaklappen —.

- 3. Erweiterung der aufsteigenden Aorta. -Diese mag entweder gleichmässig, oder sackförmig seyn, so kann sie erst dann erkannt werden, wenn die erweiterte Aorta die vordere Brustwand berührt. Der Perkussionsschall erscheint in einem solchen Falle am obern Theile des Brustbeines in der Ausdehnung, in welcher die Aorta daselbst anliegt, vollkommen dumpf, und die Resistenz ist vermehrt. An derselben Stelle findet der Auskultirende fast konstant mit jeder Systole einen Stoss, der dem Herzstosse an Stärke gleichkommt, oder ihn noch übertrifft. Zwischen der Stelle, wo der Stoss der Aorta gefühlt wird, und zwischen jener, wo sich der Herzstoss wahrnehmen lässt, empfindet man bei der Systole des Herzens keine, oder eine viel geringere Erschütterung. Sowohl bei der Systole, als bei der Diastole des Herzens lässt sich in der Regel in dem Aneurysma ein Geräusch vernehmen. Doch gibt es Fälle, wo die Geräusche sehr undeutlich sind, oder wo gar nichts vernommen werden kann. Die Schlüsselbeinarterie und Carotis gibt während der Systole des Herzens gewöhnlich ein starkes Raspelgeräusch.
- 4. Verengerung der aufsteigenden Aorta. Der linke Ventrikel wird gewöhnlich vergrössert, und selbst im rechten Ventrikel bleibt die Vergrösserung selten aus. In der Aorta sind Töne, oder Geräusche, je nachdem die verengerte Aorta sonst normal, oder aber an der innern Fläche mit Rauhigkeiten besetzt, oder die Aortaklappen insufficient sind.
- 5. Erweiterung der absteigenden Aorta. Der aneurysmatische Sack muss sehr bedeutend seyn, wenn am Rücken im Perkussionsschalle eine Dämpfung bemerkbar werden soll. Ich habe in zwei Fällen, wo das sehr grosse Aneurysma an der absteigenden Aorta eine Dämpfung des Perkussionsschalles am Rücken zur Folge hatte, beim Auskultiren nirgends ein Geräusch vernehmen können. Es kann jedoch keinem Zweifel unterliegen, dass bei Aneurysmen der abstei-

genden Aorta längs des Rückgrathes mit dem Arterienpulse synchronische Geräusche hörbar seyn können; nur zeigt ein solches Geräusch nicht nothwendig ein Aneurysma; sondern bloss rauhe Stellen der innnern Fläche dieses Gefässes.

- 6. Ein Aneurysmader Pulmonalarterie habe ich noch nie beobachtet; die gleichmässige Erweiterung der Pulmonalarterie kommt häufig vor, doch habe ich sie nie in dem Grade gefunden, dass der Perkussionsschall eine Abweichung gezeigt hätte.
- 7. Die Erweiterung der Hohlvenen, oder der Lungenvenen bedingt nie eine Veränderung im Perkussionsschalle.

VIII. Krankhafte Zustände der Organe im Unterleibe.

1. Vergrösserung der Leber.

Diese mag durch Hypertrophie der Lebersubstanz oder durch in der Leber entwickelten Markschwamm, Melanose, Hydatiden, Abscesse etc. bedingt seyn, so sind die Veränderungen im Perkussionsschalle immer dieselben. Eine grosse Leber berührt im grösseren Umfange die Thoraxwand, falls sie nicht tiefer in den Unterleib herabgerückt ist, und macht so den Perkussionsschall in der untern Parthie der rechten Thoraxhälfte in einer grössern Ausdehnung nach allen Richtungen ganz dumpf. Bekanntlich kann der vergrösserte linke Leberlappen bis in das linke Hypochondrium reichen, und daselbst den Perkussionsschall dumpfer, oder ganz dumpf machen. Ist die Leber tiefer in den Unterleib herabgesunken, so findet man unterhalb des rechten Thoraxrandes den Perkussionsschall vollkommen dumpf, oder den Schall der darunter gelegenen Gedärme so weit gedämpft, als die Leber reicht. Die Verschiedenheit in der Resistenz nach der verschiedenen Härte der Lebersubstanz ist nur durch die Bauchdecken deutlich.

2. Verkleinerung der Leber.

Bei Verkleinerung der Leber kann es geschehen, dass der Perkussionsschall am untern Theile der rechten Thoraxhälfte an keiner Stelle vollkommen dumpf wird. Der nicht tympanitische Schall der Lunge wird unmittelbar über der Leber weniger laut, und die Stellen, an welchen die verkleinerte Leber die Brustwand berührt, geben den gedämpften tympanitischen Schall der Gedärme. Dasselbe geschieht, ohne dass die Leber verkleinert ist, wenn sie an Dicke verloren hat. Eine solche Leber kann sogar viel grösser, als eine normale seyn, sich hoch hinauf unter den Brustkorb, und tiefer in den Bauch herab erstrecken, und man wird doch an keiner Stelle ihrer Ausbreitung einen vollkommen dumpfen Schall finden, wenn die hinter und unter der Leber liegenden Gedärme Gas enthalten, und nicht zu sehr gepresst sind. Eine andere Abnormität der Leber, als die in der Grösse und Lage ist durch die Perkussion nicht erkennbar.

3. Vergrösserung der Milz.

Unter den krankhaften Zuständen der Milz ist es nur die Vergrösserung derselben, welche im Perkussionsschalle Ab-weichungen bedingt. Die Vergrösserung der Milz kann durch was immer — Hypertrophie, Markschwamm, Hydatiden etc. — verursacht seyn, so ist das Resultat der Perkussion immer dasselbe. Eine bedeutend vergrösserte Milz dämpst den Perkussionsschall am untern Theile der linken Seitengegend. Die Vergrösserung der Milz ist nur in seltenen Fällen so bedeutend, dass dieses Organ unter dem Thoraxrande hervorragt.

4. Krankhafte Zustände des Magens, der Gedärme und des Peritonäums.

Sind die Gedärme stark durch Gas aufgetrieben, und die Bauchdecken dabei nicht zu sehr gespannt, so wird der Perkussionsschall fast am ganzen Unterleibe gleich, sehr laut, trommelartig; nur sehr selten lässt sich der metallische Nachklang dabei vernehmen. Sind bei starker Auftreibung der Gedärme durch Gas auch die Bauchdecken sehr gespannt, so wird der Perkussionsschall am ganzen Unterleibe gleich, nicht tympanitisch, und weniger hell, als wenn die Bauchdecken mehr relaxirt sind.

Exsudate in der Bauchhöhle nehmen, wenn sie nicht abgesackt sind, jedesmal die tiefste Stelle ein, und verändern ihren Ort nach der Lage des Kranken. Die lufthältigen Gedärme schwimmen auf der Flüssigkeit, wenn es die Länge des Gekröses zulässt, und falls das nicht angeht, so sammelt sich die Luft grösstentheils in den Darmportionen, welche die höchste Stelle einnehmen. Nicht selten findet man die beweglichen Darmparthien in einem Knäuel, nach oben gegen den Magen, und unter die Hypochondrien gedrängt. Die Stellen der Bauchwand, wo die Flüssigkeit anliegt, geben einen ganz dumpfen Schall, gleich dem Schalle des Schenkels, falls sich hinter der Flüssigkeit kein lufthältiger Darm vorfindet. Die Flüssigkeit, die sich zwischen den Darmschlingen verlieren kann, ohne diese von der Bauchwand zu verdrängen, ändert den Perkussionsschall nicht.

Bei ausgebreiteter Peritonitis wird der Perkussionsschall in allen Fällen, wo die Gedärme von vielem Gas stark ausgedehnt, und die Bauchdecken straff gespannt werden, gedämpft und weniger tympanitisch, selbst wenn das Exsudat nur plastisch ist, und eine unbedeutende Dicke hat. Findet keine Auftreibung der Gedärme durch Gas statt, so wird der Perkussionsschall des Unterleibes bei Peritonitis nur durch eine sehr grosse Menge Exsudates gedämpft, oder in verschiedener Ausdehnung ganz null.

Bei Verwachsung der Gedärme unter einander und mit der Bauchwand findet meist einige Auftreibung der Gedärme durch Gas statt, und der Perkussionsschall ist somit nicht selten am ganzen Unterleibe fast gleich laut, aber weniger hell, als bei freier Beweglichkeit der Darmparthien.

Bei Tuberkeln am Peritonaeum findet man den

Perkussionsschall gleichfalls nicht selten gedämpft; doch ist diess nur der Austreibung der Gedärme durch Gas zuzuschreiben, und kommt ohne diese nicht vor.

Markschwämme am Peritonaeum bewirken keine Änderung des Perkussionsschalles, wenn sie nicht eine sehr bedeutende Grösse erreichen, die nur im Netze vorzukommen pflegt.

Krankhafte Veränderungen der Muskel- und der Schleimhaut der Gedärme und des Magens verändern dadurch den Perkussionsschall, dass sie nicht selten Anhäufung von Gas oder Flüssigkeiten im Magen, oder in den Gedärmen zur Folge haben; oder es muss sich eine bedeutend grosse Aftermasse entwickeln, wie diess bei Markschwamm des Magens, oder bei tuberkulöser Entartung einer Darmparthie der Fall seyn kann.

5. Das Pankreas

vermag im Perkussionsschalle des Unterleibes keine Veränderung hervorzubringen; dasselbe gilt von den Mesenterialdrüsen, wenn sie auch bedeutend vergrössert, und von den Harnleitern, wenn sie noch so sehr ausgedehnt sind.

6. Vergrösserung der Nieren.

Die Grösse der Nieren trägt sehr wenig zur Beschaffenheit des Perkussionsschalles in der Lumbalgegend bei. Derselbe kann ganz dumpf seyn, wenn die Nieren sehr klein, und tympanitisch, obgleich die Nieren sehr gross sind. Man muss darum, wenn es angeht, mit dem Plessimeter so weit in die Tiefe drücken, bis man einen ganz dumpfen Perkussionsschall und die Resistenz eines festen Organs findet. Indem man diess Verfahren an mehreren Stellen wiederholt, kann man daraus abnehmen, ob die Niere eine auffallende Vergrösserung zeigt.

7. Aneurysmen der Bauchaorta, der Coeliaca etc.

Wo das Aneurysma die Bauchwand berührt, ist der Perkussionsschall entweder ganz dumpf, oder man hört den gedämpften Schall der angränzenden Darmparthien. Berührt das Aneurysma die Bauchwand nicht, so muss man, falls die Perkussion erforderlich wäre, durch Andrücken des Plessimeters an die Bauchwand diese mit dem Aneurysma in Berührung zu bringen trachten.

Bei grosser Magerkeit der Bauchdecken und eingezogenem Unterleibe ist die Pulsation der normalen Bauchaorta durch das Stethoskop — so wie mit den Fingern — gewöhnlich sehr stark zu fühlen, und man hört zugleich einen Ton, der ganz deutlich, oder nur dumpf seyn kann; oder man hört, was der gewöhnlichere Fall ist, besonders wenn man das Stethoskop andrückt, ein blasendes Geräusch. Bei Aneurysmen der Bauchaorta oder Coeliaca wird die Pulsation nicht bloss längs der Aorta gefühlt, sondern man empfindet sie auch am Aneurysma. Man hört im Aneurysma gewöhnlich ein Geräusch, synchronisch mit der Pulsation der Arterie, doch kann das Blut durch das Aneurysma strömen, ohne mehr als einen ganz dumpfen, undeutlichen Schall zu erzeugen.

8. Vergrösserung des Uterus und der Ovarien.

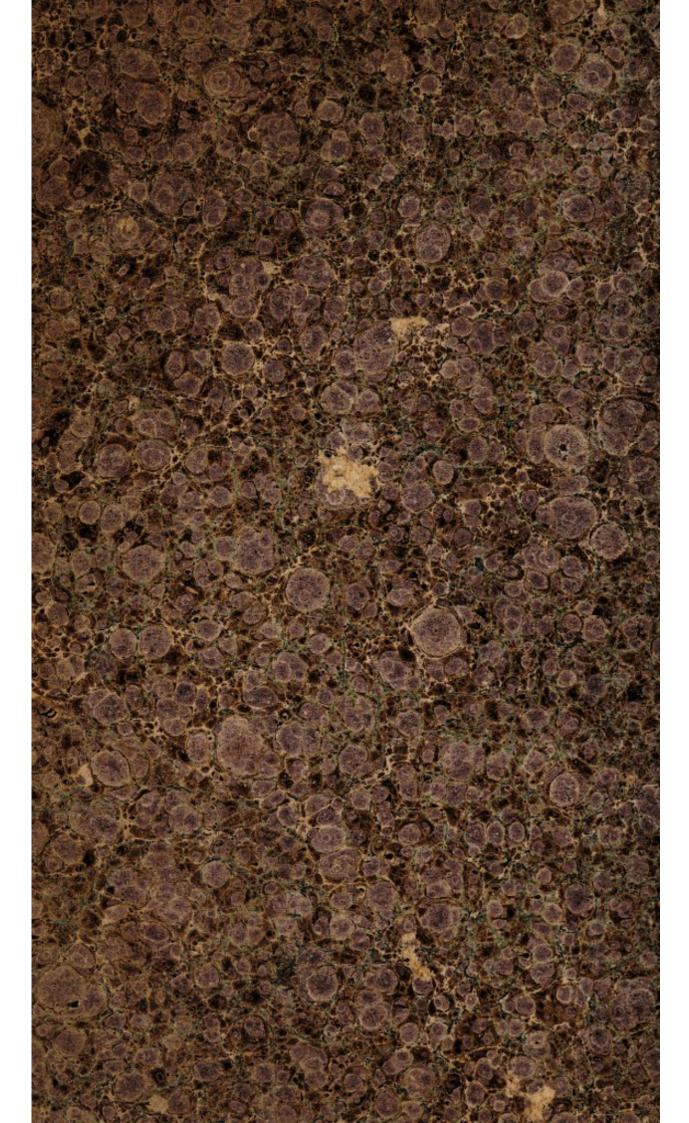
Der Uterus ändert wegen seiner tiefen Lage im Becken, und die Ovarien wegen ihrer Kleinheit im normalen Zustande den Perkussionsschall nicht. Steigt der vergrösserte Uterus aus der Beckenhöhle hervor, oder vergrössern sich die Ovarien, so wird der Perkussionsschall da, wo sie die Bauchwand berühren, dumpf.

9. Ausdehnung der Harnblase und Vergrösserung derselben in Folge der Verdickung ihrer Wände etc.

Die durch Urin, Blut etc. ausgedehnte Harnblase macht den Perkussionsschall oberhalb der Schambeine dumpf. Dasselbe geschieht bei Vergrösserung der Harnblase in Folge von Verdickung ihrer Wandungen durch Hypertrophie, oder irgend eine andere krankhafte Metamorphose. Die Resistenz ist in den letztern Fällen grösser, als bei Ausdehnung der Blase durch Urin.

10. Steine in der Harnblase.

Das Anschlagen oder Anstreifen, des Katheters an einen Stein in der Blase hört man durch ein an die Schambeine angesetztes Stethoskop viel lauter, als man dasselbe mittelst des freien Ohres durch die Luft vernehmen kann, auch wenn man sehr nahe horcht. Enthält die Blase keinen Stein, so verursachen die Bewegungen des Katheters innerhalb derselben zuweilen ein Gegurgel, zuweilen ein anderes dumpfes Geräusch, das jedoch nicht die geringste Ähnlichkeit mit dem Anschlagen gegen einen Stein hat. Die Auskultation muss als ein nicht unwichtiger Behelf zur Erkenntniss der Blasensteine angesehen werden. Sie kann das Gefühl unterstützen und berichtigen.


Verbesserungen.

```
7 v. o. l. Unterleib statt Unetrleib
               4 " Piorry's
                                     « Piorrys
     18
               6 v. u. ist das Coma wegzulassen
               9 v. o. l. variirt statt varirt
     21
                 « vereinzelnten
                                          statt
                                                 vereinzelten
ee
               9 v. u. l. Konsonanz
     31
                                                konsonanz
          ce
                                                Raum
              12 v. o. l. Raume
     33
11
              11 v. o. l. Weite
                                                Weise
     80
               8 v. u. l. das
     80
                                                 dass
                         Raciborsky
                                                 Baciborsky
     87
                  23
-11
                        feinen
     88
              16
                                                 feiner
                   "
                         so lässt
              18
                                                 lässt
     91
               8 v. u. l. Cruveilhier
                                                 Cruveillhier
    100
    106
                 "
                         Gewölben
                                                 Gewölbern
                                            11
ec
               3 « Raciborsky
    109
                                                 Baciborsky
               15 ist das Coma wegzulassen
    109
    109
               16 ist der Punkt wegzulassen
               2 v. u. l. keinen Pfropf
     123
                                                 keine Stoppel
                                           statt
     133
                         Au-skultiren
                                                 Aus-kultiren
                  11
              13
                         Williams
                                                 William's
    140
                   ec
                9 v. o. l. allda
                                                 alda
     153
              11 v. u. l. - das erste -;
                                                 - das erste -
    182
              13 v. o. l. Tabescenz
    186
                                                 Tubescenz
                         variirt
                                                 varirt
    201
                    cc
    217
                        tympanitisch
                                                 tympanisch
                         au-skultatorischen «
                                                 aus-kultatorischen
     225
               11
                                                 fanden
    228
               5
                         finden
     229
               15
                         ist -,
                                                 ist -
                         dass
     236
               14
                                                 das
                         viele
                                                viel
     240
               18
```

